
The Promise of Solid State Disks

Increasing efficiency and reducing cost of DBMS processing

Karsten Schmidt
kschmidt@cs.uni-kl.de

Yi Ou
ou@cs.uni-kl.de

Theo Härder
haerder@cs.uni-kl.de

Databases and Information Systems Group
Department of Computer Science

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

ABSTRACT
Most database systems (DBMSs) today are operating on servers
equipped with magnetic disks. In our contribution, we want to mo-
tivate the use of two emerging and striking technologies, namely
native XML DBMSs (XDBMSs for short) and solid state disks. In
this context, the traditional read/write model optimized by a so-
phisticated cache hierarchy and the IO cost model for databases
needs adjustment. Such new devices together with optimized stor-
age mapping of XML documents provide a number of challenging
characteristics. We discuss howtheir optimization potential ca be
exploited to enhance transactional DB performance under reduced
energy consumption to match increasing application demands and,
at the same time, to guarantee economic energy use in data centers.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—mass storage; H.2.4
[Database Management]: Systems; H.3.2 [Information Storage
and Retrieval]: Information Storage

General Terms
Performance, Design, Economics

Keywords
SSD, DBMS Storage, XML Mapping, Energy Efficiency, TCO

1. INTRODUCTION
“Green Computing” was coined just a year ago and is now om-

nipresent in the IT world. Even for DBMSs, energy and resource
consumption is a rapidly emerging problem to be solved, before
environmental-friendly data centers can be established. New and
improved hardware technologies addressing the energy consump-
tion challenge arise everywhere on the market. Besides processor
developments, chip miniaturizations, and cooling improvements,
disks have experienced an increased attention, too. But, informa-
tion system design is still focusing on the fairly static character-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-09 2009, May 19-21, Montreal [QC, CANADA]
Copyright 2009 ACM 978-1-60558-401-0/09/05 ...$5.00.

istics of magnetic disks when optimizing or employing a DBMS.
The fast development of new storage devices such as solid state
disks (SSD) or NAND-based1 flash disks leads to new challenging
research opportunities in the DBMS world [11].

SSD devices compared to magnetic disks (disks for short) have a
favorable IO model, which results from their underlying physics
and primarily differs in power consumption and space capacity.
The advantages of this IO model should also be addressed at the DB
level to enhance operational goals such as transactional through-
put, power consumption, reliability, or scale factors (i.e., number
of users, amount of data) [6].

Web systems, data logging or tracking, data warehousing, and
data exchange are very popular uses and often confronted with vast
amounts of new data. Because of its evolution capability, XML is
the emerging standard data format for such tasks in a variety of “dy-
namic” application domains. Most of these kinds of data stores are
dealing with large and fast growing volumes [9] of data as well as
highly selective access (queried by SQL/XML, XPath, or XQuery)
or reporting functions which aggregate large amounts of data. Due
to XML’s flexibility, native storage techniques for an XDBMS be-
came a hot research area in recent years. Beginning with shred-
ding solutions (i.e., mapping XML data to relational structures),
more XML-aware approaches such as hybrid, tree-based, and na-
tive storage mappings successfully emerged [12, 3]. Especially na-
tive XDBMSs [8] tackle the performance issue when processing
XML data and new developments should also care about the de-
mands for energy savings and alternative hardware usage to reduce
the TCO (Total Cost of Ownership).

Virtualization, often used in large data centers, can reduce hard-
ware costs, but also minimize operational costs (e.g., energy sup-
ply or administration overhead). For DBMSs, such a virtualization
(e.g., of the storage) is mostly unwanted, because it cannot guar-
antee predictable response times which are crucial for query opti-
mization and the validity of the underlying cost model. However,
DB algorithms can be adjusted to a variety of resources to control
the load of IO, CPU, and memory, which, in turn, may provide a
strongly improved energy balance. As long as energy costs can
amortize potentially higher purchase costs for modern and “green”
hardware, their usage is advisable.

Evaluating alternative hardware in terms of performance and costs
in a native XDBMS environment requires a suitable benchmark
modeling the afore mentioned use cases. The most promising bench-
mark proposal is TPoX [10] which meets most of our desires for
manipulating XML databases.

1Availability and prices disqualify NOR-based devices.



infrastructure
cost

energy cost

server cost

year

1990  1995  2000  2005  2010  2015

2500

2000

1500

1000

  500

      0

dollars

Figure 1: Amortized sever cost [2].

2. TCO OF STORAGE SYSTEMS
Nowadays data processing systems are confronted with two re-

quirements, (1) to provide enough capacity to store the steadily in-
creasing amounts of data, and (2) to support concurrent read and
write access by huge bandwidths. For the TCO (total cost of own-
ership), hardware prices and operational costs are as important as
the price/performance and price/capacity ratios.

The TCO of a storage system can be considered independent of
applications using this storage by taking the average read and av-
erage write loads into account. Thus, the TCO for a time period
t can be calculated by TCO(t) = costinitial + costruntime ∗ truntime.
The most complex function is costruntime because runtime costs in-
clude not only the energy consumption but also cooling costs, for
instance; however we omit these additional costs. Furthermore, the
initial costs costinitial of a device setup (e.g., number of devices,
RAID), are driven by data volume, availability, and throughput re-
quirements specified by the applications.

The decision, which storage configuration is advisable based on
their TCO, needs to compare different cost estimations for them.
However, such a comparision is heavily dependent on the expected
runtime. For instance, the higher costinitial of system A may be
amortized by lower costruntime compared to system B after a cer-
tain runtime. Such a simple TCO-based comparison only holds if
both systems offer similar performance characteristics. Otherwise,
the TCO needs to be normalized for read and write access to a com-
parable unit, such as IO per second (IOPS).

In recent reports [4, 2], comparison of hardware costs and op-
erational costs in data centers has revealed that the rising energy
prices very quickly lead to a situation where the operational costs
are dominating (see Figure 1). Our observations and the work by
[5] have shown that energy costs for the storage equipment are usu-
ally between 8 % and 25 % of a database server system. The use
of disk arrays (i.e., RAID) significantly increases this share [13].
Thus, the trend in Figure 1 can be scaled down to the storage part
showing similar characteristics.

Even more important for a database system is the IOPS mea-
surement to adequately compare storage systems. By combining
the TCO and IOPS figures, a comparison of totally different stor-
age configurations may be possible, too.

3. SSD VS DISK
To allow for a comparison of SSDs and disks, a basic under-

standing of their internals is necessary. Usual magnetic disks have
several rotating platters divided into areas called sectors. Each of
these sectors covers 512 B of data—the basic unit of read or write—
and is mechanically accessed by one of the read/write heads. The

 0

 50

 100

 150

 200

 250

 300

 350

2004 2005 2006 2007 now

gr
ow

th
 r

at
io

 in
 %

disk MB/s
SSD MB/s

disk GB/$
SSD GB/$

Figure 2: Growth of critical device parameters (source: APC Magazine).

major drawback is the latency time that is required to (re-)position
the head’s arm. Therefore, the (“mechanical”) time to seek for the
right track and the right sector is a major time fraction of random
IO as opposed to sequential IO which is considerably faster because
positioning happens only once.

In contrast, SSD is an electronic storage where no mechanical
movement is required at all. Although a tiny overhead is needed
to address or locate the requested block, its impact is much less
compared to the disk’s latency. The basic unit of read is a single
segment which is typically 2 KB and can be up to a physical block
of ≤256 KB. Because of the NAND logic, an entire block needs
to be written instead of a subset of segments contained and often
implies an expensive erase operation of the block in advance. And
if data is already stored in the target block, it needs to be merged
with the new data, which is achieved by merging the segments and
moving the entire block to a new and empty block (prepared by
an erasure operation). A built-in mechanism, the so-called wear
leveling, ensures durability of the device [1]. Hence, SSDs offer
a zero-latency design, but embody a more expensive write model,
which leads to a different IO model that has to be addressed by
algorithms and cost parameters.

Figure 2 exhibits the potential of SSD development to be ex-
pected in the next years when comparing various annual growth
ratios. The displayed ratios show that SSD’s price decline and
throughput increase have a faster pace than those of disks. In the
near future, SSDs will presumably balance out the price and capac-
ity penalty by their speed advantage, beyond it, they may outper-
form disks in all respects.

A more detailed insight is given in Figure 3 where we compared
two equally fast consumer drives—an SSD and a disk—showing
their typically different IO characteristics and illustrating major dif-
ferences occurring for random and sequential access patterns. Note
that random reads (RR) and sequential reads (SR) are depicted in
the left chart, whereas random writes (RW) and sequential writes
(SW) are depicted in the right chart, respectively. The disk drive
achieves nearly the same poor throughput ratios for read and write
operations, whereas sequential access in both cases shows excel-
lent performance. In contrast, the SSD’s sequential access charac-
teristics are comparable, but random writes are clearly problematic
compared to random reads, which scale linearly with the block size.

Another meaningful performance measurement is IOPS. In Ta-



4K 8K 16K 32K 64K 128K
0

10

20

30

40

50

60

70

SR_SSD
SR_DISK
RR_SSD
RR_DISK

MB/s read access

4K 8K 16K 32K 64K 128K
0

5

10

15

20

25

30

35

40

45

50

SW_SSD
SW_DISK
RW_SSD
RW_DISK

MB/s write access

Figure 3: Read-write comparison for SSDs and disks.

ble 1, the specifications for consumer-level and high-end drives are
outlined. Due to the disbalance between read/write and sequen-
tial/random access, the table shows combinations and their typical
IOPS ratios. The SSD’s random read superiority is clearly con-
firmed, whereas the random write penalty, at least for the available
consumer devices, are eye-catching again. Comparing sustained IO
ratios, difference between read and write is marginal; however, the
trend for SSDs shows a significant increase for both values. Thus,
having sequential access, both kind of drives are fairly comparable,
but having random access they identify a huge disbalance.

4. CACHE HIERARCHY
In order to evaluate throughput ratios at the DBMS level, we

need to investigate the entire cache hierarchy that influences the
data flow from the device level to the application level. But where
should the SSD be integrated regarding its characteristics? Ei-
ther as an intermediate caching layer between disks and RAM or
as a substitute for disks. Our focus is to show the SSD’s ade-
quacy to replace a disk, thus Figure 4 depicts the layered over-
all architecture for data caches and makes the distinction between
OS- and device-controlled caches when necessary. Disks bene-
fit from device caches when data is sequentially read or sequen-
tially/randomly written, whereas raw-device IO of an SSD is nei-
ther limited nor boosted, because it is not equipped with (and would
not benefit from) a device cache. At the interface of the OS ker-
nel to the storage devices, a kernel cache is allocated that allows
for buffering entire blocks using an LRU-based replacement pol-
icy. Furthermore, this cache is automatically resized depending
on available main memory. Cache filling is optimized for sequen-
tial accesses by synchronous and asynchronous prefetching. In the
layer above, a virtual file system (VFS) maintains several caches for
inodes, block mappings, and directories, as well as a page cache.
As these caches are completely controlled by the kernel, a flush to

2announced, not available yet

Table 1: IOPS, MB/s, and energy consumption figures.

Drive IOPS random MB/s sequential Wattread write read write
consumer SSD 3,000 50 70 50 0.06−2.0
high-end SSD2 35,000 5,000 250 170 0.9−3.5
consumer disk 125 100 100 100 6.0−12.5
high-end disk ≤ 200 ≤ 200 160 150 10.0−18

empty them is the only functionality provided for the application.
Typically, page cache and kernel cache hold actual, but not explic-
itly and currently requested data in RAM and often they keep the
same data twice. In contrast, the inode cache and directory cache
speed-up file resolution, block addressing, and navigation.

At the OS level, room for file caching may be reserved in such a
way that all RAM currently not needed by the OS and the applica-
tions is used for caching block reads and writes of the applications.
Moreover, the file system may use this cache to prefetch blocks in
a way not visible and controllable by the applications. This kind of
prefetching is often heuristically performed depending on the lo-
cality or sequentiality of the current block accesses to disk. For
example, Linux offers the following options:

• The first file access is conservative when deciding on prefetch-
ing. Only when the first block of a file is read, sequential ac-
cess is anticipated and some minimal prefetching takes place.

• Synchronous prefetching by the file system can be enabled
to lower seek costs for larger reads.

• Read access pattern recognition may dynamically trigger syn-
chronous and/or asynchronous prefetching.

To enable greater flexibility, these kinds of disk access optimiza-
tion are further separated into raw-block caching and file-structure
caching (metadata such as inodes, indirect block references, etc.).
Moreover, some access options (direct, sync) are provided at the
file system interface. However, not all OS versions (in our case
Linux) observe such application desires, e.g., even if the raw-disk
option is enforced, the OS does not respond to it. As a result, great
uncertainty may exist for all kinds of disk IO timings in real appli-
cation environments.

5. SSD USE IN DB APPLICATIONS
Important SSD characteristics are still visible at the application

level: the poor random-write and excellent random-read perfor-
mance. Moreover, energy consumption is differing from that of
a disk-based system. For these reasons, we identified the following
optimization options:

• Design compact and fine-grained storage structures to mini-
mize IO for allocating, fetching, and rewriting DB objects.

• Use processing concepts which maximize memory-resident
operations and minimize random reads/writes to storage—in
particular, strictly avoid random writes to SSD.



bib

publication

book

year id type title

book

1.3.3.1 1.3.3.3 1.3.3.5 1.3.3.7

1.3.5

1

1.3

1.3.3

1994
1.3.3.1.3

1
1.3.3.3.3

xy
1.3.3.5.3

TCP/IP
1.3.3.7.3

. . .

. . .

. . .

(a) DOM tree

1.3.3.9.3

1 bib 1.3

1.3.3.2.1
type1.3.3.3

title1.3.3.5
. . .

author
1.3.3.8.3 author

price
1.3.5

. . .
. . .

. . .

1.3.3.5.3 1.9

1 1.3.3.7 1.9.1 . . .

elem.&attrib. content(uncompr.) SPLIDs

document
index

document container

publication
year 1.3.3.1.3
id1.3.3.2.1.3

1.3.3.7

book
. . .

1.3.3
book 1.3.3.1

1.3.3.5.3

1.3.3.9

1.3.5.9.3TCP/IP

1994
1

65.95

(b) B*-tree mapping

Figure 5: Completely stored XML document.

hard disk 
(HDD)

kernel cache

driver

VFS

i.e. EXT2 inode cache

directory cache

user level

kernel level

application

flash disk (SSD)

storage device

device
cache

page access

block access

page cache

Figure 4: Caching hierarchy.

We discuss these principles and their potential energy savings for
native XML DBMSs. In the following, we outline differing storage
mappings for XML documents, which may help to reveal critical
aspects of DBMS-related IO performance. In general, saving IO
is the major key to performance improvements and, in turn, en-
ergy efficiency in DBMSs. Therefore, both goals imply the use of
compact storage formats for DB objects. This is particularly true
for storing, modifying, or querying XML documents, because they
may contain substantial redundancy in the structure part, i.e., the
inner nodes of the document tree (see Figure 5a). Because write
propagation of modified DB objects causes a large share of DB
IO and dependent log IO, optimization of storage mapping reduces
log IO at the same time. Hence, XML documents have to be en-
coded into suitable physical representations, flexible enough for dy-
namic modifications, and kept as trees on storage to later enable
fine-grained document processing.

5.1 Mapping Concepts
Natively storing XML documents requires identification of the

resulting tree nodes, e.g., the assignment of node labels, the type of
which is particularly important for processing flexibility and effec-
tivity.

Range-based labeling schemes are quite expressive. When two
labels are compared, all axis relationships can be directly decided.
However, they fail to provide the ancestor IDs when the ID of the
context node is known. Moreover, dynamic insertion of subtrees
would cause a relabeling of the document (or a fraction of it) trig-
gering a bulk IO operation. In contrast, prefix-based labeling, de-

rived from the concept of DeweyIDs, remains stable also in dy-
namic documents and supports all node operations and axis rela-
tionships mentioned without requiring document access—only by
checking a given label with that of the context node [7].

B*-trees—made up by the document index and the document
container—and DeweyIDs are the most valuable features of phys-
ical XML representation. B*-trees enable logarithmic access time
under arbitrary scalability and their split mechanism takes care of
storage management and dynamic reorganization. As illustrated in
Figure 5b, we provide an implementation based on B*-trees which
cares about structural balancing and which maintains the XML
nodes stored in variable-length format (DeweyID+element/attribute
(dark&white boxes) or DeweyID+value (dark&grey boxes)) in doc-
ument order.

Structure virtualization aims at getting rid of the structure part
in a lossless way and helps to drastically save storage space and, in
turn, document IO. As a consequence, log space and log IO may be
greatly reduced, too. This virtualization is enabled by the combined
use of DeweyIDs as node labels and a small memory-resident data
structure, called path synopsis (illustrated in Figure 6a for a cut-
out of the well-known dblp document [9]) representing only the
path classes. As a consequence, storage footprint is saved for the
entire structure part and the document or selected paths of it are
only reconstructed on demand. For this reason, PCRs (path class
references) are added to the nodes of the path synopsis to identify
path classes. When, e.g., DeweyID=1.3.3.7.3 together with PCR=7
is delivered as a reference (e.g., from an index) for value TCP/IP,
the entire path instance together with the individual labels of the
ancestor nodes can be rebuilt: bib/publication/book/title.

5.2 Storage Mappings
DeweyIDs offer two options for the storage mapping of XML

documents. The so-called full-storage (fs) mode is sketched in Fig-
ure 5b. It encodes the dot-separated parts of a DeweyID by space-
efficient Huffman codes (not shown) and adds it to each tree node.
Although each node is stored as a variable-length B*-tree entry, this
mapping results in maximum storage footprint and IO for an XML
document.

Due to the document order, the DeweyID labeling lends itself
to effective prefix compression reducing the DeweyIDs’ avg. size
to ∼ 20–30 % [7]. Hence, by applying this optimization step sep-
arately to all DeweyIDs in a container page (shown in Figure 6b),
we obtain the prefix-compressed (pc) storage mapping, which saves
space and IO, but implies more computational effort, because the
reconstruction of the DeweyIDs is needed (starting with the first
DeweyID in a container page).



(a) Path synopsis

1.3.7.3.3
1.3.7.5.3

. . .
1.3.3.9.3

. . .

. . .

1.3.9 1.3.11

1.3.3.1.3 1.3.3.9.3 1.3.11.1.3 . . .

PCR content(compr. not shown) SPLIDs

1.7.1.3

1.3.1.3

1.3.5.3

1.3.8.3.3.3

5

9 W.11
. . .

. . .
65.95

. . .

document
index

document container
1.3.7.1.3

1.3.3.1.3

1.3.3.5.3

1.3.3.8.3.3.3

7
9

9

13

4

44 1.3.3.2.1.3

1.3.3.7.3.31.3.3.7.3.3
1.3.3.7.5.3

. . .
W.11Stevens

TCP/IP
1

1994

(b) B*-tree and container layout

Figure 6: Elementless storage structures for XML documents.

Because of the typically huge repetition of element and attribute
names in an XML document, a specific storage mapping is very
space-effective when the structure part is virtualized and only its
content is physically stored, i.e., the values in the leaves together
with their DeweyIDs. Each root-to-leaf path in an XML document
in Figure 5a would be reduced to a single leaf value with node label
and PCR (for path reconstruction). For example, the left-most path
of Figure 5a would be stored as (1.3.3.1.3,4,1994). Because all
elements and attributes disappear in the storage representation, we
call this mode elementless (el).

All three storage mappings3 of XML documents—fs, pc, and
el—were compared in empirical performance measurements. We
applied the TPoX tools [10] to generate the various documents in
the external text format, called the plain format, from which the
differing storage mappings were created. To assess their storage
effectivity, we cannot refer to absolute numbers, because the sizes
of our sample documents vary from 10 MB to 1 GB. Hence, we
have normalized the space figures w.r.t. to plain (100 %). Hence,
the storage footprints of fs, pc, and el obtained quite some reduc-
tion and reached ∼ 95 %, ∼ 70 %, and ∼ 65 %, respectively; these
figures directly characterize the IO saving when storing or recon-
structing the entire document.

The availability of these storage mappings offers the required
flexibility to evaluate in detail various storage configurations (de-
vice type/storage mapping) and workload scenarios aiming at the
analysis of energy efficiency and throughput.

6. EXPERIMENTAL RESULTS
All findings are gained by using the TPoX benchmark suite [10]

and our native XDBMS where we stored the TPoX documents in
so-called document collections. The DB page size and the XDBMS
buffer size were 4 KB respectively 16 MB in all experiments.

To define typical workloads, we assembled two sets of TPoX
workloads containing the following queries: report an account sum-
mary, return an order, resolve a customer, search for a specific se-
curity, return a security price value, place an order, update a price
value, and create a new account. The first five queries are used in a
read-only workload. The remaining four queries include updates or
inserts and, hence, we assembled a mixed workload with them and
the read-only queries. To reflect the indeterminism of real environ-
ments, all queries are supplied with random parameters. By chang-
ing the weights of the queries, the write load in the benchmarks

3Here, we do not consider content compression. It would further
decrease IO overhead, but increase CPU time for additional com-
pression/decompression tasks.

can be scaled from 0 % to ∼ 50 %4. After locating its (random)
target (identified by a DeweyID) in a document via an element
index—the only additional index used for these benchmarks—each
query traverses the document index and locally navigates in one or
two container pages (see Figure 5b and 6b) thereby accessing a
number of records. Hence, the set of queries—each executed as a
transaction—causes fine-grained and randomly distributed IOs on
the XML database. The element index is necessary to avoid plain
but costly document scans, which are the fallback access solution
but not the preferred access path because their scaling properties are
really poor. Furthermore, the randomly selected document nodes
reflect selective and, thereby, realistic access behavior.

All our benchmarks and experiments were performed on an AMD
Athlon X2 4450e (2.3 GHz, 1MB L2 cache) processor using 1 GB
of main memory (RAM) and a separate disk for the operating sys-
tem. As hard disk, we use a WD800AAJS (Western Digital) having
a capacity of 80 GB and an 8MB cache, NCQ, and 7,200 rpm. The
SSD device is a DuraDrive AT series (SuperTalent) having a ca-
pacity of 32 GB. The operating system is a minimal Ubuntu 8.04
installation using kernel version 2.6.24 and Java 1.6.0_06 for our
native XDBMS.

6.1 Benchmark Measurements
The results—measured in tps (transactions per second)—of the

first set of experiments shown in Figure 7 and Figure 8 compare the
throughput rates for the different storage configurations operating
on SSD and disk. The read-only scenario (Figure 7) exhibits that
disks have a much higher impact on growing database sizes than
SSDs, because the tps rates drastically decrease from ∼100 tps for
small databases down to∼40 tps for midsize databases and∼30 tps
for large databases, respectively. Important reasons are the longer
search paths, because the heights of the document indexes grow
from 2 for 10 MB to 3 or 4 for 1000 MB, and longer seeks, because
the storage footprints of the documents cover larger disk areas. On
the other hand, the tps results are influenced by caching effects, as
discussed in Section 4, and even dominated, especially for small
databases. In contrast, the SSD tps rates stay at a high level (∼90
tps), although they are not supported by a device cache. Obviously,
the “zero” seek time is beneficial and even the longer search paths
in larger databases do not hamper read performance. Note, the el
storage mapping on SSD produces the highest tps rates regardless
of the database size, whereas the decompression overhead of the pc
storage mapping is not always compensated by the storage savings
and, in turn, reduces IOs compared to the fs mapping.

4Having more writes than reads is conceivable, however, most DB
applications are reader-dominated.



 0

 20

 40

 60

 80

 100

tps 10M

100M

1000M

fs (disk) pc (disk) el (disk) fs (SSD) pc (SSD) el (SSD)

Figure 7: Read-only TPoX benchmark results.

 0

 20

 40

 60

 80

 100

tps 10M

100M

1000M

fs (disk) pc (disk) el (disk) fs (SSD) pc (SSD) el (SSD)

Figure 8: Mixed TPoX benchmark results.

The mixed workload scenario in Figure 8 reveals that tps rates
are more sensitive to the share of writes when SSD storage is used.
That means, the huge read advantage of SSD is continuously de-
creasing with an increasing frequency of writes. Because reads and
writes are equally fast on disks, the tps characteristics are compara-
ble to those of the read-only benchmarks. In contrast, the tps rates
of all SSD scenarios are sensibly decreased because of the higher
write penalty.

The overall throughput decrease for growing database sizes has
several reasons. In our Linux environment, the file system over-
head (e.g., indirect inode references) causes additional IO, which
also degrades the cache hit ratios. In addition, disk access is ham-
pered by larger seek times (i.e., arm movements on the platter have
to cross larger distances) which further worsens IO times. On the
other hand, hidden prefetching caused by the cache hierarchy, as
outlined in Section 4, tries to improve IO performance. As a con-
sequence, the overall IO behavior is often unpredictable.

The second set of results in Figure 9 depicts the resource usage
during the execution of the mixed workload. It shows that the share
of write operations has significant impact on processing time and,
as a consequence, that the energy consumption using an SSD de-
vice is substantially influenced by the unbalanced read/write model.
For each configuration, the processing time can be divided into pure

 0

 20

 40

 60

 80

 100

%
1) 2) 3)

IO CPU log
1) 10M
2) 100M
3) 1000M

fs (disk) pc (disk) el (disk) fs (SSD) pc (SSD) el (SSD)

Figure 9: Analysis of elapsed time fractions.

IO time (i.e., for the data), CPU time, and log IO (i.e., sequential
writes of log entries). Note, a direct comparison of absolute val-
ues across two orders of magnitude is not meaningful. However,
the relative comparison of the shares for IO, log writes, and CPU
usage is very expressive. One finding is that the share of reader-
dominated IO costs is nearly independent of the database size when
using an SSD, whereas disk usage implies IO impact steadily grow-
ing with the database size. Another interesting fact concerns log IO
which exclusively consists of write operations; here SSD cases are
penalized again. Nevertheless, the CPU costs are dominating in all
scenarios, which diminishes the differences caused by the device
type and reveals that XML processing is complex and expensive.

6.2 Energy Consumption and TCO
Guided by the performance superiority of SSDs, we want to as-

sess the prospects of using energy-efficient devices for database
systems. For simplicity, we use reasonable default values for en-
ergy consumption when necessary (see Table 1). By analyzing
workload runtimes and time distributions, a device-oriented energy
balance can be calculated. Note that time spend for CPU process-
ing (see Figure 9) overlaps with asynchronous IO and concurrent
processing on multiple CPU cores.

The total amount of Watts (cost) consumed by a device for a
given workload wl is calculated as follows:

costdevice(wl) = (costload(device)∗ (timeIO + timelog)
+ costidle(device)∗ timeidle)/timewl

whereby

timeidle = timewl − (timelog + timeIO)

to avoid inconsistencies due to CPU time overlappings. The costs
for load and idle are the max and min value in column Watt derived
from Table 1. That leads to the following device-related Watt (cost)
consumptions:

Disk: During read-only workloads, the disk consumes between
6.85 and 9.66 Watt depending on the storage mapping and database
size (see Figure 10). These figures increase only a little bit for the
mixed workload up to the range between 7.5 and 9.7 Watt. The
power consumption slightly varies for the different storage map-
pings with a uniform database size by 5 %. On the other hand,
keeping the same storage mapping, the variation amounts to 28 %
between the smallest and largest database size.



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 Watt

fs pc el

10 MB 100 MB 1000 MB
Read workload Mixed workload

Figure 10: Disk benchmark power consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4 Watt

fs pc el

10 MB 100 MB 1000 MB
Read workload Mixed workload

Figure 11: SSD benchmark power cnosumption.

SSD: For the read-only and mixed workloads, the SSD consumes
between 0.21 and 0.41 Watt and between 1.05 and 1.35 Watt, re-
spectively (see Figure 11). Here, the variation of power consump-
tion among different storage mappings ranges from 2 to 12 %. How-
ever, the difference in power consumption amounts up to 50 % for
the database size range considered.

Eventually, the overall power consumption is significantly higher
for the disk-based benchmarks, however, the deviation for different
configurations is higher for the SSD-based figures which leads to
more difficult TCO estimations. Because the impact of write costs
is noticeable using SSDs, the space savings due to structure com-
pression (el) are significant. However for some cases, the compres-
sion overhead penalizes SSD usage because of the SSD’s tiny IO
footprint, where space savings have lower impact compared to the
SSD’s idle time during CPU processing.

Extrapolating these findings for the announced high-end SSD
disk can be done by comparing IOPS/Watt measurements. Afford-
able and available SSD disks provide ≤ 2000 read operations per
Watt and≤ 100 write operations per Watt. These numbers increase
by ∼ 5 times for reads and ∼ 15 times for writes using high-end
devices. Thus, the TCO may earlier reach the “break-even” point
depending on the device’s load and runtime. However, taking en-
ergy prices into account is a volatile calculation and not considered
in this study.

7. CONCLUSIONS
This work revealed that SSD usage in XDBMSs may make mag-

netic disks become obsolete. However, as long as the steadily
falling GB/$ prices dominate TCO, SSD usage is reserved for high
IOPS demands where IOPS/$ or MB/$ are of minor importance.
Adjusted storage structures and consideration of cache hierarchy
influence help to fine-tune storage parameters which is necessary to
fully exploit the physical characteristics of SSDs. However, other
approaches to reduce power consumption are switching on-demand
large magnetic disks on and off—solely to store vast amounts of
rarely used data [13]. Furthermore, a hybrid approach combining
SSD and disk to distribute data structures such as indexes or by
“aging”, by data size, or access probability seems to be possible.

In the future, multiuser environments have to be explored. In
this context, the on-going SSD development or new non-volatile
storage concepts may play an important role.

8. REFERENCES
[1] A. Ban. Wear leveling of static areas in flash memory. US

patent, (6732221); assigned to M-Systems, 2004.
[2] C. L. Belady. In the data center, power and cooling costs

more than the IT equipment it supports. electronics cooling.
vol. 13, no. 1;
http://electronics-cooling.com/articles/2007/feb/a3/, 2007.

[3] S. Chaudhuri and K. Shim. Storage and retrieval of xml data
using relational databases. In Proceedings of VLDB ’01, page
730, 2001.

[4] EPA. Epa report on server and data center energy efficiency,
http://energystar.gov/index.cfm?
c=prod_development.server_efficiency_study, 2007.

[5] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning
for a warehouse-sized computer. In Proceedings of ISCA ’07,
pages 13–23, 2007.

[6] J. Gray and B. Fitzgerald. Flash disk opportunity for
server-applications, http://research.microsoft.com/
˜gray/papers/flashdiskpublic.doc, 2007.

[7] T. Härder, C. Mathis, and K. Schmidt. Comparison of
complete and elementless native storage of XML documents.
In Proceedings of IDEAS ’07, pages 102–113, 2007.

[8] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. Timber:
A native xml database. The VLDB Journal, 11(4):274–291,
2002.

[9] G. Miklau. XML Data Repository,
www.cs.washington.edu/research/xmldatasets, 2002.

[10] M. Nicola, I. Kogan, and B. Schiefer. An XML transaction
processing benchmark. In SIGMOD Conference, pages
937–948, 2007.

[11] M. A. Shah, S. Harizopoulos, J. L. Wiener, and G. Graefe.
Fast scans and joins using flash drives. In Proceedings of
DaMoN ’08, pages 17–24, 2008.

[12] F. Tian, D. J. DeWitt, J. Chen, and C. Zhang. The design and
performance evaluation of alternative XML storage
strategies. SIGMOD Rec., 31(1):5–10, 2002.

[13] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.
Hibernator: helping disk arrays sleep through the winter. In
Proceedings of SOSP ’05, pages 177–190, 2005.


