
UNIVERSITY OF KAISERSLAUTERN

A Framework for XML
Similarity Joins

by

Leonardo Andrade Ribeiro

A thesis submitted in partial fulfillment of the
requirements for the degree of Doktor der

Ingenieurwissenschaften (Dr.-Ing.)

to the
Department of Computer Science

under supervision of
Prof. Dr.-Ing. Dr. h. c. Theo Härder.

July 2010

A Framework for XML Similarity Joins

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

MSc. Leonardo Andrade Ribeiro

Dekan des Fachbereichs Informatik:

Prof. Dr. Karsten Berns

Promotionskommission:

Vorsitzender: Prof. Dr. Klaus Madlener
Berichterstatter: Prof. Dr. Dr. Theo Härder

Prof. Dr. Michael Böhlen

Datum der wissenschaftlichen Aussprache:

15. July 2010

D 386

To my family

Acknowledgments

This thesis is the result of my work as doctoral candidate in the Database and Infor-
mation Systems Group at the University of Kaiserslautern. In the course of this work,
I have been fortunate to receive a great deal of support, advice, help, and encourage-
ment of many people, and it is a pleasure to acknowledge my debt to them.

First, I would like to thank my family: my parents, Lázaro and Célia, my sisters,
Keli and Kátia, my brother-in-law, Ziad, and my lovely nephews, Thomas and Lucas.
Thank you for all the love, care, and encouragement along these years. This thesis is
dedicated to you and would not have been possible without you.

Next, I would like to express my deep gratitude to my supervisor Prof. Dr. Dr. Theo
Härder, for accepting me in his research group, for his generosity in advising me,
frequently extending beyond his professional duties, and for keeping me motivated
to push my own boundaries. It is always a bewilderment when I look back at all the
things I have learned from him; clearly, I could not have been more successful in any
other place. Working with Prof. Härder was a pleasure and an honor to me.

Special thanks are given to Prof. Dr. Aldo von Wangenheim, who was my Master
supervisor, for nourishing my interest in research, encouraging me to challenging
myself and embark on a PhD, and being always available for supporting me during
the whole process. I would also like to thank Prof. Dr. Michael M. Richter, who was
the doctoral supervisor of Prof. von Wangenheim. I was fortunate to have my office
close to his and, thus, just a few steps from obtaining support and advice.

I would like to thank Prof. Dr. Michael Böhlen, whose work is cited many times
in this thesis. In the early stages of my work, I was looking for ways to meet effec-
tiveness and efficiency when evaluating structural similarity. As I found the paper of
Prof. Böhlen on pq-gram similarity [ABG05], I was amazed by its elegance and tech-
nical depth and immediately adopted it as a reference for my subsequent work on
structural similarity. Later, I was honored in having Prof. Böhlen in the assessment
committee of my thesis. I would like to extend my thanks to the co-authors of the
pq-grams paper as well: Prof. Dr. Nikolaus Augsten and Prof. Dr. Johann Gamper.

I would also like to thank Prof. Dr. Klaus Madlener and Prof. Dr. Stefan Deßloch,
members of the PhD board, for their guidance in the first phase of the PhD program.
Prof. Madlener also promptly accepted the role of chairman of the assessment com-
mittee and provided for a pleasant atmosphere during the defense of my thesis.

This work profited immensely from my participation in the XTC project. XTC pro-

vii

Acknowledgments

vided me with a rock-solid and high-performance experimental testbed and a clean
and well-rounded architecture to which I could plug in my “similarity stuff”. Even
more importantly, I benefited from many insightful and thought-provoking discus-
sions with my colleagues during our regular project meetings. Thus, I would like to
express my gratitude to all current and former members of the XTC team. In par-
ticular, special thanks go to Dr. Christian Mathis, who was the technical leader of
XTC during most of my participation in the project. Besides technical excellence and
great leadership, Dr. Mathis always demonstrated an extraordinary willingness to
help even when faced with quite unusual requests such as proofreading a paper of
mine late evening for a just-in-time submission.

This thesis required a considerable amount of implementation effort. Fortunately,
I enjoyed valuable help of students on this task. Alexandre Coster implemented the
first version of the dataset generation tool used in the experiments reported in Chap-
ter 3 and 4 and Fernanda S. Pimenta implemented several of the similarity functions
discussed in Chapter 3.

Thanks are also given to Manuela Burkart, Steffen Reithermann, and Lothar Gauß
for administrative and technical support.

Last but not least, many thanks to all members of the Lehrgebiet Informationssys-
teme, external collaborators, and friends who have directly or indirectly contributed
to the completion of this thesis.

This work was mostly supported by CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior) under grant BEX1129/040. Further support of DFG
(Deutsche Forschungsgemeinschaft) is also acknowledged. Finally, the last three
months were supported by DAAD (Deutscher Akademischer Austausch Dienst).

Leonardo Andrade Ribeiro

Kaiserslautern, August 2010

viii A Framework for XML Similarity Joins

Abstract

A prime motivation for using XML to directly represent pieces of information is the
ability of supporting ad-hoc or “schema-later” settings. In such scenarios, modeling
data under loose data constraints is essential. Of course, the flexibility of XML comes
at a price: the absence of a rigid, regular, and homogeneous structure makes many
aspects of data management more challenging. Such malleable data formats can also
lead to severe information quality problems, because the risk of storing inconsistent
and incorrect data is greatly increased. A prominent example of such problems is the
appearance of the so-called fuzzy duplicates, i.e., multiple and non-identical represen-
tations of a real-world entity.

Similarity joins correlating XML document fragments that are similar can be used as
core operators to support the identification of fuzzy duplicates. However, similarity
assessment is especially difficult on XML datasets because structure, besides textual
information, may exhibit variations in document fragments representing the same
real-world entity. Moreover, similarity computation is substantially more expensive
for tree-structured objects and, thus, is a serious performance concern.

This thesis describes the design and implementation of an effective, flexible, and
high-performance XML-based similarity join framework. As main contributions, we
present novel structure-conscious similarity functions for XML trees — either consider-
ing XML structure in isolation or combined with textual information — , mechanisms
to support the selection of relevant information from XML trees and organization
of this information into a suitable format for similarity calculation, and efficient algo-
rithms for large-scale identification of similar, set-represented objects. Finally, we val-
idate the applicability of our techniques by integrating our framework into a native
XML database management system; in this context we address several issues around
the integration of similarity operations into traditional database architectures.

ix

Abstract

x A Framework for XML Similarity Joins

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Requirements for Similarity Joins on XML Trees 3
1.2 Thesis Contributions . 5
1.3 Thesis Outline . 7

2 Background 9
2.1 Entity Matching . 10

2.1.1 Early Work . 12
2.1.2 Conceptual EM Framework . 14
2.1.3 Recent EM Approaches . 29
2.1.4 Similarity Join Use Cases . 34

2.2 XML Similarity Joins . 36
2.2.1 XML Data Model . 37
2.2.2 Data Assumptions . 39
2.2.3 Problem Definition . 40
2.2.4 Related Approaches . 40

2.3 Similarity Functions . 41
2.3.1 Edit-distance Similarity Functions 42
2.3.2 Token-based Similarity Functions 44
2.3.3 Edit-distance vs. Token-based . 49
2.3.4 Token-based Similarity Function Notation 52

2.4 Quality Measurements . 52
2.4.1 Experimental Approach . 52
2.4.2 Evaluation Measures . 53

2.5 Summary . 55

3 Similarity Functions for XML Structure 57
3.1 Existing Approaches for XML Structural Similarity 59

3.1.1 Tree Edit Distance . 59

xi

Contents

3.1.2 Discrete Fourier Transformation 60
3.1.3 Entropy-based Similarity . 62
3.1.4 pq-grams . 63
3.1.5 Windowed pq-grams . 65
3.1.6 Further Tokenization Methods 66

3.2 Structural Similarity Based on Path Clustering 67
3.2.1 Path Similarity Function . 69
3.2.2 The Path Synopsis . 70
3.2.3 XML Representation Based on Path Clustering 72
3.2.4 Structural Weighting Strategies 74
3.2.5 Related Work . 74

3.3 Experiments . 75
3.3.1 The Competitors . 75
3.3.2 Datasets . 77
3.3.3 XML Fuzzy Duplicate Generation 78
3.3.4 Comparison of All Similarity Functions 80
3.3.5 Comparison of Similarity Functions for Ordered Trees 83
3.3.6 Comparison of Similarity Functions for Unordered Trees and

Weighting Schemes . 84
3.3.7 Experimental Summary . 86

3.4 Summary . 86

4 Combining Text and Structure 87
4.1 Text and Structure Delimitation . 89
4.2 Combination Approach to Ordered Trees 90
4.3 Combination Approach to Unordered Trees 92

4.3.1 Textual Tokenization Function 92
4.3.2 Combination Strategies . 93

4.4 Entity Description Selection Using a Path Cluster Summary 94
4.5 Experiments . 97

4.5.1 Approaches Evaluated . 97
4.5.2 Datasets . 98
4.5.3 Comparison of All Similarity Functions 99

4.6 Related Work . 101
4.7 Summary . 102

5 Set Similarity Joins 105
5.1 Preliminaries . 107

5.1.1 Background . 107
5.1.2 The ppjoin Algorithm . 110

5.2 Generalizing Prefix Filtering . 111
5.2.1 Candidate Reduction vs. Runtime Efficiency 111
5.2.2 The Min-prefix Concept . 112
5.2.3 The mpjoin Algorithm . 114

xii A Framework for XML Similarity Joins

Contents

5.3 Further Optimizations . 116
5.3.1 Verification Phase . 116
5.3.2 Optimizing Overlap Score Accumulation 117

5.4 Practical Aspects . 117
5.4.1 Disk-Based External Version . 117
5.4.2 Parallel Execution . 118

5.5 The Weighted Case . 119
5.6 Evaluation Using Multi-Set Representation 120
5.7 Experiments . 121

5.7.1 Algorithms . 122
5.7.2 Datasets . 123
5.7.3 Performance Results on Synthetic Datasets 125
5.7.4 Performance Results on Real Datasets 127
5.7.5 Scalability Experiments . 130
5.7.6 Performance Results on XML Data 130
5.7.7 Experimental Summary . 133

5.8 Related Work . 134
5.9 Summary . 136

6 Integration into XTC 139
6.1 The XML Transaction Coordinator . 142

6.1.1 XTC’s Architecture . 142
6.1.2 Node Identification using DeweyID 144
6.1.3 Path-oriented Storage Model . 145
6.1.4 Indexing . 148

6.2 The TSJ Operator . 149
6.2.1 Tree Similarity Join . 149
6.2.2 A Glimpse on TSJ Evaluation . 150

6.3 Tree Access . 152
6.3.1 TSJ Input Selection . 153
6.3.2 TSJ Input Scan . 154

6.4 Profile Generation . 155
6.4.1 Ordered Trees . 156
6.4.2 Unordered Trees . 157

6.5 Auxiliary Structures: Building and Maintenance 158
6.5.1 PCS and PCR-PCI Table . 158
6.5.2 Token-Frequency Table . 159
6.5.3 Reducing Maintenance Cost . 160

6.6 TSJ as a Query Evaluation Plan . 162
6.7 Further Integration . 164

6.7.1 Query Language . 164
6.7.2 Query Processing . 166
6.7.3 Materialized Input Maintenance 170

6.8 Experiments . 172

A Framework for XML Similarity Joins xiii

Contents

6.9 Related Work . 174
6.10 Summary . 176

7 Conclusions and Future Research 177
7.1 Conclusions . 177
7.2 Future Research . 179

Bibliography 181

Curriculum Vitae 203

xiv A Framework for XML Similarity Joins

List of Algorithms

5.1 The ppjoin algorithm . 110
5.2 The mpjoin algorithm . 115
5.3 The Verify algorithm . 116
5.4 The out-of-core variant of mpjoin . 118
5.5 The w-mpjoin algorithm . 120
6.1 Algorithm for the generation of epq-gram tokens 156
6.2 The algorithm for generation of PCI-based tokens 157

xv

LIST OF ALGORITHMS

xvi A Framework for XML Similarity Joins

List of Figures

2.1 Example of fuzzy duplicates . 11
2.2 The NFS framework . 15
2.3 Similarity join applications in a variety of EM scenarios 35
2.4 Example of a heterogenous XML document fragment 37
2.5 The concept of edit distance . 42
2.6 Token-based similarity functions . 44
2.7 q-grams affected by editing operations, q-2 and q=3 46

3.1 Steps for the generation of pq-gram tokens 64
3.2 Example of wpq profile generation and varying sibling sets between

parents with the same label . 66
3.3 PCI generation process . 72
3.4 PS equipped with PCIs . 74
3.5 Generation of low, moderate, and dirty error duplicates 79
3.6 Accuracy results of all structural similarity functions on unordered trees 81
3.7 Accuracy results of structural similarity functions for ordered trees . . 84
3.8 Accuracy results for unordered trees using different weighting schemes 85

4.1 Versions of extended pq-grams . 91
4.2 EDS queries on PCS . 94
4.3 Path cluster prototype matching . 96
4.4 Accuracy results on XML data using textual and structural similarity . 100

5.1 Number of candidates vs. runtime efficiency 112
5.2 Min-prefix example . 113
5.3 Min-prefix generalization of prefix filtering 114
5.4 Set size and and token frequency distributions 123
5.5 Performance results on synthetic data 126
5.6 Performance results on real data . 128
5.7 Performance results with varying threshold 129
5.8 Scalability results using synthetic and real datasets 131
5.9 Set size and and token frequency distributions of XML data 132
5.10 Performance results on XML data with varying threshold 133

xvii

List of Figures

6.1 The five-layer architecture of XTC including the component for tree
similarity join (TSJ) processing in the fourth layer 142

6.2 XML document fragment from Figure 2.4 identified with DeweyIDs
(related PCR values also shown) . 144

6.3 PS using PCRs to identify paths to the root (related PCI values and
PCR-PCI table are shown) . 146

6.4 Stored document in path-oriented format 147
6.5 Index infrastructure of XTC . 148
6.6 Course of TSJ evaluation . 150
6.7 A path cluster and a sample of the PCS represented as inverted lists . . 158
6.8 TSJ query evaluation plan . 163
6.9 TSJ execution steps on an increasing number of trees using TLC and

EPQ similarity functions . 173
6.10 DB/IR query space (adapted from Weikum [Wei07]) 175

xviii A Framework for XML Similarity Joins

List of Tables

3.1 Structural similarity functions . 76
3.2 Dataset statistics . 78

4.1 epq-gram profile cardinalities . 92
4.2 Dataset statistics . 98

5.1 Set similarity functions . 108
5.2 Parameters used in the experiments . 124

xix

List of Tables

xx A Framework for XML Similarity Joins

Chapter 1

Introduction

XML — the Extensible Markup Language — became a W3C recommendation in the
beginning of 1998 with initial focus on serving as markup language for structured
documents on the Web. Shortly thereafter, XML also enjoyed overwhelming popu-
larity as common transport syntax for data exchange providing platform and data
model independence for application integration. For database systems, publishing
data as XML is not only important to supporting application interoperability but
also to providing a hierarchical presentation model [JCE+07] that matches the com-
mon users’ view of information, thereby alleviating the impedance mismatch prob-
lem. Moreover, XML has been widely recognized as appropriate logical data model
to describe the semi-structured nature of data commonly found on the Web [Via01].
Thus, it comes as no surprise that all major commercial database systems have been
extended with functionality to storing, querying, and updating XML data [BCJ+05,
MLK+05, Rys05].

As XML continues its path to becoming the universal information model, large-
scale XML repositories proliferate. Very often, such XML repositories are non-schematic,
or have multiple, evolving, or versioned schemas. In fact, a prime motivation for us-
ing XML to directly represent pieces of information is the ability of supporting ad-
hoc or “schema-later” settings. For example, the flexibility of XML can be exploited
to reduce the upfront cost of data integration services, because documents originated
from multiple sources can be stored without prior schema reconciliation and queried
afterwards in a best-effort manner — such approach to data integration is often re-
ferred to as dataspace systems [HFM06]. As another example, features of the XML
data model, such as optional elements and mixed content, allow incremental schema
design on operational databases without requiring data migration; and on the ap-
plication side, query integrity on evolving schemas can be preserved by using the
descendant relationship to address parts of XML documents [Sed05].

Of course, the flexibility of XML comes at a price: the absence of a rigid, regu-
lar, and homogeneous structure makes many aspects of data management more chal-
lenging, such as transaction processing [Hau05], information retrieval [Dop08], query
optimization [Mat09], design of efficient storage and access methods [Mat09], and

1

Chapter 1 Introduction

statistics estimation [dAMF10]. Loose data constraints can also lead to severe data
quality problems, because the risk of storing inconsistent and incorrect data is greatly
increased. A prominent example of such problems is the appearance of the so-called
fuzzy duplicates, i.e., multiple and non-identical representations of a real-world entity.
Complications caused by such redundant information abound in common business
practices. Some examples are misleading results of decision support queries due to
erroneously inflated statistics, inability of correlating information related to the same
customer, and unnecessarily repeated operations, e.g., mailing, billing, and leasing of
equipment. The problem of determining whether two differently represented entities
are fuzzy duplicates is commonly referred to as the entity matching (EM) problem and
has been actively investigated by several research communities including databases,
information retrieval, and machine learning.

In relational databases, fuzzy duplicates arise due to a variety of reasons, such as ty-
pographical errors and misspellings during data entry, incomplete information, and
different naming conventions when multiple and independent data sources storing
overlapping information are integrated. In XML databases, deviations in documents
representing the same real-world entity may arise not only owing to varying content
information but also because structure can diverge. For example, two documents
containing approximately or exactly the same data can be arranged in quite differ-
ent structures. Moreover, even documents following the same schematic rule (i.e., a
DTD or XML Schema) may present structural heterogeneity owing to the presence of
optional elements or attributes.

Similarity join is a fundamental operation to support EM applications. This partic-
ular kind of join operation employs a predicate of type sf (r, s) ≥ τ , where r and s are
operand entities to be matched, sf is a similarity function, and τ is a constant thresh-
old. In typical EM applications, pairs satisfying a similarity join can be classified as
potential duplicates and selected for later analysis. In addition, similarity join can
be employed in several other stages as well, for example, to reduce the number of
candidate pairs considered by some other, usually much more expensive similarity
function — an operation known as blocking — and to support training-set construc-
tion for machine learning approaches [BM03b]. Therefore, an efficient and effective
similarity join implementation that can be used as core operator in numerous EM
solutions is of paramount importance.

Database management systems are convenient platforms to provide support for
similarity joins. Joining data based on some criterion is a primitive DBMS operation
and several built-in components of off-the-shelf DBMSs, such as indexes, statistics,
and physical operators, can be leveraged for the realization of similarity operators.
In this vein, some work has proposed to enrich the DBMS repertoire of physical op-
erators with basic data quality algorithms [CGK06] — similarity joins are prime ex-
amples of such algorithms. As a result, DBMSs can play a pivotal role in generic
data cleaning solutions instead of merely serving as an expensive and underused file
system delivering large amounts of data to external applications.

In a broader view, embedding of similarity operators into database engines lies
at the core of the long-term goal of integrating database and information retrieval

2 A Framework for XML Similarity Joins

1.1 Requirements for Similarity Joins on XML Trees

technologies (DB/IR integration, for short) [CRW05]. The interest in DB/IR integra-
tion has been (re)gaining strong momentum over the last few years due to a con-
fluence of emerging and interrelated demands: automatic ranking and keyword search
in relational databases to improve support for text data [CD09], to deal with the “too
many answers” problem of SQL queries [CDHW06], and to increase database usabil-
ity [JCE+07]; structured query models for IR engines, e.g., faceted search [YSLH03] and
entity-search [CYC07]; and managing of structured data on the Web — such data has in-
creasingly been accessed from static HTML tables [CHW+08] and from the Deep Web
[Ber01], distilled from unstructured data by large-scale information extraction appli-
cations [Sar08], and generated by Web 2.0 technologies such as mashups and social
tagging [AYMH+08]. In all these scenarios, there is the need of seamless coupling
of structured and unstructured data, which is best served by an integrated DB/IR
architecture [CRW05]. Finally, because the XML data model is the common choice
to describe semi-structured data, XML database management systems (XDBMS, for
short) are natural candidates to provide DB/IR integration.

1.1 Requirements for Similarity Joins on XML Trees

XML is commonly modeled as rooted labeled (sometimes ordered) trees, with data
values associated to (part of) the leaves. Most similarity join techniques proposed so
far address data of string type [KSS06]. However, XML trees are much more complex
data structures than strings and so is the corresponding similarity evaluation. More
specifically, we identify the following major challenges to realizing similarity joins on
schemaless XML databases effectively and efficiently:

• Structure-conscious similarity evaluation: The similarity function used as similar-
ity join predicate should address the hierarchical structure of the documents.
Even assuming that element labels are drawn from a common vocabulary —
a typical scenario for real-world (domain-specific) heterogeneous XML stores,
where usually there is some understanding of a set of interesting labels [LM09] —
or mapped onto an ontological space in a pre-processing step [TSW03, MMR05],
it is still challenging to assess the similarity of arbitrarily arranged structures.
For example, among documents in a dataset, element nodes with the same tag
label can appear at different contexts (e.g., hierarchical nesting, sibling order-
ing, and containing varying number of descendant nodes) and with different
frequencies. In EM applications, similarity evaluation between two strings typ-
ically aim at identifying when one string is an erroneous variant of the other
(e.g., due to misspelling) [Nav01]. For XML trees, a structure-conscious similar-
ity function needs to capture when two XML documents are modeling variants
of each other; such abstract notion of similarity is much more difficult to define
and to measure.

• Combination of structural and textual similarity: Many approaches focus on the
structural similarity only [ABG05, ABDG08, But04, FMM+05, Hel07, NJ02]; text

A Framework for XML Similarity Joins 3

Chapter 1 Introduction

nodes are either stripped away, before the matching process is initiated, or only
simple equality operations on text values are considered. While structural infor-
mation certainly conveys useful semantic information, most of the discriminat-
ing power of real-life XML data, i.e., the items of identifying information, which
allow to distinguish documents in a collection from each another (e.g., keys), is
assumed to be represented by text nodes. As a result, the resulting similar-
ity notion is often too “loose” for EM applications or ineffective for databases
exhibiting poor textual quality. Considering textual and structural similarity
together brings up the issue of combining similarity evaluation results, which
can be seen as an instance of the combination of evidence problem [Cro00]. While
combination of evidence is necessary for structured data if multiple fields are
used for similarity calculation [FS69], the duality of structure and text makes it
an inherent component when assessing the similarity of XML trees. Combining
structural and textual similarity is not trivial, however. The common solution
of adopting a linear combination of similarity function values can be problem-
atic. Besides having different semantics, text and structural patterns usually
present very variable frequency distributions across different databases; opti-
mal weights for the corresponding similarity results are likely to vary accord-
ingly. As a result, there is a strong dependence on comprehensive training data
(for supervised learning approaches) or intensive user guidance, both of them
are not available in many real-world scenarios.

• Entity description selection: Frequently, only part of the available information
about an entity is interesting for similarity matching. For example, while author
and title are very significant in a database about publications, year is ex-
pected to be much less useful. Such interesting pieces of information constitute
the entity description, which is exploited to identify fuzzy duplicates. For struc-
tured data, entity description elements are usually gathered and placed in a sin-
gle location (e.g., table in relational databases), before the EM process begins.
In heterogeneous XML databases, however, such elements may be dispersed in
different parts of the XML trees owing to the structural heterogeneity. Using
schema-aware query languages like XQuery [BCF+07] or XPath [BBC+07] to
collect all necessary entity information as proposed in [WN05] can be imprac-
tical, because the user may have only limited knowledge about the underlying
structure. Even if the structure is known, it would be clumsy and error-prone
to specify multiple queries using strict structural constraints, because the uni-
fied schema of heterogeneous XML databases is often very complex. A bet-
ter approach is to adopt a flexible query model based on XML search [AYL06]:
structural constraints are interpreted approximately, i.e., the structural context of
the entity descriptions do not need to match exactly the structural constraints
expressed in the query. Complementary to the flexible query model, it is im-
portant to provide the user with interactive exploration capabilities to support
the selection of interesting entity descriptions. Further issues are coupling of
flexible location of entity descriptions with the similarity join processing for

4 A Framework for XML Similarity Joins

1.2 Thesis Contributions

performance reasons, and the definition of a clean semantics for delimitation
between structural and textual entity descriptions.

• Efficiency: Several measures for assessing the similarity between tree-structured
data are computationally expensive. One example of such a measure is the
widely used tree edit distance (TED), which is defined as the minimal sequence of
edit operations (node insertion, node deletion, and node relabeling) that trans-
forms one tree into another [Tai79]. The best known algorithm for computing
the tree edit distance for ordered trees has worst-case running time of O(n3)
[DMRW07], where n is the number of nodes; for unordered trees, the problem
has been shown to be NP-complete [ZSS92]. Even worse, some measures do
not easily lend themselves to effective minimization of the number of pairwise
comparisons, thereby requiring similarity evaluation between every pair of in-
put XML trees. Obviously, these limitations exclude such measures from being
used in similarity operations on large databases. Moreover, other requirements
mentioned previously, namely combination of structural and textual similarity
and coupling of approximate locations of entity descriptions with query pro-
cessing, substantially complicate the design of efficient and scalable algorithms.

In addition to XML-motivated requirements, versatility in supporting a variety of
notions of similarity is an orthogonal concern in the context of EM applications. It is
well known that no single similarity function is the best for all applications and sce-
narios (e.g., see [Cohen et al. 2003] for string similarity functions). Hence, it is very
desirable to have, instead of a single measure, a broader class of similarity functions,
in which different notions of similarity can be easily obtained by changing simple
parameters. Finally, regarding the integration of similarity joins in a DBMS environ-
ment, an important challenge is to exploit DBMS internals (e.g., physical operators,
indexes) without negatively interfering with the operation of other components of
the system or sacrificing the accuracy of the similarity evaluations.

1.2 Thesis Contributions

In this thesis, we present an XML-based similarity join framework addressing all the
issues outlined above. As key design decision, we focus on the class of token-based
similarity functions (aka set-overlap-based similarity functions). This class of func-
tions ascertains the similarity between two entities of interest, i.e., XML trees, by mea-
suring the overlap between token sets generated from these entities. This approach has
three main advantages. First, we can measure textual and structural similarity be-
tween XML trees, jointly or in isolation, by operating on token sets representing text,
structure, or both, in a unified framework. Second, we can obtain a very rich simi-
larity space by varying the methods for generating token sets, associating weights to
set elements, measuring the set overlap, or any combination thereof. Third, token-
based similarity functions are inexpensive to calculate, and it is possible to leverage

A Framework for XML Similarity Joins 5

Chapter 1 Introduction

a wealth of techniques for set similarity joins on strings (e.g., [SK04, CGK06]). In this
context, the contributions of this thesis are summarized as follows:

• We present a new method to generate structural token sets for unordered XML
trees. Our method exploits path synopses — fundamental structures for efficient
XPath query evaluation and therefore ubiquitously supported by XDBMSs —
to produce compact and high-quality structural representations of XML doc-
uments. We experimentally compare our approach against other token-based
similarity functions as well as approaches based on edit distance, entropy, and
Discrete Fourier Transform on several different datasets. Our approach pro-
vides accurate results in all the settings investigated and outperform previous
state-of-the-art techniques. Moreover, it delivers much smaller token sets —
bounded by the number of paths in a tree — , the tokens lend themselves to
very compact representations and can be generated for free using simple data
structures. In this connection, we investigate different weighting strategies for
structural tokens.

• We study strategies for combining structural and textual similarity. We con-
sider combination approaches at the similarity score-level and token-level. For
unordered trees, we use structural token sets based on path summaries together
with textual token sets based on q-grams [Ukk92]. For ordered trees, we propose
an extension to the concept of pq-grams [ABG05] to capture textual information,
the so-called extended pq-grams. In this context, we also study ways of support-
ing the entity description selection. In our similarity join framework, the entity
description consist of XML structure and user-selected string values; structural
and textual token sets are then generated from them. We propose a mechanism
to support the selection of string values from XML trees based on a compact
structure that approximately subsumes all paths contained in a path synopsis.
This structure is represented by short memory-resident inverted lists and sup-
ports approximate path matching and user interaction.

• We present a new index-based algorithm for set similarity joins. Following an
approach completely different from previous work, we focus on the reduction
of the computational cost for candidate generation as opposed to lowering the
number of candidates. To this end, we introduce the concept of min-prefix, a
generalization of the prefix filtering concept [SK04, CGK06], which allows to dy-
namically and safely minimize the length of the inverted lists; hence, a larger
number of irrelevant candidate pairs are never considered and, in turn, a dras-
tic decrease of the candidate generation time is achieved. As a side-effect, the
workload of the verification phase is increased. We optimize this phase by stop-
ping as early as possible the computation of candidate pairs that do not meet the
overlap constraint. We also improve the overlap score accumulation by storing
scores and auxiliary information within the indexed set itself instead of using
a hash-based map. Finally, we consider disk-based and parallel versions of the
algorithm. Our experimental findings confirm that our algorithm consistently

6 A Framework for XML Similarity Joins

1.3 Thesis Outline

outperforms previous ones under several different data distributions and con-
figuration parameters, for both unweighted and weighted sets.

• We address the integration of our framework into an XDBMS. We focus on the
system embedding of similarity operators on top of the storage layer by us-
ing index-based location of qualified XML fragments, leveraging of physical
algebra for XQuery processing, and enhancing performance using pipelined
evaluation. The resulting operators can be combined (e.g., by delivering the
resulting nodes in document order) with regular XML queries to compose pro-
cessing logic which enables more complex data integration solutions. Further-
more, we exploit XDBMS’s storage model and node identification mechanism to
efficiently generate XML tree representations for similarity calculation. We ex-
perimentally demonstrate that our approach provides scalability and achieves
seamless integration with other system components.

1.3 Thesis Outline

Below we give a summary of the upcoming chapters in the thesis.
In Chapter 2, we provide background material for following discussions on the

subject area. We first describe the main aspects of the EM problem in detail. We use a
conceptual framework based on early EM work as a common ground for our discus-
sion. Recent EM approaches representing a more marked departure from our refer-
ence framework are discussed as well. We highlight the importance of similarity joins
as a foundational operator by providing several examples drawn from several differ-
ent EM solutions. We then turn our focus to XML data. We first introduce the XML
data model and make underlying assumptions explicit, before we formally define
XML similarity joins. Next, we discuss two popular classes of similarity functions,
namely edit-distance and token-based similarity functions. Finally, we describe our
strategy for measuring the effectiveness of similarity join algorithms. Concepts pre-
sented in this chapter are of interest in all upcoming chapters; using these concepts,
further background concepts, whose scope is constricted in each case to a specific
aspect of this thesis, are described in the respective chapters.

In Chapter 3, we introduce our novel approach for measuring the structural simi-
larity of XML trees and present a thorough study comparing our approach against a
highly representative group of measures from previous work. We describe the exist-
ing approaches in Section 3.1. In Section 3.2, we introduce the concept of Path Cluster
Identifiers (PCIs), describe its generation process, and present the corresponding sim-
ilarity function. We then conduct extensive experiments on several different datasets;
besides the comparison between several structural similarity measures, we also ex-
plore different weighting strategies for structural tokens.

Chapter 4 is dedicated to the combination of textual and structural similarity and
entity description selection. We present combination strategies for ordered and un-
ordered trees. For the former, we introduce the concept of extended pq-grams, which

A Framework for XML Similarity Joins 7

Chapter 1 Introduction

extends pq-grams tokens [ABG10] with textual information. For this concept, we pro-
pose three versions of token generation methods and provide their theoretical anal-
ysis. For the latter, we present two strategies for combining PCI-based structural
description with textual information. Next, we describe the Path Cluster Summary
(PCS), a compact structure used to select pieces of textual information that will com-
pose XML entity descriptions. Extensive experiments comparing the combination
models proposed are then presented and interpreted.

After having converted XML trees into sets of tokens, the remaining processing
consists of identifying those sets sharing enough tokens, i.e., a set similarity join has
to be performed. Chapter 5 presents a new algorithm for this task. Main optimization
techniques from previous work are outlined, before we present the key insights lead-
ing to the min-prefix concept and its corresponding index-based algorithm. Further
optimizations and the case, where tokens have associated weights, are addressed, be-
fore we present experiments measuring the runtime performance and scalability of
our algorithms and comparing them against previous, state-of-the-art set similarity
join algorithms; in this context, we also identify the most important characteristics of
the input data driving the performance of the set similarity joins algorithms under
study.

In Chapter 6, we put it all together into a prototype XML DBMS called XTC (XML
Transactional Coordinator). We first sketch the architectural design of XTC with em-
phasis on the storage model and access path mechanisms. We then describe scan
and token generation operators highlighting the exploitation of database internals
to improve efficiency. We also address updatability of auxiliary structures. Further,
our integration of similarity operators with the existing physical algebra to produce
pipelined query execution plans is presented. We discuss further steps for providing
tighter integration of our framework into XTC before we provide runtime perfor-
mance experiments and scalability studies.

Finally, in Chapter 7, we wrap up this thesis with the conclusions and outline in-
teresting future work.

8 A Framework for XML Similarity Joins

Chapter 2

Background

There is a large class of database application domains where the traditional paradigm
of Boolean queries based on exact matching of precisely defined and represented data
is insufficient or inadequate. Just a few examples of such application domains are
video and image retrieval [FSN+95], bioinformatics [Coh04], information extraction
[Sar08], and dataspace systems [HFM06]; all these examples have to deal with com-
plex, heterogeneous, unstructured, and imprecise data. Equality comparisons on
such data are meaningless. Moreover, exact matching is sometimes ruled out by the
inherent purpose of the task at hand. For instance, the goal in (ranked) text retrieval
is to find documents that are relevant to some information needs and a document
may be deemed as relevant, even though it contains none of the query terms; in clus-
tering analysis, the aim is to group objects that are similar. In all these cases, it is
appropriate to adopt the more general paradigm of similarity matching where objects
are matched in terms of their similarity. The notion of similarity is typically quanti-
fied by a similarity function, sometimes with support of external information such as
statistics and tables of user-specified transformations. In this context, similarity join is
the counterpart of the relational join operator for combining information. While sev-
eral semantics are conceivable, the most studied type of similarity join pairs objects
from a database, whose similarity according to a similarity function is not less than a
specified threshold.

In this thesis, we focus on similarity joins in the context of the EM problem. The ba-
sic definition of this problem precludes exact matching: the goal in EM is to identify
non-identical representations of an entity, i.e., fuzzy duplicates (or simply duplicates,
whenever clear from the context). At a higher level of abstraction, the EM problem
can be viewed as similarity joins employing a similarity function that mathematically
approximates the notion of duplication. In practice, however, the concept of dupli-
cation can hardly be captured in a closed-form formula or by simple algorithms. In-
stead, identification of duplicates is normally conducted in a very complex process
involving several stages and requiring human supervision. Nevertheless, similarity
joins can play different roles in an EM process as will be illustrated later. In this con-
nection, similarity functions are of paramount importance. Even though similarity

9

Chapter 2 Background

alone is often insufficient to safely classify two entities as duplicates, a basic premise
is that “good” similarity functions for EM return higher values for pairs of duplicates
than for pairs of non-duplicates. We follow this premise in this thesis.1

Here, because the entities of interest are XML trees, characteristics of the XML data
model have to guide the design of suitable similarity functions. Of course, given the
large number of similarity calculations involved during similarity join processing, ef-
ficiency is also a crucial requirement. In this vein, although we do not assume that
all XML data complies with the same schema, it would be infeasible to develop effi-
ciently computable functions or algorithms on arbitrarily arranged XML documents.
Thus, some assumptions about the input datasets are necessary to reasonably evalu-
ate similarity joins on XML data.

The goal of this chapter is to pave the way for our study on XML similarity joins.
In Section 2.1, we start by providing background material on EM systems and em-
phasizing the use of similarity joins as a foundational operator in several settings. We
then turn our focus to XML data. In Section 2.2, we define our XML data model and
make the underlying assumptions explicit, before we formally state the XML simi-
larity join operation; at the end of the section, we discuss some related approaches.
In Section 2.3, we describe two important classes of similarity functions and analyze
them under criteria pertinent to the context of our work. The strategy adopted in
this thesis for measuring the effectiveness of similarity functions is presented in Sec-
tion 2.4. Along the discussion of these sections, we will introduce some notation and
provide references to relevant work. Finally, we conclude this chapter in Section 2.5.

2.1 Entity Matching

It is reasonable to conjecture that the concern about duplicates is coexistent with the
practice of recording information itself. As already mentioned in Chapter 1, there
are many reasons for the appearance of such duplicates in a dataset. For instance,
consider the sample data from a hypothetical relational database shown in Figure
2.1. It is apparent that all the three tuples refer to the same entity, yet they present
syntactical differences due to several reasons: misspellings (“Leonardo Hibeiro” and
“Kasesrlatern”); different naming conventions such as use of first and middle initial
in the name attribute (“L. A. Ribeiro”); abbreviations (“KL”); incomplete information
(“Gottlieb Str.”); typing errors (“111-1322” instead of “111-2322”); and spelling varia-
tions (“Gottlieb-Daimler-Straße” vs. “Gottlieb Daimler Strasse”).

EM is probably the most important data quality activity. The presence of dupli-
cates in databases violates basic data integrity principles and degrades the quality of
the data delivered to application programs. This fact can lead to a myriad of prob-
lems in all sorts of Information Systems (IS), e.g., poor service quality and application
program malfunction, very often causing severe economic losses [III09].

1Later, we will see that the above premise is strongly related to the monotonicity property, which has
been exploited in prior work on EM.

10 A Framework for XML Similarity Joins

2.1 Entity Matching

Name City Phno Address

r1 Leonardo Ribeiro KL 111-2322 Gottlieb-Daimler-Straße

r2 Leonardo Hibeiro Kaiserslautern 111-1322 Gottlieb Str.

r3 L. A. Ribeiro Kaserslatern 111-2322 Gottlieb Daimler Strasse

Figure 2.1: Example of fuzzy duplicates

Entity matching is of particular importance for data integration systems. For ex-
ample, in the data warehousing approach, operational data sources distributed across
an enterprise are consolidated in a single database. Entities represented in multiple
data sources will inevitably be duplicated in the data warehouse thereby jeopardiz-
ing the results of decision-support queries. Thus, EM is an essential component of
the repertoire of Extract-Transform-Load (ETL) tools. In the virtual data integration
approach, the integrated data is not materialized; in contrast, a virtual schema is con-
structed from the data sources. Query requests posed over the virtual schema are
translated into queries on the data sources and the results are integrated before being
returned to the user. In this scenario, duplicated data in the query result have to be
dealt on-the-fly, which makes EM much more challenging. The implementation of
this approach is often called Enterprise Information Integration (EII).2 Furthermore,
many data integration systems heavily rely on the ability of identifying the same en-
tity across different organizations to deliver their functionality. For instance, consider
a Healthcare Network (HN) connecting various IS of healthcare institutions [Len05].
A major benefit of HN systems is the ability to access an individual’s lifetime health
and medical information, which is scattered along each connected system. To this
end, the capability of correlating information of the same patient across different sys-
tems is essential. Finally, in the Web search context, EM has been recognized as a
fundamental operation to enable the next generation of search engines [DKP+09].

Not surprisingly, the EM problem has a long history of investigation conducted
by several research communities spanning databases, information retrieval, machine
learning, and statistics, frequently under different names, including record linkage,
entity identification, deduplication, and near-duplicate identification [Win06, KSS06,
EIV07]. As a result, a vast body of work is available addressing many aspects of
this topic from different perspectives. In the following, we survey results of these
research activities. We will not be exhaustive, however; a comprehensive survey of
the voluminous literature on EM would far exceed the scope of this thesis. We refer
the reader to the recent surveys [Win06, EIV07], which cover many material missed
here. Nevertheless, this section is still relatively long. Our aim is to provide a repre-
sentative, albeit incomplete, overview of the EM problem, describe key components
that constitute a general EM framework, and portray the context in which our work

2Some authors use the term data integration to generally refer to approaches based on a virtual schema
(e.g., see [Kol05]). However, we consider the term virtual data integration more intuitive.

A Framework for XML Similarity Joins 11

Chapter 2 Background

on similarity joins is situated. In Section 2.1.1, we begin with seminal work on the
EM problem, which introduced several fundamental ideas. The main components of
an EM system are detailed in Section 2.1.2. Recent trends are discussed in Section
2.1.3. Finally, we illustrate the application of similarity joins to support several EM
strategies in Section 2.1.4.

2.1.1 Early Work

Newcombe et al. [NKAJ59] pioneered the computerized identification of fuzzy dupli-
cates in the late 1950s. The studies were conducted in the context of epidemiological
analysis and the task — termed as record linkage — consisted of matching birth records
to marriage records. Several crucial insights were presented in this work:

• Exact matching on comparison fields, such as surnames, is problematic owing to
spelling discrepancies. The authors proposed phonetic-based similarity match-
ing to deal with this problem. Using the Soundex algorithm [Rus18], they were
able to identify 2/3 of the spelling variations in family names.

• It is unfeasible to consider each element from the cross-product of two (large)
input files. To reduce the number of comparisons, Newcombe et al. arranged
the input files according to a key derived from the Soundex code of selected
fields. The aim was to bring together potential duplicates before applying the
main comparison procedure. The authors also discussed how to improve the
completeness of the operation (i.e., identifying more duplicates) by performing
multiple independent arrangements of the data, each one based on a different
subset of the comparison fields. This general idea of reducing the comparison
space is currently referred to as blocking.

• The importance of a field value to the belief that two records are duplicates or
not can be measured using the number of occurrences of this field value in the
record collection. The underlying intuition is that rare values contribute more
to the probability of making a correct classification than frequent values and,
therefore, should receive more weight. To this end, the authors expressed the
weight of a field value v, denoted by wt(v), using the following log-odd ratio:

wt(v) = log2 (freq(D, v))− log2 (freq(N, v)) , (2.1)

where freq(v, D) and freq(v, N) are the frequency of v among the set of dupli-
cates D, and the set of non-duplicates N , respectively. Because such statistics
are not available — D and N are, of course, not known beforehand — the fol-
lowing approximation was proposed:

wt(v) = log2 (freq(v, C))− log2 (freq(v, C))2 = −log2 (freq(v, C)) , (2.2)

12 A Framework for XML Similarity Joins

2.1 Entity Matching

where log2 (freq(v, C)) is the frequency of v in the whole collection of records C.3

• The result of the comparison of different fields can be combined to obtain the
overall matching score of a record pair; further, a decision rule can be employed
to assign the candidate pair to D, N , or H , where H is the set of candidates
requiring human inspection. The EM task can, therefore, be interpreted as a
classification task. For example, the decision rule of an EM classification model
can expressed as:

〈r1, r2〉 ∈

D if τu ≤ ms(r1, r2)
H if τl < ms(r1, r2) < τu

N if τl ≥ ms(r1, r2)
(2.3)

where ms(r1, r2) is the overall matching score between r1 and r2, and τu and τl

are threshold values, where τu ≥ τl. Newcombe et al. used τu = 10 and τl = −10
in their experimental study, i.e., a record pair is selected for human inspection
when the odds favoring a decision is less than 1000 to 1.

Ten years later, Fellegi and Sunter [FS69] provided a rigorous mathematical foun-
dation to the ideas of Newcombe et al. under the Bayesian decision theory. Briefly,
record pairs are represented as a comparison vector γ, which encodes the result of
each field comparison (e.g., “soundex code agreement on first name” and “missing
birth place in first record”). The overall matching score is given by the following
likelihood ratio:

ms(r1, r2) =
p(γ|D)

p(γ|N)
(2.4)

where p(γ|D) and p(γ|N) are the likelihood that γ will be observed for duplicates
and non-duplicates, respectively. With the values of τl and τu based on desired error
levels, it was shown that the resulting decision rule is optimal i.e., the decision rule
minimizes the probability of failing to make an automatic decision (by assigning a
record pair to H). Fellegi and Sunter also addressed several practical aspects: the
authors assumed conditional independence of different comparison results to sim-
plify the computation — an approach also followed by Newcombe et al. — and pro-
vided methods to estimate the conditional probabilities used in Equation (2.4) and
the thresholds τl and τu; moreover, blocking methods were proposed to reduce the
comparison space.

3The Inverse Document Frequency (IDF) weighting scheme, which was proposed by Spärk Jones [Jon72]
more than 20 year later and became extremely popular in the Information Retrieval (IR) area, bears
strong resemblance to the frequency-based approximation of Newcombe et al. in Equation (2.2).
IDF as well as other weighting schemes are described in Section 2.3.2.

A Framework for XML Similarity Joins 13

Chapter 2 Background

2.1.2 Conceptual EM Framework

Newcombe et al. and Fellegi and Sunter laid the groundwork for large parts of the
subsequent research on EM. In fact, blocking, similarity matching, and classification
based on the combination of comparison results are prevalent in EM approaches. In
addition, evaluation is typically preceded by an off-line pre-processing step and fol-
lowed by a clustering algorithm applied on the result of the classification model. To-
gether, these steps form a general EM framework which we refer henceforth to as the
Newcombe et al. and Fellegi and Sunter (NFS) framework.

Figure 2.2 shows how the NFS framework is structured into its main components.
In the pre-processing step, the Classification Model Design defines several parameters
necessary for EM evaluation (e.g., comparison fields and similarity functions). Such
parameters can be manually specified by a domain expert or obtained from learning
methods (using labeled examples). In the evaluation phase, the Blocking component
generates a set of candidate pairs whose size is (expected to be) substantially smaller
than the cross-product between the input datasets; alternatively, Blocking can be ap-
plied on a single dataset as a self-join. Following the evaluation course, Matching
compares the selected fields of each candidate pair using their corresponding simi-
larity functions to produce a set of comparison vectors. The output of Matching is
then delivered to the Classification component, which designates candidate pairs to
D, N , or H . Data Transformation encompasses any transformation that makes the data
amenable for duplicate identification, ranging from dimension reduction to schema
mapping methods. Note that Data Transformation spans pre-processing and evalua-
tion, i.e., it can take place on either phase depending on the strategy adopted. Finally,
as a post-processing step, Clustering uses the result of Classification — represented as
a duplicate graph — to group all entities that refer to the same entity, possibly correct-
ing matching inconsistencies.

Although closely followed by many EM systems [EEV02, WN05], the NFS frame-
work is purely conceptual and digressions from the structure suggested in Figure
2.2 are common in practice. For instance, Matching and Classification are often in-
tegrated into a single operation and the set N is not materialized. Nevertheless, the
NFS framework serves well as reference architecture for our discussion. In Section
2.1.3, we cover recent EM techniques that represent a more marked departure from
the NFS framework and discuss adjustments on the framework to accomodate them.

In the rest of this section, we will continue using the terms field and record for refer-
ring to entity representations. We shall change our terminology from Section 2.2 on,
as we focus on XML data.

Classification Model Design

In this section, we discuss main aspects of the design of accurate classification mod-
els. This activity is conducted off-line in the pre-processing phase and may well be
the most time-consuming stage of an EM process. The design space is essentially con-
stituted by the selection of comparison fields and similarity functions, specification

14 A Framework for XML Similarity Joins

2.1 Entity Matching

Figure 2.2: The NFS framework

of thresholds, and the method for combining all these elements into a decision rule.
Some approaches exploit constraints to improve effectiveness. Example of such

constraints are: “one entity can be matched with at most another entity”, “the num-
ber of publications must be the same for author”, and “two specific entities cannot
match”. See [CSGK07] for a taxonomy of clustering constraints in the context of EM.
We do not cover the selection of constraints here because its interest is limited to spe-
cific approaches; we revisit constraint-based methods in Section 2.1.3, though.

A variety of data exploration and data preparation tasks may be needed to sup-
port classification model design. We discuss several data transformation operations
in the next section; however, a comprehensive review on data exploration and data
preparation is far beyond the scope of this thesis. We refer the reader to [Pyl99] for a
textbook on this topic.

Comparison Fields An ideal set of comparison fields would characterize entities in
such a way that values yielded by similarity functions would be very high for dupli-
cates and very low for non-duplicates, thereby making the classification model trivial.
Domain knowledge provided by an expert is essential; even learning models which
find a set comparison fields from labeled examples (e.g., [CCGK07]), still relies on

A Framework for XML Similarity Joins 15

Chapter 2 Background

expert guidance to obtain a good initial set of fields. Moreover, the selection of com-
parison fields, either automatic or user-defined, has to be made in conjunction with
the corresponding similarity function and data transformation operation. Finally, it
is possible to create new fields by concatenating multiple fields — note that, for some
similarity functions, the order of the concatenated fields is relevant — or, conversely,
by text segmentation (we discuss text segmentation shortly).

Several criteria can be observed for choosing appropriate comparison fields: dis-
criminating power, underlying data quality and low-probability of misreporting (e.g.,
fields whose consistency is enforced by integrity constraints), availability of external
resources to support similarity assessment (e.g., table of abbreviations), and perfor-
mance (e.g., favoring of fields containing shorter strings).

Another concern is the relationship between comparison fields. Newcombe et al.
[NKAJ59] obtained better separation between duplicates and non-duplicates by us-
ing additional fields. Concretely, the number of records falling in the uncertain region
(i.e., the records designated to H) was reduced by a factor of 3 after the inclusion of
age information to the set of comparison fields. Additional fields do not always mean
better matching, however. The main issue is the lack of independence between com-
parison fields. Several approaches (e.g., [NKAJ59] and [FS69]) assume that compar-
ison fields are conditionally independent distributed to make the calculation of the
overall matching score computationally faster; for such approaches, the addition of
correlated fields lead to overestimation of the matching score, which may negatively
affect accuracy. While it is possible to use models that account for dependencies — for
example, Winkler [Win88] proposed the Expectation-Maximization algorithm to esti-
mate the likelihoods without requiring conditional independence — , models as such
are invariably computationally more expensive because the complexity of the infer-
ence problem is increased. Besides, it is intuitive to assume, and theoretically verifi-
able using Bayesian formalism [Pea88], that the impact of new evidence to the belief
in a hypothesis is inversely proportional to its degree of dependency on previous evi-
dence. Putting it in the EM context, the contribution of a field to the classification of a
pair of entities as matching or non-matching is reduced if this field is correlated with
other comparison fields. In summary, independence between comparison fields can
affect both performance and accuracy of EM and therefore is an important criterion
for the design of classification models.

Besides the target entity, comparison fields can be selected from sources of related
information. For example, in bibliographic datasets, information about papers can be
used to support matching of authors. Such approach defines the notion of similarity
based on “co-occurrence” between entities [ACG02]: in the previous example, two
authors will have high similarity if they share a large number of papers. The notion
of co-occurrence similarity is inherent when matching hierarchically represented en-
tities, e.g., dimensional hierarchies in datawarehouses or XML data. We discuss this
aspect further in Section 2.2.

16 A Framework for XML Similarity Joins

2.1 Entity Matching

Similarity Functions The concept of similarity is intrinsically dependent on the
application domain. Thus, no single similarity function is overall the best across all
scenarios [CRF03, SB02, CGK06]. For example, a similarity function which accurately
captures misspellings and other character-level variations (e.g., Ribeiro and Hibeiro) is
likely to perform poorly on fields characterized by the presence of abbreviations (e.g.,
Kaiserslatuern and KL). This observation strengthens the importance of jointly select-
ing comparison fields and similarity functions. Moreover, it makes a strong case for
versatile classes of similarity functions in which different notions of similarity can
be easily obtained by simple reformulations or changing of parameters. In this con-
nection, besides selection, also tuning of similarity functions to specific data domains
can be carried out in the design phase. For example, Bilenko et al. [BM03a] described
how to learn an edit distance model with affine gaps and a weighting scheme for
similarity computation based on vector spaces.

Thresholds Most EM approaches employ similarity thresholds to exclude candi-
date pairs that are unlikely to be duplicates and ultimately yield the final matching
status of a candidate pair. Thresholds can be user-specified or learned and used in
similarity predicates involving fields or whole entities.

Using thresholds poses a trade-off with respects to the exactness and completeness
of results returned by the similarity predicate. For example, raising the threshold
normally implies in results with higher fraction of duplicates (true matches), i.e., in-
creased precision; however, more duplicates may be missed, i.e., recall is decreased.4

Conversely, lowering the threshold may add more duplicates to the result and in-
crease the recall, but, at the expense of adding non-duplicates too, thereby hurt-
ing precision. On the one hand, recall is commonly favored over precision because
non-duplicates in the result set can always be identified in the post-processing step
whereas the only way to recover missed duplicates is re-running the EM algorithm
[GIKS03]. On the other hand, some operations, in particular similarity joins, run
much more faster at higher thresholds.

Besides the trade-off between precision and recall, another difficulty in specifying
thresholds comes from the fact that similarity functions often return very different
similarity score distributions. As a result, thresholds have to be adjusted for each sim-
ilarity function. Learning methods can be employed to find an appropriated thresh-
old configuration. In a different approach, Dorneles et al. [DNH+09] used examples
to create mapping of precision values to similarity scores, which allows the user to
express similarity queries in terms of a precision threshold. Finally, Bhattacharya and
Getoor [BG06] avoid using threshold altogether. The authors use a Latent Dirichlet
Allocation [BNJ03] model to automatically identify the most likely number of entities
in a dataset.

Decision Rules The classification of a candidate pair is performed using a decision
rule. Here, we loosely treat the combination of results of each field comparison as

4We formally define precision and recall in Section 2.4.

A Framework for XML Similarity Joins 17

Chapter 2 Background

a component of the decision rule as in Equation (2.3), although it can be designed
and evaluated independently. Decision rules can be expressed in many ways: set
of IF-THEN-ELSE clauses [WM89], sophisticated declarative rule languages [HS98],
first-order logic sentences [SD06], propositional expressions in disjunctive normal
form [CNS04, CCGK07], simple predicates involving a linear combination [BM03a],
among others. The formulation of decision rules directly affects efficiency of EM
tasks, because some formulations provide superior optimization opportunities for
the Matching and Classification components as we will discuss later.

Rule-based approaches employ hand-coded rules crafted by a domain expert [WM89,
HS98]. Such approaches are typically tailor-made to very specific applications usually
deliver very accurate results, because many intricacies of the underlying domain are
manually captured in the set of rules, and high-performance EM systems, because
they lend themselves to customized implementations. A major drawback of rule-
based approaches is the huge effort necessary to devise the set of rules; moreover,
these approaches are too brittle for open or dynamic domains.

Learning approaches have been widely used to automatically construct decision
rules. A learning algorithm receives as input a set of training data containing ex-
amples of duplicates and non-duplicates and a (possibly redundant) set of similarity
functions; the output is a decision rule specifying the best way of combining and
thresholding the comparison results as well as providing the final classification re-
sult. Popular learners used in previous work are Decision trees [TKM02] (D-trees),
naive Bayes [SB02], and Support Vector Machines [BM03a] (SVM). Recently, Chaud-
huri et al. [CCGK07] modeled the classification problem as that of identifying hyper-
rectangles in a similarity space, where each dimension corresponds to an association
between a comparison field and a similarity function. After embedding the record
pairs of the training set into the similarity space, the problem consists of finding
a set of hyper-retangles covering the maximum number of the duplicates and not
more than a specified number of non-duplicates. This problem was shown to be NP-
hard and the authors provided an approximate greedy algorithm based on a recursive
divide-and-conquer strategy.

An issue with learning approaches is the difficulty of constructing a representa-
tive training set capturing all the subtle patterns that characterize duplicates and
non-duplicates. Moreover, the number of required labeled examples tends to be
large. To tackle this problem, previous work proposed active learning techniques
[SB02, TKM02]. The general approach is to first train a committee of classifiers us-
ing a limited set of examples and then interactively increment the training set with
examples that, after being labeled by the user, will provide the highest information
gain to the learning process. Such informative examples are those about which the
committee is most uncertain. A simple way to assess the “degree of uncertainty”
of an example is observing the disagreement of the committee on its classification:
uncertain examples lead to greater disagreement among the classifiers. Using an ac-
tive learning strategy, the number of examples needed for the learner to achieve peak
accuracy can be reduced by orders of magnitude.

18 A Framework for XML Similarity Joins

2.1 Entity Matching

Further Combination Approaches A closely related problem is the combination of
evidence in IR [Cro00], where results from different data sources or retrieval strategies
are combined to improve the quality of the results. Different “pieces of evidence”
for a retrieval process can be obtained by using multiple query representations (e.g.,
representations derived from relevance feedback and query expansion techniques),
document representations (e.g., using different fields of document’s internal struc-
ture such as title, in-link, meta tag keywords, and elements of XML documents), re-
trieval models (vector space model, probabilistic model, etc), and ranking algorithms
(e.g., different weighting schemes and similarity functions); also, evidence can refer
to results from independent search engines5. Drawing a parallel between combina-
tion of evidence in IR and EM is straightforward. Retrieval systems and EM systems
can both be viewed as classifiers: the first assigns documents to the classes relevant
and non-relevant, while the second assigns entities to the classes duplicates and non-
duplicates (and additionally to the class possible duplicate, i.e., to the set H). Hence,
combination of evidence in IR and EM can be modeled as a combination of classifiers
6 and many techniques and studies on EM and combination of evidence are applica-
ble to one another.

Lee [Lee97] analyzed the output of multiple classifiers and concluded that the best
combinations were between classifiers that retrieve similar sets of relevant documents
and dissimilar sets of non-relevant documents. In this context, simple combination
strategies such as CombSUM and CombMNZ, which are based on the summation of
the similarity scores, have been shown to be effective because they favor documents
retrieved by more classifiers. The results of these approaches can be further improved
by performing a linear normalization of scores to have all values in the interval [0, 1].
Several approaches adopt the linear combination of scores — including variants of
CombSUM and CombMNZ — where the weights are either hand-tuned or learned.
These techniques are similar to the combining approaches employed in EM.

Some approaches exploit the induced ranking to perform combination in lieu of the
similarity values themselves [FKS03, GKMS04]. Common combination functions are
adaptations of standard methods for comparing permutations, such as Spearman’s
footrule and Kendall’s tau distances (see [FKS03], and references therein). However,
some studies have shown that ranking-based combination is generally outperformed
by score-based combination [Lee97]. More importantly, while the main goal of com-
bination of evidence in most IR settings is to produce an ordinal ranking, i.e, the score
distribution is unimportant, accurate score combination is crucial in EM systems be-
cause a combined similarity value is needed to produce the final matching decision.
The work in [GKMS04] presented a generalization the Spearman’s footrule distance
that regards the underlying score values; results of similar nature were presented in
[BP09] for the Kendall’s tau distance.

Finally, combination of evidence can be performed at term level. Ogilvie and Callan
[OC03] inferred separate language models [PC98] for each document representation;

5The combination problem in this case is commonly referred to as the meta-search problem.
6This modeling for combination of evidence was first presented in [Cro00].

A Framework for XML Similarity Joins 19

Chapter 2 Background

the probability of producing a term for a given document is calculated by a linear
combination of its corresponding language models. Robertson et al. [RZT04] iden-
tified several issues with approaches that both employ weighting schemes based on
document and collection statistics (term frequency, document frequency, document
length, etc) and further adopt a linear combination of the scores obtained from ev-
ery document representation. For example, using the Okapi BM25 weighting scheme
[RW94], a linear combination of scores would excessively amplify the weight of term
appearing in several representations of a document. To avoid this and other prob-
lems, the authors proposed a linear combination of term frequencies, which is per-
formed before the calculation of the term weights. In the XML context, Carmel et al.
[CMM+03] weighted terms with respects to their context, where the context of a term
is given by the path leading to it from the root node of the XML document. Statistics
used by the weighting function are constrained to the context of a given a term and
all the other contexts that are similar to the term context. In the EM scenario, term-
level combination can be employed on groups of comparison fields that are associ-
ated to the same single similarity function. In particular, the approach of [CMM+03]
is close in spirit to our own approach to combinining structural and textual similarity,
which is introduced in Chapter 4; also in this chapter, we will present techniques for
generating XML document representations that jointly capture textual and structural
information thereby incorporating both sources of evidence into a single similarity
function.

Data Transformation

It is very rarely the case that data representing an entity is already available in a suit-
able format for matching. Thus, data transformation is crucial to EM: it can impact
accuracy by alleviating data heterogeneity and efficiency by reducing the data or con-
verting it to a simpler representation. For example, consider using a phonetic encod-
ing algorithm, say, Soundex. While exposing spelling variations, Soundex converts
data from the string data type to the integer data type, and, thus, reduces similarity
calculation between strings to a simple equality test between integers.

The example above also illustrates that the distinction between data transforma-
tion and similarity functions is often blurred. In fact, sometimes the transformation
applied to the data is the most important part of a similarity measure; the subsequent
computation to obtain a similarity value is a secondary operation. This is the case of
the class of token-based similarity functions, which employs a tokenization transfor-
mation as suboperation. Furthermore, other approaches to similarity are conceptu-
ally connected with transformation operation; for example, the similarity, or distance,
of two objects can defined in terms of the operations needed to transform one object
into another; a prime example is the family of edit-distance-based similarity func-
tions. Section 2.3 is dedicated to these two important classes of similarity functions.

Data transformation can be a requisite for classification model design. For exam-
ple, schema matching may be needed to uncover semantic correspondences among
schema elements from different data sources before the selection of appropriate com-

20 A Framework for XML Similarity Joins

2.1 Entity Matching

parison fields. Transformations can take place in the evaluation phase, too. For ex-
ample, they can be carried out jointly with matching, e.g., at query evaluation time in
EII systems.

At this point, it should be clear that we use the term data transformation to gener-
ally refer to any transformation on the data that represents an entity including con-
version of types (e.g., string to integer, scalar to sets, lists, or records), rescaling, nor-
malization, discretization, interpolation, aggregation, syntactic and semantic substi-
tution (e.g., substitution of characters and terms by corresponding synonyms), meta-
data modification, and so on; moreover, it also embodies other kinds of operations
such as creation new data from old one, or selection of a subsets of data values (e.g.,
sampling). Next, we discuss these transformations in greater detail; we also include
in our discussion schema matching and schema mapping, operations performed at the
schema level that are a common precondition for further data transformation.

Text Segmentation This transformation converts flat strings into structured for-
mat using Information Extraction (IE) techniques [Sar08]. The type of the structure
extracted is a set of named entities; examples of such entities are person names, streets,
and companies. Text segmentation is important to EM due to several reasons: it
prevents string comparisons among unrelated concepts, allows more granular field
selection, and avoids distortion of statistics, i.e., a term can appear in several fields
but with different frequencies. Address information is one the most common applica-
tions of text segmentation in EM because of the common practice of representing this
sort of information as unstructured text and the absence of widely adopted standards.

As for other IE tasks, techniques for text segmentation evolved from rule-based
approaches with manually coded rules to statistical learning models, where the rules
are automatically learned from examples [Sar08]; the state of the art of this latter
approach is based on Conditional Random Fields [LMP01].

Schema Matching Together with schema mapping, schema matching precedes EM
in many data integration scenarios; in other words, schema-level heterogeneity is ad-
dressed before instance-level heterogeneity (however, see [BN05] for an opposite ap-
proach where EM is used to support schema matching). The foundational operator
in schema matching is Match [RB01], which takes two schemas as input and returns
a set of mappings between semantically corresponding elements. Schema matching
techniques exploit syntactical similarity, element types, schema structure, data val-
ues, and prior matching information, frequently combined in a hybrid or composite
implementation of Match [RB01]. Besides, schema matching applications are often
furnished with visual tools to support user interaction. In this context, model manage-
ment supporting tools are essential to harness the inherent complexity of the metadata
produced by schema matching activities [Gör10].

Schema Mapping The correspondences returned by the Match operator are unin-
terpreted [HHH+], in the sense that they do not readily allow data exchange or query

A Framework for XML Similarity Joins 21

Chapter 2 Background

answering. Therefore, schema mapping is necessary to produce interpretations of
schema element correspondences, i.e., specifications that logically describe relation-
ships between schema elements and corresponding data values. Such specifications
capture information needed for the generation of physical artifacts that will ulti-
mately perform data transformation. Schema mapping applications usually contain a
schema matching component used to generate an initial set of mappings and a visual
tool to refine existing mappings or to create new ones.

Simple Value Transformation This class of transformations comprises elementary
data transformations, including fill-in of missing information and simple data con-
sistency correction (e.g., by using knowledge of functional dependencies), and data
domain transformation. This latter transformation typically aims at conforming sim-
ple data values from different sources, improving efficiency, e.g., mapping strings
to their fingerprint hash values, or tailoring data values to a specific similarity func-
tion. For instance, after performing text segmentation, the string representation of the
named entity year can be converted to a numerical data type; afterwards, the absolute
difference can be employed as a similarity function.

Character-level Transformation This transformation syntactically standardizes some
characteristics of the string data at the character level; the aim of this transformation
is to increase (decrease) the similarity of true field (mismatches) matches by removing
trivial and semantically unimportant data discrepancies. Common examples are case
conversions, removal of punctuation marks, and substitution of whitespaces by a spe-
cial symbol. It also includes character normalization according to language-specific
rules; for example, removal or substitution of diacritical marks (e.g., removal of ac-
cents, substitution of umlaut-vowels by vowel plus e), and spelling standardization
(e.g., substitution of double s by scharfes S.

Tokenization This operation converts an object to a set or multiset (or bag) of to-
kens. What constitutes a token is dependent of the object of interest and the corre-
sponding similarity function. We discuss tokenization methods in Section 2.3.

Non-syntactical Transformation Most string similarity functions exploit syntacti-
cal commonalities (or differences) to ascertain their similarity. However, two strings
can still represent the same real world entity even if there is no or very little syntacti-
cal clue. It happens, for example, in comparisons of synonyms (e.g., Kaiserslautern vs.
K-town) or involving abbreviations (e.g., Kaiserslautern vs. KL). In such cases, similar-
ity functions based on syntactical matches (or mismatches) would underestimate the
true similarity between two strings. Conversely, polysemous words, i.e., words with
multiple meanings, may lead to overestimation of the similarity.

The identification of the correct meaning of a word relates to the general problem of
Word Sense Disambiguation (WSD) [Nav09]. At the schema level, WSD methods can

22 A Framework for XML Similarity Joins

2.1 Entity Matching

be used to implement Match, i.e., as part of a schema matching process. For exam-
ple, the work in [MMR05] disambiguates tag labels of XML documents by exploiting
structural context (i.e., ancestor, descendants, and siblings) and external knowledge
sources. At the instance level, the semantics of data values is normally constrained
by the corresponding schema element. As a result, semantic variations such as pol-
ysemy are not expected, or restricted to abbreviations (e.g, L. can be an abbreviation
to Leonardo or Lucas, T. can be an abbreviation to Tom or Thomas). Also, domain-
specific knowledge sources, such as address formats or organization acronyms, are
predominantly used, in contrast to general, lexical-oriented external sources, like the
WordNet [Fel98]. Alternatively, one can learn the set of transformations from labeled
data [ACK09].

Given a set of semantic correspondences, the next step is to use these correspon-
dences to carry out the actual data transformation. At the schema level, this task is
performed by schema mapping operations. Correspondences between instance-level
values can be straightforwardly used in the pre-processing phase by converting all
variations of a string to a specific canonical representation. However, as observed
in [ACK08], this approach cannot adequately handle polysemy (as caused by abbre-
viations). In contrast, transformations can be performed in the evaluation phase: in
[ACK08], the value of a string is expanded into the set of strings derived from it ac-
cording to the given semantic correspondences; the similarity of two strings is then
calculated in terms of their expanded sets.

Data Reduction When dealing with large datasets, a natural approach is to employ
data reduction techniques. Examples of popular reduction techniques are histograms,
sampling, Singular Value Decomposition (SVD), and Discrete Wavelet Transform (DWT)
[BDF+97]. When the objects of interest are represented by collections of features
(e.g., tokens), high dimensionality of the feature space is a critical problem. Besides
making multi-dimensional search structures ineffective [WSB98], high-dimensional
spaces exhibit poor discrimination among objects for popular measures, e.g., the Eu-
clidean distance, which raises the question of whether or not similarity-based oper-
ations are meaningful in such situations [BGRS99]. Fortunately, real-world datasets
very often present strong correlations between various dimensions or contain unim-
portant dimensions (e.g., those not exhibiting any discriminating power) thereby ef-
fectively reducing the intrinsic dimensionality compared to the dimensionality of the
underlying space. In such cases, data reduction methods (e.g., SVD and DWT) and
embedding methods (e.g., FastMap [FL95]) can be employed to uncover the intrinsic
dimensionality of a dataset. Of course, these methods may cause accuracy degrada-
tion whenever the resulting dimensionality of the reduced space is lower than the
intrinsic dimensionality. Some embedding methods are inherently approximate, but
allow to bound the probability of incorrect results. The prominent example is Local-
ity Sensitive Hashing (LSH) [GIM99], which is based on hashing functions that are
approximately distance-preserving with probabilistic guarantees.

It is not always the case, however, that dimension reduction hurts accuracy. Some

A Framework for XML Similarity Joins 23

Chapter 2 Background

methods are able to discover hidden semantic structures in text data such as syn-
onyms and polysemes. Latent Semantic Indexing (LSI) [DDL+90] uses SVD to con-
struct a linear feature space that approximates the original space while capturing
most of its variance; LSI is able to handle synonymy. Other approaches based on gen-
erative probabilistic models such as Probabilistic Semantic Indexing (pLSI) [Hof01]
and Latent Dirichlet Allocation (LDA) [BNJ03] are able to handle synonymy as well
as polysemy. Unfortunately, all these approaches that based on some form of spec-
tral decomposition are computationally expensive and therefore do not scale for large
datasets.

In contrast to constructing a new feature space, some techniques reduce dimension-
ality by selecting a subset of the original feature space. Such techniques can achieve
aggressive dimension reduction, often reducing the feature space by a factor of about
10. In an extensive comparative study in the context of text categorization, Yang and
Pedersen [YP97] found techniques based on document frequency (DF), information
gain, and χ2 test the most effective. Interestingly, the good result of the DF technique,
which simply retains features — in this experiment, features are text terms — that oc-
cur in the highest number of documents seems to contradict the intuition that features
with low frequency are most informative; as already mentioned, this intuition is behind
the approach of Newcombe et al. and the widely used IDF weighting scheme. How-
ever, as observed in [Seb02], it is well known that the term frequency distributions are
characterized by very large numbers of extremely rare terms [Baa01]; according to the
reduction factor reported in the experiments of [YP97], most of the features removed
are indeed such terms. In the EM context, for some field values, very rare features
indicate data entry errors such as typos and misspellings, and can be ignored.

Stopping and Stemming These operations are widespread in IR [WMB99]. Stop-
ping is a data reduction technique7 which removes certain frequently occurring terms.
As such, stopping could be seen as the opposite of the DF technique for feature se-
lection. However, high frequency alone is not a reliable condition to deem a term as
unimportant [DFS+09]. For example, some terms such as computer and company can
be highly frequent in a document collection yet convey useful semantic information.
Moreover, some stop terms in one domain may not be a stop term in another domain.
Therefore, in practice, lists of stop terms have to be manually defined by an applica-
tion domain expert. Recent work has addressed the problem of automatically finding
the list of stop terms in the context of Web query interface integration, which was
shown to be NP-complete [DFS+09].

Stemming removes one or more suffixes of a term to obtain the corresponding stem,
i.e., the root form of the term without morphological constructs derived from gram-
matical categories, such as tense and plurality. For example, consider the terms adapt,
adapted, adapting, adaptation, adaptations. These terms can be conflated into the single
term adapt by a stemming procedure. The most popular stemming algorithm is the
Porter’s algorithm [Por80].

7We describe stopping here due to its historical connection to stemming.

24 A Framework for XML Similarity Joins

2.1 Entity Matching

XML-structural Transformation For XML datasets following multiple schematic
rules, schema matching operations can be used to align the underlying structure
before EM takes place. However, this approach is hardly feasible for large, non-
schematic XML datasets. While it is possible to tackle this problem at query pro-
cessing time — as we propose in this thesis — pre-processing transformations, such
as hierarchy restructuring, can nevertheless be employed to ameliorate the structural
heterogeneity. Some algorithms for XML-structure pre-processing are presented in
[GdSM07].

Blocking

Scalability is a serious concern in EM tasks. A naive approach compares every pair
of entities, which leads to a prohibitive time complexity of O(n2) on databases con-
taining n entities. Thus, reduction of the comparison space is mandatory to tackle
large databases [NKAJ59]. The general approach is based on a two-step strategy:
candidate pairs are generated by bringing together potential duplicates using an in-
expensive operation while discarding the maximum number of (hopefully) irrelevant
candidate pairs; afterwards, more accurate (and expensive) operations are carried out
to identify duplicates. A similar strategy is adopted by set similarity join algorithms
as we will study in detail in Chapter 5.

Candidate generation in EM systems is performed by blocking methods. The gen-
eral idea is to divide the data into (possibly overlapping) blocks and consider only
records within the same block for candidate generation. Typically, blocking meth-
ods apply sorting or simple similarity functions on a subset of the comparison fields.
Clearly, it may hurt accuracy when true duplicates do not fall into the same block.
Multiple blocking operations can be performed to avoid or at least alleviate accu-
racy degradation, albeit at the expense of increased runtime. This can be done by
using multiple comparison fields, similarity functions, or both. In general, there is
an intrinsic trade-off between performance and accuracy in the design of blocking
methods and, in favor of accuracy, many criteria considered in Classification Model
Design can be applied to Blocking as well.

A popular blocking method is the sorted neighborhood [HS98]. This method first ex-
tracts keys by applying a function provided by a domain expert on one or more record
fields. An example of such a function is the concatenation of the first three letters of
the field Name and the first three consonants of City; all letters are converted to up-
percase and punctuation marks removed. Therefore, the set of keys for the sample
data in Figure 2.1 is {LEOKL,LEOKSR,LARKSR}. The records are then sorted according
to the key generated and a window of fixed size w slides over the the data; every new
record entering the window is compared with the previous w − 1 records. Thus, the
number of comparisons is reduced from O(n2) to O(wn) for a database containing n
records. The authors empirically demonstrated that small windows provide superior
accuracy results.

Another widely used blocking method consists in using a cheap similarity function
to divide the data into overlapping subsets called canopies [MNU00]. To create the set

A Framework for XML Similarity Joins 25

Chapter 2 Background

of canopies, one starts with a list containing all records and two similarity thresholds,
τ1 and τ2, where τ1 < τ2. Then, a record r is randomly selected from the list and the
similarity between r and the other records of the list is calculated. Further, a new
canopy is created and r and all records within similarity τ1 are put in it; all records
within similarity τ2 and r are removed from the list. These steps are repeated until
the list is empty. The estimated number of comparisons using canopies is O(f 2n2/c),
where n is the number of records, c is the number of canopies, and f is the average
number of records per canopy. A comparison between canopies and sorted neighbor-
hood as well as other blocking methods is presented in [BCC03].

Recent work on blocking methods includes: adaptation of sorted neighborhood to
XML data [PWN06], learnable blocking functions [BKM06], and interactive blocking
[WMK+09]. In the latter, blocking is performed jointly with merging of duplicates
and block instances communicate their matching results in an interactive fashion.

Matching and Classification

Matching and Classification constitute the essence of an EM task. Matching uses a
set of similarity functions to compare the candidate pairs delivered by the blocking
method; the comparison results are then fed to Classification, which classify the cor-
responding record pair as duplicate, non-duplicate, or as requiring further analysis.
We have already covered the most important factors affecting the accuracy of these
components when we discussed the Classification Model Design. Now, we focus
on implementation issues and efficiency aspects. Again, many techniques described
here are also applicable to Blocking.

The implementation of Matching and Classification is largely dictated by the for-
mulation of the decision rule and, in turn, by the strategy for combination of matching
results. In this regard, the evaluation can be performed stepwise or “one shot”, inter-
leaved or strictly sequential; some approaches provide more scope for optimization,
as already mentioned.

Several classification models used in EM tasks employ decision rules that can be
interpreted or easily converted to a propositional expression composed by a set of
disjuncts and conjuncts on similarity functions [CNS04, CCGK07]. D-trees and rule-
based classifiers are examples of such models. Furthermore, classifiers like naive
Bayes, which combine similarity results in more intricate ways, can still be post-
processed to extract simpler predicate expressions [CNS04]. Such formulations are
appealing because they lend themselves to leveraging traditional query optimization
techniques for the derivation of pipelined execution plans and exploitation of indexes
(e.g., functional indexes) [SK03, CNS04, CCGK07]. Of course, processing of conjunc-
tions can always be promptly interrupted whenever the evaluation of a simple sim-
ilarity predicate returns false, thereby saving similarity calculations. The flip side is
that the derived propositional expression can be very complex. The problem of iden-
tifying better execution plans for arbitrarily complex propositional expressions is not
trivial [CGS03].

Another popular decision rule formulation is given by a thresholded linear com-

26 A Framework for XML Similarity Joins

2.1 Entity Matching

bination of the form
∑

i wisfi ≥ τ , where wi is the weight, possibly negative, associ-
ated to the similarity function sfi . This formulation is adopted, for example, by SVM
models [BM03a] and approaches employing combination of evidence based on re-
gression analysis [Cro00]. In contrast to propositional expressions, such formulations
require applying the decision rule on every candidate pair [CCGK07]. Notwithstand-
ing, when comparing two records, one can keep track of the similarity upper bound
after each field comparison and terminate the evaluation as soon as this upper bound
is less then the similarity threshold. Other combination approaches demand the cal-
culation of all similarity values. This is the case for methods using standard aggregate
functions such as min and max. Finally, combination techniques that exploit ranking
positions or scored ranking values require, besides the calculation of all similarity
values, the matching result between a given record and all other records associated
with this record in the candidate set before applying the decision rule.

Some similarity functions are computationally more expensive than others. On the
other hand, owing to the threshold value and the similarity function itself, some sim-
ilarity predicates are much more selective than others. Therefore, evaluation order of
similarity predicates may have a significant performance impact, especially for deci-
sion rule formulations allowing earlier termination. In this scenario, we can borrow
techniques from the work on expensive-predicate query optimization. A well-known
optimization consists of determining the evaluation order of predicates according to
the following metric [HS93]:

rankp =
selectivity(p)− 1

cost(p)
(2.5)

where cost(p) and selectivity(p) are the cost of evaluation and the selectivity of a
predicate p, respectively. In our case, the predicate p involves a similarity function.
The relative cost of a similarity function can be defined in several conceivable ways,
for example, based on the asymptotic cost or average execution time. Also, as EM
tasks typically involve bulk processing, dataset characteristics are likely to be a de-
termining factor for the overall processing cost. Furthermore, a great deal of work
has addressed the selectivity estimation of similarity operations, see, e.g., [HYKS08],
[LNS09], and references therein.

EM tasks are inherently domain-dependent; moreover, EM is often not executed in
isolation, but as part of a more complex data cleaning or data integration solution.
Hence, a crucial aspect for domain- and application-neutral EM systems is the ac-
commodation of a variety of matching operators and classification logic in a general
and flexible framework. In this direction, Galhardas et al. [GFS+01] presented Ajax,
a declarative data cleaning framework, which allows to decouple the logic specifi-
cation of EM operators from their physical implementation; Ajax has been extended
to the Xclean project to support XML data [WM07]. Following a more fine-granular
approach, Chaudhuri et al. [CGK06] designed a primitive similarity operator that
can be composed with other traditional query operators (e.g., relational operators) to
support similarity joins based on several similarity functions. In the ALIAS system
[SB02, SK03], the evaluation engine is based on groupwise operators, i.e., similarity

A Framework for XML Similarity Joins 27

Chapter 2 Background

operations can be performed on linear groups of records instead of just one pair of
records at a time.

Most of the approaches discussed above are based on query processing techniques
proposed in a DBMS context: pipelined query execution plans, predicate reordering,
exploitation of indexes, cost models, selectivity estimation, and decoupling between
logical and physical operators. Moreover, a very large body of work is available
on similarity algorithms for operations such as joins and selections [Coh98, GIJ+01,
SK04, ABG05, CGK06, AGK06, BMS07, ABDG08, HCKS08, LLL08, XWLY08, XWL08,
XWLS09] and, recently, Silva et al. [SAA10] studied transformation rules for the op-
timization of logical query plans containing similarity operators. All these contribu-
tions are geared towards the evaluation of EM tasks, in particular similarity opera-
tions, within the query engine of a DBMS, which is also the direction of our work in
this thesis. We shall revisit this topic in Chapter 6, when we address the integration
of our similarity join framework into an XDBMS.

Clustering

The relation “is duplicate of” is an equivalence class, i.e., it satisfies the properties of
reflexivity, symmetry, and transitivity. Thus, clustering of duplicates forms a parti-
tion of a database — note that EM can be interpreted as a clustering task that groups
duplicate entities. Following this premise, previous work has used single-link clus-
tering [JD88], which is equivalent to calculating the transitive closure, to obtain the
groups of duplicates [ME97, HS98, BM03a, WN05]. The most common implementa-
tion approach utilizes a union-find data structure to efficiently maintain the collec-
tion of disjoint updatable sets of duplicates [ME97]. The underlying assumption of
this approach is that the corresponding classification model is able to perfectly iden-
tify all pairs of duplicates or, at least, it will produce no false duplicates, i.e., pairs
erroneously classified as duplicates. Of course, such an assumption is overly unreal-
istic. In practice, clearly inconsistent results are commonly produced like classifying
the pairs 〈r1, r2〉 and 〈r1, r3〉 as duplicates but not the pair 〈r2, r3〉, which violates the
transitivity property. In the presence of such inconsistencies, the calculation of the
transitivity closure leads to a propagation of false duplicates by placing unrelated
records into a same group. Indeed, single linkage clustering has been shown to per-
form poorly in several experiments [BBS05, HCML09].

Avoiding the drawbacks of the transitivity assumption, Chaudhuri et al. [CGM05]
identified two criteria for defining groups of duplicates, namely, the compact set and
sparse neighborhood criteria. Similarly to the complete-link clustering methods, com-
pact sets are defined in terms of cliques in a similarity graph, i.e., duplicate records in
a group must be closer to each other than to other records. The sparse neighborhood
criterion requires that a cluster of duplicates has no or only very few records in its
immediate vicinity. The authors claim that these criteria capture structural properties
characterizing clusters of duplicates in real scenarios.

The problem of minimizing inconsistencies in the output of an EM process can be
formulated as the Correlation Clustering problem [BBC04]: given a complete graph

28 A Framework for XML Similarity Joins

2.1 Entity Matching

with edges labeled “+” or “−”, find a clustering of the vertices that minimizes the
number of “−“ edges inside clusters and the number of ”+” edges between clusters.
An EM output can be easily modeled according to this problem by connecting record
pairs in D with ”+” edges and pairs in N with “−” edges; additionally, pairs in H
can be given a “0“ label or left unconnected. Besides its theoretical soundness, Cor-
relation Clustering is attractive because it does not require the specification of extra
parameters, such as the number of clusters for partitional clustering or the cutting
threshold of the dendogram for hierarchical clustering. Unfortunately, finding an
optimal partitioning for general graphs is NP-hard. Moreover, although there exist
approximation algorithms for this problem, such solutions are still prohibitively ex-
pensive. A practical alternative is to follow a divide-and-merge strategy as proposed
in [CKVW06]. In the divide phase, a divisive hierarchical algorithm is used to pro-
duce a tree whose leaves are records. In the merge phase, records are grouped using
the correlation clustering as objective function.

Finally, an extensive evaluation of clustering algorithms in the EM context is pre-
sented in [HCML09]. Unfortunately, the only Agglomerative Hierarchical Clustering
(AHC) method evaluated was the single-link method. Other popular AHC methods
such as complete-link and UPGMA were not included in the evaluation. Complete-
link and UPGMA were found to produce accurate results in [BBS05], which meets
our own experience (see Chapter 3).

2.1.3 Recent EM Approaches

There has been a flurry of recent work on EM motivated by the increasing interest in
related application areas, such as information extraction, management of uncertain
and inconsistent data, and dataspace systems, as well as by recent progress in key
technologies such as statistical relational learning. Thus far, our discussion has been
based on the traditional NFS framework (see Figure 2.2). Not all approaches con-
sidered in this Section freely adhere to the NFS framework, however. For this reason,
whenever pertinent, we point out adjustments for accommodation of the correspond-
ing approaches into the NFS framework in the following discussion.

Merge-and-Refine Strategy

A natural step after EM is the merging of the identified duplicates into a single rep-
resentation. 8 In contrast to performing identification and merging of duplicates
sequentially, recent work has followed a merge-and-refine strategy, where match-
ing and merging of duplicates are performed in a combined and iterative fashion
[BGMM+09]. The key insight is that record merges can lead to further matches.

For example, consider the sample data in Figure 2.1. The output of a hypothetical
EM task could be the pair formed by the first two records, i.e., 〈r1, r2〉, because of the

8This step is commonly referred to as data fusion [BN08]. Note that the term data fusion is also used
to refer to rank-based combination of evidence in the IR literature. Therefore, to avoid confusion,
we use here the term duplicate merging or simply merging.

A Framework for XML Similarity Joins 29

Chapter 2 Background

high similarity of their field Name. The third record, r3, does not match either r1 or
r2 because its field Name is not similar to that of the other two (due to the different
naming convention). Now, consider a merge function that adopts the policy of picking
the most informative (and misspelling-free) field representation between two records
to construct a new merged record. Hence, the result of the merging of r1 and r2 would
be the new record r12:

r12 Leonardo Ribeiro Kaiserslautern 111-2322 Gottlieb-Daimler-Straße

Note that r3 may now match with r12 because of the increased similarity on the fields
City and Address.

Characteristics of the functions used to identify and merge duplicates may affect
the performance significantly. Benjelloun et al. [BGMM+09] identified the so-called
ICAR properties — namely, indempotence, commutativity, associativity, and repre-
sentativity — and developed algorithms to exploit them. In their work, the authors
viewed the functions used to merge and compare records as ”black-boxes“ with-
out considering their internal details; it was only assumed that some ICAR prop-
erty holds or not, for a given function. Drawing a parallel with the NFS framework,
Matching and Classification are performed in a single component producing a simple
yes-no output, which is used to decide whether to merge two records or not. Note
that the record merging function can be rather complex. For instance, it is not always
clear how to decide which value to choose in case of conflicting data or to identify the
most informative representation (e.g., see the Phno attribute in Figure 2.1).

Collective Matching

All approaches discussed so far compare and classify two records at a time. More-
over, pairwise decisions are made independently, i.e., a pair of record is classified as
duplicate or non-duplicate regardless of all other records in the database. Even when
using the merge-and-refine strategy describe above, positive duplicate decisions only
affect other decisions implicitly: first, a record is constructed from a duplicate pair by
the merge function; then this record is compared anew with all the other records.

Frequently, the information about entities spans multiples fields that, in turn, also
represent matchable entities on their own. In such cases, a different approach is to
model the interrelationships of classification decisions explicitly and automatically
propagate results between related entities. As a result, the classification is performed
collectively on a group of entities. For example, consider again the sample database
in Figure 2.1; each entity represented by a record can be seen as composed by the
sub-entities Name, City, and Address. Classifying r1 and r2 as duplicates forces the
cities ”KL“ and ”Kaiserslautern“ and the addresses ”Gottlieb-Daimler-Straße“ and
”Gottlieb Str.“ to be called duplicates, too, even though the corresponding textual
similarity is not high. In turn, the belief that r3 represent the same entity as r1 and r2

is now increased accordingly.
Most relevant work on collective matching is based on sophisticated probabilistic

models that represent interrelationships of classification decisions as random vari-

30 A Framework for XML Similarity Joins

2.1 Entity Matching

ables and employ an inference engine to conduct the EM task. Examples of such
probabilistic models include relational Bayesian [PMM+02], Markov logic [SD06],
Conditional Random Fields [MW04], and Latent Dirichlet Allocation models [BNJ03].

In comparison to the NFS framework, collective matching combines Clustering
with Classification. Note that the result may still be inconsistent, e.g., not satisfying
the transitivity property. Thus, an additional clustering step as discussed previously
is however necessary.

Incorporating User Feedback

Often, the set H generated at the end of the classification process is very large. This
happens, for example, when the cost of misclassification is high. Consider an HN
system correlating individual medical information. Because of the disastrous con-
sequence of mixing information of different individuals, EM tasks in such scenarios
prudently adopt a very conservative classification model that precludes automatic
matching even for candidate pairs exhibiting high evidence for a decision. As a re-
sult, it can be overwhelming for the user to inspect all or even a large part of the
candidate pairs. Hence, it is essential to select elements of H for presenting to the
user in a reasonable order.

In a dataspace system context, Jeffery et al. [JFH08] proposed a decision-theoretic
framework based on the value of perfect information (VPI) for ordering candidate pairs
for user confirmation. Informally, VPI assess the benefit of information by measuring
how much the state of a system improves after acquiring this information; the state
of the system is measured by a utility function. In the case here, the information cor-
responds to the true matching status of a candidate pair provided by the user. The
utility function is defined in terms of the effectiveness of the dataspace in answering
a pre-defined query workload. There are two components in the utility calculation:
recall and query importance. Recall refers to the completeness of the result of a query
with respect to a perfect dataspace, i.e., a dataspace without duplicates; the impor-
tance of a query is given by a weight parameter, e.g., derived from the frequency
of the query in the system. The authors made several simplifying assumptions to
approximate the associated VPI value of a candidate pair. The VPI formulation as
well as its approximation is tightly tied to the weighting scheme applied to the query
workload. To use this technique in general EM systems, it is possible to attach weights
to the entities of H . For example, such weights can be based on the number of candi-
date pairs in which an entity appears. An interesting question is whether it is possible
to obtain utility gains without explicitly assigning weights to entities.

User feedback strategies are complementary to the NFS framework: they can be
straightforwardly invoked between the Classification and Clustering at each interac-
tion step. In fact, the approach of Jeffery et al. can be seen as the counterpart for the
evaluation phase of interactive approaches for decision model design like [SB02] and
[TKM02]. In a related work, Chai et al. [CVDN09] presented a user feedback frame-
work, including a declarative language, that allows developers to write complex user
interaction logic at various stages of an EM workflow.

A Framework for XML Similarity Joins 31

Chapter 2 Background

Constraint Repair Model

The presence of fuzzy duplicates violates integrity constraints. For example, consider
the functional dependency [Phno]→ [City,Address] in the database shown in Fig-
ure 2.1. This functional dependency is violated by the duplicates r1 and r3. Repairing
such a constraint involves identifying r1 and r3 as duplicates, which is equivalent to
an EM task. The repair of an inconsistent database is another database that satis-
fies integrity constraints and differs minimally from the original database [ABC99].
Thus, duplicate identification can be modeled by specifying a set of constraints on a
database and then finding a repair [BFFR05].

Operations used to derive a repair are record insertion, record deletion, and value
modification. Bohannon et al. [BFFR05] proposed a repair cost model based on data
accuracy — represented by user-defined weights — and similarity between the origi-
nal value and the repair alternative; value modification operations are relatively inex-
pensive whenever the accuracy weight of the original value is low and the similarity
is high. The motivation behind this approach is that value modification is preferable
to record insertion or deletion in common situations, for example, to avoid loss of
information due to record deletion. Unfortunately, finding a min-cost repair when
considering value modifications is NP-complete in the size of the database [BFFR05].
Bohannon et al. proposed a heuristic based on equivalence classes of attribute values;
further performance improvements are obtained by using a number of optimizations
such as blocking methods [HS98].

As mentioned before, constraints can also be exploited to improve accuracy. Chaud-
huri et al. [CSGK07] used groupwise aggregation constraints such as sum(Billed) =
sum(Shipped) and modeled the EM task as a constraint satisfaction problem [RN03].
To avoid intractability while incorporating textual similarity into the optimization
framework, the authors constructed a dendogram by applying a hierarchical cluster-
ing algorithm (e.g., single-linkage) over the set of entities and restricted the groups
of candidate duplicates to those obtained by different cuttings of the dendogram. In
this way, the approach of Chaudhuri et al. can be viewed as performing Clustering
prior to Classification.

Traditional constraint repair approaches rely on schema-based dependencies such
as inclusion and functional dependencies to detect data inconsistencies. Such de-
pendencies are often ”too loose“ to capture subtle data quality issues such as fuzzy
duplicates. Bohannon et al. [BFG+07] introduced the concept of conditional function
dependencies (CFDs) extending the expressiveness of standard functional dependen-
cies to capture semantic relationships between data values as specified by a pattern
tableau. For example, CFDs can express dependencies of the form [CountryCode =
49, ZIP] → [City, Adress], which states that for Germany (”Country Code = 49“),
the zip code determines city and the address. It has been empirically shown that
CFDs are indeed more effective than standards dependencies in repairing dirty data
[CFG+07].

32 A Framework for XML Similarity Joins

2.1 Entity Matching

Probabilistic Databases

The constraint repair model described above produces a ”clean“ version of the origi-
nal database where all identified duplicates have been merged into a single represen-
tation. This clean version is promptly available for use through any queryable system
such as regular DBMSs and search engines. This approach is referred to as one-shot
cleaning approach. Despite the readiness, one-shot cleaning can be unsatisfactory
due to the following reasons:

• Loss and degradation of information: EM as well as duplicate merging are in-
trinsically imprecise operations even when conducted by semi-automatic pro-
cesses. After carrying out one-shot cleaning, unless there is support for data
lineage [BSH+08], there is no information linking the conciliate representation
of an entity and the corresponding duplicates. This means that any error in
the cleaning operation like lossy merging or erroneous duplicate classification
is unrecoverable. As a consequence, data accuracy continuously degrades as
cleaning operations are performed.

• Non-updatable decisions: This issue is closely related to the first problem. Con-
sider that records r1 and r2 are classified as duplicates by an EM process with
confidence c1 (e.g., given by the similarity score). Later, a new record, r3, is in-
serted into the database. The same EM process classifies r2 and r3 as duplicates
with confidence c2, where c2 > c1; however, r3 is assessed far away from r1. In-
tuitively, this latter result decreases the confidence in the first matching decision
about r1 and r2. But, if r1 and r2 are merged in the first classification into a new
record, it could be impossible to identify and exploit the new information orig-
inated from the insertion of r3 and refine the previous matching decision. The
situation is similar for any kind of new information such as filling of a missing
field or user feedback. In general, one-shot cleaning makes matching decisions
produced by an EM system permanent.

• Strong dependency on a single EM strategy: Different EM strategies, e.g., pro-
cedures, algorithms, parameter settings, are likely to produce different results.
Identifying the best EM strategy for an application scenario demands an exor-
bitant amount of tuning effort, if possible at all. Moreover, because the very
notion of duplication is context-sensitive, the best EM strategy is expected to
vary accordingly acrross application scenarios. Therefore, instead of producing
a single database instance as for one-shot cleaning, it may be desirable to use
multiple EM strategies to obtain several clean versions of the original database.

An alternative to avoid the shortcomings of one-shot cleaning is to keep all dupli-
cates and use a probabilistic DBMS [DRS09] to manage the dirty database. Duplicates
can be interpreted as alternative representations of a real-world entity [AFM06]. In
this sense, a dirty database represents multiple possibly clean databases; each clean
database is derived from different EM and merging results. If we associate probabil-
ities to each record of the dirty database, the connection of this interpretation to the

A Framework for XML Similarity Joins 33

Chapter 2 Background

possible world semantics pervasively used by probabilistic DBMS is straightforward.
Furthermore, because a database containing duplicates is inconsistent, querying such
database is also strongly related to the problem of obtaining consistent query answers
from inconsistent databases [ABC99]. In fact, a consistent answer corresponds pre-
cisely to an answer in a probabilistic database that has a probability of 1 [AFM06].

Andritsos et al. [AFM06] modeled dirty databases as disjoint clusters of duplicates.
Clean databases are defined by selecting one record from each cluster. A value is asso-
ciated with each record that quantifies the probability of this record being selected to
be in the clean database (for non-duplicates the probability is 1, of course). Note that,
in this way, records from the same cluster are mutually exclusive and records from
different clusters are independent. This setting is known as the block independent-
disjoint representation model [DRS09]. The probability of a candidate clean database
is defined as the product of the probabilities of each of its records. For each cluster,
record probabilities are calculated by first building a cluster representative and then
measuring the similarity between each record and the cluster representative. The in-
tuition is that records that are closer to the cluster representative are more likely to
be in the clean database. Query answering over the dirty database is carried out by
rewriting the original query into another query that returns answers along with the
probability of the answers being in the clean database.

Beskales et al. [BSIBD09] extended the approach of [AFM06] by modeling the re-
sults obtained by different parametrization of the clustering algorithm. Specifically,
the authors employed a hierarchical clustering algorithm and obtained distinct set of
clusters by cutting the dendogram at different thresholds.

Cheng et al. [CCX08] introduced the PWS-quality, which employs a entropy-based
measure for quantifying the uncertainty of the answers returned by probabilistic
databases. In spirit similar to the work in [JFH08], the PWS-quality metric can be
used to guide user feedback by identifying a set of records that, when cleaned, will
lead to the highest quality improvement.

2.1.4 Similarity Join Use Cases

The above discussion on EM systems revealed a very complex landscape contain-
ing many alternative, sometimes contrasting, approaches. This diversity is partially
justified by heterogeneous viewpoints of the research communities which have been
involved with the EM problem. Another explanation relates to the fluctuating nature
of the concept of duplication: a pair of entities can be duplicates in one context, but
not in others [ZB06]. For example, two records can be interpreted as spurious dupli-
cates in a data warehouse, but as legitimate representations of multiple versions of an
entity in a revision control system. Hence, it is very unlikely that a single EM strat-
egy will be universally effective across all scenarios and the diversity of approaches
is rather a demand for handling the manifold facets of the duplication problem.

Despite the considerations above, it is still possible to distinguish commonsense
principles. In particular, the notion of similarity is ubiquitously employed as a fun-

34 A Framework for XML Similarity Joins

2.1 Entity Matching

(a) DNF query plan (b) Similarity join as Blocking component

(c) Similarity join as Matching component (d) Training set construction

Figure 2.3: Similarity join applications in a variety of EM scenarios

damental device for identifying duplicates. As a result, joining entities that are sim-
ilar is an operation of prime importance in EM systems. Further, because EM only
becomes a relevant problem in face of massive datasets, supporting large scale simi-
larity processing is fundamental. Thus, it is not a surprise that similarity joins are the
main workhorse of all modern EM systems.

We now emphasize the importance of similarity joins with examples drawn from
the EM strategies previously discussed. Figure 2.3 illustrates four different example
EM scenarios, which we discuss in the following.

Example 2.1. Query plans: A query plan composed by similarity joins and other operators
is shown in Figure 2.3(a). This example is based on the operator tree from Chaudhuri et
al. [CCGK07], which implements EM decision rules formulated in disjunctive normal form
(DNF). The plan basically consists of the union of two similarity joins. (Note that we use the
symbol

≈
./ to represent the similarity join operator.) Additionally, the left subtree contains data

transformation operators using external knowledge sources (a table of address synonyms).
Similar operator trees can be used to implement other kinds of decision rules represented as
propositional expressions accordingly [SB02, SK03].

Example 2.2. Blocking operator: Figure 2.3(b) illustrates the use of similarity joins for
blocking. The decision rule is now formulated as a thresholded linear combination as adopted

A Framework for XML Similarity Joins 35

Chapter 2 Background

by SVM and logistic regression models [BM03a, PC98]. Such formulations do not lend them-
selves to effective reduction of the comparison space. Similarity joins using an inexpensive
similarity function can be used to avoid performing the linear combination model over the
cross product of the two inputs. The output of Classification is a duplicate graph, on which
the Correlation Clustering algorithm is applied to correct matching inconsistencies.

Example 2.3. Matching operator: In Figure 2.3(c), the similarity join operator implements
the Matching component where the similarity join is used to construct a similarity graph.
Following the evaluation course, a hierarchical clustering algorithm is used to construct clus-
ters of duplicates that serve as input to a groupwise constraint satisfaction model as proposed
in [CSGK07]. Alternatively, the set of clusters can be used to create a probabilistic database
[BSIBD09].

Example 2.4. Training set construction: In the previous three examples, similarity joins
were used in the evaluation phase. Figure 2.3(d) illustrates their use to support classification
model design. Now, the similarity join is employed to construct a training set for a learning
approach. A meaningful training set for EM should contain representative examples of du-
plicates and non-duplicates. As observed in [SB02], it is often hard to find a challenging set
of non-duplicates, i.e., unrelated records that are likely to be erroneously classified as dupli-
cates. Typically, real-world datasets are highly skewed towards non-duplicates. As a result, a
training set constructed by randomly selecting a pair of records will be constituted mostly by
non-duplicates. A way to tackle this issue is employing a similarity join operator to comple-
ment the training set. By using a high threshold value, record pairs in the result are likely to
be duplicates. At the same time, any identified non-duplicate is likely to be a more challenging
example than a randomly selected record pair. This approach was proposed by Bilenko and
Mooney [BM03b] as an alternative to active learning methods [SB02, TKM02].

Effectiveness and efficiency are the principal concerns of similarity join algorithms.
Efficiency aspects are addressed in Chapter 5. Effectiveness is dictated by the under-
ling similarity function. We start our discussion on similarity functions in Section 2.3
and we describe how we will measure the result quality of similarity joins in Section
2.4.

2.2 XML Similarity Joins

Henceforth, we focus on XML data. Similarity assessment is especially difficult on
XML datasets, because structure, besides textual information, may embody varia-
tions in XML documents representing the same real-world entity. This aspect brings
a new quality dimension to the EM problem and, therefore, textual techniques de-
veloped for relational data are not sufficient. The following example illustrates this
observation.

Example 2.5. Consider the illustration in Figure 2.4, which shows an XML document frag-
ment containing hypothetical patient medical information. Although subtrees a) and b) refer

36 A Framework for XML Similarity Joins

2.2 XML Similarity Joins

exam

hospital

patient

description

name

mother

study

"Image CT"

"Bob"

"Alice"

id

"232"

exam

study

mother

id descriptionpatient

"Alic"

"222" "CT Image"name

"Rob"

relatives

a) b)

Figure 2.4: Example of a heterogenous XML document fragment

to the same patient’s exame, it would be extremely difficult for an EM application to correctly
identify them as fuzzy duplicates. The data in subtree a) is arranged according to patient,
while the data of subtree b) is arranged according to study. Further, there is the extra ele-
ment relatives in subtree a). Moreover, there are typos (e.g., ”Bob“ and ”Rob“) and use
of different abbreviation conventions between the content of the two subtrees (”Image CT“
and ”CT Image“).

Next in this section, we define our XML data model and introduce the related nota-
tion. Then, all assumptions about the input XML dataset are made explicit, before we
formally define the XML similarity join problem. Finally, we discuss differing XML
models adopted by related work.

2.2.1 XML Data Model

Following the common practice [BKS02, GJK+06, ABDG08], we model an XML doc-
ument as a rooted, labeled tree T (V, E). Each node u ∈ V is represented by a triple
(i, l, c), where i is the node identifier; l ∈ Σ is the node label, where Σ is a finite alpha-
bet of string literals; c ∈ S is the node’s textual content, where S is an infinite set of
string values. Let ε /∈ Σ, S represent the null symbol. Every node has an identifier that
is unique in the whole XML collection. Nodes can not have both label and textual
content. Nodes with a label are element nodes (c = ε); nodes with content are text nodes
(l = ε). A node with l = ε and c = ε is a null node. Given a node u, ς(u) corresponds to
the label of u, if u is an element node, or to u’s content, if u is a text node, or to ε if u is
a null node. When no confusion arises, we use u to represent an (text) element node
as well its (content) label; we also omit node identifiers. Given two nodes u and v, we
say that u = v iff both u and v are element (text) nodes and their labels (texts) are the
same.

Edges in E induce a binary relation on V , where each pair (u, v) ∈ E represents the
parent-child relationship between two nodes u, v ∈ V ; we say that node u is the parent

A Framework for XML Similarity Joins 37

Chapter 2 Background

of node v and v is a child of node u. A node with no children is a leaf ; if a leaf node
is an element node, we say that this element is empty. Text nodes are always leaves.
The number of children of an element node u is its fanout uf . A node can have only
one parent and nodes with the same parent are siblings. There exists only a single root
node in a tree T , denoted as root(T) ∈ V , which has no parent; we denote as T (u) the
(sub)tree rooted at node u. Let S (T) ⊆ V be the subset of element nodes of V , and
C (T) ⊆ V the subset of text nodes. We say that S (T) represents the structural part of
T , while C (T) represents the content part. The size of a tree T is the number of nodes
it contains, i.e., |T | = |V |.

A sequence of nodes 〈u0, u1, ..., un〉, for n > 0, is a path of length n, if uk is the parent
of uk+1 for 0 ≤ k < n. Alternatively, we will use the XPath notation to represent paths.
For example, u0/u1/u2 is a path of length 2. The level of a node u is the length of the
path from the root node to u. The height of a tree is the length of the longest path from
the root node to any of its leaves. If there is a path from u to v in the tree of size k > 0,
then we say that u is the ancestor of v at distance k (if k = 1 then u is the parent of
v; if k = height then u is the root node) and v is a descendant of u. Given two nodes
u and v, rel(u, v) returns their relationship, i.e., parent-child, ancestor-descendant, or
sibling9. Furthermore, we use a functional notation to denote attributes of a node.
For example, level(u) denotes the level of u, anc(u) its the set of ancestors, and so on.

We consider unordered and ordered trees. In unordered trees, only parent-child and
ancestor-descendant relationships are relevant, i.e., the children of a node u form a
set. In ordered trees, the left-to-right order among siblings is relevant, i.e., the chil-
dren of u form a sequence. For ordered trees, two siblings are contiguous if their
position from left to right is k and k + 1, respectively. Typically, unordered trees are
used to model data-centric XML, whereas ordered trees model document-centric XML
[ABDG08]. A preorder traversal of a tree visits parents before children, whereas a
postorder traversal visits children before parents; for both traversals, siblings are vis-
ited in left-to-right order and each node is visited only once. For ordered trees, a total
order on the nodes can be obtained by any tree traversal; in our model, the total or-
der induced by a preorder traversal corresponds to the document order defined on the
nodes of XML documents10.

Note that we use a simplified XML document model: we distinguish between ele-
ment nodes and text nodes, but not between element nodes and attribute nodes: each
attribute is child of its owning element, sorted by name, and appearing before all ele-
ment ”siblings. Finally, we consider only data of string type and disregard other node
types such as ID/IDREF attributes and Comment.

Example 2.6. Consider subtrees a) and b) in Figure 2.4. Both subtrees have root nodes labeled
as exam. The structural part of subtrees a) and b) are S (a) ={exam, patient, study, id,
description, name, relatives, mother} and S (b) ={exam, study, patient,

9In Chapter 6, we will see that the relationship between two nodes can be freely obtained by using a
node identifier scheme based on Dewey classification.

10In document order, element nodes are ordered according to the occurrence of their start tag in the
XML document [BBC+07].

38 A Framework for XML Similarity Joins

2.2 XML Similarity Joins

name, mother, id, description}— both sets are ordered according to preorder traver-
sal; the content part is C (a) ={”232“, ”Image CT“, ”Bob“, ”Alice“} and C (b) ={”Rob“,
”Alic“, ”282“, ”CT Image“}, respectively. The height of both subtrees is 4. The leftmost
path of subtree a) is exam/patient/study/id/”232“ and of subtree b) is exam/study/
patient/name/”Rob“.

2.2.2 Data Assumptions

Our framework aims at supporting similarity joins on non-schematic, heterogeneous
XML datasets. However, due to the semi-structured, self-describing nature of XML,
data and metadata can be arranged in very complex and unpredictable ways, even
in our simplified data model. Moreover, semantic heterogeneity — also a main con-
cern when dealing with structured data models — is exacerbated by the increased
modeling flexibility of XML. Therefore, some assumptions about the semantics and
arrangement of data items are necessary. These assumption are not too strong and, in
fact, many real-world heterogeneous XML datasets are already in suitable format for
our similarity join algorithms [LM09]. When this is not the case, data transformations
have to be applied (see Section 2.1.2) to meet the assumptions described next.

Common Vocabulary

We assume that element labels are drawn from a common vocabulary. We do not
address semantic matching of element nodes: labels are compared under the exact
matching paradigm. In this work, we focus on similarity matching of structure and
textual content. Operations used to support vocabulary integration such as schema
matching and schema mapping are processes as complex as EM itself; it would be
impractical to incorporate these operations into our similarity join framework, espe-
cially at the scale we have in mind. Note, nonetheless, that XML schema documents
can be very large, in particular, those based on the W3C XML Schema specification
[xml09]. Such schemas, very often designed for data validation, can be larger than
the data instances they describe [RDM04]. In this context, similarity join techniques
presented in this thesis can be used to support schema matching.

Tree-structured Entity Descriptions

We assume that all information needed to identify the entity of interest for match-
ing, i.e., the entitiy description, is contained in well-defined trees. In other words, to
compare an XML tree rooted at u with any other tree, we only consider node u and
its descendants; elements preceding or following u in document order — or, equiva-
lently, in preorder traversal — are not considered. This means that we only address
matching of entities represented by tree structures. For example, consider Figure 2.4.
We assume that all information describing each entity exam is contained in the node
exam and the nodes contained in it (i.e., patient, study, name, ”Bob“, etc.). When
entity description information is scattered in an XML document forming a (possibly

A Framework for XML Similarity Joins 39

Chapter 2 Background

disconnected) graph-like structure, structural transformations have to be applied to
rearrange it in a tree-structured representation before our similarity join algorithms
take place.

Entity descriptions can be represented by entire XML documents or document frag-
ments. For the latter, we assume mechanisms to identify and fetch the subtrees of
interest from an XML document. In Chapter 6, we will discuss such mechanisms in
the context of XTC. Further, we assume that the subtrees corresponding to document
fragments are identified by a common root node label, for example, the nodes with
label exam in Figure 2.4. In case of recursivity, i.e., nested occurrences of the root
node label, we consider only the topmost occurrence.

2.2.3 Problem Definition

A general tree similarity join takes as input two collections of XML documents (or
document fragments) and outputs a sequence of all pairs of trees from the two col-
lections that have similarity greater than a given threshold. The notion of similarity
between trees is numerically assessed by a similarity function used as join predicate
and applied to the specified node subsets of the respective trees.

Definition 2.1 (General Tree Similarity Join). Let C1 and C2 be two collections of XML
trees. Given two trees T1 and T2, we denote by sf (T1, T2) a similarity function on node sets
of T1 and T2, respectively. Finally, let τ be a constant threshold. A tree similarity join (TSJ)
between C1 and C2 returns all pairs (T1, T2) ∈ C1 × C2 such that sf (T1, T2) ≥ τ .

Note that the similarity function is applied to node sets instead of trees. When
comparing trees, we need the flexibility to evaluate their similarity using node subsets
that do not have containment relationships among them, e.g., node sets consisting
only of text nodes. When structure matters, the function rel(u, v) allows identifying
containment (and sibling) relationships between a pair of nodes.

2.2.4 Related Approaches

Our XML data model is very similar to the models adopted by Guha et al. [GJK+06]
and Augsten et al. [ABDG08]. Further, as noted before, similarity assessment on tree-
structured data conveys the notion of co-occurrence similarity: if two entities contain
similar subentities, then their similarity is increased. The main difference between
our approach and that of Ananthakrishna et al. [ACG02] (also Weis and Naumann
for XML data [WN05]) is that we do not assume structural homogeneity. Instead,
we incorporate the structural similarity in the overall similarity assessment. Finally,
notice that our model is very different (conceptually) from the collective matching
model used, for example, in [PMM+02] (see discussion in Section 2.1.3): we perform
pairwise matching and we only consider related entities that are involved in con-
tainment relationships, e.g., the similarity between two entities is not affected by the
similarity of their siblings. However, we emphasize that, similar to the examples pre-
sented in 2.1.4, our similarity join framework can still be used to support collective

40 A Framework for XML Similarity Joins

2.3 Similarity Functions

matching approaches. For example, our similarity joins can be used to construct the
initial similarity graph from which probability distributions can be derived.

2.3 Similarity Functions

The concept of similarity is closely related to the concept of duplication under the
reasonable and widely used assumption that duplicates are likely to be similar to
each other. The notion of similarity is captured by similarity functions. Informally,
similarity functions provide a numerical measure for the degree to which two enti-
ties are ”alike“ or ”close“. Similarity values are usually given in the interval [0, 1],
where 0 denotes ”no similarity” and 1 denotes “complete similarity“ or equality. The
dual notion is distance that quantifies the degree to which two entities are ”different“
or ”far away“. In this thesis, we loosely use the term ”similarity“ to refer to both
similarity and distance concepts. Note that, generally, similarity and distance values
can be easily converted into one another by applying a simple expression of the form
similarity = 1− distance.

Very frequently, the similarity between two entities is not apparent from their orig-
inal representation and operations have to be carried out to disclose it. Similarity
assessment typically involves three components: a) the selection of relevant informa-
tion from the given representation of an entity; b) the organization of this information
in a new representation, which we call entity description; c) the manipulation of two
entity descriptions to yield their similarity value. Component a) specifies in what
respects the similarity between two objects are evaluated. This is a crucial aspect be-
cause the concept of similarity is incomplete in nature: it needs a frame of reference
[MRLG93]. For example, two XML trees can be deemed as far apart or identical de-
pending on whether we consider the sibling order relevant or not. Component b)
provides a representation for the selected information that is suitable for processing
by component c). This division is not crisp, however. For instance, component c) can
directly operate on the original entity representation and implicitly select the rele-
vant information for similarity. Also, note that entity description corresponds the set
of comparison fields, which we discussed earlier in the context of EM on relational
data.

Similarity functions can be associated to any (combination of) of the components
described above. For example, the main aspect of a similarity function can be the tech-
nique used to select and generate the entitiy description or the algorithm employed
to produce the similarity value. Further, as already noted in Section 2.1.2, data trans-
formations are usually an integral part of similarity functions: they are implied in the
generation of the entitiy description as well as can be embodied in the calculation of
the similarity value (some transformations can be applied to the original entity rep-
resentation before using a similarity function, too). Moreover, as we will see shortly,
the very notion of similarity can be intrinsically connected to data transformation.

Despite the considerations above, it is not our objective here to provide a detailed
analysis of the concept of similarity. We refer the interested reader to [Ric08] for thor-

A Framework for XML Similarity Joins 41

Chapter 2 Background

Figure 2.5: The concept of edit distance

ough discussion of similarity in the context of several application areas. We also do
not aim to identify the best similarity function for the EM task. The choice of an
appropriate similarity function is dependent on the purpose for which similarity is
evaluated. In our case, the intended task is the identification of duplicates, which
is, again, context-sensitive. Moreover, previous efforts in identifying a ”silver bul-
let“ similarity function were unsuccessful [ZM98, CRF03]: no similarity function was
found to perform consistently well across all experimental domains. Therefore, we
focus instead on two classes of similarity functions that have been extensively used in
EM applications, namely edit-distance and token-based functions. In the following,
we describe these two classes; we defer most of the considerations about effectiveness
and efficiency as well other criteria to Section 2.3.3, where we analyze and compare
edit-distance and token-based similarity functions in the light of our XML similarity
join framework.

2.3.1 Edit-distance Similarity Functions

The similarity between two entities can be defined in terms of the ”amount of work“
to make them equal. This is the intuition behind the class of edit-distance similarity
functions. As illustrated in Figure 2.5, given a set of editing operations and a cost
model, the edit distance is obtained by the cheapest sequence of editing operations
that transforms one entity into the another. Editing operations are typically applied
to the original representation of entities, implicitly determining the information that
is considered for similarity evaluation. The cost model defines costs depending on
the editing operation or on the type of information involved. Generally, edit-distance
formulations define a metric, i.e., it satisfies the properties of symmetry, reflexivity, strict
positiveness, and triangle inequality [CNBYM01].

The string edit distance (SED) measures the distance between strings [Nav01]. In the
simplest form, SED operations are restricted to character insertion, character deletion,
and character substitution, and all operations have unit cost (equivalent to calculating
the number of editing operations); this formulation is popularly known as the Lev-
enshtein distance [Lev65]. Many variants have been proposed using different sets of
editing operations and cost models, e.g., variants allowing character transposition,

42 A Framework for XML Similarity Joins

2.3 Similarity Functions

movement of blocks of contiguous characters, and cost assigning based on character
position [GIJ+01, EIV07].

The classic algorithm for the Levenshtein distance is based on dynamic program-
ming. There have been improvements to this basic algorithm in terms of runtime and
space complexity. The fastest algorithms in practice employ a filtering strategy, some
of them using token-based methods that we discuss in the next section [Nav01]. Nev-
ertheless, dynamic programming algorithms, in general, have the merit of providing
a flexible framework to accommodate different sest of operations and cost models and
the classic algorithm is useful as an illustrative example for our discussion. Thus, we
review it here.

Given two string s1 and s2, we first construct a matrix M0...|s1|,0...|s2|. Then, the matrix
is filled recursively as follows:

Mi,0 = i
M0,j = j
Mi,j = if (xi = yi) then Mi−1,j−1

else 1 + min(Mi−1,j, Mi,j−1, Mi−1,j−1)

At each iteration, Mi,j stores the minimal number of operations to transform s1[1, ..., i]
into s2[1, ..., j]; therefore, at the end of the algorithm, the distance between s1 and s2

is given in M|s1|,|s2|.
The generalization of SED for tree-structured data is the tree edit distance (TED).

Tai [Tai79] introduced the basic TED formulation for ordered trees — operations con-
strained to node insertion, node deletion, and node relabeling, all operations under
a unit cost model — and provided a polynomial time algorithm. TED is inherently
harder than SED, because node relationships, e.g., ancestor-descendant and sibling
ordering, imply more data dependency thereby restricting the reuse of solutions to
subproblems in dynamic programming algorithms. For example, in the SED algo-
rithm above, if the characters at position i and j are equal, then we always have
Mi,j = Mi−1,j−1. For TED, node relationships may prevent an analogous implication
from holding [ZS89]. Nonetheless, improvements on Tai’s algorithm regarding run-
time complexity have appeared in [ZS89, Kle98, DMRW07]; all these algorithms can
be categorized in terms of the cover strategy framework defined in [DT03].

As for SED, there is a plethora of variants of TED employing different sets of edit-
ing operations and cost models, e.g., allowing insertion and deletion on leave nodes
only and subtree movements and operation costs proportional to the fanout of the
involved nodes. In Chapter 3, we analyze several TED variants as well as approxi-
mations thereto employing token-based methods.

Of course, besides the set of edit operations and cost model, other aspects can be
embedded in the algorithmic details of edit-distance functions. For example, the ver-
sion of TED for unordered trees is actually an algorithm different from that for or-
dered trees, that can be defined over the same edit operations and cost model. Nev-
ertheless, despite of assuming a common algorithmic framework, the abstraction of
edit distances depicted in Figure 2.5 is still useful to guide our discussion, in partic-

A Framework for XML Similarity Joins 43

Chapter 2 Background

Figure 2.6: Token-based similarity functions

ular, for the comparison between edit-distance and token-based similarity functions
presented in Section 2.3.3.

We now formally define the general edit distance (GED) and the general edit simi-
larity, a similarity function defined in terms of GED.

Definition 2.2 (General Edit Similarity). Given two entities e1 and e2, the edit distance
ED(e1, e2) between them is the minimal cost of a sequence of edit operations that trans-
forms e1 into e2. There is a finite number of edit operations; each operation is of the form
ed(σ1, σ2) = c, where σ1 and σ2 are results of selections of units of information over an en-
tity (e.g., characters, nodes, and subtrees) or the null symbol ε, and c is a non-negative real
number defining the cost of the operation. The cost of a sequence is the sum of the costs of the
individual operations. Let |e| be the size of an entity according to its smalles unit of infor-
mation under consideration (e.g., given by the number of characters in a string or nodes in a
tree). The general edit similarity between e1 and e2 is defined as follows.

GES (e1, e2) = 1− ED(e1, e2)

max (|e1|, |e2|)
(2.6)

2.3.2 Token-based Similarity Functions

Many similarity functions unfold two basic operations: a) transformation of entities
of interest into sets containing the smallest units of information, which we call hence-
forth tokens, and, afterwards, b) assessment of their similarity based on the number
of tokens they have in common; additionally, prior to b), c) weights can be associated
with tokens to quantify their relative importance. We refer to operation a) as tokeniza-
tion, b) as set-overlap measurement, c) as weighting, and similarity functions employing
these operations as token-based similarity functions11. Figure 2.6 depicts the course

11Alternatively, such functions can be referred to as set-overlap-based similarity functions [RH08b]. The
choice is based on which operation is emphasized: tokenization or set-overlap measurement.
Therefore, here and in Chapters 3 and 4, we shall use the term token-based. In Chapter 5, we
switch to set-overlap-based, as we focus on the set-overlap measurement operation.

44 A Framework for XML Similarity Joins

2.3 Similarity Functions

of a token-based similarity function along its three components towards a similarity
value. We discuss each of these components in the following.

Tokenization

Tokenization is essentially a method for selecting and organizing relevant pieces of
information from entities. It can be applied to the content part of an XML document,
its structural part, or both, to capture information such as patterns in strings and node
relationships. The key idea behind tokenization methods is that most of the tokens
derived from significantly similar entities should agree accordingly. As a result, the
token sets of two similar entities would only have a large overlap and, in turn, a high
similarity value.

Tokenization is carried out by a tokenization function which splits an entity into a
set of tokens. We denote by tok [ρ1, . . . , ρn] a tokenization function, where ρ1, . . . , ρn

are free parameters; given an entity e, we refer to the set of tokens tok [ρ1 , . . . , ρn](e)
as the tok [ρ1, . . . , ρn] profile of e. Whenever clear from the context or unimportant for
the discussion, we will omit the list of parameters of a tokenization function, i.e.,
referring to the corresponding set of tokens as the tok profile of a entity e, or even
omit the tokenization function altogether (e.g, simply saying the profile of e). In the
latter case, we denote by P an arbitrary profile.

Further, we denote by t1 ◦ t2 the concatenation of two arbitrary tokens t1 and t2.
The symbol ◦ denotes a special pattern that cannot be derived from an entity by any
tokenization or transformation method. Thus, we have t1 ◦ t2 = t3 iff t3 represents the
concatenation of tokens t′1 and t′2 and t1 = t′1, t2 = t′2.

We now discuss tokenization functions for content and structure with emphasis
on the former. Several structural tokenization functions are presented and evaluated
in Chapter 3. The generation of tokens that jointly capture textual and structural
information is introduced in Chapter 4.

The concept of q-grams is a well-known approach to tokenize strings [Ukk92]. In-
formally, a q-gram is a substring of size q. We denote by qgram[q] the tokenization
function that maps a string s to the profile qgram[q](s). There are several ways of
splitting a string into a set of q-grams — hence, several variants of the qgram func-
tion exist; many of these techniques are designed for filtering-based SED algorithms
[Nav01]. For token-based methods, the common procedure consists of ”sliding“ a
window of size q over the characters of s. It results in the following profile cardinal-
ity: |qgram[q](s)| = |s| − q + 1.

Example 2.7. Consider the strings s1 = Kaiserslautern and s2 = Kaserslatern. Their
qgram[3] profiles profiles are:
qgram[3](s1) ={’Kai’, ’ais’, ’ise’, ’ser’, ’ers’, ’rsl’, ’sla’, ’lau’, ’aut’, ’ute’, ’ter’, ’ern’},
qgram[3](s2) ={’Kas’, ’ase’, ’ser’, ’ers’, ’rsl’, ’sla’, ’lat’, ’ate’, ’ter’, ’ern’}.

The value of q presents a trade-off between efficiency and effectiveness. Higher
values of q are likely to result in less frequent grams for a dataset — the frequency

A Framework for XML Similarity Joins 45

Chapter 2 Background

Figure 2.7: q-grams affected by editing operations, q-2 and q=3

of a string cannot be higher than that of any of its substrings. Intuitively, it leads to
fewer strings having a q-gram in common and, thus, more comparisons can be safely
avoided (because empty profile overlap means ”no similarity“). In Chapter 5, we de-
scribe methods that exploit token frequency, token set size, and the threshold value
to reduce even more the number of set-overlap calculations. Unfortunately, the accu-
racy normally drops as the value of q increases. To see why, observe that the number
of q-grams ”destroyed“ in qgram[q](s) due to edit operations on s is related to the
value of q: O(kq) q-grams are destroyed after k edit operations [Ukk92]. Figure 2.7
illustrates this aspect for q = 2 and q = 3. Thus, higher values for q penalize more
character mismatches; as q increases, q-gram-based similarity gets closer to equality
comparisons. It has been empirically observed that q = 2 and q = 3 give the best
accuracy results [CHK+07]. Note that for q = 1, different strings containing identical
(multi-) sets of characters have the same qgram profile and, hence, maximum simi-
larity. For q > 1, more complex patterns are required to get this (unwanted) effect
[Ukk92]12.

It is common to (conceptually) extend a string s by prefixing and suffixing it with
q−1 null symbols. Therefore, all characters in s participate in exact q q-grams and mis-
matches at any position of s are uniformly weighted. In addition, all white spaces be-
tween two words can be replaced by q−1 null symbols [CHK+07]. As a result, q-gram
similarity is made fully insensitive to word ordering, e.g., ”Leonardo Ribeiro“ =
”Ribeiro Leonardo“. Again, such approaches trade efficiency for accuracy. Addi-
tional characters result in larger sets and therefore more processing overhead.

Structural tokenization functions operate on element nodes. The most basic func-
tion consists of collecting all element node labels of a tree in a bag of labels, thus
ignoring all the tree structure. We call this tokenization function labels . More elabo-
rate methods exploit parent-child, ancestor-descendant, and sibling relationships. We
give an example of a tokenization function based on the parent-child relationship in
the following.

12Note that, therefore, token-based similarity functions define a pseudo-metric, because strict positive-
ness does not hold.

46 A Framework for XML Similarity Joins

2.3 Similarity Functions

Example 2.8. Consider a structural tokenization function parchild which collects all pairs of
element nodes involved in parent-child relationships. The parchild profiles of the subtrees a)
and b) shown in Figure 2.4 are:
parchild(a) ={exame ◦ patient, patient ◦ study, study ◦ id, study ◦ description,
patient ◦ name, patient ◦ relatives, relatives ◦ mother},
parchild(b) ={exame◦study, study◦patient, patient◦name, patient◦mother, study◦
id, study ◦ description}.

Weighting Schemes

In many domains, tokens show non-uniformity regarding some semantic properties,
such as discriminating power. In fact, previous work consistently revealed that not
all tokens are equally important for similarity evaluation [SM83, Jon72, CHK+07].
The process of quantifying this importance is referred to as weighting and the method
employed for assigning weights to tokens is called weighting scheme. In other words,
a weighting scheme ws converts a profile P = {t0, . . . , tn} into a weighted profile
ws(P) = {〈t0,w(t0)〉, . . . , 〈w(tn)〉}, where w(t0) is the associated weight of token ti.

Common wisdom from the IR field dictates that tokens appearing very frequently
in a collection of documents contribute to the discrimination of them to a lesser de-
gree, whereas rare tokens usually carry more content information and are more dis-
criminative. Such observation is in accordance with the frequency-based approxima-
tion of Newcombe et al. in the EM context, as observed before. The inverse document
frequency (IDF) weighting scheme is popularly used to capture this intuition. The idf
weight of a token t is inversely proportional to the total number of trees freq(t, C), in
which t appears in a collection C.13 A typical idf formulation is given by:

idf (t) = ln(1 +
|C|

freq(t, C)
) . (2.7)

The term frequency (TF), i.e., the frequency of a token in a tree, is also used for
weighting. Given a token t appearing freq(t, T) times in a tree T , its tf weight can be
computed as follows:

tf (t) = 1 + ln(freq(t, T)) . (2.8)

The product of both term statistics constitutes the well-known TF-IDF weighting
scheme. Several other weighting schemes have been successfully used in IR. In par-
ticular, we mention the Okapi BM25 [RW94], which is based on probabilistic retrieval
models. An adaptation of Okapi BM25 to XML data is presented in [TSW05].

The utility of the tf weight for string-to-string similarity comparison has been ques-
tioned [HCKS08]. In IR, a user-formulated query is compared to normally much
larger documents and it is reasonable to consider the frequency of a query token in a

13Note that we have overloaded freq(t, C). In Section 2.1.1, freq(v, C) denotes the frequency of value
in a collection C, whereas, here, freq(t, C) denotes the number of trees in which a token appears,
irrespective of how many times it occurs in each tree.

A Framework for XML Similarity Joins 47

Chapter 2 Background

document as an indication that the document is relevant to the query. However for
string-to-string comparison, the intuition is just the opposite: frequency discrepancy
of the same token present in two strings should decrease their similarity. Moreover,
EM systems usually perform comparisons on much shorter strings, e.g., author name
fields. A simple solution consists of converting a profile P , composed by a bag of
tokens, into a profile Pa, composed by a set of annotated tokens, by concatenating the
symbol of a sequential ordinal number to each occurrence of a token. For example,
profile P = {a, b, b} is converted to Pa = {a ◦ 1, b ◦ 1, b ◦ 2}. For annotated tokens, we
have freq(t, T) = 1,∀t; thus, their tf-idf weights are determined by the idf weight only.
Furthermore, divergence in term frequencies of a token will penalize the similarity
of the related strings by a stronger degree, because subsequent occurrences of the
referenced token have decreased the document frequency in a collection (and, there-
fore, increased the idf weight). Unless stated otherwise, we use annotated profiles
(without indication in the subscripts).

Set-overlap Measurement

Tokenization delivers an XML tree represented as a set of tokens. Afterwards, similar-
ity assessment can be reduced to the problem of set overlap, where different ways to
measure the overlap raise various notions of similarity. Fortunately, there are several
set-overlap similarity measures available; most of them can be rewritten into equiv-
alent set-overlap predicates [SK04, CGK06]. Next, we formally define the Jaccard,
a widely used set-overlap similarity measure and its version for weighted profiles.
We present the corresponding set-overlap predicate for Jaccard as well as for other
measures in Chapter 5.

Definition 2.3 (Jaccard Similarity (JS)). Let P1 and P2 be two profiles. The Jaccard simi-
larity (JS) of P1 and P2 is defined as follows:

JS (P1,P2) =
|P1 ∩ P2|

|P1|+ |P2| − |P1 ∩ P2|
. (2.9)

Definition 2.4 (Weighted Jaccard similarity (WJS)). Let ws(P1) be a weighted profile and
w(t,ws(P1)) be the weight of a token t in ws(P1). Let the weight of ws(P1) be given by
w(ws(P1)) =

∑
t∈ws(P1) w(t,ws(P1)). Similarly, consider a profile ws(P2). The weighted

Jaccard similarity (WJS) of ws(P1) and ws(P2) is defined as follows:

WJS (ws(P1),ws(P2)) =
w(ws(P1) ∩ ws(P2))

w(ws(P1)) + w(ws(P2))− w(ws(P1) ∩ ws(P2))
, (2.10)

where the set overlap of ws(P1) and ws(P2) is given by:

w(ws(P1)) ∩ ws(P2) =
∑

t∈ws(P1)∩ws(P2)

min(w(t,ws(P1)),w(t,ws(P2))) . (2.11)

48 A Framework for XML Similarity Joins

2.3 Similarity Functions

In the definition above, minimum (min) is used to aggregate varying token weights
across different profiles. This situation happens, for example, when the weights are
normalized like in [HCKS08]. Another example is the weighting scheme presented
in Section 3.2.1.

Example 2.9. Consider the strings s1 = Kaiserslautern and s2 = Kaserslutern and their
respective qgram profiles qgram[3](s1) and qgram[3](s2) shown in Example 2.7. Therefore,
we have:

JS (s1, s2) =
6

12 + 10− 6
= 0.375 .

2.3.3 Edit-distance vs. Token-based

We now compare edit-distance and token-based similarity functions in the context
of XML similarity joins. We identify four main criteria for comparison: effectiveness,
efficiency, versatility, and text and structure combination, which we shall discuss in this
order. Note that these criteria are mostly interrelated. Hence, despite discussing
each criterion separately, we make some cross-references when necessary. Finally, we
present the summary of our comparison.

Effectiveness

Effectiveness is the ability of a similarity measure to capture a given notion of similar-
ity thereby determining the quality of the results reported. This is the most important
criterion. Our discussion is based on reported results from previous work; details
about the metrics and assumptions used in our own effectiveness measurements are
deferred to the next section.

By far and large, edit-distance functions have been explored under the unit-cost
model and using a basic set of editing operations — insertion, deletion, substitution
(or relabeling for trees), and transposition. For textual similarity, SED performs very
well for capturing typographical errors such as misspellings. However, it is typically
ineffective for other kinds of mismatches, especially those due to word transposi-
tions. Hence, it is problematic for non-standardized or unstructured text. TED may
also exhibit poor performance on some data. For example, insertion and deletion op-
erations change the tree structure, which have side effects on other nodes. This may
lead to non-intuitive results [ABG10]. Many of these shortcomings can be mitigated
by extending the set of operations allowed or employing non-uniform cost models.

In general, token-based functions have been shown to provide competitive accu-
racy results with edit-distance methods [CRF03, CHK+07, ABG10]. Further, weight-
ing schemes can be used to regard the relative token importance for similarity and
improve the quality. A drawback of token-based methods is that, sometimes, differ-
ent entities may yield the same token set leading to an erroneous maximum similarity
result.

A Framework for XML Similarity Joins 49

Chapter 2 Background

Efficiency

Efficiency refers to the algorithmic complexity of the similarity function in terms of
space and execution time. In addition, it is also important how the similarity function
lends itself to optimizations such as derivation of bounds, partitioning, or indexing.

The best runtime complexity for SED is O(kn) for k errors and strings of size n
[Nav01]. For ordered trees, the current best result is in O(n3) for trees with n nodes
[DMRW07]; algorithmic improvements can be obtained by restricting the set of edit
operations or sequence of operations that can be applied to a tree (e.g., [NJ02]). For
unordered trees, TED has been to shown to be NP-hard [ZSS92]; a heuristic solution
in O(n3) is presented in [CGM97].

Token-based methods are computationally much more efficient. Tokenization and
weighting can be carried out in a single pass over the string or tree. The dominant
time cost pertains to overlap measurement, whose runtime complexity is O(nlogn)
using sorting or even O(n) if hash structures are used. The space complexity of token-
based functions is O(n). Because of its time and space efficiency, token-based meth-
ods are frequently used to approximate edit distances. For example, token-based
approximations for TED on ordered and unordered trees are presented in [ABG10]
and [ABDG08], respectively.

When dealing with large datasets, minimizing the number of pairwise similarity
computations is more important than efficiently computing the similarity function.
A common method for pruning candidates in edit-distance joins is based on token-
based methods [GIJ+01, YKT05], as mentioned before. Another popular approach
consists of exploiting the metric properties of edit distances to map entities from
the original metric space into a vector space; afterwards, multi-dimensional access
methods (e.g., R-Trees) can be used to save distance calculations [JLM03, GJK+06].
However, note that such methods require the pivots being selected from the same
universe, i.e., from the combination of all source datasets. Clearly, it might be im-
practical in Web-scale scenarios such as dataspace systems.

For token-based methods, index structures such as B-trees and inverted lists are
commonly employed to efficiently find all sets that share at least one token; irrele-
vant pairs (with empty token set overlap) are never considered. Furthermore, there
is a wealth of techniques for aggressively pruning the comparison space including:
signature schemes [AGK06], exploitation of token and set collection ordering [SK04,
CGK06, BMS07], pruning using overlap and size bounds [XWLY08, SK04, AGK06],
dimension reduction [Bro97] methods, and index reduction techniques [BMS07, RH09].

Versatility

It is well-known that no single similarity function is the best for all applications and
scenarios (e.g., see [CRF03] for string similarity functions). Hence, it is very desirable
to have a rich similarity space, in which different notions of similarity can be easily
obtained by changing simple parameters.

Edit distance methods deliver different notions of similarity by varying the set of

50 A Framework for XML Similarity Joins

2.3 Similarity Functions

edit operations allowed (e.g., transposition of characters, subtree deletion and inser-
tion) or by changing the cost model (e.g., cost of changing 0 to O might be smaller or
the cost for changing nodes at lower nesting levels might be larger). While it is rel-
atively easy to accommodate different editing operations and cost models for SED
onto a common (dynamic programming-based) foundational component [Nav01],
the same cannot be assumed for TED. For example, the version presented in [NJ02],
which allows subtree operations, considerably differs in algorithmic details from
Zhang and Shasha’s version [ZS89] only allowing node-level editions. Thus, identify-
ing a generic abstraction between such algorithms to uniformly and flexibly support
different editing operations and cost models is difficult.

The three components of token-based functions — tokenization, weighting, and
overlap measurement — are fully independent. Thus, they can be freely combined
to obtain different notions of similarity. Moreover, their computation can be per-
formed in a pipelined fashion, and therefore it can be conveniently performed within
database query engines.

Text and Structure Combination

Specific for tree-structured data, this criterion refers to the ability of a similarity func-
tion to evaluate textual and structural similarity in a unified way. This aspect is crucial
for performing a combination of evidence smoothly and efficiently.

For both classes of similarity functions, it is possible to employ the score-based or
rank-based combination approaches (see Section 2.1.2). Guha et al. [GJK+06] pro-
posed incorporating SED inside the TED algorithm as an additional function call if
the data is of string type. In this context, it is conceivable to devise a cost model in-
corporating both structural and textual operations. Of course, this approach implies
increased time complexity to the already expensive TED computation.

For token-based approaches, text and structure combination can be performed at
the token level without imposing significant overhead owing to separate subroutines
or operators. The tokenization operation can produce profiles containing structural
and textual tokens and weighting schemes can be employed to account for the relative
token importance; similar approaches have been used in XML retrieval [CMM+03].
In this connection, we can produce tokens that jointly capture structural and textual
information and, thus, combine both aspects of similarity into a single measure.

Comparison Summary

Token-based and edit-distance similarity functions have been shown to provide com-
parable effectiveness, the most important criterion. Regarding efficiency, token-based
functions are overwhelmingly superior. In fact, token-based approaches are widely
used as filters in distance joins that employ edit-distance functions in the similarity
predicate. More importantly, token-based methods allow much more opportunities
for saving similarity calculations. Further, token-based functions provide more flex-
ibility to accommodate several notions of similarity in a common framework as well

A Framework for XML Similarity Joins 51

Chapter 2 Background

as to combine evidence from textual and structural similarity. Therefore, the class of
token-based similarity functions is our method of choice for designing effective, effi-
cient, and versatile XML similarity join algorithms and shall be our focus henceforth
in this thesis.

2.3.4 Token-based Similarity Function Notation

A token-based similarity function is defined by the triple 〈tok ,ws , ss〉, where tok is
a tokenization function, ws is a weighting scheme, and ss is a set-overlap similarity
measure. Further, we can define classes of token-based similarity functions by let-
ting one or two elements of the triple unspecified. For example, 〈tok , , 〉 defines
the class of token-based similarity functions using tok together with any weighting
scheme and set-overlap measure. The weighting scheme is the only element that can
be absent, i.e., ws = ε. Of course, ws and ss are partially correlated: when a weight-
ing scheme is given, ss must be a set-overlap similarity measure for weighted sets;
otherwise for unweighted sets.

We focus on the tokenization function for most of the token-based similarity func-
tions presented in Chapters 3 and 4, i.e., we focus on the class defined by 〈tok , , 〉.
Moreover, in such cases, we denote by TOK a class of similarity functions using tok
as tokenization function (the name of tokenization function in uppercase); the corre-
sponding similarity value between trees T1 and T2 is therefore given by TOK (T1, T2).

2.4 Quality Measurements

We now describe in detail the methods used in this thesis for measuring the effec-
tiveness of similarity functions and, in turn, similarity joins in identifying duplicates.
Quantifying the quality of similarity function results involves several subjective de-
cisions. For example, what properties of the results are important to measure? What
are the assumptions behind the choice of a given property and a corresponding mea-
sure? Therefore, before presenting evaluation metrics that objectively quantify some
desired property, we will justify the choice of this property. This section is dedicated
to effectiveness measurements. Efficiency measurements considered in this thesis are
based on more straightforward and inherently quantifiable properties, such as run-
time performance, and will be addressed in Chapter 5.

2.4.1 Experimental Approach

First and foremost, we have to consider what are the utilities of similarity functions
in the EM context. In this vein, an obvious utility is to support (correct) matching
decisions. Another closely related aspect is the amount of human effort required. The
task of identification of duplicates is intrinsically semi-automatic. Therefore, besides
support of automatic decisions, it is also important that similarity function results
contribute to maximize the efficiency of the activities requiring human interaction.

52 A Framework for XML Similarity Joins

2.4 Quality Measurements

Following the terminology used in [ZB06], we refer to the assumption allowing a
particular kind of evidence to be used to support a hypothesis of utility as warrant.

Similarity functions are employed in similarity join predicates together with a con-
stant threshold. Hence, an intuitive warrant is that a similarity function is useful to
support matching decisions when it yields higher similarity values for pairs of dupli-
cates than for pairs of non-duplicates: if so, one can specify a threshold to separate
duplicates from non-duplicates. We will evaluate similarity functions in isolation as
well as in combining approaches. For the first case, while it has been shown that
the most successful combinations do not necessarily include the best set of similarity
functions — for example, the independence between similarity functions is an impor-
tant criterion [PC98, OC03] — , it is reasonable to assume that the best performing
similarity function will be nevertheless present in any combining formulation.

We will use standard IR evaluation measures [SM83]. Moreover, despite our focus
on similarity joins, we will report experiments conducted in a similarity selection set-
ting: we consider a tree from a dataset as a query and the number of true duplicates
of this tree as the set of relevant answers. Similarity selection can be viewed as the
special case of similarity join where one of the join partners has only one entry. We
did not observe any significant deviation from the result obtained in a similarity join
setting (e.g., [BM03b]); all results followed identical trends. We use a similarity se-
lection setting for the following reasons. First, it is more straightforward to use IR
evaluation measures. Although evaluating similarity join results is useful to reveal
the best threshold value in terms of accuracy, the selection of thresholds is not our fo-
cus in this thesis. Second, and more importantly, we view the order of the results, i.e.,
the ranking, as a very important aspect in an EM scenario. In particular, the relative
ordering between duplicates and non-duplicates has influence on the user interaction
and performance as we will discuss shortly. Some evaluation measures for ranked re-
sults are more easily calculated using similarity selection. Indeed, we will not use any
threshold parameter in our experiments and, therefore, the rank returned is complete.

To evaluate the accuracy of similarity functions, we need golden-truth datasets, i.e.,
datasets in which all duplicates are identified. We will use publicly available real-
world XML datasets (e.g., DBLP [dbl09]) as source datasets. Golden-truth datasets
are derived by generating data containing artificially generated duplicates. To this
end, we produced duplicates by performing transformations on content and struc-
ture of XML subtrees. We kept track of all duplicates generated from each subtree;
those duplicates form a partition and carry the same identifier called duplicate ID.
Details about the datasets and the methods for duplicate generation used for the ex-
perimental evaluation are presented in the upcoming chapters.

2.4.2 Evaluation Measures

We are now ready to present the evaluation measures. For all measures, we will
compute the mean over a set of queries. Unless explicitly stated otherwise, we use a
query workload of 100 queries.

A Framework for XML Similarity Joins 53

Chapter 2 Background

First, let us provide some notation. Given a collection of XML trees C, let T ∈ C
be a query tree, an XML tree used as similarity selection predicate, and RT ⊆ C be
the set of trees returned in the result. Accordingly, let DT ⊆ RT be the subset of
duplicates of T in the result and NT ⊆ RT the subset of non-duplicates. We will also
use other subsets of RT . Let Rp|T ⊆ RT generally represent the subset of RT satisfying
the predicate p. Note that Rp|T further induces the subsets Dp|T and Cp|T .

Most evaluation measures presented here are build upon the basic concepts of pre-
cision and recall. We begin with measures that directly quantify these concepts.

The intuitive warrant of precision is that of exactness of the results. We define the
precision of the result of a query tree t as follows:

Pr(T) =
| DT |
| RT |

(2.12)

The warrant of recall is that of completeness of the results. We define the recall of the
results of a query tree T as follows:

Re(T) =
| DT |
| D |

(2.13)

Precision and recall can then be plotted together in the so called precision-recall
graph, which allows to observe precision results at different recall levels — we de-
note the precision at recall value re by Pr(T, re). However, analyzing precision-recall
graphs is problematic, because precision values are not exactly defined at a given
recall level, i.e, we can have different precision values at a same recall level. The op-
posite is also true when precision is 1.0. Moreover, it is also difficult to compute the
average of a set of queries results. For this reason, we calculate interpolated precision
values: the interpolated precision at a recall level re is given by:

Pri(T, re) = max
re′≥re

Pr(T, re′) (2.14)

In our experiments, we will report the 11-point interpolated average precision, i.e, the
average of the interpolated precision at recall levels 0.0, 0.1, ..., 0.9, 1.0.

It is also useful to analyze precision and recall values combined into a single expres-
sion. The standard way of combining precision and recall is by taking their harmonic
mean, the so-called F1 measure. To adapt F1 for ranked results, we define RT ′|T as the
subset of RT formed by T ′ and all other trees ranked before T ′. Precision and recall
for RT ′|T are denoted by Pr(T, T ′) and Re(T, T ′), respectively. The maximum F1 value
over the elements in RT , denoted as MF1 is defined as follows:

MF1 (T) = max
t′∈RT

2× Pr(T, T ′)× Re(T, T ′)

Pr(T, T ′) + Re(T, T ′)
(2.15)

We consider the evaluation of the relative ranking positions of duplicates and non-
duplicates. To this end, a popular measure is the average precision, denoted by AP(t),
which returns higher values when duplicates are in top positions. Besides automatic
classification, we view support of human interaction as a warrant of this measure.

54 A Framework for XML Similarity Joins

2.5 Summary

As we discussed earlier, in many EM scenarios, automatic classification is practically
ruled out due to the high cost of misclassification. In the absence of more sophisti-
cated supporting mechanisms for user feedback (see Section 2.1.3), the natural pro-
cedure is to select only the most similar candidate pairs for manual classification,
i.e, candidates at top positions in the ranking. The average precision is defined as
follows:

AP(T) =
1

| DT |
×

∑
T ′∈DT

Pr(T, T ′) (2.16)

In our experimental charts, we will report the mean of AP values over query work-
load as MAP.

The performance of a similarity function under all the above measures hinges to a
variable extent to its ability of delivering higher similarity values for pairs of dupli-
cates than for pairs of non-duplicates. We call this property of similarity functions
monotonicity. We now define a novel measure that explicitly quantifies the mono-
tonicity property as follows:

Mon(T) =
1

| DT | × | CT |
×

∑
T ′∈D

| CT \ CT ′|T | (2.17)

Similar to AP , the Mon measure returns the highest value when all duplicates are
ranked before all non-duplicates. However, AP emphasizes ranking of duplicates at
the very top positions. In contrast, Mon uniformly weights duplicate pairs that are
ranked higher than non-duplicates, in whatever position. Besides quality of results,
the monotonicity property has been exploited to formulate efficient query plans for
EM [CCGK07]14.

Note that the measures above do not account for the presence of tied similarity
values in the results. Tied scores may affect the accuracy of the evaluation mea-
sures, because they impose only a partial ordering on the result set; as a result, there
are multiple possible orderings, each one leading to a different measurement result.
Variants of several measures used here that regard the presence of ties are presented
in [MN08]. We evaluated these variants in our experiments and observed identical
trends. Therefore, we report only the results for original measures.

2.5 Summary

In this chapter, we presented background material for the upcoming chapters in this
thesis. We provided an extensive overview of the EM problem. We started by dis-
cussing early work in this area and identifying its main influential ideas. From this

14The work in [CCGK07] defines the monotonicity property in terms of a set of similarity functions
and in a binary fashion: it is required that any pair of duplicates has a higher similarity value than
a non-duplicate on at least one similarity function.

A Framework for XML Similarity Joins 55

Chapter 2 Background

discussion, we derived a general EM framework that we used as reference for re-
viewing modern EM approaches. More recent work representing a more marked
departure from classical EM approaches was discussed as well. The importance of
similarity joins in the EM context was highlighted in several examples. We then con-
centrated our discussion on XML similarity joins. We presented the XML data model
and discussed some assumptions needed before providing the formal definition of
the XML similarity join problem. Further, we discussed the most important classes
of similarity functions for EM applications: edit-distance and token-based similarity
functions. We compared these two classes and found token-based similarity func-
tions superior according to relevant criteria for the context of our work. Finally, we
presented our strategy and methods that will be used in this thesis for measuring the
effectiveness of our algorithms.

56 A Framework for XML Similarity Joins

Chapter 3

Similarity Functions for XML
Structure

The structure of XML data conveys valuable information for distinguishing docu-
ments in a collection from each other. In the relational world, data is regular and
homogeneous. The underlying structure has no discriminating power; indeed, struc-
tural information (or metadata) is stripped away from the data itself and stored in a
separate catalog. XML, on the other hand, can be used to represent semi-structured
data; this means that the data can be irregular, heterogeneous, and incomplete. In
such cases, it is not possible to specify a fixed schema in advance. Moreover, descrip-
tion of the structure of the data is represented with the data itself, i.e., the data is self-
describing. This latter aspect means that the distinction between data and structure
is blurred in XML. As a result, very frequently, a considerable part of the information
about an entity is embodied in its structure. Furthermore, from a semantic viewpoint,
structure has special importance regardless of its discriminative power. For example,
two XML documents having a completely different structure would certainly be clas-
sified as non-duplicates. Therefore, structural information represents an important
feature of XML data that cannot be ignored by EM tasks.

As for strings, XML data representing the same entity can present slightly deviat-
ing structures. We view duplicate XML documents that exhibit structural discrepancy
as modeling variants of each other. In the EM context, the aim of a structure-conscious
similarity function is therefore to numerically quantify such variations. This informa-
tion is then be used to compose the overall similarity between XML documents and,
ultimately, classify them as duplicates or non-duplicates.

A related problem is that of identifying XML documents that have been generated
by the same DTD [NJ02, FMM+05, DCWS06, Hel07]. We refer to this problem as
the common DTD identification problem (CDI problem, for short). In this regard, the
main desideratum for similarity functions is the identification of mismatches in el-
ement definitions. Also, the similarity evaluation is expected to be less sensitive to
divergences in the number of occurrences of subtrees, because they may be due to
elements declared as optional or allowing multiple occurrences. In EM, on the other

57

Chapter 3 Similarity Functions for XML Structure

hand, while it is reasonable to assign lower similarity to XML trees that are likely to
induce different DTD definitions, neglecting subtree occurrence mismatches can pro-
duce non-intuitive similarity results. For example, consider two trees T1 and T2 from
a bibliographic database representing information about articles; T1 contains one sub-
element author whereas T2 contains five. Although T1 and T2 may well have been
generated by the same DTD, the evidence that they are duplicates is weaker. Clearly,
a similarity function that ascertains a high similarity to T1 and T2 would contradict
the notion of co-occurrence similarity discussed in Chapter 2. We empirically eval-
uate this conjecture later in this chapter as we analyze the effectiveness of several
approaches originally proposed for CDI in the EM context.

A more general problem is clustering XML documents by structure. Similarity
functions employed to deal with this problem can be used in EM as well—as already
mentioned, EM can be modeled as a clustering task that groups duplicate entities.
In this context, Dalamagas et al. [DCWS06] applied TED on structural summaries of
XML documents; a tokenization approach akin to the parent-child method illustrated
in Chapter 2 is employed (on graph-represented XML trees) by Lian et al. [LCMY04].
Some work exploits frequent structural patterns to derive shorter tree representations
(e.g., see [ATW+07]). This approach is similar in spirit to the feature selection tech-
niques based on document frequency (see [YP97] and discussion in Chapter 2). A
major drawback of such approaches is the high cost associated with the algorithms
used to mine frequent structures [Zak02]. In contrast, we consider in this thesis inex-
pensive methods that allow, for example, on-the-fly tokenization of tree structure by
similarity join sub-operators (see Chapter 6).

Several papers exploit structural similarity for change detection in tree-structured
data [CRGMW96, CAM02]. Most approaches adopt a two-step strategy for similarity
computation: first a mapping between the nodes of two trees is derived and then this
mapping is used to generate a minimum-cost edit script. A fundamental difference
between change detection and EM applications is that, in the former, comparisons
are performed on trees from the same data source that typically exhibit little devia-
tions. Such assumptions are too strong in the EM context where data sources can be
disparate and contain highly heterogeneous trees. In this situation, the algorithms
for tree similarity evaluation presented in [CRGMW96, CAM02] would be inefficient
(see also discussion in [ABG10]).

The role of structure has been intensively explored in the context of XML retrieval.
There exists empirical evidence that using structure in queries improves precision
at low recall levels, but hurts accuracy at high recall levels [KMdRS06]. In EM, the
number of relevant answers is expected to be substantially smaller in comparison to
XML retrieval. In fact, because common real-world datasets contain small amounts
of duplicates, most XML trees have either no duplicates or only a small number of
them. Therefore, the fraction of relevant elements, for which the use of structure has
been shown to enhance precision in XML retrieval (first retrieved elements), matches
the typical recall range in the EM context.

This chapter is dedicated to the investigation of structural similarity functions in
the EM context. The main contribution of this chapter is a novel method for pro-

58 A Framework for XML Similarity Joins

3.1 Existing Approaches for XML Structural Similarity

ducing compact and high-quality structural representations of unordered, document-
centric XML trees (originally presented in [RHP09]). The representation we propose
consists of structural tokens where each token embodies a set of similar structural pat-
terns; such sets are identified in a pre-processing step. Therefore, at evaluation time,
we reduce similarity matching on structure to simple equality matching of tokens
while capturing relevant structural variations. We experimentally compare the effec-
tiveness of our method with a wide variety of previous approaches. Besides token-
based and edit-distance similarity functions, we also consider techniques based on
very different concepts such as time-series analysis and information theory. To the
best of our knowledge, this is the first comprehensive evaluation of effectiveness and
comparison of structural similarity functions in the EM context. 1

The rest of this chapter is organized as follows. In Section 3.1, we review sev-
eral, previously proposed similarity functions for XML structures, namely: variants
of TED employing a set of operations tailored to the XML data model [NJ02] and
non-uniform cost model [ABG10]; an approach based on Fourier transform theory
[FMM+05]; measures of structural similarity based on entropy [Hel07]; token-based
methods based on the concept of pq-grams for ordered [ABG10] and unordered trees
[ABDG08]; and simpler tokenization approaches, such as the path-shingles approach
[But04]. Our own structural similarity function is introduced in Section 3.2. We
present our thorough experimental evaluation in Section 3.3. The summary of this
chapter is provided in Section 3.4.

3.1 Existing Approaches for XML Structural Similarity

In this section, we review previous work for measuring structural similarity of XML
trees. We concentrate on the main concepts and ideas behind each approach. For
more details, such as specific algorithms, we refer the reader to the respective papers.

3.1.1 Tree Edit Distance

Nierman and Jagadish [NJ02] observed that edit distance measures that allow mod-
ifications to only one node at a time can find a large distance between a pair of doc-
uments derived from the same DTD due the possibility of optional and repeated el-
ements. To avoid this behavior, the authors devised a dynamic programming algo-
rithm for ordered trees supporting subtree-level operations, i.e., besides the standard
operations—node relabeling, node insertion, and node deletion,2 the algorithm sup-
ports subtree insertion and subtree deletion operations. In the paper, the authors

1The work in [LCW07] proposes an approach to XML similarity based on Bayesian network, which
bears resemblance to the collective matching strategy discussed in Chapter 2. However, this ap-
proach requires that all XML trees comply to the same schema, and, therefore, we refrain from
including it in our evaluation as we focus on heterogeneous XML databases.

2For node insertion, only nodes without children can be inserted; for node deletion; only leaf nodes
can be deleted.

A Framework for XML Similarity Joins 59

Chapter 3 Similarity Functions for XML Structure

consider the unit cost model. We denote by TED-NJ this TED variant of Nierman and
Jagadish.

Furthermore, concerning semantic as well as efficiency aspects, the authors re-
stricted the sequence of edit operations considered by the algorithm. Specifically,
given a source tree T1, a destination tree T2, and a subtree S, the following conditions
must be satisfied:

• S can be inserted into T2 iff S already occurs in T1, i.e., if at least one instance of
S is contained in T1—a subtree S is said to be contained in a tree T if all nodes
of S occur in T , with the same parent-child relationship and the same sibling
order; S can be deleted from T1 iff S occurs in T2.

• If S is inserted into T2, then additional nodes cannot be inserted into S; if a node
is deleted from S in T1, then S cannot be deleted afterwards.

The first restriction addresses the matching of subtrees whose root node was de-
fined as optional in the DTD. It also ensures the soundness of the algorithm: without
this restriction, one could delete the source tree in a single operation and then in-
sert the destination tree in a second operation. The second restriction is exploited to
efficiently compute the costs of subtree-level operations in a bottom-up procedure.

The TED variant of Nierman and Jagadish [NJ02] employs a different set of opera-
tions using the unit cost model. In [ABG10], the authors described the fanout weighted
TED, which, while using the same set of operations of the classical TED definition,
employs a cost model based on node fanout. Specifically, given a constant c > 0, the
cost model of fanout-weighted TED, TED-F, is defined as follows:

(a) Deletion of node u: uf + c.

(b) Insertion of node v: vf + c.

(c) Relabel of node u with the label of v: uf+vf

2
+ c.

Finally, we denote by TED-U to the classical TED formulation, e.g, the formulation
using the basic set operations and unit cost model [Tai79].

3.1.2 Discrete Fourier Transformation

The structure of an XML tree can be represented as a discrete-time signal. To this end,
structural nodes are encoded as real values and, then, one can interpret each visit of a
node in a pre-order traversal as producing an impulse signal whose intensity is given
by the corresponding node encoding. Assuming that each node is visited at a fixed
time interval, we can thus obtain a time-series sequence.

Flesca et al. [FMM+05] used the above approach to describe the structural infor-
mation of ordered XML trees and calculate their pairwise similarity. XML documents
are converted to time series by two functions: the label encoding function and the tree

60 A Framework for XML Similarity Joins

3.1 Existing Approaches for XML Structural Similarity

encoding function. The first function associates labels occurring in an XML collection
to real values. The second function uses the label encoding to convert the sequence of
labels appearing in a pre-order traversal of an XML tree to a time series. The presence
of different node labels and structural patterns between XML trees is captured by the
encoding functions yielding different signal shapes. Furthermore, contextual infor-
mation (provided by nodes in the vicinity, e.g., parent and siblings) can be added to
enrich the signal representation of nodes and substructures.

Instead of assessing the similarity of XML direct in the time domain (e.g., using
time warping [YJF98] to calculate the distance between signal shapes), Flesca et al.
proposed using Discrete Fourier Transform (DFT) to map the time sequences to the
frequency domain. The authors argued that the comparison of structures through the
analysis of their underlying frequency spectra is less sensitive to structural deviations
originated by different numbers of occurrences of shared elements or by small shifts
in element positions. Below, we describe the encoding functions and the DFT-based
similarity function in more detail.

The label encoding function is defined by γ : labels(C)→ R− {0}, where labels(C)
is the set of labels appearing in an XML collection C. Besides, function γ can also
be used to encode the event of leaving a node in a pre-order traversal—we “leave”
a node in a pre-order traversal after having visited its children. This can be done
by spanning two symbols, l and l′, for each label in collection C. The function γ is
said symmetric iff γ(l) = −γ(l′) for each l ∈ labels(C) (see [FMM+05] for alternative
encodings).

More sophisticated encodings are obtained by accounting for contextual informa-
tion. For example, node labels can be prepended with the label of the parent node or
the complete sequence of ancestors (i.e., the full path from the root to the node). Note
that the label encoding process can be viewed as assigning real values to elements of a
set of structural tokens. In this sense, the tokenization method employed determines
the amount of contextual information that is encoded.

Given the set of labels (or structural tokens) encodings, a pre-order traversal in a
tree T defines a sequence of real values of the form 〈γ(l1), . . . , γ(ln)〉. A tree encoding
function enc uses this sequence to derive the time series representation of T , which
is denoted by enc(T) = 〈S1, . . . , Sn〉. Flesca et al. proposed several tree encoding
strategies; the so-called multi-level encoding was found to provide the best results.
In this encoding, each element in enc(T) is given by:

Si = γ(li)×Bmaxheight(C)−level(li) +
∑

lj∈anc(li)

γ(lj)×Bmaxheight(C)−level(lj) ,

where B is the number of distinct tokens encoded by γ, maxheight(C) is the maxi-
mum tree height in the collection C, level(li) and anc(li) are the level and the sequence
of ancestors of the node associated to token li.

Different tree sizes induce variable-length time series, whose frequency coefficients
may be incomparable. To avoid this problem, the DFT of two trees, say T1 and T2, is
computed at M fixed frequencies, where M = |enc(T1)| + |enc(T2)| − 1, and missing

A Framework for XML Similarity Joins 61

Chapter 3 Similarity Functions for XML Structure

coefficients are interpolated from the available ones.
The DFT-based distance, denoted by DFTD, is defined on basis of the approximate

difference of magnitudes of the interpolated DFT (
∼

DFT) of two encoded trees:

DFTD(T1, T2) =

 M
2∑

k=1

(
|[

∼
DFT (enc(T1))](k)| − |[

∼
DFT (enc(T2))](k)|

)2

1
2

.

3.1.3 Entropy-based Similarity

In [Hel07], Helmer adapted the normalized compression distance (NCD) introduced
in [CV05] to XML data. This measure is attractive because it has empirically been
shown to provide satisfactory effectiveness while having a runtime complexity of
O(n), where n is the number of symbols in a given sequence. Moreover, NCD can be
calculated by using simple off-the-shelf compression tools such as GNU zip (gzip) 3.
The author also devised an alternative similarity function based on cross-parsing. In
the following, we review some background on concepts behind entropy-based simi-
larity before providing more details about the respective similarity functions.

In Information Theory, the Kolmogorov complexity [CT06] of an object x, denoted
by K (x), is the length of the shortest binary program that outputs x on a universal
computer (such as the Turing universal machine). The Kolmogorov complexity of an
object x can be viewed as a precise quantification of the amount of information of x
and, in turn, as length of the ultimate compressed version of x. Further, the conditional
Kolmogorov complexity, denoted by K (x|y), is defined as the length of the shortest
binary program that, given input y, outputs x. Based on these concepts, Bennet et
al. [BGL+98] defined the notion of information distance between two objects. The
normalized version of this distance, called the normalized information distance (NID),
is given by:

NID(x, y) =
max (K (x | y),K (y | x))

max (K (x),K (y))
.

The Kolmogorov complexity provides an intuitive and principled notion of sim-
ilarity, but it is not computable. Fortunately, standard compression techniques can
be employed to approximate the elements in the NID formula. Cilibrasi and Vitnyi
[CV05] introduced the compression-based approximation of NID, called normalized
compression distance (NCD):

NCD(x, y) =
C (xy)−min(C (x),C (y))

max (C (x),C (y))
,

where C (x) and C (y) are the compressed size of x and y, respectively, and C (xy) is
the compressed size of their concatenation.

3http://www.gzip.org/

62 A Framework for XML Similarity Joins

3.1 Existing Approaches for XML Structural Similarity

Helmer used the gzip tool to compress the structure of XML trees. The algorithm
used by gzip is a variant of the well-known LZ77 algorithm (Lempel-Ziv 1977, see Ziv
and Lempel [ZL77] and [WMB99] for more details). Instead of directly compressing
an XML tree, Helmer used tokenization methods to extract its structural informa-
tion; the concatenation of the tokens form the sequence to which the compression
method is applied. The author experimentally demonstrated that use of tokenization
methods improve effectiveness, indeed. Interestingly, the best-performing tokeniza-
tion method only collects the node labels of a tree (including tokens representing end
tags) without actually extracting the underlying structure.

An alternative entropy-based similarity measure based on cross-parsing of two se-
quences was presented. Assuming that two XML trees are represented by the strings
x and y, cross-parsing x with respect to y according to the algorithm of Ziv and Mer-
hav [ZM93] proceeds as follows . First, starting from i = 1, find the longest pre-
fix of x that appears as a (sub)string of y, i.e., find the largest integer m such that
xi, xi+1, . . . xi+m−1 = yj, yj+1 . . . yj+m−1 for some j. If m = 0 (i.e., x1 does not appear
in y), we set i = i + 1; otherwise, i = i + m. The algorithm proceeds looking for the
longest prefix of x, starting from position i, that appears in y until x has been parsed
completely. Let c(x|y) denote the number of substrings of x found in y. For example,
consider the strings x = 00110101001 and y = 10001010110. Cross-parsing x with
respect to y, we find the substrings 001, 10101, and 001, therefore c(x|y) = 3. Based
on this concept, Helmer defined the following similarity measure based on Ziv and
Merhav cross-parsing (ZMC):

ZMC (x, y) =
c(x|y)− 1 + c(y|x)− 1

2
.

Helmer reported the ZMC measure outperforming NCD. According to the inter-
pretation of the author, this result is influenced by the granularity used in these mea-
sures. The gzip algorithm considers label characters as the smallest units of informa-
tion in a sequence, while ZMC operates over labels. This apparent problem of using
gzip can be easily solved by encoding node labes as numerical values, similar to the
approach of Flesca et al. described in the previous section. We shall nevertheless
consider both measures in our comparative study in Section 3.3.

Finally, Helmer proposed a hybrid approach by multiplying the values returned by
the DFT function described in the previous section and ZMC. We denote this hybrid
approach by DFT-ZMC.

3.1.4 pq-grams

The concept of pq-grams was introduced by Augsten et al. [ABG10] as a method to
map ordered labeled trees to sets of tokens and thereafter approximate the tree edit
distance via set-overlap-based measures. Informally, all subtrees of a specific shape
are called pq-grams of the corresponding tree. This shape is defined by two positive
integer values p and q. A pq-gram consists of an anchor node prepended p−1 ancestors,
called the stem of the pq-gram, and q children, called the base of the pq-gram. Figure

A Framework for XML Similarity Joins 63

Chapter 3 Similarity Functions for XML Structure

a b c

a
a b c

a

* * * *

* * *

**

T

T2 3

c * *

aanchor {
(*,a,*,*,a)
(a,a,*,*,*)
(*,a,*,a,b)
(a,b,*,*,*)
(*,a,a,b,c)
(a,c,*,*,*)
(*,a,b,c,*)
(*,a,c,*,*)

pq[2,3](T)

(b) (c)(a) (d)
base of size q=3 * * ** * *

stem of
size p=2}

Figure 3.1: Steps for the generation of pq-gram tokens

3.1(a) illustrates a sample pq-gram for p = 2 and q = 3. The stem captures hierarchical
information while the base captures sibling ordering (if q > 1). The concatenation of
the node labels of a pq-gram forms a pq-gram token. To be able to obtain a set of pq-
grams from any tree shape, an expanded tree T p,q is (conceptually) constructed from
the original T by extending it with dummy nodes—a dummy node is a special node
whose label ’ ∗ ’ is not present in any original tree. Specifically, dummy nodes are
inserted as follows: p − 1 ancestors of the root node; q − 1 children before the first
and after the last child of each non-leaf node and q children of each leaf node. Figure
3.1(b) and (c) show tree T and its expanded form T 2,3.

We denote by pq[p,q] the tokenization function that generates a set of pq-grams
from a tree T , i.e, the pq [p, q](T) profile, by collecting all pq-grams of the respective
expanded tree. This can easily be done by performing a pre-order traversal in T .
Figure 3.1(d) shows the pq [2 , 3](T) profile derived from T 2,3. It can be shown that the
cardinality of a pq profile is linear in the size of the tree. Precisely, given a tree T , we
have:

|pq [p, q](T)| = 2× |leaves(T)|+ |nonleaves(T)| × q − 1 ,

where leaves(T) and nonleaves(T) are the sets of leaf nodes and non-leaf nodes,
respectively.

We denote by PQ the class of similarity functions defined by 〈pq [p, q], , 〉.
pq-grams exhibit useful properties that agree with common intuition about hier-

archical data similarity. As for any token-based method, the PQ similarity between
two trees hinges on the number of pq-grams shared by their profiles. The number of
pq-grams, in which a non-leaf node appears, depends on the number of descendants
of this node within distance p. Note that higher values for p increase the number of
pq-grams ”destroyed“ by edit operations such as node relabeling (recall the related
discussion on q-grams in Chapter 2, Section 2.3.2) thereby augmenting the sensitivity
to mismatches on non-leaf nodes. Besides the parameter p, the number of pq-grams,
in which a node appears, also increases with the fanout of the node. In fact, it was
shown that pq-grams can be used to provide a lower-bound approximation for TED

64 A Framework for XML Similarity Joins

3.1 Existing Approaches for XML Structural Similarity

using the fanout weighted cost model, i.e., TED-F. For leaf nodes, the number of corre-
sponding pq-grams depends only on the parameter q. Because non-leaf nodes appear
in more pq-grams than leaf-nodes, mismatches on them decrease the similarity to a
larger extent. Finally, edit operations on nodes or structural patterns like deletion of a
subtree only affect pq-grams within a relatively small neighborhood. Hence, modifi-
cations concentrated on a specific part of a tree have less impact than those dispersed
over the whole tree.

3.1.5 Windowed pq-grams

So far, we have discussed similarity functions for ordered trees. The similarity mea-
sure we consider in this section—as well as the similarity functions discussed in the
following sections—is designed for unordered trees. In general, edit distances are
inappropriate for unordered trees. When sibling ordering is disregarded, finding the
minimum-cost edit sequence is computationally intractable, because all sibling per-
mutations must be considered. Token-based similarity functions are popularly used
to calculate the similarity between unordered.

Augsten et al. [ABDG08] presented a variant of the pq-gram concept for unordered
trees, the so-called windowed pq-grams (wpq-grams, for short). In the original pq-gram
definition, sibling ordering is captured by the base component. A straightforward
approach would generate pq-grams for all possible bases, i.e., given an anchor node
u, generate

(
uf

q

)
pq-grams. This approach is unsatisfactory, because the number of pq-

grams in which a node appears increases too sharply with its fanout and, thus, nodes
with larger fanout are overemphasized. The approach based on wpq-grams alleviates
this shortcoming while satisfying important properties as discussed below.

wpq-grams have the shape of pq-grams: they consist of a stem and a base, as illus-
trated in Figure 3.1(a), whose sizes are determined by the parameters p > 0 and q > 0,
respectively. The main difference is the token generation process, which requires the
parameter w > q determining the window length.

The tokenization function generating wpq-grams (denoted by wpq[w,p,q]) performs
tree steps: a) sorting the unordered tree; b) extending the sorted tree with dummy
nodes; and c) computing the wpq profile on the extended tree. Step a) consists of
imposing a total order on the nodes, e.g., the lexicographical order according to the
node labels, and using this order to sort the children of all non-leaf nodes (ties have
no effect on the final wpq profile and, therefore, can be broken arbitrarily). In step
b), dummy nodes are inserted as ancestors of the root node and as children of the
leaves in the same way as for pq-grams. For each non-leaf node u, such that uf < w,
w− uf dummy nodes are inserted after the last child. wpq-grams are obtained in step
c) by sliding a window of length w over the children of non-leaf nodes. The window
is wrapped around the right border, i.e., the last children are followed by the first
children in the last w − 1 windows. At each window, a set of bases is produced by
taking the first window node and all combinations of the remaining w − 1 nodes,
totaling

(
w−1
q−1

)
bases per window position. The node order in the bases is preserved

A Framework for XML Similarity Joins 65

Chapter 3 Similarity Functions for XML Structure

... b ...

a

d e *

...

... ...

d b
d e

a

b
e

a

b

* d

a

b
d *

a

b
e d

a

b

* e

a

e *

d *e

*ed

p=2
q=2
w=3

*

T1

(a) wpq-gram generation

b

a

c d e

b

T1

.
f g h

aT2

b

c g e

b

f d h

(b) Detection of node moves to other parents

Figure 3.2: Example of wpq profile generation and varying sibling sets between par-
ents with the same label

and each base is prepended by the stem to form a wpq-gram. Figure 3.2(a) illustrates
this process in tree T1 (Figure 3.2(b)) for the anchor node with label b. For leaf-nodes,
a single base is formed by q dummy nodes.

Similarity functions using wpq as tokenization function are denoted by WPQ. The
cardinality of the wpq profile generated from an unordered tree T is given by:

|wpq [w , p, q](T)| = (|T | − 1)×
(

w − 1

q − 1

)
+ |leaves(T)| .

A distinctive feature of the wpq-gram approach is the exploitation of sibling rela-
tionships for enhancing the sensitivity to structural deviations. In particular, WPQ is
able to capture varying sibling sets between parents with the same label. For exam-
ple, consider the (sorted) trees T1 and T2 in Figure 3.2(b). The parents of d and g are
swapped in the two trees. For q > 1, T1 and T2 deliver different profiles and, there-
fore, the similarity is decreased. In general, such structural deviation is ignored by
the path-based similarity functions that we will cover shortly.4 Another aspect of wpq-
grams is that the set-overlap-based similarity (e.g., the Jaccard similarity) between a
set of bases generated for two nodes approximates the similarity of their underlying
sibling set. Augsten et al. showed that bases of size 2, i.e., q = 2, provide the closest
approximation while being able to capture node moves to other parents.

3.1.6 Further Tokenization Methods

We further consider two simple path-based tokenization functions for unordered
trees. The first tokenization function, denoted by pshingle, produces a set of the so-
called path shingles [But04], an adaptation of shingles [Bro97] for tree-structured data.

4Note that, for q > 1, pq-gram similarity can be viewed as a path-based similarity function.

66 A Framework for XML Similarity Joins

3.2 Structural Similarity Based on Path Clustering

In a nutshell, the path-shingles approach generates tokens by prepending each ele-
ment node in a tree with the full path from the root to this node.

Example 3.1. Consider subtrees a) and b) shown in Figure 2.4. Their respective profiles of
path shingles are:

pshingle(a) ={exame, exame ◦ patient, exame ◦ patient ◦ study, exame ◦ patient ◦
study ◦ id, exame ◦ patient ◦ study ◦ description, exame ◦ patient ◦ name, exame ◦
patient ◦ relatives, exame ◦ patient ◦ relatives ◦ mother},
pshingle(b) ={exame, exame◦study, exame◦study◦patient, exame◦study◦patient◦
name, exame◦study◦patient◦mother, exame◦study◦id, exame◦study◦description}.

The other tokenization function we regard consists of simply collecting all root-to-
leaf paths of a tree T ; this function is denoted by rtl. Similarity functions defined by
〈pshinle, , 〉 and 〈rlt , , 〉 are denoted by PSH and RTL, respectively. The main moti-
vation for including these simple similarity functions in our approach is to contrast
them with our path similarity approach, which is described in the next section.

3.2 Structural Similarity Based on Path Clustering

We now present our approach for measuring the structural similarity between XML
trees. Our measure pertains to the class of token-based similarity functions. As such,
its key ingredient is the method for extracting structural information and represent it
as a set of tokens. We consider unordered trees and, therefore, the direct competitors
of our similarity function are wpq-grams and the path-based tokenization methods,
which were presented in the last two sections.

The main novelty of our technique is the exploitation of path synopses and cluster-
ing methods to derive compact structural surrogates from XML data. Our approach
addresses two drawbacks with respect to effectiveness and efficiency that we identi-
fied in previous work:

• Lack of support for approximate path matching: The ability of approximately match-
ing navigational paths is of paramount importance for dealing with structural
heterogeneity. Most structural deviations result in different hierarchical nest-
ings that encode and lead to the same information. This happens very fre-
quently in heterogeneous datasets where documents often exhibit divergent
data arrangements. Moreover, most common structural changes in evolving
scenarios consist of increasing the structure [Sed05]. For example, a simple ele-
ment, say author name, can evolve to a complex element containing first name
and last name as sub-elements. Such structural changes are in accordance
with the ”schema-later“ practice [JCE+07], which is one of the main motivations
for using XML: data is first loaded into the database, and structure is incremen-
tally added as more insight about the data is obtained. In such cases, we may
have the situation of different paths relating to the same piece of information.

A Framework for XML Similarity Joins 67

Chapter 3 Similarity Functions for XML Structure

In some sense, we can interpret such paths as fuzzy duplicates. Consider the
subtrees illustrated in Figure 2.4. The paths /exam/patient/relatives/mother in
subtree a) and /exam/study/patient/mother in subtree b) encode the same in-
formation and can, therefore, be viewed as duplicates. In fact, the whole trees
are duplicates and there is a one-to-one correspondence between their path sets.
Thus, an intuitive approach for measuring the similarity of trees is to identify
pairs of duplicate paths between them. Note that none of the previously de-
scribed token-based similarity functions would yield a high similarity value for
subtrees a) and b). Although hierarchical information is captured by these ap-
proaches (e.g., the stem component in wpq-grams and path shingles), their un-
derlying tokenization methods are still too ”coarse“ for accurate path matching.
The main reason is that tokens in these methods encode partial paths, i.e., se-
quences of two or more nodes; however, node-level granularity is necessary
for matching the paths in Figure 2.4. The problem with tokens based on par-
tial paths is analogous to that of using a large q-gram size that we alluded to
in Chapter 2: a disproportionate number of tokens are destroyed by node mis-
matches. Here, this problem is exacerbated because paths in subtrees are usu-
ally shorter than strings.

• Repeated structural comparisons: Most XML data is characterized by the presence
of highly repeated substructures. Indeed, it is well known that, for many real-
world data, compression techniques are able to reduce the size of the structural
part of XML documents to less than 10% of their original size [BGK03]. More-
over, such structures are likely to appear many times across different XML doc-
uments, even for heterogeneous datasets. This fact is ignored by all similarity
approaches discussed so far. Hence, employing these methods in a similarity
join predicate implies that the similarity between repeated structures is com-
puted anew every time these structures show up during join processing.

We address the first shortcoming by adopting a structural similarity measure based
on approximate path matching. The foundational path similarity function employs
a node-level tokenization method, thereby favoring accurate path similarity assess-
ment. Paths are different in nature from strings because the hierarchical nesting im-
poses an order on the path elements. We capture this ordering in a weighting scheme
that assigns weights to path elements according to their nesting level in a monotoni-
cally decreasing way. As a result, we are able to obtain meaningful results for frequent
types of path variations. In addition to providing an effective similarity measure for
XML structures, we will show in Chapter 4 that our path-similarity-based approach
facilitates the combination of textual and structural information as well as the design
of tailor-made structures for entity description selection.

We avoid repeated computation of path similarity by following a ”one-for-all“ ap-
proach. We first compute the similarity between all paths in a path synopsis. Con-
cisely, a path synopsis is a structural summary of all paths appearing in an XML
collection (we provide a detailed description of a path synopsis later in this chapter).

68 A Framework for XML Similarity Joins

3.2 Structural Similarity Based on Path Clustering

This step can be performed very efficiently. First, the number of paths in a path syn-
opsis is in most cases orders of magnitude smaller than in the data instances. Second,
because we employ a token-based method for path similarity calculation, we can use
a set similarity join algorithm comparable to the one employed to join whole XML
trees to obtain pairwise similarity values (see Chapter 5). The output of the simi-
larity join is used by a clustering method to group similar path classes. Finally, the
resulting cluster information is used to generate a token-based representation of doc-
uments. As a result, when joining XML trees, similarity matching between paths is
reduced to simple equality matching of tokens, i.e., tokens with the same value repre-
sent duplicate paths, that have been previously identified in the pre-processing step.
Moreover, our approach produces very compact structural representations, which are
bounded by the number of paths.

In rest of this section, we first describe the underlying path similarity function.
Then, we give details about the path synopsis structure, before we describe our cluster-
based approach to generate structural representations. We consider different weight-
ing strategies for structural tokens and, finally, we discuss some related approaches.

3.2.1 Path Similarity Function

In this section, we propose a token-based path similarity function. To this end, we
define a simple tokenization function called path that splits a tree path into a set of to-
kens by converting each element node label into an annotated token. The motivation
to use annotated tokens is different from that discussed in Section 2.3.2. Here, token
annotation serves to deal with paths containing element recursion, e.g., paths con-
taining multiple occurrences of the same node label. When calculating the overlap
between two path profiles, the matching of annotated tokens derived from recursive
labels is done from low to high nesting levels.

Example 3.2. Consider two paths p1 =/a/a/b and p2 =/a/b/b. Their path profiles are
path(p1) ={a ◦ 1, a ◦ 2, b ◦ 1} and path(p2) ={a ◦ 1, b ◦ 1, b ◦ 2}. Therefore, we have
path(p1) ∩ path(p2) ={a ◦ 1, b ◦ 1}.

For ease of notation, we omit from now on the token annotation from path profiles,
i.e., we refer to the annotated profile path(p) ={a ◦ 1, a ◦ 2} simply as {a, a}.

Further, a weighting scheme is applied to express the relative node significance in
a path. In hierarchically structured data, more general concepts in the corresponding
domain are normally placed at lower nesting depths. Mismatches between two paths
on such low-level concepts may suggest that the information contained in them ls
semantically more “distant”. Therefore, an intuitive heuristics is to assign higher
importance to nodes at lower nesting depths. Finally, given two paths represented
as weighted sets, their similarity can be assessed using a set-overlap-based similarity
function. Next, we formally define these concepts.

Definition 3.1 (Level-based Weighting Scheme (LWS)). Let p be a path and path(p) =
{t0, . . . , tn} be its profile, where token ti relates to an element node at nesting level i. The

A Framework for XML Similarity Joins 69

Chapter 3 Similarity Functions for XML Structure

level-based weighting scheme assigns a weight to each token in path(p) producing the weighted
profile LWS (path(p)) = {〈t0, lws(t0)〉, . . . , 〈tn, lws(tn)〉} where:

lws(ti) = eβi , (3.1)

and β ≤ 0 is a decay rate constant.

We refer to the class token-based similarity functions employing the LWS-weighted
path profiles, i.e, defined by 〈path, LWS, 〉, as the Weighted Path Similarity (WPS).

Example 3.3. Consider p1 =/patient/relatives/mother and p2 =/study/patient/
mother be two paths appearing in the document shown in Figure 2.4. Applying LWS with
decay rated β = −0.1 to the path profile of p1 and p2, we obtain the following weighted profiles:

LWS (path(p1)) ={〈patient, 1〉, 〈relatives, 0.904〉, 〈mother, 0.818〉},
LWS (path(p2)) ={〈study, 1〉, 〈patient, 0.904〉, 〈mother, 0.818〉}.

The two profiles share the tokens patient and mother. Mother has weight 0.818 in both
profiles, whereas, for the token patient, the weight value of 0.904 is returned by the mini-
mum function. Thus, the weighted overlap is 1.723. The weight of the profiles LWS (path(p1))
and LWS (path(p1)) are both 2.723. Thus, using WJS as set-overlap similarity measure, we
have WPS (p1, p2) = 1.723/(2.723 + 2.723− 1.723) = 0.462.

The use of the minimum function ensures that when matching two tokens ti and
tj , which are related to two nodes at nesting level i and j, where i < j, the lower
weight value of tj is used in the calculation of the weighted overlap. Also, differently
from similarity functions based on q-grams for q = 1, LSW together with the mini-
mum function avoids having maximum similarity for two paths that correspond to
different permutations of the same set of node labels.

Finally, we observe that, owing to the strictly decreasing weighting rule of LWS,
WPS may yield non-intuitive results, when applied to long paths. For example, de-
pending on the value of decay rate β, two long paths sharing a smaller portion of
element nodes at higher nesting levels, but having a larger part of unrelated nodes
at lower levels, will still have relatively high similarity according to WPS. One solu-
tion could make the weights constant from some level on. Then, the weighted norms
in the denominator of a set-overlap-based similarity function like Jaccard would be
kept sufficiently large to decrease the final result. On the other hand, empirical stud-
ies provide evidence that the vast majority of XML data worldwide has less than 8
levels [HMS07] and, therefore, the above effect is hardly an issue in practice.

3.2.2 The Path Synopsis

As pointed out in the beginning of this chapter, when XML is used to represent
semi-structured data, the inherent complexity of the underlying structure prevents
the specification of a fixed schema in advance. Nevertheless, some knowledge about

70 A Framework for XML Similarity Joins

3.2 Structural Similarity Based on Path Clustering

the data structure is badly needed to enable users to formulate meaningful queries
over the data and the query optimizer to identify efficient query execution strategies.

Path synopsis (PS) is a tree-structured index for providing and maintaining a struc-
tural summary of XML data [Mat09]. It can be viewed as a dynamic schema gen-
erated from a given XML collection. All distinct paths appearing in a collection are
described exactly once in the PS, which is incrementally maintained as the XML col-
lection is modified. PS has also been referred to in the literature as DataGuide [GW97]
and 1-Index [MS99]. The following definition of PS is based on that of Mathis [Mat09],
slightly modified to adhere to the data model presented in Chapter 2.2.1 and to the
purposes of our work.

Definition 3.2 (Path Synopsis (PS)). Let C be a collection of XML trees. The path synopsis
PS of C is a tree structure that satisfies the following conditions:

1. Let un be a node in PS and 〈u0, u1, ..., un〉 be the path from the root node of the PS to
un. Then, there is a least one tree T ∈ C containing an element node vn such that the
path from the root node of T to vn is 〈v0, v1, ..., vn〉 and ui = vi for 0 ≤ i ≤ n.

2. Let vn be a node in a tree T ∈ C and 〈v0, v1, ..., vn〉 be the path from the root node of T
to vn. Then, there is exactly one node uv in PS such that the path from the root node of
PS to un is 〈u0, u1, ..., un〉 and ui = vi for 0 ≤ i ≤ n.

The first condition ensures that a PS encodes no path that does not appear in C,
while the second condition ensures that every path appearing in C is encoded in
the PS exactly once. For example, the corresponding path synopsis of the document
shown in Figure 2.4 (starting from the exam node) is depicted in Figure 3.4 (disregard
the node identifiers and the accompanying table for the moment). Note that the PS is
an unordered tree structure: information about sibling ordering is neither maintained
nor relevant. We refer to the paths in a PS as path classes; paths appearing in trees of
the XML collections are referred to as path instances. Given a path instance p, we
denote by class(p) its corresponding path class.

In the absence of the PS structure, the paths can be collected in a single pass over
the data—this scan step can be coupled with the process described in the next section.
In XML-enabled relational systems, a popular approach is the so-called shredding, i.e,
the mapping of XML trees to several relational tables. Paths are frequently used as
the unit of decomposition in these approaches [YASU01] and stored into path tables,
which can be readily used to derive the PS structure. In distributed environments, PSs
can be exported by local sources to a central component, e.g., the mediator module
of an EII system, and merged to form a global PS. Finally, in the dataspace paradigm,
the global PS can constructed in a “pay-as-you-go” fashion. Further details about
the construction and maintenance of PS structures is beyond the scope of this thesis.
Henceforth, we assume that a PS structure is available for a given XML collection.
PS structures are instrumental for efficient XML query evaluation and are, therefore,
pervasively supported by XML DBMSs. Indeed, PS is a fundamental data structure
in XTC [Mat09], which is the target platform of our similarity join framework.

A Framework for XML Similarity Joins 71

Chapter 3 Similarity Functions for XML Structure

Figure 3.3: PCI generation process

3.2.3 XML Representation Based on Path Clustering

We now present our approach to generating compact surrogates for the structure of
XML trees. In a pre-processing step, the WPS similarity function is employed in a
cluster algorithm to group “duplicate paths” in a PS. In a sense, we can view this step
as an EM subprocess where the entities to be matched are path classes. We then (con-
ceptually) merge the path duplicates by assigning the same identifier to path classes
belonging to the same group. We call these identifiers Path Cluster Identifiers (PCIs).
The paths in a PS are then annotated with the corresponding PCIs (again, conceptu-
ally). Finally, the PCI-equipped PS is used to support the generation structural token
sets.

Figure 3.3 depicts the process of generating PCI-based representations of XML
trees. Given a PS of an XML collection, we start by specifying a target label tgl, corre-
sponding to the entity to be matched (e.g., exam in Figure 2.4). Let P tgl be the set of
all path classes relative to tgl, i.e., (partial) paths in the structural summary having tgl
as root label. In case of nested occurrences of tgl, we consider only the paths rooted
by the topmost occurrence. We then apply a self-similarity join on P tgl with predicate
WPS (p1, p2) ≥ τ . We use the output of the similarity join to construct a proximity
matrix containing all pairwise similarity values of the path classes in P tgl (for pairs
not satisfying the similarity join predicate, we assign a similarity value of 0). This
similarity matrix is the input to a cluster method that generates a set of path clusters
(partitions). In this thesis, we use the UPGMA Agglomerative Hierarchical Clustering
method with a user-specified threshold as cutting point in the dendrogram [JD88].5

5Note that the specific clustering method is orthogonal to all the methods used in this paper (with

72 A Framework for XML Similarity Joins

3.2 Structural Similarity Based on Path Clustering

We denote by PC
tgl
θ the set of path clusters generated from P tgl at cutting threshold

θ. All path clusters are numbered with integer values, i.e., PCIs. Finally, we annotate
the path classes p ∈ PS with the corresponding PCI. For ease of notation, let i be the
corresponding PCI of a path cluster pci ∈ PC

tgl
θ . Figure 3.4 shows the PS of of the

document illustrated in Figure 2.4 equipped with PCIs, for tgl = exam, θ = 0.6, and
decay rate of β = −0.1 for LWS . The values in the box on the left are the similarity
values at which the clusters were formed.

After having equipped the PS with PCIs, we are able to easily derive a structural
tokenization function. For this purpose, we decompose a tree into a set of paths and,
for each path p, the corresponding PCI can be obtained from the annotated PS and
used as a structural token. As a consequence, the structure of the tree is represented
as a set of pci tokens, where each token denotes the appearance of a path instance
related to a path cluster. We denote by pcl this tokenization function based on path
clusters, which is formally defined as follows.

Definition 3.3 (pcl Tokenization Function). Let PC = {pc1, . . . , pcn} be set of path clus-
ters. Given a path instance p, we say that p ∈ pc iff class(p) ∈ pc. Let T be a tree and
rlt(T) = {p1, . . . , pn} be the its set of of root-to-leaf paths. The pcl tokenization function
generates a profile from the T as follows:

pcl(T) = {i1, . . . , in : pk ∈ pci, 1 ≥ k ≥ n}

As usual, we generally denote by PCL a similarity function of the class defined by
〈pcl, , 〉.

Example 3.4. Consider subtrees a) and b) in Figure 2.4. The pcl profiles of subtrees a) and
b) according to the PCI-annotated PS in Figure 3.4 are both {1, 2, 3, 4}. Thus, the similarity
value of PCL(a, b) according to any set-overlap-based similarity function is maximum, i.e., 1.

In the example above, note that subtrees a) and b) have maximum similarity even
though they have no path in common. This observation highlights a salient feature of
our PCI-based representation: equality matching of single tokens incorporates simi-
larity matching of whole paths for free. The actual path comparison is done only once
during the clustering process thereby avoiding repeated path similarity computations
when evaluating the similarity join operation.

At a high level of abstraction, we can interpret our approach as a hash-based similar-
ity matching method [Ste07]. Specifically, the generation of PCIs from path sets can be
viewed as a distance-preserving hashing function—such hash functions form the basis
of the widely used LSH algorithm for probabilistic similarity search [GIM99]: similar
paths are mapped to the same integer values. Drawing a parallel, the LSH employs
an embed-project-hash paradigm, whereas, here, we follow an EM-based approach
for hashing tree paths.

minor modifications). Other techniques such as K-means and DBSCAN are also applicable.

A Framework for XML Similarity Joins 73

Chapter 3 Similarity Functions for XML Structure

exam

patient

description

name

mother

study

id

study

mother

id descriptionpatient

name

relatives

1 2

3

4 3 4

1 2

PCI
1
2
3
4 0.633

0.745

0.745
0.745

θ

Figure 3.4: PS equipped with PCIs

Finally, because the PS is a tree structure, the matching of paths in the PS can be
done efficiently by standard tree traversal algorithms. In addition, besides support-
ing query formulation and optimization, PS has also been exploited for designing a
space-economic storage model for XTC [HMS07]. In Chapter 6, we describe how we
take advantage of this storage model to obtain PCI values without even having to
access the PS structure.

3.2.4 Structural Weighting Strategies

We now discuss the weighting scheme used for structural tokens. As stated in Sec-
tion 2.3.2, we use annotated tokens in token-based similarity functions, which rules
out the TF weighting schemes. Also, in the beginning of this chapter, we have al-
ready argued about the importance of accounting for subtree occurrence mismatches
in EM tasks. Similar to strings, using the IDF weighting scheme on structural tokens
emphasizes frequency disagreements, because the frequency of occurrences of anno-
tated structural tokens in a collection decreases monotonically, i.e., freq(t ◦ 1, C) ≥
freq(t ◦ 2, C), and, therefore, their IDF weight increases monotonically. As a result, for
our PCI-based tokenization method, the similarity between trees exhibiting a consid-
erable difference in the number of occurrences of a path would be markedly reduced.
We can view weighting structural tokens using IDF as an opposite approach to those
proposed for the CDI problem, which aim at disregarding frequency divergences of
substructures. A moderate approach would be not to employ a weighting scheme,
i.e., to consider each token uniformly. Finally, we can work on multi-sets of tokens
(by not annotating the tokens) and use the TF weighting scheme to dampen the effect
of token frequency in trees. In Section 3.3, we empirically evaluate different weight-
ing strategies on all structural tokenization methods described in this chapter.

3.2.5 Related Work

Vinson et al. [VHdSdM07] present an XML path similarity function based on SED.
Node labels are used as units of information and the comparison of each label unfolds

74 A Framework for XML Similarity Joins

3.3 Experiments

a second SED computation as sub-operation, whose result is then used to derive the
cost of label substitution; node level information is disregard. Note that we could
easily make WPS sensitive to label similarity by decomposing each path label into
sets of q-grams. Although this strategy would enable us to capture syntactic varia-
tions on node labels—as the proposal of Vinson et al. [VHdSdM07]—we believe that
most variations at the schema level are semantic rather than syntactic. Hence, more
complex schema matching techniques are nevertheless necessary to uncover semantic
correspondences.

Dalamagas et al. [DCWS06] exploited structural summaries to cluster XML doc-
uments by structure. Their approach entails extracting a structural summary from
all XML documents in a collection, using a tree edit distance algorithm on the sum-
maries to calculate all pairwise distances, and, finally, applying a clustering algorithm
to group similar documents. Here, we exploit the combined structural summary of all
documents in a collection, i.e., the PS, instead of the summary of each tree in isolation.
Joshi et al. [JAKN03] employed the bag-of-tree-paths model, which represents tree
structures by a set of paths. In this work, paths are exactly matched; in contrast, we
match paths approximately. Further, our aim is completely different from these two
previous approaches. We do not cluster XML documents directly; rather, we cluster
paths to derive compact structural representations that can be, afterwards, combined
with textual representations to calculate the overall tree similarity (see Chapter 4).

As already mentioned, exploitation of structure has been extensively investigated
in XML search [KMdRS06]. A common approach is to approximately match the
structural constraints expressed in the query with the context of specific nodes. In
[CMM+03], fuzzy and partial match of term contexts (root-to-leaf paths) are sup-
ported. In this approach, path similarity has to be computed every time a query
is evaluated, whereas, in our approach, all path similarity calculations are computed
only once in the pre-processing step.

3.3 Experiments

In this section, we describe extensive empirical experiments performed for all struc-
tured similarity functions discussed in this chapter. Besides comparing the accuracy
of a highly representative set of structural similarity functions, we aim at evaluating
to what extent we can identify duplicates by solely relying on structural information.
Finally, we also analyze the performance of several different weighting schemes for
token-based structural similarity functions.

3.3.1 The Competitors

Table 3.1 shows information about the structural similarity functions considered in
our experiments. We evaluate 12 measures to assess the similarity between XML
trees: 8 of them employing similarity functions designed for ordered trees (TED-U,
TED-F, PQ, TED-NJ, NCD, ZMC, DFTD, and DFT-ZMC) and 4 designed for

A Framework for XML Similarity Joins 75

Chapter 3 Similarity Functions for XML Structure

Table 3.1: Structural similarity functions

Similarity
Function

Description

TED-U (T-U) Unit cost TED for ordered trees (Section 2.3.1).

TED-F (T-F) Fanout weighted TED for ordered trees, c = 1 (Section 3.1.1).

TED-NJ (NJ) TED variant of Nierman and Jagadish for ordered trees (Section 3.1.1).

NCD
Normalized compression distance applied on ordered trees (Section 3.1.3);

tokenization function: tags.

ZMC
Ziv and Merhav crossparsing applied on ordered trees (Section 3.1.3);

tokenization function: labels.

DFTD (DFT)
Similarity function for ordered trees based on Fourier transform theory

(Section 3.1.2); tokenization function: parchild, tree encoding: multi-level.

DFT-ZMC
(D-Z)

Similarity function for ordered trees resulting from the multiplication of the
values returned by DFT and ZMC (Section 3.1.2).

PQ
Token-based similarity function for ordered trees defined by

〈pq [p = 2 , q = 2], Jaccard , ε〉 (Section 3.1.4).

WPQ
Token-based similarity function for unordered trees defined by

〈wpq [w = 3 , p = 2 , q = 2], Jaccard , ε〉 (Section 3.1.5).

PCL
Token-based similarity function for unordered trees defined by

〈pcl , Jaccard , ε〉 (Section 3.2), decay rate of 0.1 for LWS and a threshold of 0.4
as cutting point for the dendrogram.

PSH
Token-based similarity function for unordered trees defined by

〈pshinle, Jaccard , ε〉 (Section 3.1.6).

RTL
Token-based similarity function for unordered trees defined by

〈rtl , Jaccard , ε〉 (Section 3.1.6).

76 A Framework for XML Similarity Joins

3.3 Experiments

unordered trees (PCL, WPQ, PSH, and RTL); all of them have already been dis-
cussed in the previous sections. For ordered trees, the last 5 similarity functions
were originally proposed to tackle the CDI problem; the remaining similarity func-
tions, for ordered and unordered trees, address no particular application scenario.
For most functions, we used the parameter setting which provided best performance
in the original papers. The exceptions are DFT- and entropy-based similarity func-
tions. These functions were proposed and evaluated in the context of the CDI prob-
lem. In the EM context, however, we observed divergent results. For example, in
[Hel07], several tokenization functions were considered to extract structural informa-
tion from XML trees; rtl (see Section 3.1.6) was shown to outperform labels, which
simply collects all element node labels of a tree in a bag of labels. However, we found
rtl performing very poorly in our experiments. Therefore, for similarity functions
involving DFT and entropy, we report the results using the best parameter setup we
identified. Note that we used unweighted profiles for all token-based similarity func-
tions; weighting schemes are compared in Section 3.3.5. Finally, some functions are
abbreviated in the experimental charts to save space; the abbreviations are given be-
tween parentheses after the name of the corresponding similarity function in Table
3.1.

3.3.2 Datasets

For our empirical study, we use four real-world XML datasets: Nasa6 containing
astronomical data, two protein sequence databases SwissProt7 and PIR-PSD8 (PSD
for short), and DBLP9 containing information about computer science publications.
Detailed information about the datasets is given in Table 3.2 (notice that sdev corre-
sponds to standard deviation). For all of them, we obtained sets of XML documents by
deleting the root node of each XML dataset. The resulting documents are structurally
very heterogeneous. Nasa and SwissProt have much richer and irregular structure
than PSD and DBLP. Nasa contains the largest (w.r.t. number of nodes) and widest
(w.r.t. number of paths) trees. Nasa also exhibits very dispersed cardinality distribu-
tion, in terms of both nodes and paths per tree (i.e., large standard deviation). Addi-
tionally, the paths in Nasa are the deepest in average. On the other hand, SwissProt
has the largest number of distinct node labels and about 2.5x more distinct paths than
Nasa. PSD is structurally simpler than the previous two datasets; nevertheless, it has
almost the same number of distinct labels and paths as Nasa and its average path
depth is very close to that of SwissProt. Finally, the structure of DBLP is by far the
simplest and most regular.

6http://www.cs.washington.edu/research/xmldatasets/
7http://us.expasy.org/sprot/
8http://pir.georgetown.edu/
9http://dblp.uni-trier.de/xml/

A Framework for XML Similarity Joins 77

Chapter 3 Similarity Functions for XML Structure

Table 3.2: Dataset statistics

Dataset Nasa SwissProt PSD DBLP

Description
Astronomical

data
DB of protein

sequences
DB of protein

sequences
Computer

science index

Target label dataset Entry ProteinEntry inproceedings

no. subtrees 2435 50000 262525 689438

nodes per tree
mean/sdev/median

218.8/258/169 103.3/66.3/89 85/40.8/78 12.4/3.8/12

distinct labels 68 97 65 21

distinct paths 73 191 72 28

paths per tree
mean/sdev/median

153.5/169.2/119 84/52.7/72 64.8/34.8/58 11.4/3.84/11

path depth
mean/sdev/median

3.6/1.3/4 2.4/0.6/3 2.5/0.9/2 1.7/0.9/1

3.3.3 XML Fuzzy Duplicate Generation

From all datasets, we derived several datasets containing fuzzy duplicates by cre-
ating exact copies of the original trees, removing text nodes, and then performing
structural transformations on their structure. The transformations aim at simulating
typical structural deviations between fuzzy duplicates appearing in ad-hoc and het-
erogeneous datasets, divergences resulting from schema evolution and versioning
[Sed05, MML07], and the inherent structural heterogeneity that naturally emanates
from the XML data model. We support the following transformations:

• Insert Node: given a node u and integers i and j, where i < j and j < fu, inserts
a node v as the i-th child of u; the children from i to j become children of v.

• Delete Node: deletes the i-th child of a node u; all children of the deleted node
become children of u starting from position i.

• Relabel Node: changes the node’s label for another label appearing in the dataset.

78 A Framework for XML Similarity Joins

3.3 Experiments

Figure 3.5: Generation of low, moderate, and dirty error duplicates

• Invert Node: switches the position between a node and its parent.

• Delete Path: deletes the path from a node down to the leaf.

• Delete Subtree: deletes a node and all its descendants.

• Swap Subtrees: swaps the position of two sibling nodes (and their corresponding
subtrees).

The first three transformations follow the semantics of the classical set of TED
operations [Tai79]. The Invert Node transformation aims at representing different
hierarchical organizations as illustrated in Figure 2.4 on Page 37; Delete Path and
Delete Subtree simulate structural heterogeneity owing to optional and repeated sub-
elements. Finally, Swap Subtrees leads to different permutations in ordered trees.

To restrict the degree of modification applied on a tree, we define error extent as
the percentage of nodes from a subtree which are affected by a set of structural trans-
formations. We considered as affected the node that received the modification as
well as all its descendants. We classify the fuzzy copies generated from each data set
according to the error extent: we have low (10%), moderate (30%), and dirty (50%)
error datasets. Figure 3.5 illustrates the generation of low, moderate, and dirty error
duplicates. This methodology allows evaluating the robustness of the similarity func-
tions under study. As the error extent increases, duplicate trees become more distant
from the original tree and may become more close to trees related to different entities.

A Framework for XML Similarity Joins 79

Chapter 3 Similarity Functions for XML Structure

Therefore, by varying the error extent, we can study how well the similarity functions
“tolerate” the deviations caused by the set of transformations while still being able
to assign higher similarity to duplicates than to non-duplicates. Notice that the ro-
bustness of the similarity functions is also dependent of the original dataset, i.e., how
structurally separated are the trees in the source datasets.

Transformations are randomly selected and sequentially performed until the de-
sired error level is reached. For each transformation, we select a node among all nodes
of the tree, except the root node. For Insert Node, Delete Node, Relabel Node, and
Invert Node, the probability of selecting a node is inversely proportional to its num-
ber of descendants. Therefore, these transformations are mostly applied on nodes at
lower nesting levels. We believe that this strategy reasonably simulates real-world
scenarios and is in accordance with the intuition around the concept of duplicates.
Structural deviations on nodes at lower nesting levels represent more semantic diver-
gence between two XML trees; hence, duplicates exhibiting deviations on such nodes
are expected to occur less frequently. For the remaining transformations, i.e., Delete
Path, Delete Subtree, and Swap Subtrees, the probability is uniform among the nodes.

We conducted our experiments on datasets containing 5k trees. Each dataset was
generated by first randomly sampling 500 subtrees from the original datasets and
then generating 9 fuzzy duplicates per tree. Thus, each generated dataset contains 500
original trees and 4500 duplicates. We also performed the experiments with datasets
of different sizes and different distribution of duplicates and the trends were iden-
tical. As query workload, we randomly sampled 100 subtrees from the generated
dataset and calculed the evaluation measures described in Section 2.4.2. Notice that
the query workload may contain fuzzy duplicates as well as original, “clean”, XML
trees.

3.3.4 Comparison of All Similarity Functions

In our first experiment, we empirically study the effectiveness of all similarity func-
tions, for ordered and unordered trees, on the same group of datasets. We aim at
obtaining a global comparison between the similarity functions investigated, in par-
ticular, comparing our PCI-based approach performs not only to the token-based
competitors addressing unordered trees, but also to measures designed to ordered
trees such as the TED variants and the techniques proposed in the context of the CDI
problem. In order to avoid “apples and oranges” comparisons, we did not apply
node-swapping transformations when generating the datasets; hence, the transfor-
mations applied did not alter the sibling order, i.e., the original ordering of the trees
is preserved in the generated datasets. As a result, the similarity functions for or-
dered trees are not charged by node permutations between fuzzy duplicates; instead,
they only have to disclosure the same set of structural deviations as the similarity
functions for unordered trees to identify the duplicates. Thus, our comparison is fair.
Nevertheless, we will study the effectiveness of the similarity functions for ordered
trees on datasets exhibiting node permutations later in this section. Here, we only

80 A Framework for XML Similarity Joins

3.3 Experiments

T-F T-U PCL WPQ PSH RTL NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(a) Nasa, low error

T-F T-U PCL WPQ PSH RTL NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
MAP

(b) Nasa, moderate error

T-F T-U PCL WPQ PSH RTL NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
MAP

(c) Nasa, dirty error

T-F T-U PCL WPQ PSH RTL NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(d) SwissProt, low error

T-F T-U PCL WPQ PSH RTL NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(e) SwissProt, moderate error

T-F T-U PCL WPQ PSH RTL NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(f) SwissProt, dirty error

T-F T-U PCL WPQ PSH RTL NJ NCD ZM DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(g) PSD, low error

T-F T-U PCL WPQ PSH RTL NJ NCD ZM DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(h) PSD, moderate error

T-F T-U PCL WPQ PSH RTL NJ NCD ZM DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(i) PSD, dirty error

T-F PCL PSH NJ ZM D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(j) DBLP, low error

T-F PCL PSH NJ ZM D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(k) DBLP, moderate error

T-F PCL PSH NJ ZM D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(l) DBLP, dirty error

Figure 3.6: Accuracy results of all structural similarity functions on unordered trees

excluded from our experimental charts the results of the PQ similarity function as it
is subsumed by WPQ on unordered trees. Finally, we observed identical trends for all
measures described in Section 2.4.2. Therefore, for brevity, we only report the results
of the MAP measure.

Figure 3.6 shows the results. We first discuss the results along the different datasets
before focus on the comparison between the similarity functions. The effectiveness

A Framework for XML Similarity Joins 81

Chapter 3 Similarity Functions for XML Structure

results on Nasa (Figures 3.6(a)–(c)) and SwissProt (Figures 3.6(d)–(f)) are markedly
better than those on the other two datasets. This is expected because these datasets
have the largest, richest, and most heterogeneous structure, therefore providing a
good structural “signature” to identify XML trees. For low error datasets, almost all
similarity functions yielded very good results (MAP value above 0.8) and the best
performing ones exhibit practically perfect accuracy. These results confirm that we
can identify duplicates by solely relying on structural information.

The results noticeably degrade as the error extent increases. An interesting ob-
servation drawn from the experiments is that accuracy on SwissProt is less affected
by increases in the level of “dirtiness”. As already mentioned, cardinality is a more
salient structural information in Nasa, whereas path and label heterogeneity is more
prominent in SwissProt. Hence, the results suggest that path and label heterogene-
ity are more effectively exploited by the similarity functions under study to separate
duplicates from non-duplicates; this observation comes as no surprise for the ap-
proaches proposed for CDI as such techniques deliberately underweight cardinality
differences between trees.

Results are significantly poorer on the PSD dataset (Figures 3.6(g)–(i)). Because the
underlying structure is simpler and more homogeneous, MAP values are roughly cut
by half for all similarity functions. At the extreme, structural similarity assessment
was totally ineffective to identify the duplicates in DBLP (Figures 3.6(j)–l). Because
the trees in DBLP are small and have very similar shape, there is very little informa-
tion to distinguish a tree from one another. Although these results may suggest that
structural similarity is useless on datasets exhibiting the same characteristics as DBLP,
as we advocated at the beginning of this chapter, approximate matching on structure
is nevertheless necessary for EM applications regardless of its discriminative power;
for example, it is useful to identify pieces of textual information that represented un-
der different hierarchical nestings. Nevertheless, we will omit the results on the DBLP
dataset in the following experimental charts.

Now, we discuss the comparative effectiveness of the similarity functions. All in
all, TED-F and TED-U are the best performing similarity functions: they show su-
perior accuracy results and exhibits comparatively little degradation as error extent
increases. Unfortunately, TED computation is notoriously expensive to calculate;
its runtime is typically orders of magnitude worse than token-based functions (e.g.,
[ABG10]). DTF is by far the worst performing similarity function: it is ineffective in
identifying duplicates even in low error datasets. Moreover, the combination of DFT
and ZMC, D-Z, showed poorer performance than ZMC in isolation.

Apart from TED-F and TED-U, PCL is the most effective similarity function in
all settings. Moreover, PCL shows less accuracy degradation as the error extent in-
creases as compared to the other token-based and CDI measures. The superiority of
PCL against the other token-based similarity functions corroborates our claim that
accurate path matching is of paramount importance for EM. In fact, the results show
that effectiveness decreases as token granularity w.r.t hierarchical nesting increases:
WPQ, which encodes partial paths in the stem part of wpq-grams, performed better
than PSH and RTL — we used stem of size 2, i.e., p = 2—; in turn, PSH, which em-

82 A Framework for XML Similarity Joins

3.3 Experiments

ploys path shingles, fares better than RTL, which uses root-to-leaf paths as tokens. In
particular, the performance of the two latter similarity functions drops significantly
as the error extent increases. To support even more our conclusion, we ran addi-
tional experiments on datasets generated by only one kind of structural modification.
We observed that results favoring PCL are, in general, more pronounced on datasets
generated by node-level modifications, i.e., node insertion, rename, inversion, and
deletion. All these transformations “destroy” path information, thereby requiring
approximate path matching, which is more accurately delivered by our PCI-based
approach.

The results of PCL are also superior to those of all CDI similarity functions. While
the TED variant of Nierman and Jagadish (NJ) and the entropy-based approaches
(NCD and ZMC) are close to PCL on low error datasets, their accuracy severely de-
grades as the error level increases. As these functions are less sensitive to divergences
in the number of occurrences of subtrees, the similarity result between non-duplicates
is increased. At higher error extent, many trees are reported closer to other trees than
to their duplicates by the CDI functions.

3.3.5 Comparison of Similarity Functions for Ordered Trees

We now focus on similarity functions for ordered trees only. To this end, we used
datasets generated by the complete set of transformations, i.e., including the Swap
Trees transformation. Also, we now evalaute the PQ similarity function instead of
WPQ. The results are shown in Figure 3.7. In general, accuracy is slightly worse in
this experiment owing to the sibling permutation between duplicates. Nonetheless,
the trends are identical: much better results on Nasa (Figures 3.7(a)–(c)) and Swis-
sProt (Figures 3.7(d)–(f)) as compared to PSD (Figures 3.7(g)–(i)); similarity functions
exhibit better robustness on the SwissProt dataset; TED-U and TED-F are the best and
DFT is the worst; and, finally, accuracy of CDI functions drops dramatically as error
extent increases.

PQ delivered better results than all CDI functions on Nasa and SwissProt. On PSD,
however, PQ is worse than NJ for all error extent levels. Accordingly, TED-F is outper-
formed by TED-U on these datasets—recall that PQ approximates TED-F. This results
indicates that, similarly to text, the comparative effectiveness of structural similarity
functions can vary across different datasets [CRF03, SB02, CGK06]. Precisely identify-
ing the structural characteristics leading to poorer results of functions such as TED-F
and PQ is a very interesting topic for future research.

Among the CDI functions, NJ showed the best results in almost all settings. Re-
garding the entropy-based approaches, ZMC and NCD delivered very similar accu-
racy results. In the original paper [Hel07], ZMC was found superior than NCD. As
already mentioned, the author conjectured that this result might have been due to the
character-level granularity employed by NCD. Our results support this conjecture,
as we have increased the granularity of NCD by encoding node labels as numerical
values.

A Framework for XML Similarity Joins 83

Chapter 3 Similarity Functions for XML Structure

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(a) Nasa, low error

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(b) Nasa, moderate error

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(c) Nasa, dirty error

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(d) SwissProt, low error

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(e) SwissProt, moderate error

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(f) SwissProt, dirty error

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(g) PSD, low error

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(h) PSD, moderate error

T-F T-U PQ NJ NCD ZMC DFT D-Z
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MAP

(i) PSD, dirty error

Figure 3.7: Accuracy results of structural similarity functions for ordered trees

3.3.6 Comparison of Similarity Functions for Unordered Trees
and Weighting Schemes

We now focus on similarity functions for unordered trees. We first provide a closer
look on the results of Section 3.3.4; here, we only consider PCL and WPQ as they
showed the best results. Then, we compare different weighting strategies for struc-
tural tokens, namely: unweighted (UNWEI), IDF, TF, and TF-IDF (recall Section 2.3.2).
For UNWEI and IDF, we used WJS. TF and TF-IDF are based on local statistics (term
frequency) and therefore, token weights can vary among different sets. Using mini-
mum as aggregation function for Jaccard ensures that similarity results are in the in-
terval [0, 1]. However, we experienced unstable results with this formulation. Hence,
we refrained from using Jaccard and, instead, employed the well-known Cosine sim-
ilarity with TF and TF-IDF weighting schemes [SM83]. We also tested the Cosine
version of IDF [HCKS08]; however, we preferred to use the Jaccard formulation as
we consistently observed superior results with it.

84 A Framework for XML Similarity Joins

3.3 Experiments

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

PCL
WPQ

(a) Nasa, low error

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

PCL
WPQ

(b) Nasa, moderate error

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

PCL
WPQ

(c) Nasa, dirty error

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

PCL
WPQ

(d) SwissProt, low error

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
M
AP

PCL
WPQ

(e) Swissprot, moderate error

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

PCL
WPQ

(f) Swissprot, dirty error

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

PCL
WPQ

(g) PSD, low error

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

PCL
WPQ

(h) PSD, moderate error

UNWEI IDF TF TF-IDF
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

PCL
WPQ

(i) PSD, dirty error

Figure 3.8: Accuracy results for unordered trees using different weighting schemes

Figure 3.8 shows the results. PCL outperforms WPQ in all settings. Especially on
SwissProt (Figures 3.8d–(3.8(f)), the accuracy gap between PCL and WPQ noticeably
increases with error extent. The better results of PCL are even more impressive when
we analyze the average profile size delivered by each representation: for all datasets,
PCL produces much more compact profiles, about 4–5x shorter than WPQ. To cap-
ture subtree permutations, WPQ has to produce an increased number of wpq-grams—
depending on node’s fanout—, while for PCL, the number of tokens is determined
by the number of paths.

We now analyze the results of the comparison of weighting schemes. The first ob-
servation is that UNWEI and IDF perform consistently better than TF and TF-IDF.
This result might well be due to the use of Jaccard for UNWEI and IDF. When com-
paring the unweighted and IDF-weighted versions of Jaccard, the results are incon-
clusive: for PCL, IDF is slightly better on SwissProt, while being marginally outper-
formed by UNWEI on Nasa; on PSD, the results of both strategies are practically

A Framework for XML Similarity Joins 85

Chapter 3 Similarity Functions for XML Structure

identical.

3.3.7 Experimental Summary

For datasets containing trees with rich structural information, it is possible to accu-
rately identify duplicates by solely relying on structural similarity functions: most
similarity functions investigated were effective on Nasa and SwissProt, especially
on datasets with low error extent. In this vein, we found similarity assessment, in
general, more resilient to increases of error extent on SwissProt, which exhibits path
and label heterogeneity more prominently, than Nasa, which is characterized by dis-
persed cardinality distribution (i.e., distribution of the number of nodes and paths per
tree). Accuracy results on PSD are considerably poorer; on DBLP, structural similarity
was found completely ineffective in identifying duplicates.

TED-F and TED-U showed the best accuracy results overall. TED-F outperformed
TED-U on Nasa and SwissProt, whereas, on PSD, TED-U achieved better results. Sim-
ilar trend was observed on PQ, which approximates TED-F: PQ outperformed all CDI
similarity functions on Nasa and SwissProt, but showed worse accuracy than NJ on
PSD. NJ was the best performing among the similarity functions designed for the CID
problem; the results of NCD and ZMC were similar. DFT presented very poor perfor-
mance in all datasets and the combination between ZMC and DFT did not improve
the results of the former. In general, the accuracy of all similarity functions proposed
in the CDI context degrades more sharply as error extent increases.

For token-based similarity functions, we found the Jaccard similarity being supe-
rior to Cosine. Also, we did not observe any significant gain by using weighting
schemes.

For unordered trees, PCL is clearly the structural similarity function of choice:
it provides superior accuracy results, its performance degrades less steeply as the
dataset level of “dirtiness” increases, and produces much shorter profiles. Compara-
tively, PCL also provides superior results as compared to the CID similarity functions.

3.4 Summary

In this chapter, we presented a comprehensive study on structural similarity func-
tions in the EM context. We started by reviewing on a highly representative set of
structural similarity measures for ordered and unordered trees. We then proposed
a novel method for producing high-quality structural representations of unordered
trees. In this context, we exploited structural summaries and clustering concepts to
represent XML documents as profiles, where each token embodies a set of similar
structural patterns. Remarkably, our approach delivered substantially more compact
token sets than competing approaches, while providing more accurate results. In this
context, we also explored different ways to weigh structural XML representations.

86 A Framework for XML Similarity Joins

Chapter 4

Combining Text and Structure

The accuracy of classification tasks can be substantially improved by combining mul-
tiple classification models together instead of using a single model in isolation. This
approach, which we generally refer to as combination of evidence, has been exten-
sively adopted in several application domains including data mining, machine learn-
ing, and pattern recognition [TSK06, Bis06]1. In Chapter 2, we have seen that EM and
IR tasks have a natural interpretation as a classification model and, very often, com-
bine evidence obtained from multiple sources, such as comparison fields, similarity
functions, and document representations. Regarding XML similarity, combination of
evidence is not only useful for improving accuracy, but is also at the heart of the very
notion of similarity itself owing to the intrinsic duality of structure and text in XML.

In the previous chapter, we have shown that structural similarity alone can some-
times provide highly accurate EM results. Nevertheless, most items of identifying
information of real-world XML data, which allow discriminating trees in a collection
from each another, are represented by text nodes. Because we have to anticipate the
same sorts of data quality issues found in the relational world, e.g., typos and mis-
spellings, similarity matching has to be applied on text data as well. Hence, accurate
and robust similarity functions for XML data should address both text and structure
and combine their similarity results in a meaningful way.

The interplay between text and structure also appears in other aspects of the simi-
larity assessment. When multiple text nodes are used as comparison fields, structure
is necessary to avoid comparison between unrelated text data, e.g., name vs. address.
In this regard, instead of concatenating text nodes values and treating them as a larger
string, a better approach is to contextualize each textual unit (i.e., textual token) with
structural patterns. Furthermore, such text contextualization is important to prevent
statistical distortion when a string appears in unrelated text nodes but with different
frequencies. This distortion would jeopardize weighting schemes based on statistical
information such as IDF. For example, if “Alice” is very common within text nodes re-
lated to name but quite rare within address nodes, then all the tokens generated from

1In these areas, the combination of classification (or regression) models is commonly referred to as
ensemble methods.

87

Chapter 4 Combining Text and Structure

“Alice” will however be assigned a low weight in the concatenated name-address
string. Note that the motivation for contextualizing text nodes in XML data is the
same as for applying text segmentation on flat strings in relational data.

Further, it is often the case that only part of the available textual information is
interesting for similarity matching, i.e., simply using all textual information avail-
able will hardly be effective. Similar to the selection of comparison fields in relational
data for Classification Model Design (recall discussion in Section 2.1.2), issues such as
lack of independence are known to negatively affect the quality of EM results when
more fields than needed are used. Also, XML data in particular may contain very
long strings — especially document-centric XML, which are typically inappropriate
for identify duplicates. Finally, adding long strings to the tree representation would
blow up the size of token sets thereby hurting performance (see Chapter 5). To tackle
this problem, we adopt the strategy of exploiting structural information together with
user-defined textual information; these pieces of information compose the entity de-
scription of a tree. In this context, we incorporate into our framework sub-queries in
the form of simple structural constraints specifying which text nodes will form the
textual part of an entity description. We call such sub-queries entity description selec-
tion queries (EDS queries, for short). The remaining elements, i.e., those not selected
by the EDS query, form the structural part of the entity description. In this context,
we also aim at supporting exploratory interaction and user guidance for formulating
EDS queries.

The formulation and evaluation of EDS queries is considerably more complicated
in heterogeneous XML datasets. The underlying structure is frequently very complex
and the user may have only limited knowledge about it, which render schema-aware
query languages like XQuery [BCF+07] or XPath [BBC+07] inappropriate. Even if
the structure is known, the complexity would however be reflected in the queries
leading to clumsy and error-prone query formulations. To overcome this drawback,
we follow the flexible query model often adopted in XML search [AYL06]: structural
constraints are interpreted approximately, i.e., it is not required that the constraints
expressed in the queries exactly match patterns in data instances. As for structural
similarity, we have the need of approximate path matching where prior identification
of duplicate paths can be exploited to support EDS queries.

There are several challenges in incorporating text and structure into a single notion
of similarity and, in turn, into our similarity join framework. Textual and structural
patterns have different semantics and usually exhibit very variable frequency distri-
butions across different datasets. This fact exacerbates the combination of evidence
problem, in particular, for approaches that adopt a linear combination of similarity
scores (see discussion in Chapter 1). Also, the experimental results in Chapter 3 re-
vealed that, while being effective in identifying duplicates for some datasets, struc-
tural similarity may perform very poorly on datasets showing regular structure. On
the other side, because entity description selection is done approximately, textual sim-
ilarity may be negatively affected if text nodes are erroneously selected for similarity
evaluation. Therefore, the combination strategy must be robust to the situation in
which either textual or structural similarity does not properly separate duplicates

88 A Framework for XML Similarity Joins

4.1 Text and Structure Delimitation

from non-duplicates.
From the viewpoint of efficiency, the adoption of token-based similarity functions

is of paramount importance for combining textual and structural similarity. Besides
the wealth of optimization opportunities (see Chapter 5), token-based similarity func-
tions allow measuring textual and structural similarity between XML trees by operat-
ing on token sets representing text, structure, or both, in a unified framework. Thus,
we can obviate multiple accesses to XML trees and separate invocations to subrou-
tines or operators for calculating structural and textual similarity (see discussion in
an XDBMS environment in Chapter 6). Furthermore, as we will see shortly, token-
based methods facilitate the integration of approximate entity description selection
with the similarity join processing and the assignment of a clean semantics for the
separation of structural and textual entity descriptions.

Our general approach for the combination of text and structure embraces two key
ideas: decomposition of the set of path clusters of an XML collection into structural
and textual subsets and generation of tokens that jointly capture textual and struc-
tural information. For the former, we exploit the results of EDS queries. For the latter,
we propose prepending q-gram tokens with structural information. By doing so, we
are able to both avoid the comparison of unrelated concepts and keep fine-granular
token statistics. As in Chapter 3, we consider combination methods for ordered and
unordered trees. For ordered trees, we introduce the concept of extended pq-grams that
embeds q-grams into pq-gram tokens; we propose and analyze three token generation
strategies for this new concept. Combination methods for unordered trees are based
on the PCI technique introduced in Chapter 3; in this context, we explore approaches
to combination of evidence at the token and score levels. We also exploit PCIs to de-
vise a compact structure to approximately match user-specified structural constraints
for entity description selection. We call this structure, which approximately repre-
sents all path clusters of an XML collection, Path Cluster Summary (PCS). We realize
PCS as little memory-resident inverted lists providing efficient evaluation of queries
for entity description selection. Moreover, PCS can be used to update clustering infor-
mation and avoid the need of repeating the clustering process when new documents
enter datasets under consideration.

The rest of this chapter is structured as follows. In Section 4.1, we formally define
the decomposition of the path cluster set. In Section 4.2, we introduce the epq-gram
concept for ordered trees. PCI-based approaches for combination of evidence on un-
ordered trees are described in Section 4.3. The PCS structure is presented in Section
4.4. We show the results of our empirical experiments in Section 4.5. Related work is
discussed in Section 4.6, before we wrap up with the summary in Section 4.7.

4.1 Text and Structure Delimitation

Recall from Chapter 3, the result of the PCI generation process over the PS of a col-
lection of XML documents is the set of clusters PC

tgl
θ . We shall decompose PC

tgl
θ into

two disjoint subsets, which are used to delimit the structural and textual part of entity

A Framework for XML Similarity Joins 89

Chapter 4 Combining Text and Structure

descriptions. We now formally define these subsets; details about how this decom-
position is realized using EDS queries are given in Section 4.4. (In the following, we
omit the target label and the threshold cutting point in the notation for a set of path
clusters to avoid clutter, i.e., PC

tgl
θ = PC .)

Definition 4.1. Let C be a collection of XML documents; PC = {pc1, . . . , pcn} is a set of
clusters generated from the PS of C. We decompose PC into two disjoint sets, PCs and PCt ,
such that PCs ∪ PCt = PC . (PCt and PCs do not form a partition, however, because one or
the other set can be empty.) We call PCs the set of structural path clusters and PCt the set of
textual path clusters. Further, given a text node u, we say that u ∈ PCt if u appears at the
end of some path p, s.t., p ∈ pci ∧ pc ∈ PCt.

The following tokenization functions we present use the PCt set (received as a
free parameter) to guide the generation of tokens containing textual information. For
simplicity, we omit the PCt from the list of parameters.

4.2 Combination Approach to Ordered Trees

In this section, we study ways to simultaneously deal with structural and textual sim-
ilarity on ordered trees. Tokenization methods for ordered trees must embody sibling
relationship information. In the previous chapter, we reviewed the pq-gram tokeniza-
tion method, which captures this information. A different tokenization method for
ordered trees was presented by Yang et al. [YKT05]. The authors convert a tree into
a full binary tree representation. The token set consists of all subtrees composed by
a node of the original tree and its two children (such tokens are referred to as bi-
nary branch by the authors). pq-grams provide more flexibility regarding the subtree
shape, which can be used to control structural sensitivity. Moveover, as we have seen
in the last chapter, the PQ similarity delivers quite accurate results. Therefore, we
build upon the pq-gram technique to construct tokens containing both structural and
textual information.

We propose an extension of the original definition of pq-grams. During generation
of the pq-gram profile, we convert text nodes to sets of q-grams, which are used to en-
rich pq-grams with textual information, leading to extended pq-grams (epq-grams, for
short) [RH08a]. For the epq-gram generation, we focus on the conceptual represen-
tation of strings in an expanded tree, denoted by ET p,q. This approach allows us to
use an almost identical algorithm to produce epq-grams from a stream of nodes, with
minor variations to handle text nodes. Furthermore, the generated grams seamlessly
reduce to normal pq-grams when the input stream only contains structural nodes.
There are several conceivable ways to represent strings as nodes in an expanded tree.
Next, we analyze three versions.

The first alternative consists of considering each character of a string as a character
node. Hence, whenever a parent of a text node is selected as an anchor node, q char-
acter nodes are selected to form a new epq-gram version called epq-v1. Given a T 2,2

90 A Framework for XML Similarity Joins

4.2 Combination Approach to Ordered Trees

(m,A,*,*)
(m,l,*,*)
(m,i,*,*)
(m,c,*,*)
(m,e,*,*)

m

**

*

T2,2
m

* *A l i c
 Al li ic

epq-v1 epq-v2

(a) (b) (c)

(*,m,*,A)
(*,m,A,l)
(*,m,l,i)
(*,m,i,c)
(*,m,c,e)
(*,m,e,*)

(m,Al,*,*)
(m,li,*,*)
(m,ic,*,*)
(m,ce,*,*)

*

* *
m

* *A l i c

* *

anchor=m

m

epq-v3 *=character

anchor=q-gram

*

(d)
* * * *

* * * ** ** *

“Alice”
e

* *
 ce

* *

e

* *A l i c e

Figure 4.1: Versions of extended pq-grams

in Figure 4.1(a), the corresponding ET 2,2 for epq-v1 together with the resulting epq-
profile are shown in Fig 4.1(b). Note that the epq-profile is separated into two subsets:
epq-grams having a as anchor node, the other having character nodes as anchor node.
When the node labels are concatenated, sequences of character nodes form q-grams,
which are combined with structural information. Unfortunately, epq-v1 always forms
1-grams when the character node is the anchor, which is independent of the choice
of q — e.g., the 1-gram (highlighted) in the middle of the token mA** . Note that for
q = 1, different strings containing an identical (multi-) set of characters have the same
q-gram profile and, hence, maximum similarity (see Section 2.3.2).

To prevent the potential drawback of epq-v1, we propose a hybrid approach, called
epq-v2 (see Figure 4.1(c)). Now, character nodes are used when the parent is the an-
chor node, and q-gram nodes when the text node itself is the anchor. As a result, all
epq-grams with textual information now contain q-grams of the same size (epq-grams
having a as anchor node are the same to those of epq-v1). Note that epq-v2 requires an
additional parameter specifying the q-gram size. Here, we use the same value of q for
both pq-grams and q-grams; they can be independently chosen, though.

The previous versions may consume substantial space because of large profile sizes.
This observation motivates the third approach, epq-v3, which is derived by using
character nodes, but pruning their q-null children from the expanded tree (see Figure
4.1(d)). Compared to the previous versions, this approach roughly produces only half
of the epq-grams embodying text; therefore, textual similarity receives less weight.
However, this property can be compensated by the fact that tokens containing text
are likely to be less frequent than structure-only tokens. The rationale is that by using
common notions of weights that are inversely proportional to frequency, e.g., IDF, we
can balance the effect of the q-gram reduction. In Section 4.5, we empirically evaluate
this conjecture.

We denote by epq[v{i}]2 the tokenization function that generates epq-v{i} tokens,
for i = {1, 2, 3}; The corresponding similarity function is denoted by EPQv{i}. Theo-
rem 4.1 shows the relation between the resulting profile cardinality of epq-v1 and the
numbers of non-leaf nodes, empty nodes, and text nodes.

2Parameters p and q are omitted.

A Framework for XML Similarity Joins 91

Chapter 4 Combining Text and Structure

Table 4.1: epq-gram profile cardinalities

Version |epq [v{i}](T)|

epq-v1 kq + 2e + 2tn− 1

epq-v2 kq + 2e + t(2n− q + 1)

epq-v3 kq + 2e + tn− 1

Theorem 4.1. Let p > 0, q > 0, and T be a tree with e empty nodes, k non-leaf nodes and
t text nodes. Assume that all text nodes have a fixed length of n. The size of the extended
epq-gram profile (version 1) is: |epq [v{i}](T)| = kq + 2e + 2tn− 1.

Proof (Sketch). Theorem 4.1 can be shown by structural induction similarly to the strategy
used in [ABG05]. The deletion of leaves should be done in two stages: first deletion of empty
nodes and then deletion of text nodes. Deleting a text node decreases the cardinality of the
pq-gram profile by 2n if the text node has siblings, otherwise by 2n + q − 2; deletion of an
empty node decreases the cardinality by q if the node has no siblings, otherwise by 2 .

The profile cardinality of epq-v2 and epq-v3 can be derived similarly. Table 4.1
shows the cardinality of the three epq-gram versions. Note that, especially when
applied to text nodes with long strings, the epq-gram profile can have a cardinality
considerably larger than that of normal pq-grams. Therefore, we define the expanded
tree ET p,q of a tree T to contain only text nodes in PCt.

4.3 Combination Approach to Unordered Trees

The combination of text and structure for unordered trees is based on the pcl tok-
enization function. Following the decomposition of the set of path clusters PC, we
parameterize pcl with s or t indicating the generation of structural-only tokens or to-
kens containing textual information, respectively; The profile returned by pcl[s] cor-
responds straightforwardly to the set of PCIs relative to PCs. Next, we describe the
pcl[t] tokenization function and, then, discuss strategies for using pcl[s] and pcl[t] to
obtain a single similarity function.

4.3.1 Textual Tokenization Function

In the following, we first define the pcq tokenization function, which generates to-
kens combining path cluster information and q-grams — called pcq-gram tokens —
and, then, the pcl[t] tokenization function, which uses pcq as auxiliary function.

92 A Framework for XML Similarity Joins

4.3 Combination Approach to Unordered Trees

Definition 4.2 (pcq Tokenization Function). Given a tree T , let u be a text node of T
appearing under a path cluster pci. Let qgram(u) be the qgram profile of the content of u
as defined in Section 2.3.2. The pcq tokenization function generates a profile from the u as
follows:

pcq(u) = i ◦ q : u ∈ pci ∧ q ∈ qgram(u) .

Definition 4.3 (pcl[s] Tokenization Function). The pcl[s] tokenization function generates
a profile from a tree T as follows:

pcl [s](T) =
⋃

u∈C (T)∧u∈PCt

pcq(u) .

Note that, besides being used to compose the textual representation of a document,
PCIs also serves to approximately locate text nodes. For example, in Figure 2.4, we are
able to compare the text value of mother in subtrees a) and b) because their respective
paths have associated the same PCI = 4 (see Figure 3.3). The collection statistics of
a pcq-gram token t is constrained at the path cluster pci, i.e., freq(t, C) corresponds
to the number of documents where token t appears in a collection associated with a
path p ∈ pci.

4.3.2 Combination Strategies

We now consider ways to combine textual and structural similarity for unordered
trees. We examine two approaches: score-level combination (SLC) and token-level
combination (TLC). The first is the linear combination of the similarity scores derived
from pcl[s] and pcl[t] — the corresponding similarity functions are denoted by PCLs

and PCLt, respectively. In this approach, we have two different profiles for each tree,
the similarity functions are evaluated independently, possibly using different weight-
ing schemes, and their result is combined using weights that can be either hand-tuned
or obtained from some learning model. Note that PCIt could be further segmented
into subsets corresponding to text nodes related to different concepts (e.g., different
textual profiles for name and address) with weights associated accordingly. The
combination of several comparison fields is often employed on relational data as dis-
cussed in Chapter 2. Nonetheless, in this thesis, we focus on the combination of text
and structure and, hence, we will use a single textual profile for each subtree.

The second approach builds the union of the structural and textual profile of a doc-
ument thereby obtaining a unified representation. In other words, we generate one
profile per tree containing structural tokens and tokens embodying textual and struc-
tural information. We can employ a weighting scheme such as IDF to assign weights
to tokens based on their statistical properties. In this context, tokens containing tex-
tual information would usually have lower frequencies than structural tokens and,
therefore, larger IDF weights. Finally, note that the combination method adopted
for epq-grams is equivalent to TLC. In the following, we formally define PCLslc and
PCLtlc, the similarity functions obtained from score- and token-level combination
strategies, respectively.

A Framework for XML Similarity Joins 93

Chapter 4 Combining Text and Structure

Figure 4.2: EDS queries on PCS

Definition 4.4 (PCLslc Similarity Function). Let T1 and T2 be two XML trees. Let λt

and λs be similarity weights such that λt + λs = 1. The score-level similarity combination
(PCLslc) between T1 and T2 is given by:

PCLslc(T1, T2) = λs × PCLs(T1, T2) + λt × PCLt(T1, T2) (4.1)

Definition 4.5 (PCLtlc Similarity Function). Let T1 be an XML tree. The combined profile
of T1, denoted as pcl[s,t], is given by pcl [s , t](T1) = pcl [s](T1)∪pcl [t](T1). Similarly, consider
an XML tree T2. We denote by PCLtlc the similarity function defined by 〈pcl [s, t], , 〉.

4.4 Entity Description Selection Using a Path Cluster
Summary

So far, we have described how we accomplish XML path clustering (Chapter 3) and
how we compute textual and structural similarity. We are now ready to discuss the
process of determining the sets PCt and PCs. Because this decomposition of the orig-
inal set of clusters defines which parts of an XML tree will deliver textual or structural
tokens, it is a key design decision. Further, the definition of the best decomposition
configuration is critically dependent on the application domain. In fact, as discussed
in Section 2.1.2, Classification Model Design invariably requires human interaction.
Hence, we let users specify the PCt set by issuing an EDS query. This query con-
sists of a set of simple path specifications, such as /a/b/c,3 that are approximately
matched against the set of clusters. The top-K answers for each path specification,
i.e., the K cluster sets with highest similarity scores, are selected to constitute PCt;

3Note that XPath-style filtering predicates, e.g., /a[b]/c, actually defines a twig pattern and are cur-
rently not supported.

94 A Framework for XML Similarity Joins

4.4 Entity Description Selection Using a Path Cluster Summary

the remaining cluster sets form PCs. Besides the parameter K, a threshold τeds can
be specified to define a minimum similarity value between a path specification and
cluster prototypes.

Further, because users are likely to have only vague knowledge about the under-
lying structure of the data collection, we support exploratory queries for cluster de-
composition, before the actual similarity join evaluation takes place. Currently, we
return several pieces of statistical information about the top-k results, such as cluster
frequency in the collection and information about string length of text nodes appear-
ing in the cluster set. The user can therefore reformulate the query if, for example,
the returned cluster set appears only in a few subtrees or is related to a part of the
document with predominance of lengthy free text. We revisit this aspect in Chapter
6.

Definition 4.6 (Entity Description Selection Query (EDS Query)). Let PC be a set of
path clusters, P a set of distinct path specifications, K a positive integer, τeds a constant
threshold in the interval [0, 1], and stats a Boolean value. An EDS query is then given by:

EDS (P, K, τeds, stats) =
⋃
p∈P

eds(PC, p, K, τeds, stats) , (4.2)

where eds is a function that compares p with all path clusters in PC and returns the k most
similar path clusters represented by the respective PCIs, for k ≤ K, whose similarity score
with p is not less than τeds; if the value of stats is True, available statistical information about
the k most similar path clusters is included in the result.

The parameter stats is set to True to enable interactive and exploratory user sessions
prior to similarity join execution. In this setting, the user may issue several EDS
queries, analyze the statistics returned with the results, and, then, select the set of
most interesting path clusters to compose PCIt before executing the similarity join.
Figure 4.2 illustrates this process. On the other hand, setting stats to False allows
embedding the EDS query into the similarity join as sub-query.

Now, we provide implementation details for evaluating EDS queries. To avoid the
burden of comparing path queries with all path classes of a cluster, we exploit the
so-classed Path Cluster Summary (PCS), a structure approximately subsuming all path
clusters of an XML collection. Path queries are matched with cluster prototypes (aka
cluster representatives) rather than with each path class. To this end, we adopt a
simple but effective level-based structure in which all (annotated) labels appearing
at the same level are kept together. Figure 4.3(a) shows the prototype of the path
cluster with PCI 4 in our running example. The matching between EDS queries and
a prototype is done using the WPS similarity function, similarly to that of regular
paths. The main difference is that only a single label match is allowed per level. For
example, in Figure 4.3(a), the element study of the EDS query cannot be matched
with the cluster prototype because of the previous match of patient at level 1.

We design a specialized inverted list index to represent the set of cluster prototypes
in PCS and efficiently match EDS queries against them. Inverted lists are constructed

A Framework for XML Similarity Joins 95

Chapter 4 Combining Text and Structure

(a) Cluster prototype (PCI 4) (b) Inverted list of cluster prototypes

Figure 4.3: Path cluster prototype matching

for each annotated label appearing in a cluster prototype. Figure 4.3(b) shows the
inverted lists of the annotated labels appearing in the example of Figure (4.3a). Note
that there is no need to create an inverted list for the target label, because it is the
root label of all cluster prototypes. Accordingly, we ignore the first appearance of the
target label in an EDS query — which yields the annotated token tgl◦1 — as its match
score is uniform along all prototypes.

The space requirement of the index is O (|L| × |P | ×D), where L is the set of dis-
tinct annotated labels in the dataset — L corresponds to the dictionary of the index
and its size can be greater than the number of distinct labels due to recursion — , P
is the set of distinct paths, and D is the maximum path length among all documents.
Clearly, this analytical bound is “loose”. In practice, a label appears mostly in a few
paths and levels; thus the space consumption is expected to be much smaller. More-
over, the vast majority of XML datasets present fairly moderate values for |L|, |P |, and
D, e.g., less than 200 path classes and a maximum depth of 8 [HMS07]. Therefore, for
such datasets, the dictionary and the inverted lists can be kept memory-resident. Fi-
nally, path cluster statistics are stored on separate table that is accessed at the end of
the evaluation process for each PCI in the result.

Furthermore, we can ensure truly interactive response times even under concur-
rent requests by employing well-known IR optimizations such as the max-score strat-
egy [TF95].4 The order of evaluation of the inverted lists follows the order of the
EDS query components. This means that the upper bound for the weight of match-
ing labels decreases monotonically as the query is evaluated (recall that we use the
minimum as aggregation function in Equation 2.11) and, therefore, it is easy to com-
pute the highest score that a cluster prototype containing all remaining components
of the EDS queries can achieve. Thus, we can promptly stop the query evaluation
and return the current top-k candidate as soon as there is no other candidate in the
intermediate result whose highest possible score is higher than the score of the kth

4Because the evaluation of EDS queries can be interpreted as a set selection query, we might well
employ (with minor modifications) similarity matching algorithms in an even more sophisticated
way, e.g., see [HCKS08]. Nevertheless, the max-score optimization already provides interactive
responses on the compact PCS structure.

96 A Framework for XML Similarity Joins

4.5 Experiments

candidate. In practice, only the inverted lists associated with the first query label
components will be evaluated. Note that we are interested only in the top-k results;
their complete score is unimportant.

Besides EDS query matching for cluster set decomposition, our inverted list repre-
sentation of cluster prototypes is also important for (PCI-equipped) PS maintenance
in the presence of incremental path class updates. New path classes are matched
against the index to automatically select the most similar path cluster. Therefore, the
need of complete re-clustering is avoided after changes in the PS structure (e.g., when
a new document is stored or an edit operation such as node insertion is applied), or
it can be postponed to be done off-line. A pre-defined threshold θ′ is used to define
a minimum value of closeness between a new path class and cluster prototypes. If
no cluster prototype is returned with similarity to the new path class not less than θ′,
a new cluster is created and the path class is assigned to it. Typically, θ′ is defined
with the same value of the cutting threshold θ that was used to generated the initial
set of path clusters (see Section 3.2.3). Note that the creation of a new cluster also
triggers an update on the PCS structure itself. We discuss the maintenance of the PCS
structure in Chapter 6.

4.5 Experiments

In this section, we measure the effectiveness of our approaches for text and structure
combination on several real-world XML datasets. We also evaluate the benefits of
increasing the PCt set by using more EDS queries.

4.5.1 Approaches Evaluated

We evaluate the following similarity functions:

• EPQv{i}, i = 1, 2, 3: defined by 〈epq[v{i}, p = 2, q = 2], Jaccard , IDF 〉. In the
experimental charts, we abbreviate EPQv{i} by Vi.

• PCLtlc: defined by 〈pcl [s, t, q = 2], Jaccard , IDF 〉. In the experimental charts,
we abbreviated PCLtlc by TLC).

• PCLslc: defined by λs×PCLs + λt×PCLt, where PCLs and PCLt are, in turn,
defined by 〈pcl [s], Jaccard , IDF 〉 and 〈pcl [t, q = 2], Jaccard , IDF 〉, respectively.
Note that we use the IDF weighting scheme. Although the use of unweighted
structural profiles was shown to perform slightly better as compared to the use
of IDF-weighted profiles, we did not observe any accuracy gain by using un-
weighted structural tokens in our experiments. We evaluate instances of PCLslc

with structural (textual) weights varying from 0.1 (0.9) to 0.9 (0.1) and report the
best result; in the charts, PCLslc is abbreviated by SLC.

A Framework for XML Similarity Joins 97

Chapter 4 Combining Text and Structure

Table 4.2: Dataset statistics

Dataset Pt
Text size

mean/min/max

SwissProt-Pt1 /Entry/Ref/Author 108.3/4/4670

SwissProt-Pt2 /Entry/Ref/Author
202.8/25/4771

/Entry/Org

Nasa-Pt1 /dataset/title 72.7/5/234

Nasa-Pt2
/dataset/title

98.8/5/632
//journal/author/lastName

PSD-Pt1 /ProteinEntry/sequence 330.8/3/27374

PSD-Pt2
/ProteinEntry/sequence

368.4/15/27386
/ProteinEntry/organism/ formal

DBLP-Pt1 /inproceedings/title 66.9/1/298

DBLP-Pt2
/inproceedings/title

104.5/5/1509
/inproceedings/author

Finally, to better understand the effects of combining structural and textual sim-
ilarity, we also report the results of the evaluation of PCLs and PCLt in isolation
(abbreviated in the charts by S and T, respectively).

4.5.2 Datasets

The generation of datasets containing fuzzy duplicates followed a process analogous
to that described in Chapter 3. The main difference is that we now maintain text
nodes in fuzzy duplicates and, besides structural transformations, also textual trans-
formations are applied to text nodes. Textual transformations consist of character-
level operations, namely insertions, deletions, and substitutions. These transforma-
tions aim at simulating typical data entry errors, such as misspellings; to this end, we
used statistics from empirical studies in spelling correction techniques [Kuk92].

98 A Framework for XML Similarity Joins

4.5 Experiments

Further, we restricted the set of nodes on which textual transformations are per-
formed to those appearing at pre-defined path classes, which we refer to as Pt. For
example, for a dataset derived from DBLP, we applied textual transformations only
on text nodes under the path /inprocedings/title. Like structural transforma-
tions, the percentage of characters affected by the set of textual transformations is
defined by the error extent parameter. We used the same value of error extent for
both structural and textual transformations and adopt the same categorization em-
ployed in Chapter 3, i.e, low (10%), moderate (30%), and dirty (50%) error datasets.
Note that error extent refers to the set of nodes eligible for textual transformation
collectively and not to each node individually.

Table 4.2 gives details about the textual information of the source datasets. We use
the suffix Pt1 and Pt2 to indicate datasets generated using one and two path classes,
respectively (i.e., |Pt| = 1 or |Pt| = 2). PSD has the largest textual part, while DBLP
has the smallest. The mean text size of Nasa and PSD only increases moderately from
Pt1 to Pt2; on the other hand, the size of the textual part of SwissProt-Pt2 is twice as
large as that of SwissProt-Pt1.

Structural transformations, as described in Chapter 3, are applied after textual
transformations. Hence, the path of a text node on whose content textual transfor-
mations were applied may be altered by node-level transformations. On the other
hand, a node selected for textual transformation cannot be deleted afterwards; note
that this restriction prevents some structural operations from being applied on this
node (i.e., Delete Node) as well as on its ancestors (i.e., Delete Path and Delete Sub-
tree).

In the experiments, we used EDS queries with P = Pt (see Equation 4.2), i.e., the
same path classes specified for generating a dataset were used as path specifications
for the EDS query issued against this dataset. Further, we set K = 1 and τeds = 0,
which means that, for each path specification, the EDS query returns exactly one PCI.
Notice that, owing to the structural transformations and the inherent imprecision of
the path cluster process, the PCt set returned by the EDS query may contain “extra-
neous” or “spurious” PCIs, i.e., PCIs whose associated paths are, in large part, not
in Pt or were not derived therefrom by structural transformations and, thus, contain
text data related to different concepts.

4.5.3 Comparison of All Similarity Functions

Similarly to Chapter 3, we compare the similarity functions for ordered and un-
ordered trees on the same group of datasets by leaving out node-swapping transfor-
mations when generating fuzzy duplicates. Likewise, we observed identical trends
regarding the similarity functions for ordered trees, i.e., the three versions of EPQ, on
datasets generated by a set of transformations including the Swap Trees transforma-
tion; therefore, for brevity, we omit the results on these datasets.

Figure 4.4 shows the results. In general, substantial accuracy improvements were
obtained by adding textual information to entity description, as expected. In com-

A Framework for XML Similarity Joins 99

Chapter 4 Combining Text and Structure

S T TLC SLC V1 V2 V3
0

0,2

0,4

0,6

0,8

1

M
AP

Pt1
Pt2

(a) Nasa, low error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

Pt1
Pt2

(b) Nasa, moderate error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

Pt1
Pt2

(c) Nasa, dirty error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

Pt1
Pt2

(d) SwissProt, low error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

Pt1
Pt2

(e) SwissProt, moderate error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pt1
Pt2

(f) SwissProt, dirty error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

Pt1
Pt2

(g) PSD, low error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

Pt1
Pt2

(h) PSD, moderate error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

Pt1
Pt2

(i) PSD, dirty error

S T TLC SLC V1 V2 V3
0

0,2

0,4

0,6

0,8

1

M
AP

Pt1
Pt2

(j) DBLP, low error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pt1
Pt2

(k) DBLP, moderate error

S T TLC SLC V1 V2 V3
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

M
AP

Pt1
Pt2

(l) DBLP, dirty error

Figure 4.4: Accuracy results on XML data using textual and structural similarity

parison to the experiments reported in Chapter 3, we are now able to get maximum
effectiveness in several settings. For example, on Nasa (Figures 4.4(a)–(c)), nearly per-
fect accuracy is achieved by most similarity functions on Pt2 datasets, even for 50% of
error extent. This means that duplicates are properly separated from non-duplicates
and positioned on the top of the ranked list (recall the interpretation of the MAP mea-
sure in Section 2.4.2). Moreover, effectiveness on PSD (Figures 4.4(g)–(i)) and DBLP

100 A Framework for XML Similarity Joins

4.6 Related Work

(Figures 4.4(j)–(l)) dramatically increases when textual similarity is employed: com-
pare the MAP values of S, which considers only structure, with those of the other
measures.

Further, we observe that the results are stable on PSD and DBLP in the sense that
MAP values (except those from S) do not vary too much on a dataset and no simi-
larity function experienced drastic drop in accuracy along different datasets; similar
behavior is also observed on Nasa. On the other hand, results on SwissProt (Figures
4.4(d)–(f)) are more unpredictable. The explanation for this behavior lies on the flip
side of structural heterogeneity, in particular, label and path diversity: while pro-
viding good identifying information for EM tasks, structural heterogenity severely
complicates the selection of textual information, and, thus, EDQ query results are
more likely to contain spurious PCIs. This fact is evident from the poor accuracy of T,
which considers only text, on moderate error (Figure 4.4(e), Pt1) and dirty error (Fig-
ure 4.4(f), Pt2) datasets. A closer examination on the path clusters associated to the
PCIs returned by the EDS query confirmed that these clusters contain, in fact, several
unrelated paths.

All combination approaches were successful in most settings, i.e., they show better
accuracy than T and S in isolation. The exceptions occur the on SwissProt dataset —
moderate and dirty error extent — owing to the spurious PCIs used for textual repre-
sentation. For example, in Figure Figure 4.4(e), SLC was unable to leverage the results
of S for Pt1, which performed much better than T; likewise, in Figure 4.4(f), TLC ex-
hibits worse results than S for Pt2. Conversely, when S delivered low MAP values
such as on PSD and DBLP, all similarity functions performed at least as good as T.
This result is similar to the findings of [OC03], whose authors observed that good
document representations tend to be robust when combined with other poorly per-
forming representations. Further, the quality of the PCt set also dictates the accuracy
effect of increasing textual information in the tree representation. The results show
that the accuracy of similarity functions using textual information increases from Pt1
to Pt2 when the PCI returned by the second path specification is related to a “clean”
path cluster — the opposite holds true.

TLC has overall the best accuracy among all similarity functions. Exceptions are
noticeable in Figures 4.4(e) and 4.4(f), where TLC is outperformed by SLC on Pt2, and
in Figure 4.4(c), where V2 exhibits the best accuracy on Pt1. Nevertheless, TLC has the
advantage of being parameter-free, as opposed to SLC which requires the definition
of similarity weights, and, in comparison to V2, operating on much shorter profiles.
Finally, V2 has the best accuracy among the epq-gram versions, more prominently on
dirty datasets (e.g, Figure 4.4(l)).

4.6 Related Work

Weis and Naumann [WN05] presented an EM framework in the context of XML
datasets. Textual entity descriptions — either pre-defined or heuristically identified —
are selected from XML data and stored in relational tables. Then, a sequence of op-

A Framework for XML Similarity Joins 101

Chapter 4 Combining Text and Structure

erations is performed towards the identification of duplicates, which basically follow
the NFS framework presented in Chapter 2. This approach assumes that all XML
trees comply to the same schema; thus, its usage in ad-hoc or “schema-later” settings
is impractical.

Milano et al. [MSC06] proposed an edit-distance-based similarity function for un-
ordered trees exploiting textual and structural information. Paths are used to guide
textual similarity comparison: two text nodes can be compared only if they have the
same path from the root. The set of one-to-one text node matchings between two
trees is referred to as overlay. The cost of an overlay is defined in terms of the similar-
ity between text nodes and the overall similarity result is obtained from the cost of an
optimal overlay — an overlay is optimal if it is not a proper subset of any other over-
lay and its cost is minimal. The authors presented an algorithm that, first, performs
all pairwise similarity calculations and, then, employs a variant of the well-known
Hungarian Algorithm to find an optimal overlay. Unfortunately, the algorithm is
computationally very expensive — complexity of O(n2 × deg3), for trees with size n
and fixed degree deg , which prevents its use in large-scale similarity joins.

Many approaches combining text and structure have been proposed for clustering
of XML documents [DG09]. In [TNB08], the structural and textual parts of XML trees
are represented by vectors of path and term frequencies, respectively. For the struc-
ture, the Euclidean distance is used as similarity function. For the text, the similarity
is defined in terms of the semantic association between two trees, which is measured
using Singular Value Decomposition [BDF+97]. Similarity results are combined using
a linear combination of similarity scores (equivalent to the SLC approach).

There is an extensive research literature on combination of evidence [TSK06, Bis06,
Cro00, BM03a]. We have already discussed several combination strategies in Section
2.1.2. In the context of clustering Web pages, Ramage et al. [RHMGM09] exploited
user-generated tags from social bookmarking Web sites to improve effectivity. The
authors examined several ways of incorporating tags into the bag-of-words repre-
sentation of Web documents. Tags can be interpreted as structural information. In
this regard, the model “Tags as New Words”, which treats tags as additional words,
bears strong resemblance with TLC. For XML data, we are not aware of any previous
work that generates and combines textual and structural tokens in a similar vein as
epq-grams and PCItlc.

4.7 Summary

In this chapter, we explored ways of combining evidence from textual and structural
XML representations and proposed methods for selecting the textual description of
tree-structured entities on heterogenous XML datasets. We proposed tokenization
functions that jointly capture textual and structural information for ordered and un-
ordered trees; in this context, we explored approaches to combination of evidence at
the token and score levels. The delimitation of text and structure in the representa-
tion of XML trees is defined by the user at runtime using the so-called EDS queries.

102 A Framework for XML Similarity Joins

4.7 Summary

To support EDS query evaluation, we devised a cluster prototype for each path clus-
ter, i.e., a structure subsuming all paths contained in a cluster. The benefit of cluster
prototypes is two-fold: users can specify which part of the documents will constitute
their textual representation with vague knowledge about the underlying structure
and existing clusters can be updated, as operations such as insertion of a new document
add a new path to the structural summary. Cluster prototypes are represented as
short memory-resident inverted lists. We validate our solutions experimentally and
demonstrate that effectiveness can be substantially improved by combining textual
and structural similarity.

A Framework for XML Similarity Joins 103

Chapter 4 Combining Text and Structure

104 A Framework for XML Similarity Joins

Chapter 5

Set Similarity Joins

In the previous two chapters, we investigated methods to support EM applications
to identify trees representing the same real-world entity but exhibiting structural and
textual variations. We have seen that token-based approaches to measuring XML
similarity are effective to capture these variations and can outperform competing ap-
proaches based on different notions of similarity (e.g., edit distance). In this regard,
we have been concerned with the quality and robustness of the token-based similar-
ity functions under study where the method for splitting XML trees into profiles was
the most important factor. We now focus on efficiency aspects.

In a similarity join setting, assuming that the (weighted) profiles have already been
generated1, the last step towards the similarity results is the comparison of profiles
using a set-overlap-based similarity function. Although such measures are inexpen-
sive to calculate, when dealing with massive datasets, the quadratic cost of comparing
every pair of profiles would be exorbitant. Thus, our goal in this chapter is to devise
techniques for performing similarity joins efficiently over very large collections of
token sets thereby providing scalability.

Tokenization and weighting methods represent an abstraction level to our XML
similarity join framework. Instead of node labels, content, relationships, and tree-
related operations, the objects that are visible at the next higher layer are sets of to-
kens, the core operation is set overlap calculation, and the properties of interest for
our purpose are set sizes and token frequency distributions. We shall change our ter-
minology to reflect this set abstraction accordingly. We cast the similarity join prob-
lem into the set similarity join problem and we refer to the corresponding similarity
function as a set-overlap-based similarity function.

Besides the large scale, several other issues make the set similarity join problem
challenging. The common approach of representing objects as points in a vector space
and then exploiting multidimensional data structures is problematic. Vectors as rep-
resentations of token sets are sparse and have several thousands of dimensions. It
is well-known that indexing techniques based on data-space partitioning are ineffec-
tive at high dimensions—already for as few as 10 dimensions [WSB98]. Dimension

1We discuss the pipelined generation of profiles and set similarity join processing in Chapter 6.

105

Chapter 5 Set Similarity Joins

reduction techniques can be employed to make the data more amenable to efficient
indexing [BDF+97, YP97]. However, for application domains involving text data, an
effective dimensionality in the order of hundreds has to be anticipated even after ag-
gressive dimension reduction (about 90%). For example, the token space dimension
of the PCI-based textual profile (pcl [t](T)) presented in Chapter 4 is O(Aq × |PC|),
where A is the alphabet from which strings are built, q is the q-gram size, and PC is
the set of path clusters.2

State-of-the-art similarity join algorithms dynamically build an index based on in-
verted lists for mapping tokens to the sets containing these tokens [SK04, BMS07,
XWLY08]. In this context, most algorithms are composed of two main phases: candi-
date generation, which produces a set of candidate pairs, and verification, which applies
the actual similarity measure to the generated candidates and returns the correct an-
swer. Recently, Xiao et. al [XWLY08] improved the previous algorithm proposed by
Bayardo et al. [BMS07] by pushing overlap constraint checking into the candidate
generation phase. To reduce the number of candidates even more, the authors pro-
posed a suffix filtering technique, where a relatively expensive operation is carried
out, before qualifying a pair as a candidate. For that purpose, the overlap constraint
is converted into an equivalent Hamming distance and subsets are verified in a coor-
dinated way using a divide-and-conquer algorithm. As a result, the number of can-
didates is substantially reduced, often to the same order of magnitude of the result
set size.

In this chapter, we propose a new index-based algorithm for set similarity joins.
Our work builds upon the previous work of [BMS07] and [XWLY08], however, we
follow an opposite approach to that of [XWLY08]. Our focus is on the decrease of the
computational cost of candidate generation instead of the reduction of the number of
candidates. For this reason, we introduce the concept of min-prefix, a generalization
of the prefix filtering concept [SK04, CGK06] applied to indexed sets. Min-prefix al-
lows to dynamically maintain the length of the inverted lists reduced to a minimum,
and, therefore, the candidate generation time is drastically decreased. We address the
growth of the workload in the verification phase, a side-effect of our approach, by in-
terrupting as early as possible the computation of candidate pairs that will not meet
the overlap constraint. We also improve the overlap score accumulation by avoid-
ing the overhead of dedicated data structures. Furthermore, we consider disk-based
and parallel versions of the algorithm. Finally, we present a thorough experimental
evaluation using synthetic and real-life datasets; the results show that our algorithm
consistently outperforms the so-far known ones for unweighted and weighted sets.

This chapter is self-contained and of general interest. Beyond EM, set similarity
joins have been used in the context of many other important application areas includ-
ing text data support in relational databases [Coh98, GIJ+01], collaborative filtering
[SSB05], Web indexing [Bro97, TSP08], social networks [SSB05], and information ex-

2Note that this analytical bound corresponds to unannotated profiles. For annotated profiles, the
space dimension ought to be larger, because multiple appearances of a token in a tree translates
into new tokens.

106 A Framework for XML Similarity Joins

5.1 Preliminaries

traction [CCGX08]. Hence, we will consider not only XML data in our experiments,
but also datasets derived from string data as well as synthetically generated data.
In this regard, in addition to the comparison of our algorithm with competing ap-
proaches, we also investigate the most important characteristics of the input data
affecting the performance of set similarity join algorithms in general. For ease of ex-
position, we assume unweighted sets in most of the following discussion.

The remainder of this chapter is organized as follows. Section 5.1 defines our ter-
minology and reviews important optimization techniques for set similarity joins. In
Section 5.2, we introduce the min-prefix concept and show how it can be exploited
to improve runtime of set similarity joins. In Section 5.3, we present further opti-
mizations in the candidate generation and verification phases. Section 5.4 considers
disk-based and parallel versions of mpjoin, whereas Section 5.5 describes the version
for weighted sets. The evaluation of set similarity joins using the PCLslc similarity
function, which spans two profiles, is addressed in Section 5.6. Experimental results
are presented in Section 5.7. We discuss related work in Section 5.8, before we wrap
up with conclusions in Section 5.9.

5.1 Preliminaries

In this section, we first provide background material on set similarity join concepts
and techniques. Then, we describe the baseline algorithm for set similarity joins that
we use in this work.

5.1.1 Background

Given a finite universe U of tokens and a set collection C, where every set consists of
a number tokens from U , let sf (x1, x2) be a set similarity function that maps a pair of
sets x1 and x2 to a number in [0, 1]. We assume the similarity function is commutative,
i.e., sf (x1, x2) = sf (x2, x1). Given a threshold τ , 0 ≤ τ ≤ 1, our goal is to identify all
pairs (x1, x2) , x1, x2 ∈ C, which satisfy the similarity predicate sf (x1, x2) ≥ τ .

We focus on a general class of set similarity functions, for which the similarity
predicate can be equivalently represented as a set overlap constraint. Specifically,
we express the original similarity predicate in terms of an overlap lower bound (overlap
bound, for short) [CGK06].

Definition 5.1 (Overlap Bound). Let x1 and x2 be sets of tokens, sf be a set similarity
function, and τ be a similarity threshold. The overlap bound between x1 and x2 relative to sf ,
denoted by minoverlap(x1, x2), is a function that maps τ and the sizes of x1 and x2 to a real
value, s.t. sf (x1, x2) ≥ τ iff |x1 ∩ x2| ≥ minoverlap(x1, x2).

Hence, the similarity join problem is reduced to a set overlap problem, where
all pairs whose overlap is not less than minoverlap(x1, x2) are returned. Table 5.1
shows the overlap bound of the following widely used set similarity functions [SK04,

A Framework for XML Similarity Joins 107

Chapter 5 Set Similarity Joins

Table 5.1: Set similarity functions
Function Definition minoverlap(x1, x2) [minsize(x),maxsize(x)]

Jaccard
|x1 ∩ x2|
|x1 ∪ x2|

τ

1 + τ
(|x1|+ |x2|)

[
τ |x| , |x|

τ

]
Dice

2 |x1 ∩ x2|
|x1|+ |x2|

τ (|x1|+ |x2|)
2

[
τ |x|
2− τ

,
(2− τ) |x|

τ

]
Cosine

|x1 ∩ x2|√
|x1| |x2|

τ
√
|x1| |x2|

[
τ 2 |x| , |x|

τ 2

]

AGK06, LLL08, XWLY08, XWLS09]: Jaccard, Dice, and Cosine. An important obser-
vation is that, for all similarity functions, minoverlap(x1, x2) increases monotonically
with one or both set sizes.

The set overlap formulation enables the derivation of size bounds. Intuitively, ob-
serve that |x1 ∩ x2| ≤ |x1| for |x2| ≥ |x1|, i.e., set overlap and, therefore, similarity are
trivially bounded by |x1|. By carefully exploiting the similarity function definition, it
is possible to derive tighter bounds allowing immediate pruning of candidate pairs
whose sizes differ enough.

Definition 5.2 (Set Size Bounds). Let x1 be a set of tokens, sf be a set similarity function,
and τ be a similarity threshold. The size bounds of x1 relative to sf are functions, denoted
by minsize(x1) and maxsize(x1), that map τ and the size of x1 to a real value, s.t. ∀x2, if
sf (x1, x2) ≥ τ , then minsize(x1) ≤ |x2| ≤ maxsize(x1).

Therefore, given a set x, we can safely ignore all sets whose size do not fall within
the interval [minsize(x),maxsize(x)]. Table 5.1 shows the set size bounds of the afore-
mentioned similarity functions.

Overlap bound and set size bounds give raise to several other optimizations. We
can prune the comparison space by exploiting the prefix filtering concept [CGK06].
The idea is to derive a new overlap constraint to be applied on subsets of the operand
sets. More specifically, for any two sets x1 and x2 under a same total order O, if
|x1 ∩ x2| ≥ δ, the subsets consisting of the first |x1| − δ + 1 elements of x1 and the
first |x2| − δ + 1 elements of x2 must share at least one element [SK04, CGK06]. We
refer to such subsets as prefix filtering subsets, or simply prefixes, when the context is
clear; further, let pref (x1) denote the prefix of a set x1, i.e., pref (x1) is the subset of x1

containing the first |pref (x1)| elements according to the ordering O. It is easy to see
that, for δ = dminoverlap(x1, x2)e, the set of all pairs (x1, x2) sharing a common prefix
element is a superset of the correct result. Thus, one can identify matching candidates
by examining only a fraction of the original sets.

The exact prefix size is determined by minoverlap(x1, x2), which varies according
to each matching pair. Given a set x1, a question is how to determine |pref (x1)|

108 A Framework for XML Similarity Joins

5.1 Preliminaries

such that it suffices to identify all matchings of x1 (no false negatives). Clearly, we
have to take the largest prefix in relation to all x2. Because the prefix size varies in-
versely with minoverlap(x1, x2), |pref (x1)| is largest when |x2| is smallest (recall that
minoverlap(x1, x2) increases monotonically with |x2|). The smallest possible size of x2,
such that the overlap constraint can be satisfied, is minsize(x1).

Definition 5.3 (Max-prefix). Let x1 be a set of tokens. The max-prefix of x1, denoted by
maxpref (x), is its smallest prefix needed for identifying ∀x2 s.t. |x1 ∩ x2| ≥ minoverlap(x1, x2).
The size of max-prefix is given by:

|maxpref (x1)| = |x1| − dminsize(x1)e+ 1 . (5.1)

Another optimization consists of sorting C in increasing order of the set sizes. By
exploiting this ordering, one can ensure that x1 is only matched against x2, such that
|x2| ≥ |x1|. As a result, the prefix size of x can be reduced: instead of maxpref (x), we
obtain a shorter prefix by using minoverlap(x, x) to calculate the prefix size [BMS07,
XWLY08, XWLS09].

Definition 5.4 (Mid-prefix). Let x1 be a set of tokens. The mid-prefix of x1, denoted by
midpref (x1), is its smallest prefix needed for identifying ∀x2 ≥ x1 s.t. |x1 ∩ x2| ≥ minoverlap(x1, x2).
The size of mid-prefix is given by:

|midpref (x1)| = |x1| − dminoverlap(x1, x1)e+ 1 . (5.2)

Example 5.1. Recall the qgram profiles from Example 2.7, i.e., qgram[3](s1) and qgram[3](s2).
Consider JS as similarity function and τ = 0.75. We have |q(s1)| = 12 and |q(s2)| = 10.
Then, we have dminoverlap(q(s1), q(s2))e = d τ

1+τ
(12 + 10)e = 10. For q(s1), we have

[bminsize(q(s1))c, dmaxsize(q(s1))e] = [9, 16]. Further, we have |maxpref (q(s1))| = 4
and |midpref (q(s1))| = 2. Assuming, for simplicity, that the tokens of q(s1) are already
sorted according to some order O as depicted in Example 2.7, we have maxpref (q(s1)) =
{Kai, ais, ise, ser} and midpref (q(s1)) = {Kai, ais}.

Feature ordering can be further exploited to improve performance. Because O im-
poses an ordering on the elements of a set x, we can use the positional information of
a common token between two sets to quickly verify whether or not there are enough
remaining tokens in both sets to meet a given threshold (see [XWLY08], Lemma 1).
Given a set x =

{
t1, . . . , t|x|

}
, where the subscripts represent the token position in

the set, let rem(x, i) denote the number of tokens following the token ti in x; thus,
rem(x, i) = |x| − i. We can also rearrange the sets in C according to a specific order,
namely the token frequency ordering, Of , to obtain sets ordered by increasing token
frequencies. The idea is to minimize the number of sets agreeing on prefix elements
and, in turn, candidate pairs by shifting lower frequency tokens to the prefix positions
[CGK06].

A Framework for XML Similarity Joins 109

Chapter 5 Set Similarity Joins

Algorithm 5.1: The ppjoin algorithm
Input: A set collection C, a threshold τ
Output: A set S containing all pairs (xp, xc) such that sf (xp, xc) ≥ τ
I (1), I (2), . . . , I (|U |)← ∅, S ← ∅1

foreach xp ∈ C do2

M ← empty map from set id to (os, i, j) // os = overlap score3

foreach ti ∈ maxpref (xp) do // candidate generation phase4

Remove all (xc, j) from I (ti) s.t. |xc| < minsize(xp)5

foreach (xc, j) ∈ I (ti) do6

M (xc)← (M (xc).os + 1, i, j)7

if M (xc).os + min(rem(xp, i), rem(xc, j)) < minoverlap(xp, xc)8

M (xc).os ← −∞ // do not consider xc anymore9

S ← S ∪Verify(xp,M, τ) // verification phase10

foreach ti ∈ midpref (xp) do // index xp11

I (ti)← I (ti) ∪ {(xp, i)}12

return S13

5.1.2 The ppjoin Algorithm

We are now ready to present a “baseline” algorithm for set similarity joins. Algorithm
5.1 shows ppjoin [XWLY08], a state-of-the-art, index-based algorithm that comprises
all optimizations previously described. Henceforth, we assume that the set collection
C is sorted in increasing order of the set sizes as well as each set is sorted according
to the total order Of .

The top-level loop of ppjoin scans the dataset C, where, for each set xp, a candidate
generation phase delivers a set of candidates by probing the index with the token ele-
ments of maxpref (xp) (lines 4–9). We call the set xp, whose tokens are used to probe
the index, a probing set; any set xc that appears in the scanned inverted lists is a can-
didate set of xp. Besides the accumulated overlap score, the hash-based map M also
stores the token positional information of xp and xc (line 7). In the verification phase,
the probing set and its candidates are checked against the similarity predicate and
those pairs satisfying the predicate are added to the result set (line 10). (We defer
details about the Verify procedure to Section 5.3.1.) Finally, a pointer to set xp is ap-
pended to each inverted list I (t) associated with each token t of midpref (xp) (lines
11 and 12). Note that the algorithm also indexes the token positional information,
which is needed for checking the overlap bound (line 8). Additionally, the algorithm
employs the lower bound of the set size to dynamically remove sets from inverted
lists (line 5).

Note that Algorithm 5.1 has a different notation from that of Xiao et al. [XWLY08]
and also present some minor modifications. First, we use the notation introduced
in the previous section for overlap bound, size bounds, and prefixes. In the original
paper, the authors presented an instantiation of ppjoin for Jaccard; for example, given

110 A Framework for XML Similarity Joins

5.2 Generalizing Prefix Filtering

a set x, they used τ |x| for the lower bound of the set size, whereas, here, we generally
use minsize(x). Further, we store positional information in the hash-based map. As
we will see shortly, this information is used in the Verify procedure to find the position
of the last token matched in the candidate generation phase (for both sets of each
candidate pair). In their paper, Xiao et al. used the accumulated overlap score to
(approximately) obtain this information (see Algorithm 2 in [XWLY08], lines 8 and
12). Finally, we incorporated the mid-prefix optimization in our algorithm. Note that
mid-prefix corresponds to the optimization presented in [XWLY08], Lemma 3 (again,
instantiated for Jaccard).

The ppjoin algorithm presented above is actually a self-join. Its extension to binary
joins is straightforward. We only have to intersect the two sorted inputs as we pro-
ceed with the algorithm. Sets of both join partners go through candidate generation,
verification, and indexing, as in the self-join case, and we only need to ensure that no
set from the same input as the probing set is selected as a candidate. After having
finished a join operand, say C1, we only need to process the other operand (C2) until
we find a set whose size is greater than maxsize(x), where x is the last set of C1. Note
that, after C1 is completely processed, we do not need to index the elements of C2. The
procedure is quite similar to the disk-based version of set similarity join algorithms,
which is discussed in Section 5.4.1. Henceforth, we assume self-joins; binary joins are
revisited in Chapter 6.

5.2 Generalizing Prefix Filtering

In this section, we first empirically show that the number of generated candidates can
be highly misleading as a measure of runtime efficiency. Motivated by this observa-
tion, we introduce the min-prefix concept and propose a new algorithm that focuses
on minimizing the computational cost of candidate generation.

5.2.1 Candidate Reduction vs. Runtime Efficiency

Most set similarity join algorithms operate on shorter set representations in the candi-
date generation phase (e.g., prefixes) followed by a potentially more expensive stage
where a thorough verification is conducted on each candidate. Accordingly, previ-
ous work has primarily focused on candidates reduction where increased effort is
dedicated to candidate generation to achieve stronger filtering effectiveness. In this
vein, an intuitive approach consists of moving part of the verification into candidate
generation. For example, we can generalize the prefix filtering concept to subsets of
any size: (|x| − δ + c)-sized prefixes must share at least c tokens. This idea has al-
ready been used for related similarity operations, but in different algorithmic frame-
works [LLL08, CCGX08]. Let us examine this approach applied to ppjoin. We can
easily swap part of the workload between verification and candidate generation by
increasing token indexing from midpref (x) to maxpref (x) (Algorithm 5.1, line 11). We
call this version u-ppjoin, because it corresponds to a variant of ppjoin for unordered

A Framework for XML Similarity Joins 111

Chapter 5 Set Similarity Joins

0.7 0.75 0.8 0.85 0.9

Threshold

0×10
0

1×10
7

2×10
7

3×10
7

4×10
7

5×10
7

6×10
7

7×10
7

N
o.

 o
f C

an
di

da
te

s

ppjoin
u-ppjoin

(a) No. of candidates: Jaccard on DBLP

0.7 0.75 0.8 0.85 0.9

Threshold

0

50

100

150

200

Ti
m

e
(s

ec
on

ds
)

ppjoin
u-ppjoin

(b) Runtime efficiency: Jaccard on DBLP

Figure 5.1: Number of candidates vs. runtime efficiency

datasets. Although u-ppjoin considers more sets for candidate generation, a larger
number of candidate sets are pruned by the overlap constraint (Algorithm 5.1, lines
8 and 9). Figure 5.1(a) shows the results of both algorithms w.r.t. the number of can-
didates and runtime for varying Jaccard thresholds on a 100K sample taken from the
DBLP dataset (details about the datasets are given in Section 5.7). As we see in Figure
5.1, u-ppjoin indeed reduces the amount of candidates, especially for lower similarity
thresholds, thereby reducing the verification workload3. However, the runtime re-
sults showed in Figure 5.1(b) are reversed: u-ppjoin is considerably slower than ppjoin.
Similar results were reported by Bayardo et al. [BMS07] for the unordered version
of their All-pairs algorithm. We also observed identical trends on several other real
world datasets as well as for different growth pattern of token indexing. These results
reveal that, at least for inverted-list-based algorithms, candidate set reduction alone
is a poor measure of the overall efficiency. Moreover, they suggest that the trade-off
of workload shift between candidate generation and verification can be exploited in
the opposite way.

5.2.2 The Min-prefix Concept

A set xc is indexed by appending a pointer to the inverted lists associated with tokens
tj ∈ midpref (xc), which results in an indexed set, denoted by I (xc); accordingly, let
I (xc, tj) denote a token tj ∈ xc whose associated list has a pointer to xc. A list holds
a reference to xc until being accessed by a probing set xp s.t. minsize(xp) > |xc|,
when this reference is eventually removed due to size bound checking (Algorithm
5.1, line 5). We call the interval between the indexing of the set xc and the last set xp

3Actually, the verification workload is even more reduced than suggested by number of candidates.
Due to the increased overlap score accumulation in the candidate generation, many more candi-
dates are discarded at the very beginning of the verification phase.

112 A Framework for XML Similarity Joins

5.2 Generalizing Prefix Filtering

Figure 5.2: Min-prefix example

with minsize(xp) not greater than xc the validity window of I (xc). Within its validity
window, any appearance of I (xc) in lists accessed by a probing set either elects I (xc)
as a new candidate, if the first appearance thereof, or accumulates its overlap score.

As previously mentioned, the exact (and minimal) size of pref (xc) is determined by
the lower bound of pairwise overlap between xc and a reference set xp. As our key
observation, the minimal size of pref (xc) monotonically decreases along the valid-
ity window of I (xc) due to dataset pre-sorting (size of xp increases monotonically).
Hence, as the validity window of xc is processed, an increasing number of the in-
dexed tokens in midpref (xc) no longer suffices alone to elect xc as a candidate. More
specifically, we introduce the concept of min-prefix, formally stated as follows.

Definition 5.5. (Min-prefix) Let xc be a set and let pref (xc) be a prefix of xc. Let xp be a
reference set. Then pref (xc) is a min-prefix of xc relative to xp, denoted as minpref (xc, xp),
iff 1 + rem (xc, j) ≥ minoverlap(xp, xc) holds for all tj ∈ pref (xc).

When processing a probing set xp, the following fact is obvious: if xc first appears
in an inverted list associated with a token tj /∈ minpref (xc, xp), then (xc, xp) can-
not meet the overlap bound. We call a token I (xc, tj), which is not an element of
minpref (xc, xp), a stale token relative to xp.

Example 5.2. Figure 5.2 shows an example with an indexed set I (x1) of size 10 and two
probing sets x2 and x3 of size 10 and 16, respectively. Given Jaccard as similarity function
and a threshold of 0.6, we have midpref (x1) = 3, which corresponds to the number of indexed
tokens of I (x1). For x2, we have minpref (x1, x2) = 3; thus, no stale tokens are present. On
the other hand, for x3 as reference set, we have minpref (x1, x3) = 1. Hence, I (x1, t2) and
I (x1, t3) are stale tokens.

The relationship between the prefix types is shown in Figure 5.3. The three prefixes
are minimal in different stages of an index-based set similarity join by exploiting dif-
ferent kinds of information. In the candidate generation phase, the size lower bound

A Framework for XML Similarity Joins 113

Chapter 5 Set Similarity Joins

Figure 5.3: Min-prefix generalization of prefix filtering

of a probing set x defines maxpref (x), which is used to find candidates among the
(shorter) sets already indexed. To index x, the set collection sort order allows re-
ducing the prefix to midpref (x). The prefixes maxprefix and midprefix are statically
defined and fixed-sized. Finally, min-prefix determines the minimum amount of in-
formation that needs to remain indexed to identify x as a candidate. Differently from
the previous prefixes, minpref (x, xp) is defined in terms of a reference set xp, which
corresponds to the current probing set within the validity window of x; min-prefix
is dynamically defined and variable-sized. The following lemma states important
properties of stale tokens according to the set collection and the token ordering.

Lemma 5.1. Let I (xc) be an indexed set and xp be a probing set. If a token I (xc, tj) is stale
in relation to xp, then I (xc, tj) is stale for any xp′ such that |xp′| ≥ |xp|. Moreover, if I (xc, tj)
is stale, then any I (xc, tj′), such that j′ > j, is also stale.

5.2.3 The mpjoin Algorithm

Algorithm ppjoin only uses stale tokens for score accumulation. Candidate pairs
whose first common element is a stale token are pruned by the overlap constraint. Be-
cause set references are only removed from lists due to size bound checking, repeated
processing of stale tokens are likely to occur very often along the validity window of
indexed sets. As strongly suggested by the results reported in Section 5.2.1, such
overhead in candidate generation can have a negative impact on the overall runtime
efficiency.

Listed in Algorithm 5.2, we now present algorithm mpjoin which builds upon the
previous algorithms All-pairs and ppjoin. However, it adopts a novel strategy in the
candidate generation phase. The main idea behind mpjoin is to exploit the concept of
min-prefixes to dynamically reduce the lengths of the inverted lists to a minimum. As a
result, a larger number of irrelevant candidate sets are never accessed and processing
costs for inverted lists are drastically reduced.

114 A Framework for XML Similarity Joins

5.2 Generalizing Prefix Filtering

Algorithm 5.2: The mpjoin algorithm
Input: A set collection C, a threshold τ
Output: A set S containing all pairs (xp, xc) such that sim (xp, xc) ≥ τ
I (1), I (2), . . . , I (|U |)← ∅, S ← ∅1

foreach xp ∈ C do2

M ← empty map from set id to (os, i, j) // os = overlap score3

foreach ti ∈ maxpref (xp) do // candidate generation phase4

Remove all (xc, j) from I (ti) s.t. |xc| < minsize(xp)5

foreach (xc, j) ∈ I (ti) do6

if xc.prefsize < j7

Remove (xc, j) from I (ti) // I (xc, j) is stale8

continue9

M (xc)← (M (xc).os + 1, i, j)10

if M (xc).os + min(rem(xp, i), rem(xc, j)) < minoverlap(xp, xc)11

M (xc).os ← −∞ // do not consider xc anymore12

if M (xc) .os + rem (xc, j) < minoverlap(xp, xc)13

Remove (xc, j) from I (ti) // I (xc, j) is stale14

xc.prefsize← |xc| −minoverlap(xp, xc) + 1// update prefsize15

S ← S ∪Verify(xp,M, τ) // verification phase16

xp.prefsize ← |midpref (x)| // set prefix size information17

foreach ti ∈ midpref (xp) do // index xp18

I (ti)← I (ti) ∪ {(xp, i)}19

return S20

To employ min-prefixes in an index-based similarity join, we need to keep track of
the min-prefix size of each indexed set in relation to the current probing set. For this
reason, we define min-prefix size information as an attribute of indexed sets, which is
named as prefsize in the algorithm. At indexing time, prefsize is initialized with the size
of midprefix (line 17). Further, whenever a particular inverted list is scanned during
candidate generation, prefsize of all related indexed sets is updated using the overlap
bound relative to the current probing set (line 15). Stale tokens can be easily identified
by verifying if the prefsize attribute is smaller than the token positional information in
a given indexed set. This verification is done for each set as soon as it is encountered
in a list; set references in lists associated with stale tokens are promptly removed and
the algorithm moves to the next list element (lines 07–09). Additionally, for a given
indexed set, stale tokens may be probed before its prefsize is updated. Because tokens
of an indexed set are accessed as per the token order by a probing set (they can be
accessed in any order by different probing sets though), stale token can only appear
as a first common element. In this case, it follows from Definition 5.5 that the overlap
constraint cannot be met and the set reference can be removed from the list (lines 13
and 14).

The correctness of mpjoin partially follows from Lemma 5.1: it can be trivially

A Framework for XML Similarity Joins 115

Chapter 5 Set Similarity Joins

Algorithm 5.3: The Verify algorithm
Input: A probing set xp; a map of candidate sets M ; a threshold τ
Output: A set S containing all pairs (xp, xc) such that sim (xp, xc) ≥ τ
S ← ∅1

foreach xc ∈Ms.t. (overlap←M (xc) .os) 6= −∞ do2

if (tc ← tokenAt(xc, xc.prefsize)) < (tp ← tokenAt(xp, |maxpref (xp)|))3

tp ← tokenAt(xp,M (xc).i + 1), tc++4

else5

tc ← tokenAt(xc,M (xc).j + 1), tp++6

while tp 6= end and tc 6= end do // merge-join-based overlap calc.7

if tp = tc then overlap++, tp++, tc++8

else9

if rem(min(tp, tc)) + overlap < minoverlap(xp, xc) then break10

min (tp, tc) ++ // advance cursor of lesser token11

if overlap ≥ minoverlap(xp, xc)12

S ← S ∪ {(xp, xc)}13

return S14

shown that the inverted-list reduction strategy of mpjoin does not lead to missing
any valid result. Another important property of mpjoin is that score accumulation is
done exclusively on min-prefix elements. This property ensures the correctness of the
Verify procedure, which is described in the next section.

5.3 Further Optimizations

In this section, we discuss the verification phase and propose a modification to mpjoin
concerning the optimization of overlap score accumulation.

5.3.1 Verification Phase

A side-effect of the index-minimization strategy is the growth of candidate sets. Be-
sides that, as overlap score accumulation is performed only on min-prefixes, larger
subsets have to be examined to calculate the complete overlap score. Thus, high
performance is a crucial demand for the verification phase. In [XWLY08], token po-
sitional information is used to leverage prior overlap accumulation during the can-
didate generation. We can further optimize the overlap calculation by exploiting the
token order to design a merge-join-based algorithm and the overlap bound to define
break conditions.

In Algorithm 5.3, we show the Verify procedure of mpjoin, which applies the op-
timizations mentioned above. (Note that we have switched to a slightly simplified
notation.) The algorithm iterates over each candidate set xc evaluating its overlap
with the probing set xp. First, the starting point for scanning both sets is located (lines

116 A Framework for XML Similarity Joins

5.4 Practical Aspects

3–6). The approach used here is similar to ppjoin (see [XWLY08] for more details).
Note for both sets, the algorithm starts scanning from the token following either the
last match of candidate generation, i.e., i + 1 or j + 1, or the last prefix element, i.e.,
min-prefix for a candidate set or max-prefix for the probing set. No common token
between xp and xc is missed, because only min-prefix elements were used for score
accumulation during candidate generation. Otherwise, we could have a last match
on a stale token, i.e., xc.prefsize < j, and miss another stale token at position j′ < j,
whose reference to xc in the associate inverted list had been previously removed.

The merge-join-based overlap takes place thereafter (lines 7–11). Feature matches
increment the overlap accordingly; for each mismatch, the break condition is tested,
which consists in verifying if there are enough remaining tokens in the set relative to
the currently tested token (line 10). Finally, the overlap constraint is checked and the
candidate pair is added to the result if there is enough overlap (lines 12 and 13).

5.3.2 Optimizing Overlap Score Accumulation

Reference [BMS07] argues that hash-based score accumulators and sequential list
processing provide superior performance compared to the heap-based merging ap-
proach of other algorithms (e.g., [SK04]). We now propose a simpler approach by
eliminating dedicated data structures and corresponding operations for score accu-
mulation altogether: overlap scores (and matching positional information) can be
stored in the indexed set itself as attributes in the same way as the min-prefix size
information. Therefore, overlap score can be directly updated as indexed sets are en-
countered in inverted lists. We just have to maintain an (re-sizable) array to store the
candidate sets, which will be passed to the Verify procedure. Finally, after verifying
each candidate, we clear its overlap score and matching positional information.

5.4 Practical Aspects

In this section, we address two important practical aspects around our min-prefix ap-
proach, namely: a disk-based external version of mpjoin to work with limited memory
and data splitting for parallel execution.

5.4.1 Disk-Based External Version

So far, we have assumed that there is enough available memory to hold the index
through the whole join processing. Obviously, this is an unrealistic assumption for
very large datasets. For this reason, we have adapted the “out-of-core” version of All-
pairs [BMS07], which conceptually resembles a block nested-loop join: the algorithm
makes multiple passes over the input set collection, where a block of the input is
indexed and matched as in the in-memory version at each pass. To produce all the
results, the algorithm has a matching-only phase where it continues executing the
candidate generation phase and verification phase after the last set in a block has

A Framework for XML Similarity Joins 117

Chapter 5 Set Similarity Joins

Algorithm 5.4: The out-of-core variant of mpjoin
Input: A set collection C, a threshold τ , a memory budget parameter
Output: A set S containing all pairs (xp, xc) such that sim (xp, xc) ≥ τ
I (1), I (2), . . . , I (|U |)← ∅, S ← ∅, lastIndexedSet ← ∅, indexing ← true,1

while (xp ← read()) 6= eof do2

if not indexing and maxsize(lastIndexedSet) < |xp| then3

I (1), I (2), . . . I (|U |)← ∅, indexing ← true4

xp ← seek(lastIndexedSet)5

continue6

M ← Probe(xp, τ) // candidate generation phase7

S ← S ∪Verify(xp,M, τ) // verification phase8

if indexing then9

Index (xp)10

if memory budget exceeded then11

indexing ← false // enter matching-only phase12

lastIndexedSet ← xp13

return S14

been indexed until the end of the dataset. Here, we can exploit size bounds to devise
a simple yet effective optimization. Instead of proceeding with the matching-only
phase until the end of the dataset we can terminate the processing of the current
block as soon as a set is read whose size is larger than the size upper bound (maxsize)
of the last set indexed. From this point, we are sure that no other set will be a valid
match of any indexed set.

Algorithm 5.4 shows the disk-based external version of mpjoin. The algorithm has
an extra parameter specifying the memory budget. Every time this budget is ex-
ceeded the algorithm enters in the matching only phase and saves the last set indexed
(lines 12 and 13). The main refinement of the algorithm is the stop condition for the
matching-only phase (line 3), as described above. After reading a probing set that is
large enough, the algorithm clears out the index and start a new block following the
last set indexed (lines 4–6).

5.4.2 Parallel Execution

The external version of mpjoin can process arbitrarily large amount of data. Never-
theless, some sort of parallelism is necessary for dealing with massive datasets. As
for the out-of-core version, size bounds provide a natural way to split the input data
among multiple processors and memories. This approach was adopted by Theobald
et al. [TSP08] in their parallel algorithm; the underlying technique is basically the
same as that used by Arasu et al. [AGK06] to divide a Jaccard-based set similarity
join instance into a set of smaller Hamming-based ones. In the following, we briefly
review this size-based data splitting strategy and discuss its use with mpjoin.

118 A Framework for XML Similarity Joins

5.5 The Weighted Case

First, the set of integers is partitioned into P , where each Pi ∈ P is defined by the in-
terval [li, ri]. Specifically, starting from P1 = [1, 1], define Pi = [ri−1 + 1, bmaxsize(li)c],
where maxsize(li) is the size upper bound value obtained from a set of size li. Next,
set collections C1, C2, . . . of C are constructed as follows: for each set x ∈ C, if |x| ∈ P ,
then add x to Ci and Ci+1. It can be shown that if x1 ∈ Ci and sf (x1, x2) ≥ τ , then
x2 ∈ Ci−1 ∪ Ci ∪ Ci+1 (see [AGK06] and [TSP08] for details).

We can execute instances of mpjoin on each collection Ci independently. Only a
minor modification on mpjoin is needed to avoid duplicate result pairs. Given a col-
lection Ci, the algorithm starts with an indexing-only phase, where incoming sets are
directly indexed (Algorithm 5.2, lines 17–19) without executing the candidate gener-
ation phase and verification phase—contrast this stage with the matching-only phase
of the out-of-core variant. The indexing-only phase continues until the first set is
seen whose size is no shorter than li; afterwards, the algorithm switches to its normal
operation. The reason for the indexing-only phase is that the sets shorter than li are
processed by the mpjoin instance associated with Ci−1.

As a consequence of the data splitting, each instance of mpjoin processes input data
exhibiting more concentrated set size distribution. As we will empirically demon-
strate in Section 5.7, this fact reduces the performance gains of mpjoin—and ppjoin as
well. Note, however, that some subsets Ci may contain very few elements. Hence,
in practice, contiguous subsets will be merged to form the input of a mpjoin instance.
Devising a subset merging strategy that maximizes both performance of set similarity
joins and parallelism is a topic for future work.

5.5 The Weighted Case

We now consider the weighted version of the set similarity join problem. In this
version, sets are drawn from a universe of tokens Uw, where each token t is associated
with a weight w (f). As defined in Chapter 2, the weighted size of a set x, denoted as
w (x), is given by the summation of the weight of its elements, i.e., w (x) =

∑
t∈x w (t).

Correspondingly, the weighted Jaccard similarity (WJS), for example, is defined as
WJS (x1, x2) = w (x1 ∩ x2)/w (x1 ∪ x2). All concepts presented in Section 5.1 can be
easily modified to accord with weighted sets. In particular, the prefix definition has
to be slightly modified. Given an overlap bound δ, the weighted prefix of a set x,
denoted as pref (x), is the shortest subset of x such that w (pref (x)) > w (x)− δ.

We now present the weighted version of mpjoin, called w-mpjoin. The most relevant
modifications are listed in Algorithm 5.5. As main difference to mpjoin, w-mpjoin
uses the sum of all token weights up to a given token instead of token positional
information. For this reason, we define the cumulative weight of a token ti ∈ x as
c (ti) =

∑
w (tj), where 1 ≤ j ≤ i. We then index c (ti), for each ti ∈ midpref (x)

and set prefsize to the cumulative weight of the last token in midpref (x) (lines 18–22).
Note that token positional information is still necessary to find the starting point of
scanning in the Verify procedure.

The utility of the cumulative weight in the candidate generation is twofold. First, it

A Framework for XML Similarity Joins 119

Chapter 5 Set Similarity Joins

Algorithm 5.5: The w-mpjoin algorithm
Input: A weighted set collection C, a threshold τ
Output: A set S containing all pairs (xp, xc) such that sim (xp, xc) ≥ τ
. . .1

foreach ti ∈ maxpref (xp) do // candidate generation phase6

Remove all (xc, c (tj) , j) from I (ti) s.t. w (xc) < minsize(xp)7

foreach (xc, c (tj) , j) ∈ I (ti) do8

if xc.prefsize + w (tj) < c (tj)9

Remove (xc, c (tj) , j) from I (ti) // I (xc, c (tj) , j) is stale10

continue11

M (xc)← (M (xc) .os + w (tj) , i, j)12

if M (xc).os + min(crem(xp, i), crem(xc, j)) < minoverlap(xp, xc)13

M (xc) .os← −∞ // do not consider xi anymore14

if M (xc).os + crem(xc, j) < minoverlap(xp, xc)15

Remove (xc, c (tj) , j) from I (ti) // I (xc, c (tj) , j) is stale16

xc.prefsize ← w (xc)−minoverlap(xp, xc)17

S ← S ∪Verify(xp,M, τ) // verification phase18

cweight ← 019

foreach ti ∈ midpref (xp) do // index xp20

cweight ← cweight + w (ti)21

I (ti)← I (ti) ∪ {(xp, cweight , i)}22

xp.prefsize ← cweight23

. . .24

is used for overlap bound checking. Given c (ti), the cumulative weight of the tokens
following ti in x is crem(x, i) = w (x)−c (ti). Hence, crem can be used to verify whether
or not there are enough remaining cumulative weight to reach the overlap bound
(lines 12 and 14). Second, the cumulative weight is used to identify stale tokens by
comparing it with prefsize (line 08). Note that the cumulative weight of the last token
in minpref (xc, xp) is always greater than the current prefsize. Hence, to be sure that a
given token is stale, we have to add the weight of the current token to prefsize before
comparing it to the cumulative weight.

For brevity, we do not discuss the weighted version of the Verify procedure, but
the modifications needed are straightforward.

5.6 Evaluation Using Multi-Set Representation

Among the similarity functions described in Chapter 4, EPQ and PCLtlc are defined
over a single profile and, therefore, can be straightforwardly employed in set simi-
larity joins. On the other hand, PCLslc entails the profiles pcl[s] and pcl[t] and the
corresponding weights λp and λs. To evaluate our algorithms using PCLslc as sim-

120 A Framework for XML Similarity Joins

5.7 Experiments

ilarity function, we adopt a multi-set representation4, in which the sets derived from
the two profiles are “carried” through the similarity join processing. The algorithm is
then normally executed on either the sets derived from pcl[t] or pcl[s]. We call these
sets primary sets. In the verification phase, for those primary sets satisfying the over-
lap constraint, we calculate the similarity of the other set, which is called secondary
set. Finally, we calculated the linear combination of the resulting similarity values
and test it against the threshold.

The above approach corresponds to evaluating the conjunction sf p ≥ τp

∧
sf s ≥ τs,

where sfp and τp (sfs and τs) are the similarity value and the threshold related to the
primary (secondary) set, respectively. The threshold τp is used instead of the original
threshold τ in the regular similarity join processing on the primary sets; therefore, it
has to be adjusted in order to avoid missing valid results. Specifically, the value of τp

is given by:

τp =
τ − λs

λp

, (5.3)

where λp and λs are the weights of sfp and sfs. For example, consider τ = 0.8 and
λp = λs = 0.5. The value of τp is therefore 0.6. Note that Equation 5.3 restricts the
space of combinations of τ , λp, and λp. For instance, in the previous example, the
value of τ must be no less than 0.5. Moreover, because λs must be less than τ , the
value of the weights may determine which sets must be used as secondary sets (i.e.,
whether the sets derived from pcl[t] or pcl[s]).

Aside from restrictions on the value of thresholds and weights, the choice of the
primary set is an important performance factor. In general, the choice must be based
on which similarity predicate leads to the most efficient set similarity join evaluation.
From Equation 5.3, we can easily see that using the set associated with the higher
weight as primary set results in higher τp values. It is well-known that set similarity
joins executes faster with higher thresholds and, obviously, are more selective. Nev-
ertheless, we will see in the next section that, besides the threshold, characteristics of
the dataset also highly influence the performance of the algorithms. Moreover, dif-
ferent from the case where the predicates considered are expensive (recall the metric
for expensive-predicate ordering in Equation 2.5 on Page 27), the influence of selec-
tivity is reduced due to the low cost of set similarity computation. In Section 5.7.6,
we compare the performance of using sets derived from pcl[t] and pcl[s] as primary
predicate. A cost model for selecting the primary set is sketched in Chapter 6.

5.7 Experiments

In this section, we present and discuss the results of our experimental study. The
goals of our experiments are:

4Multi-set in this context should not be confused with multiset (aka bags) which allows an element
to appear more than once.

A Framework for XML Similarity Joins 121

Chapter 5 Set Similarity Joins

1. To measure the runtime performance of our algorithms, mpjoin and w-mpjoin,
and compare them against previous, state-of-the-art set similarity join algo-
rithms.

2. To identify the most important characteristics of the input data and input pa-
rameters driving the performance of the set similarity joins algorithms under
study.

3. To evaluate the scalability of the algorithms and their respective out-of-core
variant.5

4. To measure and compare the performance achieved by our algorithms on XML
data using the similarity functions presented in Chapter 4.

For goals 1–3, we conducted our study under several different data distributions
and configuration parameters using real-world datasets derived from string data as
well as synthetic datasets. We then focused on XML and for goal 4 we used the same
datasets of the accuracy experiments reported in the previous chapters. All tests were
run on an Intel Xeon Quad Core 3350 2,66 GHz, about 2.5 GB of main memory, and
using Java Sun JDK 1.6.0.

5.7.1 Algorithms

We focused on index-based algorithms, because they consistently outperformed com-
petitor signature-based algorithms [BMS07] (see discussion in Section 5.8) and imple-
mented the best known index-based algorithms due to Xiao et al. [XWLY08]. For un-
weighted sets, we used ppjoin+, an improved version of ppjoin, which applies a suffix
filtering technique in the candidate generation phase to substantially reduce the num-
ber of candidates. This algorithm constitutes an interesting counterpoint to mpjoin.
We also explored a hybrid version, which combines mpjoin and ppjoin+ by adding the
suffix filtering procedure in mpjoin (Algorithm 5.2, inside the loop of line 6 and after
line 14). As recommended by the authors, we performed suffix filtering only once for
each candidate pair and limited the recursion level to 2. For weighted sets, however,
it is not clear how to adapt the suffix filtering technique, because the underlying algo-
rithm largely employs set partitioning based on subset size. In contrast, when work-
ing with weighted sets, cumulative weights have to be used, which requires subset
scanning to calculate them also for unseen elements. For this reason, this approach is
likely to result in very poor performance. Therefore, we refrained from using ppjoin+
and instead employed our adaptation of ppjoin for weighted sets, denoted w-ppjoin.
For evaluation of weighted sets, we used the well-known IDF weighting scheme. For
brevity, we only report results for the Jaccard similarity. The corresponding results
for other similarity functions follow identical trends. In the experiments, we focus on

5We do not consider the parallel version of the algorithms in our experiments. The relative perfor-
mance of the algorithms under parallel execution can be nevertheless roughly estimated from the
results presented in this section.

122 A Framework for XML Similarity Joins

5.7 Experiments

10
1

10
2

10
3

Set Size (log scale)

10
0

10
1

10
2

10
3

10
4

C
ou

nt
 (

lo
g

sc
al

e)

DT
DA
DTA
IT

(a) Set size distribution, DBLP and IT datasets

10
2

10
3

10
4

Set Size (log scale)

10
0

10
1

10
2

10
3

C
ou

nt
 (

lo
g

sc
al

e)

ITA

(b) Set size distribution, ITA dataset

10
1

10
2

10
3

Feature Frequency (log scale)

10
1

10
2

10
3

10
4

10
5

C
ou

nt
 (

lo
g

sc
al

e)

q = 2
q = 3
q = 4

(c) Count-frequency plot of tokens for q = 2–4,
DTA dataset

Figure 5.4: Set size and and token frequency distributions

evaluating the performance gains obtained from the optimized candidate generation
phase, in particular, the effectiveness of the min-prefix technique. Therefore, we used
the improved verification procedure in all algorithms (see Section 5.3.1).

5.7.2 Datasets

Here, we describe the string data and synthetic datasets; XML datasets are described
along with its respective experiments in Section 5.7.6. For string data, we used DBLP
and IMDB6 containing information about movies. To obtain different data distribu-
tions, we first derived three subsets from each dataset by selecting different fields
from them: title (DT), author (DA), and their concatenation (DTA), for DBLP; title (IT),
actor (IA), and their concatenation (ITA), for IMDB. We randomly sampled strings
from the corresponding fields, converted them to upper-case letters and eliminated

6www.imdb.com

A Framework for XML Similarity Joins 123

Chapter 5 Set Similarity Joins

Table 5.2: Parameters used in the experiments
Parameter µ σ α q N τ

Description
normal
mean

normal
sdev

Zipf
exponent

q-gram size
no. of input

sets
threshold

Range [50, 300] [10, 50] [0.6, 2] [2, 4] [0.1M, 1M] [0.5, 0.9]

Default 100 25 1 2 0.1M 0.75

repeated white spaces. Each string is converted into a set of tokens by tokenizing it
into sets of q-grams and using the Karp–Rabin fingerprint function [KR87] to map
each q-gram to a hash value (with small probability of collision). We then ordered
the tokens within a set according to their frequency, and stored the sets in ascending
size order. Figures 5.4(a) and 5.4(b) plot the set size distribution. The distribution
values of the DBLP datasets and IT fit reasonably well to a log-normal model (note
the log scale on both axes), whereas those of ITA and IA (only ITA is shown) resem-
bles a power-law relationship. Besides the set size, we also vary the token frequency
distribution of the datasets by using differing q-gram sizes. Figure 5.4(c) shows the
“count-frequency plot”7 for q ranging from 2 to 4 on the DTA dataset—we obtained
similar results with the other datasets. The distributions seem to follow a power-law
distribution with exponent α about 1.125, 1.194, and 1.509, for q = 2, q = 3, and q = 4,
respectively,8 i.e., the skewness increases with the size of q.

In addition to datasets derived from string data, we generated synthetic set collec-
tions to have closer control over data distribution and to support our conclusions on
real datasets. The details of data generation process are as follows: we first created
N sets and inserted them into a list L. Then, we generated one unique token value
v (using sequential numbers) at a time together with its frequency f ; for each gener-
ated token v, we randomly selected f sets from L and insert a copy of v into each of
them. When a set was entirely filled, we removed it from L and we continued the
process until L is empty. Set sizes were drawn from a normal distribution and token
frequency from a Zipf distribution [GSE+94]. Table 5.2 summarizes the parameters
used for data generation as well as those regarding the input of the similarity join al-
gorithms, i.e., number of input sets and threshold. We used the default value unless
stated otherwise.

7For this plot, we excluded frequencies with count less than 10 to avoid fluctuation effects.
8We used a traditional and simple procedure to model the token frequency distribution with a power-

law distribution: we fit a straight line on the (log-log) “count-frequency plot” using least-square
linear regression and took the absolute slope of the straight line as the exponent α. Note that accu-
rately estimating α as well as making a strong case for a power-law distribution against competing
distributions is a difficult problem. In [CSN09], the authors propose maximum likelihood estima-
tors and goodness-of-fit tests based on the Kolmogorov–Smirnov measure and likelihood ratios.
Here, an approximate modeling is nevertheless sufficient for the purposes of our discussion.

124 A Framework for XML Similarity Joins

5.7 Experiments

5.7.3 Performance Results on Synthetic Datasets

We first analyze the performance of the algorithms under controlled data distribution
parameters, namely, mean and standard deviation of the set sizes, and skew of the to-
ken frequency distribution. We start with the results for the unweighted version of
the algorithms, which are shown in Figures 5.5(a)–(c). In all settings, mpjoin clearly
exhibits the best performance. In particular, mpjoin achieves performance gains com-
pared to ppjoin+ about a factor of 2.5 on average. Although the hybrid version outper-
forms ppjoin+, it is about 70% slower than mpjoin on average. Evidently, the candidate
reduction does not pay-off the extra-effort of the suffix filtering (we emphasize this
observation when we detail the workload of the algorithms).

The performance of all algorithms severely degrades as the mean set size increases
(Figure 5.5(a)). This effect is not a surprise, because larger sets translate into larger
prefixes and therefore more tokens are used to probe the index in the candidate
generation phase. Moreover, larger subsets have to be processed in the verification
phase. Another crucial aspect is inverted list reduction. Because we increased the
mean of the set size distribution while maintaining its standard deviation constant
(σ = 25), dynamic removal of indexed sets by size bound and min-prefix checking
turned out to be less effective. For example, consider a set x with size 300, there-
fore minsize(x) = 225. For µ = 300, nearly all the sets have sizes not smaller than
minsize(x), i.e., sizes are at most three standard deviations smaller than the mean size
(recall that set sizes are normally distributed in this experiment). Likewise, we have
maxsize(x) = 400; hence, the validity window of x will last until the end of the dataset.
In this connection, it is easy to see that the worst-case scenario is an equi-sized set col-
lection: minpref (x) would be equal to midpref (x) along the whole validity window of
x and minsize(x) checking would be useless, i.e., dynamic index reduction would not
be possible.

Figure 5.5(b) plots the results with varying σ. All algorithms run significantly faster
as the standard deviation increases, which confirms the influence of the size distribu-
tion spread on performance. Particularly, the performance gain of mpjoin over ppjoin+
increases from 1.8 to 2.7 as σ increases from 10 to 50. This improvement is due to the
increased number of set entries associated with stale tokens in the index that degrades
the performance of ppjoin+, but are removed by mpjoin.

Figure 5.5(c) shows the results with varying skew. Again, mpjoin achieves more
than twofold speed-ups on average over ppjoin+. Furthermore, the runtime of all
algorithms is drastically reduced as the skew increases. The reason for this improve-
ment is that there are an increased number of low-frequency tokens with higher skew,
which are placed at the prefixes due to token frequency ordering. As a result, the in-
verted lists are shorter and there is much less prefix overlap between dissimilar sets,
thereby decreasing the number of generated candidates.

Figures 5.5(d)–(f) plot the results for weighted sets. As for unweighted sets, w-
mpjoin is faster than w-ppjoin in all settings achieving up to twofold speed-ups. No-
tably, the algorithms are considerably faster than those for the unweighted case, be-
cause the weighting scheme results in shorter prefixes. In general, we observe the

A Framework for XML Similarity Joins 125

Chapter 5 Set Similarity Joins

50 100 150 200 250 300

Mean Set Size

0

500

1000

1500

2000

2500

3000

Ti
m

e
(s

ec
on

ds
)

PPJOIN+
HYBRID
MPJOIN

(a) Unwei. sets, varying µ

10 20 30 40 50

Standard deviation

0

100

200

300

400

500

600

Ti
m

e
(s

ec
on

ds
)

PPJOIN+
HYBRID
MPJOIN

(b) Unwei. sets, varying σ

0,6 0,8 1 1,2 1,4 1,6 1,8 2

Skew

0

300

600

900

1200

1500

1800

Ti
m

e
(s

ec
on

ds
)

PPJOIN+
HYBRID
MPJOIN

(c) Unwei. sets: varying α

50 100 150 200 250 300

Mean Set Size

10

20

30

40

Ti
m

e
(s

ec
on

ds
)

W-PPJOIN
W-MPJOIN

(d) Weighted sets, varying µ

10 20 30 40 50

Standard deviation

8

10

12

14

16

18

20

22

Ti
m

e
(s

ec
on

ds
)

W-PPJOIN
W-MPJOIN

(e) Weighted sets, varying σ

0,6 0,8 1 1,2 1,4 1,6 1,8 2

Skew

0

10

20

30

40

50

Ti
m

e
(s

ec
on

ds
)

W-PPJOIN
W-MPJOIN

(f) Weighted sets, varying α

Figure 5.5: Performance results on synthetic data

same trends for weighted sets: performance worsens with larger sets, but improves
at higher set size variance and token frequency skew. However, data distribution
variation affects the algorithms by a lesser degree owing to the reduced prefix size.

126 A Framework for XML Similarity Joins

5.7 Experiments

5.7.4 Performance Results on Real Datasets

We now analyze the efficiency of the set similarity join algorithms using real datasets.
Figure 5.6(a) shows the runtime performance using unweighted sets. The trends ob-
served are similar to those on the synthetic data: mpjoin is the best, ppjoin+ the worst.
On all datasets, mpjoin is more than two times faster than ppjoin+, achieving more
than a threefold speed-up over ppjoin+ on IA and ITA datasets.

The reasons for the above results are revealed in Figure 5.6(b), which illustrates the
workload on the candidate generation and verification phases, i.e., the number of sets
processed in these phases. In the chart, PROBED corresponds to indexed sets appear-
ing in the inverted lists during the candidate generation phase. Because of the partial
overlap score accumulation when generating candidates, some sets are immediately
pruned at the first overlap bound checking in the verification phase without further
processing (see Algorithm 5.3, line 10); these sets are represented by P-VERIFIED. Fi-
nally, VERIFIED corresponds to the sets that are actually scanned in the verification
phase including those that will be part of the output. Note that mpjoin, hybrid, and
ppjoin+ are abbreviated in the charts by M, H, and P, respectively. In the candidate
generation phase, ppjoin+ doubled the number of indexed sets needed by mpjoin. The
extra indexed sets of ppjoin+ are related to stale tokens, i.e., irrelevant candidates that
are repeatedly considered along their validity window. Together with the elimina-
tion of dedicated data structures for score accumulation, the decreased number of
sets processed by mpjoin dramatically reduces the computational cost for candidate
generation. As expected, the number of sets delivered to the verification phase by
mpjoin is larger. Moreover, because fewer tokens are considered, score accumulation
is reduced when generating candidates. As a result, P-VERIFIED is negligible for
mpjoin, i.e., nearly all sets passed on to the verification phase have to be processed.
But now the optimization employed in the verification phase (see Section 5.3.1) comes
into play and the higher workload does not translate into an overwhelming perfor-
mance penalty. For instance, consider the DTA data set. Even though VERIFIED
for mpjoin is about 18x larger compared to ppjoin+, the overall execution runtime of
mpjoin is about 2.8x shorter. The advantage of faster candidate generation is made
explicit when comparing mpjoin to hybrid. PROBED is the same for both algorithms,
but VERIFIED is about 5.6x shorter for hybrid due to suffix filtering. However, this
saving is ineffective: the overall runtime of hybrid is about the double of that of mpjoin.

The performance of the algorithms across the datasets is dictated by the underlying
data distribution. The set size distribution of the DBLP datasets and IT have similar
shape (see Figure 5.4(a)) and the runtime of the algorithms closely follow the mean set
size. On the other hand, all algorithms are faster on IA and ITA compared to DT and
DTA. Although IA and ITA contain some very large sets, their set size distribution
is more dispersed than those of DA and DTA. As a result, the validity window of
indexed sets is shorter and more entries in the inverted lists are removed due size
bound checking. Also, tokens become stale more quickly within the validity window,
which favors mpjoin: the performance gap between mpjoin and ppjoin+ is larger on IA
and ITA.

A Framework for XML Similarity Joins 127

Chapter 5 Set Similarity Joins

DA DT DTA IT IA ITA

Datasets

0

100

200

300

400

500

600

Ti
m

e
(s

ec
on

ds
)

MPJOIN
HYBRID
PPJOIN+

(a) Runtime, unweighted sets

M H P M H P M H P M H P M H P M H P

 DA DT DTA IT IA ITA

0

2×10
8

4×10
8

6×10
8

8×10
8

10
9

10
9

10
9

N
o.

 S
et

s

PROBED
P-VERIFIED
VERIFIED

(b) Workload, unweighted sets

DA DT DAT IT I2A I2AT

Datasets

0

10

20

30

40

50

60

70

Ti
m

e
(s

ec
on

ds
)

W-MPJOIN
W-PPJOIN

(c) Runtime, weighted sets

M P M P M P M P M P M P
 DA DT DTA IT IA ITA

0

5×10
7

10
8

2×10
8

2×10
8

3×10
8

N
o.

 S
et

s

PROBED
P-VERIFIED
VERIFIED

(d) Workload, weighted sets

DTA-Q2 DTA-Q3 DTA-Q4 ITA-Q2 ITA-Q3 ITA-Q4

Datasets

0

10
2

2×10
2

3×10
2

4×10
2

5×10
2

6×10
2

Ti
m

e
(s

ec
on

ds
)

MPJOIN
HYBRID
PPJOIN+

(e) Varying q size, unweighted sets

DTA-Q2 DTA-Q3 DTA-Q4 ITA-Q2 ITA-Q3 ITA-Q4

Datasets

0

10

20

30

40

50

60

70

Ti
m

e
(s

ec
on

ds
)

W-MPJOIN
W-PPJOIN

(f) Varying q size, weighted sets

Figure 5.6: Performance results on real data

Figure 5.6(c) shows the results for weighted sets. The trends are similar to the ones
for unweighted sets. w-mpjoin outperforms w-ppjoin by a factor larger than 2 in all
measurements and the performance of the algorithms across the datasets follows the
respective data distribution. As observed on the synthetic datasets, all algorithms are

128 A Framework for XML Similarity Joins

5.7 Experiments

0,5 0,6 0,7 0,8 0,9

Threshold

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(s

ec
on

ds
)

PPJOIN+
HYBRID
MPJOIN

(a) DTA dataset, unweighted sets

0,5 0,6 0,7 0,8 0,9

Threshold

0

500

1000

1500

2000

Ti
m

e
(s

ec
on

ds
)

PPJOIN+
HYBRID
MPJOIN

(b) ITA dataset, unweighted sets

0,5 0,6 0,7 0,8 0,9

Theshold

0

200

400

600

800

1000

1200

1400

Ti
m

e
(s

ec
on

ds
)

W-PPJOIN
W-MPJOIN

(c) DTA dataset, weighted sets

0,5 0,6 0,7 0,8 0,9

Threshold

0

100

200

300

400

Ti
m

e
(s

ec
on

ds
)

W-PPJOIN
W-MPJOIN

(d) ITA dataset, weighted sets

Figure 5.7: Performance results with varying threshold

much faster on weighted sets (about one order of magnitude), which is explained by
the lower workload owing to shorter prefixes (see Figure 5.6(d)).

We also analyzed the performance of the algorithms under different token fre-
quency distributions by varying the size of q. As mentioned previously, the skew
increases with the size of q. Figure 5.6(e) and Figure 5.6(f) show the results on DTA
and ITA datasets for unweighted and weighted sets, respectively—we obtained sim-
ilar results on the other datasets. As for synthetic data, all algorithms become much
faster as the data becomes more skewed. Note, the performance advantage of mpjoin
is more prominent when the skew is lower. For instance, on the ITA dataset, the per-
formance gains increase from about 1.7x with q = 4 to 3.1x with q = 2, for unweighted
sets; for weighted sets, the increase is from 1.7x to 2.1x. This observation is of partic-
ular importance, because many application domains are characterized by relatively
low-skewed data. For example, [CHK+07] recommends q-grams of size 2 to obtain
the best quality results in a data cleaning scenario.

Finally, we measured the runtime performance with varying threshold parame-
ter. Figures 5.7(a) and 5.7(b) show the results for unweighted sets on the DTA and

A Framework for XML Similarity Joins 129

Chapter 5 Set Similarity Joins

ITA, respectively; Figures 5.7(c) and 5.7(d) show the results on the same datasets for
weighted sets. mpjoin and w-mpjoin remain faster than their competitors throughout
the whole threshold range on both datasets. All algorithms considerably increased
their runtime as the threshold decreases (two orders of magnitude from 0.9 to 0.5),
mainly because lower thresholds imply larger prefixes.

5.7.5 Scalability Experiments

We conducted scalability tests on datasets varying from 100K to 1000K in steps of
100K. We also evaluated the performance of the disk-based version of the algorithms
by restricting the memory budget such that only 200K input sets could be dynami-
cally indexed and kept memory-resident; for larger numbers of input sets, the algo-
rithms had to scan the disk-resident input data multiple times to complete the opera-
tion as described in Section 5.4.1. We report the results on synthetic data with default
parameters (e.g., µ = 100, σ = 25, θ = 1) and on the DTA dataset. The algorithms
were configured to stop indexing and enter the matching-only phase after indexing
(0.35M) 1.2M tokens for (weighted) unweighted sets on the synthetic dataset; (1.3M)
3.1M tokens for (weighted) unweighted sets on the DTA dataset (these values roughly
reflect the number of tokens indexed on an input containing 200K sets).

Figures 5.8(a) and 5.8(b) show the results for unweighted sets on the synthetic
dataset and DTA, respectively; Figures 5.8(c) and 5.8(d) show the results on the same
datasets for weighted sets. The runtime of all algorithms on both datasets exhibits a
quadratic growth (note that we show the square root of the runtime). This behavior is
expected because the workload in terms of set candidates maintained and processed
by set similarity join algorithms also grows quadratically with the input size (also
observed in [XWLY08]). The growth rate of all algorithms is quite similar and their
relative performance practically stays constant as the input size increases. Finally, the
IO overhead of the disk-resident variant incurs only a little performance penalty as
we do not observe any significant degradation on input data containing more than
200K sets.

5.7.6 Performance Results on XML Data

The experiments presented so far established the performance advantages of our al-
gorithms for a wide range of input parameters and dataset characteristics. To demon-
strate the generality of our technique, we used datasets derived from string data—on
which set similarity join has been the method of choice to realize similarity matching
based on q-grams [CGK06, AGK06]; we also employed synthetic datasets in order to
flexibly obtain different data distributions. As we will show, datasets derived from
XML data using the tokenization functions presented in the previous chapters exhibit
similar characteristics to those derived from string data or to the synthetically gener-
ated data. The results on XML data regarding the relative performance between the
algorithms followed identical trends to those reported in the previous experiments;

130 A Framework for XML Similarity Joins

5.7 Experiments

200k 400k 600k 800k 1000k

No. Input Sets

0

20

40

60

80

100

120

Ti
m

e
(s

ec
on

ds
, s

qu
ar

e
ro

ot
)

PPJOIN+
HYBRID
MPJOIN

(a) Synthetic dataset, default parameters, un-
weighted sets

200k 400k 600k 800k 1000k

No. input sets

0

50

100

150

200

250

300

Ti
m

e
(s

ec
on

ds
, s

qu
ar

e
ro

ot
)

PPJOIN+
HYBRID
MPJOIN

(b) DTA dataset, unweighted sets

200k 400k 600k 800k 1000k

No. Input Sets

0

5

10

15

20

Ti
m

e
(s

ec
on

ds
, s

qu
ar

e
ro

ot
)

W-PPJOIN
W-MPJOIN

(c) Synthetic dataset, default parameters,
weighted sets

200k 400k 600k 800k 1000k

No. Input Sets

0

20

40

60

80

100

Ti
m

e
(s

ec
on

ds
, s

qu
ar

e
ro

ot
)

W-PPJOIN
W-MPJOIN

(d) DTA dataset, weighted sets

Figure 5.8: Scalability results using synthetic and real datasets

hence, we omit these results for brevity.

In this section, we quantify the runtime performance achieved by our algorithms
using different XML similarity functions, processing strategies, and varying thresh-
olds. We consider the similarity functions described in Chapter 4, i.e, EPQ, PCLtlc

(abbreviated in the experimental charts to TLC), and PCLslc. For EPQ, we derive sets
from epq-v2 profiles, which showed best accuracy results, and p = q = 2. For PCLtlc

and PCLslc, we used q = 2. Further, we used the multi-set representation described
in Section 5.6 for PCLslc and consider two processing strategies: SLC-t, which uses
the sets derived from pcl[t] as primary sets and SLC-s, which uses the sets derived
from pcl[s]; in both strategies, we used uniform similarity weights, i.e, λp = λs = 0.5.
We report runtime performance results with varying threshold parameter; for SLC-t
and SLC-s, the threshold parameter corresponds to the value of τp. As in the accu-
racy experiments presented in Section 4.5, we used the IDF weighting scheme and
Jaccard; the set similarity join algorithm is w-mpjoin.

A Framework for XML Similarity Joins 131

Chapter 5 Set Similarity Joins

10
1

10
2

10
3

10
4

Set size (log scale)

10
0

10
1

10
2

10
3

10
4

Co
un

t
(l
og

 s
ca

le
)

EPQ
TLC
T
S

(a) Set size distribution, SwissProt dataset

10
2

10
3

10
4

Set size (log scale)

10
0

10
1

10
2

10
3

10
4

Co
un

t
(l
og

 s
ca

le
)

EPQ
TLC
T
S

(b) Set size distribution, PSD dataset

10
1

10
2

10
3

Feature frequency (log scale)

10
1

10
2

10
3

10
4

Co
un

t
(l
og

 s
ca

le
)

EPQ
T
S

(c) Count-frequency plot of tokens,
SwissProt dataset

10
1

10
2

10
3

Feature frequency (log scale)

10
1

10
2

10
3

10
4

Co
un

t
(l
og

 s
ca

le
)

EPQ
T
S

(d) Count-frequency plot of tokens,
PSD dataset

Figure 5.9: Set size and and token frequency distributions of XML data

For this experiment, we used fuzzy copies of the SwissProt and PSD datasets, each
copy containing 100k subtrees. The generation parameters were the same as for the
datasets SwissProt-Pt2 and PSD-Pt2 (see Table 4.2) with 50% of error extent, i.e., mod-
erate error dataset. As for string data, we used the Karp–Rabin fingerprint function
to map tokens to hash values, ordered the tokens within a set according to their fre-
quency, and stored the sets in ascending size order. The resulting datasets exhibit
very different characteristics. Figures 5.9(a) and 5.9(b) plot the set size distribution
for SwissProt and PSD datasets, respectively. In the charts, T refers to the size of the
sets derived from pcl[t] and S to the sets derived from pcl[s]. Similar to string data,
the set size distribution of the SwissProt datasets closely follow a log-normal distribu-
tion; on the hand, the set sizes of the PSD datasets are more spread out. Figures 5.9(c)
and 5.9(d) show the count-frequency plot of the datasets. As the TLC distribution
is very similar to T , we omitted it in both charts to avoid clutter. The distributions
of EPQ and T on SwissProt (Figure 5.9(c)) resemble a power-law relationship, which
suggests that tokens containing textual information dictates the shape of the distri-
butions, whereas tokens from S concentrates around (relatively) lower frequencies.
The count-frequency plot of all datasets derived from PSD (Figure 5.9(d)) is quite dif-

132 A Framework for XML Similarity Joins

5.7 Experiments

0,5 0,6 0,7 0,8 0,9

Threshold

0

50

100

150

200

250

Ti
m

e
(s

ec
on

ds
)

EPQ
TLC
SLC-t
SLC-s

(a) Runtime, SwissProt dataset

0,5 0,6 0,7 0,8 0,9

Threshold

0

5×10
2

10
3

2×10
3

2×10
3

Ti
m

e
(s

ec
on

ds
)

EPQ
TLC
SLC-t
SLC-s

(b) Runtime, PSD dataset

Figure 5.10: Performance results on XML data with varying threshold

ferent those from SwissProt. In particular, we observe that they exhibit much lower
incidence of low-frequency tokens.

Figures 5.10(a) and 5.10(b) show the runtime results. EPQ is slower than TLC by
a factor of up to 1.8. This result reflects the average token-set size produced by each
approach, as EPQ delivers larger sets than PCI-based tokenization functions on both
datasets. Accordingly, SLC-t and SLC-s are the fastest because the set similarity join
is executed on smaller (primary) sets (i.e., on T or S). Note however that the results
of SLC-t and SLC-s are based on the reduced threshold τp. This means that, for ex-
ample, while the similarity join is executed with, say, τ = 0.8, on EPQ and TLC, on
SLC datasets it would be executed with τp = 0.6 (recall that we set λp = λs = 0.5).
Taking into account the threshold reduction, both TLC-t and TLC-s are the slowest;
for example, compare their results at τp = 0.6 with those of EPQ and TLC at τ = 0.8).
Further, the runtime performance of SLC-t and SLC-s are practically identical. This
fact illustrates a trade-off between set sizes and skewness: while TLC-s executes the
set similarity join on smaller structural sets (i.e., S), the primary sets used in TLC-t
are more skewed. (i.e, T). Moreover, this result substantiates our observation that se-
lectivity has low influence on the overall runtime performance: although similarity
predicate on tokens containing textual information are expected to be more selective
than those on structural tokens, SLC-t is not faster than SLC-s. Finally, even though
the PSD datasets exhibit more spread set size distribution, which favors our min-
prefix algorithm, the results on SwissProt are about one order of magnitude faster as
compared to PSD. The reason is that the SwissProt has much more incidence of low-
frequency tokens than PSD. As already discussed, low-frequency tokens translates
into shorter inverted lists and much less prefix overlap between dissimilar sets.

5.7.7 Experimental Summary

In all measurements performed on synthetic and real datasets, mpjoin and w-mpjoin
provided a superior performance than their competitors. We have shown that a large

A Framework for XML Similarity Joins 133

Chapter 5 Set Similarity Joins

part of the sets processed during the candidate generation phase are indeed associ-
ated with stale tokens, i.e., these sets only add unnecessary overhead, because they
cannot be part of the final result. The optimizations in the verification phase turned
out to be effective: the runtime did not blow up even with a dramatic 18x increase of
the number of candidates. As opposed, suffix filtering was ineffective: the reduction
of the candidates did not compensate the increased runtime in the candidate genera-
tion phase—even when employed together with the min-prefix technique. This fact
emphasizes our observation in Section 5.2 that reduction of the candidates should be
considered with care, because it does not always translate into performance gains.

The spread of the set size distribution has more impact on the performance than the
set size itself. The algorithms run faster on datasets exhibiting highly dispersed set
sizes than datasets containing more uniform set sizes. In particular, the performance
gain of mpjoin and w-mpjoin increases with the set size variance, because tokens asso-
ciated with indexed sets became stale more quickly in the course of processing. The
performance increases with the skew of the token frequency distribution because in-
verted lists become shorter. On the other hand, the advantage of using the min-prefix
technique to minimize of length of the inverted lists diminishes. By varying input
size as well as the threshold parameter, both mpjoin and w-mpjoin steadily revealed
their performance advantage. The runtime of all algorithms grows quadratically as
the input set increases, as expected. Finally, on XML data, executing our algorithms
using PCLtlc as similarity function is about 1.8 faster than using EPQ; for PCLslc,
we observed identical results using the structural and textual sets as primary sets.

5.8 Related Work

There is a vast body of literature on performing similarity joins in vector spaces; in
this context, a similarity join is a variant of the more general approach known as
spatial join. See [JS07] for a recent survey. Indexing techniques for vector spaces are
well-suited for implementing similarity joins in application domains where the ob-
jects can be described by low-dimension token vectors and the notion of similarity
can be expressed by a distance function of the Minkowski family, such as the Eu-
clidean distance (L2 norm). However, all these techniques suffer from the “curse of
dimensionality”, meaning that their performance degrades as the underlying dimen-
sionality increases; they are often outperformed by sequential scans for more than
around 10 dimensions. As already mentioned, although data reduction techniques
can be used to uncover the intrinsic dimension, for domains involving text data, the
dimensionality of the reduced dataset is however expected to be high enough to rule
out spatial join methods (see also discussion in Section 2.1.2).

In many applications, the objects of interest cannot be properly represented as a
collection of features (tokens, in our case) or distance functions of the Minkowski
family are not appropriate. An alternative method for such situations is to resort to
generic metric spaces where the only information available is the pairwise distance
between objects given by a distance metric [CNBYM01]. In this context, a common

134 A Framework for XML Similarity Joins

5.8 Related Work

approach consists of using embedding methods to map object from the original met-
ric space into a vector space; afterwards, spatial indexes can be used to save dis-
tance calculations. See [JLM03] and [GJK+06] for such approaches on text and XML
documents, respectively. Other techniques reduce the dependency on the parameter
space by avoiding the use of pre-built indexes. For example, reference [JS08] presents
the Quickjoin algorithm, which recursively partitions the data until each partition is
sufficiently small such that nested-loop joins can be applied in an economical way.
Quickjoin has been shown to perform better than competing methods that execute
likewise without index support. Note that the performance of all metric-space meth-
ods heavily relies on a good pivot selection strategy. Unfortunately, this problem is
not well understood and, in practical applications, pivots are randomly chosen even
though it is likely to lead to suboptimal results [CNBYM01].

Set similarity joins embody an important method to implement similarity joins
when the objects of interest lend themselves to set representation and exhibit high
dimensionality, such as text data (see other examples of application areas at the be-
ginning of this chapter). In this context, a rich variety of optimizations has been
proposed—most of them were discussed in Section 5.1 and are used by our algo-
rithms: derivation of bounds (e.g., size bound [SK04, AGK06, BMS07, XWLY08, TSP08]),
exploitation of a specific data set order [SK04, BMS07, XWLY08] and token positional
information [XWLY08], and signature schemes [AGK06, CGK06]. The prefix-filtering
concept was first exploited to improve set similarity joins in [SK04] and formally de-
fined in [CGK06]; in these contributions, prefix-filtering is used without any informa-
tion concerning set sort order and therefore corresponds to our definition of maxprefix.
The use of smaller prefixes for indexing, i.e. midprefix, was first employed in [BMS07]
and formally defined in [XWLS09].

There are two main query processing models for set similarity joins. The first one
uses an unnested representation of sets in which each set element is represented to-
gether with the corresponding object identifier. Here, query processing is based on
signature schemes and commonly relies on relational database machinery: equi-joins
supported by clustered indexes are used to identify all pairs sharing signatures, and
grouping and aggregation operators together with user-defined functions (UDFs) are
used for verification [CGK06, AGK06]. The second model is related to Information
Retrieval techniques. An index is built for mapping tokens to the list of objects con-
taining that token [SK04, BMS07, XWLY08]. The index is then probed for each object
to generate the set of candidates which will be later evaluated against the overlap
constraint. Previous work has shown that approaches based on indexes consistently
outperform signature-based approaches [BMS07] (see also [HCKS08] for selection
queries). As primary reason, a query processing model based on indexes provides
superior optimization opportunities. A major method for that uses an index reduc-
tion technique such as prefix-filtering [BMS07, XWLY08], which is also the main focus
of this chapter. Furthermore, most signature schemes are binary, i.e., a single shared
signature suffices to elect a pair of sets as candidates. Also, signatures are solely used
to find candidates; matching signatures are not leveraged in the verification phase.
As a result, both sets representing a candidate pair must be scanned from the begin-

A Framework for XML Similarity Joins 135

Chapter 5 Set Similarity Joins

ning to compute their similarity. In contrast, approaches based on indexes accumulate
overlap scores already during candidate generation. Hence, set elements accessed in
this phase can be ignored in the verification. Inverted lists have also been shown to
perform better than signature-based approaches on simpler kinds of set joins, such as
strict containment and non-zero overlap joins [Mam03].

In addition to exact optimizations, dimension reduction methods can be used to
speed-up set similarity join processing at the cost of producing approximate results
(some valid object pairs may be missed). LSH is the most popular technique for
approximate similarity joins: it can be used to reduce the size of the input sets [Bro97]
as well as signature schemes [CDF+01]. Not all set similarity functions admit an LSH
hash function family however. A required property is that the distance formulation
of a similarity function Sim, i.e. 1−Sim, must satisfy the triangle inequality [Cha02].
For example, Jaccard admits an LSH hash function family, whereas there is not such
a function for Dice [Cha02].

Text similarity joins were first proposed in the context of data integration in the
seminal work of Cohen [Coh98]. In this regard, SED is typically used as the similarity
join predicate. A common approach consists of mapping strings to sets of q-grams
and using set-overlap as edit distance constraint. The work in [GIJ+01] implements
this approach on top of a relational query engine. Xiao et al. [XWL08] exploit the
locations and content of mismatching q-grams to improve filtering.

A related line of work focuses on set-similarity selection queries. The work in
[HCKS08] exploits size bounds of the IDF similarity and token ordering in inverted
lists to design highly efficient algorithms. Li et al. [LLL08] propose algorithms to
optimize the merging of inverted lists, which is used to calculate the overlap score of
candidates, and investigate different filtering configurations.

Recent trends concerning similarity joins include: exploitation of parallelism and
sort and searching capabilities of GPUs [LSS08]; compact representation of similarity
join results [BEF08]; and text similarity joins using string transformations [ACK08].
Moreover, following the idea presented by Chaudhuri et al. [CGK06], recent work
addresses the integration of similarity joins into DBMS query engines. For example,
[LNS09] exploits Power-law distributions to estimate the sizes of set similarity join
outputs and [SAA10] introduces transformation rules for the optimization of logical
query plans containing similarity join operators.

5.9 Summary

In this chapter, we proposed a new index-based algorithm for set similarity joins. Fol-
lowing a completely different approach compared to previous work, we focused on
a reduction of the computational cost for candidate generation as opposed to low-
ering the number of candidates. For this reason, we introduced the concept of min-
prefix, a generalization of the prefix filtering concept, which allows to dynamically and
safely minimize the length of the inverted lists; hence, a larger number of irrelevant
candidate pairs is never considered and, in turn, a drastic decrease of the candidate

136 A Framework for XML Similarity Joins

5.9 Summary

generation time is achieved. As a side-effect of our approach, the workload of the
verification phase is increased. Therefore, we optimized this phase by stopping as
early as possible the computation of candidate pairs that do not meet the overlap
constraint. Moreover, we improved the overlap score accumulation by storing scores
and auxiliary information within the indexed set itself instead of using a hash-based
map. Finally, for dealing with massive datasets, we presented variants of our al-
gorithm for disk resident data and parallel execution. Our experimental results on
synthetic and real datasets confirm that the proposed algorithm consistently outper-
forms the known ones for both unweighted and weighted sets. Finally, we identified
characteristics of the input dataset that influence the performance of set similarity
join algorithms and compared the performance delivered by the similarity functions
presented in the previous chapters.

A Framework for XML Similarity Joins 137

Chapter 5 Set Similarity Joins

138 A Framework for XML Similarity Joins

Chapter 6

Integration into XTC

So far, our discussion has mostly been “system-oblivious” in the sense that we have
generally referred to the input to our tree similarity join (TSJ) algorithms as XML
collections or datasets and abstracted from details of the underlying data server sys-
tem. In practice, however, mere operating system’s file management is rarely enough
for supporting data-intensive applications over large XML collections; instead, as for
most kinds of data, database management systems are needed to free up XML appli-
cation programs from dealing with concurrency and failures while providing efficient
data access and maintenance, among other benefits. In this regard, our goal in this
chapter is to investigate several aspects of the integration of our TSJ operators into a
native XML database management system (XDBMS).

There has been a myriad of proposals for the support of XML data in DBMSs. Early
work was characterized by a clear distinction between two approaches: fully lever-
aging traditional relational database engines by splitting XML documents for stor-
age into multiple columns and tables (shredding) and using algorithms to map XML
queries onto SQL queries and convert relational results to XML—such functionalities
are encapsulated in a thin layer on the top of the architecture, e.g., see [STZ+99]—,and
implementing from scratch tailor-made XDBMSs, e.g., [MAG+97]1.

Following a common course of DBMS architectural evolution, the above distinc-
tion has faded with the arise of the so-called hybrid systems, which promote the
co-existence of relational and XML data by providing deeper integration and trans-
parent access to XML functionality [BCJ+05, MLK+05, Rys05]. The most significant
extensions to the conventional relational systems are: support to SQL/XML [sql03]
as well as XQuery in a unified query model; XML data abstraction via the XMLType,
a new data type defined by the SQL/XML standard; augmentation of the logical and
physical algebra with new XML constructs—along with the respective optimization
rules and cost models—represented by the same internal data structures as ordinary
SQL constructs, thereby allowing reuse of the existing query optimizer framework;
new indexing mechanisms for XML content, structure, or both (using B-trees and
auxiliary tables); and storage models based on XML tree partitioning or serialized

1Initially proposed in the context of semi-structured data in general.

139

Chapter 6 Integration into XTC

(binary) formats. In this connection, the work in [LCBC08] presents a query opti-
mization framework supporting multiple storage and indexing models.

Despite of only supporting XML data and, hence, having a narrower scope, XDBMS
architectures still have their merit not only in providing data management to XML
applications but also in pushing the boundaries of DB research on XML in general. In
fact, several techniques adopted by commercial hybrid systems were first proposed
in the XDBMS environment. See [Mat09] for a comprehensive study involving state-
of-the-art XDBMS solutions as well as related discussions on techniques developed
in the context of relational and hybrid systems.

Here, we conduct our work using the XML Transaction Coordinator (XTC) as XDBMS
platform [Hau05, Mat09, xtc]. Although being a research prototype, XTC implements
almost all features of a full-fledged XDMS including: multi-lingual query interfaces
(XQuery, XPath, DOM, and SAX); an extensible, rule-based, and cost-based2 query
optimization framework supporting a rich repertoire of logical and physical alge-
braic operators; cardinality estimators; a variety of index structures; node-oriented
and path-oriented storage models; logging and recovery services; and support to
new hardware architectures such as tailored buffer management algorithms for flash
disks. As a unique feature, XTC provides fine-granular transaction isolation mech-
anisms allowing read/write transactions and collaborative XML document sharing
with ACID guarantees.

As already pointed out in the first chapter, we view the embedding of similarity join
operators into a database engine as belonging to the broader context of DB/IR inte-
gration. The increasing appeal for DB/IR architectures comes from the urgent need—
fueled by emerging classes of applications, in particular, Web-based applications—of
seamless management of a full spectrum of data, ranging from totally structured,
semi-structured, to totally unstructured data. Along this range, the operations and
underlying methods for querying the data move from DB to IR: transactionally pro-
tected, structured, Boolean queries based on the exact matching paradigm (DB world)
to read-only, keyword-based queries following the similarity matching paradigm and
producing ranked results (IR world). In this context, the similarity join is situated be-
tween these two worlds: a typical DB operation for combining data defined under
the similarity matching paradigm. Furthermore, because a very common XML use
case is the representation of semi-structured data, support of similarity matching or
IR-style query processing is an essential feature for fully realizing the value of XML
[TW01]. In fact, the XML data model can be seen as the natural bridge between DB
and IR technologies. As mentioned above, XTC already provides most of the func-
tionalities found in traditional DB systems. The work described in this chapter can
be viewed as an initial step towards making XTC a DB/IR architecture.

There are many challenges for incorporating similarity matching operators into
database systems (or building DB/IR systems, in general) [CRW05, Wei07]. A not ex-
haustive list of challenges includes: marrying the semantics of structured queries (un-
ordered and complete set of results) with unstructured queries (ranked and incom-

2Cost-based optimization is not fully operational yet.

140 A Framework for XML Similarity Joins

plete results) into a (not exceedingly complex) formal query model and related alge-
bra; optimization and execution of queries combining exact and similarity matching
paradigms as well as queries on both structure and text; integration of relational in-
dexes (e.g., B-trees) with inverted-list-based indexes into a common indexing model;
transactional index maintenance; flexible ranking and scoring; exploitation of tax-
onomies or ontologies for improving query answering; and data transformation—
note that these challenges, especially the latter three aspects, are also pertinent in
the context of EM systems, especially in scenarios demanding on-the-fly similarity
matching such as EII or dataspace systems. In the light of these challenges, it is
not a surprise that most commercial products providing DB/IR integration are either
highly specialized vertical solutions or loosely coupled DBMS and IR engine systems.
In the latter, special language predicates are used to guide the optimizer in routing
parts of the query to one of the two engines—with very little scope for optimization—
and the results of both of them have to be combined at a separate integration layer
before being returned to the user.

In this chapter, it is not our aim to encompass all aspects around the integration of
our similarity join framework in XTC. As already made clear, despite of being aggres-
sively pursued in the recent years, tight integration of DB and IR technologies is still
a long-term goal, which will require from both research communities a great deal of
(ideally collaborative) work. Instead, we focus on exploiting XDBMS-specific features
to optimize the realization of the similarity joins algorithms proposed in this thesis.
Specifically, we leverage XTC’s storage model, indexing infrastructure, node identi-
fication mechanism, and physical algebra for XQuery processing to locate qualified
XML fragments, to efficiently generate XML tree representations, and to compose
pipelined query evaluation trees. As a result, TSJ operators can be embedded into
regular XML queries to deliver more complex EM solutions. Later in this chapter, we
will discuss the flurry of recent work addressing many aspects DB/IR integration,
which can be used to promote further integration in our context.

The remainder of this chapter is structured as follows. In Section 6.1, we provide
an overview of the XTC architecture highlighting the most important elements for
our study. In Section 6.2, we present the TSJ operator, the principal component of
our framework and outline the sequence of steps to derive a similarity join result.
We discuss strategies to fetch subtrees to be compared from their disk-based storage
locations to a memory-resident working area in Section 6.3. Next, in Section 6.4, we
describe the profile generation for ordered (epq-grams tokens) and unordered trees
(PCI-based tokens), which leverage XDBMS internals for faster processing. Con-
struction and maintenance of auxiliary data structures are discussed in Section 6.5.
The composition of physical query plans that leverage existing XML query process-
ing algebra is covered in Section 6.6. Future work on providing deeper integration
of our framework is discussed in Section 6.7 and experimental results validating our
approach are presented in Section 6.8. We discuss related work in 6.9, before we wrap
up with a summary in Section 6.10.

A Framework for XML Similarity Joins 141

Chapter 6 Integration into XTC

Figure 6.1: The five-layer architecture of XTC including the component for tree simi-
larity join (TSJ) processing in the fourth layer

6.1 The XML Transaction Coordinator

In this section, we first sketch the major concepts of the multi-layered architecture of
XTC and, then, review some internal components of XTC. Our discussion is limited
to the components that we exploit to optimize our similarity join algorithms, namely:
node identification scheme, path-oriented storage model, and index structures. We
refer the reader to [Hau05, Mat09] for a complete and detailed description of XTC,
which cover all aspects missed here.

6.1.1 XTC’s Architecture

The design of XTC adheres to the classical five-layer architecture introduced by Härder
and Reuter [HR83]. Figure 6.1 illustrates how XTC is structured according to this ref-
erence architecture. The decomposition of XDBMS functionality into five layers pro-
vides a mapping model enabling dynamic abstraction through the entire flow of data
within a DBMS: from the level of non-volatile storage devices up to the user interface.
In this context, we accommodate the TSJ processing functionality on top of the stor-
age engine, i.e., in the fourth layer. Note that this approach corresponds to the RISC
strategy for DB/IR integration, which is postulated by Chaudhuri et al. in [CRW05].

The two bottom-most layers, i.e., File Services layer (L1) and Propagation Control
layer (L2), are responsible for the management of external storage and DB buffer,

142 A Framework for XML Similarity Joins

6.1 The XML Transaction Coordinator

respectively, and have basically the same characteristics as in relational systems. All
data (payload, metadata, and auxiliary data) is stored on disk in container files, which
are plain files internally arranged in a sequence of fixed-sized blocks. Each container
is associated to an I/O-Manager at L1, which provides read/write block operations
between container files and main memory. The next higher layer, i.e, L2, imple-
ments page-oriented mapping to external storage by designating a buffer manager to
each I/O-Manager. Each buffer manager maintains an array of fixed-size page frames,
whose size is the same as the container blocks. Page requests from the higher layer are
handled by standard displacement algorithms (e.g., LRU) and fix/unfix mechanisms.

The Access Services layer (L3) implements the mapping of XML trees to the pages
managed by L2 and several data access methods, including indexes and tree scan
methods. Also, metadata about stored documents is managed at this layer. The com-
ponents in charge of providing these functionality are Record Manager, Index Manager,
and Catalog Manager. This layer defines the storage model of XTC. Currently, two
models are supported in XTC: node- and path-oriented storage models. In the former
model, each node is encoded and mapped onto external memory, while, in the latter,
inner nodes (structural part) are virtualized with support of a PS structure. The algo-
rithms presented in this chapter are applicable to the path-oriented storage model.
Hence, we focus on this model in the upcoming sections.

Upwards in the hierarchy, we have the Node Processing Services layer (L4). The
Node Manager provides an interface for operations such as tree traversal, tree scan,
and navigational primitives based on the DOM operations (e.g., getParentNode and
getLastChild), decodes nodes represented in internal record format to the external for-
mat, i.e., human readable XML nodes, and issues lock requests to the Lock Manager
according to the respective operation and isolation level. XTC’s physical algebra for
XQuery processing is contained in the Path Processing Component. All physical oper-
ators are implemented as iterators [Gra93], i.e., their interface consist of the methods
open, next, and close (the so-called ONC protocol). We have extended this algebra
with similarity-specific operators (TSJ Processing); we defer details about this exten-
sion to Section 6.6.

Transaction Services span all the previous layers. Lock Manager and Deadlock Detec-
tor are responsible for concurrency control (implemented by a (pessimistic) locking
protocol), while log and recovery is provided by the Transaction Manager. To increase
potential parallelism, XTC adopts a logical internal representation of XML documents
based on an extension of the DOM data model, the so-called taDOM (see [Hau05] for
details).

The upmost layer embodies the XML Processing Services layer (L5), which repre-
sents the non-procedural interface of XTC. In particular, L5 provides evaluation and
optimization of XQuery expressions (XQuery Processor). Complementing the five-
layer architecture, Interface Services support several communication protocols allow-
ing to link XTC to specific programming environments. In particular, XTC executes
DOM calls internally, instead of reconstructing and transferring the entire document
to the client (as is done by most XDBMSs). Currently, our similarity join framework
is neither supported at L5 nor exposed to client applications by the Interface Services.

A Framework for XML Similarity Joins 143

Chapter 6 Integration into XTC

exam

hospital

patient

description

name

mother

study

"Image CT"

"Bob"

"Alice"

id

"232"

relatives

<1, 1>

<2, 1.3>

<3, 1.3.3>

<4, 1.3.3.3> <8, 1.3.3.7>

<5, 1.3.3.3.3>

<5, 1.3.3.3.3.3>

<6, 1.3.3.3.5>

<6, 1.3.3.3.5.3>

<7, 1.3.3.5>

<7, 1.3.3.5.3>

<9, 1.3.3.7.3.3>

<9, 1.3.3.7.3>

exam

study

mother

idpatient

"Alic"

"282" "CT Image"name

"Rob"

description

<2, 1.5>

<10, 1.5.3>

<11, 1.5.3.3> <15, 1.5.3.7>

<12, 1.5.3.3.3>

<12, 1.5.3.3.3.3>

<13, 1.5.3.3.5>

<13, 1.5.3.3.5.3>

<14, 1.5.3.5>

<14, 1.5.3.5.3> <15, 1.5.3.7.3>

<PCR, DeweyID>

Figure 6.2: XML document fragment from Figure 2.4 identified with DeweyIDs (re-
lated PCR values also shown)

Instead, we provide an access module which allows calling the TSJ operator directly
at L4.

6.1.2 Node Identification using DeweyID

In relational systems, record identifiers (RID) specify the record’s page number and
offset within the page and, hence, uniquely identify the corresponding records. RIDs
play an important role for query processing, for example, in queries involving con-
junction of predicates on a table: index scans for each predicate are performed to
obtain sorted RID lists that are intersected via an AND-tree. This strategy allows car-
rying out most of the processing without needing to fetch the actual records from the
physical storage.

A similar approach can be employed for XML query processing by using node
identifiers. However, only equality comparisons are insufficient, because naviga-
tional and declarative XML operations mostly involve comparison of nodes in terms
of their relationships—of particular importance are the axes parent/child, ancestor/descendant,
previous-sibling/following-sibling, and previous/following. Other frequent operations are
sorting of nodes according to the document order and identification of the nesting
level of a node. Besides query processing, quick determination of a node’s ancestor
chain is instrumental for the realization of fine-grained locking protocols [HHMW07];
and for keyword query processing [XP05], a key operation is the computation of the
lowest common ancestor (LCA) for a set of nodes (in the next section, we will see that
efficient LCA computation is also an important requirement for the path-oriented
storage model of XTC).

The above requirements emphasize the need for a structure-aware node identi-
fication mechanism. In this context, prefix-based identification schemes, such as

144 A Framework for XML Similarity Joins

6.1 The XML Transaction Coordinator

DeweyIDs [HHMW07] and ORDPATH [OOP+04], are already standard. XTC uses
DeweyIDs for node identification (ORDPATH or any other prefix-based scheme would
also be appropriate as they provide equivalent functionality).3 A DeweyID encodes
the path from the documents’ root to the node as well as sibling order. DeweyIDs are
represented by a sequence of integers called divisions (separated by dots in the exter-
nal format). Figure 6.2 shows the XML tree from Figure 2.4 identified with DeweyIDs
(disregard the value called PCR for the moment).

Remarkably, DeweyIDs capture a large part of the structural information of XML
nodes: all structural relationships between two nodes can be inferred; identification
of the node’s ancestor ID list (for example, in Figure 6.2, the ancestors IDs of the
text node with value “Alice” and DeweyID 1.3.3.7.3.3 are 1.3.3.7.3, 1.3.3.7, 1.3.3, 1.3,
and 1; the lexicographic order of DeweyIDs corresponds to the document order of
the respective nodes; the level of a node is given by the number of divisions of its
DeweyID minus one; and the DeweyID of the LCA for a set of nodes can be obtained
by calculating their longest common DeweyID prefix.4

Further, existing DeweyIDs are immutable, i.e., they allow the assignment of new
nodes and IDs without the need to reorganize the IDs of existing nodes. When iden-
tifiers deprave after weird insertion histories, re-identification can be preplanned; it
is only required, when implementation restrictions are violated, e.g., the max-key
length in B*-trees. To avoid node re-identification as much as possible, Härder et al.
[HHMW07] employed a dist parameter to increment division values thereby leaving
gaps in the numbering space between consecutive identifiers (in Figure 6.2, the value
of the dist parameter is 2) and complementary overflow mechanisms when gaps for
new insertions are in short supply. Finally, although DeweyIDs may become arbi-
trarily large depending on the nesting level or update activity, prefix compression
techniques can reduce the space consumption to about 25% of the uncompressed for-
mat [HHMW07].

6.1.3 Path-oriented Storage Model

We have seen that the DeweyID mechanism allows inferring many structural aspects
of a given node. In particular, given a DeweyID, we can obtain its list of ancestor IDs
by removing division values in a step-wise way. However, DeweyIDs do not provide
node label information. This means that, to derive the path from the root node to

3Note that node identification mechanisms in XML are commonly referred to as node labeling schemes;
in particular, the term SPLID (Stable Path Labeling IDentifier) has been used to designate prefix-
based mechanisms such as DeweyID and ORDPATH in the XTC literature [HMS07]. However, we
refrain from using this nomenclature because we have already been using the term “label” to refer
to the second element in the triple defining XML nodes (see Section 2.2.1), aka node tag or node
name.

4The DeweyID encoding scheme adopted by XTC is slightly different from the one depicted in Figure
6.2: special division values are used for strings and attributes as well as other minor modifications
to accommodate the extensions of the taDOM data model [Mat09]. Because these modifications
are irrelevant in the context of our simplified XML data model (e.g., attribute nodes are treated as
element nodes), and consequently, not important for our discussion, we ignore them here.

A Framework for XML Similarity Joins 145

Chapter 6 Integration into XTC

exam

hospital

patient

description

name

mother

study

id

relatives

<1, ->

<2, ->

<3, ->

<4, -> <8, ->

<5, 1> <6, 2>

<7,3>

<9, 4>

study

mother

idpatient

name

description

<10, ->

<11, -> <15, 2>

<12, 3> <13, 4>

<14, 1>

<PCR, PCI>

PCR
5
6
7
9 4

3

1
2

PCI

12
13
14
15 2

1

3
4

PCR-PCI Table

Figure 6.3: PS using PCRs to identify paths to the root (related PCI values and PCR-
PCI table are shown)

a given node, access to the storage system is nonetheless necessary. In Chapter 3,
we have presented the PS structure, which describes all path classes from an XML
collection. In this connection, the complementary nature of DeweyIDs and the PS
is evident: by associating the DeweyID of a node with the corresponding node in
the PS, we are able to derive not only the label of this node, but also its complete
path information. In order to do so, we need to simply number all nodes in a PS,
thereby uniquely identifying all (partial) paths appearing in an XML database. This
identifier is referred to as Path Class References (PCRs) [HMS07]. Figure 6.3 illustrates
the PS structure relative to the XML tree depicted in Figure 6.2, with all the nodes
identified by PCRs values. (Note that leaf nodes are associated with PCI values. This
association is represented in the PCR-PCI table on the left-hand side, whose utility
will be explained shortly.)

Consider again Figure 6.2. Note that element nodes are associated with the respec-
tive PCR in the PS; text nodes are associated with the PCR of its owing element. The
PCR value for the text node with value “Alice” and DeweyID 1.3.3.7.3.3 is 9. Using
the DeweyID in conjunction with the PS structure, we can now reconstruct the path
from the root to this node, therefore obtaining 〈(hospital,1),(exam,1.3),(patient,1.3.3),
(relatives,1.3.3.7), (mother,1.3.3.7.3)〉.

The ability of reconstructing paths instigates the design of a space-economic stor-
age model: one can store only the content part of XML documents, i.e, their text
nodes values, together with the corresponding DeweyID and PCR; as a consequence,
the structural part is virtualized and can be reconstructed whenever needed—when
the last element of a path is an empty element node, a null node is stored together
with the PCR of the element node. This strategy for storing XML documents in XTC
is referred to as the path-oriented storage model—contrast this model with the node-
oriented storage model, where all nodes, structural and textual, are stored on disk. As
already mentioned in Chapter 3, most real-world XML data exhibit highly repetitive

146 A Framework for XML Similarity Joins

6.1 The XML Transaction Coordinator

Figure 6.4: Stored document in path-oriented format

structure, where several path instances reappearing many times in an XML collec-
tion. Hence, path-oriented storage can achieve substantial space savings: from 20%
to 70% as compared to the size of the plain textual representation of documents; and
from 5% to 30% as compared to node-oriented storage5.

Figure 6.4 zooms in on the path-oriented format. The so-called document index, a B-
tree with key/pointer pairs 〈DeweyID+PagePtr〉, indexes the first node in each page
of the document container, which consists of a set of doubly chained pages. Several
page types can be assigned to enable allocation of pages for documents, indexes,
etc., in the same container. Further, using sufficiently large pages—varying from 4K
to 64K bytes, which can be configured to the document properties, the document
index is usually of height 1 or 2. Because of reference locality in the B-tree while
processing XML documents, most of the referenced tree pages are expected to reside
in DB buffers—thus reducing external accesses to a minimum. In each page, text
nodes of variable length are stored in document order, each node composed of entries
of the form 〈SPLID, PCR, value〉.

The performance of operations such as tree reconstruction (or tree scan) and navi-
gation does not degrade with the structure virtualization. In fact, significant perfor-
mance gains have been observed on several XML documents [Mat09]. In particular,
we rely on tree scans to fetch the input to TSJ. Briefly, a tree scan on path-oriented stor-
age is executed in L3 as follows. First, a lookup on the document index is performed
using the DeweyID of a given tree root node. The page address and offset returned

5Both path- and node-oriented storage employ compression of DeweyIDs, node labels (replacing of
elements labels by a two-byte integer values), and content. Prefix-based compression of DeweyIDs
is less effective on path-oriented storage, because ordered sequences of DeweyIDs are non-dense
due to the absence of the DeweyIDs from structure nodes. Moreover, this storage layout requires
extra-bytes per node for storage of PCRs together with some administration data. Nevertheless,
structure virtualization pays off in all cases for a wide variety of XML documents [HMS07].

A Framework for XML Similarity Joins 147

Chapter 6 Integration into XTC

(a) Element index (b) CAS index

Figure 6.5: Index infrastructure of XTC

corresponds to the first text node (or null node) of the tree. Using the DeweyID, PCR
and the PS, all nodes in the path from the root node down to the stored node are re-
constructed in internal record format (if the stored node is a text node, it is also recon-
structed) and added to the result. Next, the chained pages are processed sequentially.
For each node, the LCA between this node and the previous node is calculated, and
the path from the LCA node down to the current node is constructed and added to
the result. The tree scan stops when the first node, which is not a descendant of the
tree root node, is found.

The method above describes the scan process of a single subtree. In Section 6.3, we
discuss strategies for fetching all input trees for similarity processing.

6.1.4 Indexing

In addition to the document index, XTC supports a rich variety of indexes that can be
specified by the database administrator to speed-up certain queries [Mat09]. Using
B-trees as foundational structure, indexes can be defined on XML content, structure,
or both. Next, we describe the so-called element index and content-and-structure index
(CAS index), as we will consider them in further discussions in this chapter.

An element index consists of a name directory with (potentially) all element labels
occurring in the XML document (Figure 6.5(a)); this name directory often fits into a
single page. Each specific element label refers to the corresponding list of DeweyIDs,
sorted according to the document order. In case of short reference list, they are ma-
terialized in the index; larger reference lists may, in turn, be maintained by a node
reference index as indicated in Figure 6.5(a). The name directory is implemented by a
B-tree while the node reference index is implemented by a B*-tree. For the latter, the
index record format only stores DeweyIDs as keys; the corresponding value field is
empty. Optionally, we can extend the functionality of the element index by storing
the PCR in the field value. The resulting index allows distinguishing all occurrences

148 A Framework for XML Similarity Joins

6.2 The TSJ Operator

of an element label in multiple paths.
CAS indexes embody a hybrid access path mechanism capturing content and struc-

ture. The content part is specified by a path query, such as “//study/id [. = 232]”
(point query) or “//study/[232 < id < 282]” (range query)—see [Mat09] for a for-
mal definition of the path query. Alternatively, a disjunction of several path queries
can be specified to define a so-called collective heterogeneous CAS index. A text node
content is indexed if its parent is in the result of the path expression. The record field
value consists of the corresponding DeweyID and PCR value. In this record layout,
keys are sorted in ascending order while record field values are sorted in document
order. A B*-tree supporting duplicate keys is used to implement CAS indexes. Fig-
ure 6.5b illustrates a CAS index specified by a range query. As for element indexes,
one can flexibly define different CAS index variants by modifying the record layout
[Mat09], e.g., by concatenating the PCR value to the key value, we obtain a PCR-
based clustering of the index (instead of the DeweyID clustering which results from
the default record format).

Finally, in all cases, support of variable-length keys and reference lists is manda-
tory; additional functionality for prefix compression of DeweyIDs is again very effec-
tive.

6.2 The TSJ Operator

After having presented the XDBMS environment, we now start our discussion on
the integration of our similarity join framework into this context. The discussion
puts together all concepts of the previous chapters and will be organized around the
main component of the framework, i.e, the tree similarity join (TSJ) operator. In the
following, we first expand Definition 2.1 on Page 40 to encompass all elements of the
TSJ operator and make their relationship explicit. Then, we provide a quick overview
of the TSJ evaluation, before we delve into details in the subsequent sections.

6.2.1 Tree Similarity Join

The underlying operation of TSJ has four parameters: two expressions defining the
set of trees to be compared, the token-based similarity function, and the similarity
threshold. The token-based similarity function further unfolds three components:
the profile generation method (or tokenization function), the weighting scheme, and
the set-overlap-based similarity measure; finally, the tokenization function requires a
parameter defining content and structure delimitation.

Definition 6.1 (Tree Similarity Join (TSJ)). Let D1 and D2 be two XML databases and
exp(D) be an XPath or XQuery expression over a database D. Further, let tok be a tokeniza-
tion function that, given a set of PCIs PCt, maps an XML tree T to a profile tok [PCt](T),
ws be a weighting scheme that associates a weight to every element of a given input set,
and ss be a set-overlap-based similarity measure. Let sf be the similarity function defined by

A Framework for XML Similarity Joins 149

Chapter 6 Integration into XTC

Figure 6.6: Course of TSJ evaluation

the triple 〈tok[PCt], ws, ss〉, which returns the similarity between two XML trees T1 and T2,
sf (T1, T2) as a real value in the interval [0, 1]. Finally let τ be a similarity threshold, also in the
interval [0, 1]. The tree similarity join between the tree collections specified by exp1 (D1) and
exp2 (D2), denoted by TSJ (exp1 (D1), exp2 (D2), sf, τ), returns all scored pairs 〈(u1, u2), τ ′〉
s.t. (u1, u2) ∈ exp1 (D1)× exp2 (D2) and sf (T1 (u1),T2 (u2)) = τ ′ ≥ τ .

Of course, we can evaluate TSJ over the same database by specifying D1 = D2 or
over a single XML tree collection by specifying exp1 (D1)=exp2 (D2) or simply omitting
the second parameter (i.e., as a self-similarity join).

Example 6.1. Consider the XML database hospital.xml whose fragment is shown in Figure
6.2. Assume that an EDS query has returned the set of PCIs {3, 4} (e.g., using the path spec-
ification /patient/mother/name and /patient/name). Then, we can identify all exams
in hospital.xml whose similarity is not less than 0.75 using the following TSJ invocation:

TSJ (doc(“hospital.xml′′)//exam, PCLtlc, 0.75) ,

where PCLtlc is the similarity function defined by the triple 〈pcl[s, t, {3, 4}], IDF, wjs〉.

6.2.2 A Glimpse on TSJ Evaluation

The course of the TSJ evaluation is shown in Figure 6.6. The following steps are
executed:

1. Tree Access: In the first stage, the trees forming the input for TSJ are fetched to a
main-memory resident area. To this end, services at L4 (e.g., the NodeMgr) are
accessed twice: to select a list of DeweyIDs corresponding to the root nodes of
the input trees (rootID list, for short) and, then, to fetch the corresponding trees.

2. Profile Generation: Using a tokenization function and the set PCt, a profile is gen-
erated for each tree from 1. This step includes token annotation and character-
level transformations on text data, namely, conversion to upper-case and elim-
ination of repeated white spaces; further, all token values are hashed into in-
tegers. This step requires a PCR-PCI table as auxiliary information source. A
PCR-PCI table is shown in Figure 6.3.

150 A Framework for XML Similarity Joins

6.2 The TSJ Operator

3. Set Generation: In this step, each profile is converted into a sorted set by sorting
the tokens in increasing order of frequency in the data collection and, in case of
using a weighting scheme, weights are calculated and attached to each token.
This step requires a token-frequency table as auxiliary information source.

4. Set Similarity Join: After sorting the input sets in increasing order of the set size,
a set similarity join is executed and pairs of root-node DeweyIDs—whose sub-
trees satisfy the similarity condition—are returned as result together with their
similarity value.

The underlying similarity function of TSJ is determined by steps 2–4. As discussed
earlier, we can easily obtain a rich repertoire of similarity functions by varying the
combinations of these steps. This flexibility is a particularly appealing feature of our
framework: we can freely plug-in different components or apply different parame-
terizations thereof to serve EM applications with various notions of similarity.

Note that steps 2 and 3 require two auxiliary information sources, the PCR-PCI ta-
ble and the token-frequency table, respectively. The PCR-PCI table stores the association
between path classes and path clusters. As we will show in Section 6.4.2, the gener-
ation of PCI-based profiles requires accessing the corresponding PCI for every node
in a tree representation. By employing a separate hash-based map instead of “an-
notating” the PS as suggested in Chapter 3, we obtain much faster access times and
avoid PS contention. The token-frequency table is necessary for sorting the profiles
and for token weight calculation. Together with PCS, these structures represent the
memory-resident structures needed for TSJ execution.

As suggested by Figure 6.6, we are not using any index scheme to provide access
and maintenance on precomputed profiles (output of 2) or sorted sets (input of 4); all
the computation is done on-the-fly. It is pertinent to discuss this aspect now.

Indexing techniques have mainly been used in the context of similarity selection
queries, where the task is to approximately match an entity (string or XML tree) against
a dataset [CGS03, ABG06, HCKS08, LLL08, CK09]—recall, we have conducted our ac-
curacy experiments under this setting. Similarity selection solutions are typically de-
signed for applications scenarios characterized by a large number of (concurrent) re-
quests (for example, auto-completion applications where completion suggestions are
obtained by approximately matching the partially entered string against the database
[CK09]); hence, the cost of building an index structure is amortized across multiple
uses. Moreover, the lookup time on the index is practically independent of the dataset
size and orders of magnitude faster than building the index on-the-fly. Of course, the
main issue is index maintenance in the presence of data updates. To avoid the burden
of rebuilding the index from scratch every time the underlying data changes, arriving
updates can be buffered and the index updated in batches, incrementally, at regular
time intervals [ABG06, HKS09]. Unfortunately, index maintenance is particularly dif-
ficult when weighting schemes based on corpus statistics are employed (e.g., IDF).
In such cases, even updates involving a single or a small set of entities can trigger a
cascading effect, where weight updates have to propagated to many other entities.

A Framework for XML Similarity Joins 151

Chapter 6 Integration into XTC

As a result, supporting data structures are required and maintenance cost and space
overhead are substantially increased.

Here, we focus on similarity joins in the EM context. Although we envisage the ex-
ecution of our algorithms in operational databases serving read/write operations, we
assume that concurrent TSJ invocations coming from multiple EM processes are quite
rare. In contrast, we anticipate the common situation where a single EM process is
carried out to identify duplicates at much more sparse intervals than those required
by applications using similarity selection queries.6 In this regard, multiple calls to
the TSJ operator may occur using different parameters, in particular, thresholds, PCt

sets, and similarity functions. For different thresholds, we can simply materialize
the input of step 4 (this approach is to some extent similar to creating materialized
views); then subsequent TSJ executions only need to sequentially read stored data.7

The use of multiple PCt sets, tokenization methods, or both, generates different pro-
files for each tree. Thus, an index for each combination would have to be built and
maintained. Furthermore, compared with similarity selection, similarity join is com-
putationally much more intensive. As a result, profile and set generation do not take
take an exceedingly large fraction of the overall processing time (e.g., see [CGK06]
and our own results in Section 6.8). To perform on-the-fly evaluation, we only need
to maintain a token-frequency table for set generation (step 3). As we will discuss in
detail shortly, we can easily construct and, more importantly, easily update this table
to reflect data changes. Finally, we note that on-the-fly evaluation is frequently the
only option in several data integration scenarios, such as EII and dataspace systems.
In the following, we focus on on-the-fly similarity join evaluation. In Section 6.7, we
consider strategies for indexing and maintaining materialized sorted sets (input of
step 4).

We will discuss steps 1 and 2 in the following two sections. Step 3 is straightfor-
ward while step 4 exactly corresponds to the set similarity joins extensively discussed
in Chapter 5. We will then be ready to present the encapsulation of TSJ as a query
evaluation plan (QEP, or simply plan) where each step corresponds to a physical op-
erator (Section 6.6).

6.3 Tree Access

In this section, we first describe the exploitation of the index structures described in
Section 6.1.4 to obtain the rootID list. Then, we discuss strategies for fetching the
selected trees to a memory-resident area.

6Especially for static databases, e.g., data warehouses, a reasonable approach after the identification
and elimination of duplicates is to avoid the appearance of new duplicates by employing similarity
selection on all incoming data [CGS03].

7For this last scenario, we can employ the techniques described in [CGS03] to evaluate our algorithms
progressively and avoid redundant computation of similarity results.

152 A Framework for XML Similarity Joins

6.3 Tree Access

6.3.1 TSJ Input Selection

In principle, arbitrary XPath and XQuery expressions can be employed for selecting
the TSJ input. We can therefore rely on the query optimization capabilities of XTC for
selecting suitable indexes and deriving a cheap query plan. Moreover, such queries
frequently require materialization of all subtrees rooted at the nodes contained in the
result. Therefore, tree scan is normally already embedded in the evaluation of regular
XML queries.

In Chapter 2, we have uncovered our assumptions about the underlying XML
dataset: common vocabulary and tree-structured entity descriptions. The former as-
sumption means that there is no source of semantic heterogeneity among node labels
such synonyms and polysemes. The latter assumption ensures that the entities of
interest are represented by trees with well-defined entry points, i.e., a common root-
node label; this root-node label is used as target in the clustering process.

In the light of the assumptions above, sinple queries specifying the TSJ input have
the form of “//tgl” or “//path expression/tgl”, where tgl is the target label used for
path clustering (see Chapter 3). The first query collects all subtrees rooted at tgl in an
XML dataset and can be answered using the element index; the second query speci-
fies a context using path expression and can be answered using an element index which
stores the PCR in the field value. Another scenario we have in mind is the matching
of whole XML documents belonging to the same collection, i.e., sets of related docu-
ments. In XTC, collections are implemented by adding a virtual node under which
all documents in a collection are appended. Thus, the query in this situation would
be /collection label/tgl . In all cases, we have to remove DeweyIDs related to nested
occurrences of tgl. This can be easily done by scanning the list of DeweyIDs and by
removing every DeweyID that is contained in the previous DeweyID. Note that the
target label may appear in different contexts (i.e., hierarchical nesting) or collections.
Hence, for binary joins, the use of different expressions for locating the target label
may be necessary.

Further, one can specify predicate constraints in the query for selecting a sub-
set of the trees rooted at tgl . The descendant axis and wildcards are often used in
the predicate to overcome structural heterogeneity. A example of such a query is
“//tgl [232 < //study/id < 282]”, which selects the trees having the study identifier
within the specified range. For this query, a CAS index would be beneficial. If a suit-
able CAS index and an element index are available, a typical query evaluation plan
would consist of using the element index to obtain a list of DeweyIDs relative to tgl
(Ltlg) and the CAS index to obtain a list of DeweyIDs relative to content nodes satisfy-
ing the predicate constraint (Lpred). If the CAS index was defined with a more general
path query than that specified in the predicate (e.g., //id), then Lpred may contain
some false positives that have to be filtered out (see [Mat09] for details about how
false positives are identified). Then, a structural join [AKJP+02] using the ancestor
relationship is performed between Ltgl and Lpred and a duplicate-free subset of Ltgl is
returned.

We now illustrate how to exploit the PCS structure (Chapter 4) and the flexible in-

A Framework for XML Similarity Joins 153

Chapter 6 Integration into XTC

dexing model of XTC to embody contextual information in the predicate constraint
while maintaining the resilience against structural heterogeneity. For this purpose,
we just need to embed an EDS query (see Definition 4.6) into the tree selection expres-
sion. For example, a query of the form “//tgl [value1 < eds(eds path)/value() < value2]”8

could be specified. This expression will return sub-trees such that: 1) the root-node
label is tgl; 2) contains a least one path that approximately matches eds path, i.e., a path
that is associated with a PCI returned by the eds function; 3) the content value under
the matched path lies within the range [value1, value2]. Note that PCS provides more
flexibility regarding approximate path matching than employing descendant axis and
wildcards. For example, given eds path = a/b, we can not only match content nodes
under paths such as a/b or a//b, but also paths like b/a; this latter nesting variation
cannot be easily captured using XPath expressions.

Under the hood, the query compiler translates a call to eds in the path specification
into a query on the PCS structure and the returned PCIs are automatically inserted
in the query evaluation.9 Now, we can benefit from the flexibility of CAS indexes:
instead of PCRs, we can store PCIs in the CAS index record. The only modification
needed for building and maintaining such CAS indexes is accessing the PCR-PCI
table to obtain the PCI associated with each PCR. Likewise, the query answering pro-
cess is practically the same as for ordinary path predicates: the CAS index is probed
to obtain the list Lpred , false positives (in this case, DeweyIDs that are not associated
with a PCI returned by PCS) are removed from Lpred ; a structural join between Ltgl

and Lpred takes places; and, finally, a subset of Ltgl is returned.
Note that the purpose of the EDS query here is totally different from that presented

in Chapter 4. There, EDS queries are employed to define the portion of textual con-
tent used to describe entities, whereas, here, they support filtering of the similarity
join input. This observation highlights the flexibility of the PCS structure—and the
path clustering approach in general, which can provide approximate path matching
functionality for arbitrary applications. Also note that we can only use EDS queries
for filtering the input; approximately selecting the initial set of trees is not possible
because tree selection is defined on the same label that was used as entry point for
path clustering, i.e., the target label. Hence, similarity information about partial paths
leading from the root document node to the target label, which would be necessary
for enabling approximate tree selection, is not covered by PCS structure.

6.3.2 TSJ Input Scan

In Section 6.1.3, we have sketched the tree scan algorithm. Actually, XTC provides the
method getScanPartition at L4, which allows to scan arbitrary portions of a document
or collection. This method receives two DeweyIDs as parameters that determine the
start and end points for the scan process. To fetch a single subtree, a caller has to

8Other parameters of the EDS query are omitted for simplicity.
9As already mentioned, we have not integrated our framework into XTC’s query optimizer yet; cur-

rently, this functionality is hardwired in the access module at L4.

154 A Framework for XML Similarity Joins

6.4 Profile Generation

pass the same root-node DeweyID to both parameters. Additionally, getScanParti-
tion can take a set of predicates as arguments; these predicates are applied on every
node scanned (or reconstructed if virtual) and only nodes satisfying the predicates
are returned—such predicates are commonly referred to as SARGS (simple search
arguments) in the relational world. An important kind of predicate in our context
tests the node type to qualify only element nodes or text nodes. The latter case en-
ables an optimized scan process in path-oriented storage model, because inner-node
reconstruction can be bypassed.

The geScanPartition method is encapsulated in a physical operator in XTC, where
a complete ONC iteration corresponds to a scan process (from the start point to the
end point); in our case, it coincides to a tree scan. To avoid excessive function calls to
the next method and the overhead of a per-node processing strategy, we have reim-
plemented geScanPartion following a block-oriented iterator model [PMAJ01]. In this
model, an ONC iteration performs a single call to next, in which the whole tree is
returned as a block to the consumer operator.

Given the list of DeweyIDs returned by a tree selection expression, the correspond-
ing trees can be fetched by invoking the geScanPartition partition operator for each
DeweyID. Every getScanPartition execution traverses the document index to locate
the page where the first tree node is contained, and then proceeds sequentially along
the chained pages until the last node is found. Because the list of DeweyIDs is typi-
cally large, the cost of many index traversals can be excessive. Moreover, several data
pages are likely to be touched multiple times. As for relational systems, an alternative
to an index scan is to perform a full scan over the whole XML database to collect the
trees of interest. The main advantage of this strategy is sequential I/O. On the flip
side, this process touches all container pages even when all input trees are clustered
within a relatively small portion of the database store.

Disregarding the distribution of the trees in the database, we can consider the tree
selectivity to roughly estimate the scan performance. In our experiments in XTC, we
achieved better performance with geScanPartition even when 50% of the XML trees
were accessed. In the following, we will only consider the geScanPartition operator.
The definition of a suitable cost model is a future task.

6.4 Profile Generation

We now present the algorithms used in the profile generation operators. For ordered
trees, we describe the generation of the epq[v2] profile; for unordered trees, we de-
scribe the generation of the pcl[t] profile. Of course, any tokenization method on
tree-structured data can be used in our framework (all tokenization functions dis-
cussed in this thesis are currently supported). As getScanPartition, each operator is
implemented as a block-oriented operator: they receive a set of nodes representing
an XML tree as input and output a set of tokens. Both algorithms generate tokens
containing textual information based on the set of PCIs returned by an EDS query,
i.e., the PCt set. We define the tokenization function qgram with an extra Boolean pa-

A Framework for XML Similarity Joins 155

Chapter 6 Integration into XTC

Algorithm 6.1: Algorithm for the generation of epq-gram tokens
Input: A tree T , positive integers p and q, the set PCt

Output: The epq [p, q , v2 ,PCRt](T) profile (abbreviated to P)
. . .1

foreach for each child c (from left to right) from u do13

if c is a text node then14

if c.pcr ∈ PCRt then15

qnull← concatenation of q ∗16

anc-p ← shift(anc, ∗)17

foreach tok ∈ qgram(c, q, false) do18

sib ← shift(sib, tok)19

P ← P ∪ (anc ◦ sib)20

anc-p ← tail(anc-p, tok)21

P ← P ∪ (anc-p ◦ qnull)22

continue23

. . .24

. . .25

return I26

rameter specifying whether the text node string is extended with null symbols or not.
This function also embodies preprocessing operations, i.e., conversion to upper-case
and elimination of repeated white spaces.

6.4.1 Ordered Trees

The algorithm for the generation of epq-v2 tokens we implemented is very close to the
algorithm for the generation of pq-grams presented by Augsten et al. [ABG10]. The
difference, of course, lies in the way we handle text nodes. Thus, we only discuss this
aspect of the algorithm here. We follow the same notation of the original algorithm.
The stem and the base are represented by two shift registers: anc of size p and sib
of size q. The shift operation is used to remove the head of the queue and insert a
new element at the tail of the queue. For example, if the content of anc is (a,b,c), then
we have shift(anc, x) = (b, c, x). For ease of presentation, we define the additional
operation tail, which substitutes the element at the tail of the queue by a new element,
i.e., tail((a, b, c), x) = (a, b, x). As for tokens, the concatenation of the two registers
is denoted by anc ◦ sib. In the following, we will make no distinction between nodes
and q-gram tokens.

A snippet of the algorithm for the generation of epq[v2] profiles is listed in Algo-
rithm 6.1. The algorithm has parameter PCRt, which corresponds to the set of PCRs
associated with the elements of PCt. This set is constructed before the first execution
of the algorithm by doing a sweep on the list of key/value pairs of the PCR-PCI table.
As a consequence, we avoid accessing the PCR-PCI table many times for each input

156 A Framework for XML Similarity Joins

6.4 Profile Generation

Algorithm 6.2: The algorithm for generation of PCI-based tokens
Input: A set of text nodes and null nodes N from a tree T , an positive integer q, the set

PCt, the PCR-PCI table
Output: The pci tlc [q ,PCt](T) profile (abbreviated to P)
foreach u ∈ N do1

pci ← PCR-PCI (u.pcr)2

if u ∈ PCt then3

foreach tok ∈ qgram(u, q, true) do4

P ← P ∪ (pci ◦ tok) // insert new pci-qgram into the5

profile

else6

P ← P ∪ pci // insert new pci into the profile7

return P8

tree. When iterating over the children of a node u, we first check if the current child is
a text node (line 14). If it is the case, we verify if its corresponding PCR is in the PCRt

set (line 15). If this is case, we generate the corresponding epq-v2 tokens (lines 16–22);
otherwise the node is ignored and the algorithm proceeds to the next child (line 23).
epq-v2 tokens are formed by stems having either u as anchor (represented by anc) or
a q-gram token (represented by the register anc-p). The base of the epq-v2 tokens are
either appended by a token (represented by sib) or by a concatenation of q ∗ symbols
(represented by qnull). In the loop at line 18, the algorithm iterates over the set of
tokens returned by the qgram function and composes epq-v2 tokens by concatenating
anc with sib and anc-p with qnull. Note that we do not extend the text node value with
null symbols—we call the qgram function passing false as parameter; the utility of
null symbols (see Chapter 2, Section 2.3.2) is already provided by the dummy nodes
(represented by the ∗ symbol).

6.4.2 Unordered Trees

The algorithm for the generation of PCI-based profiles is shown in Algorithm 6.2.
The simplicity of the algorithm reflects the convenience of the path-oriented stor-
age model to our PCI-based tokenization method. First, only text nodes and null
nodes (recall that null nodes represent paths that are not associated to a text node)
are needed to derive a tree representation. Hence, the reconstruction of inner nodes
by the getScanPartition operator is obviated. Further, PCIs are obtained by a simple
lookup at the PCR-PCI table (line 2); the corresponding tokens are obtained directly
from the PCI value (line 6) or by the concatenation pci ◦ tok (line 4). As a result, tree
scan and profile generation are implemented by lightweight operators that impose
very little overhead to the overall similarity processing. This fact strengthens the case
for on-the-fly evaluation that we argued previously.

A Framework for XML Similarity Joins 157

Chapter 6 Integration into XTC

Figure 6.7: A path cluster and a sample of the PCS represented as inverted lists

6.5 Auxiliary Structures: Building and Maintenance

Our framework has to maintain three auxiliary data structures: the PCS, the PCR-
PCI table, and the token-frequency table. All of them are kept memory-resident dur-
ing similarity join evaluation and are incrementally updated as the database state
changes. We identify that a node is covered by the clustering process by checking
if the path from the root to the node (including the node itself) contains at least one
element whose label is the same as the target label. At the time of writing, the update
functionality of our framework is not fully implemented in XTC yet. Nevertheless,
we already provide here a detailed discussion on the engineering issues around the
implementation of this feature. In the following, we first present the general approach
for building and maintaining these auxiliary data structures; afterwards, we discuss
how we can reduce the maintenance cost.

6.5.1 PCS and PCR-PCI Table

The PCS and the PCR-PCI table are built at the end of the path clustering process.
Both structures have a reasonably small memory footprint: the size of the PCS was
already discussed in Chapter 4; the PCR-PCI table requires 4 bytes per entry (two
bytes each for PCR and PCI) where the number of entries corresponds to the number
of distinct paths in the dataset. Modifications on the PS, i.e., insertion or deletion of
path classes, have to be propagated to these structures. For the PCR-PCI table, this
task is trivial: we only need to remove or insert a table entry. However, the PCS
maintenance demands more explanation.

Let us first explain the handling of deletions using an example. Consider the dele-
tion the path class /hospital/exam/study/patient/mother, whose PCR is 13
and the associated PCI is 4 (see Figure 6.3). We remove the entry 〈13, 4〉 from the
PCR-PCI table but keep the PCI value. We then access the catalog to obtain the tar-
get label used in the clustering process (i.e., exam), remove from the path all labels

158 A Framework for XML Similarity Joins

6.5 Auxiliary Structures: Building and Maintenance

from the root up to the target label (i.e., hospital and exam) and derive the path
profile {study ◦ 1, patient ◦ 1, mother ◦ 1}, which is used to access the correspond-
ing inverted lists in the PCS. For convenience, the inverted lists from Figure 4.3(b)
on Page 96 are repeated in Figure 6.7 together with the path cluster whose PCI is 4.
For the token study ◦ 1, we scan the associated inverted list until we find the entry
〈PCI : 4, levels : {1}〉. Because study ◦ 1 appears (starting from the target label) at
the first level in the deleted path class, we remove this entry from the inverted list.
Proceeding similarly, we scan the inverted list associated with the token patient ◦ 1
and find the entry 〈PCI : 4, levels : {1, 2}〉; then we remove the second value of the
field levels, i.e., 2. The last inverted list is associated with the token mother ◦ 1,
which contains the record 〈PCI : 4, levels : {3}〉. However, now we cannot remove
this record, because the cluster prototype contains another path class in which the
label mother appears at level 3. To know whether we can update or remove a record
from an inverted list, we need the information about how many path classes “con-
tain” the corresponding token at a given level. To this end, we store this information
together with each each level value in the inverted lists. The new entry layout is
〈PCI, levels : |PCR|〉, which requires two bytes for each level information. In the in-
verted list associated with the mother ◦ 1 token, the entry is 〈PCI : 4, levels : {3 : 2}〉.
Hence, instead of deleting the entry, we update the |PCR| value from 2 to 1.

As already described in Chapter 4, insertion of a new path class triggers a match of
this path class against the PCS. If no cluster prototype is returned having a similarity
to the new path class which is not less than a specified threshold, a new cluster is
created and the path class is assigned to it. Otherwise, we assign the path class to
the most similar cluster prototype. In both cases, we have to add a new entry to the
PCR-PCI table and perform appropriate operations to update the PCS, i.e., update of
the |PCR| information, insertion of level information or entries, or creation of new
inverted lists.

6.5.2 Token-Frequency Table

We build the token-frequency table by performing a single sweep over the database,
typically right after the clustering process. During the scan, we also collect path clus-
ter statistics, in particular, statistics about the string length of text nodes appearing in
the cluster, which are stored in the catalog.

As distinct PCt sets yield different token sets, we need a mechanism to provide
token-frequency information for arbitrary EDS queries. In principle, we adopt the
simple solution of generating all possible tokens, i.e., we generate tokens for PC =
PCt (i.e., PCs = �) and PC = PCs (i.e., PCt = �). For PCI-based profiles, we use
a slightly adapted version of Algorithm 6.2, where lines 4–5 and line 7 are executed
for all input nodes. For epq-gram profiles, we execute both the Algorithm 6.1 and the
original pq-gram algorithm and take the duplicate-free union of the resulting profiles.
Note that we have to build a token-frequency table for each tokenization method as
well as for different parameterizations thereof (e.g., q-gram size).

A Framework for XML Similarity Joins 159

Chapter 6 Integration into XTC

Despite the large number of tokens, the frequency table is still small enough to typ-
ically fit into main memory. For example, using Nasa and SwissProt, we generated
37 K and 19 K distinct tokens, respectively (TLC similarity function, q-gram of size
2). The frequency table requires 8 bytes per entry (four bytes each for the hashed
token and its frequency); thus, only 36KB are sufficient to keep the frequencies of all
Nasa tokens memory-resident, while SwissProt needs 19 KB. In rare cases when the
available memory is insufficient, we can restrict the size of the token-frequency table
to at most E entries. In this approach, multiple tokens will collapse into a single entry
and their frequencies are summed up. Such collisions negatively affect accuracy—
because incorrect token weights are computed—and efficiency—because rare tokens
may be shifted away from the prefix positions due to their incorrectly increased fre-
quency value. We have not measured the impact of size-constrained tables on our
algorithms. In our experiments, we assume that the token-frequency table entirely
fits into main memory.

Note that we already admit some inaccuracy in the similarity results by hashing
token values. In case of collisions, distinct tokens receive the same hash value. Such
collisions not only incorrectly increase token-frequency values but also set-overlap
results, because different tokens are matched. Fortunately, collisions can be neglected
in practice. Using the Karp-Rabin fingerprint function [KR87], we measured less
than 0.01% of collisions in all datasets. More importantly, we have not observed
any significant degradation of the accuracy results. Besides reducing the size of the
token-frequency table, token representation as integer values significantly improves
the overall efficiency of similarity join processing.

For PCI-based tokens, updating the token-frequency table after data changes is
easy. In case of deleting structure nodes, content nodes, or both, we only need to
generate the tokens for the deleted data to probe the token-frequency table and de-
crease the corresponding frequency by one—tokens with frequency zero are removed
from the table; in case of insertions, we generate the tokens for the new data and in-
crement their frequency accordingly or add an entry in the token-frequency table for
new tokens. For epq-gram tokens, incremental updates are more complicated due to
the underlying sibling ordering which imposes more data dependency on the token
generation process. We have not yet investigated whether or not the techniques pre-
sented in [ABG06] for incremental updates of pq-gram profiles can be adapted for
epq-grams. Hence, we currently apply the profile generation algorithm on the whole
tree—on the old and the new version—to update the token-frequency table.

6.5.3 Reducing Maintenance Cost

We now discuss ways to improve maintenance efficiency and reduce storage space
of the auxiliary data structures. The first approach consists of adopting lazy update
propagation [ABG06, HKS09]. As already mentioned, using this scheme, updates are
buffered and propagated incrementally to similarity indexes at fixed time intervals.
We can straightforwardly implement this strategy in our framework. Of course, the

160 A Framework for XML Similarity Joins

6.5 Auxiliary Structures: Building and Maintenance

inconvenience of this approach is that inaccurate results are reported when similarity
operations are invoked between updates. We also need extra space to store the log of
data modifications.

The next strategy both saves storage space and improves performance. We have
already argued that the choice of the textual elements that will compose the content
part is driven by their semantic properties whose value is dependent on the underly-
ing application, domain, and data characteristics. In our framework, we provide the
user with extensive flexibility in specifying such textual elements. Nevertheless, there
exist commonplace assumptions that allow us to make this task semi-automatic. First,
long strings are typically deemed as inappropriate for EM, because their “semantic
ambit” is too large and there is too much leeway for deviations. Short strings are
preferable because they are often used to name or concisely describe essential infor-
mation about an entity. Second, text nodes appearing under infrequent paths corre-
spond to fields exhibiting high incidence of NULL values in the relational context.
While there are many conceivable interpretations for the absence of explicit values,
the fact that a field is commonly left unspecified suggests that this field is unsuitable
for distinguishing entities from one another in the context of the entire database—of
course, it might still be useful among those entities in which the field value is given.
Moreover, for PCI-based profiles, tokens containing textual information inherit the
frequency of the corresponding path cluster, i.e., their frequency in the data collec-
tion is less than or equal to that of its path cluster. Hence, tokens derived from rare
PCIs are assigned very high IDF weights. As a result, entities represented by profiles
containing such tokens are likely to always yield low similarity results when com-
pared with any other entity whose profile does not contain these tokens.

Given the considerations above, an intuitive strategy is to remove from the PCS
those path clusters that exhibit low-frequency or contain paths leading to long strings.
By not representing these path clusters in the PCS, we prevent them from being used
to compose the textual representation of entities, i.e., such path clusters are fixed in
PCs—henceforth, these path clusters are denoted by PCs∗. Thus, the size of the PCS
and the token-frequency table are substantially reduced. The savings are particu-
larly dramatic for the token-frequency table, because long strings are responsible for
a large portion of distinct tokens. Moreover, path classes with low-support in the
database are exactly those that cause the bulk of updates in the PS and, consequently,
in the PCS. Thus, PCS maintenance workload is also greatly reduced.

The set of path clusters to be removed from the PCS is identified during the build-
ing phase of the token-frequency table. For each token, we store in a temporary table
its PCI and a flag signaling whether or not it contains textual information. As before,
we also collect path cluster statistics; at the end of the scan process, this information
is used to select the set to be removed. As we create the token-frequency table from
the temporary table, we leave out all textual tokens associated with a PCI in PCs∗. Fi-
nally, we remove from the PCS all entries related to elements PCs∗. Note that we do
not remove entries associated with PCIs in PCs∗ from the PCR-PCI table as they are
still necessary to produce (PCI-based) structural tokens. Finally, we use the PCR-PCI
table to identify whether or not a PCR is related to a path cluster in PCs∗. For this

A Framework for XML Similarity Joins 161

Chapter 6 Integration into XTC

task, we use the most significant bit in the two-byte PCI representation to indicate
whether or not a PCI is an element of PCs∗

10.
Parameters used for determining the elements of PCs∗ are the percentage of trees

in which any element of a path cluster appears and the percentage of strings with
size larger than a given value. For example, we can assign to PCs∗ path clusters
that appear in less than 75% of the trees in the collection or have more than 3% of text
nodes with size larger than 100. In this regard, lazy update propagation is appropriate
for PCS maintenance. Periodically, we can check for path clusters whose frequency
has (decreased) increased (below) above the specified threshold and update the PCS
accordingly. Currently, we do not keep track of the percentage of long strings in a
path cluster after having built the token-frequency table; supporting this feature is
part of future work.

6.6 TSJ as a Query Evaluation Plan

We now put all TSJ components together to compose a complete similarity join oper-
ator. To this end, the main design objectives are seamless integration of the TSJ operator
into XTC’s architecture and performance. The former objective is achieved by assem-
bling all TSJ components into a QEP, which leverages existing physical operators for
regular XML query processing while the performance objective is obtained by en-
abling pipelining as much as possible. Currently, TSJ is executed directly at L4 as a
“pre-canned” transaction using statically defined access paths and is parameterized
using TSJ-specific variables. We only describe the evaluation of TSJ here. Preprocess-
ing steps, i.e., path clustering, building of auxiliary data structures, and EDS query
answering have already been covered earlier in this chapter and in Chapter 4.

Figure 6.8 illustrates an example for a TSJ plan. Indexes and auxiliary structures are
also shown in the figure. Physical operators are represented by rounded rectangles;
operators specifically designed for similarity join processing are highlighted with a
shade of gray. For ease of exposition, the XML processing operators have simpler
names than those defined in the original specification [Mat09]. Parts of the operator
tree that closely correspond to the steps in the abstract course of TSJ evaluation (see
Figure 6.6) are identified with the respective numbers.

At a glance, the branch at the lower end of the operator tree executes input se-
lection (left-hand side) and fetching and conversion of trees into sorted sets (right-
hand side). All lowest-level operators communicate with the access services layer
(L3) through the NodeMgr. The fork of the branch directs DeweyIDs from the left-
hand side to right-hand side and, later, combines these DeweyIDs with the resulting
sorted sets coming from the right-hand side in a tuple, and delivers it upwards in
the tree. Lastly, the stem at the higher end receives these tuples and outputs pairs of
DeweyIDs whose corresponding XML trees satisfy the similarity predicate together
with the corresponding similarity score.
10As PCIs represent groups of path classes, it is reasonable to represent them using half of the range

available for PCRs.

162 A Framework for XML Similarity Joins

6.6 TSJ as a Query Evaluation Plan

Figure 6.8: TSJ query evaluation plan

In more detail, and following the dataflow order, the tree input selection strategy
used in this QEP exploits the element index for obtaining an initial list of root-node
DeweyIDs, which are filtered by predicates evaluated using a CAS index. Access to
these indexes is implemented by the operators ElScanOp and CASScanOp. The struc-
tural join operator (SJOp) is used to identify the subset of the DeweyIDs delivered by
ElScanOp that are ancestors of a least one DeweyID in the list returned by CASScanOp.
The next operator, NestRemOp, simply removes nested DeweyID sequences by retain-
ing only the topmost DeweyID. Completing the Tree Access step, the list of DeweyIDs
is streamed along the path to the getScanPartition operator (abbreviated to ScanOp in
the figure), which fetches a tree at a time using the document index. The following
two components upwards are straightforward implementations of the steps 2 (Profile
Generation) and 3 (Set Generation): trees represented by sets of nodes are converted
into profiles by ProfileGenOp with the support of the PCR-PCI table and, afterwards,
the profiles are converted to sorted sets with the support of the token-frequency table.
Tuples containing a root DeweyID and the corresponding sorted set are constructed
by MappingOp and sorted in increasing order of the set size by SortOp. Alternatively,
the output of SortOp can be saved on disk to avoid repeated execution of steps 1–3. Fi-
nally, the Set Similarity step is performed by MinPrefOp and scored pairs of DeweyIDs

A Framework for XML Similarity Joins 163

Chapter 6 Integration into XTC

are delivered to the TSJ consumer.
Note that TSJ can not only be used as stand-alone operator, but also as part of more

complex XML queries. For example, we can simply plug-in a sort operator on top of
the operator tree for delivering the resulting DeweyIDs in document order.

6.7 Further Integration

In this section, we discuss future work on providing tighter integration of our frame-
work into XTC. We focus on the issues around making TSJ a first-class database op-
erator; most of them represent open research problems. We also cover the support
of EDS queries as part of the TSJ evaluation, i.e., when EDS queries are embedded
into the similarity join as a sub-query or used for approximate filtering of the TSJ
input (automatic EDS queries with stats parameter set to False). Preprocessing steps
such as evaluation of interactive and exploratory EDS queries and path clustering are
not discussed. The former can be performed by combining automatic EDS queries
and regular queries on PCS statistics. For this purpose, we can define a schema for
the PCS statistics stored in the catalog and provide predefined views over it. Path
clustering can be triggered by a DDL statement for creating the PCS structure.

Specifically, we discuss the following three aspects in this section: extensions to
existing query languages, query processing, and materialized input maintenance.
Along the discussion, we pinpoint relevant work in the literature which can be lever-
aged to support our endeavor.

6.7.1 Query Language

To express TSJ queries using XML languages, we need (implicit or explicit) constructs
for EDS queries and the TSJ operation itself. In general, a source language providing
syntactical elements and clean semantics is needed to express operations under the
similarity matching paradigm. The two most popular XML query languages support-
ing similarity matching are W3C XQuery and XPath Full Text 1.0 (XQuery Full-Text, for
short) ([AYBB+10, AYBS04] and Narrowed Extended XPath I (NEXI) ([TS04]. XQuery
Full-Text extends XQuery and XPath languages with full-text search primitives, such
as word search, scoring, and top-K ranking. NEXI is the official language of the Ini-
tiative for the Evaluation of XML Retrieval (INEX) [FGKL02], which is a campaign for
evaluating XML search systems under common test data collections and effectiveness
measurements paradigms. Although being designed for XML search, both languages
present features and underlying concepts that can be reused or extended to express
TSJ queries.

XQuery Full-Text extends XQuery with a full-text search expression called FTCon-
tainsExpr, which receives a search context expression and a search condition called FT-
Selection. FTContainsExpr behaves like a regular XQuery comparison expression (i.e.,
expression involving operators such as eq, <, and <=) by returning a Boolean in the
XQuery data model—it returns True, if some node in the sequence of XML nodes

164 A Framework for XML Similarity Joins

6.7 Further Integration

selected by the search context expression satisfies the search condition, and False,
otherwise.

More relevant to our context are scoring functions and the support of matching
modifiers. Let us discuss first the scoring functions. The functions fts:scoreSequence()
and fts:score() associate a numeric score (in the interval [0, 1]) with the result of XQuery
expressions; the underlying scoring mechanism is implementation-dependent. TSJ
already adheres to the semantics of ft:score(), because each pair of nodes in the join
result is associated with its similarity score. Hence, to express a TSJ query, we can
pass on a regular join expression with join partners defined by search context expres-
sions (or tree selection expression in our nomenclature) to ft:score(), where the scoring
algorithm is defined by the similarity function. In this regard, the expression below
is similar to the TSJ invocation presented in Example 6.1.

for $r score $s in
(for $a in \funca{doc}{‘‘hospital.xml’’},

$b in \funca{doc}{‘‘hospital.xml’’}
where $a//exam eq $b//exam
return <match>{$a}{$b}</match>)

where $s >= 0.75
return <result>{$r,<score>$s</score>}</result>

In the XQuery expression, the score variable added to the for clause of the FLWOR
expression is syntactic sugar. When such an expression is compiled, the inner for ex-
pression is passed on as parameter on to the fts:scoreSequence()11. Although not stated
in the XQuery Full-Text specification, similarity matching is a reasonable semantics
for the value comparison operator eq on XML nodes when scores are evaluated. Un-
fortunately, at the time of writing, XQuery Full-Text [AYBB+10] does not support a
truly flexible scoring construct where different scoring algorithms (in our case, simi-
larity functions) can be specified and passed as parameter on to the scoring function.

A rich repertoire of matching modifiers, called FTMatchOptions, is available in
XQuery Full-Text including stemming, stop words, case sensitivity, diacritics, special
characters, and synonyms. Such modifiers can be used to specify data transforma-
tion operations on the content part of the TSJ input trees. Currently, FTMatchOptions
can only be specified in the context of an FTContainsExpr. To use FTMatchOptions in
the TSJ query above, it would be necessary to allow matching modifiers with regular
XQuery expressions in the presence of score variables.

NEXI is a derivative of XPath with several simplifications and some extensions that
focus on expressing XML search queries based on keywords (content-only queries)
and keywords together with structural constraints (content-and-structure queries). In
the latter query type, structural constraints can be interpreted as strict or vague (i.e.,
structural constraints are considered query hints). Query evaluation following the
vague interpretation implies some sort of approximate path matching and, therefore,

11Hence, scoring functions are second-order functions as they receive an expression as parameter
instead of a sequence of items.

A Framework for XML Similarity Joins 165

Chapter 6 Integration into XTC

resembles EDS queries. In XQuery Full-Text, on the other hand, there is no explicit
support for loose interpretation of structural constraints; it has to be provided by
specific implementations of the scoring mechanism.

In summary, XQuery Full-Text is the preferable language for supporting TSJ as
it is fully composable with XQuery and XPath. To entirely support TSJ features, it
would be necessary to extend XQuery Full-Text with the following functionalities:
flexible specification of scoring algorithms, support of matching modifiers with or-
dinary XQuery expressions (at least when scores are evaluated), and an explicit con-
struct dictating the interpretation of structural constraints (either strict or vague). We
make no claims that these extensions can be easily incorporated into XQuery Full-
Text, though.

6.7.2 Query Processing

For query processing, TSJ and EDS expressions in the source language must be de-
tected by the query compiler and transformed to a QEP as the one depicted in Figure
6.8. Along this course, these operators have to cross some abstraction layers under
different representations. In order to discuss aspects of the integration of our similar-
ity operators in the query engine, we first have to provide an overview on the query
compilation process of XTC.

XTC’s Query Engine

In a nutshell, the following steps are performed to generate a QEP for an XQuery
expression [Mat09]:

1. Parsing: The parser reads an XQuery expression represented as a string, ana-
lyzes its syntax, and, if no syntactic error is detected, outputs an abstract syntax
tree (AST) describing the grammatical structure of the query expression.

2. Translation: The AST representation is transformed into XTC’s logical query rep-
resentation called XML Query Graph Model (XQGM). This model entails a graph-
ical representation to which a logical algebra is attached. The AST-to-XQGM
transformation is carried out by the query translator, which performs the follow-
ing four operations in this order: normalization, which transforms the original
query to its core representation (e.g., any syntactic sugar is removed); static typ-
ing, which infers (some) returning types of XQuery expressions; simplification,
which removes superfluous subexpressions; XQGM transformation, which gen-
erates the XQGM representation by recursively matching patterns in the AST
representation to transformation rules.

3. Query Rewriting: Several algebraic laws are used to produce alternative logical
representations of the query expression. This operation is called query rewriting
and is performed using a set of rewriting rules that transform an XQGM element
into another one (and, hence, are called XQGM-to-XQGM transformations). In

166 A Framework for XML Similarity Joins

6.7 Further Integration

particular, the initial logical plan produced by the AST-XQGM transformation
closely follows the XQuery Formal Semantics specification and is characterized
by typically inefficient node-at-a-time navigational operations and nested sub-
expressions. Hence, besides classical algebraic rewriting such as selection push-
down, query unnesting to enable set-at-a-time processing plays an important
role at this compilation stage.

4. Plan Generation: Several alternative QEPs are produced using a set of XQGM-to-
Plan transformations—the relationship between logical and physical operators
expressed by XQGM-to-Plan transformations are not necessarily one-to-one:
other cardinalities, namely, 1:n, n:1, and n:m are also possible—and the cheap-
est QEP is selected for executing the query12.

In XTC, the search space for optimization, i.e., the plan space derived from the set of
XQGM-to-XQGM and XQGM-to-Plan transformations is generated in an interleaved
fashion: as the rule engine traverses the initial XQGM tree, every logical rule match
leading to an XQGM-to-XQGM transformation triggers the corresponding XQGM-
to-Plan rule, where a description of the physical operators is created and attached
to generated XQGM operator; at the end of the process, the XQGM tree is traversed
again, and different QEP alternatives are built according to the attached physical op-
erator descriptions. Note that XQGM is used for both logical and physical query
representations. As cost-based optimization of XTC is not mature yet, rule-based
transformations are performed and QEP selection is done heuristically.

TSJ Integration and Optimization Opportunities

A straightforward approach to integrate the TSJ and EDS queries into the query en-
gine would be to implement them as XQuery functions. For example, we can name
similarity functions and declare them as static variables and “unnest” the tokenizer
parameter PCt, i.e., define it as a parameter of the TSJ function (a sequence of atomic
numeric values); similarly, we can support EDS queries by defining a function, say
eds, which receives as parameter a sequence of strings denoting query paths. Further,
as functions are handled by a common rewriting rule in XTC, we only need to de-
fine XQGM-to-Plan transformation rules for each TSJ instance (defined by the named
similarity function) and for the eds function. Of course, many other details have to
be addressed to realize this approach, such as exploitation of materialized input and
index eligibility when evaluating tree selection expressions involving EDS queries13,
which will require further transformation rules with complex conditions of applica-
bility. Fortunately, given the query engine design of XTC and its extensibility support,
we see neither conceptual nor technical obstacles.
12In the approach adopted in XTC, a QEP is not a description of a program that can be understood by

an interpreter or compiled, but it is the program itself (i.e., directly executable code is associated
with the XQGM construct).

13In such cases, when no CAS index is available, we use a SARGS predicate—passed as parameter to
the getScanPartition method—for filtering input trees based on the EDS query result.

A Framework for XML Similarity Joins 167

Chapter 6 Integration into XTC

In the above approach, similarity operations are handled as functions at the al-
gebraic level and QEPs are constructed based solely on conditions of applicability.
However, we believe that TSJ plan generation can be substantially improved by ex-
plicit algebraic treatment and, in particular, cost-based decisions as we motivate in
the remainder of this section.

In [SAA10], Silva et al. present algebraic rules concerning several similarity oper-
ators. We adapt two of these rules to our context here. In this paper, these rules are
defined on range distance-join operators over relational tables, which is the counterpart
of a similarity join when a distance function is employed. Nonetheless, owing to the
intrinsic duality between distance and similarity functions, the equivalences remain
valid for TSJ. Further, we also represent the algebraic rules on XQuery expressions
instead of tables. Regarding the notation, E[p : E ′] denotes an expression E with a
filtering predicate involving the output of expression E ′; and E1

≈
./ E2 denotes a TSJ

with E1 and E2 as tree selection expressions.

a.1: E[p : E1](E1
≈
./ E2) ≡ E(E1[p]

≈
./ E2)

a.2: E[p : E1](E1[p1]
≈
./ E2) ≡ E(E1[p ∧ p1]

≈
./ E2)

b: E1
≈
./ E2 ≡ E2

≈
./ E1

Rules a.1 and a.2 ensure the applicability of the well-known predicate push-down
technique. This means that predicates filtering the output of TSJ can be pushed to
the tree selection expression. As similarity operations are in most cases much more
expensive than filter predicates, employing this technique as a rewriting rule is likely
to yield less expensive plans. In XTC, the XQGM rule engine analyzes selection pred-
icates containing reference variables to identify such rule patterns (see [Mat09] for
conditions of applicability for this rule).

Rule b establishes the commutative property of TSJ. Recall that, in Chapter 5, we
proposed the evaluation of binary similarity joins by intersecting the two sorted in-
puts as we proceed with the algorithm. Due to its simplicity, this solution requires
little modification on algorithms originally designed for self-similarity joins. Unfor-
tunately, it can lead to suboptimal results when the join partners exhibit a marked
difference in the number of input sets or set size distributions. For example, consider
an extreme case where we join a set collection C1 containing a single set of size m with
a much larger set collection C2. Further, suppose that m > maxsize(xmax), where xmax

is the largest set of C2. Clearly, the result of the set similarity join is empty. However,
we would process the whole collection C2 before we halt the algorithm and return
the empty result. The development of a more efficient algorithm for binary joins is
left open for future research. Nevertheless, the previous example shows that char-
acteristics of each side of the join can affect performance; it also suggests that the
problem can be tackled by adopting different processing strategies for each join input
(like in hash-joins). In such cases, applying rewriting rules based on the commutative
property is necessary.

168 A Framework for XML Similarity Joins

6.7 Further Integration

We now consider the case for cost-based optimization. In Chapter 5, we evaluated
set similarity joins employing the PCLslc similarity function, which spans two profile
representations. To this end, we adopted a multi-set representation and conjunctively
combined the results derived from each profile. We can generalize this evaluation
strategy for an arbitrary number of profiles whenever the corresponding similarity
predicates are combined as conjunctive clauses, i.e,

∧
sf i ≥ τi. This is important be-

cause efficient evaluation of conjunctive similarity predicates is a common demand
to support EM applications. For example, decision rules are commonly expressed as
a DNF formula [CCGK07], i.e., as a disjunction of conjuncts. In most of these cases,
each similarity predicate relates to a different entity representation (different profiles
or weighting schemes). Finally, while an arbitrary number of profiles leads to sets
unbounded size, previous work has empirically observed that more than four con-
juncts do not improve accuracy [CCGK07]. In such cases, multi-set representations of
entities remain within the manageable size.

In Chapater 5, we observed identical results using structural and textual sets as
primary sets. However, we may have several profiles defined over the content (or
structural) part of XML documents and varying thresholds in similarity predicates.
Therefore, the choice of the primary set in a multi-set representation is a crucial per-
formance factor. Indeed, given that set similarity functions are computationally inex-
pensive, we can disregard the evaluation order of the remaining sets. Further, note
that selecting the primary set corresponds to chosen the leftmost predicate in the
conjunction—assuming that predicates are evaluated left-to-right order; accordingly,
we call this predicate the primary predicate.

We now sketch a cost model for selecting the primary predicate based on based
on the results reported in Chapter 5. We have seen that set size, set size distribution,
feature frequency distribution skew, and threshold are important factors determining
the cost of set similarity joins. In this regard, we can derive the following predicate
cost model:

cost(s) =
ϕ1 × ssizen(p) + ϕ2 × sdistribn(p) + ϕ3 × fskewn(p)

τp

, (6.1)

where ssizen , sdeviationn , and fskewn are the normalized values corresponding to
similarity predicate p for mean set size, standard deviation of set size distribution,
and token frequency distribution skew; τp is the threshold of the predicate p; finally,
we have ϕ1 + ϕ2 + ϕ3 = 1. The primary predicate is therefore the predicate with the
lowest cost according to the above formula. Devising an estimation model for the
parameters is an interesting topic for future research.

Note that predicate selectivity is not explicitly considered in our cost model be-
cause has low influence on the overall runtime performance of our set similarity
joins algorithms. Nevertheless, selectivity estimation is still needed when similar-
ity joins are part of larger queries. Moreover, the observed Power-law behavior of
token-frequency count distributions has been exploited to estimate the sizes of set
similarity join outputs [LNS09], which suggests that there might exist a correlation

A Framework for XML Similarity Joins 169

Chapter 6 Integration into XTC

between selectivity of a predicate and fskewn(.) In this respect, estimating the selec-
tivity of TSJ and EDS queries also presents several research challenges. As far as
we know, no research approach has tried so far to estimate the selectivity of XQuery
expressions involving approximate path matching or selectivity of conjunctive sim-
ilarity predicates (conditional independence assumption of path predicates may not
hold). Finally, the work in [LNS09] is geared to unweighted sets; we are not aware of
any work addressing selectivity estimation of set similarity joins for weighted sets.

6.7.3 Materialized Input Maintenance

We now discuss the maintenance of the materialized set similarity join input (ma-
terialized input, for short). It consists of a stored collection of token sets sorted in
increasing order of the set sizes where each set is sorted in increasing order of token
frequency. To update the materialized input when the underlying data changes, we
can build a clustered B+-tree index on the sorted sets, with a composite key formed
by the set size and DeweyID of the root tree node, both sorted in ascending order.
Afterwards, tree updates can be propagated to the materialized input as follows: for
insertions (deletions), the sorted set corresponding to the new (old) tree is generated
and its size calculated; then, the set size and the root-node DeweyID are used to form
a key record and the (old) new set is (deleted) inserted using the B+-tree; modifi-
cations comprise both insertion and deletion operations. Further, as for the auxiliary
structures, updates can be buffered and propagated incrementally to the materialized
input at fixed time intervals (updates on affected auxiliary structures precede updates
on the materialized input). The target label used in the clustering process, the set of
PCRs and DeweyIDs, and the PS are necessary for preprocessing the log of updates.
Specifically, the following (interrelated) operations have to be performed:

• Filtering of operations that are not “covered” by the clustering process. As men-
tioned earlier, a node is covered by the clustering process if the path from the
root to the node (including the node itself) contains at least one element node
whose label is the same as the target label.

• Identification and grouping of node operations related to a single tree—the root
node is determined by the topmost occurrence of the target label. Further, be-
cause some modifications may subsume or invalidate other operations, we can
eliminate unnecessary operations. For example, a node modification in a tree
can be followed by a deletion of the whole tree.

• Calculation of the root-node DeweyID for each tree identified by the previous
operation.

With the actions above, we are able to update the materialized input regarding
its constituent elements, i.e., sets and tokens within the sets, but not regarding the
ordering and the weights of these elements. Updates on nodes or trees translate into
modifications on the token-frequency table: new tokens can be inserted or existing

170 A Framework for XML Similarity Joins

6.7 Further Integration

tokens can be deleted or have their frequency increased or decreased. Further, for
tree insertion or deletion, the size of the tree collection is increased or decreased. We
discuss the effects of these updates as follows.

• Token insertions and deletions: Updates on the token-frequency table due to the
insertion or deletion of tokens have no side-effects, because these tokens are
only contained in the newly updated sets.

• Tree insertions and deletions: Alteration of the tree collection size changes the IDF
weight of all tokens in the materialized input—recall that the size of the tree col-
lection |C| is used in the numerator of the IDF formula (see Equation 2.7 on Page
47). Hence, updating IDF weights to reflect a new |C| value means re-building
the materialized input from scratch. Fortunately, the logarithm in the IDF for-
mula dampens the effect of |C| value variations on token weights. Hence, unless
the update batch has a highly unbalanced number of insertions and deletions,
the IDF weights are only slightly changed and, in turn, degradation of accuracy
is expected to be marginal.

• Token-frequency modification: Modification on the frequency of a token t may alter
its relative ordering in all sets in which this token appears, i.e., in freq(t, C) sets.
Moreover, for weighted sets, the weight of the token changes (recall, freq(t, C)
is used in the denominator of the IDF formula) and, in turn, the weight of the
set is changed accordingly. As a result, the relative set ordering may also be
altered. Inconsistent token and set ordering can significantly jeopardize the al-
gorithms presented in Chapter 5: valid results can be missed when matching
tokens are not within prefixes and similar sets do not appear within the valid-
ity window of probing sets; conversely, misplaced tokens and sets can reduce
filtering effectiveness. Finally, incorrect weights result in inaccurate similarity
values.

Token insertions and deletions do not require our attention. In the following, we
address updates changing size of the tree collection and token frequencies. Our dis-
cussion is based on the recent work of Hadjieleftheriou et al. [HKS09] in the context
of index maintenance for set similarity selections.

As changes on the size of the tree collection have minor effects, we can tolerate
some imprecision of the value of |C|. To this end, we define Cs as the value of |C|
used for weight calculation, when the materialized input is built. Furthermore, we
specify a threshold for the maximum divergence between Cs and new values of |C|.
Weight calculations due to updates are performed using Cs until the absolute value of
Cs − |C| exceeds the specified threshold; after that, the materialized input is rebuilt.
For balanced tree insertions and deletions and reasonable thresholds, materialized
input rebuilding can be considerably delayed.

To propagate the new frequency of a token to the materialized input, we have to
find and reorder all sets in which this token appears; for weight sets, we also need
to calculate the new weight of t and update the set size; in turn, because the set size

A Framework for XML Similarity Joins 171

Chapter 6 Integration into XTC

is part of the B+-tree index, we have to perform a deletion followed by an insertion.
In this context, we need to construct inverted lists over all tokens to keep track of the
containing sets for each token. Clearly, this solution requires substantial storage space
and costly maintenance. Even worse, the effort required to perform updates related to
highly frequent tokens on the materialized input approaches that of building it anew.
Fortunately, high-frequency tokens have low IDF weight; hence, regarding the simi-
larity value, they contribute to a lesser degree. Moreover, due to frequency ordering,
such tokens are typically outside the prefixes. Thus, we can allow high-frequency val-
ues to vary within some range without degrading accuracy and efficiency too much.
In a more general approach, the leeway for variation can increase proportionally to
the token frequency. To this end, we can define a relaxation factor on the IDF value
of a token—we can use this metric for unweighted sets as well. Similarly to the tree
collection size, we define the value idfs(t) for each token t, which corresponds to the
IDF weight at the builting time of the materialized input; this value can be stored
in the token-frequency table (increasing the size of each entry by 8 bytes). Then, we
update the materialized input due to frequency changes of a token t only when the
divergence between its actual IDF weight and idfs(t) exceeds some predefined mar-
gin. Note that, owing to the logarithm of the IDF formula, much greater variation
of high-frequency tokens is necessary to trigger updates on the materialized input.
Alternatively, we can save both storage space and maintenance cost by not construct-
ing inverted lists for high-frequency tokens. In this case, we rebuild the materialized
input when the IDF of such tokens deviates outside the predefined threshold. Again,
if the update behavior is balanced (regarding increases and decreases of token fre-
quency), updates on the materialized input will be much less frequent.

In summary, our future work on this topic includes defining precise policies for in-
cremental updates and—similarly to the work in [HKS09]—theoretically quantifying
accuracy loss resulting from lazy update propagation.

6.8 Experiments

We now evaluate the execution of the TSJ operator within XTC. Our main goal is to
measure (i) the overall performance of the on-the-fly evaluation of the TSJ operator
and (ii) the relative of performance of the execution steps described in Section 6.2.2,
(iii) to compare the performance of TSJ using different similarity functions, and (iv)
to examine the scalability of the TSJ components, in particular, those implementing
steps 1–3 of the course of evaluation.

For the Tree Access step, we report runtime results relative to the TSJ input scan only
(reported as SCAN in the experimental charts); the input selection evaluation is prac-
tically equivalent to evaluating regular XQuery expressions because the NestRemOp
operator (recall TSJ QEP in Section 6.6) imposes negligible overhead. We refer the
reader to [Mat09] for an extensive empirical assessment of XQuery processing in XTC.
Further, we include the runtime results of Profile Generation and Set Generation (col-
lectively reported as SETGEN), set collection sorting (SORT), and set similarity join

172 A Framework for XML Similarity Joins

6.8 Experiments

T E T E T E T E T E

 20k 40k 60k 80k 100k

0

50

100

150

200

250

Ti
m

e
(s

ec
on

ds
)

SCAN
SETGEN
SORT
JOIN

(a) SwissProt datasets with 20-100k trees

T E T E T E T E T E

 20k 40k 60k 80k 100k

0

50

100

150

200

250

Ti
m

e
(s

ec
on

ds
)

SCAN
SETGEN
SORT
JOIN

(b) PSD datasets with 20-100k trees

Figure 6.9: TSJ execution steps on an increasing number of trees using TLC and EPQ
similarity functions

(JOIN). We evaluate TSJ using the similarity functions PCLtlc and EPQ, which are ab-
breviated in the charts to T and E, respectively. We used the IDF weighting scheme
and Jaccard as set similarity function.

We used similar datasets to those of Chapter 5: fuzzy copies of SwissProt and PSD
datasets, where error injection parameters correspond to the values of SwissProt-2M
and PSD-2M reported in the Table 4.2. To test scalability, we generated datasets vary-
ing from 20k to 100k, in steps of 20k. Hardware specifications are the same of Chapter
5. Finally, we fixed the threshold at 0.75.

The results are shown in Figure 6.9. On both datasets, SCAN, SETGEN, and SORT
perfectly scale with the input size. Especially for SCAN, this fact indicates that we
achieved seamless integration of similarity operators with regular XQuery process-
ing operators. As expected from the results reported in Chapter 5, the runtime of
JOIN grows quadratically as the dataset increases. SCAN is only slightly faster using
TLC as compared to EPQ. As mentioned earlier, for generation of PCI-based profiles,
we employ a simpler tree scan algorithm in which inner-node reconstruction is by-
passed. Nevertheless, inner-node reconstruction results in little overhead because
most of the computation involves DeweyID processing, in particular, LCA calcula-
tion, which is efficiently performed in XTC. Further, SCAN is about 80% faster on
PSD (Figure 6.9b) as compared to SwissProt (Figure 6.9a) because characteristics of
the PSD dataset lead to better compression rates of the storage representation. As a
result, fewer disk blocks need to be read during the tree scan operation. On the other
hand, SETGEN is about 2x slower on the PSD as compared to SwissProt for both sim-
ilarity functions. The content part of PSD defined by the EDS queries is larger than
those of SwissProt, which results in larger sets (see the set size distribution of PSD
and SwissProt in Figure 5.9) and, in turn, higher workload for sorting and weighting
operations. SETGEN is more than 3x faster on TLC as compared to EPQ. Because

A Framework for XML Similarity Joins 173

Chapter 6 Integration into XTC

paths are provided for free by the path-oriented storage model, PCI-based token gen-
eration simply consists in accessing the PCR-PCI table and splitting strings into set of
q-grams. On both datasets and for both similarity functions, SORT consumes only a
small fraction of the overall processing time. The results of JOIN in isolation are iden-
tical to those reported in Chapter 5. In comparison to the other TSJ components, JOIN
takes only up to 20% of the overall processing time on SwissProt, whereas it takes up
to 60% on PSD. Because JOIN exhibits worse scalability than the others TSJ compo-
nents, the fraction of TSJ processing owing to JOIN increases with the dataset size for
both datasets. Of course, this fraction depends on data characteristics and the thresh-
old parameter; for example, lowering the threshold would make JOIN processing the
dominating factor for TSJ evaluation.

6.9 Related Work

To the best of our knowledge, our work is the first to investigate similarity joins in
the context of XDBMSs. Our endeavor is inspired by the work of Chaudhuri et al.
[CGK06], who proposed extending the set of physical operators to provide support
for similarity joins inside relational database engines. Their similarity join operator,
called SSJOIN, adopts the unnested set representation discussed in Chapter 5 and is
composed of equi-joins, group-wise operators, and a few similarity-specific opera-
tors. This approach can leverage available cost-based optimizations of query engine
to derive a cheap SSJoin implementation, e.g., based on index-based plans or hash-
joins. Here, we implement set similarity joins using a single operator exploiting in-
verted lists [SK04] and explicitly “outsource” weighting schemes and tokenization
methods to specific operators; hence, the composability feature of TSJ is geared to-
wards flexibly providing a large space of similarity functions instead of various ex-
ecution alternatives. Nevertheless, we can still benefit from algebraic optimizations
and cost-based decisions as discussed earlier. Finally, our first version of TSJ followed
the SSJoin implementation [RH07]; this version is outperformed by our current im-
plementation based on inverted lists by orders of magnitude.

Early work on XML-based similarity joins was predominantly based on TED. Guha
et al. [GJK+06] derived lower bounds by applying SED to the post-order representa-
tion of trees and upper bounds by imposing additional constraints on node relation-
ships. Further, the authors used a pivot-based approach (pivots selected by sampling)
to map trees into a vector space and indexed the resulting data representation using
R-trees. Kailing et al. [KKSS04] applied histograms on several features of unordered
trees, such as node degree and height, to save TED computations. Token-based ap-
proaches for XML similarity were first proposed by Yang et al. [YKT05] and Augsten
et al. [ABG05].

Scoring and relevance ranking was recognized as a fundamental aspect of XML
querying in [TW01]. Most approaches to flexible XML querying can be classified in
two categories [VCÖ+07]. The first category is based on query relaxation, where struc-
tural transformations, such as axis generalization (i.e., changing “/” to “//”) and

174 A Framework for XML Similarity Joins

6.9 Related Work

Figure 6.10: DB/IR query space (adapted from Weikum [Wei07])

keyword predicate moving, are applied to the original query to generate a new set
of queries [AYLP04]. Weighting schemes are typically based on assessing the close-
ness between the matched pattern on the XML document and the original query. The
second category returns closely related nodes, e.g., compact sub-trees containing all
keywords, that are collectively relevant for the user query (e.g., [LYJ04]). Such ap-
proaches rely on heuristics or weighting schemes for selecting the most relevant com-
bination of nodes. Besides scoring and relevance ranking, XML query processing has
also been enhanced with other common IR engine features such as ontologies, query
expansion, user feedback, and auto-completion [TBM+08, BW07]. Further, IR capa-
bilities have been increasingly integrated into existing native XML databases [YQJ02]
as well as hybrid commercial DBMSs [LM09] for which XQuery Full-Text support is
provided. Other XML systems are designed from scratch for supporting ranked XML
processing [TBM+08].

DB/IR integration is composed of many sub-areas, where each of them is already
covered by a substantial amount of literature. In fact, this topic spans a rich solution
space as data, queries, or both slide from structured to unstructured format. Here,
we briefly describe the “coordinates” of XML similarity joins and elements in their
neighborhood; we refer the interested reader to [CRW05, AYCR+05] and references
therein for thorough overviews on DB/IR integration. Figure 6.10 shows elements
of the query space supported by an integrated DB/IR architecture (adapted from
Weikum [Wei07]). The x-axis represents the data format, while the y-axis classifies
search queries; in both dimensions, the underlying format moves from structured
to unstructured. As an invariant, stripping of structure from data or query trans-

A Framework for XML Similarity Joins 175

Chapter 6 Integration into XTC

lates into commuting from the exact matching paradigm to similarity matching. On
the bottom-left corner, structured SQL queries appear, which are processed by tradi-
tional relational systems, whereas simple keyword queries processed by IR engines
emerge at the opposite end of the diagonal. Removing the structure from queries on
structured data, similarity joins over specific text fields and keyword queries over re-
lational graphs occur. Adding structure to queries on unstructured data, queries are
enhanced with content-oriented category metadata (faceted metadata), user-specified
tags (e.g., from social networks), and search strategies that holistically identify entity
concepts (a person, an event, etc) across several pages; therefore, they typically have
to be backed by large-scale IE systems. Queries on semi-structured data can be clas-
sified placed to the middle part of Figure 6.10, i.e., structured XQuery/XPath queries
on data-centric XML and full-text extension addressing document-centric XML. Fi-
nally, in the center of the solution space, the XML similarity joins are located, which
encompass elements of all quadrants of the classification space.

6.10 Summary

This chapter puts the pieces of our XML similarity join framework together into an
XDBMS. We were able not only to accommodate the components of our framework
in the existing architecture but also to exploit XDBMS-specific features to optimize
the realization of the similarity algorithms. We showed how to leverage indexing
infrastructure, node identification mechanism, and physical algebra for XQuery pro-
cessing to locate qualified XML fragments, to efficiently generate XML tree repre-
sentations, and to compose pipelined query evaluation trees. In particular, the path-
oriented storage model adopted in XTC was found to be a perfect match to the PCI-
based similarity functions proposed in this thesis enabling the design of inexpen-
sive algorithms for profile generation. We explicitly separated tokenization meth-
ods, weighting schemes, and set similarity calculation within the similarity join al-
gorithm thereby allowing to easily plug-in different components or apply different
parametrization thereof to serve EM applications with various notions of similarity.
Further, we encapsulated these components into physical operators that can be flex-
ibly assembled into query evaluation plans. This approach paves the way for em-
ploying algebraic optimizations and cost-based decisions to obtain better similarity
join evaluation strategies. The performance and scalability of our solution was suc-
cessfully validated experimentally. Finally, we addressed updatability of auxiliary
structures and discussed further steps for providing tighter integration of our frame-
work into XTC.

176 A Framework for XML Similarity Joins

Chapter 7

Conclusions and Future Research

In this chapter, we conclude our work with a brief review of the problem addressed
in this thesis and a summary of the contributions and results achieved, before we
outline interesting research opportunities for future work.

7.1 Conclusions

This thesis presented the design and implementation of an effective, flexible, and
high-performance XML-based similarity join framework. In particular, our frame-
work aimed at supporting similarity joins on non-schematic and heterogeneous XML
datasets. Performing similarity joins on XML data of this kind is challenging owing
to several reasons. First, because the structure may vary along with textual informa-
tion, the similarity function used in the join predicate has to address the hierarchical
structure of XML trees and comparison results obtained from text and structure have
to be pooled into a single notion of similarity. Further, structural heterogeneity also
complicates the task of selecting the pieces of information considered for similarity
assessment since related data may appear at different structural contexts among XML
trees. Efficiency issues are also exacerbated on XML as similarity evaluation on tree-
structured data is computationally intensive. Besides XML-motivated concerns, a
similarity join framework has to flexibly support a rich variety of notions of similar-
ity in order to serve primitive similarity operations to a wide range of applications.

Our framework addresses all the issues outlined above under reasonable data as-
sumptions. The main contributions emanating from this work include novel structure-
conscious similarity functions for XML trees, either considering XML structure in iso-
lation or combined with textual information, mechanisms to support the selection
of information represented by XML trees and organization of this information into a
suitable format for similarity calculation, and efficient algorithms for large-scale iden-
tification of similar, set-represented objects. We validated our techniques in the con-
text of a native XDBMS, which, in turn, spanned further contributions in the broader
topic of marrying database and information retrieval technologies.

177

Chapter 7 Conclusions and Future Research

Two basic concepts provided the foundation for most of the techniques developed
in this thesis. The first concept is that of paths, i.e., a sequence of hierarchically consec-
utive nodes in a tree. Important structural deviations found in heterogeneous XML
datasets result in different paths within trees that encode and lead to the same infor-
mation. We proposed a similarity function to find such paths and used a clustering
method to group them; each cluster is represented by an integer called Path Clus-
ter Identifier (PCI). By interpreting and representing path clusters as single units of
information (tokens, in our nomenclature), we were able to derive compact struc-
tural surrogates for XML structures, which are bounded by the number of paths.
More importantly, this representation delivered accurate results when incorporated
into a similarity function, frequently outperforming more complex and expensive ap-
proaches. In this context, the so-called path synopsis, an index structure storing all
paths appearing in an XML collection, was found very convenient for our approach:
path synopses enabled us to adopt a ”one-for-all“ approach, i.e., instead of comput-
ing anew the similarity between repeated structures during join execution, we com-
pute the similarity between all paths in a path synopsis only once in a pre-processing
stage. Besides providing structural representation, PCIs also play a pivotal role in
the interplay between text and structure for similarity assessment. First, PCIs can be
prepended to textual tokens to restrict the comparison of text nodes to those appear-
ing in similar structural contexts. Second, the delimitation between structural and
textual representation of XML trees is based on decomposing the set of PCIs into two
mutually exclusive subsets. We let the user define this decomposition by issuing the
so-called EDS queries, i.e., simple path specifications that are approximately matched
against the set of clusters; the PCIs of the most similar path clusters define the tex-
tual representation, whereas the remaining PCIS define the structural representation.
Finally, to efficiently evaluate EDS queries, we summarize path clusters into concise
structures represented as short memory-resident inverted lists and ensure truly inter-
active response times by employing well-known IR optimizations.

The second foundational concept appearing in many places of this thesis is that
of sets. While paths were a central piece of information of XML trees in our ap-
proach, sets provided a simple yet powerful representation for paths as well as for
strings and whole XML trees. By operating on sets instead of the original represen-
tations, we reduced the similarity calculation to the set-overlap problem, where dif-
ferent ways of measuring the overlap of sets raise several notions of similarity. This
approach brought several advantages. We could measure textual and structural sim-
ilarity between XML trees, jointly or in isolation, by operating on sets representing
text, structure, or both, in a unified framework. We also obtained a very rich similar-
ity space by varying the methods for mapping XML trees to sets, associating weights
to set elements (weighting schemes), measuring the set overlap, or any combination
thereof. Besides being inexpensive to calculate, the set-overlap abstraction gives raise
to several optimizations for pruning the comparison space of similarity joins. Build-
ing upon these optimizations, but following an opposite approach w.r.t. previous
work, we presented a new algorithm that consistently outperformed state-of-the-art
set similarity join algorithms.

178 A Framework for XML Similarity Joins

7.2 Future Research

Finally, the integration of our framework into an XDBMS architecture brought to
the context of our thesis several aspects of core database technology. In this con-
text, we exploited XDBMS-specific features to optimize the realization of the sim-
ilarity joins algorithms proposed in this thesis. Specifically, we leveraged storage
model, indexing infrastructure, node identification mechanism, and physical algebra
for XQuery processing to locate qualified XML fragments, to efficiently generate XML
tree representations, and to compose pipelined query evaluation trees. In particular,
we found the path-oriented storage model a perfect match to our PCI-based based ap-
proach, in which we were able to derive path-based XML representation practically
for free.

Although we have situated our work in the context of identifying the so-called
fuzzy duplicates, most techniques proposed here easily reduce to the general prob-
lem of identifying similar tree-structured information in large datasets. Hence, the
contributions of this thesis can be straightforwardly conveyed to other application
domains. Owing to the increasingly ubiquitous concept of similarity, there is a very
wide spectrum of such potential domains, including data mining, computational bi-
ology, Web indexing, social networks, information extraction, pattern recognition,
collaborative filtering, just to name a few. Moreover, while the techniques presented
in Chapter 3 and 4 are geared for specific aspects of XML data, the set similarity join
algorithms introduced in Chapter 5 are applicable to any object and data types that
lend themselves to set representation. Likewise, in our discussion on the integration
of our framework into an XDBMS presented in Chapter 6, we touched several aspects
that are also relevant to DB/IR integration in general.

7.2 Future Research

Of course, we could not cover the topic of this thesis completely. Hence, there are
many directions for future work. Perhaps, the most intriguing of them is provid-
ing tighter integration of our framework into an XDBMS architecture. In Section 6.7,
we have already discussed in great details our future steps in this direction, namely,
extensions to existing query languages, integration into a query optimizer, and mate-
rialized input maintenance.

Another interesting line of research relates to evaluating effectiveness of structural
similarity functions. In this thesis, we evaluated effectiveness experimentally. Similar
to other work [ZM98, CRF03] in the context of IR and similarity matching on strings,
we identified no ”silver bullet“, i.e., no structural similarity function was overall the
best across all datasets. This result was highly expected. All similarity functions are
able to capture certain data deviations while ignoring others; moreover, deviations
can be weighed differently. Hence, the effectiveness of a similarity function depends
on the agreement between its ”abilities“ and the characteristics of duplicates and non-
duplicates — or, more generally, characteristics of similar and dissimilar objects — in a
dataset w.r.t. a given application or task. In theory, given a precise enumeration of the
behavior of a similarity function for a representative set of structural patterns and a

A Framework for XML Similarity Joins 179

Chapter 7 Conclusions and Future Research

statistical characterization of the deviations present in duplicates and non-duplicates,
it would be possible to predict the performance of this similarity function and even
deem this similarity function as better or more appropriate than others in a given con-
text. In practice, learning models are employed for tuning, finding a set of transfor-
mations, and defining a combination and weighting strategy of similarity functions,
[BM03a, SB02, TKM02, ACK09]. However, very little attention is given to the identi-
fication and quantification of the characteristics of datasets and similarity functions
that lead to the effectiveness results. For text, this task can be overwhelming because
the ambit of deviations is very large. On the other hand, in comparison to text, struc-
ture is expected to deviate much more moderately and, therefore, characterization
of structural deviations on some datasets can be feasible. Some similarity functions
have known properties regarding their structural sensitivity, such as marked sensitiv-
ity to node fanout (e.g, pq-grams [ABG10]), ability in detecting node moves to other
parents (e.g., windowed pq-grams [ABDG08]) and inversion of nodes in a path (e.g,
our own PCI-based similarity function). However, relatively little is known, for ex-
ample, about other structural patterns that can negatively affect the performance of
these techniques. Thus, we believe that more progress can be made on predicting the
performance of similarity functions by systematically characterizing their behavior
on common classes of structural deviations.

We also see much room for optimization of the techniques presented in this thesis.
Although yielding good accuracy results, our path clustering strategy sometimes cre-
ates spurious clusters in the sense that several unrelated paths are grouped. While
structural similarity assessment is to some extent resilient to spurious clusters, com-
parison of values from unrelated concepts can severely jeopardize the results for tex-
tual similarity. Therefore, it would be desirable to devise procedures to evaluate the
validity (or purity) of path clusters in a quantitative manner and assist the user in
correcting misplaced paths. Moreover, considering that the clustering process is per-
formed off-line and, therefore, efficiency requirements are relatively more flexible, we
can (substantially) increase accuracy by exploiting text node values to identify path
duplicates instead of solely relying on element node labels. To this end, we can build
upon previous work on mining the structure of relational databases based on field
values [DJMS02].

Further, our framework requires several parameters, such as cutting point thresh-
old for the dendogram and decay rate of the path similarity function. Identifying the
best configuration setting can be time-consuming. For this reason, we plan to investi-
gate techniques based on sampling or learning models to obtain optimal parameters
semi-automatically. We also would like to support more expressive EDS queries (for
example, queries containing branches) and enhance user guidance on formulation of
EDS queries with information-theoretic techniques [Seb02].

Finally, it would be desirable to improve our set similarity join algorithms for bi-
nary joins, to enhance the presentation of similarity join results by incorporating re-
sult post-processing into our framework, and to integrate strategies for parallel pro-
cessing into our framework.

180 A Framework for XML Similarity Joins

Bibliography

[ABC99] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query answers
in inconsistent databases,” in Proc. of the 8th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 1999), 1999.

[ABDG08] N. Augsten, M. H. Böhlen, C. E. Dyreson, and J. Gamper, “Approxi-
mate joins for data-centric xml,” in Proc. of the 24th Intl. Conf. on Data
Engineering (ICDE 2008), 2008, pp. 814–823.

[ABG05] N. Augsten, M. H. Böhlen, and J. Gamper, “Approximate matching of
hierarchical data using pq-grams,” in Proc. of the 31st Intl. Conf. on Very
Large Data Bases (VLDB 2005). ACM, 2005, pp. 301–312.

[ABG06] N. Augsten, M. H. Böhlen, and J. Gamper, “An incrementally maintain-
able index for approximate lookups in hierarchical data,” in Proc. of the
32nd Intl. Conf. on Very Large Data Bases (VLDB 2006). ACM, 2006, pp.
247–258.

[ABG10] N. Augsten, M. H. Böhlen, and J. Gamper, “The q-gram distance be-
tween ordered labeled trees,” ACM Transactions on Database Systems
(TODS), vol. 35, no. 1, 2010.

[ACG02] R. Ananthakrishna, S. Chaudhuri, and V. Ganti, “Eliminating fuzzy du-
plicates in data warehouses,” in Proc. of 28th Intl. Conf. on Very Large
Data Bases (VLDB 2002), 2002, pp. 586–597.

[ACK08] A. Arasu, S. Chaudhuri, and R. Kaushik, “Transformation-based
framework for record matching,” in Proc. of the 24th Intl. Conf. on Data
Engineering (ICDE 2008), 2008, pp. 40–49.

[ACK09] A. Arasu, S. Chaudhuri, and R. Kaushik, “Learning string transfor-
mations from examples,” Proceedings of the VLDB Endowment (PVLDB),
vol. 2, no. 1, pp. 514–525, 2009.

[AFM06] P. Andritsos, A. Fuxman, and R. J. Miller, “Clean answers over dirty
databases: A probabilistic approach,” in Proc. of the 22nd Intl. Conf. on
Data Engineering (ICDE 2006), 2006, p. 30.

181

Bibliography

[AGK06] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in Proc. of the 32nd Intl. Conf. on Very Large Data Bases (VLDB 2006), 2006,
pp. 918–929.

[AKJP+02] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Sri-
vastava, “Structural joins: A primitive for efficient xml query pattern
matching,” in Proc. of the 18th Intl. Conf. on Data Engineering, 2002, pp.
141–.

[ATW+07] C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. J. Zaki, “Xproj: a frame-
work for projected structural clustering of xml documents,” in Proc. of
the 13th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Min-
ing, 2007, pp. 46–55.

[AYBB+10] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, M. Dyck, M. Hol-
stege, J. Melton, M. Rys, and J. Shanmugasundaram, “Xquery and
xpath full text 1.0,” 2010, http://www.w3.org/TR/xpath-full-text-10/.

[AYBS04] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram, “Texquery: a full-
text search extension to xquery,” in Proc. of the 13th Intl. Conf. on World
Wide Web (WWW 2004), 2004, pp. 583–594.

[AYCR+05] S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram, and
G. Weikum, “Report on the db/ir panel at sigmod 2005,” SIGMOD
Record, vol. 34, no. 4, pp. 71–74, 2005.

[AYL06] S. Amer-Yahia and M. Lalmas, “Xml search: languages, inex and scor-
ing,” SIGMOD Record, vol. 35, no. 4, pp. 16–23, 2006.

[AYLP04] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit, “Flexpath: Flexible
structure and full-text querying for xml,” in Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data, 2004, pp. 83–94.

[AYMH+08] S. Amer-Yahia, V. Markl, A. Y. Halevy, A. Doan, G. Alonso, D. Koss-
mann, and G. Weikum, “Databases and web 2.0 panel at vldb 2007,”
SIGMOD Record, vol. 37, no. 1, pp. 49–52, 2008.

[Baa01] R. H. Baayen, Word Frequency Distributions. Kluwer Academic Pub-
lishers, 2001.

[BBC04] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Machine
Learning, vol. 56, no. 1-3, pp. 89–113, 2004.

[BBC+07] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez, M. Kay,
J. Robie, and J. Simon, “Xml path language (xpath) 2.0,” 2007,
http://www.w3.org/TR/xpath20.

182 A Framework for XML Similarity Joins

Bibliography

[BBS05] M. Bilenko, S. Basu, and M. Sahami, “Adaptive product normalization:
Using online learning for record linkage in comparison shopping,” in
Proc. of the 5th IEEE Intl. Conf. on Data Mining (ICDM 2005), 2005, pp.
58–65.

[BCC03] R. Baxter, P. Christen, and T. Churches, “A comparison of fast block-
ing methods for record linkage,” in Proc. of the Workshop on Data Clean-
ing, Record Linkage and Object Consolidation at the 9th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining, 2003.

[BCF+07] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Ro-
bie, and J. Simon, “Xquery 1.0: An xml query language,” 2007,
http://www.w3.org/TR/xquery.

[BCJ+05] K. S. Beyer, R. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G. M.
Lohman, R. Lyle, F. Özcan, H. Pirahesh, N. Seemann, T. C. Truong, B. V.
der Linden, B. Vickery, and C. Zhang, “System rx: One part relational,
one part xml,” in Proc. SIGMOD Conf., 2005, pp. 347–358.

[BDF+97] D. Barbará, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein,
Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A.
Ross, and K. C. Sevcik, “The new jersey data reduction report,” IEEE
Data Engineering Bulletin, vol. 20, no. 4, pp. 3–45, 1997.

[BEF08] B. Bryan, F. Eberhardt, and C. Faloutsos, “Compact similarity joins,” in
Proc. of the 24th Intl. Conf. on Data Engineering (ICDE 2008), 2008, pp.
346–355.

[Ber01] M. K. Bergman, “The deep web: Surfacing hidden value,” Journal of
Electronic Publishing, vol. 7, no. 1, 2001.

[BFFR05] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi, “A cost-based model
and effective heuristic for repairing constraints by value modification,”
in Proc. of the ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD
2005), 2005, pp. 143–154.

[BFG+07] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Con-
ditional functional dependencies for data cleaning,” in Proc. of the 23rd
Intl. Conf. on Data Engineering (ICDE 2007), 2007, pp. 746–755.

[BG06] I. Bhattacharya and L. Getoor, “A latent dirichlet model for unsuper-
vised entity resolution,” in Proc. of the 6th SIAM Intl. Conf. on Data Min-
ing (SDM 2006), 2006.

[BGK03] P. Buneman, M. Grohe, and C. Koch, “Path queries on compressed
xml,” in Proc. of 29th Intl. Conf. on Very Large Data Bases (VLDB 2003),
2003, pp. 141–152.

A Framework for XML Similarity Joins 183

Bibliography

[BGL+98] C. H. Bennett, P. Gács, M. Li, P. M. B. Vitányi, and W. H. Zurek, “Infor-
mation distance,” IEEE Transactions on Information Theory, vol. 44, no. 4,
pp. 1407–1423, 1998.

[BGMM+09] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang,
and J. Widom, “Swoosh: a generic approach to entity resolution,” The
VLDB Journal, vol. 18, no. 1, pp. 255–276, 2009.

[BGRS99] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
”nearest neighbor” meaningful?” in International Conference on Database
Theory (ICDT’99), 1999, pp. 217–235.

[Bis06] C. M. Bishop, “Pattern recognition and machine learning.” Springer,
2006.

[BKM06] M. Bilenko, B. Kamath, and R. J. Mooney, “Adaptive blocking: Learn-
ing to scale up record linkage,” in Proc. of the 6th IEEE Intl. Conf. on Data
Mining (ICDM 2006), 2006, pp. 87–96.

[BKS02] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: optimal
xml pattern matching,” in Proc. of the 2002 ACM SIGMOD Intl. Conf. on
Management of Data (SIGMOD 2002), 2002, pp. 310–321.

[BM03a] M. Bilenko and R. J. Mooney, “Adaptive duplicate detection using
learnable string similarity measures,” in Proc. of the 9th ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data Mining (KDD 2003), 2003,
pp. 39–48.

[BM03b] M. Bilenko and R. J. Mooney, “On evaluation and training-set construc-
tion for duplicate detection,” in Proc. KDD Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, 2003, pp. 7–12.

[BMS07] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in Proc. of the 16th Intl. Conf. on World Wide Web (WWW 2007),
2007, pp. 131–140.

[BN05] A. Bilke and F. Naumann, “Schema matching using duplicates,” in
Proc. of the 21st Intl. Conf. on Data Engineering (ICDE 2005), 2005, pp.
69–80.

[BN08] J. Bleiholder and F. Naumann, “Data fusion,” ACM Computing Surveys
(CSUR), vol. 41, no. 1, 2008.

[BNJ03] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

184 A Framework for XML Similarity Joins

Bibliography

[BP09] N. L. Bhamidipati and S. K. Pal, “Comparing scores intended for
ranking,” IEEE Transactions on Knowledge and Data Engineering (TKDE),
vol. 21, no. 1, pp. 21–34, 2009.

[Bro97] A. Z. Broder, “On the resemblance and containment of documents,”
in Proc. of the Intl. Conf. on Compression and Complexity of Se-
quences(SEQUENCES’97), 1997, pp. 21–29.

[BSH+08] O. Benjelloun, A. D. Sarma, A. Y. Halevy, M. Theobald, and J. Widom,
“Databases with uncertainty and lineage,” The VLDB Journal, vol. 17,
no. 2, pp. 243–264, 2008.

[BSIBD09] G. Beskales, M. A. Soliman, I. F. Ilyas, and S. Ben-David, “Modeling
and querying possible repairs in duplicate detection,” Proc. of the VLDB
Endowment (PVLDB), vol. 2, no. 1, pp. 598–609, 2009.

[But04] D. Buttler, “A short survey of document structure similarity algo-
rithms,” in Proc. of the Intl. Conf. on Internet Computing (IC’04). CSREA
Press, 2004, pp. 3–9.

[BW07] H. Bast and I. Weber, “The completesearch engine: Interactive, efficient,
and towards ir& db integration,” in Proc. of the 3rd Biennial Conf. on
Innovative Data Systems Research (CIDR 2007), 2007, pp. 88–95.

[CAM02] G. Cobena, S. Abiteboul, and A. Marian, “Detecting changes in xml
documents,” in Proc. of the 19th Intl. Conf. on Data Engineering (ICDE
2003). IEEE Computer Society, 2002, pp. 41–52.

[CCGK07] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik, “Example-driven
design of efficient record matching queries,” in Proc. of the 33rd Intl.
Conf. on Very Large Data Bases (VLDB 2007), 2007, pp. 327–338.

[CCGX08] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “An efficient filter
for approximate membership checking,” in Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD 2008), 2008, pp. 805–818.

[CCX08] R. Cheng, J. Chen, and X. Xie, “Cleaning uncertain data with quality
guarantees,” Proc. of the VLDB Endowment (PVLDB), vol. 1, no. 1, pp.
722–735, 2008.

[CD09] S. Chaudhuri and G. Das, “Keyword querying and ranking in
databases,” PVLDB, vol. 2, no. 2, pp. 1658–1659, 2009.

[CDF+01] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Mootwani, J. D.
Ullman, and C. Yang, “Finding interesting associations without sup-
port pruning,” IEEE Trans. on Knowledge and Data Engineering (TKDE),
vol. 13, no. 1, pp. 64–78, 2001.

A Framework for XML Similarity Joins 185

Bibliography

[CDHW06] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum, “Probabilistic in-
formation retrieval approach for ranking of database query results,”
TODS, vol. 31, no. 3, pp. 1134–1168, 2006.

[CFG+07] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data quality:
Consistency and accuracy,” in Proc. of the 33rd Intl. Conf. on Very Large
Data Bases, 2007, pp. 315–326.

[CGK06] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for sim-
ilarity joins in data cleaning,” in Proc. of the 22nd Intl. Conf. on Data
Engineering (ICDE 2006), 2006, p. 5.

[CGM97] S. S. Chawathe and H. Garcia-Molina, “Meaningful change detection
in structured data,” in Proc. of the 1997 ACM SIGMOD Intl. Conf. on
Management of Data (SIGMOD 1997). ACM, 1997, pp. 26–37.

[CGM05] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identification of
fuzzy duplicates,” in Proc. of the 21st Intl. Conf. on Data Engineering
(ICDE 2005), 2005, pp. 865–876.

[CGS03] S. Chaudhuri, P. Ganesan, and S. Sarawagi, “Factorizing complex pred-
icates in queries to exploit indexes,” in Proc. of the 2003 ACM SIGMOD
Intl. Conf. on Management of Data, 2003, pp. 361–372.

[Cha02] M. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proc. on 34th Annual ACM Symposium on Theory of Computing
(STOC 2002), 2002, pp. 380–388.

[CHK+07] A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi, and D. Srivas-
tava, “Benchmarking declarative approximate selection predicates,” in
Proc. of the ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD
2007), 2007, pp. 353–364.

[CHW+08] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang, “Webta-
bles: Exploring the power of tables on the web,” PVLDB, vol. 1, no. 1,
pp. 538–549, 2008.

[CK09] S. Chaudhuri and R. Kaushik, “Extending autocompletion to tolerate
errors,” in Proc. of the ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD 2009), 2009, pp. 707–718.

[CKVW06] D. Cheng, R. Kannan, S. Vempala, and G. Wang, “A divide-and-merge
methodology for clustering,” ACM Transactions on Database Systems
(TODS), vol. 31, no. 4, pp. 1499–1525, 2006.

[CMM+03] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer,
“Searching xml documents via xml fragments,” in SIGIR 2003: Proc.

186 A Framework for XML Similarity Joins

Bibliography

of the 26th Annual Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR 2003), 2003, pp. 151–158.

[CNBYM01] E. Chávez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroquı́n, “Search-
ing in metric spaces,” ACM Computing Surveys (CSUR), vol. 33, no. 3,
pp. 273–321, 2001.

[CNS04] S. Chaudhuri, V. R. Narasayya, and S. Sarawagi, “Extracting predicates
from mining models for efficient query evaluation,” ACM Transactions
on Database Systems (TODS), vol. 29, no. 3, pp. 508–544, 2004.

[Coh98] W. W. Cohen, “Integration of heterogeneous databases without com-
mon domains using queries based on textual similarity,” in Proc. ACM
SIGMOD Intl. Conf. on Management of Data, 1998, pp. 201–212.

[Coh04] J. Cohen, “Bioinformatics - an introduction for computer scientists,”
ACM Computing Surveys (CSUR), vol. 36, no. 2, pp. 122–158, 2004.

[CRF03] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg, “A comparison of
string distance metrics for name-matching tasks,” in Proc. of IJCAI-03
Workshop on Information Integration on the Web (IIWeb-03), 2003, pp. 73–
78.

[CRGMW96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” in Proc.
of the ACM 1996 ACM SIGMOD Intl. Conf. on Management of Data (SIG-
MOD 1996). ACM, 1996, pp. 493–504.

[Cro00] W. B. Croft, “Combining approaches to information retrieval,” Ad-
vances in information retrieval, vol. 7, pp. 1–36, 2000.

[CRW05] S. Chaudhuri, R. Ramakrishnan, and G. Weikum, “Integrating db and
ir technologies: What is the sound of one hand clapping?” in Proc.
CIDR Conf., 2005, pp. 1–12.

[CSGK07] S. Chaudhuri, A. D. Sarma, V. Ganti, and R. Kaushik, “Leveraging ag-
gregate constraints for deduplication,” in Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD 2007), 2007, pp. 437–448.

[CSN09] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distribu-
tions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703, 2009.

[CT06] T. M. Cover and J. A. Thomas, Elements of information theory. Wiley,
2006.

[CV05] R. Cilibrasi and P. M. B. Vitányi, “Clustering by compression,” IEEE
Transactions on Information Theory, vol. 51, no. 4, pp. 1523–1545, 2005.

A Framework for XML Similarity Joins 187

Bibliography

[CVDN09] X. Chai, B.-Q. Vuong, A. Doan, and J. F. Naughton, “Efficiently incor-
porating user feedback into information extraction and integration pro-
grams,” in Proc. of the ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD 2009), 2009, pp. 87–100.

[CYC07] T. Cheng, X. Yan, and K. C.-C. Chang, “Entityrank: Searching entities
directly and holistically,” in Proc. VLDB Conf., 2007, pp. 387–398.

[dAMF10] J. de Aguiar Moraes Filho, “Summarizing xml documents: Contribu-
tions, empirical studies, and challenges,” Ph.D. dissertation, Technis-
che Universität Kaiserslautern, 2010.

[dbl09] “The dblp computer science bibliography,” 2009, http://dblp.uni-
trier.de/xml.

[DCWS06] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. K. Sellis, “A methodol-
ogy for clustering xml documents by structure,” Information Systems,
vol. 31, no. 3, pp. 187–228, 2006.

[DDL+90] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman, “Indexing by latent semantic analysis,” Journal of the Amer-
ican Society for Information Science and Technology (JASIST), vol. 41, no. 6,
pp. 391–407, 1990.

[DFS+09] E. C. Dragut, F. Fang, A. P. Sistla, C. T. Yu, and W. Meng, “Stop word
and related problems in web interface integration,” Proceedings of the
VLDB Endowment (PVLDB), vol. 2, no. 1, pp. 349–360, 2009.

[DG09] L. Denoyer and P. Gallinari, “Overview of the inex 2008 xml mining
track,” in In Proc. of INEX 2008, 2009.

[DJMS02] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk, “Mining
database structure; or, how to build a data quality browser,” in Proc.
of the 2002 ACM SIGMOD Intl. Conf. on Management of Data, 2002, pp.
240–251.

[DKP+09] N. N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bo-
hannon, S. Keerthi, and S. Merugu, “A web of concepts,” in Proc. of
the 28th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS 2009), 2009, pp. 1–12.

[DMRW07] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An opti-
mal decomposition algorithm for tree edit distance,” in Proc. of the 34th
Intl. Colloquium on Automata, Languages and Programming (ICALP 2007),
2007, pp. 146–157.

188 A Framework for XML Similarity Joins

Bibliography

[DNH+09] C. F. Dorneles, M. F. Nunes, C. A. Heuser, V. P. Moreira, A. S. da Silva,
and E. S. de Moura, “A strategy for allowing meaningful and compara-
ble scores in approximate matching,” Information Systems, vol. 34, no. 8,
pp. 673–689, 2009.

[Dop08] P. Dopichaj, “Content-oriented retrieval on document-centric xml,”
Ph.D. dissertation, Technische Universität Kaiserslautern, 2008.

[DRS09] N. N. Dalvi, C. Ré, and D. Suciu, “Probabilistic databases: Diamonds in
the dirt,” Communications of the ACM (CACM), vol. 52, no. 7, pp. 86–94,
2009.

[DT03] S. Dulucq and H. Touzet, “Analysis of tree edit distance algorithms,”
in Proc. of the 14th Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2003), ser. Lecture Notes in Computer Science, vol. 2676.
Springer, 2003, pp. 83–95.

[EEV02] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios, “Tailor: A record
linkage tool box,” in Proc. of the 18th Intl. Conf. on Data Engineering
(ICDE 2002), 2002, pp. 17–28.

[EIV07] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record
detection: A survey,” TKDE, vol. 19, no. 1, pp. 1–16, 2007.

[Fel98] C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press, 1998.

[FGKL02] N. Fuhr, N. Gövert, G. Kazai, and M. Lalmas, Eds., INEX Workshop
2002, 2002.

[FKS03] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in Proc.
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2003), 2003, pp. 28–36.

[FL95] C. Faloutsos and K.-I. Lin, “Fastmap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets,”
in Proc. of the 1995 ACM SIGMOD Intl. Conf. on Management of Data,
1995, pp. 163–174.

[FMM+05] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese, “Fast
detection of xml structural similarity,” IEEE Transactions on Knowledge
and Data Engineering (TKDE), vol. 17, no. 2, pp. 160–175, 2005.

[FS69] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,” Journal of the
American Statistical Association (JASA), vol. 64, no. 328, pp. 1183–1210,
1969.

A Framework for XML Similarity Joins 189

Bibliography

[FSN+95] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker,
“Query by image and video content: The qbic system,” Computer,
vol. 28, no. 9, pp. 23–32, 1995.

[GdSM07] R. Gonçalves and R. dos Santos Mello, “Improving xml instances com-
parison with preprocessing algorithms,” in Proc. of the 18th Intl. Conf. on
Database and Expert Systems Applications (DEXA 2007), 2007, pp. 13–22.

[GFS+01] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita,
“Declarative data cleaning: Language, model, and algorithms,” in Proc.
of 27th Intl. Conf. on Very Large Data Bases (VLDB 2001), 2001, pp. 371–
380.

[GIJ+01] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrish-
nan, and D. Srivastava, “Approximate string joins in a database (al-
most) for free,” in Proc. of 27th Intl. Conf. on Very Large Data Bases (VLDB
2001), 2001, pp. 491–500.

[GIKS03] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava, “Text joins in
an rdbms for web data integration,” in Proc. of the 12th Intl. World Wide
Web Conf. (WWW 2003), 2003, pp. 90–101.

[GIM99] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proc. of 25th Intl. Conf. on Very Large Data Bases
(VLDB’99), 1999, pp. 518–529.

[GJK+06] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu, “Inte-
grating xml data sources using approximate joins,” ACM Transactions
on Database Systems (TODS), vol. 31, no. 1, pp. 161–207, 2006.

[GKMS04] S. Guha, N. Koudas, A. Marathe, and D. Srivastava, “Merging the re-
sults of approximate match operations,” in Proc. of the 13th Intl. Conf. on
Very Large Data Bases, 2004, pp. 636–647.

[Gör10] J. Göres, “A model management framework for information integra-
tion,” Ph.D. dissertation, Technische Universität Kaiserslautern, 2010.

[Gra93] G. Graefe, “Query evaluation techniques for large databases,” ACM
Computing Surveys (CSUR), vol. 25, no. 2, pp. 73–170, 1993.

[GSE+94] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” 1994, pp. 243–
252.

[GW97] R. Goldman and J. Widom, “Dataguides: Enabling query formulation
and optimization in semistructured databases,” 1997, pp. 436–445.

190 A Framework for XML Similarity Joins

Bibliography

[Hau05] M. M. Haustein, “Feingranulare transaktionsisolation in nativen
xml-datenbanksystemen,” Ph.D. dissertation, Technische Universität
Kaiserslautern, 2005.

[HCKS08] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava, “Fast
indexes and algorithms for set similarity selection queries,” in Proc. of
the 24th Intl. Conf. on Data Engineering (ICDE 2008), 2008, pp. 267–276.

[HCML09] O. Hassanzadeh, F. Chiang, R. J. Miller, and H. C. Lee, “Framework
for evaluating clustering algorithms in duplicate detection,” Proc. of the
VLDB Endowment (PVLDB), vol. 2, no. 1, pp. 1282–1293, 2009.

[Hel07] S. Helmer, “Measuring the structural similarity of semistructured doc-
uments using entropy,” in Proc. of the 33rd Intl. Conf. on Very Large Data
Bases (VLDB 2007). ACM, 2007, pp. 1022–1032.

[HFM06] A. Y. Halevy, M. J. Franklin, and D. Maier, “Principles of dataspace
systems,” in Proc. 25th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 2006), 2006, pp. 1–9.

[HHH+] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth, “Clio
grows up: from research prototype to industrial tool,” in Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD 2005).

[HHMW07] T. Härder, M. P. Haustein, C. Mathis, and M. Wagner, “Node labeling
schemes for dynamic xml documents reconsidered,” Data Knowledge
Engineering, vol. 60, no. 1, pp. 126–149, 2007.

[HKS09] M. Hadjieleftheriou, N. Koudas, and D. Srivastava, “Incremental main-
tenance of length normalized indexes for approximate string match-
ing,” in Proc. of the ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD 2009), 2009, pp. 429–440.

[HMS07] T. Härder, C. Mathis, and K. Schmidt, “Comparison of complete and
elementless native storage of xml documents,” in Proc. of the 11th Intl.
Database Engineering and Applications Symposium (IDEAS 2007), 2007,
pp. 102–113.

[Hof01] T. Hofmann, “Unsupervised learning by probabilistic latent semantic
analysis,” Machine Learning, vol. 42, no. 1/2, pp. 177–196, 2001.

[HR83] T. Härder and A. Reuter, “Concepts for implementing a centralized
database management system,” in Proc. of the Intl. Computing Sympo-
sium on Application Systems Development, 1983, pp. 28–60.

[HS93] J. M. Hellerstein and M. Stonebraker, “Predicate migration: Optimizing
queries with expensive predicates,” in Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD 1993), 1993, pp. 267–276.

A Framework for XML Similarity Joins 191

Bibliography

[HS98] M. A. Hernández and S. J. Stolfo, “Real-world data is dirty: Data
cleansing and the merge/purge problem,” Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 9–37, 1998.

[HYKS08] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava, “Hashed
samples: selectivity estimators for set similarity selection queries,”
Proc. of the VLDB Endowment (PVLDB), vol. 1, no. 1, pp. 201–212, 2008.

[III09] I. Information Impact International, “Publicly exposed iq problems,”
http://www.infoimpact.com/publiclyexposediqproblems.cfm, 2009.

[JAKN03] S. Joshi, N. Agrawal, R. Krishnapuram, and S. Negi, “A bag of paths
model for measuring structural similarity in web documents,” in Proc.
of the 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Min-
ing, 2003, pp. 577–582.

[JCE+07] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi,
and C. Yu, “Making database systems usable,” in Proc. SIGMOD Conf.,
2007, pp. 13–24.

[JD88] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice
Hall College Div, 1988.

[JFH08] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy, “Pay-as-you-go user feed-
back for dataspace systems,” 2008, pp. 847–860.

[JLM03] L. Jin, C. Li, and S. Mehrotra, “Efficient record linkage in large data
sets,” in Proc. of the 8th Intl. Conf. on Database Systems for Advanced Ap-
plications (DASFAA’03), 2003, p. 137.

[Jon72] K. S. Jones, “A statistical interpretation of term specificity and its ap-
plication in retrieval,” Journal of documentation, vol. 28, no. 1, pp. 11–21,
1972.

[JS07] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans. on
Database Systems (TODS), vol. 32, no. 1, p. 7, 2007.

[JS08] E. H. Jacox and H. Samet, “Metric space similarity joins,” ACM Trans.
on Database Systems (TODS), vol. 33, no. 2, 2008.

[KKSS04] K. Kailing, H.-P. Kriegel, S. Schönauer, and T. Seidl, “Efficient similarity
search for hierarchical data in large databases,” in Proc. of the Intl. Conf.
on Extending Database Technology (EDBT 2004), 2004, pp. 676–693.

[Kle98] P. N. Klein, “Computing the edit-distance between unrooted ordered
trees,” in Proc. of the 6th Annual European Symposium on Algorithms (ESA
1998), 1998, pp. 91–102.

192 A Framework for XML Similarity Joins

Bibliography

[KMdRS06] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson, “Articulating
information needs in xml query languages,” ACM Transactions on Infor-
mation Systems (TOIS), vol. 24, no. 4, pp. 407–436, 2006.

[Kol05] P. G. Kolaitis, “Schema mappings, data exchange, and metadata man-
agement,” in Proc. of the 24th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems (PODS 2005), 2005, pp. 61–75.

[KR87] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, vol. 31, no. 2, pp.
249–260, 1987.

[KSS06] N. Koudas, S. Sarawagi, and D. Srivastava, “Record linkage: Similarity
measures and algorithms,” in Proc. SIGMOD Conf., 2006, pp. 802–803.

[Kuk92] K. Kukich, “Techniques for automatically correcting words in text,”
ACM Computing Surveys (CSUR), vol. 24, no. 4, pp. 377–439, 1992.

[LCBC08] Z. H. Liu, S. Chandrasekar, T. Baby, and H. J. Chang, “Towards a phys-
ical xml independent xquery/sql/xml engine,” PVLDB, vol. 1, no. 2,
pp. 1356–1367, 2008.

[LCMY04] W. Lian, D. W.-L. Cheung, N. Mamoulis, and S.-M. Yiu, “An efficient
and scalable algorithm for clustering xml documents by structure,”
IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 16,
no. 1, pp. 82–96, 2004.

[LCW07] L. Leitão, P. Calado, and M. Weis, “Structure-based inference of xml
similarity for fuzzy duplicate detection,” in Proc. of the 6th ACM Conf.
on Information and Knowledge Management (CIKM 2007), 2007, pp. 293–
302.

[Lee97] J. H. Lee, “Analyses of multiple evidence combination,” in Proc. of the
20th Annual Intl. ACM SIGIR Conf. on Research and Development in Infor-
mation Retrieval (SIGIR 97), 1997, pp. 267–276.

[Len05] R. Lenz, “Information management in distributed healthcare net-
works,” in Data Management in a Connected World, ser. LNCS, vol. 3551,
2005, pp. 315–334.

[Lev65] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp.
845–848, 1965.

[LLL08] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms for
approximate string searches,” in Proc. of the 24th Intl. Conf. on Data En-
gineering (ICDE 2008), 2008, pp. 257–266.

A Framework for XML Similarity Joins 193

Bibliography

[LM09] Z. H. Liu and R. Murthy, “A decade of xml data management: An in-
dustrial experience report from oracle,” in Proc. ICDE Conf., 2009, pp.
1351–1362.

[LMP01] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Coonditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence
data,” in International Conference on Machine Learning (ICML), 2001, pp.
282–289.

[LNS09] H. Lee, R. T. Ng, and K. Shim, “Power-law based estimation of set sim-
ilarity join size,” Proc. of the VLDB Endowment (PVLDB), vol. 2, no. 1,
pp. 658–669, 2009.

[LSS08] M. D. Lieberman, J. Sankaranarayanan, and H. Samet, “A fast similar-
ity join algorithm using graphics processing units,” in Proc. of the 24th
Intl. Conf. on Data Engineering (ICDE 2008), 2008, pp. 1111–1120.

[LYJ04] Y. Li, C. Yu, and H. V. Jagadish, “Schema-free xquery,” 2004, pp. 72–83.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom, “Lore:
A database management system for semistructured data,” SIGMOD
Record, vol. 26, no. 3, pp. 54–66, 1997.

[Mam03] N. Mamoulis, “Efficient processing of joins on set-valued attributes,” in
Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management of Data, 2003,
pp. 157–168.

[Mat09] C. Mathis, “Storing, indexing, and querying xml documents in na-
tive xml database systems,” Ph.D. dissertation, Technische Universität
Kaiserslautern, 2009.

[ME97] A. E. Monge and C. Elkan, “An efficient domain-independent al-
gorithm for detecting approximately duplicate database records,” in
Workshop on Research Issues on Data Mining and Knowledge Discovery
(DMKD’97), 1997, pp. 0–.

[MLK+05] R. Murthy, Z. H. Liu, M. Krishnaprasad, S. Chandrasekar, A.-T. Tran,
E. Sedlar, D. Florescu, S. Kotsovolos, N. Agarwal, V. Arora, and V. Kr-
ishnamurthy, “Towards an enterprise xml architecture,” in Proc. SIG-
MOD Conf., 2005, pp. 953–957.

[MML07] M. M. Moro, S. Malaika, and L. Lim, “Preserving xml queries during
schema evolution,” in Proc. of the 16th Intl. Conf. on World Wide Web
(WWW 2007), 2007, pp. 1341–1342.

[MMR05] F. Mandreoli, R. Martoglia, and E. Ronchetti, “Versatile structural dis-
ambiguation for semantic-aware applications,” in Proc. of the 2005 ACM

194 A Framework for XML Similarity Joins

Bibliography

CIKM Intl. Conf. on Information and Knowledge Management (CIKM 2005),
2005, pp. 209–216.

[MN08] F. McSherry and M. Najork, “Computing information retrieval perfor-
mance measures efficiently in the presence of tied scores,” in Proc. of the
30th European Conference on IR Research (ECIR 2008), 2008, pp. 414–421.

[MNU00] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of high-
dimensional data sets with application to reference matching,” in Proc.
of the 6th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Min-
ing (KDD 2000), 2000, pp. 169–178.

[MRLG93] D. L. Medin and D. G. Robert L. Goldstone, “Respects for similarity,”
Psychological Review, vol. 100, pp. 254–278, 1993.

[MS99] T. Milo and D. Suciu, “Index structures for path expressions,” in Proc.
of the 7th International Conference on Database Theory (ICDT’99), 1999, pp.
277–295.

[MSC06] D. Milano, M. Scannapieco, and T. Catarci, “Structure aware xml object
identification,” 2006.

[MW04] A. McCallum and B. Wellner, “Conditional models of identity uncer-
tainty with application to noun coreference,” in Proc. of the 17th Conf.
on Neural Information Processing Systems (NIPS 2004), 2004, pp. 905–912.

[Nav01] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[Nav09] R. Navigli, “Word sense disambiguation: A survey,” ACM Computing
Surveys (CSUR), vol. 41, no. 2, 2009.

[NJ02] A. Nierman and H. V. Jagadish, “Evaluating structural similarity in xml
documents,” in Proc. of the 5th Intl. Workshop on the Web and Databases
(WebDB 2002), 2002, pp. 61–66.

[NKAJ59] H. Newcombe, J. Kennedy, S. Axford, and A. James, “Automatic link-
age of vital records,” Science, vol. 130, no. 3381, pp. 954–959, 1959.

[OC03] P. Ogilvie and J. P. Callan, “Combining document representations for
known-item search,” in Proc. SIGIR Conf., 2003, pp. 143–150.

[OOP+04] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury,
“Ordpaths: Insert-friendly xml node labels,” 2004, pp. 903–908.

[PC98] J. M. Ponte and W. B. Croft, “A language modeling approach to infor-
mation retrieval,” in SIGIR ’98: Proc. of the 21st Annual Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (SIGIR’98),
1998, pp. 275–281.

A Framework for XML Similarity Joins 195

Bibliography

[Pea88] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann Publishers, 1988.

[PMAJ01] S. Padmanabhan, T. Malkemus, R. C. Agarwal, and A. Jhingran, “Block
oriented processing of relational database operations in modern com-
puter architectures,” in Proc. of the 17th Intl. Conf. on Data Engineering,
2001, pp. 567–574.

[PMM+02] H. Pasula, B. Marthi, B. Milch, S. J. Russell, and I. Shpitser, “Identity
uncertainty and citation matching,” in Proc. of the 15th Annual Conf. on
Neural Information Processing Systems (NIPS 2002), 2002, pp. 1401–1408.

[Por80] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[PWN06] S. Puhlmann, M. Weis, and F. Naumann, “Xml duplicate detection us-
ing sorted neighborhoods,” in Proc. of the 10th Intl. Conf. on Extending
Database Technology (EDBT 2006), 2006, pp. 773–791.

[Pyl99] D. Pyle, Data Preparation for Data Mining. Morgan Kaufmann Publish-
ers, 1999.

[RB01] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[RDM04] E. Rahm, H. H. Do, and S. Massmann, “Matching large xml schemas,”
SIGMOD Record, vol. 33, no. 4, pp. 26–31, 2004.

[RH07] L. A. Ribeiro and T. Härder, “Embedding similarity joins into native
xml databases,” in Anais do XXII Simpósio Brasileiro de Banco de Dados,
2007, pp. 285–299.

[RH08a] L. A. Ribeiro and T. Härder, “Evaluating performance and quality of
xml-based similarity joins,” in Proc. of the 12th East European Conference
on Advances in Databases and Information Systems (ADBIS 2008), 2008, pp.
246–261.

[RH08b] L. A. Ribeiro and T. Härder, “Similarity matching in web-based data
management applications,” Datenbank-Spektrum, vol. 26, 2008.

[RH09] L. A. Ribeiro and T. Härder, “Efficient set similarity joins using min-
prefixes,” in Proc. of the 13th East European Conf. on Advances in Databases
and Information Systems (ADBIS 2009), 2009, pp. 88–102.

[RHMGM09] D. Ramage, P. Heymann, C. D. Manning, and H. Garcia-Molina, “Clus-
tering the tagged web,” in Proc. of the 2sd Intl. Conf. on Web Search and
Web Data Mining (WSDM 2009), 2009, pp. 54–63.

196 A Framework for XML Similarity Joins

Bibliography

[RHP09] L. A. Ribeiro, T. Härder, and F. S. Pimenta, “A cluster-based approach
to xml similarity joins,” in International Database Engineering and Appli-
cations Symposium (IDEAS 2009), 2009, pp. 182–193.

[Ric08] M. M. Richter, “Similarity,” in Case-Based Reasoning on Images and Sig-
nals, 2008, pp. 25–90.

[RN03] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2003.

[Rus18] R. C. Russel, “Russel index,” http://patft.uspto.
gov/netahtml/srchnum.htm, 1918.

[RW94] S. E. Robertson and S. Walker, “Some simple effective approximations
to the 2-poisson model for probabilistic weighted retrieval,” in Proc.
of the 17th Annual Intl. ACM-SIGIR Conf. on Research and Development in
Information Retrieval (Special Issue of the SIGIR Forum), 1994, pp. 232–241.

[Rys05] M. Rys, “Xml and relational database management systems: Inside mi-
crosoft sql server 2005,” in Proc. SIGMOD Conf., 2005, pp. 958–962.

[RZT04] S. E. Robertson, H. Zaragoza, and M. J. Taylor, “Simple bm25 extension
to multiple weighted fields,” in Proc. of the 2004 ACM CIKM Intl. Conf.
on Information and Knowledge Management, 2004, pp. 42–49.

[SAA10] Y. N. Silva, W. G. Aref, and M. H. Ali, “The similarity join database
operator,” in Proc. of the 26th Intl. Conf. on Data Engineering (ICDE 2010),
2010, pp. 892–903.

[Sar08] S. Sarawagi, “Information extraction,” Foundations and Trends in
Databases, vol. 1, no. 3, pp. 261–377, 2008.

[SB02] S. Sarawagi and A. Bhamidipaty, “Interactive deduplication using ac-
tive learning,” in Proc. of the 8th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining (SIGKDD 2002), 2002, pp. 269–278.

[SD06] P. Singla and P. Domingos, “Entity resolution with markov logic,” in
Proc. of the 6th IEEE Intl. Conf. on Data Mining (ICDM 2006), 2006, pp.
572–582.

[Seb02] F. Sebastiani, “Machine learning in automated text categorization,”
ACM Computing Surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[Sed05] E. Sedlar, “Managing structure in bits & pieces: the killer use case for
xml,” in Proc. SIGMOD Conf., 2005, pp. 818–821.

[SK03] S. Sarawagi and A. Kirpal, “Scaling up the alias duplicate elimination
system: A demonstration,” in Proc. of the 19th Intl. Conf. on Data Engi-
neering (ICDE 2003), 2003, pp. 783–785.

A Framework for XML Similarity Joins 197

Bibliography

[SK04] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates,”
in Proc. of the ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD
2004), 2004, pp. 743–754.

[SM83] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval.
McGraw-Hill, Inc. New York, 1983.

[sql03] “Information organization for standardization (iso). information
technology— database languages— sql—part 14: Xml-related specifi-
cations (sql/xml),” 2003.

[SSB05] E. Spertus, M. Sahami, and O. Buyukkokten, “Evaluating similarity
measures: a large-scale study in the orkut social network,” in Proc. of the
11th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,
2005, pp. 678–684.

[Ste07] B. Stein, “Principles of hash-based text retrieval,” 2007, pp. 527–534.

[STZ+99] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton, “Relational databases for querying xml documents: Limita-
tions and opportunities,” in Proc. of 25th Intl. Conf. on Very Large Data
Bases (VLDB’99), 1999, pp. 302–314.

[Tai79] K.-C. Tai, “The tree-to-tree correction problem,” Journal of the ACM,
vol. 26, no. 3, pp. 422–433, 1979.

[TBM+08] M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and G. Weikum,
“Topx: efficient and versatile top- query processing for semistructured
data,” The VLDB Journal, vol. 17, no. 1, pp. 81–115, 2008.

[TF95] H. R. Turtle and J. Flood, “Query evaluation: Strategies and optimiza-
tions,” Information Processing Management, vol. 31, no. 6, pp. 831–850,
1995.

[TKM02] S. Tejada, C. A. Knoblock, and S. Minton, “Learning domain-
independent string transformation weights for high accuracy object
identification,” in Proc. of the 8th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, 2002, pp. 350–359.

[TNB08] T. Tran, R. Nayak, and P. Bruza, “Combining structure and content sim-
ilarities for xml document clustering,” in Proc. of the 7th Australasian
Australasian Data Mining Conference (AusDM 2008), 2008, pp. 219–226.

[TS04] A. Trotman and B. Sigurbjörnsson, “Narrowed extended xpath i
(nexi),” in Proc. of the 3rd Intl. Workshop of the Initiative for the Evalua-
tion of XML Retrieval (INEX 2004), 2004, pp. 16–40.

198 A Framework for XML Similarity Joins

Bibliography

[TSK06] P.-N. Tan, M. Steinbach, and V. Kumar, “Introduction to data mining.”
Addison-Wesley, 2006.

[TSP08] M. Theobald, J. Siddharth, and A. Paepcke, “Spotsigs: Robust and ef-
ficient near duplicate detection in large web collections,” in Proc. of the
31st Intl. ACM SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR 2008), 2008, pp. 563–570.

[TSW03] M. Theobald, R. Schenkel, and G. Weikum, “Exploiting structure, an-
notation, and ontological knowledge for automatic classification of xml
data,” in Proc. WebDB Conf., 2003, pp. 1–6.

[TSW05] M. Theobald, R. Schenkel, and G. Weikum, “An efficient and versatile
query engine for topx search,” in Proc. of the 31st Intl. Conf. on Very Large
Data Bases (VLDB 2005), 2005, pp. 625–636.

[TW01] A. Theobald and G. Weikum, “Adding relevance to xml,” 2001, pp.
105–124.

[Ukk92] E. Ukkonen, “Approximate string matching with q-grams and maximal
matches,” Theoretical Computer Science, vol. 92, no. 1, pp. 191–211, 1992.

[VCÖ+07] Z. Vagena, L. S. Colby, F. Özcan, A. Balmin, and Q. Li, “On the effec-
tiveness of flexible querying heuristics for xml data,” in Proc. of the 5th
Intl. XML Database Symposium (XSym 2007), 2007, pp. 77–91.

[VHdSdM07] A. R. Vinson, C. A. Heuser, A. S. da Silva, and E. S. de Moura, “An
approach to xml path matching,” in 9th ACM International Workshop on
Web Information and Data Management (WIDM 2007), 2007, pp. 17–24.

[Via01] V. Vianu, “A web odyssey: From codd to xml,” in Proc. of the 20th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 2001), 2001, pp. 1–15.

[Wei07] G. Weikum, “Db&ir: both sides now,” in Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD 2007), 2007, pp. 25–30.

[Win88] W. E. Winkler, “Using the em algorithm for weight computation in the
fellegi-sunter model of record linkage,” in Proc. of the Section on Survey
Research Methods of the American Statistical Association, 1988, pp. 667–
671.

[Win06] W. Winkler, “Overview of record linkage and current research direc-
tions,” Statistical Research Division, U.S. Bureau of the Census, Tech.
Rep., 2006.

[WM89] Y. R. Wang and S. E. Madnick, “The inter-database instance identifica-
tion problem in integrating autonomous systems,” 1989, pp. 46–55.

A Framework for XML Similarity Joins 199

Bibliography

[WM07] M. Weis and I. Manolescu, “Declarative xml data cleaning with xclean,”
in Proc. of the 19th Intl. Conf. on Advanced Information Systems Engineering
(CAISE 2007), 2007, pp. 96–110.

[WMB99] I. H. Witten, A. Moffat, and T. C. Bell, Managing gigabytes: compressing
and indexing documents and images. Morgan Kaufmann, 1999.

[WMK+09] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-
Molina, “Entity resolution with iterative blocking,” in Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data (SIGMOD 2009), 2009, pp.
219–232.

[WN05] M. Weis and F. Naumann, “Dogmatix tracks down duplicates in xml,”
in Proc. of the ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD
2005), 2005, pp. 431–442.

[WSB98] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces,” in Proc. of 24th Intl. Conf. on Very Large Data Bases (VLDB’98),
1998, pp. 194–205.

[xml09] “Xml schema,” 2009, http://www.w3.org/XML/Schema.

[XP05] Y. Xu and Y. Papakonstantinou, “Efficient keyword search for smallest
lcas in xml databases,” 2005, pp. 537–538.

[xtc] “The xtc project: Native xml data management,”
http://wwwlgis.informatik.uni-kl.de/cms/dbis/projects/xtc/.

[XWL08] C. Xiao, W. Wang, and X. Lin, “Ed-join: An efficient algorithm for simi-
larity joins with edit distance constraints,” Proc. of the VLDB Endowment
(PVLDB), vol. 1, no. 1, pp. 933–944, 2008.

[XWLS09] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity joins,”
in Proc. of the 25th Intl. Conf. on Data Engineering (ICDE 2009), 2009, pp.
916–927.

[XWLY08] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins for
near duplicate detection,” in Proc. of the 17th Intl. Conf. on World Wide
Web (WWW 2008), 2008, pp. 131–140.

[YASU01] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, “Xrel: a path-
based approach to storage and retrieval of xml documents using rela-
tional databases,” ACM Transactions on Internet Technology, vol. 1, no. 1,
pp. 110–141, 2001.

200 A Framework for XML Similarity Joins

Bibliography

[YJF98] B.-K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” in Proc. of the 14th Intl. Conf. on
Data Engineering (ICDE’98), 1998, pp. 201–208.

[YKT05] R. Yang, P. Kalnis, and A. K. H. Tung, “Similarity evaluation on tree-
structured data,” in Proc. of the 2005 ACM SIGMOD Intl. Conf. on Man-
agement of Data (SIGMOD 2005). ACM, 2005, pp. 754–765.

[YP97] Y. Yang and J. O. Pedersen, “A comparative study on feature selection
in text categorization,” in Proc. of the 14th Intl. Conf. on Machine Learning
(ICML 1997), 1997, pp. 412–420.

[YQJ02] C. Yu, H. Qi, and H. V. Jagadish, “Integration of ir into an xml
database,” in Proc. of the 1st Workshop of the INitiative for the Evaluation
of XML Retrieval (INEX), 2002, pp. 162–169.

[YSLH03] K.-P. Yee, K. Swearingen, K. Li, and M. A. Hearst, “Faceted metadata
for image search and browsing,” in Proc. CHI Conf., 2003, pp. 401–408.

[Zak02] M. J. Zaki, “Efficiently mining frequent trees in a forest,” in Proc. of the
8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,
2002, pp. 71–80.

[ZB06] J. Zobel and Y. Bernstein, “The case of the duplicate documents mea-
surement, search, and science,” in Proc. of Frontiers of WWW Research
and Development (APWeb 2006), 2006, pp. 26–39.

[ZL77] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Transactions on Information Theory, vol. 23, no. 3, 1977.

[ZM93] J. Ziv and N. Merhav, “A measure of relative entropy between individ-
ual sequences with application to universal classification,” IEEE Trans-
actions on Information Theory, vol. 39, no. 4, pp. 1270–1279, 1993.

[ZM98] J. Zobel and A. Moffat, “Exploring the similarity space,” SIGIR Forum,
vol. 32, no. 1, pp. 18–34, 1998.

[ZS89] K. Zhang and D. Shasha, “Simple fast algorithms for the editing dis-
tance between trees and related problems,” SIAM Journal on Computing,
vol. 18, no. 6, pp. 1245–1262, 1989.

[ZSS92] K. Zhang, R. Statman, and D. Shasha, “On the editing distance between
unordered labeled trees,” Information Processing Letters (IPL), vol. 42,
no. 3, pp. 133–139, 1992.

A Framework for XML Similarity Joins 201

Bibliography

202 A Framework for XML Similarity Joins

Curriculum Vitae

Leonardo Andrade Ribeiro

Personal Information

Date of Birth: October 13, 1976

Place of Birth: Quirinópolis, Brazil

Nationality: Brazilian

Marital Status: Single

Contact Information

University of Kaiserslautern,

Dept. of Computer Science, AG DBIS

P.O. Box 3049

D-67653 Kaiserslautern, Germany

Phone: +49-631-205-2159

Fax: +49-631-205-3299

Room: 36/320

Education

1986–1989

Secondary School, Colégio Estadual Independência, Quirinópolis, Brazil.

1990–1992

Secondary School, Colégio Educacional de Quirinópolis (CEQ), Quirinópolis, Brazil.

203

Curriculum Vitae

1994–2000

Bachelor of Computer Science, Universidade Federal de Goiás (UFG), Gôiania,
Brazil.

2000–2002

Master of Sciences
Dissertation: A gateway for distributed medical image sources using CORBA for
integration of teleradiology services.
Supervisor: Prof. Dr. Aldo von Wangenheim.
Universidade Federal de Santa Catarina (UFSC)
Santa Catarina, Brazil.

Research Experience

2002

Research Assistant on the Germany/Brazilian Cyclops Project. Research field:
Heterogeneous medical databases.

October 2002–November 2002

Guest researcher at the University of Kaiserslautern, Germany. Research activities:
Healthcare decision support tools in joint work with the research team of Prof. Dr.
Michael M. Richter.

January 2003–June 2003

Research Assistant on the I2TV Project. Research field: Framework for digital
interactive television.

July 2003–June 2004

Research Assistant on the Centro Integrado Multidisciplinar de Pesquisas em
Bioinformtica de Santa Catarina Project. Research field: Parallel computing for
bioinformatics.

Since April 2005

Scientific staff member of Database and Information Systems Group at the
University of Kaiserslautern, Germany.

204 A Framework for XML Similarity Joins

	Acknowledgments
	Abstract
	1 Introduction
	1.1 Requirements for Similarity Joins on XML Trees
	1.2 Thesis Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Entity Matching
	2.1.1 Early Work
	2.1.2 Conceptual EM Framework
	2.1.3 Recent EM Approaches
	2.1.4 Similarity Join Use Cases

	2.2 XML Similarity Joins
	2.2.1 XML Data Model
	2.2.2 Data Assumptions
	2.2.3 Problem Definition
	2.2.4 Related Approaches

	2.3 Similarity Functions
	2.3.1 Edit-distance Similarity Functions
	2.3.2 Token-based Similarity Functions
	2.3.3 Edit-distance vs. Token-based
	2.3.4 Token-based Similarity Function Notation

	2.4 Quality Measurements
	2.4.1 Experimental Approach
	2.4.2 Evaluation Measures

	2.5 Summary

	3 Similarity Functions for XML Structure
	3.1 Existing Approaches for XML Structural Similarity
	3.1.1 Tree Edit Distance
	3.1.2 Discrete Fourier Transformation
	3.1.3 Entropy-based Similarity
	3.1.4 pq-grams
	3.1.5 Windowed pq-grams
	3.1.6 Further Tokenization Methods

	3.2 Structural Similarity Based on Path Clustering
	3.2.1 Path Similarity Function
	3.2.2 The Path Synopsis
	3.2.3 XML Representation Based on Path Clustering
	3.2.4 Structural Weighting Strategies
	3.2.5 Related Work

	3.3 Experiments
	3.3.1 The Competitors
	3.3.2 Datasets
	3.3.3 XML Fuzzy Duplicate Generation
	3.3.4 Comparison of All Similarity Functions
	3.3.5 Comparison of Similarity Functions for Ordered Trees
	3.3.6 Comparison of Similarity Functions for Unordered Trees and Weighting Schemes
	3.3.7 Experimental Summary

	3.4 Summary

	4 Combining Text and Structure
	4.1 Text and Structure Delimitation
	4.2 Combination Approach to Ordered Trees
	4.3 Combination Approach to Unordered Trees
	4.3.1 Textual Tokenization Function
	4.3.2 Combination Strategies

	4.4 Entity Description Selection Using a Path Cluster Summary
	4.5 Experiments
	4.5.1 Approaches Evaluated
	4.5.2 Datasets
	4.5.3 Comparison of All Similarity Functions

	4.6 Related Work
	4.7 Summary

	5 Set Similarity Joins
	5.1 Preliminaries
	5.1.1 Background
	5.1.2 The ppjoin Algorithm

	5.2 Generalizing Prefix Filtering
	5.2.1 Candidate Reduction vs. Runtime Efficiency
	5.2.2 The Min-prefix Concept
	5.2.3 The mpjoin Algorithm

	5.3 Further Optimizations
	5.3.1 Verification Phase
	5.3.2 Optimizing Overlap Score Accumulation

	5.4 Practical Aspects
	5.4.1 Disk-Based External Version
	5.4.2 Parallel Execution

	5.5 The Weighted Case
	5.6 Evaluation Using Multi-Set Representation
	5.7 Experiments
	5.7.1 Algorithms
	5.7.2 Datasets
	5.7.3 Performance Results on Synthetic Datasets
	5.7.4 Performance Results on Real Datasets
	5.7.5 Scalability Experiments
	5.7.6 Performance Results on XML Data
	5.7.7 Experimental Summary

	5.8 Related Work
	5.9 Summary

	6 Integration into XTC
	6.1 The XML Transaction Coordinator
	6.1.1 XTC's Architecture
	6.1.2 Node Identification using DeweyID
	6.1.3 Path-oriented Storage Model
	6.1.4 Indexing

	6.2 The TSJ Operator
	6.2.1 Tree Similarity Join
	6.2.2 A Glimpse on TSJ Evaluation

	6.3 Tree Access
	6.3.1 TSJ Input Selection
	6.3.2 TSJ Input Scan

	6.4 Profile Generation
	6.4.1 Ordered Trees
	6.4.2 Unordered Trees

	6.5 Auxiliary Structures: Building and Maintenance
	6.5.1 PCS and PCR-PCI Table
	6.5.2 Token-Frequency Table
	6.5.3 Reducing Maintenance Cost

	6.6 TSJ as a Query Evaluation Plan
	6.7 Further Integration
	6.7.1 Query Language
	6.7.2 Query Processing
	6.7.3 Materialized Input Maintenance

	6.8 Experiments
	6.9 Related Work
	6.10 Summary

	7 Conclusions and Future Research
	7.1 Conclusions
	7.2 Future Research

	Bibliography
	Curriculum Vitae

