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Abstract

This paper focuses on an aspect that is widely neglected
in native XML database management systems: support for
concurrent transactional access. We analyze the isolation
requirements of the XQuery Update language and disclose
typical sources of anomalies of various query processing
strategies. We also present extensions to our proven XML
lock protocol, which allow us to exploit dynamic schema
information for query processing and protects us against
XML-specific “schema phantoms”. All concepts shown
were implemented in our research prototype resulting in a
scalable framework for serializable XQuery.

1. Introduction

After more than a decade of native XML database re-
search, various storage, indexing, and query processing
techniques have matured, and first production-level systems
are available on the market. These systems provide satisfac-
tory query response times, reliable storage, and scalability
to large data volumes. In contrast to conventional database
systems, however, one aspect that is typically taken for
granted is widely neglected: support for ACID transactions.

Vendors bypass this scalability bottleneck by solely fo-
cusing on use cases where concurrent access is just not in-
tended: On the one extreme, documents are stored once and
are never or only sparsely updated or, on the other extreme,
data is arranged in large collections of small, independent
documents, too tiny to think about reasonable concurrency.
The whole spectrum in between is left open, throwing away
opportunities to enable new types of applications.

Our long-term objective is to close this gap and to de-
velop concepts and architectures that finally leverage the
strengths of both worlds: databases (transactional, scal-
able, reliable) and XML (semi-structured, schema-agnostic,
portable). As a major system aspect to approach this goal,
efficient transactional multi-user capabilities are needed
that scale with both number and size of documents.

1.1. Problem statement

In the first place, transaction isolation for XML has to
cope with the same challenges as traditional relational sys-
tems. It must provide stability for data read and it must
protect against phantoms, i.e., preserve stability of predi-
cates evaluated like, e.g., range scans over content. Queries
and updates for semi-structured data impose here some new
challenges not known so far. In the following, we point out
the most important aspects:

On the one hand, there is the ordered, hierarchical nature
of XML, which leads to complex dependencies between the
“data atoms”, i.e., the nodes of the document tree. Thus,
serializability requires that structural updates are carefully
isolated and do violate neither vertical nor horizontal rela-
tionships seen by concurrent transactions.

On the other hand, when using XQuery-like languages, it
is particularly difficult to predict what data will be accessed
by a query. As a consequence, it is generally impossible to
determine in advance – just by looking at the statements –
whether two given queries will conflict with each other or
not. One might assume that the latter is a consequence of
the absence of schema information. However, as we will
show, even the presence of a schema – pre-defined or dy-
namically derived from the actual data – may not be suffi-
cient. Let us assume that two transactions T1 and T2 access
a document as depicted in Figure 1: T1 queries the sub-
tree of the “Science” journal, while T2 inserts a small year
fragment into the subtree of article 41. Obviously, T1 and
T2 conflict with each other and concurrent access is prohib-
ited. However, the statements themselves contain no hint
about that there may be a conflict.

Using schema information, we could at least derive that
there is a conflict potential. Unfortunately, knowledge about
potential contention within a document is not sufficient to
establish maximal permissive concurrency control. This
is similar to the relational world, where some conflict po-
tential is already given whenever transactions concurrently
access and modify the same table. High concurrency can
only be achieved when concurrency control is applied to
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into //article[@id="41"]

Figure 1. Conflicting transactions

the smallest meaningful granule, i.e., tuples in the relational
world and nodes in the XML world.

A major difference between relational tuples and nodes
in an XML tree is the amount of information that each data
atom represents. A single XML node usually carries much
less information – namely a name and a value – than a sin-
gle tuple, which may have tens of attributes or even more.
Further information is encoded in the XML document struc-
ture, typically by grouping related nodes in subtrees. Con-
sequently, queries and updates often refer to variable-size
subtrees. A fact that has to be naturally supported by XML
concurrency control.

The above observation does not necessarily mean that
transactions are always interested in completely expanded
subtrees. Instead, queries often address subtrees by cer-
tain predicates and then read only smaller parts of them
– a great chance to increase concurrency. For exam-
ple, if the return clause of transaction T1 would refer to
$j/article/author instead, it would not conflict with
the insertion of T2 and both requests could be processed in
parallel.

To summarize, we can state the following key observa-
tions:

∙ Read/write or write/write dependencies between two
transactions can only be decided in a meaningful way
at the instance level, i.e., the document.

∙ High concurrency requires small granules of isolation
and the smallest granule available in XML is a node.

∙ Mostly, subtrees are the logical target granule for
queries and updates, but they vary in size and may be
nested.

∙ Typical usage allows concurrent reads and writes even
within a single subtree.

∙ XML’s ordered tree structure adds new dimensions for
the evaluation of predicates and, thus, for the appear-
ance of phantoms.

Taking these observations into account, it becomes obvi-
ous that design and implementation of correct and scalable
concurrency control for XQuery is a challenging task. Nev-
ertheless, we believe that it can be reduced to a small set of
clear-cut measures that can be efficiently realized and im-
prove the overall value of native XML DBMS.

1.2. Contribution

In this paper we analyze the isolation requirements of
XQuery Update and disclose sources of anomalies during
query processing. Our findings take general XML query
processing strategies into account and, thus, are applicable
to a great variety of systems.

We also present new extensions to our proven XML lock
protocol taDOM providing effective protection against the
XML-specific “schema phantoms”. All concepts were im-
plemented in our native XML DBMS research prototype
and provide a scalable framework with guaranteed serial-
izability for XQuery.

The remainder of this paper is organized as follows: We
analyze the update primitives of XQuery Update and their
isolation requirements in Section 2. Section 3 briefly in-
troduces XML query processing and investigates general
caveats and sources of phantoms which different query eval-
uation strategies have to observe. We present our approach
implemented in our native XML DBMS prototype XTC in
Section 4, and review related work in Section 6. Finally,
Section 7 summarizes the paper.

2. XQuery update

The XQuery Update Facility is an XQuery extension for
declarative updates of XML. Similar to SQL, it allows to
query “nodes of interest” for which an update like, e.g.,
value change or insertion of a new subtree should be per-
formed. Before the actual updates are applied, all of these
so-called target nodes are collected together with the re-
quested update operation in a pending update list. In a sec-
ond phase, the list is checked to, e.g., eliminate duplicate
deletes of a single node etc. and, finally, the updates are
performed. Because of this two-phased processing, XQuery
updates are called snapshot-based. Note that this defines
only the semantics of update expressions and that XQuery
neither requires or nor favors snapshot isolation in concur-
rent environments.
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Figure 2. Affected properties of inserts

The extension defines five kinds of update expressions:
insert, delete, replace, rename, and transform. The latter,
however, applies updates only to copies of the target nodes.
As these copies are per definition private to a transaction,
we must not consider transform expressions as an issue for
concurrency control.

Trivially, transactions must be guaranteed that the state
of every read node is committed and stable; of course, mod-
ified nodes do not become visible to others before commit.
In the following, we will focus on implicit consequences of
updates for other nodes as potential sources of phantoms.

2.1. Update primitives

The insert expression inserts a node or subtree relative
to the specified context node. The insertion position can
be precisely specified for the new previous or next sibling
(before, after) or the new first or last child (first, last). If
sibling order does not play a role for the application, one
may also specify “any new child” (into) to allow an actual
implementation to choose the “optimal” insertion postion
with regard to, e.g., storage consumption or concurrency.

From the perspective of transaction isolation, all flavors
of insert operations modify only a fixed set of basic prop-
erties of adjacent nodes. If the root of the new subtree is
an element or a text node, then the nextSibling or previous-
Sibling properties of the right or left sibling and, depending
on the insert position, the firstChild and lastChild properties
of the parent are affected. For our discussion, we need not
distinguish between insertion of a single node and a whole
subtree, because descendants of the root must be inaccessi-
ble to other transactions, too. If the new node is an attribute,
only the correspondingly named attribute property of the
parent element is affected. Figure 2 illustrates the changed
foreign node properties for these two cases.

Insertions affect many more properties influencing the
outcome of concurrent queries like, e.g., position of all fol-
lowing siblings, containment for all ancestors, preceding

axes of all following nodes, etc. But, they are transitively
derived from the mentioned ones. Therefore, it is sufficient
to ensure that inserts do not violate general repeatable-read
and visibility rules for the five basic properties and that the
evaluation of other structural predicates regards these tran-
sitive dependencies. The same observation holds for delete,
which simply deletes the subtree rooted at the context node.

A replace expression distinguishes between the replace-
ment of a node/subtree with another and the update of a
node’s value. The former logically translates into a se-
quence of delete and insert. The latter does not affect other
nodes, because node identity is preserved and tree structure
is not modified. Accordingly, special care is not necessary.

Finally, rename changes the name of element and at-
tribute nodes. For attributes, this operation equals to a dele-
tion followed by an insertion under the new name. Renam-
ing elements is similar to value updates for text and attribute
nodes. It is a local operation and does not modify the tree
structure. Although it changes the path of all descendants,
a heavily used concept in queries, we must not impose fur-
ther restrictions, because the rationale of transitive proper-
ties holds.

2.2. Phantoms

Phantom anomalies arise when the result set of a previ-
ously evaluated predicate changes due to concurrent modi-
fications [8]. We already mentioned that a node embodies
only three kinds of information: name, value and its posi-
tion in the document hierarchy1. Accordingly, we can clas-
sify three different kinds of phantoms that may appear.

Content-predicate phantoms step up when, e.g., attribute
values or text nodes are modified and fall into a concurrently
evaluated range scan. Name-predicate phantoms appear
when nodes are concurrently renamed, inserted, or deleted,
which fulfill a queried name predicate. Finally, structural-
predicate phantoms arise, e.g., when a transaction navigates
from a node to its first child and another transaction concur-
rently inserts a new first child in front of it.

In practice, these kinds of phantoms would typically ap-
pear in combination. Consider a transaction T1 evaluates
query //a/b/@c > 5 and a second transaction T2 adds
a new attribute c with value 60 to any node with label b
and a parent a. If T1 now re-evaluates the query, the new
attribute appears as a phantom in all kinds of categories.

The query of transaction T1 describes a complex pred-
icate. As there are plenty of ways to evaluate it, we can-
not easily locate a single point in a system where phantoms
originate. Therefore, we will investigate common query
evaluation strategies for XML and distill a general princi-
ple how to prevent the emergence of phantoms.

1Note that we omit namespaces, types, etc. for the sake of simplicity
as they do not influence the main points of this paper.



3. Query processing

XQuery engines can be categorized by their processing
strategy into four groups: streaming, navigational, rela-
tional, and native, which embraces concepts of all former
in conjunction with native XML techniques like indexing
and metadata usage. The strategy is typically determined
by the capabilities of the underlying storage system, if any,
and non-functional requirements like, e.g., memory foot-
print. From the perspective of transactional concurrency, it
is most important that an engine touches as few data as pos-
sible because the isolation aspect requires to keep accessed
data stable until commit thereby limiting concurrency.

Pure streaming and navigational engines are mostly
stand-alone solutions or directly embedded in applications.
They work on a per-file basis, which implies that they al-
ways access whole documents making concurrent transac-
tional read and write access impossible. Relational en-
gines run on top of standard RDBMSs and translate XQuery
to SQL, having documents shredded into relational tables.
Consequently, they are per se ACID compliant and al-
low concurrent queries and updates of the tables with the
shredded documents. The underlying concurrency control
mechanisms, however, are blind for the actual semantics
of XML and XQuery, and potential concurrency is jeop-
ardized. Achievable concurrency depends on the shredding
scheme and the degree to which it allows to use column-
based indexes to reduce the number of tuples that must be
touched and to perform XML-level updates with low side-
effects on the shredded data.

Native engines can draw from plentiful techniques and
data access alternatives to tackle a query. In addition with
context knowledge about the inherent data model and query
properties, they allow for very efficient query processing.
A desired side-effect for our purposes is that efficient eval-
uation most often implies minimal access to a document.
Accordingly, we focus on native engines and analyze pro’s
and con’s for concurrency of native query processing algo-
rithms.

3.1. Basic concepts

XML engines base on the traditional stages of query pro-
cessing: translation, planning and optimization, and execu-
tion. First, a query is parsed, checked, and translated into
an internal representation, a so-called query plan. In the
second stage, the logical query plan is transformed into a
– hopefully – efficient physical query plan, which is finally
processed in the third stage. The whole process is a very
complex topic, which we do not want to detail here. For our
purposes, it is sufficient to look at the physical query plans,
because they define how the data is accessed and, accord-
ingly, where isolation properties might be violated.

A physical query plan is a data flow graph with a single
output node and several input nodes. The output node re-
turns the query result, typically serialized into a string, and
the – possibly empty – pending update list, which has to
be processed. Input nodes can be any type of physical ac-
cess to documents, but also sources for “non-physical” input
like node constructions, arithmetic and logical expressions,
literals, function calls, etc. Inner nodes, finally, represent
the actual query processing logic in form of operators or
algorithms. Amongst them are traditional ones like select,
join, and sort, but also – depending on the platform – XML-
specific ones like structural join, twig join, or other primi-
tives for the nested-loops-like for construct of XQuery.

General processing logic and various path processing al-
gorithms are already quite complex. But even worse, inter-
dependencies between them, introduced by their combina-
tion in a query plan, are even inscrutable. Node identifiers,
for example, mostly encode structural relationships and are
used by algorithms to compute identifiers of related nodes.
Some systems include information to directly compute the
whole path for each node and, thus, allow to evaluate many
predicates for theirs ancestors without actually accessing
them. In such settings, many predicates over paths and con-
tent will be evaluated in manifold constellations, making it
unfeasible to enumerate all potential sources of phantoms.

The above shows that any plans to implement concur-
rency control by reasoning about the semantics of the query
must necessarily fail. The complexity, however, only draws
the attention from a clear-cut, even trivial fact: Indepen-
dent of the query, it will be sufficient to protect both ex-
plicitly and implicitly gathered information from concurrent
modification until commit, whenever a document is physi-
cally accessed. Explicit information is identity, name, and
value of a node. Implicit information is all meta knowl-
edge gained and exploited during query processing. If the
requirement for repeatable read for both kinds of informa-
tion is met, phantoms cannot occur, because even complex
predicates can only be evaluated out of this basic data.

The roadmap for the realization of a waterproof isolation
concept is now clear. We have to identify all alternatives for
physical document access (access path) and determine how
much information about the document a particular imple-
mentation really delivers – with a close eye on the critical
properties and types of information identified in Section 2.
Then, we have to install efficient, yet maximal permissive
measures to protect the returned data from modifications
through concurrent transactions.

3.2. Access paths

Availability of several access paths allows a system to
choose the cheapest combination to answer a query. If
only navigational access is available to answer a query



//a/b/@c>5, for example, the document must be tra-
versed node by node to find each match. If, however, a
special XML index that contains all attributes on the path
//a/b is available, all candidate attributes may be read effi-
ciently from the index and only the conditions name=c and
value>5 must be checked requiring document access, and
so on. Generally, we observe that the more complex the in-
formation provided by an access path is, the less nodes have
to be touched, and, in turn, the higher is the concurrency
achievable.

Without – here irrelevant – consideration of physical
properties, the vast number of XML storage and index-
ing structures can be classified into specific access path
classes2. First and most important is the document store
itself. It allows for direct node access, navigation in the tree
structure, and bulk reconstruction of document fragments.
Accordingly, in addition to its role as “node store”, the doc-
ument store can be seen as an index for tree structure predi-
cates. The two other kinds of information carried by nodes,
values and names, can be indexed by special content and
element/attribute indexes, respectively. They map the prop-
erty of a node to an identifier, which can be used to look up
the related node in the document store. Finally, advanced
path and CAS (content and structure) indexes combine all
three kinds of information and allow to evaluate complex
path predicates with minimal effort.

With this great variety, selection of appropriate access
paths to feed operators in a query plan is challenging. Iden-
tification of path and other predicates suitable to be pro-
cessed with a powerful path or CAS index, for example,
is not a simple task. Nevertheless, demand for high con-
currency encourages to exploit them whenever possible to
reduce the number of nodes to be accessed.

4. Concurrency control in XTC

XTC is our research platform for native XML database
concepts, such as storage, indexing, query processing,
transaction isolation and crash recovery [13]. It uses a flex-
ible storage layout and supports the query engine with pow-
erful indexing capabilities. XTC also provides full ACID
transactions based on the tailored XML lock protocol ta-
DOM [12], which initially targeted only to navigational
APIs. In the following, we will give a résumé of its key
aspects, before we extend its scope to full XML query sup-
port.

2In practice, the classes are not strictly disjoint. A specific implemen-
tation might fall into several classes and may provide all or only a subset
of the access operations of a class.
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4.1. taDOM

The key of taDOM is to transfer the idea of hierarchi-
cal locking [7] to document trees and to enrich the protocol
with lock modes aligned to the permissible concurrency of
XML updates. The protocol provides transactional isola-
tion for the existing structure and content. According to
the general principle, a suitable lock and intention locks for
all ancestors must be acquired, before a node is accessed.
To master the acquisition of intention locks efficiently, we
depend on prefix-based node labels like DeweyIDs or Or-
dPaths [9], because they allow for the computation of all
ancestor node labels without further physical access. How-
ever, such labeling schemes are already widely established
in XML DBMS because of their benefits for query process-
ing.

taDOM yields its high concurrency with lock modes that
focus on minimal protection requirements of XML-specific
operations. As depicted in Figure 3, it distinguishes be-
tween shared access for single nodes, tree levels, and whole
subtrees, and exclusive access for single nodes and subtrees.
With these modes it is, e.g., possible for a query to iterate
over a node and all its children, while, at the same time,
nodes and subtrees in the subtrees of its grandchildren are
updated. Lock overhead can easily be controlled by switch-
ing lock coverage from the very fine node level to the coarse
subtree level.

Whenever a transaction physically or logically navigates
from a node to a related one, a structural predicate is eval-
uated that has to be kept stable. taDOM in conjunction
with prefix-based node labels already delivers this protec-
tion for many predicates like, e.g., ancestor/descendant, fol-
lowing/preceding, following-/preceding-sibling, etc. How-
ever, the danger of phantom inserts and deletes remains in
three cases: navigation from a node to its first and last child
respectively, navigation between direct siblings, and navi-
gation from an element to one of its attributes. If you recall
the discussion in Section 2.1, these are the identified critical
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foreign node properties affected by update operations.
To overcome this issue, so-called edge locks [11, 15]

were introduced, which are simply fixed-predicate locks
that must be acquired whenever one of these properties is
read or modified. The example in Figure 4 illustrates the
concept. Transaction T1 starts at node p, navigates to its
first child and to the next sibling, acquiring shared locks for
each node visited and each edge passed. Transaction T2
now attempts to append a new node c requiring exclusive
locks for affected foreign node properties, i.e., edges. The
request for the lastChild edge of p can be granted, because
the lock is free. The request for the nextSibling property of
b, however, is incompatible with the shared request of T1
and T2 must be blocked.

The initial solution proposed the processing of edge
locks orthogonal to node locks with simple read, write, and
update lock modes. Attribute edges were handled also sep-
arately with so-called phantom locks. Having learned from
efficiency experiments, we merged our concepts and model
all edges as nodes with pre-defined positions amongst the
actual nodes to profit from lock escalation heuristics.

In various experiments, we proved that taDOM not only
provides compelling concurrency but can also be imple-
mented efficiently [1, 2, 14]. We also addressed advanced
topics like deadlock prevention through update lock modes
and dynamic lock escalation. The confinement to logical
document trees makes the protocol independent of the un-
derlying document store – except for the need of prefix-
based node labels. It must only provide atomicity for con-
current read and write operations and must also take im-
plications of sophisticated storage layouts into account for
transaction rollback and crash recovery. Although these are
interesting aspects, we will not discuss them further, be-
cause implementation details are beyond the scope of this
paper.

4.2. Indexes

Physical storage in XTC omits redundant element nest-
ing and stores only leaf nodes of the document tree [10].
The ancestor path, i.e., the inner structure of a document,
can be computed at any time with a leaf’s DeweyID and
its PCR (path class reference) – an integer identifying the
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node’s path in a structural summary of the document. The
structural summary, called path synopsis, is itself a small
tree reflecting all unique paths within a document. Figure 5
shows a DeweyID-labeled document and the corresponding
path synopsis.

By combining DeweyIDs and PCRs, we can also create
sophisticated indexes, which may be carefully adjusted to
document properties and query requirements [16]. Using
permutations of PCR, DeweyID, and, optionally, content of
a node, we have various opportunities to build key/value
pairs for different types of path and CAS indexes. They
can be precisely scoped with path patterns and content type
specifications to specific node sets. The path synopsis is
used to identify the set of PCRs matching the path patterns,
which greatly simplifies creation, use, and maintenance of
an index.

Additionally, we can employ a two-staged element in-
dex, which allows for efficient access to all elements with
the same name in document order. It is logically the same
as a path index for the pattern //*, but has different physi-
cal properties. Of course, we can use this technique also for
attribute names or exploit PCRs to index only a subset of all
node names. Finally, XTC also supports plain conventional
content indexes, which map content and attribute values to
DeweyIDs.

For concurrency control, a big advantage of all our four
index types is that they are realized with standard B*-trees.
This enables us to employ standard index locking tech-
niques, which do not only lock the index entries for repeat-
able reads, but also the gaps between them to prevent phan-
tom inserts and deletes. Note that even renaming elements
does not violate consistency of our PCR-based indexes, be-
cause a rename implies that the PCRs of all descendants
also change, and, accordingly, it results in normal index up-
dates.

Our current implementation uses ARIES key/value lock-
ing [17] for all index types, which uses separate locks on in-
dex keys. Of course, any other index locking approach pre-
serving serializability and further sophisticated measures to



reduce the lock overhead are also applicable [4, 6]. In future
work, we will work on new strategies to harmonize the in-
terplay between index locking and taDOM to further reduce
lock overhead.

4.3. Schema phantoms

The path synopsis is undoubtedly the central data struc-
ture for all document accesses. Therefore, we rely on its
performance and avoid to burden it with heavy-weight con-
currency control. In contrast, we relaxed some properties to
increase throughput. First, a path synopsis must not neces-
sarily be minimal, i.e., it may contain paths without counter-
parts in the document. In other words, a path synopsis only
grows and deletes must not take care if the last instance of a
path in the document is deleted; stale paths may be removed
by isolated maintenance tasks. Second, a path synopsis con-
tains no payload data and, thus, newly created paths may be
shared directly with other transactions. Once a new path is
created and a PCR is assigned, it is immutable.

While the above is great for minimal synchronization
overhead in the data structure, we cannot completely dis-
pense transactional concurrency control for a path synopsis.
As a kind of dynamic schema, it lends itself as a powerful
vehicle for query optimization and, especially, index selec-
tion. During query planning, we match path expressions
against the path synopsis to get a set of matching PCRs.
This set can be used by the optimizer to choose appropriate
indexes to answer the query. A PCR set, however, reflects
only a snapshot of the current document structure, and this
may lead to so-called schema phantoms.

Assume a transaction T1 matches the path expression
//c against the path synopsis in Figure 5. The current
PCR set is {3}, and the optimizer may choose to read all
matching nodes from a path index /a/b/c. As only nodes
on this path will be covered and protected by the index, a
transaction T2 may create a new path /a/d/c with PCR
6 in the document and commit. If T1 re-evaluates the path
//c, the PCR set is now {3, 6} and the optimizer must not
use the same path index again. Instead, the document may
have to be scanned and nodes inserted by T2 will appear as
phantoms.

The problem of schema phantoms arises whenever the
path synopsis is “misused” to make statements about the
non-existence of certain paths. In the above example, the
PCR set was used to justify the application of an index,
which is in general too narrow to answer the desired path
expression. Similar problems arise when empty PCR sets
are taken as indication that whole branches of a query plan
must not be executed, because they are expected to return
no result. Accordingly, we can say that the phenomenon
of schema phantoms already appears in the planning phase
and not in the execution phase.

There are two possible solutions to the problem. The
simplest way, the optimizer is never allowed to choose too
narrow indexes or to cut query branches although the path
synopsis indicates that it is reasonable. In a real environ-
ment, however, we can observe that a path synopsis grows
only infrequently and, thus, it is desirable to leverage all
indexes available to the maximum extent. We developed a
straightforward solution. Whenever a transaction matches a
path expression against the path synopsis, a shared lock for
the expression is acquired. Transactions creating new paths
must probe these locked expressions matching the new path
with instant requests for exclusive locks – a type of lock that
is directly released at the moment it is granted. This way,
writers are delayed until all readers that might have missed
the new path have ended. As schema extensions are rare
situations and search for locked expressions matching the
new path can be easily truncated, general impact on writers
is very low. Note also that matching queries will never have
to wait for a shared expression lock, because exclusive locks
are instantly released when granted.

5. Insightful experiment

We can illustrate the effects of a specific query evaluation
strategy on our locking protocol using a distinct experiment.
We compared four different strategies for query Q1 of the
widely-used XMark benchmark [21]:

let $auction := doc("auction.xml") return
for $b in
$auction/site/people/person[@id = "person0"]

return $b/name/text()

The Scan plan evaluates the query using a single scan
over the whole document. ElementIndex constructs the
path /site/people/person with a structural join
over three element index scans for the respective element
names. The attribute predicate and the final result con-
struction are evaluated using navigation. Finally, PathAnd-
ContentIndex and CASIndex identify person elements us-
ing a join over a path index /site/people/person
and content index scan for “=person0” and a CAS in-
dex /site/people/person/@id for “=person0”,
respectively. Both plans construct the final result using nav-
igation. We executed all plans for XMark documents of size
110KB, 1.1 MB, 11MB, and 110MB in XTC on a server
with 4 quad-core Intel Xeon 2,66GHz and 4GB memory.
XTC was configured with 64KB pages and a 64MB buffer
and lock escalation was turned off to investigate the access
behavior of the different plans.

As expected, the query execution time given in Figure 6
directly correlates with the number of nodes each plan ac-
cessed. The scan scaled poorest with document size al-
though the result size remained stable with one qualified
node. The ElementIndex plan performed much better but
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Figure 6. Query execution times

response time also degraded slowly, because the attribute
predicate must be checked for all persons qualified by the
structural join. The response times of the last two plans
remained constantly low in the range from 5 to 30 ms for
all sizes. Their big advantage is the ability to evaluate the
highly selective content predicate with an index access first;
this dramatically reduces the intermediate result size. The
CASIndex plan only needs a single access to the CAS index
to evaluate the qualifying path expression.

A look at the number of locks acquired by each execu-
tion strategy in Figure 7 might be a bit suprising at first.
The Scan, although touching always each node, constantly
acquired only 4 locks. Three were acquired to locate the
document in the database3; and the document root node
was locked with a shared subtree lock (SR) for the scan.
Consequently, concurrency is limited by scan-based plans
to shared access. The overhead of PathAndContentIndex
and CASIndex is also constant. In contrast to the Scan,
however, their locks only cover the actually accessed nodes
and allow concurrent modifications everywhere else in the
document. In this discipline, ElementIndex reveals its un-
desirable access behavior. Although this strategy generally
performs adequately and is, therefore, widely used in na-
tive engines, it “spreads” access, i.e., locks over the whole
document. Accordingly, this strategy tends to increase both
runtime and memory consumption and also reduces concur-
rency more than necessary.

6. Related work

To the best of our knowledge, only a small fraction of the
work on XML concurrency control copes with full support
for XQuery and XQuery Update. Instead, most proposals
focus only XPath, subsets of XPath, or home-brew path ex-
pression languages. We do not consider the latter here be-
cause they lack practical relevance and restrict ourselves to
the few XQuery-capable solutions that found their way into
products or prototypes.

3Like relational systems store their metadata catalogs in tables, XTC
uses a an XML document for metadata.
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MonetDB/XQuery is a powerful system implemented on
top of the column-store MonetDB. It uses a pre/post encod-
ing scheme to shred documents into relations which implies
their reorganization after structural updates. Its answer to
reduce maintenance effort and to increase throughput under
concurrent updates is an update-friendlier table layout and a
combination of shadow paging together with page-level and
document-level read/write locks [3]. Commutative delta op-
erations help to avoid concurrency bottlenecks when encod-
ing changes have to be propagated up the document tree.
The mechanism described provides snapshot isolation, but,
contribution [3] neither states on concurrency achieved nor
deadlock threats raised by page-level locks.

DGLOCK [5] and (S)XDGL [18, 19] are hierarchical
lock protocols applied to structural summaries similar to
our path synopsis instead of document nodes. SXDGL ad-
ditionally uses MVCC to isolate readers with snapshot iso-
lation. While these approaches promise minimal lock over-
head, they come with some practical shortcomings. They
require general predicate locks, e.g., on content, to reduce
contention on the nodes of the summaries. This leads to
serious performance penalties, when lock compatibility de-
cisions require document access to check if predicates over-
lap. Further, identification of paths and, accordingly, choice
of correct yet sufficiently permissive locks in advance is a
complex issue and only manageable for simple queries.

Optimistic concurrency control for XQuery, finally, has,
so far, only been proposed in [20]. However, the approach is
quite complex and has never been proved to scale to serious
data volumes.

7. Conclusions

Poor support for intra-document concurrency in native
XML DBMSs is an unnecessary restraint. Nowadays,
the way documents, i.e., semi-structured, hierarchical data,
must be used and organized is determined by the DBMSs
and not – as it should be – by the applications.

Analysis of general isolation requirements of XQuery
and concurrency pitfalls in native XML query processing



lead to a central observation: Serializable, phantom-free,
and highly concurrent query processing can be achieved
when the problem is reduced to the provision of maximal
permissive concurrency control for all data access paths
within a system. One must ensure that the data delivered
as well as the implicitly exhibited information is protected
against concurrent modifications.

This requirement for repeatable read couples the goal of
high concurrency directly with the goal to touch as few data
as possible during query processing. XML’s tendency to
group and query related information in subtrees supports
this in a natural way. Accordingly, we emphasize the value
and encourage the use of efficient path indexes and CAS
indexes to profit from both fast query processing and in-
creased concurrency. With their expressiveness, relevant
subtrees can be identified very quickly and further pro-
cessing can be scoped to avoid scattered document access,
which also reduces concurrency.

Our solution is taDOM, a hierarchical XML lock proto-
col, in conjunction with standard index locks. It embraces
XML specifics like subtree locality, path processing, and
common types of XML indexes, but does not affect the de-
grees of freedom which the query engine can utilize. We
have implemented all concepts in our prototype to accom-
plish a real concurrent and guaranteed phantom-free native
XML DBMS. Experiments also confirm that our concepts
effectively increase concurrency and can easily trade over-
head off against parallelism.
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