
International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

1

Enhancing the Estimation Quality of Element-centered
XML Summarization Methods

José de Aguiar Moraes Filho, Theo Härder, Caetano Sauer
University of Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany

{aguiar, haerder, csauer}@cs.uni-kl.de

Abstract
An XML summary should enable cardinality estimations of different kinds on an XML

document to flexibly support query optimization for languages such as XPath or XQuery. In
contrast to conventional methods which typically emulate the document structure and record
path-oriented statistics for it, element-centered XML summarization methods collect
statistical information for document nodes and their axes relationships and aggregate them
separately for each distinct element/attribute name. It has already partially proven its
superiority in quality, space consumption, and evaluation performance. Surprisingly, this
kind of inversion seems to have more service capability than conventional approaches. It is
not only confined to the cardinality estimation of child and descendant axes, but also allows
to approximate parent and ancestor axes, too. Therefore, we refined and extended element-
centered XML summarization methods to capture more statistical information and propose
new estimation procedures. We tested our ideas on a set of documents with largely varying
characteristics.1

Keywords: XML summarization, EXsum, statistics, query optimization.

1. Introduction

Path expression optimization (for XPath/XQuery) relies on the quality of statistical
information about distribution of XML document nodes and their axis relationships, because
the success of a query optimizer critically depends on estimates as precise as possible about
selectivities of location steps and node cardinalities in subtrees. Although many publications
[1, 2, 3, 5, 7, 8, 9, 11, 12] focus on such an estimation support, no commonly agreed-upon
solution is available. Capturing a variety of structural relationships and statistical information,
the methods widely vary in estimation accuracy delivered, storage space occupied, and
memory footprint needed, which together may heavily influence the superordinate process of
query optimization. We have observed that the result quality of existing methods is strongly
influenced by the shapes of the underlying summary structures in which the document
statistics are recorded.

Tree-based methods summarize a document by means of a tree (or tree-like) underlying
structure trying to mirror the hierarchy of the document structure. Their simple construction,
however, potentially consumes much storage space for deeply structured documents. To
overcome this drawback, some compression (e.g., histograms) [3, 5] and pruning techniques
are applied [1], which trade storage gain with degraded accuracy. However, these methods are
difficult to balance on XML documents with increasing structural variability.

 1 This paper is an extended and revised version of [4]

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

2

Methods whose underlying structure is a graph [8, 9, 12], by virtue of this structure, tend to
consume less storage than tree-based approaches. But, they have to cope with false positive
hits, because path information for paths not present in the document can be derived from the
summary. To avoid unacceptable estimation quality, the only way out is to prune the graph
search, thereby trying to lower the false positive rate. While this approach may be feasible in
some situations, the trade-off incurred has to be controlled by “manual” tuning parameters.
Hence, correct parameter setting and, therefore, estimation quality is left to the DBA
expertise.

Table-based methods, in turn, are completely dependent on the number of distinct path
instances existing in the document, which enforces the use of pruning [7] and compression
techniques [11] similar to those of tree-based methods. As most important limitation, they can
only estimate path expressions with child (/) axes. Thus, differing from tree-based and graph-
based approaches, they do not support expressions containing either predicates or descendant
axes.

To overcome the drawbacks sketched so far, an element-centered method called EXsum
has been developed [2]. The main idea is to focus on the set of distinct element/attribute
names of an XML document, putting aside the strict hierarchy between them. Instead of
summarizing over the entire tree structure at a time and to keep track of (root-to-leaf) paths in
the document, this method independently gathers structural information for every distinct
element name in the document tree. Here, we contribute to the state of the art by augmenting
EXsum's capabilities:

• An extension of EXsum enables to capture more information from XML documents,

especially the fan-in and fan-out of the axis relationships controlled.
• We elaborate the influence of recursion in XML path classes to the summarization

quality.
• To enhance the estimation quality, we developed new heuristics especially path

expressions involving more than two steps.
• By implementing and empirically evaluating our methods, we cross-compared them to

competitor algorithms using a set of well-known and widely varying XML documents.

The remainder of this paper is organized as follows. We start by providing basic concepts
(Section 2) and a look at the EXsum structure (Section 3). We explore ways to enrich EXsum
and provide tailor-made estimation methods (Section 4) for these extensions, before we
empirically investigate their suitability for varying document characteristics (Section 5).
Section 6 concludes the paper.

2. Basic Concepts and Definitions

XML documents usually exhibit a high degree of redundancy in their structural part, i.e.,
they contain many paths having identical sequences of element/attribute names. To
distinguish the summarization challenge in practical applications, the most important
characteristics of a well-known collection of XML documents—widely used as a reference
collection for comparative experiments in scientific publications—are listed in Table 1.
Column #nodes shows the total number of nodes in the respective document according to the
DOM specification, whereas column #E/A names indicates that, despite the huge amount of
nodes, only a few distinct element/attribute names exist for them. Hence, documents typically

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

3

have a highly repetitive structure. Columns max. depth and avg. depth give some indicative
hints on the variability of documents. For example, swissprot is considered to have quite a
regular document structure, because its average depth is close to its maximal depth; in
contrast, treebank has an extremely irregular tree structure. We consider these documents in
our empirical experiments concerning XML summarization as detailed in Section 5.

Figure 1a depicts a sample document to be used as a running example, where many path
instances only differ in the leaf values and the order they occur in the documents. Therefore,
the structure part of them can be represented by a single unique path, called path class (see
Figure 1b), to characterize all path instances having the same sequence of element names (but
not their order) in the document. A path synopsis as a representation of all path classes serves
as a query guide and a compact structural document view. To build such a path synopsis, all
information needed is contained in a cyclic-free XML schema; otherwise, it can be
constructed on the fly, while the document—sent by a client—is stored in the database.
Typical path synopses have only a limited number of element names and path classes and can,
therefore, be stored in a small memory-resident data structure. The way a path synopsis with
its path classes represents the document tree is visualized in Figure 1b.

Table 1. Document characteristics

document
name

description size (MB) #nodes
inner/text

#E/A names max.depth avg.depth

dblp Comp.Sc. Index 330.0 9,070,558 /
8,345,289 41 7 3.39

nasa Astron. data 28.8 532,96 /
359,993 70 9 6.08

swissprot Protein data 109.5 5,166,890 /
2,013,844 100 6 4.07

treebank Wall Street J. 86.1 2,437,667 /
1,391,845 251 37 8.44

psd7003 Protein data 716
22,596,465 /
17,245,756 70 8 5.68

Figure 1. A sample XML document structure (a) and its path synopsis (b)

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

4

An element name occurring only once in the path synopsis is called unique element name,

whereas element names appearing more than once in the path synopsis, but not in the same
path class, are called homonyms. A path instance is said to be recursive when the same
element name appears more than once in its path class.

In typical cases, documents contain varying degrees of homonyms, but most of its paths
are recursion-free2. But in (rather) exceptional cases, we have to deal with recursion in a
document, as exemplified by the paths (a,c,s,s,s,p) or (a,c,s,p,s,t) in Figure 1. Hence, some
degree of recursion may be anticipated in specific document classes. Thus, we analyze
recursiveness for reasons of generality and evaluate summarization structures that support
documents exhibiting a limited3

The concept of recursion level (RL) was introduced in [12] as a way to better represent
recursion in XML documents and explained for the case where only a single element name
could recur in a path. Given a rooted path in the XML tree, the maximal number of
occurrences of any label (element name) minus 1 is the path recursion level (PRL). The
recursion level of a node in the XML tree is defined to be the PRL of the path from the root to
this node. Thus, given path (a,c,s,s,t), the second s node has RL=1 and all other nodes have
RL=0, whereas the PRL of this path is 1.

 kind of structural recursion, too.

Recursion can also occur in query expressions, making the estimation even more difficult
(and often more imprecise). For recursive path expressions, we follow the definition in [12].
A path expression is recursive with respect to an XML document if an element in the
document could be matched by more than one node test in the expression.

3. A Brief look at EXsum

For comprehension, we repeat the main aspects of EXsum [2]—a method for element-
centered XML summarization—,which was proposed in two versions: one targeting non-
recursive documents and another for recursive ones, in which the RL information is included
in the structure. The latter can be considered a more general structure subsuming the non-
recursive version because, for a non-recursive document, all RL information can be present
with RL=0. Therefore, we discuss the general form of EXsum that has been used as base for
our extension.

An EXsum structure can be considered as a set of ASPE (axes summary per element)
nodes where each of them, in turn, represents a distinct element/attribute name. An ASPE
node is a compound of an element/attribute name, the number of related node occurrences
(occ) in the document, and a varying number of “spokes”—a suitable ASPE node
visualization resembles a “spoked wheel”—, each primarily representing the related element
distributions for a specific axis. In this way, one gets not only a simple and flat summary
structure, but also preserves estimation efficiency, since navigation costs are low and do not
depend on document structure or size. Moreover, axis relationships are captured, enabling this
class to effectively support path expression estimations. Note that information for the child
(parent) axis is kept separately from that of the descendant (ancestor) axis to enable higher

 2 dblp has 41 element names where 32 are homonyms resulting in 146 path synopsis nodes. Hence, the avg.
repetition of a homonym is more than 4. The numbers for element names, homonyms, and path synopsis nodes are
(100, 6, 264) and (70, 12, 111) for swissprot and nasa, respectively.
 3 Highly recursive XML documents such as treebank (see Table 1) are exotic outliers and not frequent in
practice; therefore, they do not deserve first-class citizenship.

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

5

flexibility for axis-wise estimation of location steps. Figure 2 visualizes the statistics of 2 (out
of 6) ASPE nodes collected on our sample document. The ASPE for s, e.g., shows that occ(s)
is 11 and that all nodes s together have a child
relationship to 16 nodes p, 1 node s at RL=1, 2
nodes s at RL=2, and 2 nodes t.

For path expressions with two location steps,
the spoke referenced by the second step is
followed in the ASPE node addressed by the first
one. As an example, //s/p delivers 16. The
construction principle of EXsum guarantees that
such expressions on recursion-free documents
always return accurate cardinalities. When
recursion and two location steps are involved,
EXsum can only compute approximate
cardinalities, in general. Consider the estimation
of //s//s, where the estimation procedure follows
the child and descendant spokes in ASPE(s) and
adds the values over all RLs of s, yielding an
overestimation of occ(//s//s)=6, whereas
occ(//s//s)=3 would deliver the accurate
cardinality.

For n-step query expressions (n>2), EXsum has to rely on appropriate heuristics and,
therefore, cannot always guarantee accurate results. ASPE nodes do not capture complete
root-to-leaf paths of a document, instead they keep axis relationships between pairs of
element names and record their distribution on the basis of element names. For this reason, n-
step expressions, e.g., //x/y//z, are decomposed in overlapping two-step fractions and need a
kind of interpolation to combine their results.

To evaluate the partial expressions //x/y and y//p, we access ASPE(x) and ASPE(y) (whose
values are equivalent to occ(//x) and occ(//y), respectively). Because not all y nodes of //y//z
find a matching partner in the y nodes of //x/y, we assume uniform element distribution for the
z nodes to enable a straightforward combination of estimates for such partial expressions.
Using the ratio C1/C2, we linearly interpolate the number of occurrences of the subsequent
step y//z to estimate occ(//x/y//z). For that, C1 is given by occ(//x/y) and C2—equivalent to
occ(//y)—is recorded as value of ASPE(y); thus, C1≤C2 always holds. This interpolation
could be applied step by step, providing a heuristic for n-step path expressions. If more
accurate information is present (e.g., by mining entire paths), it can be used instead. As an
example, the cardinality of //s/s/p is estimated by following the child spoke of ASPE(s) and
summing the values over all recursion levels of s, yielding occ(//s/s)=3. Furthermore, occ(s/p)
delivers 16. With the interpolation factor of ASPE(s)=11, the estimation is 3/11*16.

As a first observation, EXsum captures, by means of the ASPE spokes, the axis-related
fan-out for each element/RL combination using only a single counter. Computing fan-in and
fan-out for every axis relationship may give us more opportunities to explore refined
estimation methods. For this reason, we double the counters (see Figure 3): IC counters for
fan-in and OC counters for fan-out.

Figure 2. ASPE nodes

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

6

4. Extending EXsum
To illustrate these new

counters, consider a parent-
child relationship between
elements s and p in
recursion-free (i.e., RL=0)
path instances in the
document of the Figure 1.
In the extended form of
EXsum, these relationships
are recorded as follows:
ASPE(s) has a child spoke
where a p exists having
(RL=0,[IC=7, OC=13]).
This means that, for the child relationship s→p, we find in the document 7 nodes s being
parents of p nodes and 13 nodes p being children of s nodes. Conversely, in the parent spoke
of ASPE(p), an entry for s exists with (RL=0,[IC=13, OC=7]) indicating that for the parent
relationship s←p the same number of nodes is counted in the reverse direction. Note that IC
and OC counters are somewhat replicated across ASPE nodes. However, this feature enables
estimates of arbitrary long path expressions.

As a second observation, an additional information called DPC (Distinct Path Count) is
helpful to support some special estimation procedures (see Section 4.2). DPC counts the
number of distinct path instances that reach a specific relationship (e.g. s→p), starting from
the document root. In other words, if we have a relationship s→p, we record the number of
distinct rooted paths leading to s nodes involved in such a relationship. The triples
(RL=x,[IC,OC]) (see Figure 3) stored for each element in the child and descendant spokes are
upgraded to a 4-tuple with (RL=x,[IC,OC,DPC]), encompassing DPC information.

4.1. Building Algorithm

To enable correct node counting by the extended EXsum, the plain building algorithm
(described in [2]) must be modified as shown in Algorithm 1. As for the plain EXsum format,
the counting of axes occurrences is done for each element using a stack S. Counter calculation
is straightforward for forward axes (descendant and child), we simply add 1 to the respective
counter in the corresponding ASPE node, every time we find a descendant/child element in
the stack. Relationship counting in reverse axes (parent and ancestor) is, however, a bit
complex. To correctly count element occurrences in reverse axes, we use an auxiliary list
called Element in Reverse Axis (ERA). It maintains, for each element x in S, a list of all
distinct nodes that were pushed onto S after x or, in other words, all distinct nodes under the
subtree rooted by x. This means that every time an element is pushed onto S, the list of each
element currently in S is updated. Another use of ERA lists is to update IC/OC counters in
every ASPE node involved in the computation. We exemplify the extended EXsum building
process using the document in Figure 1a and indicate in Algorithm 1 where each step is
executed. Moreover, Figure 4 shows the initial building steps of EXsum.

When the document root is visited, its name a is pushed onto S. In addition, ASPE(a) is
allocated and all axes information that can be evaluated in this situation is recorded. In this
case, we add 1 in ASPE(a) as the current number of a occurrences in the document and

Figure 3. Extended EXsum node format

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

7

allocate an (empty) ERA list for a, currently the Top Of Stack (TOS) (lines 4 and 6-10 of
Algorithm 1 and Figure 1a). In the next step—proceeding left-most depth-first, i.e., in
document order—a node with element name c is located and pushed onto S. To control the
allocation of ERA lists, the function isFirstOccurrence(x,y) checks if node y is the first
occurrence under the subtree rooted by node x. To perform this check, we must look for node
y in the ERA list of x. If no occurrence is found, we must register y and return True. Because
ASPE(c) is not present, it is created and the related axes information is added to a and c as
follows. The algorithm needs to adjust IC/OC counters in ASPE(a) and in ASPE(c). As it is
the first time that an element c appears under (a subtree rooted by) a, the function
isFirstOccurrence returns True and includes c in the ERA list of a (line 4). Thus, a c with
(RL:0,[1,1]) is included in the child spoke of ASPE(a). Accordingly, ASPE(c) has an a with
(RL:0,[1,1]) in the parent spoke, which indicates that there is only one c and one a a in this
subtree. As the path (a,c) is recursion-free, procedure Compute_RL gives RL=0 (line 5).

Additionally, we add a c with (RL:0,[1,1]) in the descendant spoke of ASPE(a) and an a
with (RL:0,[1,1]) in the ancestor spoke of ASPE(c) (Figure 4b). The main reason to do so is
to be compliant with the axis definitions in the XPath specification [10]4

Continuing the document traversal, a node with element name t is now visited (S=[a,c,t])
(Figure 4c). Again, t is pushed onto S, ASPE(t) is created, and the axes information for t and
its path elements c and a is completed. ERA lists of a and c now include a t and, again, both
lists report that it is the first t encountered. Thus, an a with (RL:0,[1,1]) appears in the
ancestor spoke of ASPE(t). The same t-counters exist for the child spoke of ASPE(c), parent
and ancestor spokes of ASPE(t) (lines 6 and 9), and for the descendant spoke of ASPE(a)
(line 5). As t has no children, an End_Element event is signaled and t is popped out from S.

. Therefore, EXsum
counts child (parent) and descendant (ancestor) relationships together in the descendant
(ancestor) spoke and separately inserts child (parent) relationships only in the child (parent)
spoke.

 4 Here, a descendant (resp. ancestor) axis relationship is defined as “as the transitive closure of the child
(parent) axis; it contains the descendants of the context node (the children (parents), the children (parents) of the
children (parents), and so on)”

Figure 4. States of EXsum and stack S for the initial building steps

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

8

Then, reaching the fourth element p, S and the counters are adjusted in the parent and ancestor
spokes of ASPE(p), child and parent spokes of ASPE(c), and descendant spoke of ASPE(a).
The states of EXsum and stack S up to this point are illustrated in Figure 4d.

The correct counting of elements in the reverse axes is highlighted when the process visits

the fifth element (the second p, S=[a,c,p]). Here, ASPE(p) is already allocated and we have p
in the ERA lists of c and a. Thus, it is not the first occurrence of p under the subtrees rooted
by c and a (line 4, setOppositeCount=false). Therefore, we add 1 for ASPE(p) that now

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

9

counts 2 and add also 1 for p in the child spoke of ASPE(c) and in the descendant spoke of
ASPE(a) which now contain (RL:0,[1,2]). As setOppositeCount=false, we do not add 1 for
the OC counters of a and c in parent and ancestor spokes of ASPE(p), i.e, they keep
(RL:0,[2,1]). This mirrors the document structure in which there is one c as parent of two p
nodes and, consequently, one a as ancestor of two p nodes. Hence, after a subtree is entirely
traversed, we have obtained the correct values of the corresponding IC/OC counters.

4.1.1. Dealing with Recursion: The calculation of RLs is performed in the building
algorithm (line 5 and procedure Compute_RL in Algorithm 1). For each axis relationship in
every ASPE spoke, we calculate RL and, for each RL, the IC/OC counters. EXsum is, in its
general format (see Figure 3), designed as a recursion-aware summary. For this purpose, we
consider two kinds of recursion: forward-path recursion and reverse-path recursion (see right
hand of Figure 5).

Forward-path recursion is considered when navigating downwards through the path, from
the document root element to current element. Represented by child and descendant spokes in
ASPE nodes, the cardinality information captured is used to support the estimation of such
axes in recursive path expressions. In turn, the reverse-path recursion is computed in the
opposite direction, i.e., from the current element to the document root. Similarly, reverse-path
recursion is exploited in path expressions dealing with parent and ancestor axes.

The first appearance of a recursive path in the document of Figure 1 occurs when the
document scan reaches the tenth element t with the path (a,c,s,s,t). For this path, we have
inserted t:RL=1,[1,1] in the child and descendant spokes of ASPE(s). Counters a:RL=1,[1,1]
and c:RL=1,[1,1] are also added in the ancestor spoke of ASPE(s). We detail the building of
ASPE nodes with the RL calculation using the twelfth element s, whose path is (a,c,s,s,s) and
whose state of S has s as TOS, as depicted in Figure 5.

Consider that the document scan has reached the twelfth element, where the incremental
changes to EXsum have to be found for the TOS element s. First of all, we must add 1 to
ASPE(s), because a new node s is processed. Thus, ASPE(s)=3 is obtained. To update EXsum
with the axis relationships of the TOS s, we have to consider the RLs in forward-path
direction for the elements in s: a:(RL=0); c:(RL=0); s:(RL=0), which have TOS as a
descendant; and s:(RL=1), for which TOS is a child, and also the RLs in the reverse path for
the elements in s: a:(RL=2); c:(RL=2); s:(RL=1), which are ancestors of TOS; and s:(RL=0),
which is the parent of TOS.

When calculating forward-path recursion, the first elements in s (a, c, and s) follow the
same building process as in the recursion-free case, because there is no recursion in path
(a,c,s). Thus, up to the first s in the stack, ASPE nodes and their spokes are built as explained
in the previous section. Recursion comes into play with the second s in stack S.

Summarization of forward-path recursions runs as follows. We add 1 to the OC counter of
s with RL=0 in the descendant spoke of ASPE(a). In the same way, 1 must be added to the
OC counter of s with RL=0 in the descendant spoke of ASPE(c) and ASPE(s). Furthermore,
we must insert a new RL record in the descendant and child spokes of ASPE(s) for s with
(RL=1,[1,1]).

For reverse-path recursions, we add two new RL records to the ancestor spoke of ASPE(s)
for a and c with (RL=2,[1,1]). Additionally, we add a new RL record in the ancestor spoke of
ASPE(s) for s with (RL=1,[1,1]). Finally, we increment both IC and OC counters of s with
RL=0 in the parent and ancestor spokes of ASPE(s).

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

10

4.1.2. Calculating DPC: To compute the DPC, we need to maintain the set of all distinct
rooted paths for each relationship. We can implement this in two ways. First, given a
relationship s→p, we can traverse the path synopsis seeking for the specific rooted paths we
need and repeat this traversal for each relationship computed. If the path synopsis exists, this
traversal has a time complexity of O(n.log(n)), where n is the number of nodes of the path
synopsis.

In the absence of a path synopsis for the document, we have designed the self-contained
procedure computeDPC (lines 23-34 and called in line 11 of Algorithm 1). It processes every
rooted path occurrence, which is represented by the Stack parameter provided by a call of the
buildSynopsis procedure. For every given pair of related nodes, we maintain two sets, one for
the child (child set) and the other for the descendant (descendant set) relationship.

To explain how this algorithm works, we take a practical example. Consider the path
(a,c,s,s,t) in the recursive document in Figure 1. The TOS element in this case is t. The
procedure starts by assigning the size of the path to n, which is 4 in this case. Then, we check
for the value of n. The procedure is only executed
for values of n greater than 2 (line 25), because a
path with 2 nodes contains only one child
relationship and, therefore, no preceding distinct
paths. Then, for every node i in the path before the
TOS, we add an occurrence of the sub-path that
leads from root to the descendant relationship
between i and the TOS (line 31). The proper RL
value is calculated by counting the occurrences of
i in this sub-path (lines 26-30). For the particular
case of the relationship between TOS and the
element right before it, the path is also added to
the child set (line 33). So, in the given example,
the procedure starts with element c (position 2). Then, we take the descendant set of the
relationship from c to t, denoted as a pair (c;t), and add an occurrence of the path /a with
RL=0. The child set will be left untouched, as c is not at position TOS-1. Because sets are

Figure 5. EXsum state after processing the 12th element

Figure 6. Computing DPC

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

11

used, no duplicate elements will be added, and only distinct paths will populate them. When
going to the first s element, the path to be added is /a/c, also with RL=0. Reaching the second
s, we need to add the path /a/c/s to the relationship (s;t). This time, because one occurrence of
s is found in the preceding path, it will be inserted with RL=1. Moreover, it will also be added
to the child set, as the element is positioned right before the TOS t. Figure 6 illustrates which
relationships and paths are computed. After completion of the document scan, the EXsum
building is finished; the resulting structure, including DPC counters, is shown in Figure 7.

4.2. Heuristics to Support Estimation of Longer Path Expressions

Because exact calculations cannot be performed by EXsum when n-step (n>2) path
expressions come into play, [2] proposed the use of interpolation as an estimation procedure.
Here, we introduce new heuristics to compensate the decrease of accuracy in these cases. For
the following explanations, we refer to the EXsum structure depicted in Figure 7 and, without
loss of generality, exemplify the heuristics with recursion-free queries.

4.2.1. DPC Division: The DPC (Distinct Path Count) Division procedure relies on the
uniform distribution assumption of document paths leading to a location step captured by the
DPC counter in the EXsum structure. The idea is to divide the occ(step) cardinality by the
related count.

Consider a path expression /a/c/s/p. To estimate step /s, occ(/s) is given as follows. In
ASPE(c), we search the child spoke for an s and find the OC and DPC counters. The
estimation of occ(/s)=OCcounter / DPCcounter delivers 4/1=4 as step estimation. This means
that (coincidently) there is only one path leading to c→s. For the next step (/p), we find three
distinct paths reaching s→p: (a,c), (a,t) and (a,c,t). With an OC counter value 13 of p in the
child spoke of ASPE(s), occ(/p)=13/3=4.3, which is the estimated cardinality of the
expression.

DPC is also available for descendant steps. DPC for the step s//p would deliver 4 ((a,c),
(a,c,s,s), (a,t) and (a,c,t)), because it corresponds to the number of paths leading to s nodes
which have at least one p in its subtree. Note that, for the same pair relationship x→y, the
DPC counter in the descendant spoke is always greater or equal than that in the child spoke,

Figure 7. EXsum for our sample document

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

12

because, regarding EXsum, child steps are a subset of descendant steps. Thus, the estimate for
//s//p is occ(//s//p)=17/4

4.2.2. IC Counter Division: This procedure makes an estimation for each location step by
dividing the OC counter by the IC counter found in ASPE spokes. It assumes that the
occurrences of a given axis relationship are uniformly distributed throughout each distinct
path. This method becomes equivalent to the DPC Division method if each distinct path has
only one occurrence in the document tree.

Thus, to estimate the expression //c/s/p, we have, for occ(/p), OC=17 and IC=7. The
procedure estimates occ(//c/s/p)=17/7. IC counter division method is intended to bring
accurate results for nodes that appear occasionally and in isolated positions, like some nodes
in treebank. As an example, the estimate of //c/t/s results in occ(//c/t/s)=3/2=1.5 and the actual
result is 2.

4.2.3. Node Frequency Division: Another heuristics for the path step estimation is to
divide the value of the OC counter by occ(x) of the context node x. This is similar to the IC
counter division method, except that it considers, for a step a/b, being a the context node, all
occurrences of a in the document, i.e., occ(a), without considering any relationship to b
nodes.

The accuracy of this method should be, in the best case, equal to the one achieved by the
IC Counter Division. By applying this procedure on the expression /a/c//t, we have
occ(c//t)=5 and ASPE(c)=2. The estimation gives us occ(c//t) / ASPE(c)=2.5

4.2.4. Previous Step Cardinality Division: This method uses two factors: the
occ(currentstep) gathered from the OC counter in ASPE spoke and the estimation result of
the previous step in an expression. Dividing both numbers, the procedure yields the
estimation for the current step. By iterating this calculation throughout all location steps of a
path expression, the estimation of the expression is calculated.

This method introduces a strict dependency between the estimations of each step, forcing a
sequential execution, which could be a disadvantage for certain document paths. On the other
hand, it only depends on the OC counter. For example, for estimating //t/s/p, we take three
location steps //t, /s and /p. The first one yields occ(t)=6. For the second step, we probe the
child spoke of ASPE(t) for an s and take its OC value, i.e., 3. Then, occ(/s)=6/3=2. For the
last step /p, we take the OC value of p in the child spoke of ASPE(s), i.e., 13. Thus,
occ(/p)=13/2=6.5. Hence, occ(//t/s/p)=6.5.

5. Empirical Evaluation

To assess the practical value of the EXsum extensions, it is necessary to systematically
evaluate and cross-compare them against competing methods under representative empirical
workloads and in an identical environment. For this reason, we have implemented and
incorporated our ideas and competing summaries in our native XML database management
system called XTC [2]. As competitor approaches, we have chosen XSeed and LWES, whose
parameter settings were adjusted as follows. For the XSeed kernel, we have set the search
pruning parameter to 100 for treebank, 50 for dblp, and 20 for the other documents. For
LWES, EB histograms were continuously applied to all levels of the summary structure.

For each document in Table 1, we have generated query workloads containing three basic
query types: queries with simplechild and descendant path steps and those with predicates.
Descendant queries may have multiple descendant steps. In the case of EXsum and LWES,

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

13

parent and ancestor queries are also evaluated, as they provide support for them. We have
cross-compared the approaches regarding timing, sizing, and estimation quality.

The test workloads were processed on a computer equipped with an Intel Core 2 Duo
processor chip running at 2.2 GHz and 3 GB of DDR-2 RAM memory, the GNU/Linux
operating system (version 2.6.27), and the Java 6 virtual machine (version 10) of Sun. The
XTC server process was running on the same machine.

5.1. Timing Analysis

Estimation time refers to the time needed to deliver the cardinality estimations for a query
addressing a given document, that is, the time the estimation process needs to get the query
expression, to access the summary (possibly more than once), and to report the estimate to the
optimizer. Here, we report averages of the times needed for the queries in a workload.

Table 2 shows the estimation times classified by query types. For EXsum, the timing
difference among the various estimation procedures is negligible. Thus, we have reported in
Table 2 just the worst results depicted in column EXsum. Obviously, EXsum delivers superior
results for all document and query types; hence, its impact on the overall optimization process
is very low. While LWES is comparable and XSeed slightly slower for most queries, both of
them consume prohibitive times in deeply structured documents, especially for the estimation
of descendant axes; this seems to be unacceptable for practical use.

Table 2. Estimation times (in msec)

Document EXsum LWES XSeed

Simple child queries
dblp 2.85 3.18 13.21
nasa 3.55 3.30 11.60

swissprot 2.93 2.80 17.83
treebank 3.72 5.15 7,413.00
psd7003 3.86 3.15 3.28

Descendant queries
dblp 3.18 3.12 26.12
nasa 2.75 2.93 7.19

swissprot 2.95 3.20 20.00
treebank 3.21 27,391.00 8,588.00
psd7003 4.04 3.53 7.96

Document EXsum LWES
Parent and ancestor queries

dblp 4.39 7.00
nasa 4.42 4.50

swissprot 5.48 7.34
treebank 5.09 10.88
psd7003 4.00 3.34

Queries with predicates
dblp 4.92 7.63
nasa 5.60 10.20

swissprot 11.80 24.84
treebank 7.29 6,705.20
psd7003 13.86 15.75

5.2. Sizing Analysis

The storage amount listed in Table 3 characterizes the net size of a summary and only
includes the bytes necessary to store the summary on disk. The gross size may be influenced
by a specific implementation and confuse a direct comparison. XSeed presents the most
compact storage. LWES is more compact than EXsum for non-recursive documents.

Table 3 also compares the memory footprint for various estimation situations on all
summaries/documents. We have computed the average memory size needed to estimate
cardinalities for queries with two characteristics: queries whose number of location steps,
whatever axes included, are equal to the document's average depth (rounded up to next

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

14

integer value), and queries whose
number of location steps is equal to the
maximum document depth. These
cases enable us to infer whether a
summary needs to be entirely or only
partially loaded into memory, i.e.,
whether or not the memory
consumption of a summary is bounded
to the number of location steps in a
query during the estimation. Except for
EXsum, all other summaries require
the entire structure in memory to
perform cardinality estimations.
EXsum, in contrast, only loads the
referenced ASPE nodes and is,
therefore, the summary with lowest
memory footprint and related disk IO.
Thus, although the use of EXsum
implies higher storage space
consumption, the estimation process
may compensate it by lower memory
use and IO overhead.

5.3. Estimation Quality

To compare the estimation quality of EXsum and competitors, we have used an error
metric called Normalized Root Mean Square Error (NRMSE). NRMSE is given by the
formula , where n is the number of queries in the workload,
e the estimated result size, and a the actual result size. NRMSE measures the average error
per unit of the accurate result. Furthermore, we analyze timing including estimation and build
times, and sizing (i.e., storage size and memory footprint) needed for cardinality estimation of
query expressions.

In addition to the results presented, we also compared our estimation methods against
“Interpolation” and “No Estim.”. The former is the original EXsum estimation method
proposed, the latter is the simple probing of the corresponding ASPE nodes with related
spokes, but without using estimation procedures. “No Estim.” gives us hints on how good
EXsum represents structural properties of XML documents. We analyzed the accuracy of
simple-child and descendant queries in Table 4.

Table 4. Comb. NRMSE error for child/desc. queries (%)

Doc. No Estim. Input Cnt Prev.Step Node Freq. DPC Interpol. LWES XSeed
dblp 13.89 244.36 6.06 244.36 13.86 0.91 14.49 0.91
nasa 32.98 228.65 291.49 228.67 29.32 3.35 3.45 3.36

swissprot 0.00 267.07 202.55 267.07 0.00 0.00 12.10 0.01
treebank 866.51 587.43 >1,000 587.02 591.64 429.67 361.25 441.68
psd7003 0.00 133.35 0.00 133.35 0.00 0.00 0.00 0.00

Table 3. Sizing Analysis

Document EXsum
DPC

EXsum
other

LWES XSeed

Storage (in KB)
dblp 7 6 2 7
nasa 9 9 2 7

swissprot 14 13 4 15
treebank 168 158 3,339 160
psd7003 7 7 2 6

Memory Footprint (in KB)
location steps = ceil(average depth)

dblp 0.65 0.62 2 7
nasa 0.91 0.84 2 7

swissprot 0.68 0.65 4 15
treebank 6.03 5.66 3,339 160
psd7003 0.60 0.57 2 6

location steps = maximal depth
dblp 1.13 1.08 2 7
nasa 1.17 1.11 2 7

swissprot 0.82 0.78 4 15
treebank 24.80 23.28 3,339 160
psd7003 0.79 0.76 2 6

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

15

Figure 8. Parent/ancestor and predicate queries

We can see that EXsum itself delivers good estimations, except in cases where a high

degree of recursion is present (treebank) or where subtrees (or nodes) of homonyms are
scattered across the document. In general, however, “DPC” and “Interpolation” present the
best results in the majority of the cases, and “Input Count”, “Prev. Step”, and “Node Freq.”
yield the worst results, with the exception that “Prev. Step” can provide high quality
estimations on documents whose degree of structural variability is very low (dblp and
psd7003).

Furthermore, we have investigated the estimation quality for queries with parent and
ancestor axes and queries with predicates (see Figure 8). For the former, “Prev. Step” and
“Interpolation” delivered high-quality estimations in most of cases, comparable or even better
than LWES. Except for dblp, “No Estim.” also produced good estimations. Queries with
predicates have obtained low estimation quality (an NRMSE reaching 100%). In this case,
XSeed has a tendency to yield slightly better results in the most of the cases and especially
good ones for dblp. A particular study on estimation quality of the approaches on treebank is

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

16

given in Figure 9. These results tell us that the summarization of highly recursive documents
remains a challenge for all compared summaries.

6. Conclusion

In this paper, we have extended EXsum, an element-centered summary, to capture more
statistical information on XML documents and, using this information, support more
estimation procedures than originally proposed. We have made experiments to quantitatively
evaluate our proposal against approaches published in the literature. Two properties of XML
documents directly influence the quality of summaries and, consequently, their estimation
results: recursion and homonym trees (or nodes) which frequently exhibit varying numbers of
occurrences in different parts of a document. While recursion gives room for improvements,
because all approaches compared have presented very low estimation quality, homonym trees
seem to be properly handled in the approaches compared. However, the consequences of a
varying degree of interplay between recursion and homonyms are set to be a future research.

Evaluating the four new estimation methods proposed for EXsum, two of them have
produced quality estimation results, whereas the remaining methods have reported high errors
for query cardinality estimation. Nevertheless, the structure of EXsum itself yields quality
estimations and, in some cases, accurate (NRMSE=0) ones, meaning that EXsum can capture
the most important characteristics of a document.

References

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton, “Estimating the selectivity of XML path
expressions for internet scale applications”, In Proc. VLDB Conference, 2001, pp. 591-600.

[2] J. d. Aguiar Moraes Filho and T. Härder, “EXsum—an XML summarization framework”, In Proc.
IDEAS Symposium, 2008, pp. 139-148.

[3] J. d. Aguiar Moraes Filho and T. Härder, “Tailor-made XML synopses”, In Proc. BalticDB&IS
Conference, 2008, pp. 25-36.

[4] J. d. Aguiar Moraes Filho, T. Härder, and C. Sauer, “Enhanced statistics for element-centered XML
summaries", In Proc. Database Theory and Application (DTA), LNCS, Jeju Island, Korea, 2009.

[5] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon, “Statix: making XML count”, In SIGMOD
Conference, 2002, pp. 181-191.

Figure 9. Estimation quality on treebank

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

17

[6] T. Härder, C. Mathis, and K. Schmidt, “Comparison of complete and elementless native storage of XML
documents”, In IDEAS Symposium. IEEE Computer Society, 2007, pp. 102-113.

[7] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. Parr, “Xpathlearner: An on-line selftuning
markov histogram for XML path selectivity estimation”, In Proc. VLDB Conference, 2002, pp. 442-453.

[8] N. Polyzotis and M. N. Garofalakis, “Structure and value synopses for XML data graphs", In Proc.
VLDB Conference, 2002, pp. 466-477.

[9] N. Polyzotis and M. N. Garofalakis, “Xsketch synopses for XML data graphs”, ACM Trans. Database
Syst., 31(3):1014-1063, 2006.

[10] W3C, XML path language (XPath) 2.0|W3C recommendation 23 january 2007.
http://www.w3.org/TR/xpath20/, 2007.

[11] W. Wang, H. Jiang, H. Lu, and J. X. Yu, “Bloom histogram: Path selectivity estimation for XML data
with updates”, In Proc. VLDB Conference, 2004, pp. 240-251.

[12] N. Zhang, M. T. Özsu, A. Aboulnaga, and I. F. Ilyas, “XSeed: Accurate and fast cardinality estimation
for XPath queries”, In Proc. ICDE Conference, 2006, pp. 61.

Authors

José de Aguiar Moraes Filho is a PhD candidate at the University of
Kaiserslautern, Germany. He has received his Master degree in
Applied Computer Science at the University of Fortaleza (UNIFOR),
Brazil, in 2004. His research interests include XML query processing
and optimization, mobile databases, and data integration.

Theo Härder obtained his Ph.D. degree in Computer Science from the
TU Darmstadt in 1975. In 1976, he spent a post-doctoral year at the
IBM Research Lab in San Jose and joined the project System R. In
1978, he was associate professor for Computer Science at the TU
Darmstadt. As a full professor, he is leading the research group DBIS
at the TU Kaiserslautern since 1980. He is the recipient of the Konrad
Zuse Medal (2001) and the Alwin Walther Medal (2004) and
obtained the Honorary Doctoral Degree from the Computer Science
Dept. of the University of Oldenburg in 2002. Theo Härder's research

interests are in many areas of database and information systems in particular, relational
DBMS architecture, XML databases, transaction systems, and information integration. He is
author/coauthor of 7 textbooks and more than 200 scientific contributions with > 140 peer-
reviewed conference papers and > 60 journal publications.

His professional services include numerous positions as chairman of the special interest group
“Databases and Information Systems” of the German Informatics Society,
conference/program chairs and program committee member, editor-in-chief of Computer
Science—Research and Development (Springer), associate editor of Information Systems
(Elsevier), World Wide Web (Kluver), and Transactions on Database Systems (ACM). He
served as a DFG (German Research Foundation) expert and was chairman of the Center for
Computed-based Engineering Systems at the University of Kaiserslautern, member of two
joint collaborative DFG research projects DFG (SFB 124, SFB 501), and co-coordinator of
the National DFG Research Program “Object Bases for Experts”.

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

18

Caetano Sauer has received his Bachelor in Computer Science from
the University of Kaiserslautern and is currently a Master candidate
at the same institution. He currently works as a Research Assistant
for the XTC project. Research interests include Database Systems,
XML Query Processing, Web Services, and Natural Language
Processing.

	Enhancing the Estimation Quality of Element-centered
	XML Summarization Methods
	Abstract

