
Goal-Driven Autonomous Database Tuning
Supported by a System Model

Karsten Schmidt
Databases and Information Systems Group

Department of Computer Science
University of Kaiserslautern

D-67653 Kaiserslautern, Germany
kschmidt@cs.uni-kl.de

ABSTRACT
Fast growing volumes of data, typically for today’s database
applications, require efficient and low-cost management to
guarantee reliable processing and high throughputs. Al-
though administrative costs for skilled DBAs are noticeable,
it is often done manually due to the lack of available on-
line tuning utilities. Typical operating goals for a database
system comprise throughput, resource utilization, memory
footprint, and due to recent efforts in saving energy also
the green factor of a system. However, such high-level goals
conceal the entire system complexity but help to address the
essential cost factors.

With the help of an extendable system model, describing
fix and variable input parameters, state, runtime behavior,
and workload correlations of parameters and system com-
ponents are disclosed. Based on that system model, goal-
specific analyses should be possible to tune the system online
or at least to recommend actions needed to fulfill the goals.

1. INTRODUCTION
Data management today goes beyond the scope of pure

databases. Nevertheless, their good reputation for reliabil-
ity, robustness, scalability, and functionality advocates their
usage—often hidden to the front-end user—in numerous ap-
plications. Large volumes of data being processed call for
the most efficient setup of the database management system
(DBMS). This setup is hardly static and needs adaptation
to changing runtime requirements, such as changes in data
volumes, workload, system load, hardware and processing
resources, and operational goals.

Since changing requirements occur at any time and for an
unknown period of time, predicting them may fail or ad-
ministrative support may not be available or not acting fast
enough. That is why monitoring tools emerged to instantly
report system state and potentially problematic behavior.
Moreover, event-driven tuning tools, for instance to reconfig-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Third SIGMOD PhD Workshop on Innovative Database
Research (IDAR 2009), June 28, 2009, Providence, RI, USA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

ure memory pools, to trigger maintenance tasks, or to send
reports are developed and established. However, there is a
lack of comprehensive correlation analysis and understand-
ing. For instance, increasing the buffer pool for a single con-
tainer file may benefit the active reader/writer transaction
for that container but penalize the efficiency of concurrency
because the lock table had to be downsized. Another idea is
to trade CPU costs for memory costs or for IO costs, simply
by adjusting the chosen evaluation algorithm, however, this
may result in an increased energy consumption. Thus, not
only reacting to changing requirements is necessary but also
taking care of the rest of the system (i.e., global optimization
vs. local optimization).

An important feature for developers, users, or system ar-
chitects of database-enabled applications is the visualization
of costs in terms of throughput, bottlenecks, hardware un-
derload, energy consumption, and their origin. Because they
do not care about database internals, they should be con-
fronted with a simple high-level tuning interface to set the
operational goal and to monitor its behavior (i.e., system
reaction to achieve the goal specifications).

Eventually, such a comprehensive system-model-based tool
allows for so-called “what-if” analyses [6] and for, e.g., cost-
effective, throughput-effective, or effective user-defined pro-
cessing of the database as a “black box”.

1.1 Research Issues
The main objective of this work is to develop a system

model serving as platform for monitoring a database system,
correlating measured metrics, and deducing measurements
to improve performance in terms of the operational goal au-
tonomously. The following issues need to be addressed for
that work:

1. Specify DB monitoring points indicating state and trends
for distinct components.

2. Define a system model that integrates metrics and
their correlations to map physical resource allocation
to the modeled components by using the monitoring
points. Known tuning knobs (configuration parame-
ters) should be integrated into the model.

3. Develop algorithms based on heuristics, learning, or
static weights to recognize and to improve the system
behavior during runtime, and moreover, to estimate
the effects of model changes.

1

Table 1: Self-tuning areas and goal contribution capabilities
Technique Online Multiuser-aware Components Operation goals**

Design advisor [24] − − workload, storage response time
Workload models [13] / − workload, scheduler throughput
Self-tuning memory [19] + / memory pools throughut, resource usage
Buffer tuning [20] + + buffer pools throughput, memory usage
Statistic management [3, 18, 1] + / query optimizer response time
Index selection [5, 21] −* − index configuration response time
What if analysis [6] − − physical design throughput, response time

− not available + available / unknown but possible
*) online recommedation, but no online management (decision, creation, deletion)
**) none of the techniques directly addresses costs or energy consumption, but most of them can be extended for that

4. Provide a convenient interface (GUI) for the end-user
to specify certain operational goal(s), to observe the
DB performance, and to present recommendations for
non-automatable tuning tasks (e.g., RAM, CPU, Disk
changes).

All concepts will be developed and tested based on our
own native XML database prototype—XTC [9]. It allows to
tightly integrate all of the identified monitoring points and
tuning knobs into a real and well-understood XML DBMS.
Of course, we want to keep the model, the algorithms, and
the user front-end as general as possible.

1.2 Paper Roadmap
The rest of the paper is organized as follows: Section 2

discusses related work in the area of autonomous DBMS
tuning. In Section 3, we will present our Framework con-
taining the monitoring component, system model, algorithm
types, and user front-end. Finally, we conclude our work in
Section 4 presenting our results achieved so far and giving
an outlook for future work.

2. RELATED WORK
Self-tuning, especially for DB systems, is not a recent

topic but still a hot one. All of the major DB vendors
integrated certain self-tuning features to facilitate admin-
istrative tasks [4, 19, 22, 23, 24]. However, very often these
features only address a very specific part of the system, e.g.,
the physical design, query optimizer, workload analysis, in-
dex/MQT recommendations, or memory allocation. To the
best of our knowledge, none of these approaches has tried to
consider the entire DB system by defining a single system
model. Moreover, most of these approaches fail to opti-
mize multi-user situations and they focus on a single system
component. Another disappointing aspect is that lots of
the available solutions should only be used offline due to
their impact on a production system, which, in turn, would
lead to bad reaction times. In the following, we will present
available concepts for the categories mentioned above.

2.1 Physical Design Tuning
Physical design tuning is one of the most difficult opti-

mizations tasks due to the wide spectrum of possible con-
figurations. However, most of the approaches only address
recommendations for indexes or materialized query tables [2,
7, 23, 24] based on prior inspection of the given workload.
More sophisticated approaches such as [23] include parti-
tioning and clustering aspects into the design recommen-
dation. Nevertheless, dynamic workload changes are still

problematic to capture and, therefore, preventing outliers
from deteriorating the entire system performance should be
addressed as a minimal solution [7]. Of course, workload
analysis is beneficial to physical layout tuning (e.g., indexes,
MQTs), but isolating physical design decisions from other
(and even physical) aspects (e.g., RAM, CPU, disks, load,
users) may lead to suboptimal configurations.

2.2 Query Optimizer
Tuning query engines is one of the earliest topics in database

research. Most attention is paid to correctly estimate selec-
tivities and to apply a suitable cost model for alternative
access paths. Besides plan restructuring, statistics gather-
ing is the tuning option. Existing approaches such as [1, 3]
observe the number of UDI1 operations or take query fre-
quencies into account to renew statistics. One of the major
problems is to recognize valuable statistic candidates be-
cause having appropriate statistics is crucial and maintain-
ing statistics for all (or too many) data values is expensive
and counter-productive. To improve the candidate selection,
newer approaches such as [18] piggyback runtime statistics
and query feedback during query execution to offer them to
the query optimizer.

Because statistical accuracy and topicality are crucial for
the query optimizer, statistics should be gathered continu-
ously considering system load, workload, and available re-
sources.

2.3 Workload Analysis
Giving hints for the DB configuration by analyzing the

workload is a common tuning approach (e.g., [10, 13, 14]).
However, most research focuses on detecting OLTP and DSS-
styled workloads2 to adjust system parameters during run-
time. One aspect is to identify or to predict the type of
queries dominating the current load [10, 13]. Although OLTP
and DSS workloads may change periodically or appear con-
currently, we believe that blended workloads are more fre-
quent and, therefore, should be addressed more efficiently.
Another aspect in [14] addresses the business importance
level of queries by formulating SLOs (Service Level Objec-
tives) and instructing the scheduler accordingly. Such busi-
ness goals are also important for other (autonomous) DB
components (e.g., index tuning, statistics gatherer, memory
allocator) and may be also supported by load and resource

1In contrast to Queries, U pdate, Delete, and I nsert opera-
tions may influence statistics.
2OnLine T ransactional Processing and Decision Support
System workloads have different characteristics.

2

monitoring.

2.4 Dynamic Memory Allocation
Finding an optimal memory distribution for key memory

areas in a database is not only difficult but also quickly be-
comes outdated. The most promising area to tune is the
buffer [20] where replacement algorithms and dynamic sizes
are key concepts. In contrast, tuning all areas at the same
time (e.g., buffer pools, hash join, sort heap, lock table size,
log buffer, (query, package, result) caches) requires a sophis-
ticated memory model such as self tuning memory manager
(STMM) [19]. Although the STMM approach confines its
tuning capabilities to a single resource—main memory—, it
exemplifies how to address several aspects simultaneously
(e.g., memory areas, thresholds, response time).

Table 1 summarizes a selection of distinct techniques and
shows their characteristics which are important for our com-
prehensive system model approach and which operational
goals they address. Note, mostly throughput gains are ad-
dressed whereas other important facts such as energy con-
sumption or resource usage are omitted.

2.5 Self-tuning
The term self-tuning in the field of database management

is used for loads of techniques, approaches, and design prin-
ciples. We refer to the monitoring-decision-action principle
where certain parts of the system configuration are changed
automatically (i.e., on demand) by the system itself (see
Figure 1). Today’s systems are fairly complex and differ-
ent configuration knobs often have dependencies with each
other which makes tuning a difficult task at all. Besides,
increased system performance (e.g., transactional through-
put), cost reduction for administrative tasks and minimal
reaction times are the main objectives.

In the following, we will give a typical example for DB
tuning, namely index tuning, and define based on that ex-
ample a formal description of self-tuning.

Index Tuning Example
For self-tuning index configurations the system accounts costs
for index creation, maintenance, and space consumption
to contrast them with the benefits during query process-
ing using these indexes. For a given set of query state-
ments S = {S1, . . . , Sm}, a set of index candidates IC =
{IC1, . . . , ICn}, query costs without indexes snoIdx, query
costs including indexes sIdx, and index maintenance costs
mc(ICi, Ql), a cost-benefit formula is defined as follows:

Definition 1. The benefit of a specific index configura-
tion is the difference of query processing costs including in-
dexes and without indexes less the index creation costs:

benefit(S, IC) =
X
q∈S

(countq·(snoIdx−sIdx)−
nX

i=1

mc(ICi, s))

as long as space restrictions are observed:X
ICi∈IC

size(ICi) ≤MaxIndexSpace

A key issue is the separation of benefits to account each
index candidate independently. For instance, a query may
reduce the processing time by 20 % using two indexes and
respectively 15 % using only one of them at a time. Because

the cost-benefit calculation only sees combined benefit gains
using both index candidates at a time, a benefit distribution
becomes necessary.

Abstract Self-Tuning
Based on the index tuning example, a more generic equation
for tuning assessment can be derived as follows.

Definition 2. For a given workload W = {q1, . . . , qn},
the operational goal G (e.g., throughput, runtime) has to be
minimized3 by adjusting all available resources and config-
uration parameters P = {p1, . . . , pm} and by observing all
constraints C = {c1, . . . , ci}. This leads to:

G = min
0≤n,0≤m,0≤i

(W × P × C)

Now, geting back to the index benefit calculation, we have
to take cost(P) for reconfiguration as well as the system
state for a point in time t into account too. This leads to
the following (simplified) equation:

Definition 3. The benefit for a potential new state can
be estimated or calculated by reducing the gain with the costs
for configuration changes and searching alternative configu-
rations.

benefit(t + 1) = G(t + 1)−G(t)− cost(P (t + 1)− P (t))

− cost(min(W (t)× P (t)× C(t)))

Given the state and benefit for a specific point in time t the
self-tuning system has to locally decide which measurements
are profitable until t+1 is reached. However, tuning needs to
integrate the benefit over time, at least for a suitably sized
time-sliding window, to achieve overall gains w.r.t. the given
operational goal.

2.6 Online vs Offline
Defining an optimal system configuration for a fixed work-

load and a nearly static database can be done by testing all
possible configurations for that workload. Such an approach
needs a lot of processing time and resources to properly se-
lect the most beneficial configuration and, therefore, can
only be done offline on a non-production system. But for
changing workloads (shifts or temporal hot spots) or chang-
ing data distribution, the offline approach is penalized by
a weak reaction time to these changes. In contrast, an on-
line approach is penalized by some overhead to monitor the
workload, perform configuration changes, and process the
cost-benefit calculation. Despite the overhead, we prefer an
online approach to maximize self-tuning benefits while min-
imizing the error of weak or slow adjustments.

3. FRAMEWORK
We propose a framework following the monitoring-decision-

action approach to autonomously manage a DBMS config-
uration. Typically most research activities in the field of
autonomous DB management rely on such feedback-control-
loop cycles to either react on certain events or threshold
violations, or to refine the decision base. In Figure 1, the
framework layout is sketched, including the DB side, moni-
toring part, and self-tuning controller.

3Some goals may need to be maximized, however since min-
imizing is the counterpart its obviously possible to simply
minimize their drawbacks.

3

DBMS

.

.

.

Component

Functional
group

hints

M
o
n
i
t
o
r
i
n
g

Controller

Model

Algorithms

Decision

Action

Configuration

Wor kload

Config.

Workload
System resources

Figure 1: DB monitoring and model framework

3.1 Monitoring
Just like other approaches, we want to monitor important

performance figures, state, and progress indicators from all
tunable and non-tunable system parts. Even non-tunable
parts are important because tuning has to observe their
static characteristics; whereas tunable parts are important
because tuning may change their behavior in an unpredictable
way.

Important DB Monitoring Figures
Beginning at the (external) storage layer, pure IO figures
(e.g., frequency, sequentiality, or randomness) and delay
times are indicative sources for monitoring. Combining these
figures with device specifications may help improve storage-
related conclusions (e.g., emerging Flash disks (SSDs) have
totally different performance characteristics compared to mag-
netic disks).

Following the layered architecture of nowadays DBMSs,
monitoring proceeds for buffer pools. Not only hit and miss
ratios, but also dynamic pool size, usage (load), switchable
replacement strategies, and trend detection are important.
As presented in Section 2 dynamic resizing features are cor-
nerstones for each buffer tuning technique today.

Next, we address secondary access path structures such
as indexes. Here, simple access statistics (i.e., UDI, read)
and size figures may be sufficient to monitor.

More complex algorithms such as access, join, and sort
operators should use the aforementioned piggybacking tech-
nique for feedback (no. of processed elements, timings) sup-
port. However, because tuning has to assign buffer sizes
(e.g., input buffer for access operator, map size for hash
joins, heap space for sorts) their usage has to be monitored.

To cover the entire memory distribution, monitoring has
to observe all memory pool usages, i.e., query caches, result
caches, lock table, log buffer, transaction contexts, and even
all the other (often small) DB data structures.

Eventually, more sophisticated monitoring is necessary for
workloads (i.e., queries), statistics quality, and transaction
statistics (i.e., runtime, commit, abort ratios, etc.).

Important System Monitoring Figures
System resources are critical for database performance fig-
ures and, therefore, have to be monitored, too. Especially
scalability is dependent on the available hardware (think of

KIWI—Kill It With Iron). Thus, CPU load and process
(or thread) monitoring for each CPU allows to validate the-
oretical runtime costs for database algorithms. However,
exceptional runtime behavior such as swapping or hardware
failure has to be recognized as well.

Recent attention is paid to energy consumption and, there-
fore, monitoring should also include power figures for system
devices, i.e., CPU(s), disks, memory, fans.

Making Monitoring Lightweight
Unfortunately, monitoring consumes valuable time and sys-
tem resources (CPU and memory) to collect data. More-
over, meaningful correlations may require snapshot seman-
tics of the gathered information for a highly dynamic sys-
tem. Because suspend-collect-resume cycles are not feasi-
ble, a lightweight monitoring has to meet all requirements.
There are already approaches to prune excessive data mon-
itoring.

A very common approach is to use epoch-based moni-
toring, which basically coarsens data gathering to reduce
overhead. Finding suitable periods and aggregation can be
achieved during runtime.

Similar to customary learning approaches, is the idea to
reduce the sampling frequency for rarely changing values in
order to slow down an initial eager monitoring (“learning
phase”). This kind of monitoring overhead reduction is sim-
ilar to aging approaches, where data sampling is triggered
by renewing stale values (aging).

The monitoring component has not necessarily to reside
on the same server as the DB system and threshold-based
filters may reduce data volume directly at the source. Fur-
thermore, selective monitoring may hide temporarily unused
components to avoid their monitoring overhead at all as long
as not being used.

3.2 System Model
Having all DB components monitored is not enough to

describe or visualize internal states. We need a system model
which allows for:

• integrating all preferable monitoring sources

• mapping physical resources to monitoring metrics

• linking correlated inputs and modeling dependencies

• making tuning knobs visible and accessible

• estimating state changes due to parameter changes

In [22], the authors recommend an economic model to allo-
cate resources in database management systems. We want
to adapt this suggestion and aim for a comprehensive sys-
tem model crossing system layers. Building such a model is
fairly complex, that’s why we want to form functional groups
and find common metrics applicable for those groups. For
instance, each IO container, each buffer, and each lock table
or query cache may expose timings, access frequencies, and
memory sizes, which serve as common metrics very well.
In parallel, system monitoring extends these basic figures
by assigning resource consumption to the functional groups.
Figure 2 exemplarily depicts a cut-out of the system model
showing, for the pyhsical layout component, its hierarchical
model elements, constraints, and relationships.

Functional groups help to create a hierarchical system
model, where well-known tuning techniques can be locally

4

Component

dependency

Model

Wo rkl oad

Config .

Functional
group

correlation

physical layout (storage layer)

Index
config-
uration

Record
mapping

Clustering

Constraints
Space

Redundancy

Creation costs

.

.

.

common metrics

memory usage
IO
frequency
timings
...

Input: resources, optimization algorithms

Figure 2: Physical layout example including func-
tional groups, constrains, and relatinsships

applied within a functional group, before we propagate their
individual state (using the common metrics) to the system-
wide and coarser component model. The resulting compo-
nent model should serve as visualization model, indicating
data hot spots, data flow, bottlenecks, and resource usage.

3.3 Algorithms
Our approach of goal-driven and autonomous DB tun-

ing, requires several algorithms to be applied and developed
for different tasks. First, we want to emphasize on model-
building algorithms, before we sketch possible algorithms
to efficiently search the space of alternative configurations.
Note, general algorithms such as compression, aging, or sam-
pling are taken as available.

Model-building Algorithms
For our system model, we use three compilation types:

1. Static weights: On the one hand, initial values such
as IO parameters, CPU costs, number of internal agents
(pool sizes), or memory areas have to be declared (even
though these values are obtained by monitoring, too,
they had to be set before). On the other hand, known
correlations should be modeled and weighted in ad-
vance, even if these intitial weights turn out to be in-
appropriate.

2. Heuristics: Runtime-critical but known component
behavior and correlations, e.g., buffer access, query
frequency, or lock table size, should be modeled us-
ing well-known heuristics. Such heuristics enhance the
quality of the initial model.

3. Learning: Because we want to model dynamic sys-
tems, not only the initial model has to be refined,
but also non-obvious correlations determined and weak
or bad correlations removed. Weights, patterns, and
trends can be learned by observing the model’s in-
put/output correlations, thereby improving the model
quality, reducing calculation complexity, and exposing
indicative behavior.

Search Algorithms
The sheer endless search space of possible configurations (see
Definition 2) prevents explorative brute-force search. There-
fore, we make use of our hierarchical model to alleviate the

Figure 3: GUI screenshot for a possible user front-
end (including goal control and monitoring).

search complexity. Functional groups have to find their lo-
cal optimum using Definition 3 before propagating to the
system-wide components in order to find a global optimum.
Two more features may help to reduce search effort, first, a
feature skyline to prune the search space and second, knowl-
edge about the search quality of previous searches. Note, we
do not rely on specific pruning or quality measures in favor
to keep them exchangeable.

For instance, the introductive (index) self-tuning exam-
ple shows that benefit calculation easily leads to the prob-
lem of Cartesian products (solution is NP-complete). Thus,
searching has to be flexible and smart enough to integrate
new measures, because the combinatorial space of all exist-
ing input parameters is doubled for each new parameter.

Our system model supports extensibility, because we want
to integrate new algorithms into the chain of existing algo-
rithms or to substitute them. Thereby, the quality of mod-
eling as well as the computation and adaptation speed may
be improved, too.

Since dynamic changes within the system (i.e., state, con-
figuration, scheduling, load, etc.) impose more complexity
to the model, we advocate a hint mechanism enabling com-
ponents (or functional groups) to convey their current state
among each other directly.

Eventually, the model allows to quantitatively explore the
impact of user-proposed changes using the model’s algorith-
mic estimations.

3.4 User Front-end
Although self-tuning features should work unattended,

meaningful visualization is required to verify their effec-
tiveness and to allow for self-explanatory user interaction
knobs. Thus, one aspect is the observability of the entire
system performance including facilities to descend into cer-
tain (more interesting) components to selectively monitor
them in more detail.

For goal-driven processing, the user needs appropriate
tools to control the goal(s). This should be able by weighting
the available goals depending on current user needs. In Fig-
ure 3, a GUI screenshot shows the sliding-based goal control.
For instance, savings may require to throttle throughput to
reduce resource load which, in turn, leads to lower power
consumption. Specifying operating templates may help to
configure such a system running autonomously with differ-

5

ent types of goal configurations depending on, e.g., a daily
schedule, current load situation, or electricity tariff.

Another important feature of the user front-end is the
recommendation of non-autonomous tuning tasks. For in-
stance, backed by the system model, an estimation algo-
rithm tries to increase goal compliance by evaluating changes
in available resources. This implies removing or adding
hardware components such as disks, CPUs, or memory. More-
over, having costs (for purchase and for operating) and power
consumption specified the recommender component may es-
timate favorable assemblies.

4. CONCLUSIONS
This paper presents the main issues and concepts of self-

tuning database systems which will be important for my
PhD work. The main objectives of that work are: First, ex-
tend the existing monitoring framework [15] for our proto-
type XDBMS; second, refine the functional groups, compo-
nents, and the system model; and third, develop a user-front
allowing to specify operational goals. Some of the functional
groups are already addressed such as workload-dependent
storage structures in [17], adaptive storage structures in [16],
autonomous indexing in [11, 12], and energy savings in [8].
The functional group approach allows to develop each part
using existing techniques. However, the preliminary ideas
and achievements so far are promising for an integrated but
extendable and generic system model.

In the future, more self-* features such as self-healing may
be interesting. For instance, detecting data structure fail-
ures (e.g., in the buffer) to restart the affected component,
or to handle disk-overflow errors by triggering a “vacuum”
run and switching to read-only mode may help to solve such
problems. Therefore, the system model and the adaptive al-
gorithms are helpful when deciding where, how, and if “heal-
ing” is possible. Moreover, having multi-tenancy systems,
how to isolate different customer goals within one system or
how to push a common goal is challenging. Another inter-
esting area is the application of our approach within virtual
environments where resource modeling is fairly different.

5. REFERENCES
[1] A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone,

G. Lohman, V. Markl, I. Popivanov, and V. Raman.
Automated statistics collection in DB2 UDB. In
VLDB Proc., pages 1158–1169, 2004.

[2] S. Agrawal, E. Chu, and V. Narasayya. Automatic
physical design tuning: workload as a sequence. In
SIGMOD Proc., pages 683–694, 2006.

[3] S. Chaudhuri and V. Narasayya. Automating
statistics management for query optimizers. IEEE
Trans. on Knowl. and Data Eng., 13(1):7–20, 2001.

[4] S. Chaudhuri and V. Narasayya. Self-tuning database
systems: a decade of progress. In VLDB Proc., pages
3–14, 2007.

[5] S. Chaudhuri and V. R. Narasayya. An efficient
cost-driven index selection tool for Microsoft SQL
Server. In VLDB Proc., pages 146–155, 1997.

[6] S. Chaudhuri and V. R. Narasayya. AutoAdmin
’What-if’ index analysis utility. In SIGMOD Proc.,
pages 367–378, 1998.

[7] K. E. Gebaly and A. Aboulnaga. Robustness in
automatic physical database design. In EDBT Proc.,

pages 145–156, 2008.

[8] T. Härder, K. Schmidt, Y. Ou, and S. Bächle.
Towards flash disk use in databases - keeping
performance while saving energy. In BTW Proc.,
pages 167–186, 2009.

[9] M. P. Haustein and T. Härder. An efficient
infrastructure for native transactional XML
processing. Data Knowl. Eng., 61(3):500–523, 2007.

[10] M. Holze and N. Ritter. Towards workload shift
detection and prediction for autonomic databases. In
PIKM Proc., pages 109–116, 2007.

[11] M. M. Hossain. Autonomous indexing and
management in a native XML database management
system. Master thesis (supervisor: K. Schmidt), 2008.

[12] M. Lühring, K.-U. Sattler, K. Schmidt, and
E. Schallehn. Autonomous management of soft
indexes. In ICDE Workshops, pages 450–458, 2007.

[13] P. Martin, S. Elnaffar, and T. Wasserman. Workload
models for autonomic database management systems.
In ICAS Proc., page 10, 2006.

[14] B. Niu, P. Martin, W. Powley, R. Horman, and
P. Bird. Workload adaptation in autonomic DBMSs.
In CASCON Proc., page 13, 2006.

[15] Y. Ou. Performance analysis and optimization of the
XML database system: XTC. Diploma thesis
(supervisor: K. Schmidt), 2008.

[16] K. Schmidt and T. Härder. An adaptive storage
manager for XML documents. In BTW Workshops,
pages 317–328, 2007.

[17] K. Schmidt and T. Härder. Usage-driven storage
structures for native XML databases. In IDEAS Proc.,
pages 169–178, 2008.

[18] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil.
LEO - DB2’s learning optimizer. In VLDB Proc.,
pages 19–28, 2001.

[19] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone,
Y. Diao, and M. Surendra. Adaptive self-tuning
memory in DB2. In VLDB Proc., pages 1081–1092,
2006.

[20] D. N. Tran, P. C. Huynh, Y. C. Tay, and A. K. H.
Tung. A new approach to dynamic self-tuning of
database buffers. Trans. Storage, 4(1):1–25, 2008.

[21] G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman,
and A. Skelley. DB2 Advisor: An optimizer smart
enough to recommend its own indexes. In ICDE Proc.,
pages 101–110, 2000.

[22] G. Weikum, A. Moenkeberg, C. Hasse, and
P. Zabback. Self-tuning database technology and
information services: from wishful thinking to viable
engineering. In VLDB Proc., pages 20–31, 2002.

[23] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman,
A. Storm, C. Garcia-Arellano, and S. Fadden. DB2
design advisor: integrated automatic physical
database design. In VLDB Proc., pages 1087–1097,
2004.

[24] D. C. Zilio, C. Zuzarte, G. M. Lohman, H. Pirahesh,
J. Gryz, E. Alton, D. Liang, and G. Valentin.
Recommending materialized views and indexes with
IBM DB2 design advisor. In ICAC Proc., pages
180–188, 2004.

6

