
Trading Memory for Performance and Energy

Yi Ou and Theo Härder

University of Kaiserslautern
ou,haerder@cs.uni-kl.de

Abstract. Managing extremely large amounts of data with high per-
formance and low power consumption is very difficult. We look at this
urgent problem from an architectural perspective and present our pro-
totype design and implementation of a three-layer database storage sys-
tem, which uses flash-based devices as an intermediate caching layer. The
flash-based layer significantly improves the I/O efficiency of the storage
system. Therefore, we can reduce the use of energy-inefficient RAM-
based memory without compromising the overall system performance.
The efficiency of the three-layer storage system is demonstrated by our
practical experiments using traces from both standard benchmarks and
a real-life application.

1 Introduction

The worldwide data volume is doubling every two years. According to the es-
timation of IDC, currently 45 GB of data in average exists for each person in
the world: that is 281 Billion GB (281 Exabytes) in total. At the same time, IT
enterprises are still hungry for data [1]. To cope with the pace of data explosion,
the number of installed servers and storage systems is rapidly growing, resulting
in a huge amount of energy consumption. One of the greatest challenges for the
information management community is to manage extremely large amounts of
data in an (both performance and energy) efficient way.

Flash memory is a kind of non-volatile storage media, popularly used in mem-
ory cards and USB flash drives. In the desktop PC and server storage markets,
solid-state disks based on flash memory (flash SSDs) are also gaining attention,
due to their increasing storage capacity and decreasing price. In contrast to
traditional hard disk drives (magnetic HDDs), flash SSDs have no mechanical
parts and, therefore, allow much faster random accesses. Because flash memory
is non-volatile, its active power is much lower (compared on a Watt/GB basis)
than that of DRAM, for which a large portion of the active power is consumed
to maintain the state of the chip.

Currently, most of the database storage systems follow a classical two-layer
architecture (2LA) [2], with a RAM-based buffer layer accelerating page requests
to and from the persistence layer based on hard disk drives. With an increas-
ing amount of data accommodated at the persistence layer, the capacity of the
expensive and energy-inefficient RAM-based buffer typically becomes the per-
formance bottleneck.

Table 1: Price and performance of storage devices

Device Model No. EUR/GB Read (ms) Write (ms)

RAM1 Kingston KVR667D2D8P5/2G 19.00 ∼ 10 ns ∼ 10 ns
RAM2 Kingston KHX1600C9D3B1K2/4GX 19.11 ∼ 10 ns ∼ 10 ns
RAM3 Kingston KVR1333D3D4R9S/4G 24.70 ∼ 10 ns ∼ 10 ns

SSD1 Intel SSDSA2MH160G1GN 2.40 0.029 0.303
SSD2 Intel SSDSA1MH160G2GN 2.44 0.029 0.116
SSD3 Crucial CTFDDAC256MAG-1G1 2.01 0.017 0.022

HDD1 WD WD800AAJS 7200 RPM 0.38 15.000 15.000
HDD2 WD WD1500HLFS 10000 RPM 0.77 4.500 4.500
HDD3 Fujitsu MBA3147RC 15000 RPM 0.76 2.000 2.000

In terms of performance and price and their long-term trend, flash SSDs fit
perfectly into the gap between DRAM and magnetic HDDs. Table 1 lists, for each
storage media type, the prices and performance figures1 of three devices (from
low-end to high-end). These figures strongly suggest a three-layer architecture
(3LA), where flash is used as an intermediate caching layer, while conventional
and inexpensive HDDs are employed at the bottom layer to accommodate our
ever-increasing demand on storage capacity. With such a memory hierarchy, the
capacity of the RAM-based layer could be kept relatively small, because a larger
amount of pages can be cached on the flash media, which is still much faster
than HDDs. To justify the move from 2LA to 3LA, a few questions need to be
answered:

Q1 Will the cost of adding the intermediate layer be justified by performance
improvements?

Q2 Can we achieve the goal of improving performance while saving energy at
the same time?

The major contribution of this paper is giving answers to the questions Q1
and Q2, which are ignored so far in related works. In addition, we contribute in
the following aspects:

– We advocate 3LA, the three-layer database storage architecture with flash
as the intermediate layer.

– We define the basic interfaces for the three layers and present the prototype
of such a storage system.

– Using buffer traces of standard benchmarks and a real-life workload, we
accomplish an extensive empirical study, comparing the performance and
energy consumption of 2LA and 3LA.

The remainder of this paper is organized as follows: Section 2 discusses re-
lated works. Section 3 presents our design of 3LA and related algorithms. Sec-
1 We used the sales prices of Internet stores as of November 2010. Performance figures

are derived from the device data sheets, for randomly accessing pages of 4 KB.

tion 4 reports our empirical study. The concluding remarks and future works are
presented in Section 5.

2 Related Work

Multi-level caching has been intensively studied in the past. Zhou et al. [3] char-
acterized second-level buffer access patterns and proposed a set of algorithms for
managing the second-level buffer. Those algorithms are not flash-specific, there-
fore, their major performance metric is the hit ratio. One of them is implemented
in our prototype system and included in our experiments.

Koltsidas and Viglas [4] identified three page-flow schemes in a three-level
caching hierarchy and proposed flash-specific cost models for those schemes.
While addressing both theoretical problems and important implementation is-
sues, their focus is the validation of the cost models and the comparison among
those schemes. Energy efficiency and a comparison between 2LA and 3LA are
not covered in their work.

Narayanan et al. [5] addressed both complete replacement of disks by SSDs,
as well as use of SSDs as an intermediate tier between disks and DRAM. They
compare these architectural variants with 2LA using an offline tool, which, given
a block-level trace of a workload, suggests the least-cost storage configuration
that supports the workload’s requirements. They found that replacing disks by
SSDs is not a cost-effective option for any of their workloads, due to the higher
dollar-per-GB cost of flash SSDs.

Although our goal partially overlaps with that of [5], there are several aspects
that distinguish our work fundamentally from theirs: 1. Their traces represent the
workload to the disk layer (block level), while our traces represent the workload
to the buffer manager (buffer traces). 2. Our observations are quite different
from theirs. For example, they found that fewer than 10% of their workloads
can benefit from an intermediate layer based on flash, while in our experiments,
3LA is superior to 2LA in most configurations. 3. Our observations are expected
to be more accurate, because in their experiments, traces were not executed, but
just analyzed by the tool, while our traces are actually run in the real systems.

3 The 3LA Storage System

We consider three layers of software in our storage system, as shown in Figure 1.
The RAM layer Lr manages the buffer pool with |Lr| pages in main memory,
the flash layer Lf manages the flash-based buffer pool with |Lf | pages, and the
disk layer Ld manages the accesses to the magnetic disk or a pool of (possibly
inexpensive and redundant) magnetic disks with a total capacity of |Ld| pages.

Considering the relative price and performance ratios of the three types of
storage media, e. g., those listed in Table 1, we assume that:

|Lr| ≤ |Lf | ≤ |Ld| (1)

Fig. 1: Inter-layer interfaces in the three-layer architecture

Due to these capacity constraints and performance ratios, the hottest pages
should be kept in Lr, and Lf should try to keep the hot pages that can not be
kept in Lr. As a consequence, replacement policies are required in Lr and Lf .

Lr supports a typical buffer pool interface, e. g., that of the classical fix-use-
unfix protocol [6]. Both Lf and Ld provide the interface of reading or writing
a page, identified by its logical page number. Each layer only uses the interface
provided by the layer directly below it, i. e., there is no cross-layer dependency.
In particular, in 3LA, Lr never accesses Ld directly.

However, because Lf and Ld basically have the same interface, Lf can be
implemented as an optional layer. When Lf is not present, Lr directly accesses
Ld. In that case, 3LA degenerates to 2LA. Such a degeneration is practically
used for our experiments in Section 4.

For both architectures, we assume that Lr follows two basic principles: de-
mand paging and write back. Consequently, we have the following two invariants,
which are independent of the algorithm and implementation of Lf and valid for
both 3LA and 2LA:

I1 Lr calls the read(p) function on the layer directly below it, iff page p is not
present in Lr and there is a page request for p to be served by Lr (page fault
in Lr).

I2 Lr calls the write(p) function on the layer directly below it, if page p is to
be evicted from Lr and p is dirty (modified at least once after entering Lr).

Lr and Ld are basically the same as in the classical two-layer disk-based
storage system. For this reason, we only present the replacement algorithms for
the management of Lf in the following: the Local (LOC) algorithm and the
Global (GLB) algorithm.

In both algorithms, a list of cache positions L with |L| = |Lf | is maintained
in an LRU fashion. A cache position identifies a page slot in the flash-based
cache and contains a clean/dirty bit. Furthermore, a directory H is maintained,
mapping currently cached pages to their corresponding cache positions.

3.1 The LOC Algorithm

In the LOC algorithm, Lf is managed locally in an LRU fashion, without re-
quiring extra knowledge from Lr. The procedure of reading a page from Lf is
shown in Algorithm 1. One difference to an main-memory LRU cache is that
flushing a page involves first reading the page from flash and then writing it to
the storage. Writing a page p to Lf involves finding its cache position c via H
and storing p at c. If p is not found in Lf , it will be written to Ld immediately.

Because |Lr| ≤ |Lf | and LOC only has local knowledge, it is possible that
some or even all pages in Lr are doubly cached in Lf . However, pages in Lr are
not necessarily all in Lf , due to different page reference behaviors at different
layers. Note, references to Lf are consequences of buffer faults in Lr.

Algorithm 1: LOC read page from Lf

input : read request for page p, storage layer Ld

output : update L and H; return p with content loaded
cache position c← lookup p in H ;1

if c ∈ Lf then2

read p from cache position c ;3

move c to MRU position of L ;4

else5

victim cache position v ← LRU position of L ;6

page q ← the page stored at v ;7

if v is dirty then8

read q from cache position v and flush q to Ld ;9

read p from Ld and store p at v ;10

move v to MRU position of L ;11

update H by replacing entry (q, v) with entry (p, v) ;12

return p;13

3.2 The GLB Algorithm

The GLB algorithm is first introduced in [3]. We examine it here in a flash
context. The GLB algorithm follows the exclusive scheme [4], i. e., no page is ever
cached in Lr and Lf at the same time. For better comprehension, we assume
the replacement policy in Lr is also LRU, without loss of generality. Based on
this assumption, we can think of a global logical LRU list Lg, consisting of the
LRU list of Lr at its MRU end, and the LRU list of Lf at its LRU end.

Reading a page p from Lf is requested upon a page fault in Lr (see I1). In
case of a cache hit in Lf , p is moved from Lf to Lr (H and L are updated
accordingly). In case of a cache miss, p is read directly from Ld to Lr, avoiding
doubled caching in Lf . In both cases, a page q is evicted from Lr to Lf . After
being read, p becomes the MRU page in Lr (also in Lg).

To “maintain” the logical list Lg, page q currently evicted from Lr should
become the LRU page in Lf . Therefore, we have to extend the interface of Lf (as
described in Figure 1) by a new function evict called by Lr for passing evicted
clean pages to Lf . Note, a write request is called on Lf , only when the evicted
page is dirty (see I2). The procedure of processing a write or evict request for
page q is the same: flush the page stored at the LRU position v of L if the page
is dirty, move v to the MRU position, store q at v, mark v dirty if q is dirty, and
update H.

3.3 Discussion

Given the same workload, the global cache hit count (total number of buffer
hits in Lr and Lf) of GLB is expected to be higher than that of LOC, because
the effective cache size of the latter is smaller, due to doubled caching in Lr.
However, in GLB, the number of flash writes equals the number of Lr page
evictions. This is OK for a RAM-based second-level buffer, but it is an issue for
flash media both in terms of performance (see Section 4) and lifespan [7].

For both algorithms in our current implementation, the dirty pages in Lf

(whose cache positions are marked dirty) are flushed to Ld when the system is
shutdown, for the sake of consistency. A simple improvement leveraging the non-
volatility of flash can be made here: we can just materialize the content of H at
shutdown and rebuild H at startup2, without flushing the “dirty” pages in Lf .
This technique not only speeds up the shutdown procedure, but also shortens
the warm-up phase of the system, because the hot portion of the pages are likely
already in Lf , ready for immediate access. For the LOC algorithm, pages in Lf

are up-to-date at restart, iff the dirty pages of Lr are flushed before the shutdown
of Lf starts. For the GLB algorithm, page sets Lf and Lr are disjunct, therefore,
pages in Lf are automatically up-to-date at restart.

4 Experiment

To answer the questions Q1 and Q2, we did an extensive empirical study based
on a fair comparison between 2LA and 3LA, using buffer traces recorded under
various workloads. We first present our simulation-based study using TPC-E,
TPC-C, and TPC-H traces, before we discuss the experiment ran on real devices
using the trace from a real-life application. Our study on energy consumption is
based on the following assumption:

A1 The acquisition cost and power consumption of storage media are linear to
their capacity in use.

Assumption A1 might not be valid at fine granularity, however, it is reason-
able, when observed at a coarser granularity. For example, if the power of a 2-GB
DRAM module is 10 W, according to A1, 0.2 GB of DRAM would consume 1
2 The byte size of H is much smaller compared to that of Lr and Lf .

W, which is not valid, because, as long as the module is working, it consumes
10 W, no matter the remaining 1.8 GB are in use or not. But we can safely say
that 2n GB of DRAM based on the same model consume 10n W.

All experiments were done using our prototype implementation of the 3LA
storage system, which can also be easily configured to function as a 2LA system,
as described in Section 3. For both architectures, our test program only com-
municates with Lr by sending the logical page requests delivered by the traces
to its buffer manager, which manages the Lr buffer pool using the replacement
policy LRU. All experiments start with cold Lr and Lf buffers. The time used
to flush the dirty pages at shutdown is included in the measurements.

In our experiments, we scaled a parameter b (in number of pages) logarith-
mically. For 2LA, b is the size of the buffer layer, i. e., |Lr| = b, while for 3LA,
we set |Lr| and |Lf | as follows:

|Lf | = n× b (2)

and

|Lr| = max(1, bb− |Lf | × (Cf/Cr + Sd/Sp)c) (3)

where Cf/Cr is the dollar-per-GB cost ratio of flash to RAM, Sd is the
byte size of a directory entry of H, and Sp the page size in bytes. The term
|Lf |×Cf/Cr gives the number of RAM pages that should be reduced to achieve
a cost-neutral investment for |Lf | pages of flash memory. The term |Lf |×Sd/Sp

is the number of RAM pages consumed by the directory H for |Lf | pages of
flash. We call Formula 2 and 3 the equi-cost constraints, because it enforces a
fair basis for the comparison among the 2LA and 3LA configurations, i. e., having
the same acquisition cost.

The parameter n is used to examine the behavior of 3LA when the size of
Lf is scaled. Because the value of |Lr| can not be negative, we have b − |Lf | ×
(Cf/Cr + Sd/Sp) > 0, which resolves to n < 1/(Cf/Cr + Sd/Sp). Together with
the constraint in Formula 1, we have the practical range of n:

1 ≤ n < (Cf/Cr + Sd/Sp)−1 (4)

If we ignore Sd/Sp, which is relatively small, then we obtain 1 ≤ n < Cr/Cf .
In our experiments, the page size Sp is 8192 bytes and the directory entry size Sd

is 4 bytes. We chose the cost ratio Cf/Cr = 0.10, which is very close to the real
price ratios according to Table 1. According to Formula 4, the practical range
of n is approximately [1, 10). Note n does not have to be an integer. For a given
b, the value of n actually controls how much RAM is traded for flash, observing
the equi-cost constraints.

4.1 Simulations

For the simulation-based experiments, the Virtual Execution Time (Tv) is used
as the major performance metrics, defined as:

Tv = Tf + Td (5)

Here, Tf and Td are the simulated device access times elapsed in Lf and in
Ld respectively. Tf is defined as:

Tf = Tfr + Tfw = Nfr × Cfr + Nfw × Cfw (6)

Tfr and Tfw are the accumulated times reading from and writing to the flash
media, Nfr is the number of flash reads, Cfr the average cost of a flash read,
Nfw the number flash writes, and Cfw the average cost of a flash write. The
flash reads and flash writes here refer to the physical reads from and writes to
the flash device. They are not to be confused with the read and write requests
sent to the Lf software. Similarly, Td is defined as:

Td = Tdr + Tdw = Ndr × Cdr + Ndw × Cdw (7)

The definition of Tv only considers the costs of accessing the storage media
and ignores the CPU cost, because all the algorithms involved have a constant
complexity. The inter-layer communication costs are ignored as well, because, the
dominating cost in the system is the cost of page accessing, not page transferring.
In our simulation, we used the average read and write costs close or equal to
those of the middle-class devices in Table 1, i. e., Cfr = 0.030, Cfw = 0.120,
Cdr = 4.5, and Cdr = 4.5 (ms).

Figure 2a illustrates the Tv of running a TPC-E trace3 using 2LA and 3LA.
All 3LA configurations tested significantly outperform the 2LA configuration.
For better clarity of the chart, we only show the curves for n = 2 and n = 8.
For the n = 8 configuration, LOC reduced the virtual execution time by 32% to
35% (for b = 1000 to b = 32000), compared with 2LA.

(a) Tv (in seconds) (b) Device accesses for b = 1000

Fig. 2: TPC-E trace performance

3 Provided by a leading IT enterprise.

The behavior of 3LA is better explained by Figure 2b, where the numbers
of device accesses4 are compared for b = 1000. For 2LA, there is no flash de-
vice access, while a significant amount of flash device accesses is required for
3LA (Figure 2b). For both GLB and LOC, with n scaled from 2 to 8 (thus an
increasing |Lf | and decreasing |Lr|), the number of flash reads climbs up, indi-
cating a growing number of hits in Lf , and, consequently, the number of disk
reads goes down. The latter is equal to the number of global cache misses (i. e., a
page is neither in Lr nor in Lf). Because of the speed difference of flash to disk,
the flash accesses introduced at Lf are paid off in terms of overall performance
(Figure 2a).

As shown in Figure 2b, the number of flash writes performed by GLB in-
creases with an increasing |Lf | and a decreasing |Lr|, because it depends on
the latter, as discussed in Section 3.3. In contrast, the increasing |Lf | reduces
the number of flash writes performed by LOC. This is because it reduces the
number of Lf cache misses and each cache miss requires a flash write (line 10 of
Algorithm 1).

Table 2: Energy consumption of the TPC-E trace for b = 1000

Alg. n |Lf | |Lr| Pf (mW) Pr (mW) Pf + Pr (mW) Tv (s) E (J)

2LA 0 1000 0.000 4.121 4.121 7059 29.09
GLB 2 2000 799.02 0.014 3.292 3.307 5776 19.10
GLB 4 4000 598.05 0.029 2.464 2.493 5304 13.22
GLB 6 6000 397.07 0.043 1.636 1.679 5061 8.50
GLB 8 8000 196.09 0.057 0.808 0.865 4905 4.24
LOC 2 2000 799.02 0.014 3.292 3.307 6305 20.85
LOC 4 4000 598.05 0.029 2.464 2.493 5372 13.39
LOC 6 6000 397.07 0.043 1.636 1.679 5024 8.44
LOC 8 8000 196.09 0.057 0.808 0.865 4818 4.17

Table 2 compares the energy efficiency of 2LA and 3LA for b = 1000. The |Lf |
and |Lr| values in the 3rd and 4th column are calculated according to Formula 2
and 3. Having these values, we can compute the power value of Lr, based on
assumption A1, as follows:

Pr = |Lr| × Sp × Pu
r (8)

where Pu
r is the unit power of RAM, having the value 0.503 × 10−9 (W/B)

here, derived from the data sheet of RAM2 in Table 1. The power value of Lf ,
denoted as Pf , is calculated in a similar way, with Pu

f = 0.873× 10−12 (W/B),
derived from the data sheet of SSD2. Having Pr + Pf and the virtual execution
times (Tv), we can then calculate the energy consumption values in the last
column. Note that the buffer layer of 2LA consumed much more energy than
4 In the simulation, no real device access occurs.

those of 3LA (by a factor of six for n = 8). Disk-layer values are not included in
the table, because they are of the same size in both architectures.

Fig. 3: TPC-C trace performance Fig. 4: TPC-H trace performance

The results of running the buffer traces of a TPC-C and a TPC-H workload
are shown in Figure 3 and Figure 4. In general, these results confirm our obser-
vation on the performance advantage of 3LA. For both traces, with b beyond
16000 pages and n = 8, the flash cache of 3LA is large enough to accommo-
date all pages of the working sets, which are much smaller than that of the
TPC-E trace, therefore, no performance improvement can be observed when b is
increased to 32000 pages. The TPC-H trace is highly read intensive, with only
256 page updates out of 6.5 million page requests. That is the reason why the
performance of 3LA improves much faster with the growing buffer sizes under
the TPC-H workload (Figure 4), compared to the TPC-E and TPC-C cases.

4.2 Running a Real-Life Trace on Real Devices

Complementary to our simulation-based study, we also experimented with a
trace from a real-life application on real devices. Our test machine is equipped
with an AMD Athlon Dual Core Processor, 1 GB of main memory, and is running
Linux (kernel version 2.6.24). HDD2 from Table 1 is used as the storage device
in Ld, and SSD2 is used as the flash device in Lf . Both devices are accessed
as raw devices, i. e., no file system or OS caching is involved, and our storage
system has the control over the access to the devices.

The trace used here is a one-hour page reference string of an OLTP pro-
duction system of a bank. This trace is well-studied and has been used in
[8,9,10,11,12]. It contains 607,390 references to 8-KB pages in a database having
a size of 22 GB, addressing 51880 distinct page numbers. About 23% of the
requests update the page referenced.

The measured execution times (wall-clock times) are shown in Figure 5. The
curves have a shape very similar to that of Figure 3, confirming the accuracy

Fig. 5: Execution time (seconds) of the bank trace

of our simulation. An interesting observation can be made here: for b = 32000,
the execution time in 3LA increases with n, instead of decreasing with it as in
most cases tested. In our case here, the 51880 distinct pages addressed by the
trace can be completely accommodated by Lr and Lf , for n = 2. Therefore, in
such a situation, trading RAM for more flash does not further avoid any access
to the disk layer, but reduces the number of buffer hits in Lr and introduces
higher numbers of flash accesses, as indicated by Figure 6a, where a break-
down of device I/O is presented, with measured values of Tfr, Tfw, Tdr, and
Tdw. Nevertheless, the energy consumption decreases with an increasing n, as
shown in Figure 6b, which illustrates the energy consumption figures, obtained
similarly to those of Table 2, in a relative fashion.

A question arises here: how much RAM should be traded for flash? Or, in
our context, what is the break-even point for n? Analytically determining the
optimal value for n is a very difficult problem. However, based on our empirical
research, we know that for workloads having a small working set that can be kept
in the RAM layer, there is no performance benefit of trading RAM for flash, while
for workloads with larger working sets that can not fit into the main memory, a
larger n generally improves performance as well as energy efficiency. Of course,
when n closely approaches Cr/Cf , |Lr| becomes 1 (Formula 3), i. e., the RAM
layer has only one page. Such extreme cases should obviously be avoided in
system design. Together with Formula 4, our observations can be used as rules
of thumb in practical applications.

Based on our experiments discussed so far, we can summarize the character-
istics of GLB and LOC as follows. For small |Lf |, i. e., |Lf | ∼ |Lr|, GLB achieves
higher hit ratios, while for large |Lf |, i. e., |Lf | � |Lr|, LOC is generally better,
because GLB’s advantage in hit ratios becomes insignificant and it is eaten up by
its higher number of flash writes, which is much more expensive than flash reads.
A configuration with |Lf | � |Lr| is closer to our goal of managing extremely
large amounts of data with high performance and low power consumption.

(a) Device I/O break-down (b) Energy consumption relative to 2LA

Fig. 6: Statistics running the bank trace for b = 32000

5 Conclusion and Future Work

In this paper, we looked at the problem of using flash as a caching layer between
RAM and HDDs from a new perspective: the amount of expensive and energy-
inefficient RAM can be reduced due to the support of flash. Our empirical study
considered the most important aspects of TCO (Total Cost of Ownership) of a
storage system: the acquisition cost and the operating cost (power cost). Our
study gives positive answers to the questions Q1 and Q2 and reveals that we
can build a 3LA system which is much faster and much more energy efficient
than a 2LA system built with the same acquisition cost, meeting the goals of
performance and energy efficiency, which are often considered conflicting, at the
same time.

In practice, with improved storage system performance, the number of disks,
which is sometimes higher than necessary in favor of disk I/O throughput, can
generally be reduced, resulting in further operational cost savings due to reduced
floor space and cooling requirements.

The performance advantage of 3LA comes from the superior performance/price
ratio of flash devices compared with HDDs5. This ratio will steadily increase in
the next years, while the performance/price ratio of HDDs will remain relatively
stable. As a consequence, the performance advantage of 3LA will be even more
significant in the future.

LOC and GLB served as the baseline algorithms. No flash-specific optimiza-
tions are yet integrated. Techniques such as using different page size at different
layers as those discussed in [4] could further improve the performance of 3LA.
It could also be interesting to examine hybrid configuration of algorithms, e. g.,
frequency-based algorithm at one layer and recency-based algorithm at the other

5 Similar observations are made in our experiments using the values of HDD3, the
high-end HDD in Table 1.

layer. As future work, we will also look into such optimizations. However, future
improvements expected for performance and energy-efficiency of 3LA do not
conflict with our observations made in this paper.

One of the major differences of a flash-based cache to a RAM-based cache is
non-volatility. We have discussed a technique leveraging this property to shorten
the warm-up phase of the system in Section 3.3, which is not the main focus of
this paper and will be empirically evaluated in the future. The non-volatility of
the flash layer should be further exploited to speed up processing of transactions,
for which durability is required.

6 Acknowledgement

We are grateful to IBM (Deutschland and USA) for providing the TPC-E trace
and to anonymous referees for valuable comments. This research is partly sup-
ported by the German Research Foundation and the Carl Zeiss Foundation.

References

1. Spiegel. Google-chef will noch mehr daten. http://www.spiegel.de/netzwelt/

netzpolitik/0,1518,716204,00.html, 2010.
2. T. Härder. DBMS architecture - the layer model and its evolution. Datenbank-

Spektrum, 13:45–57, 2005.
3. Y. Zhou, Z. Chen, et al. Second-level buffer cache management. IEEE Transactions

on Parallel and Distributed Systems, 15(6):505–519, 2004.
4. I. Koltsidas and S. D. Viglas. The case for flash-aware multi-level caching. Technical

Report, 2009.
5. D. Narayanan, E. Thereska, et al. Migrating server storage to SSDs: analysis of

tradeoffs. In EuroSys, pages 145–158. ACM, 2009.
6. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1993.
7. E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM

Computing Surveys (CSUR), 37(2):138–163, 2005.
8. E. J. O’Neil, P. E. O’Neil, et al. The LRU-K page replacement algorithm for

database disk buffering. In SIGMOD, pages 297–306, 1993.
9. T. Johnson, D. Shasha, et al. 2Q: a low overhead high performance buffer man-

agement replacement algorithm. In VLDB, pages 439–450, 1994.
10. N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead replacement

cache. In FAST. USENIX, 2003.
11. Z. Li, P. Jin, et al. CCF-LRU: A new buffer replacement algorithm for flash

memory. Trans. on Cons. Electr., 55:1351–1359, 2009.
12. Y. Ou and T. Härder. Clean first or dirty first? a cost-aware self-adaptive buffer

replacement policy. In IDEAS, Montreal, QC, Canada, 2010.

http://www.spiegel.de/netzwelt/netzpolitik/0,1518,716204,00.html
http://www.spiegel.de/netzwelt/netzpolitik/0,1518,716204,00.html

	Trading Memory for Performance and Energy

