
An Integrative Approach to Query Optimization
in Native XML Database Management Systems

Andreas M. Weiner
Databases and Information Systems Group

Department of Computer Science
University of Kaiserslautern, P. O. Box 3049

D-67653 Kaiserslautern, Germany
weiner@cs.uni-kl.de

Theo Härder
Databases and Information Systems Group

Department of Computer Science
University of Kaiserslautern, P. O. Box 3049

D-67653 Kaiserslautern, Germany
haerder@cs.uni-kl.de

ABSTRACT
Even though an effective cost-based query optimizer is of
utmost importance for the efficient evaluation of XQuery
expressions in native XML database systems, such a com-
ponent is currently out of sight, because former approaches
do not pay attention to the latest advances in the area of
physical operators (e. g., Holistic Twig Joins and advanced
indexes) or just focus only on some of them.

To support the development of native XML query opti-
mizers, we introduce an extensible cost-based optimization
framework that integrates the cutting-edge XML query eval-
uation operators into a single system. Using the well-known
plan generation techniques from the relational world and a
novel set of plan equivalences—which allows for the genera-
tion of alternative query plans consisting of Structural Joins,
Holistic Twig Joins, and numerous indexes (especially path
indexes and content-and-structure indexes)—our optimizer
can now benefit from the knowledge on native XML query
evaluation to speed-up query execution significantly.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing—XML, XQuery

General Terms
Design, Experimentation, Performance, Theory

1. INTRODUCTION
Yet in the early days of XML database research, cost-

based query optimization became an important issue in the
context of Lore [16]. One of the big lessons learned from re-
lational database systems is the inherent power of a declar-
ative query language, which supports a user in describing
what he is looking for, instead of how to get this informa-
tion, in combination with an optimization infrastructure al-
lowing for an efficient evaluation of such queries. Since the
XML landscape has been shaped over the last decade, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS10 2010, August 16-18, Montreal, QC [Canada]
Editor: Bipin C. DESAI
Copyright 2010 ACM 978-1-60558-900-8/10/08 ...$10.00.

world has changed a lot: new join operators and indexes
have been introduced and XQuery has become the predom-
inant XML query language. Even though XQuery is not
completely declarative, it encompasses a large fragment of
declarative language constructs. Using the novel join oper-
ators and indexes (Section 1.1), a plethora of possible query
plans can be formed. Once again, by taking advantage of
cost-based query optimization, we can provide reliable and
efficient query plans for a large range of queries.

1.1 Background
Amongst others, native XML Database Management Sys-

tems (XDBMSs) provide a universal platform for efficiently
storing, indexing, and querying XML documents of varying
sizes, structures, and complexities. Structural relationships,
e. g., child or descendant, play a dominant role in querying
XML documents. Therefore, the research community pro-
posed two different ways for evaluating such relationships:
Structural Joins (SJs) [2] and Holistic Twig Joins (HTJs)
[4]. The former class of operators evaluates structural re-
lationships similar to relational sort-merge joins: To evalu-
ate an XPath expression consisting of several location steps,
each step is evaluated using a single SJ operator. By forming
a cascade of SJ operators, this calls for classical join order
optimization and access path selection. On the other hand,
HTJ operators are n-way merge join operators that can eval-
uate path expressions—or even more complex patterns such
as twigs—in a holistic manner. Here, only cost-based access
path selection is performed.

Along with SJ and HTJ operators, several approaches for
indexing XML documents were proposed. These methods
can be partitioned into three equivalence classes: primary,
secondary, and tertiary access paths. Primary access paths

(PAPs) serve as input for navigational primitives as well as
for SJ and HTJ operators. The most important represen-
tative of this class is a document index that indexes a doc-
ument using its unique node labels as keys. Furthermore,
a content index allows to access attribute and text content
[16]. Secondary access paths (SAPs) allow for more efficient
access to specific element nodes using element indexes [4].
They are mandatory for the efficient evaluation of struc-
tural predicates by SJ and HTJ operators. Tertiary access

paths (TAPs) like path indexes [17] or content-and-structure
(CAS) indexes [6] use a Dataguide [8] for providing efficient
access to entire paths in a document.

In the XML world, path indexes and CAS indexes become
first-class citizens for query evaluation, because they are as

(a) Sample XML document (b) Path synopsis

Figure 1: Sample XML document and corresponding path synopsis

powerful as SJ or HTJ operators. Using them to the full
extent, allows to significantly reduce:

• CPU cost, because the time for deciding structural re-
lationships by SJs or HTJs can now be saved
• IO cost, as only a single access path has to be scanned.

1.2 Problem Statement
To arrange the various SJ, HTJ, and access paths in such

a way that the best possible plan is created, an optimizer’s
plan enumerator applies various equivalence rules for gener-
ating alternative plans. In recent years, only SJ reordering
has been considered in cost-based XML query optimization
settings [25]. Even though this approach is self-evident be-
cause it proved to be effective in relational query optimiza-
tion, it does not pay attention to the various HTJ operators
and indexes proposed in the literature. Today, we cannot be
sure that SJ reordering is still the most effective strategy for
XML query optimization. Therefore, the optimizer must be
able to take advantage of both of them.

Although TAPs provide functionality comparable to ma-
terialized views in relational database systems and allow to
quickly access all instances of a specific path in an XML
document, recent optimization approaches do not consider
them, too. As we have argued in Section 1.1, exploiting
TAPs helps to reduce IO and CPU costs dramatically while
making the overall QEP much simpler, because the number
of operators is reduced significantly.

Currently, other authors are only focusing on cost-based
XPath optimization. As XQuery is becoming the de-facto
query language for XML, FLWOR expressions and other
fancy language features add additional complexity and fur-
ther increase the search space for optimizers tremendously.

1.3 Our Contribution
In summary, this paper contributes the following:

• We describe the cost-based XQuery optimizer imple-
mented in the XML Transaction Coordinator (XTC)—
a full-fledged native XDBMS.

• We provide a set of plan-equivalence rules that allow to
take advantage of SJs, HTJs, PAPs, SAPs, and TAPs.

• We introduce a cost model that is used by our opti-
mizer.

• We empirically evaluate the reliability of our cost mod-
el and assess the effectiveness of our optimization ap-
proach for XQuery/XPath queries.

1.4 Related Work
In this section, we give a brief assessment of relevant pub-

lications on relational cost-based query optimization, opti-
mization frameworks, and XML query optimization.

Cost-Based Query Optimization in RDBMSs. Selinger
et al. [22] proposed the first cost-based query optimizer,
which was part of System R—the prototype of the first re-
lational database system. The optimizer was capable of op-
timizing simple and linear SPJ (select, project, and join)
queries. The authors introduced a simple cost model based
on weighted IO and CPU costs and used statistics on the
number of data pages consumed by relations to bind the
cost model’s variables to concrete values. Their dynamic
programming algorithm initially selects optimal operator fit-
tings for access paths. Thereafter, an optimal join order
is determined based on a local optimality assumption. To
early prune the search space, not all possible enumerations
are taken into account. Instead, they only focus on inter-
esting join orders, i. e., orders that do not require additional
introductions of Cartesian products.

Graefe and DeWitt [10] presented the EXODUS Opti-

mizer Generator. This system is not tailored to a specific
data model and supports the specification of algebraic trans-
formations as rules. Together with a concrete data model,
these rules serve as input for an optimizer generator, which
creates a tailor-made query optimizer.

The Starburst project [19] contributed important concepts
to the emerging research field of query optimization. Among
other things, the authors present the so-called Query Graph
Model (QGM)—an extended relational algebra with a strong
emphasis on structural relationships between language con-
structs. Beyond that, they introduced the concepts of rule-
based query optimizers that can be easily modified by adding
new rules for query transformation and query translation.
Hence, this approach greatly improves the extensibility of
such systems.

The Volcano project [11] as well as the Cascades project [9]
are heirs of the EXODUS project. The authors distinguish
between transformation rules, which serve for algebra-to-
algebra transformations, and implementation rules describ-
ing the mapping from logical algebra expressions to operator
trees. In contrast to the System R approach [22], they use
a top-down query optimization algorithm that first takes a
bird’s eye view on QEPs.

Query Optimization Frameworks. Lanzelotte and Val-
duriez [14] contributed an extensible framework for query
optimization that models the search space independent of a
particular search strategy. Using this approach, developers
can build highly-extensible plan enumeration frameworks.

Kabra and DeWitt [13] proposed OPT++ as an object-
oriented approach for extensible query optimization. By
combining an extensible search component with an exten-
sible logical and physical algebra representation, they lift
the work of Lanzelotte and Valduriez to the object-oriented
level.

XML Query Optimization. The classic work of McHugh
and Widom [16] on the optimization of XML queries only
targets at the isolated and strictly limited problem of opti-
mizing path expressions using navigational access paths and
lacks support for SJ and HTJ operators.

Wu et al. [25] proposed five novel dynamic programming
algorithms for structural join reordering. Their approach is
orthogonal to our work, i. e., it can be employed to choose
the best join order in SJ-only scenarios. Compared to our
work, they use only a very simple cost model for driving the
join-reordering process and do not consider the combination
of SJ and HTJ operators as well as different index-based
access operators.

Zhang et al. [26] introduced several statistical learning
techniques for XML cost modeling. In contrast to our work,
which will follow a static cost modeling approach, they dem-
onstrate how to describe the cost of a navigational access
operator. Unfortunately, they do not cover set-oriented SJ
and HTJ operators.

Balmin et al. [3] sketch the development of a hybrid cost-
based optimizer for SQL and XQuery being part of DB2

XML. Compared to our approach, they evaluate every path
expression using an HTJ operator and cannot decide on a
fine-granular level whether to use SJ operators or not.

Che et al. [5] describe an XPath optimization framework
that performs so-called deterministic (algebraic) optimiza-
tion. They provide no cost-based optimization framework
and do not use a full-fledged DBMS as testbed.

Georgiadis et al. [7] describe a first approach to cost-based
XPath optimization. In contrast to our proposal, which sup-
ports the optimization of XQueries, too, they do not consider
HTJs and advanced access paths like path indexes or CAS
indexes.

2. PRELIMINARIES
Our XQuery optimization framework is part of the XML

Transaction Coordinator (XTC)1, which is our prototype
of a native XDBMS providing full transaction support and
differing APIs for accessing XML data (e. g., DOM, Sax, and
XQuery). To understand the cost formulae (Section 3.2)
of the various access paths, we first describe their physical
representation in our system.

To enable efficient evaluation of structural predicates, a
node labeling scheme is required, that assigns each node in
an XML document a unique identifier that enables to de-
cide for two given nodes the XPath axis they are related
to—without further document access. As a prefix-based la-
beling scheme, DeweyIDs [18] qualify very well for this job.
For example, Figure 1(a) shows an XML document that is

1Project website: http://www.xtc-project.de

labeled with DeweyIDs. By just looking at the DeweyIDs,
we can see that book (label 1.5.5) is a child node of books

(label 1.5), because they share the same prefix and their
level information (total number of odd figures separated by
“.”) differs only by one.

Figure 1(b) depicts the corresponding Path Synopsis (PS)
for the document shown in Figure 1(a). A PS is a struc-
tural summary, which is actually an extended Data Guide
[8], that is annotated with so-called Path Class References

(PCRs). Every PCR refers to a unique path in the docu-
ment. For example, PCR 3 refers to all /bib/books/book
paths. Furthermore, the PS provides statistical information
on the number of instances of each PCR. Figure 2(a) shows
the document index. The document index is our PAP, i. e.,
our default access path, that simply indexes the complete
document using the DeweyIDs as keys. Using a shared scan
over it, inputs for SJ, HTJ, and navigational primitives can
be provided. Figure 2(b) illustrates a SAP providing effi-
cient access to specific element nodes. The element index is
a two-stage index where element names (e. g., book) serve
as keys in the name directory. Each entry points to a node-

reference index that contains all nodes in document order
having the same element name.

(a) Document index (b) Element index

Figure 2: Primary and secondary access path

Tertiary access paths provide advanced query processing ca-
pabilities. They can be considered as materialized views on
paths in an XML document. Our system provides a path
index and an additional content-and-structure (CAS) in-
dex, which both can have their values clustered by PCRs
or DeweyIDs.

(a) Path index (b) CAS index

Figure 3: Tertiary access paths

Figure 3(a) shows a path index for our sample document.
Here, the tuple (PCR, DeweyID) serves as key in the in-
dex. For example, if we want to evaluate the path expres-
sion/bib//book/title, we can use the knowledge on the
document’s structure provided by the PS. Thus, we can in-
fer that we will find all nodes satisfying the path expression
by scanning the path index for all records having PCR 6.

Content-and-structure (CAS) indexes support paths that
end on content nodes (attribute or text content). Here,
the content node’s value serves as key in the index. The
indexed value is formed by a tuple (PCR, DeweyID) or
(DeweyID, PCR), depending on the clustering. Figure 3(b)

illustrates a CAS index (with PCR clustering) that is defined
for the content nodes of the path /bib/books/book/title

and /bib/books/book/author, respectively. As we have al-
ready discussed in Section 1.1, CAS indexes are a potent
means for supporting the efficient evaluation of point or
range predicates on content nodes. They are extremely help-
ful, because, in contrast to structural relationships, which
can be decided by just looking at the DeweyIDs of the in-
volved nodes, the evaluation of value-based predicates would
otherwise require more expensive accesses to a content index
or—even worse—to the document index.

3. OPTIMIZATION FRAMEWORK
The sequence-based XML Query Graph Model (XQGM),

which is an extension to the seminal Query Graph Model
(QGM) [19], serves as solid foundation for our query opti-
mization approach. The XQGM is equivalent to the XQuery
Core Language (normalized version of XQuery without syn-
tactic sugar) and supports the most important concepts of
XQuery 1.0 such as FLWOR expressions and node construc-
tion.

After normalizing an XQuery expression, several algebraic
rewrites (e. g., query unnesting) are applied to get rid of
the node-at-a-time evaluation (especially all the nested for-
loops for the evaluation of structural relationships) inher-
ent to the XQuery Core Language. Furthermore, text()

accesses are pushed up as much as possible. After query
rewrite, we get an XQGM representation where almost
all operators follow the classical set-at-a-time processing
paradigm, because, now, all structural relationships are eval-
uated using logical SJs. We can pass on this representa-
tion to the query optimizer that selects the best join order,
optimal operator implementations, and the cheapest access
paths.

Due to the lack of space, we cannot give a full introduction
to the XQGM. Instead, we only briefly sketch the XQGM
representation for an XQuery expression2.

In Figure 9 (Appendix), you can see a slightly simplified
version of XMark benchmark query Q11. Each XQGM oper-
ator receives and produces (nested) sequences of DeweyIDs
enriched with PCRs and probable content nodes. In addi-
tion to the Select operator provided by the classical QGM
for the evaluation of value-based joins, the XQGM provides
a logical SJ operator that joins two sequences of node IDs
based on their structural relationships, which can be de-
cided using their corresponding DeweyIDs. The SJ opera-
tors receive their initial inputs from Access operators that
provide access to the node labels of element or attribute
nodes. The Group By operators group their inputs by
doc("auction.xml")//person. The Merge operator filters
out all doc("auction.xml")//person subtrees that do not
have profile/@income and name subtrees, respectively. Fur-
thermore, for each $p/name that satisfies the merge predi-
cate, the text() expression is evaluated.

The projection specification (PROJ_SPEC) describes which
tuple sequences are passed on to the subsequent operator.
Each operator is connected to a tuple variable (filled circles)
that can have three different quantifiers: for (F), let (L), and
exists (E). In this example, only F and L are used, which
express the corresponding XQuery language constructs. For

2A formal definition of the syntax and semantics of the
XQGM is provided by Mathis [15].

F-quantified tuple variables, a full iteration over their input
is performed, whereas L-quantified tuple variables just bind
the complete input sequences for predicate evaluation.

The top-most Select operator (below the output node)
materializes the query result. The second Select operator
evaluates a value-based join (as given in the where clause).
Solid lines describe the direct data flow, whereas the dot-
ted line refers to the provisioning of the current evaluation
context. Here, the Select operator’s left tuple variable re-
ceives the current evaluation context. For each sequence
item provided by the context, the value-based join predi-
cate is evaluated for each tuple received via the right tuple
variable that provides all tuples that satisfy the following
expression: doc("auction.xml")//initial.

This section is organized as follows: In Section 3.1, we
describe the equivalence rules that enable the plan enumer-
ator to generate alternative plans. Next, the cost model
that allows the plan enumerator to prune expensive plans is
presented in Section 3.2.

3.1 Plan Equivalences
At the beginning of query optimization, for every XQGM

instance, a corresponding plan (which normally consists of
subplans) is derived. A plan encompasses all static proper-

ties of the corresponding XQGM instance, e. g., structural
predicates, projection specifications, or orderings that have
to be preserved. In addition to that, each plan contains
dynamic properties, e. g., required sorting on inputs, cost
estimates, and the currently assigned physical operator. In
contrast to static properties, dynamic properties may change
during every state transition.

For a more convenient formulation of the plan equiva-
lences, we use the following nomenclature: We denominate
a plan and its properties by P[p1, . . . , pn], whereas P is the
type of the plan and the properties p1 . . . pn are enclosed in
squared brackets. For our equivalence rules, we distinguish
between the following types of plans:

Pi A plan of an arbitrary type

Aj Access plan (scan over a PAP or SAP)

SJt Structural Join of type t (omitted if irrelevant)

HTJ Holistic Twig Join

TAP Scan over a TAP

Every plan may have several of the following properties:

I Currently assigned physical operator

P Predicate (e. g., XPath axis)

D Input sequences where duplicates must be removed

O Sequences to be projected out

Consecutively, we use the following notation to describe the
plan equivalences: P1 ≡c P2. This reads: plan P1 is equiv-
alent to plan P2 iff the condition c is satisfied. To not com-
promise readability, we only give informal definitions of c.

Implementation Exchange. Let Op be the set of all phys-
ical operators available to the optimizer. The implemen-
tation (p1 ∈ Op) of plan P can be changed iff there is
another implementation p2 ∈ Op that implements P, too:
P[I : p1] ≡c P[I : p2]

Structural Join Associativity. In contrast to the relational
world, where a single join associativity rule is sufficient, the

a) Structural join associativity SJ⋊ [P : b//c, O : c, D : c]

SJ⋊ [P : a//b, O : b,D : b]

P1[O : a] P2[O : b]

P3[O : c]

≡c SJ⋊ [P : a//b, O : c, D : c]

P1[O : a] SJ1[P : b//c, O : {b, c}]

P2[O : b] P3[O : c]

b) Structural join commutativity SJ [P : a θ b]

P1[O : a] P2[O : b]

≡c SJ [P : b
←−
θ a]

P2[O : b] P1[O : a]

c) Structural join fusion SJ[P : en−1 θn−1 en]

. . .

SJ[P : e1 θ1 e2]

A1[O : e1] A2[O : e2]

An[O : en]

≡c HTJ[P : e1 θ1 e2, . . . , en−1 θn−1 en]

A1[O : e1] A2[O : e2] . . . An[O : en]

SJ[P : en−1 θn−1 en]

HTJ[P : e1 θ1 e2, . . . , en−2 θn−2 en−1]

A1[O : e1] A2[O : e2] . . . An−1[O : en−1]

An[O : en]

≡c HTJ[P : e1 θ1 e2, . . . , en−1 θn−1 en]

A1[O : e1] A2[O : e2] . . . An[O : en]

d) TAP detection SJ[P : en−1 θn−1 en]

. . .

SJ[P : e1 θ1 e2]

A1[O : e1] A2[O : e2]

An[O : en]

≡c TAP[P : e1 θ1 e2, . . . , en−1 θn−1 en]

SJ[P : en−1 θn−1 en]

TAP[P : e1 θ1 e2, . . . , en−2 θn−2 en−1] An[O : en]

≡c TAP[P : e1 θ1 e2, . . . , en−1 θn−1 en]

Figure 4: Structure-modifying plan equivalences

Operator IO Cost CPU cost

a) Document index scan
ˆ

h(i) + PCard(i)− 1
˜

· PageFetchCost TCard(i) · EvalCost(p)

b) Element index scan
ˆ

h(in) + h(ir) + PCard(ir)− 1
˜

· PageFetchCost TCard(ir) · EvalCost(p)

c) Path index scan
ˆ

h(i) + ⌈PathSeli(e) · PCard(i)⌉ − 1
˜

· PageFetchCost PathCard(e) · EvalCost(p)

d) CAS index scan
ˆ

h(i) + ⌈PathSeli(e) · Sel(p) · PCard(i)⌉ − 1
˜

· PageFetchCost PathCard(e) · Sel(p) · EvalCost(p)

e) StackTree CostIO(left) + CostIO(right) CostCPU(left) + CostCPU(right)+
TCard(left) · EvalCost(p)

f) NavTree CostIO(left) + TCard(left) · CostIO(right) CostCPU(left) + TCard(left)·
CostCPU(right) · EvalCost(p)

g) Extended TwigOpt CostIO(left) + CostIO(right) CostCPU(left) + CostCPU(right)+
TCard(left) · EvalCost(p)

Table 1: Cost formulae

XML world makes things more complicated (orders must
be preserved, early duplicate elimination). Therefore, we
provide a set of Structural Join Associativity rules for dif-
ferent combinations of axes and output nodes [23]. For your
convenience, we repeat the join associativity rule for two
SJ operators evaluating the // axis and having the output
node c. For example, this rule could be applied to reorder
the following XPath expression a//b//c. In Figure 4 a, the
corresponding plan equivalence is sketched. Here, arbitrary
plans P1, P2, and P3 provide the sorted input sequences a, b,
and c, respectively. On the left-hand side, two right semi-
joins (⋊) are used to calculate the structural relationships.
Because in both cases, the // axis is evaluated, potential
duplicates (on b and c, respectively) are eliminated early.
On the right-hand side, a full join between the sequences of
plan P2 and plan P3 is performed. Next, the result is joined
with sequence a.

Structural Join Commutativity. Figure 4 b, shows the
Structural Join Commutativity rule. This rule allows to ex-
change the left and the right join partner of an SJ by just

replacing the XPath axis θ by its reverse axis
←−
θ . Please

note, this is only possible if θ is not the attribute axis.

Structural Join Fusion. Let e := e1 θ1 e2, . . . , en−1 θn−1 en

be a path expression with θ1, . . . , θn ∈ {/, //}. By applying
Structural Join Fusion, which is illustrated in Figure 4 c, on
a cascade of SJs that evaluates e, we can iteratively replace it
by a single HTJ. It is worth noting that the query optimizer
is not forced to make a binary decision between an exclusive
evaluation of e using SJs or HTJs. Moreover, the query
optimizer can decide on a fine-granular level, i. e., for every
path step ei θi ei+1, whether it is cheaper to integrate it into
the previously formed HTJ or not. Hence, the creation of
hybrid plans consisting of SJs and HTJs is possible, too.

TAP Detection. Until now, the plan equivalences of Fig-
ure 4 a–c are only able to create alternative plans consisting
of SJs, HTJs, PAPs, and SAPs. Using them, we can al-
ready span a fairly large search space providing plenty of
opportunities for optimization. Anyhow, we can now play
our hand by considering TAPs. Using the TAP Detection

rule, the plan enumerator can generate further alternative
plans by replacing a cascade of SJ operators (as depicted
in Figure 4 d) or a HTJ operator by a single scan over
an appropriate CAS or path index. For a path expression
e := e1 θ1 e2, . . . , en−1 θn−1 en with θ1, . . . , θn ∈ {/, //} and
its corresponding PCR pe, the query optimizer uses the PS
to find out which indexes qualify as alternative access paths.

3.2 Cost Model
In this section, we introduce a subset of our cost model

(Table 1 a–g) that is relevant for understanding our query
optimization approach. The evaluation cost of an operator
is described by its IO and CPU costs. We only consider the
CPU costs, if alternative plans have equal IO costs. The IO
cost is estimated using the total number of pages that must
be loaded into a cold database buffer. The total number of
items, which must be processed, serves as estimate for the
CPU cost.

PageFetchCost Cost for fetching a page from disk
and loading it into the DB buffer

TCard(x) Total # elements in x.

PCard(x) Total #pages consumed by x

PathCard(e) Total # instances of path expression e

Sel(p) Selectivity of value-based predicate p

PathSeli(e) = PathCard(e)
TCard(i)

h(i) Height of index i

EvalCost(p) Evaluation cost of optional predicate p

Costx∈{IO,CPU}(y) Cost x of child operator y

Table 2: Constant and functions

Table 2 shows the constant and functions used for the de-
scription of the various cost formulae. We currently use the
EXsum framework [1] for cardinality estimation. In general,
our approach can work together with arbitrary estimation
frameworks. In particular, we chose EXsum, because it can
provide reliable estimates even for rarely used axes like par-

ent or ancestor.

Primary and Secondary Access Paths. In Figure 2(a),
we illustrated the physical representation of the document
index. Table 1 a shows the corresponding cost formula. For
retrieving all element nodes with same name from document
index i, we have to perform a full index scan. Foremost,
we have to access the first leaf page resulting in h(i) page
fetches. Next, we need to scan all leaf pages consumed by
the index (PCard(d))3.

Compared to a document index scan, where the complete
index must be read to get all element nodes having a partic-
ular name, the element index (Figure 2(b)) allows for fine-
granular access to specific element nodes. In order to reach
the first entry of a node-reference index ir, we have to find
the corresponding pointer in the name directory h(in) and
find the first leaf page (h(ir)). Table 1 b shows the complete
formula.

Tertiary Access Paths. Figure 3(a) shows a path index i

with PCR clustering for three different paths (PCRs 3, 6,
and 7). Let us assume path expression e selects all paths
having PCR 6. Furthermore, we postulate that all records
have the same length. Then we can estimate the fraction of
leave pages we actually have to touch using the PathSeli(e)
(Table 1 c).

For a CAS index, which allows for the evaluation of point
as well as range predicates, Table 1 d shows the correspond-
ing formula. For path indexes as well as for CAS indexes
that are DeweyID-clustered, PathSeli(e) = 1.0 always holds,
because their entries are now clustered according to their
order of appearance in the document rather than their con-
tainment w. r. t. a specific path class.

Evaluation of Structural Predicates. In the context of
this work, the query optimizer can choose between two
implementations for an SJ operator: StackTree [2] and
NavTree. StackTree is a classical binary SJ operator. The
NavTree is equivalent to a relational nested-loops join. The
cost formulae for both operators are shown in Table 1 e and
Table 1 f, respectively.

Besides binary join operators, our optimization framework
provides an implementation for plans gained using Struc-
tural Join Fusion (4 c). The Extended TwigOpt operator—
which adds, amongst others, grouping, evaluation of posi-
tional predicates, and support for negative predicates to
TwigOptimal [12]—can be employed to evaluate path ex-
pressions or even more complicated structures like twigs in
a holistic manner. Even though Extended TwigOpt is an
n-way join operator, the cost formulae shown in Table 1 g
depicts the binary case that can be easily generalized. The
alert reader has already recognized that the cost formulae for
StackTree and Extended TwigOpt are identical. They dif-
fer in the value provided by the function EvalCost(p) that
returns the evaluation cost for the structural predicate p.
The authors showed in [24] how to define this function in
such a way that whenever Extended TwigOpt outperforms
StackTree, EvalCost(p) is lower or higher, respectively. Us-
ing this approach, the query optimizer can decide for every
binary structural relationship, whether it is cheaper to per-
form Structural Join Fusion or not.

3We always decrease the total number of pages fetches by
one, because we assume that the first page has already been
loaded into the buffer in the previous step.

4. PLAN ENUMERATION ALGORITHM
In the context of this work, we use a bottom-up optimiza-

tion strategy that is similar to the plan generation approach
of System R. Algorithm 1 sketches the plan generation al-
gorithm. Plan generation starts at the leaf nodes of the
query graph (Access Operators). For every Access Opera-
tor, the getSuccessors functions returns all possible access
paths. Using the prune function, only the cheapest alterna-
tive is retained. Next, for every inner node (currentPlan) of
the query graph (e. g., SJ or HTJ) the getSuccessors func-
tion creates all valid permutations (interesting SJ orders)
of the subtrees residing on the Goal stack. For every com-
bination, all matching plan equivalences (Table 4) are ap-
plied to currentPlan . The result is a set of equivalent plans
differing in their implementation or arrangement of opera-
tors. The prune function estimates the costs of every plan
s ∈ Successors and returns only the cheapest one (s′) that
is marked as goal state and pushed onto the Open stack for
the next iteration. All other states s ∈ Successors −{s′} are
dismissed. Finally, the algorithm terminates when the root
of the query graph is reached and Open is empty.

In Section 5, you can convince yourself that our plan gen-
eration algorithm traverses even large search spaces (e. g.,
some XMark benchmark queries have up to tens of thou-
sands alternatives) at moderate cost.

Algorithm 1: Search algorithm

Input: A stack Open with an initial plan
Output: The stack Goal containing the cheapest plan

according to the cost model
Goal ← ∅;1

while Open.size() > 0) do2

currentPlan ← Open .pop();3

if ¬ isGoal(currentPlan) then4

Successors ← ∅;5

Successors ← getSuccessors(currentPlan);6

Successors ← prune(Successors);7

foreach s ∈ Successors do8

Open .push(s);9

end10

else11

Goal ← Goal ∪ {currentPlan};12

end13

end14

return Goal ;15

5. EMPIRICAL EVALUATION

Access path PageFetchCost [ms]

Document Index Scan 0.78

Element Index Scan 2.48

Path Index Scan 2.45

CAS Index Scan 1.85

Table 3: Optimizer settings

Our experiments were done on an Intel XEON quad core
(3350) computer (2.66 GHz CPUs, 4 GB of main memory,
500 GB of external memory) running Linux with kernel ver-
sion 2.6.14. Our native XDBMS server—implemented using
Java version 1.6.0 07—was configured with a page size of

16 KB and a buffer size of 256 16-KB frames. The exper-
imental results reflect the average values of five executions
on a cold database buffer. Table 3 shows the assignments to
the constant PageFetchCost for the different access paths.
All concepts described before, are implemented in the cost-
based query optimizer of XTC. Because our optimization
framework is rule-based, we can easily tailor it to our needs.

Access path Query f Est. IO Act. IO

Doc. index
Full scan 2.0 9, 225 9, 133
Full scan 10.0 46, 260 46, 451

Element index
//text 2.0 329.84 320.20
//listitem 10.0 828.32 894.80
//bidder 10.0 748.96 721.80

Path index
Path p1 10.0 115.15 125.80
Path p2 10.0 303.80 293.40

CAS index
Full, income 10.0 303.40 307.60
Point, income 10.0 47.68 44.60
Range, income 10.0 199.89 219.60

Table 4: Est. IO vs. actual IO on access paths

In our first experiment, we verify the correctness of our cost
formulae (Table 1 a–d). Table 4 shows the experimental
results for different access patterns on XMark documents
with different scaling factors (f = 1.0 ≈ 100 MB). For
the document index, we performed full scans over the com-
plete index. For the element index, we scanned three node-
reference indexes of varying sizes. Furthermore, we defined
path indexes on p1=/site/closed_auctions/closed_auc-

tion and p2=/site/people/person. Besides a full scan
on the content of all income attributes, we also performed
a point query (income = 9, 876.0), and a range query
(20, 000.0 ≤ income ≤ 80, 000.0). On average, we get an
error of less than 4%. Though our cost model is fairly sim-
ple, these results are promising.

C1 C2 C3

Access path
Primary X X X

Secondary X X

Tertiary X

Plan equivalence

Impl. exchange X X X

SJ associativity X X X

SJ commutativity X X X

Join fusion X X X

TAP detection X

Table 5: Optimizer configurations

If not otherwise stated, for the remaining experiments, we
query an XMark document with f = 6.0 (approx. 600 MB).
To generate different plans, we use our bottom-up plan enu-
merator and three different optimizer configurations (Table
5). All of them can apply all plan equivalences except for
the TAP detection. Configuration C1 can only use the doc-
ument index as access path. In configuration C2 and C3,
the optimizer can choose between the document index and
element indexes. TAP detection is only allowed for config-
uration C3, because, here, path indexes and CAS indexes
may be used in addition to the document index or element
index. All TAPs were created using XTC’s auto-indexing
mechanism [21]. The results reflect the optimal plan ac-

cording to the cost model, which was formed by using the
available access paths and plan equivalences.

10^2

10^3

10^4

10^5

10^6

10^7

A1 A2 A3 A4 A5 A6 A7 A8

E
st

im
at

ed
 IO

 [m
s]

Query

C1
C2
C3

(a) Estimated IO

10^2

10^3

10^4

10^5

10^6

10^7

A1 A2 A3 A4 A5 A6 A7 A8

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[m

s]

Query

C1
C2
C3

(b) Evaluation time

Figure 5: PathMark-A results; f = 6.0

The second experiment tests our cost model on the Path-
Mark-A queries4 (simple XPath expressions). These queries
are all XPath queries consisting of several steps, but do not
contain accesses to text() nodes. Here, selecting the best
access path is crucial. If you have a look at Figure 5, you
can see that the estimated IO is a good indicator for the
overall query execution time. Please note, even though the
optimizer chose the best SJ order or used an appropriate
HTJ operator, the estimated IO as well as the execution time
is worse. Using C2 accelerates query evaluation up to 99%
(compared to C1). For C3, the cost model recommended the
use of path indexes for all queries. As the execution timings
indicate (Figure 5(b)), this was a good decision, hence, the
execution time could be significantly reduced further.

Name Definition

B1 doc(’auction.xml’)//asia/item[location=C
’Germany’]

B2 doc(’auction.xml’)//asia/item[location > ’C’C
and location <= ’G’]

B3 doc(’auction.xml’)//text//*[keyword >= ’c’C
and keyword <= ’d’]

B4 doc(’auction.xml’)//profile[@income > 40000]C
[age <= 19]

Table 6: XPath queries with value-based predicates

Hitherto, we only had a look at queries without value-based
predicates that require additional accesses to the document,
because they cannot be decided by just looking at their
DeweyIDs. As discussed in Section 2, CAS indexes can help
to overcome this problem. Table 6 shows the queries we used
for this experiment. Here, the optimizer has the opportu-
nity to exploit CAS indexes for the evaluation of a point
predicate (B1), range predicates on element values (B2 and
B3), and, finally, range predicates on attribute and element
values (B4).

In Figure 6, you can see that the execution time for our
query set is substantially reduced in configuration C3, be-
cause the optimizer uses CAS indexes. Though for query
B3, the optimizer underestimated the IO costs—because the
uniform distribution assumption did not hold—its decision
proved to be the most efficient choice after execution.

In the previous experiments, you could convince your-
self that our optimization approach is beneficial for XPath

4See: http://sole.dimi.uniud.it/~massimo.franceC
schet/xpathmark/PTbench.html

queries. XPath is a subset of XQuery, thus, our optimiza-
tion approach can also help to speed up the “access parts”
of XQueries. We tested our optimization approach on the
20 different XMark benchmark queries [20], which make ex-
haustive use of XQuery features.

10

10^2

10^3

10^4

10^6

10^7

B1 B2 B3 B4

E
st

im
at

ed
 IO

 [m
s]

Query

C1
C2
C3

(a) Estimated IO

10

10^2

10^3

10^4

10^6

10^7

B1 B2 B3 B4

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[m

s]

Query

C1
C2
C3

(b) Evaluation time

Figure 6: Value-based queries; f = 6.0

For example, query Q19 is defined as follows:

let $auction := doc("auction.xml") return

for $b in $auction/site/regions//item

let $k := $b/name/text()

order by zero-or-one($b/location) ascending

empty greatest

return

<item name="{$k}">

{$b/location/text()}

</item>

Figure 7 shows the results we obtained. Only with con-
figurations C2 and C3, acceptable execution times can be
provided. In most cases, C3 found only slightly faster plans
than C2. This does not happen because of wrong optimiza-
tion decisions but, mainly, due to two reasons: (1) most
paths are not very selective and (2) most plans consist of
blocking operators that are absolutely necessary for query
evaluation (e. g., tuple grouping or tuple unnesting) in our
system.

10^2

10^3

10^4

10^5

10^6

10^7

Q1 Q5 Q10 Q15 Q20

E
st

im
at

ed
 IO

 in
 [m

s]

Query

C1
C2
C3

(a) Estimated IO

10^2

10^3

10^4

10^5

10^6

10^7

Q1 Q5 Q10 Q15 Q20

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[m

s]

Query

C1
C2
C3

(b) Evaluation time

Figure 7: XMark benchmark queries; f = 6.0

Figure 8(a) shows the scalability of the optimizer (config-
uration C3) for the XMark benchmark queries, which were
executed on XMark documents whose sizes are ranging from
110 KB to 1.1 GB. Query Q11 and Q12 are very complex,
include non-selective joins, and produce very large inter-
mediate results that scale quadratically with the document
size. Hence, the execution time of optimal plans increases
quadratically, too. The execution times of the remaining
queries scale linearly with the document size. For small
documents (size≤ 10 MB), the average scale factor is even
at most 6.85, i. e., an increase of the document size by factor

10 results only in a 6.85 times longer execution time. For
the largest document in our experiment (1.1 GB), we still
get an average scale factor of 10.5 for all queries except of
Q11 and Q12.

Finally, Figure 8(b) shows how query optimization (from
query parsing to the generation of the physical plan) relates
to the overall execution time in configuration C3. On aver-
age, 97.62% of the time is spent for query execution and only
1.54% of the time was consumed by query optimization. If
no optimization is performed, the resulting plans are at least
as worse as the ones gained using configuration C1 (Figure
7). Therefore, spending a small amount of the overall eval-
uation time on query optimization results in plans that are
on average almost two order of magnitude faster than their
unoptimized counterparts.

1

10

10^2

10^3

10^4

10^5

10^6

10^7

Q1 Q5 Q10 Q15 Q20

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[m
s]

Query

f=0.001 (110 KB)
f=0.01 (1.1 MB)

f=0.1 (11 MB)
f=1.0 (110 MB)
f=10.0 (1.1 GB)

(a) Scalability (b) Optimization phases
vs. execution time; f = 6.0

Figure 8: Scalability and optimization time

6. CONCLUSIONS AND FUTURE WORK
With this paper, we provide the basis for cost-based

XQuery optimization in native XDBMSs. As shown in Sec-
tion 5, our cost-based optimization approach substantially
reduces IO costs for a large range of queries.

As our experiments revealed, efficient query evaluation on
large documents is almost impossible without using SAPs
and TAPs. In all our experiments, even join-order opti-
mized plans using PAPs, were up to almost four orders of
magnitude slower than the overall best plans. Therefore, it
is a good heuristics to create at least SAPs on the complete
document in order to gain acceptable results. Compared to
TAPs, SAPs are heavy-weight data structures. Thus, up-
date costs can be high if subtrees are inserted into the docu-
ment that contain almost only structural parts. Our experi-
ments showed that making high usage of TAPs is never a bad
choice. Compared to SAPs, they are ultra light-weight. For
example, only the content nodes are stored in a CAS index
and the path information can be immediately derived using
a PCR look-up on the path synopsis. Hence, each access to
it reduces IO as well as CPU costs, because only a single ac-
cess path is scanned and no structural relationships must be
decided. Schmidt and Härder [21] showed that TAPs can be
automatically created using a background job at acceptable
costs. In our experience, it proved to be a good heuristics to
always create CAS indexes on attribute nodes to make the
evaluation of value-based predicates fast.

Some years ago, there was a grand debate on SJs vs.
HTJs. According to our experience with our optimization
framework, this argument ends in a draw. Having a look at
the XMark benchmark queries—which are far more realistic
than the queries used to compare the performance of SJs and
HTJs—shows that both operators are thwarted by several

blocking operators, e. g., sorting and duplicate elimination,
that are necessary to correctly evaluate XQueries and that
dictate their “heartbeat”.

For the XMark benchmark queries, the optimized plans
for almost all queries scale linearly with the document size.

Our future work will focus on the optimization of the
remaining XQuery language constructs (e. g., value-based
joins), the integration of further physical algebra operators,
and the development of a refined cost model that models
CPU cost more precisely. Furthermore, we will integrate
cost-based decisions even in earlier stages of the query evalu-
ation process, e. g., during the XQuery-to-XQGM mapping.

7. REFERENCES
[1] J. Aguiar Moraes Filho and T. Härder. EXsum—An

XML Summarization Framework. In Proc. IDEAS,
pages 139–148, 2008.

[2] S. Al-Khalifa et al. Structural Joins: A Primitive for
Efficient XML Query Pattern Matching. In Proc.

ICDE, pages 141–154, 2002.

[3] A. Balmin et al. Cost-based Optimization in DB2
XML. IBM Systems Journal, 45(2):299–320, 2006.

[4] N. Bruno et al. Holistic Twig Joins: Optimal XML
Pattern Matching. In Proc. SIGMOD, pages 310–321,
2002.

[5] D. Che, K. Aberer, and M. T. Özsu. Query
optimization in xml structured-document databases.
VLDB Journal, 15(3):263–289, 2006.

[6] B. F. Cooper et al. A Fast Index for Semistructured
Data. In Proc. VLDB, pages 341–350, 2001.

[7] H. Georgiadis et al. Cost Based Plan Selection for
XPath. In Proc. SIGMOD, pages 603–614, 2009.

[8] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in
Semistructured Databases. In Proc. VLDB, pages
436–445, 1997.

[9] G. Graefe. The Cascades Framework for Query
Optimization. IEEE Data Eng. Bull., 18(3):19–29,
1995.

[10] G. Graefe and D. J. DeWitt. The EXODUS Optimizer
Generator. In Proc. SIGMOD, pages 160–172, 1987.

[11] G. Graefe and W. J. McKenna. The Volcano
Optimizer Generator: Extensibility and Efficient
Search. In Proc. ICDE, pages 209–218, 1993.

[12] H. Jiang et al. Holistic Twig Joins on Indexed XML
Documents. In Proc. VLDB, pages 273–284, 2003.

[13] N. Kabra and D. J. DeWitt. OPT++: An
Object-Oriented Implementation for Extensible
Database Query Optimization. VLDB Journal,
8(1):55–78, 1999.

[14] R. S. G. Lanzelotte and P. Valduriez. Extending the
Search Strategy in a Query Optimizer. In Proc.

VLDB, pages 363–373, 1991.

[15] C. Mathis. Storing, Indexing, and Querying XML

Documents in Native XML Database Management

Systems. PhD thesis, Univ. of Kaiserslautern, 2009.

[16] J. McHugh and J. Widom. Query Optimization for
XML. In Proc. VLDB, pages 315–326, 1999.

[17] T. Milo and D. Suciu. Index Structures for Path
Expressions. In Proc. ICDT, pages 277–295, 1999.

[18] P. E. O’Neil et al. ORDPATHs: Insert-Friendly XML
Node Labels. In Proc. SIGMOD, pages 903–908, 2004.

[19] H. Pirahesh et al. Extensible/Rule Based Query
Rewrite Optimization in Starburst. In Proc. SIGMOD,
pages 39–48, 1992.

[20] A. Schmidt et al. XMark: A Benchmark for XML
Data Management. In Proc. VLDB, pages 974–985,
2002.

[21] K. Schmidt and T. Härder. On The Use of
Query-Driven XML Auto-Indexing. In Proc. ICDE

SMDB Workshop, 2010.

[22] P. G. Selinger et al. Access Path Selection in a
Relational Database Management System. In Proc.

SIGMOD, pages 23–34, 1979.

[23] A. M. Weiner et al. Rules for Query Rewrite in Native
XML Databases. In Proc. EDBT DataX Workshop,
pages 21–26, 2008.

[24] A. M. Weiner and T. Härder. Using Structural Joins
and Holistic Twig Joins for Native XML Query
Optimization. In Proc. ADBIS, LNCS 5739, pages
149–163, 2009.

[25] Y. Wu et al. Structural Join Order Selection for XML
Query Optimization. In Proc. ICDE, pages 443–454,
2003.

[26] N. Zhang et al. Statistical Learning Techniques for
Costing XML Queries. In Proc. VLDB, pages 289–300,
2005.

Figure 9: XQGM example

