
Clean First or Dirty First? A Cost-Aware Self-Adaptive
Buffer Replacement Policy

Yi Ou
University of Kaiserslautern

Germany
ou@cs.uni-kl.de

Theo Härder
University of Kaiserslautern

Germany
haerder@cs.uni-kl.de

ABSTRACT

Flash SSDs originate a disruptive change concerning storage
technology and become a competitor for conventional mag-
netic disks in the area of persistent database stores. Com-
pared to them, they provide a dramatic speed-up for ran-
dom reads, but exhibit a distinct read/write (R/W) asym-
metry, i.e., updates are more expensive than reads. Exist-
ing buffer management algorithms for those devices usually
trade physical reads for physical writes to some extent. But
they ignore the actual R/W cost ratio of the underlying
device and the update intensity of the workload. There-
fore, their performance advantage is sensitive to device and
workload changes. We propose CASA (Cost-Aware Self-
Adaptive), a novel buffer replacement policy, which makes
the trade-off between physical reads and physical writes in
a controlled fashion, depending on the R/W cost ratio, and
automatically adapts itself to changing update intensities in
workloads. Our experiments show that CASA outperforms
previous proposals in a variety of cost settings and under
changing workloads.

Categories and Subject Descriptors

D.4.2 [Storage Management]: Main memory, Storage hi-
erarchies; D.4.4 [Communications Management]: Buffer-
ing, Input/output; H.2 [Database Management]: Miscel-
laneous

General Terms

Algorithms, Experimentation, Performance

Keywords

Replacement Policy, Cache, Database Storage, Flash SSD

1. INTRODUCTION
Flash SSDs (flash-memory-based solid-state drives) are

playing an increasingly important role for server-side com-
puting, because—compared to magnetic disks—they are much

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS10 2010, August 16-18, Montreal, QC [Canada]
Editor: Bipin C. DESAI
Copyright c©2010 ACM 978-1-60558-900-8/10/08 $10.00
.

more energy-efficient and they have no mechanical parts
and, therefore, hardly any perceptible latency. Reading a
page from a flash SSD is extremely fast, while a page update
can be one or two orders of magnitude slower. For this rea-
son, existing buffer management algorithms for flash-based
systems, or flash-aware buffer algorithms, usually trade phys-
ical reads for physical writes to some extent, in order to
improve the overall I/O performance.

Classical buffer algorithms, e.g., LRU, assume that a phys-
ical read has about the same cost as a physical write and,
therefore, do not apply differing decision policies when read-
only or modified pages are replaced in the buffer [1]. This
assumption is reasonable for conventional magnetic disks,
but not valid for flash-based devices. On the other hand,
existing flash-aware algorithms are not applicable for mag-
netic disks, because their saving in physical writes usually
comes at the expense of a higher number of physical reads
or lower hit ratios. This observation reveals an important
problem, because magnetic disks are expected to co-exist
with flash SSDs for a long period of time1. In principle, the
buffer layer should be aware of the characteristics of the un-
derlying storage devices and adapt itself to changes in such
characteristics automatically.

Most of the existing flash-aware buffer algorithms assume
that a physical write is much more expensive than a physical
read. However, in fact, the extent of flash R/W asymmetry
is varying from device to device, even among the devices
from the same manufacturer. For example, an Intel X25-
V SSD achieves 25 K IOPS for reads and 2.5 K IOPS for
writes [2], while an Intel X25-M SSD reaches 35 K IOPS
for reads and 8.6 K IOPS for writes [3]. We use the term
R/W cost ratio, or cost ratio for short, defined as the ratio
between the long-term average time used by physical reads
and the same used by physical writes, to express the R/W
asymmetry of storage devices, i.e., for a storage device, it
tells how much more expensive is a write compared with a
read, and vice versa. For example, the cost ratios of the
above mentioned devices are 1 : 10 and 1 : 4, respectively.
Cost ratios deliver important information for making trade-
offs between physical reads and physical writes, but they
are ignored by existing flash-aware algorithms, i.e., these
algorithms are not aware of the cost.

As another common problem of existing flash-aware buffer
algorithms, they ignore the possibly changing update inten-
sity, i.e., the percentage of write requests, in the workload

1Due to the lower $/GB cost of magnetic disks, their domi-
nant market position is not likely to be taken over by flash
SSDs in the near future.

while making the replacement decision. Some of them leave
a parameter for the user to make such an important but
difficult performance tuning.

The major contribution of this paper is the design and
evaluation of CASA, a cost-aware self-adaptive buffer man-
agement algorithm, which addresses the above mentioned
problems. The remainder of this paper is organized as fol-
lows. Section 2 describes the problem formally. Section 3
sketches the related work. Section 4 introduces our algo-
rithm, while its experimental results are presented in Sec-
tion 5. The concluding remarks are given in Section 6.

2. THE PROBLEM
We focus on buffer management algorithms for homoge-

neous storage devices with possibly asymmetric R/W costs.
Situations where heterogeneous storage devices (e.g., flash
SSDs and magnetic disks) co-exist in a single storage sub-
system, are more related to the data-allocation problem and,
thus, are not our focus.

If we denote the sequence of n logical I/O requests (x0, x1, . . . ,

xn−1) as X, a buffer management algorithm A is a function
that maps X and a buffer with b pages into a sequence of m

physical I/O requests Y := (y0, y1, . . . , ym−1), m ≤ n, i.e.,
A(X, b) = Y .

Let C(Y) denote the accumulated time necessary for a
storage device to serve Y , we have C(Y) = C(A(X, b)).
Given a sequence of logical I/O requests X, a buffer with b

pages, and a buffer management algorithm A, we say A is
cost-optimal, iff for any other algorithm A′, C(A(X, b)) ≤
C(A′(X, b)).

For magnetic disks, C(Y) is often assumed to be linear to
|Y |. Clearly, this assumption does not hold for flash SSDs,
because C(Y) heavily depends on the cost ratio of read and
write requests and their percentages in Y . Therefore, each
I/O request, either logical or physical, has to be represented
as a tuple of the form (op, pageId), where op is either R

(for a read request) or W (for a write request). We de-
note the cost of physically serving an R-request as cR, and
that of physically serving a W -request as cW . Depending
on the characteristics of the underlying storage device, cR

may or may not be equal to cW . The term cost refers to
time cost instead of monetary cost, since a cost-optimal al-
gorithm should minimize the accumulated time for serving
I/O requests.

While the above formalization defines our problem, our
goal is not to find the optimal algorithm in theory, but a
practically applicable one that has acceptable runtime over-
head and minimizes the overall I/O cost. Hit ratios are
related to the overall I/O cost, because the number of buffer
faults is equal to the number of physical reads, whose cost
can not be ignored compared with the cost of main mem-
ory access, even with fast flash SSDs. But they are not the
only concern according to our model—saving physical writes
could be more cost-effective in some cases. We assume that
the cost ratio is known, e.g., it may be derived from IOPS
figures or average response times. In Section 5.3, we demon-
strate an efficient technique that can detect the cost ratios
online.

Prefetching of pages plays an important role for conven-
tional disk-based buffer management. However, prefetching
always includes the risk of fetching pages later not needed.
Furthermore, with flash SSDs, prefetching becomes much
less important, because pages can be randomly fetched on

demand without (hardly) any penalty in the form of access
latency. Therefore, we focus on the core logic of buffer man-
agement, i.e., the replacement policy.

3. RELATED WORK
LRU is one of the most widely-used replacement policies.

CFLRU [4] is a flash-aware replacement policy for operating
systems based on LRU. At the LRU end of its list struc-
ture, it maintains a clean-first region, where clean pages are
always selected as victims over dirty pages. The remain-
ing part of its list structure is called working region. Only
when clean pages are not present in the clean-first region,
the dirty page at the LRU tail is selected as victim. The
size of the clean-first region is determined by a parameter w

called window size. By evicting clean pages first, the buffer
area for dirty pages is effectively increased—thus, the num-
ber of flash writes can be reduced.

The CFDC algorithm [5] also addresses the R/W asym-
metry of flash devices by managing the buffer pool in two
regions: the working region and priority region. In the pri-
ority region, dirty pages are kept in the buffer longer than
clean pages. Furthermore, they are clustered by logical block
addresses to enforce higher spatial locality (thus higher effi-
ciency) of page flushing.

LRUWSR [6] is a flash-aware algorithm based on LRU and
Second Chance [7], using only a single list as auxiliary data
structure. The idea is to evict clean and cold-dirty pages
and keep the hot-dirty pages in buffer as long as possible.
When a victim page is needed, it starts searching from the
LRU end of the list. If a clean page is found, it will be
returned immediately (LRU and clean-first strategy). If a
dirty page marked as“cold” is found, it will also be returned;
otherwise, it will be marked “cold” (Second Chance), moved
to the MRU (most-recently used) end of the list, and the
search continues.

The authors of CCF-LRU [8] further refine the idea of
LRUWSR by distinguishing between cold-clean and hot-
clean pages. Cold pages are distinguished from hot pages
using the Second Chance algorithm. They define four types
of eviction costs: cold-clean, cold-dirty, hot-clean, and hot-
dirty, with increasing priority, thus cold-clean pages are first
considered for eviction, then cold-dirty, and so on.

The major problem of CFLRU is its tuning parameter w,
which is performance-critical but difficult to determine. Its
optimal value depends on the cost ratio of the storage device
and the update intensity of the workload, which may vary
over time. Although its authors have mentioned a dynamic
version of CFLRU, which automatically adjusts the param-
eter “based on periodically collected information about flash
read and write operations” [4], its control logics is not pre-
sented. Yoo et al. proposed several variants of CFLRU [9],
aiming at reducing the number of flash erase operations and
improving wear-leveling. These variants have the same lim-
itation as CFLRU and their design goals are different from
ours.

Although LRUWSR and CCF-LRU don’t require parame-
ter tuning, their clean-first strategy is carried out only based
on the coarse assumption of R/W cost asymmetry and hot-
cold detection using the Second Chance algorithm, which,
in turn, only approximates LRU. As a consequence, it is dif-
ficult for them to reason, when should a cold-dirty page be
first considered for eviction over a hot-clean page, and vice
versa.

4. THE CASA ALGORITHM

4.1 Overview
CASA manages the buffer pool B of b pages using two

dynamic lists: the clean list C for keeping clean pages that
are not modified since being read from secondary storage,
and the dirty list D accommodating dirty pages that are
modified at least once in the buffer. Pages in either list are
ordered by reference recency. Both lists are initially empty,
while in the stable state (no empty pages2 available), we
have the following invariants: |C|+ |D| = b, 0 ≤ |C| ≤ b, 0 ≤
|D| ≤ b, as illustrated in Figure 1.

Figure 1: CASA dynamically adjusts the size of the clean
list and the dirty list

The algorithm continuously adjusts parameter τ , which is
the dynamic target size of C, 0 ≤ τ ≤ b. Therefore, the
dynamic target size of D is b− τ . The logic of adjusting τ is
simple: we invest in the list that is more cost-effective for the
current workload. If there is a page hit in C, we heuristically
model the current relative cost effectiveness of C with |D|÷
|C|. Similarly, in case of a page hit in D, we model its current
relative cost effectiveness with |C| ÷ |D|. The relative cost
effectiveness is considered when determining the magnitude
of adjustment for τ (see Section 4.2). The simple heuristics
used here has low overhead and is effective, as shown by our
experiments in Section 5.

4.2 The Algorithm
Besides the page request, the algorithm (see Algorithm 1)

requires as input also the normalized costs cR and cW such
that cR + cW = 1 ∧ cR ÷ cW = cost ratio. They can be
derived from the cost ratio, i.e., important to the algorithm
is the extent of the R/W asymmetry, not the exact costs of
physical reads and writes.

The magnitude of the adjustment in τ is determined both
by the cost ratio and by the relative cost effectiveness. The
adjustment is performed in two cases:

Case 1 A logical R-request is served in C (line 3 of
Algorithm 1);

Case 2 A logical W -request is served in D (line 8 of
Algorithm 1)

In Case 1, we increase τ by cR×(|D|÷|C|). Note |C| 6= 0,
since it is a buffer hit. The increment combines the “saved
cost” of this buffer hit cR and the relative cost effectiveness

2Empty page refers to the buffer area for a page that has not
been used since the start of the buffer manager. Following
the convention in the literature, we avoid using the term
buffer frame (data structure holding a page).

Algorithm 1: CASA

input : request for page p in the form (op, pageId),
where op = R or op = W ;
normalized costs cR and cW such that
cR + cW = 1 ∧ cR ÷ cW = cost ratio

output: the requested page p

init. : buffer pool B with capacity b; list E of empty
pages, |E| = b; lists C and D, |C| = 0, |D| = 0;
τ ∈ R, τ ← 0

if p ∈ B then1

if p ∈ C ∧ op = R then2

τ ← min(τ + cR × (|D| ÷ |C|), b) ;3

move p to MRU position of C ;4

else if p ∈ C ∧ op = W then5

move p to MRU position of D ;6

else if p ∈ D ∧ op = W then7

τ ← max(τ − cW × (|C| ÷ |D|), 0) ;8

move p to MRU position of D ;9

else10

// p ∈ D ∧ op = R

move p to MRU position of D ;11

else12

victim page v ← null ;13

if |E| > 0 then14

v ← remove tail of E ;15

else if |C| > τ then16

v ← LRU page of C ;17

else18

v ← LRU page of D ;19

physically write v;20

physically read p into v ;21

p← v ;22

if op = R then23

move p to MRU position of C ;24

else25

move p to MRU position of D ;26

return p;27

|D|÷ |C|. Similarly, in Case 2, we decrease τ by cW × (|C|÷
|D|).

In case of a buffer fault (line 12–26), if there is no empty
page available, τ guides the decision, from which list to select
the victim page (line 16 and 19). The actual sizes of both
lists are also influenced by the clean/dirty state of requested
pages. The clean/dirty state of a requested page p is decided
by its previous state in the buffer, i.e., in which list it re-
sides, and the current request type (R or W). If the state of
the requested page p is clean (after serving the request), p

will be moved to C (line 4 and 24), otherwise to D (line 6,
9, 11, and 26). Therefore, the sizes of C and D are dynam-
ically determined by τ , and the update intensity. Under a
workload with mixed R-requests and W -requests, a starva-
tion of one list will never happen, even when τ = 0 ∨ τ = b,
while under R-only (or W -only) workloads, a starvation of
D (or C) is desired and the starved list recovers as soon as
the workload becomes mixed again.

4.3 Implementation Issues
Algorithm 1 requires a request in the form of (op, pageId),

i.e., the request type must be present. This may not be

the case in some systems, where a page is first requested
without explicitly claiming the request type, and it is read
or updated some time later. However, most DBMSs use
the classical pin-use-unpin (or fix-use-unfix) protocol [10]
for pages requests. It is easy to use an update flag, which is
cleared upon the pin call and set by the actual page update
operation. Upon the unpin call, the buffer manager knows
the request type by checking this flag.

To achieve write avoidance by delaying the replacement of
dirty pages, the buffer manager should not be burdened with
conflicting write/update propagation requirements. We as-
sume a NoForce/Steal policy for the logging&recovery com-
ponent providing maximum degrees of freedom [11]. No-
Force means that pages modified by a transaction do not
have to be forced to disk at its commit, but only the redo
logs. Steal means that modified pages can be replaced and
their contents can be written to disk even when the modi-
fying transaction has not yet committed, provided that the
undo logs are written in advance (observing the WAL prin-
ciple (write ahead log)). With these options together, the
buffer manager has a great flexibility in its replacement deci-
sion, because the latter is decoupled from transaction man-
agement. In particular, replacement of a specific dirty page
can be delayed to save physical writes or even advanced,
if necessary, to improve the overall I/O efficiency. Hence,
it comes as no surprise that NoForce/Steal is the standard
solution for existing DBMSs.

Another aspect of recovery provision is checkpointing to
limit redo recovery in case of a system failure, e.g., a crash.
To create a checkpoint at a “safe place”, earlier solutions
flushed all modified buffer pages thereby achieving a transaction-
consistent or action-consistent firewall for redo recovery on
disk. Such direct checkpoints are not practical anymore,
because—given large DB buffer sizes—they would repeat-
edly imply limited responsiveness of the buffer for quite long
periods3. Today, the method of choice is fuzzy checkpoint-
ing [12], where only metadata describing the checkpoint is
written to the log, but displacement of modified pages is
obtained via asynchronous I/O actions not linked to any
specific point in time.

As a final remark: the time complexity of our algorithm is
O(1) and it requires minimal auxiliary data structures. As
our experiments will show, it is also very efficient.

5. EXPERIMENTS
We implemented the bottom-most two layers of a DBMS:

the file manager supporting page-oriented access to the data
files, and the buffer manager serving page requests, which
uses the related algorithms via a common interface. Five
algorithms were included in our experiments: CASA, LRU
(representing conventional buffer algorithms), and the flash-
aware algorithms represented by CFLRU, CCFLRU, and
LRUWSR. We did not include the CFLRU variants [9] and
CFDC [5], due to two reasons: 1. All of them require the
tuning of a parameter controlling the sizes of two buffer
regions—the same limitations represented by CFLRU; 2.
The page-clustering technique of CFDC is complementary

3While checkpoints are written, which often occurs in in-
tervals of few minutes, systems are restricted to read-only
operations. Assume that many GBytes would have to be
propagated to multiple disks using random writes (in paral-
lel). Hence, reaction times for update operations could reach
a considerable number of seconds or even minutes.

to our approach, because page flushing is orthogonal to re-
placement policies and any clustering technique could be
implemented in the page-flushing procedure for all replace-
ment policies.

To explore the behavior of the buffer manager, traces,
i.e., page reference strings (as a history recording of a buffer
manager’s work) are used. All experiments were started
with a cold buffer.

5.1 Changing Workload
To examine the behavior of the algorithms under changing

workloads, we used a tailor-made trace, called CONCAT. It
was built from an OLTP trace and a DSS trace, both of
which were gained using specific code integrated into the
buffer manager of the PostgreSQL DBMS. The OLTP trace
recorded a TPC-C workload with a scaling factor of 50 ware-
houses, whereas the DSS trace captured a read-only TPC-H
query workload. The pages referenced by both traces did
not overlap. Table 1 lists specific statistics of these traces
recorded. To simulate changing workloads, we concatenated
the OLTP and the DSS traces and attached a copy of them
at the end, i.e., as final result, the trace CONCAT had the
four phases OLTP–DSS–OLTP–DSS and an overall update
percentage of 5.6%.

We ran this trace for each algorithm and recorded the
number of physical reads and physical writes necessary to
serve the logical request stream. Hit ratios can be derived
from the number of physical reads and the total number of
requests, but, of primary concern is the the overall I/O cost,
which, in our simulation, can be presented by the virtual
execution time Tv:

Tv = nR × cR + nW × cW (1)

where nR and nW are the number of physical reads and
physical writes, respectively, and cR ÷ cW = cost ratio.

Figure 2 shows the virtual execution time Tv of CASA and
the flash-aware algorithms relative to LRU, for cost ratio
1:1 and 1:64. For CFLRU, we repeated the experiment for
window sizes w = 0.25, w = 0.50, and w = 0.75, relative
to the buffer size, and denoted as CFLRU-0.25, CFLRU-
0.50, and CFLRU-0.75. For improved clarity of the visual
presentation, we chose to plot its curve only for the best-
performing w-setting.

The cost ratio 1:1 (Figure 2a) simulates the case of mag-
netic disks. Here, LRU exhibited the best performance, be-
cause it is immune to variations of update intensities in the
workload. While the flash-aware algorithms are clearly out-
performed by LRU, Tv of CASA closely approaches that
of LRU. Although read and write costs are symmetric, the
flash-aware algorithms still discriminate clean pages and try
to keep dirty pages as long as possible, resulting in an unjus-
tified high nR and consequently a higher Tv. For example,
with 16,000 buffer pages, nR of CCFLRU is higher than that
of LRU by factor three (4, 444, 570 vs. 1, 433, 996), while its
nW savings is only about 12% (111, 891 vs. 128, 456). As a
result, its Tv is two times higher than that of LRU (out of
the plot area). For CFLRU, the setting w = 0.25 had the
best performance, because, with the other two settings, the
higher numbers of physical reads were not paid off by the
savings in physical writes.

With the cost ratio 1:64 (Figure 2b), the window size
w = 0.75 of CFLRU achieved a better performance than
its other two settings, because it more greedily trades reads

Table 1: Statistics of the OLTP trace and DSS trace

Attribute OLTP DSS

number of page requests 1,420,613 3,250,972
number of distinct pages 59,782 104,308
min page number 0 220,000
max page number 219,040 325,639
number of reads 1,156,795 3,250,972
number of updates 263,818 0
update percentage 18.57% 0
locality (number of the hottest pages vs. number
of requests for them)

11,957 vs. 1,224,613
(20% vs. 86%)

20,862 vs. 2,875,664
(20% vs. 88%)

(a) Tv for cost ratio 1:1 (b) Tv for cost ratio 1:64

Figure 2: Virtual execution times relative to LRU running the CONCAT trace, for R/W cost ratios 1:1 and 1:64. Buffer
size scaled from 1,000 to 16,000 pages.

for writes, and, this behavior paid off here, because physi-
cal writes are now much more expensive than physical reads.
Having a highly read-intensive workload, the achievable sav-
ings in physical writes are rather small. Therefore, the per-
formance advantages of CASA and CFLRU over LRU are
not significant and LRUWSR was just comparable to LRU.
Nevertheless, CASA outperforms CFLRU, even when the
latter used its best setting. Although not significant, its
performance advantage is clear without ambiguity. Note,
the performance figures are obtained from (discrete-event)
simulation, therefore, no measurement error and runtime
overhead were introduced.

In Figure 3a, we plot the size of the clean list C of CASA
versus the virtual time (request number). The curve clearly
reflects the four phases of the workload: it fluctuates around
200 in the OLTP phases and stays at 1, 000 in the DSS (read-
only) phases. The violent oscillation in the OLTP phases is
only a visual effect. For example, the slowly climbing curve
in Figure 3b, reflecting the stage when the clean list gains
pages from the empty list during the first 10,000 requests,
is squeezed into nearly a vertical line in Figure 3a.

5.2 Cost Awareness
We now study CASA’s behavior with various cost ra-

tios, whereas the experiments in Section 5.1 focused on the

Table 2: Number of physical reads and physical writes
running the bank trace using 1,000 and 10,000 buffer pages

1,000 pages 10,000 pages
nR nW nR nW

CCFLRU 427,012 71,103 237,518 35,642
CFLRU-0.25 393,914 85,818 175,448 43,096
CFLRU-0.50 389,653 79,408 181,223 39,428
CFLRU-0.75 388,917 74,688 195,160 37,188
LRU 403,056 95,849 177,861 51,157
LRUWSR 409,469 90,183 186,306 46,076
CASA 1:1 389,350 77,884 175,985 44,975
CASA 1:4 398,249 72,190 180,558 39,947
CASA 1:16 417,715 71,359 192,149 37,427
CASA 1:64 425,993 71,138 211,015 36,089
CASA 1:128 426,932 71,116 221,344 35,666

changes in the workload. The trace used here is a one-hour
page reference trace of an OLTP production system of a
bank. This trace is well-studied and has been used in [8,
13, 14, 15, 16]. It contains 607,390 references to 8-KB pages
in a DB having a size of 22 GB, addressing 51,880 distinct
page numbers. About 23% of the requests update the page

(a) The complete trace (b) The first 10,000 requests

Figure 3: The size of the clean list changes with the virtual time (request number), reflecting the workload characteristics.
The buffer size was 1,000 pages and the R/W cost ratio was 1:64.

referenced. Exhibiting substantial locality, 20% (10,376) of
the pages are referenced by 72% (434,702) of the requests.

For CASA, we ran the trace with cost ratios scaling from
1:1 to 1:128. For the remaining algorithms, there is no need
to repeat the test for cost ratios 1:4 to 1:128, because only
CASA is aware of different cost ratios and can adjust its
behavior accordingly. As illustrated by the nR and nW fig-
ures listed in Table 2, CASA used increasingly more physical
reads and, in turn, saved more physical writes, while the rel-
ative cost of physical writes was increased.

We calculated the Tv’s according to Formula 1 and show
their ratios relative to those of LRU in Figure 4. The work-
load has a relatively high percentage of update requests and,
as a result, the flash-aware algorithms could demonstrate
their performance advantage over LRU—nearly all of them
are below the 1.0 horizontal line in the chart. CASA had
clearly the best performance for nearly all settings. For
cost ratio 1:128 and buffer size 10,000 pages, it is about
30% faster than LRU. In several cases, it was slightly out-
performed by CFLRU with its best w-settings (which were
manually optimized). But in real application scenarios, the
best w-setting of CFLRU is hard to find: it depends not only
on the cost ratio and the update percentage of the workload,
but also on the buffer size (Compare Figure 4a and Figure 4b
for cost ratios 1:1 or 1:4).

5.3 Dynamic Cost-Ratio Detection
Being fundamentally different from the tuning require-

ment of CFLRU, our algorithm automatically optimizes it-
self at runtime, given the knowledge concerning cost ratios.
So far, we have assumed that this knowledge is available to
the algorithm. It can be provided, e.g., by the device manu-
facturer or by the administrator. It would be even better if,
in the future, devices provide an interface for querying the
cost ratio online.

In fact, the elapsed time serving each physical I/O re-
quest can be measured online. Therefore, it can be used to
derive the cost ratio information. However, these measure-
ments are subject to severe fluctuations. For example, the

latency of a physical read on magnetic disks depends on the
position of the disk arm. On flash SSDs, a physical write
may trigger a much more expensive flash erase operation
or even a garbage collection process involving multiple flash
erase operations [17]. Therefore, we use an n-point moving
average of the measured values to smooth out short-term
fluctuations, because only the long-term average cost is of
interest. Hence, the average cost of the last n physical reads
(or writes) is used as the basis for the normalized cost cR

(or cW) required by Algorithm 1. Note, no change to the
algorithm is needed to use the dynamically detected costs.

Maintaining the moving average requires the last n mea-
surements to be remembered. Assuming that two bytes4 are
used to store a measured value, to remember, e.g., 32,768
values, we need only eight pages (page size = 8 KB) and,
in total, 16 pages for both reads and writes. To optimize
the moving-average procedure, the measured values can be
stored in an array (managed as a FIFO queue). Then, the
time complexity of maintaining the moving average is in-
dependent of n: for each new measurement, only an array-
element update and a few arithmetic operations are involved.

To test this idea, we ran the same trace evaluated in Sec-
tion 5.2 using real device accesses to a WD WD1500HLFS
HDD (magnetic disk) and an Intel SSDSA2MH160G1GN
flash SSD. The physical R/W costs were measured and up-
dated online as described above. We chose n = 32768 for
the n-point moving average, because it is large enough to
smooth out the short-term fluctuations and its space over-
head is small. Our test machine is equipped with an AMD
Athlon Dual Core Processor, 3 GB of main memory, and is
running Linux (kernel version 2.6.24) residing on a magnetic
disk. To avoid the influence of the down-stream caches along
the cache hierarchy, we deactivated the file-system prefetch-
ing and the on-device write cache, and set the DIRECT IO
flag while accessing the device under test.

4Two bytes can store timings ranging from 1 to 65,536
nanoseconds, which should be enough to cover all the possi-
ble physical I/O cost values. Furthermore, burst values out
of this range can be safely ignored.

(a) 1,000 pages (b) 10,000 pages

Figure 4: Virtual execution times relative to LRU running the bank trace for buffer sizes of 1,000 and 10,000 pages. The
R/W cost ratio was scaled from 1:1 to 1:128.

(a) R/W costs on HDD (ms) (b) R/W costs on SSD (ms)

Figure 5: Dynamically detected physical R/W costs vs. the virtual time, using an n-point moving average (n = 32768), for
running the bank trace using 1,000 buffer pages

Figure 5 plots the detected R/W costs for the HDD and
SSD devices. Our approach effectively hided the bursts in
the measure values and amortized them in the cost ratio,
which is about 1:1.5 for the HDD and 1:4.5 for the SSD.
As an extra advantage, it captures the cost ratio’s long-
term variations, which are caused by, e.g., the change of
read/update patterns (random vs. sequential) in the work-
load.

We scaled the buffer size from 1,000 to 10,000 pages and
measured the real execution times. On the SSD, CASA had
the best performance, while on the HDD, it was compara-
ble to CFLRU with the best w-settings, but better than the
remaining algorithms. Figure 6 plots the measured execu-
tion times relative to that of LRU for buffer sizes of 1,000
and 10,000 pages. The relative real performance shown in
Figure 6 is roughly comparable with the relative virtual per-

formance shown in Figure 4 for cost ratios 1:1 and 1:4.
In summary, our experiments covering varying workload

and various cost ratios have demonstrated the problems of
existing flash-aware algorithms: their performance advan-
tage over conventional algorithms heavily depends on the
update intensity in workloads and the R/W cost ratio of
storage devices. A remarkable example is CCFLRU: un-
der the typical update-intensive OLTP workload (Figure 4),
it achieved very good performance for highly skewed cost
ratios (e.g., 1:64 and 1:128), but suffered from a drastic
performance degradation for symmetric R/W costs (1:1).
Furthermore, its performance becomes unacceptable under
the workload with varying update intensities (Figure 2). In
contrast, CASA exhibits a consistently good performance
for various configurations, both in the simulation and in the
real system.

(a) 1,000 pages (b) 10,000 pages

Figure 6: Real execution times relative to LRU running the bank trace on the HDD and the SSD, for buffer sizes of 1,000
and 10,000 pages

6. CONCLUSION
The problem of buffer management for asymmetric I/O

costs is of great importance with emerging flash SSDs. We
proposed to use the R/W cost ratio to capture the R/W
asymmetry of those devices and presented CASA—a novel
cost-aware self-adaptive algorithm. Our experiments have
shown that CASA is efficient and can adapt itself to various
cost ratios and to changing workloads, without any tuning
parameter. Our solution is not limited to flash-based storage
devices, but should be generally applicable to block-oriented
storage devices with asymmetric I/O costs.

7. ACKNOWLEDGEMENT
We are grateful to Gerhard Weikum for providing the

bank trace, to IBM (Deutschland and USA) for providing
further trace data (which could not be included in this pa-
per due to time constraints), and to Peiquan Jin for helpful
discussions. We are also grateful to anonymous referees for
valuable comments. This research is in part supported by
the German Research Foundation and the Carl Zeiss Foun-
dation.

8. REFERENCES
[1] W. Effelsberg and T. Härder. Principles of database

buffer management. ACM TODS, 9(4):560–595, 12
1984.

[2] Intel Corp. X25-V SATA SSD Datasheet.
http://download.intel.com/design/flash/nand/

value/datashts/322736.pdf, 2010.

[3] Intel Corp. X25-M SATA SSD Datasheet.
http://download.intel.com/design/flash/nand/

mainstream/322296.pdf, 2010.

[4] S. Park, D. Jung, et al. CFLRU: a replacement
algorithm for flash memory. In CASES, pages
234–241, 2006.

[5] Y. Ou, T. Härder, et al. CFDC: a flash-aware
replacement policy for database buffer management.
In SIGMOD Workshop DaMoN (Data Management

on New Hardware), pages 15–20, Providence, RI, 2009.
ACM.

[6] H. Jung, H. Shim, et al. LRU-WSR: integration of
LRU and writes sequence reordering for flash memory.
Trans. on Cons. Electr., 54(3):1215–1223, 2008.

[7] A. S. Tanenbaum. Operating Systems, Design and
Impl. Prentice-Hall, 1987.

[8] Z. Li, P. Jin, et al. CCF-LRU: A new buffer
replacement algorithm for flash memory. Trans. on
Cons. Electr., 55:1351–1359, 2009.

[9] Y.S. Yoo, H. Lee, et al. Page replacement algorithms
for nand flash memory storages. In Computational
Science and Its Applications (ICCSA 07), pages
201–212. Springer, 2007.

[10] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[11] T. Härder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Computing Surveys, 15(4):287–317, 12 1983.

[12] C. Mohan, D. J. Haderle, et al. ARIES: A transaction
recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM
Trans. Database Syst., 17(1):94–162, 1992.

[13] E. J. O’Neil, P. E. O’Neil, et al. The LRU-K page
replacement algorithm for database disk buffering. In
SIGMOD, pages 297–306, 1993.

[14] T. Johnson, D. Shasha, et al. 2Q: a low overhead high
performance bu er management replacement
algorithm. In VLDB, pages 439–450, 1994.

[15] D. Lee, J. Choi, et al. LRFU: A spectrum of policies
that subsumes the least recently used and least
frequently used policies. Trans. on Computers,
50(12):1352–1361, 2001.

[16] N. Megiddo and D.S. Modha. ARC: A self-tuning, low
overhead replacement cache. In FAST. USENIX, 2003.

[17] L. Bouganim, B.T. Jónsson, et al. uFLIP:
Understanding flash IO patterns. In CIDR, 2009.

