
Energy Efficiency is not Enough,
Energy Proportionality is Needed!

Theo Härder, Volker Hudlet, Yi Ou, and Daniel Schall

Databases and Information Systems Group
University of Kaiserslautern, Germany

{haerder,hudlet,ou,schall}@cs.uni-kl.de

Abstract. Due to the energy consumption/resource utilization charac-
teristics of todays centralized DB servers, the fastest configuration is
also the most energy-efficient one. Extensive use of SSDs alone cannot
enable a fundamental change of this overall picture, because the storage-
related energy consumption is typically only a little fraction of the overall
energy budget. Even, when this storage-related share is (almost) com-
pletely reduced by optimized flash-aware buffer management, the saving
effect achieved may be limited by less than ∼10%. Therefore, we have
designed a cluster of wimpy computing nodes called WattDB, where the
individual nodes are dynamically attached and detached to the cluster
on demand – depending on the current workload needs –, thereby aiming
at energy-proportional DB management.

1 Introduction

In recent years, data management on new hardware evolved into an active and
attractive field of research. Among the topics considered for data management
are multi-core processors, vectorized query processing, flash memory, (column-
oriented) main-memory databases, OLAP- or OLTP-specific optimizations, etc.
Most efforts exclusively aim at performance enhancements for specific database
applications – highlighted by the statement “One Size Does Not Fit All!”.
Representative approaches include MonetDB [1], Greenplum [2], VoltDB [3],
SanssouciDB [4], and others.

A few years ago, we started to explore the use of flash memory and the
integration of SSDs (solid state disks) into the DB I/O architecture. Unlike most
other projects, we primarily addressed energy efficiency for all tasks of database
management, but also considered potential performance gains. Our strong hope
was to improve both goals – “Keeping Performance While Saving Energy?” [5],
which was supported by our initial experiments.

The remainder of this paper is organized as follows: Sect. 2 reviews indicative
research results concerning our experiments of exploiting SSDs for DB manage-
ment, whereas our findings concerning flash-aware DB buffers are summarized
in Sect. 3. Sect. 4 highlights the need of energy proportionality. How such a goal
can be approximated in DB applications, is sketched in Sect. 5, where we discuss
design issues for our WattDB system. Concluding remarks and future challenges
are outlined in Sect. 6.

Table 1: Storage device characteristics

Device Model IOPS Idle (W) Active (W) EUR/GB
Read Write Read Write

HDD1 WD 7.2K RPM 70 5.3 6.3 0.38
HDD2 WD 10K RPM 210 4.2 5.7 0.77
HDD3 Fujitsu 15K RPM 500 8.4 9.9 0.76

SSD1 SuperTalent 32GB 2,700 50 1.3 1.7 2.0 9.00
SSD2 MTRON MSP 12,000 130 1.2 2.0 2.0 18.00
SSD3 Intel X-25-M G1 35,000 3,300 0.6 1.3 2.4 2.40
SSD4 Intel X-25-M G2 35,000 8,600 0.9 1.2 4.1 2.44
SSD5 Crucial RealSSD 60,000 45,000 0.8 1.1 1.7 2.01

2 Experimental Results and Critical Observations

SSD ∕= SSD – this fact was drastically demonstrated in [6]. It is not only true
when using a collection of different device types, but also for instances of the same
device type. Reasons are continuous improvements of the SSD types as well as
refinements of the flash translation layer (FTL) to optimize measures for wear
leveling. All these optimization efforts are proprietary and kept as “business
secrets” of the device manufacturers – resulting in a black-box view of SSD
devices, often exhibiting surprising behavior. Table 1 gives an overview of the
impressive success these efforts gained for almost all characteristics chosen.

Strong variations at the instance level are caused by the read/write/erase
asymmetry which is amplified by the prevailing conditions or housekeeping tasks
of an individual device, e. g., device “aging”, state-dependent garbage collection,
frequency of erasures as reactions to load patterns, etc.

All these reasons lead to the conclusion that current, state-of-the-art SSDs
cannot be easily integrated and used for database management. In any case,
we have to cope in DB environments with a spectrum of heterogeneous SSDs
with differing and instable access behavior. Furthermore, the data sheets of the
device manufacturers often report performance figures which can never be met
by typical DB workloads. To support our conclusion, we want to repeat here
some indicative, empirical results of previous publications [6,7].

2.1 SSD Performance Measurements

Our initial experiments focused on DB-specific read and write performance of
SSDs, for which the essential characteristics – taken from the data sheets of the
manufacturers – are listed in Table 1. To stress all devices with the same access
patterns, we developed a tool (similar to uFlip and IOmeter1) that allows us to
perform benchmarks on the devices. The tool supports adjustable page sizes and
is able to read and write different access patterns from/to the devices; we used
32KB page sizes in all experiments2.

1 http://uflip.inria.fr/∼uFLIP/, http://www.iometer.org
2 According to [8], 32 KB is the preferable page size for SSDs.

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

RS RR RSS WS WR WSS

SSD1IOPS

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

RS RR RSS WS WR WSS

SSD2IOPS

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

RS RR RSS WS WR WSS

SSD3IOPS

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

RS RR RSS WS WR WSS

SSD4IOPS

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

RS RR RSS WS WR WSS

SSD5IOPS

RS Read Sequential
RR Read Random
RSS Read Skip‐Sequential
WS Write Sequential
WR Write Random
WSS Write Skip‐Sequential

Legend

Fig. 1: Performance measurements using different SSD types

Our first test pattern is sequentially accessing n pages simulating DB scan
operations. A second pattern is randomly accessing all pages of the test file,
where each page is fetched only once. Finally, the skip-sequential pattern accesses
pages sequentially, but skips randomly over some pages. Hence, we mimic kind
of index scans via (sorted) reference lists. Illustrated in Fig. 1, the results for the
SSDs considered are briefly commented in the following:

– SSD1: Our results clearly show slow performance under all tested patterns
as well as heavily degraded write performance. But, random read is as fast
as sequential read.

– SSD2 shows improved performance to SSD1. Still, random writing is tremen-
dously slower than other access methods.

– SSD3, as the first Intel generation, is really good at sequential reading, while
random reading is comparatively slow. All write patterns are performing
equally well – a significant operational difference w. r. t.SSD1 and SSD2.

– SSD4, as next Intel generation, came with the additional feature TRIM sup-
port3. It reveals improved overall performance for all patterns. Nevertheless,
the disk is showing the same challenges as the first generation.

– While reading on SSD5 is faster than on all other SSDs we tested, random
writing stresses this device remarkably. Although the data sheet promises
60,000 IOPS for random read, we could not get even close to this number (a
fact we experienced in most other tests).

2.2 Result Interpretation

Using these performance results, we examine common assumptions, expert wis-
dom, and rules of thumb regarding SSDs [9] and show that not all of them are
true. Given that we cannot design a DBMS tailor-made to a single SSD of a
specific type and that varying workloads are present, we may critically observe
the following issues.
3 http://t13.org/Documents/MinutesDefault.aspx?keyword=trim

http://t13.org/Documents/MinutesDefault.aspx?keyword=trim

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46 51

SSD3 random writeIOPS

sec

Fig. 2: IOmeter per sec

0

500

1000

1500

2000

2500

3000

3500

1 6 11 16 21 26 31 36 41 46 51

SSD4 write after TRIMIOPS

sec

Fig. 3: TRIM effects

Random access SSDs should not suffer from random access, in fact, they do.
Random access may be substantially slower than sequential access.

Therefore, sequential accesses should still be preferred over random accesses,
although it is not as vital as on hard disks. For hard disks, a rule of thumb
recommends an index-based scan only if the selectivity factor of the predicate
to be evaluated is below ∼1–3%, otherwise a sequential scan of the whole table
is advised. On SSDs, the selectivity factor can be shifted to higher percentages.
Because of the different SSDs’ performance characteristics, it is not possible to
spot a clear break-even point.

Database query optimizers can decide between random and sequential access
based on configurable disk parameters.4 Simple rules of thumb, however, do
not work anymore [10], especially if the performance characteristics fluctuate
over time. Therefore, optimizing algorithms under wrong assumptions or device
models can make overall performance even worse. Furthermore, developers for
flash-aware buffer algorithms have to consider that device-specific tweaks might
be obsolete in no time.

Unstable and fluctuating behavior Using a tweaked IOmeter version, we
were able to get more detailed performance data from our devices. Fig. 2 visu-
alizes the write performance of SSD3 in pages/second on a per-second basis. As
illustrated, every 4 to 5 seconds, performance is heavily degraded for about 3
seconds. We conclude, the drive is performing internal reorganization like freeing
up flash blocks or searching for another writable block.

While benchmarking SSD4, we had a look at the TRIM command intro-
duced for this model and observed an interesting behavior. Fig. 3 depicts our
write performance measurement right after deleting ∼130 GB of files on the
drive and issuing corresponding TRIM commands to the drive. In this graph,
a heavily degraded performance in the first half of the measurement is evident.
Apparently, the SSD tries to free up flash blocks while we were simultaneously
applying a write load to it. The proprietary FTL mapping particularly con-
cerns device caching, block allocation, and garbage collection. All these mecha-
nisms are software controlled and entirely hidden to the upper software layers.

4 E.g.: http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?
topic=/com.ibm.db2.luw.admin.perf.doc/doc/c0005051.html

Hence, optimization decisions in the OS or DBMS may be counterproductive
and sometimes even worsen the time-consuming house-keeping activities. As in-
ferred from Fig. 2, write latency may extremely vary. While less than ∼400 �s
in the best case, we have observed outliers of more than some hundred ms, that
is a device-dependent variance of more than ∼200–500. In contrast, disks with a
device-dependent variance of ∼2–5 exhibit quite stable access behavior and lend
themselves to reliable optimizer decisions.

Another aspect is a kind of heterogeneity among the SSD types present in a
DBMS environment, where several heterogeneous SSDs may coexist in an appli-
cation (or they may be dynamically exchanged). As a consequence, tailor-made
algorithms for specific SSD types, e. g., concerning indexing or buffer manage-
ment, are not very useful. The same arguments apply for specific workload op-
timizations (pure OLTP or OLAP processing, mixed workloads with varying
degrees of reads/writes). A continuous adjustment or exchange of algorithms
affected is not very practical in productive DBMS applications.

Read/write asymmetry It does not seem to be true in general. SSD1 and
SSD2, for example, do not exhibit degraded performance for (sequential) write,
they are equally fast as sequential read. On all other SSDs, an asymmetry is
measurable, but still not as bad as advertised. Exploited for buffer management,
this observation may make at least some prevalent assumptions obsolete.

Slower when full? As a consequence of the erasures, overwriting some blocks
on a full disk should be much slower than writing to an empty disk. We verified
this assumption by filling all drives with random data and repeating our tests
afterwards. No significant differences were measurable.

Impact of queue depth To gain more insights, we repeatedly measured various
queue depths. By using a random read pattern, we give the FTLs a fair chance
to optimize the queue. As reported in [6], the only significant improvement was
observed between QD 1 and QD 2. Beyond this point, extending the QD did not
improve data throughput. We did not expect this result, because manufacturers
use even higher queue depths for their performance measurements.

Energy consumption Fig. 4a shows the absolute power consumption of the
SSDs we tested. For this test, a sequential read pattern is used. Write patterns
might consume even more energy. Obviously, the drives do consume energy when
being idle; therefore, they are not as energy saving as expected. Power consump-
tion ranges from ∼4–6 Watt for consumer disks to ∼9–14 Watt for disks of
enterprise server quality. The SSDs’ power profiles are substantially different to
those of hard disks; their power consumption for idle states and peak loads is con-
siderably lower, for example, up to a factor of ∼15 and ∼8 for SSD3 and HDD3,
respectively (see Table 1). Fig. 4b shows how many pages can be read by each
SSD consuming one Joule of energy. As illustrated, pages/Joule are constantly
rising, thus newer SSDs are getting more energy efficient. On conventional disks

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

SSD1 SSD2 SSD3 SSD4 SSD5

Power Consumption

variable part
idle

(a) Active SSDs: power use in Watt

0

2000

4000

6000

8000

10000

12000

14000

SSD1 SSD2 SSD3 SSD4 SSD5

Pages / Joule

(b) Pages read per Joule

Fig. 4: Energy-related SSD measurements

we measured only ∼600–1,800 pages/Joule. Anyway, a more differentiated com-
parison is cumbersome, because of the different performance characteristics and
their implications on energy efficiency.

The critical question is whether these considerable differences of energy con-
sumption at the device level cause perceptible energy saving at the system level.
For this reason, we compare disk- and SSD-based DBMS buffer management in
the next section.

3 Findings in DBMS Buffer Management

Because of the read/write/erase asymmetry, buffer management tailor-made to
the SSD characteristics is a key issue for flash-aware DBMS optimizations. The
fact “whether a page is read only or modified” is an even more performance-
critical criterion for the replacement decision [11] than in disk-based DBMSs.

3.1 Objectives of Flash-Aware Replacement Algorithms

Even with SSDs, maintaining a high hit ratio – the primary goal of disk-based
buffer algorithms – is still important, because the bandwidth of main memory
is at least an order of magnitude higher than the interface bandwidth of storage
devices. To exploit the SSD characteristics to the extent possible, flash-aware
buffer management should observe the following basic principles [7]:

P1 Minimize the number of physical writes.

P2 Address write patterns to improve the write efficiency.

P3 Keep a relatively high hit ratio.

We have designed the CFDC (Clean-First Dirty-Clustered) algorithm [12]
which perfectly addresses all these key issues. As our competitors, quite a number
of flash-aware replacement algorithms were proposed trying to approximate these

(a) Execution times (ms) (b) Energy consumption (J)

Fig. 5: Performance and energy consumption running the TPC-C trace

principles more or less successfully. Here, we cross-compare CFDC to the general-
purpose algorithm LRU [11] and the algorithms CFLRU [13], LRU-WSR [14],
and REF [15], which are tailor-made for SSD use.

Because DBMSs often use heterogeneous storage devices of mixed types, an
important question needs to be answered: how well do these algorithms per-
form on conventional magnetic disks? Furthermore, how much energy is used for
buffer management in either case, i. e., how energy efficient are these algorithms
in differing environments? Here, we want to repeat these answers given in [7],
thereby preparing our arguments for energy-proportional DBMS management.

3.2 Experiments

Our test environment consists of an Intel Core2 Duo processor and 2 GB of
main memory. Both the OS (Ubuntu Linux with kernel version 2.6.31) and the
DB engine are installed on an IDE magnetic disk (system disk). The test data
(as a DB file) resides on a separate magnetic disk/SSD (data disk, denoted
as SATA). The data disks, as listed in Table 1, are chosen to represent low-
end (HDD1/SSD1), middle-class (HDD2/SSD2), and high-end (HDD3/SSD3)
devices. They are connected to the system one at a time.

Using a relational DBMS, we recorded an OLTP trace (a buffer reference
string) of a 20-minutes TPC-C workload with a scaling factor of 50 warehouses.
We ran the trace for each of the five algorithms under identical conditions and
repeated it for each of the devices under test. Using a buffer size of 8000 pages
(64 MB), we minimized the influence of the device caches. But, not the absolute
but the relative differences are most expressive.

The illustration of the recorded execution times and energy consumptions in
Fig. 5 is considered to be indicative for what we can expect as typical behavior
and optimization potential under the various storage device settings. The differ-
ence between the execution times of the algorithms becomes smaller on SSD3

(a) HDD3 (b) SSD3

Fig. 6: Break-down of average power (W)

(see Fig. 5) due to two reasons: 1. The I/O cost on SSD3 is much smaller than
on other devices, yielding the buffer layer optimization less significant; 2. This
device has supposedly the largest device cache, since it is the newest product
among the devices tested.

Performance gain and energy saving are impressive, if we compare the results
among devices of the same class. CFDC turns out to be the best performing
algorithm on all devices. Because the time needed to run the trace is – under
continuous and hardly varying utilization of the computer system – proportional
to the energy consumption, CFDC is also the most energy-efficient one. This
observation is in accord with the general thesis [16] that “within a single node
intended for use in scale-out (shared-nothing) architectures, the most energy-
efficient configuration is typically the highest performing one”.

4 Energy-Proportional Computing

The key effect observed in Fig. 5 is further explained by Fig. 6, which contains
a break-down of the average working power of major hardware components of
interest, compared with their idle power values. The figures shown for the con-
figurations HDD3 and SSD3 are indicative for all configurations; they are similar
for the other device types, because IDE and ATX – consuming the lion’s share
of the energy – remain unchanged.

Ideally, the power consumption of a component (and the system) should be
determined by its utilization. However, for both configurations, there is no signif-
icant power variation when the system state changes from idle to working or even
to its full utilization. Furthermore, no clear difference can be observed between
the various algorithms, although they have different complexities and, in fact,
also generate different I/O patterns. This is due to the fact that, independent of
the workload, the processor and the other units of the mainboard consume most
of the power (the ATX part in the figure) and these components are not energy-

100

80

60

40

20

%Power
(Watt)

20 40 60 80 1000

energy-
proportional

hardware
optimization

%

System utilization

power@utilization

observed ideal

software
optimization

behavior

Fig. 7: Power use over system utilization: single computing node

proportional, i. e., their power use is not proportional to the system utilization
caused by the workload5.

The break-down of the average working power in Fig. 6 reflects the average
system utilization obtained for individual trace executions. If we evaluate how
energy consumption depends on system utilization, we roughly get for our con-
figuration – with a single computing node – the characteristics sketched in Fig. 7.
Main-memory power usage is more or less independent of system utilization and
increases linearly with the memory size, i. e., the number of RAM modules. In
our case, we only had a single 2GB module. Increasing the main-memory size
by adding more RAM modules would rapidly shift in our scenario the relative
power use close to 100%, even in the idle case.6 As indicated in Fig. 7, the
scope for optimizing the relative energy efficiency by software means is limited
and would almost disappear when a large memory is present. But this scope
could be widened, if hardware optimizations could be invented (e. g., reduction
of RAM’s energy consumption). Using a single computing node, we would never
come close to the ideal characteristics of energy proportionality. Note, we cannot
just switch off RAM chips, especially in the course of DBMS processing, because
they have to keep large portions of DB data close to the processor. Preserving
this reference locality is the key objective of each DBMS buffer.

Google servers mostly reach an average CPU utilization of ∼30%, but often
even less than ∼20% [17]. With our current flash-based optimizations, we do not
obtain any noticeable effect on overall energy saving – except for continuous peak
load situations. Given normal load patterns and arrival times, an average request
is processed more efficiently, i. e., system resources are allocated for shorter in-
tervals, thereby reducing system utilization even further. What kind of system
architecture enables a substantial approximation of ideal energy proportionality?

5 The elapsed time T of the workload almost completely determines its energy con-
sumption E (note, E = P̄ ⋅ T , where P̄ is the average power measured).

6 Memory of enterprise server quality consumes ∼10 Watt per 4GB DIMMS [16].

5 Design Considerations of WattDB

Current approaches to data management on new hardware almost exclusively
focus on high performance for continuous peak loads in specific application ar-
eas and – to achieve this goal – primarily rely on extremely large main memo-
ries. But from a “green perspective”, it is unreasonable to build systems, e. g.,
main-memory DBMSs for OLAP applications, which have a much lower average
utilization and a power usage profile as sketched in Fig. 7.7

For this reason, we have started the WattDB project, where a cluster of
wimpy, shared-nothing computing nodes replaces the powerful DB server ma-
chine. The cluster core consists of a single node8 and can attach further nodes
without interrupting DB processing. In this way, the cluster can scale up to
n nodes and is able to smoothly grow and shrink dynamically – depending
on the current workload needs. Apparently, due to this dynamic node attach-
ing/detaching, WattDB as a cluster will stepwise approximate the ideal course of
power usage, i. e., its behavior is becoming energy proportional. Note, the clus-
ter dynamics, i. e., the time span [18] where low-utilized nodes are disconnected
from the cluster and deactivated or where overload situations are resolved by
reactivating switched-off nodes, is a key question to be answered by the project.

Each of the individual computing nodes must be able to access the entire
database. As a consequence, we need to build an I/O architecture, where – at
each point in time and each cluster configuration – all external storage devices
(SSDs or HDDs) can be dynamically shared by all attached nodes, i. e., the
shared-nothing processing architecture of the cluster has to be supported by a
shared-disk I/O architecture.

As a consequence of dynamic node fluctuation, DB cluster coordination be-
comes a frequent task to optimally support DB processing and maintenance as
well as concurrency control and logging/recovery, etc. Static task assignment to
specific computing nodes creates single points of failures and may quickly lead to
unbalanced system behavior [19]. Therefore, static and physical partitioning of
storage structures and runtime responsibilities is impractical. Hence, new parti-
tioning schemes and procedures based on logical predicates have to be developed.
Instead of allocating physical partitions, flexible physiological DB partitioning
is needed – a new outstanding challenge to make WattDB work.

5.1 Architecture Overview

Our cluster currently consists of ten nodes with identical processors and main
memory. Two nodes are equipped with four hard disks each to serve as DB
storage. All nodes are interconnected by a Gigabit-Ethernet as depicted in Fig. 8.
To minimize the energy footprint of each node, Intel Atom D510 light-weight

7 Such an extreme main-memory DB server would steadily consume 2.5 KW for each
TB of main memory installed, no matter whether it is idle or working.

8 In this case, all coordination, query processing, and storage-related tasks have to be
performed by this node.

HDD HDD

HDD HDD

Node

HDD HDD

HDD HDD

Node

Switch

Switch Switch

Switch

Switch (Backend)

Switch (Frontend)

Node

NodeNode

Node Node

NodeNode

Node

Fig. 8: Physical cluster layout Fig. 9: Photo of the cluster

CPUs are used. In combination with the installed 2 GB of main memory and
the mainboard, each node consumes less than 30 W in idle mode. The disks
are designed for mobile use, so each disk consumes only 3 W . Our hardware
is Amdahl-balanced, hence, processing power and data throughput are matched
[20]. Still, a single node is not energy proportional as Table 2 shows. When idle,
about 70% of the node’s peak power is consumed (see also Fig. 6). Although the
single nodes are not energy proportional, the desired energy proportionality is
approximated by load-dependent deactivation/reactivation of cluster nodes.

off suspend idle 100% CPU
1 disk

100% CPU
2 disks

100% CPU
4 disks

Power Consumption [W] 3 3 29 32 35 41
% of peak 7% 8% 71% 78% 86% 100%

Table 2: Energy consumption of a single node

Dynamically powering nodes impacts all layers of database software. As a
first step, we have analyzed the impact of node fluctuations for Storage Mapping,
Query Processing and Cluster Coordination.

5.2 Storage Mapping and Partitioning

Hard disks are one of the reasons, why common servers cannot be energy pro-
portional, as explained in Sect. 2. They continuously consume energy to keep
their platters spinning. Therefore, it would be a great opportunity for saving
power, if unused disks could be switched off. If the related storage capacity is
not needed right now, entire nodes could be powered down. Dynamically par-
titioning data by their access frequencies may gain some improvements [21],
but it is insufficient, because data on cold disks would have high access cost. In-
stead, we propose a mechanism for dynamically consolidating data while keeping
I/O performance agreements. The system’s storage can be scaled from energy

Table A

Partition A.1 Partition A.2

Disk 1

Table C

Partition C.1 Partition C.2

Disk 1 Disk 4

Partition
C.1.1

Partition
C.1.2

Partition
C.2.1

Partition
C.2.2

Disk 3Disk 2

Table B

Partition B.1

Disk 1 Disk 2

Partition B.2

Fig. 10: Storage partitioning schemes

efficiency requirements by consolidating data to as few disks as possible to high-
performance needs by distributing data to more disks for faster parallel access.
Fig. 10 shows examples of partitioning schemes. Table A is separated into two
partitions that reside on a single disk. This is the most energy-efficient storage
solution, because only a single disk needs to be powered. In turn, access per-
formance is limited, as one disk can only achieve a certain number of IOPS. In
contrast, table B is partitioned, too, but the partitions are distributed to sep-
arate disks. Therefore, access to table B is up to two times faster than that to
table A. At the same time, random IOPS should double compared to the first
scheme, but energy consumption doubles as well. Finally, table C shows an even
more distributed case, where data is distributed to four disks. While this raises
the relative energy consumption of the data, access bandwidth and IOPS again
are increased.

In these examples, the storage mapping resulted in a balanced tree of par-
titions. WattDB will support even more flexible partitioning schemes. Hence,
high-traffic areas of a table can be divided into finer grained partitions than
rather cold areas – causing unbalanced partition trees. Management of a parti-
tion subtree, e. g., either table C, partition C.1, or partition C.1.1 in Fig. 10, is
delegated to a single node. By distributing a table to more nodes, the effective
main-memory buffer for this table is increased.

5.3 Query Processing

By providing such an an energy-aware storage layer, query planning needs to
consider the existing data distribution. A resulting query execution plan (QEP)
has to reflect the data partitioning schemes and their assignment to nodes. As
a consequence, subqueries can be formed to access partitions, process data, and
emit intermediate results. Eventually, these results are consumed by a node
which combines them to the final output and delivers it to the client. Fig. 11
sketches an example how this work assignment is achieved for a simple query.
More sophisticated operations like distributed joins can be executed as well.

Our approach is considered fairly scalable, because partition management
including buffering, locking, and recovery, consists of local tasks that scale with
the number of nodes in the cluster. Still, a global transaction manager is needed
to detect deadlocks in transactions spanning multiple nodes.

Table A

Partition ... Partition ... Partition ...

Node 1

Table B

Partition ... Partition ...

Node 2

Table C

Partition ... Partition ...

Node 3Master Node

π(σ(A)) π(σ(C))
π(σ(A x B))

π(σ(A x C))

Fig. 11: Node assignment for query processing: an example

5.4 Cluster Coordination

Obviously, a centralized instance, called master, is needed for all coordination
tasks. Cluster clients address a dedicated node as an entry point to submit
their queries. Furthermore, it has to monitor and tune the performance of the
cluster. Moreover, all tasks concerning allocation of new objects, housekeeping
and reorganization on depraved storage structures, repartitioning after workload
shifts, redistribution of responsibilities as an implication of cluster growth or
shrinkage, etc. need centralized control. Therefore, we introduce a master node
that will perform all these tasks. This node will also manage global deadlock
detection and keep track of the energy consumption.

6 Conclusion and Future Work

We have sketched our main results of recent contributions concerning our flash-
related research. At the device level, we have summarized performance behavior
and energy efficiency of a spectrum of different SSD types and have discussed
important consequences for DBMS processing. At the system level, we have com-
pared performance and energy use of a number of flash-aware buffer management
algorithms, when different classes of HDDs and SSDs were used as external stor-
age. We could clearly verify the claim [16] that – within a single shared-nothing
computing node – the most energy-efficient configuration is typically the highest
performing one.

This observation guided our research endeavor towards energy-proportional
computing applied to data management on new hardware to seriously observe
energy saving – not only for peak loads, but also for low-load situations and even
idle times. As a consequence, we designed WattDB, whose core components are
currently implemented. In the future, we want to specialize WattDB towards
differing directions to provide tailor-made support for the application classes
OLTP, OLAP, and MapReduce.

References

1. Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database Architecture
Evolution: Mammals Flourished long before Dinosaurs became Extinct. In PVLDB
2(2), pages 1648–1653, 2009.

2. Greenplum. Driving the Future of Data Warehousing and Analytics. http://www.
greenplum.com/, 2009.

3. VoltDB. Fast, Scalable, Open-Source SQL DBMS with ACID. http://voltdb.

com/, 2010.
4. Hasso Plattner. SanssouciDB: An In-Memory Database for Processing Enterprise

Workloads. In Proc. BTW, LNI - P 180, pages 2–21, 2011.
5. Theo Härder, Karsten Schmidt, Yi Ou, and Sebastian Bächle. Towards Flash Disk

Use in Databases - Keeping Performance While Saving Energy? In Proc. BTW,
LNI - P 144, pages 167–186, 2009.

6. Volker Hudlet and Daniel Schall. SSD != SSD - An Empirical Study to Identify
Common Properties and Type-specific Behavior. In Proc. BTW, LNI - P 180,
pages 430–441, 2011.

7. Yi Ou, Theo Härder, and Daniel Schall. Performance and Power Evaluation of
Flash-Aware Buffer Algorithms. In DEXA, LNCS 6261, pages 183–197, 2010.

8. Luc Bouganim, Björn Thór Jónsson, and Philippe Bonnet. uFLIP: Understanding
Flash IO Patterns. In CIDR, 2009.

9. Goetz Graefe. The five-minute rule 20 years later (and how flash memory changes
the rules). Commun. ACM, 52(7):48–59, 2009.

10. Daniel Schall, Volker Hudlet, and Theo Härder. Enhancing Energy Efficiency of
Database Applications Using SSDs. In C3S2E, pages 1–9, 2010.

11. Wolfgang Effelsberg and Theo Härder. Principles of Database Buffer Management.
ACM TODS, 9(4):560–595, 12 1984.

12. Yi Ou, Theo Härder, and Peiquan Jin. CFDC: A Flash-Aware Buffer Management
Algorithm for Database Systems. In ADBIS, LNCS 6295, pages 435–449, 2010.

13. S. Park, D. Jung, et al. CFLRU: a Replacement Algorithm for Flash Memory. In
CASES, pages 234–241, 2006.

14. H. Jung, H. Shim, et al. LRU-WSR: Integration of LRU and Writes Sequence
Reordering for Flash Memory. Trans. on Cons. Electr., 54(3):1215–1223, 2008.

15. D. Seo and D. Shin. Recently-evicted-first Buffer Replacement Policy for Flash
Storage Devices. Trans. on Cons. Electr., 54(3):1228–1235, 2008.

16. Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. Analyzing the
Energy Efficiency of a Database Server. In SIGMOD, pages 231–242, 2010.

17. Luiz Andre Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines, Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2009.

18. Susanne Albers. Energy-efficient Algorithms. Commun. ACM, 53(5):86–96, 2010.
19. Erhard Rahm. Evaluation of Closely Coupled Systems for High-Performance

Database Processing. In ICDCS, pages 301–310, 1993.
20. Alexander S. Szalay, Gordon C. Bell, H. Howie Huang, Andreas Terzis, and

Alainna White. Low-power Amdahl-balanced Blades for Data-intensive Comput-
ing. SIGOPS Oper. Syst. Rev., 44.

21. Xiaodong Li, Zhenmin Li, Yuanyuan Zhou, and Sarita Adve. Performance-Directed
Energy Management for Main Memory and Disks. Trans. Storage, 1:346–380, 2005.

http://www.greenplum.com/
http://www.greenplum.com/
http://voltdb.com/
http://voltdb.com/

	Energy Efficiency is not Enough, Energy Proportionality is Needed!

