
8 communicationS of the acm | OcTOber 2010 | VOL. 53 | nO. 10

follow us on twitter at http://twitter.com/blogcacm

the Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLoG@cacm
community. in each issue of Communications, we’ll publish
selected posts or excerpts.

and that recovery from errors has more
dimensions to consider. We assume a
typical hardware model of a collection
of local processing and storage nodes
assembled into a cluster using LAN
networking. The clusters, in turn, are
wired together using WAN networking.

Let’s start with a discussion of what
causes errors in databases. The follow-
ing is at least a partial list:

1. Application errors. The applica-
tion performed one or more incorrect
updates. Generally, this is not dis-
covered for minutes to hours there-
after. The database must be backed
up to a point before the offending
transaction(s), and subsequent activity
redone.

2. Repeatable DBMS errors. The
DBMS crashed at a processing node.
Executing the same transaction on
a processing node with a replica will
cause the backup to crash. These er-
rors have been termed “Bohr bugs.”2

3. Unrepeatable DBMS errors. The
database crashed, but a replica is like-
ly to be ok. These are often caused by
weird corner cases dealing with asyn-
chronous operations, and have been
termed “Heisenbugs.”2

4. Operating system errors. The OS
crashed at a node, generating the “blue
screen of death.”

5. A hardware failure in a local clus-
ter. These include memory failures,
disk failures, etc. Generally, these
cause a “panic stop” by the OS or the
DBMS. However, sometimes these fail-
ures appear as Heisenbugs.

6. A network partition in a local
cluster. The LAN failed and the nodes

michael Stonebraker
“errors in Database
Systems, eventual
consistency, and
the caP theorem”
http://cacm.acm.org/

blogs/blog-cacm/83396

Recently, there has been considerable
renewed interest in the CAP theorem1
for database management system
(DBMS) applications that span multi-
ple processing sites. In brief, this theo-
rem states that there are three interest-
ing properties that could be desired by
DBMS applications:

C: Consistency. The goal is to al-
low multisite transactions to have the
familiar all-or-nothing semantics,
commonly supported by commercial
DBMSs. In addition, when replicas are
supported, one would want the repli-
cas to always have consistent states.

A: Availability. The goal is to sup-
port a DBMS that is always up. In other
words, when a failure occurs, the sys-
tem should keep going, switching over
to a replica, if required. This feature
was popularized by Tandem Comput-
ers more than 20 years ago.

P: Partition-tolerance. If there is a

network failure that splits the process-
ing nodes into two groups that cannot
talk to each other, then the goal would
be to allow processing to continue in
both subgroups.

The CAP theorem is a negative result
that says you cannot simultaneously
achieve all three goals in the presence
of errors. Hence, you must pick one ob-
jective to give up.

In the NoSQL community, the CAP
theorem has been used as the justifi-
cation for giving up consistency. Since
most NoSQL systems typically disallow
transactions that cross a node bound-
ary, then consistency applies only to
replicas. Therefore, the CAP theorem is
used to justify giving up consistent rep-
licas, replacing this goal with “eventual
consistency.” With this relaxed notion,
one only guarantees that all replicas
will converge to the same state even-
tually, i.e., when network connectiv-
ity has been reestablished and enough
subsequent time has elapsed for rep-
lica cleanup. The justification for giv-
ing up C is so that the A and P can be
preserved.

The purpose of this blog post is to as-
sert that the above analysis is suspect,

in Search of
Database consistency
Michael Stonebraker discusses the implications of
the CAP theorem on database management system applications
that span multiple processing sites.

DOI:10.1145/1831407.1831411 http://cacm.acm.org/blogs/blog-cacm

blog@cacm

OcTOber 2010 | VOL. 53 | nO. 10 | communicationS of the acm 9

can no longer all communicate with
each other.

7. A disaster. The local cluster is
wiped out by a flood, earthquake, etc.
The cluster no longer exists.

8. A network failure in the WAN con-
necting the clusters together. The WAN
failed and clusters can no longer all
communicate with each other.

First, note that errors 1 and 2 will
cause problems with any high avail-
ability scheme. In these two scenarios,
there is no way to keep going; i.e., avail-
ability is impossible to achieve. Also,
replica consistency is meaningless; the
current DBMS state is simply wrong.
Error 7 will only be recoverable if a lo-
cal transaction is only committed after
the assurance that the transaction has
been received by another WAN-con-
nected cluster. Few application build-
ers are willing to accept this kind of
latency. Hence, eventual consistency
cannot be guaranteed, because a trans-
action may be completely lost if a disas-
ter occurs at a local cluster before the
transaction has been successfully for-
warded elsewhere. Put differently, the
application designer chooses to suf-
fer data loss when a rare event occurs,
because the performance penalty for
avoiding it is too high.

As such, errors 1, 2, and 7 are exam-
ples of cases for which the CAP theorem
simply does not apply. Any real system
must be prepared to deal with recovery
in these cases. The CAP theorem can-
not be appealed to for guidance.

Let us now turn to cases where the
CAP theorem might apply. Consider
error 6 where a LAN partitions. In my
experience, this is exceedingly rare,
especially if one replicates the LAN (as
Tandem did). Considering local fail-
ures (3, 4, 5, and 6), the overwhelming
majority cause a single node to fail,
which is a degenerate case of a net-
work partition that is easily survived by
lots of algorithms. Hence, in my opin-
ion, one is much better off giving up P
rather than sacrificing C. (In a LAN en-
vironment, I think one should choose
CA rather than AP.) Newer SQL OLTP
systems appear to do exactly this.

Next, consider error 8, a partition
in a WAN network. There is enough
redundancy engineered into today’s
WANs that a partition is quite rare. My
experience is that local failures and
application errors are way more likely.

Moreover, the most likely WAN fail-
ure is to separate a small portion of
the network from the majority. In this
case, the majority can continue with
straightforward algorithms, and only
the small portion must block. Hence, it
seems unwise to give up consistency all
the time in exchange for availability of
a small subset of the nodes in a fairly
rare scenario.

Lastly, consider a slowdown either
in the OS, the DBMS, or the network
manager. This may be caused by a skew
in load, buffer pool issues, or innu-
merable other reasons. The only deci-
sion one can make in these scenarios
is to “fail” the offending component;
i.e., turn the slow response time into a
failure of one of the cases mentioned
earlier. In my opinion, this is almost
always a bad thing to do. One simply
pushes the problem somewhere else
and adds a noticeable processing load
to deal with the subsequent recovery.
Also, such problems invariably occur
under a heavy load—dealing with this
by subtracting hardware is going in the
wrong direction.

Obviously, one should write software
that can deal with load spikes without
failing; for example, by shedding load
or operating in a degraded mode. Also,
good monitoring software will help
identify such problems early, since the
real solution is to add more capacity.
Lastly, self-reconfiguring software that
can absorb additional resources quick-
ly is obviously a good idea.

In summary, one should not throw
out the C so quickly, since there are
real error scenarios where CAP does
not apply and it seems like a bad trade-
off in many of the other situations.

References
1. eric brewer, “towards robust distributed systems,”

http://www.cs.berkeley.edu/~brewer/cs262b-2004/
Podc-keynote.pdf

2. Jim gray, “why do computers stop and what can be
done about it,” tandem computers technical report
85.7, cupertino, ca, 1985. http://www.hpl.hp.com/
techreports/tandem/tr-85.7.pdf

disclosure: Michael stonebraker is associated with four
startups that are producers or consumers of database
technology.

Readers’ comments
“Degenerate network partitions” is a very
good point—in practice I have found that
most network partitions in the real world
are of this class.

I like to term certain classes of network
partitions “trivial.” If there are no clients
in the partitioned region, or if there are
servers in the partitioned region, it is then
trivial. So it could involve more than one
machine, but it is then readily handled.

—Dwight Merriman

I think a lot of the discussion about
distributed database semantics, much like
a lot of the discussion about SQL vs. NoSQL,
has been somewhat clouded by a shortage
of pragmatism. So an analysis of the
CAP theorem in terms of actual practical
situations is a welcome change :-)

My company, GenieDB, has developed
a replicated database engine that
provides “AP” semantics, then developed
a “consistency buffer” that provides
a consistent view of the database as
long as there are no server or network
failures; then providing a degraded
service, with some fraction of the records
in the database becoming “eventually
consistent” while the rest remain
“immediately consistent.” Providing a
degraded service rather than no service
is a good thing, as it reduces the cost
of developing applications that use a
distributed database compared to existing
solutions, but that is not something that
somebody too blinded by the CAP theorem
might consider!

In a similar vein, we’ve provided both
NoSQL and SQL interfaces to our database,
with different trade-offs available in both,
and both can be used at once on the same
data. People need to stop fighting over X vs.
Y and think about how to combine the best
of both in practical ways!

—Alaric Snell-Pym

Michael Stonebraker is an adjunct professor at the
Massachusetts institute of technology.

© 2010 acM 0001-0782/10/1000 $10.00

“in the noSQL
community,
the caP theorem
has been used
as the justification
for giving up
consistency.”

