
SSD 6= SSD – An Empirical Study to Identify
Common Properties and Type-specific Behavior

Volker Hudlet, Daniel Schall
Databases and Information Systems Group

Department of Computer Science
University of Kaiserslautern

D-67653 Kaiserslautern, Germany
{hudlet, schall}@cs.uni-kl.de

Abstract: Solid-state disks are promising high access speed at low energy consump-
tion. While the basic technology for SSDs – flash memory – is well established, new
product models are constantly emerging. With each new SSD generation, their behav-
ior pattern changes significantly and it is therefore difficult to make out characteristics
for SSDs in general. In this paper, we accomplish empirical, database-centric perfor-
mance measurements for SSDs, explain the results, and try to derive common charac-
teristics. By comparing our measurement results, we detect no ground truth valid for
all solid-state disks. Furthermore, we show that a number of prevalent assumptions
about SSDs, which several SSD-specific DBMS optimizations are based on, are ques-
tionable by now. As a consequence of these findings, tailor-made DBMS algorithms
for specific SSD types may be unsuitable and optimal use of SSD technology in an
DBMS context may require careful design and rather adaptive algorithms.

1 Introduction

Solid-state disks gained a lot of attention lately. While many research papers present new
algorithms to exploit performance of SSDs, enterprises are thinking of ways to incorpo-
rate them in their own products. Hence, flash chips and solid-state disks have become
established products by now. SSDs offer dramatically improved random access behavior
compared to conventional spinning disks. Due to their lack of mechanical parts, they are
able to answer requests much faster than disks. That makes them perfect candidates for
incorporating into database systems to speed up data processing. Due to the absence of
spinning platters, SSDs also promise to come with a smaller energy footprint. Still, SSDs
are not the swiss army knife of storage devices, they come with some limitations we have
to deal with, for example read/write asymmetry. The market for solid-state disks is con-
stantly changing and newer SSD generations are steadily improving their performance.
With every new SSD generation, new product characteristics are emerging. Some draw-
backs of earlier SSDs have been resolved in recent models. The constant change in the
devices’ properties makes it difficult for upper-layer algorithms to exploit the underlying
storage. Optimizations tailored to a dedicated SSD model can have even negative effects
on differently behaving models.



In this paper, we measure performance and energy consumption of five solid-state disks
and compare them to manufacturer-provided data sheets. By pinpointing the specific char-
acteristics of each drive, we claim that it is unwise for research to reveal the DB per-
formance benefits of this disruptive technology change by relying on a single SSD type.
We also derive common characteristics of flash drives in order to support research of the
database community and leverage the exploration of flash-specific algorithms. This pa-
per is structured as follows: In Section 2, we briefly summarize the internal structures of
SSDs. Next, we outline important related work in Section 3. In Section 4, we are pre-
senting our measurement methodology and the solid-state disks used for our performance
study. Section 5 shows our experimental results. We interpret our results and compare
them to the properties and facts listed in the data sheets of the manufacturers. In Section 6
we derive common characteristics and review some assumptions made about SSDs in re-
search papers. In Section 7, we reflect our measurement setup and point out some possible
limitations to our approach. Finally, we draw our conclusion in Section 8.

2 General SSD Characteristics

Solid-state disks are using flash chips for persistently storing data. An abstraction layer
(FTL) on top of the chips provides a block device interface and hides the specific flash
chip characteristics.

Flash Chips Flash chips are used to store persistent data on SSDs in a matrix of storage
cells. The cells can either embody NOR or NAND gates. Modern cells, called Multi-Level
Cells (MLC), can store more than one bit per cell. Todays solid-state disks are mostly
composed of MLC NAND chips; we focus our description on that technology.

Reading from flash chips can only be done pagewise, where each page contains about 1 –
4 KB. It takes about 50 µs per page. Writing pages requires higher voltages, it takes about
10 times as long as reading (∼500 µs). Furthermore, each cell has to be erased prior to
writing new values to it. Erasing is even more cost-intensive and can only be done in larger
blocks, not by one page at a time. Typically, a block is 32 – 256 KB in size. It takes about
20 times as long to erase a block as reading a page (∼1000 µs). Erasing flash blocks leads
to a slow but constant destruction of the cells. After about 105 erase cycles, cells will start
to wear out and the block is no longer able to retain data.

Flash chips can be grouped together in so-called planes to increase storage capacity. Mul-
tiple planes can be accessed in parallel to enhance data throughput.

Flash Translation Layer To cope with the limitations of bare-metal flash chips, a mit-
igation layer is used on top of the chips/planes, called Flash Translation Layer (FTL). It
provides a block-device interface to the upper layers, making the SSD look like a common
storage disk. Therefore, the SSD user does not have to worry about erasure-before-write
and handling worn-out blocks; these jobs are handled by the FTL. Because overwriting
data on flash chips requires special treatment, the FTL must provide an erase-before-write
mechanism that is able to save neighboring flash pages from being erased. Further, the
FTL has to take care of worn-out cells.



Based on these basic functionalities, todays FTLs provide a lot more logic to further im-
prove SSD performance. First of all, to avoid the need for erasing hot-spot areas over
and over again, a page mapping is introduced to redirect logical page accesses to different
physical locations on every new write. This helps to save erase cycles and, therefore, also
improves performance. To free up unused areas of the SSD, a garbage collection schema
can be implemented allowing the SSD to asynchronously perform erase and cleanup oper-
ations when the device is idle. Further reorganization tasks such as summarizing sparsely
filled blocks can be employed. Like conventional hard disks, SSDs usually have an inter-
nal DRAM cache to buffer write requests or store prefetched pages. This buffer enables
solid-state disks to backup and restore pages during erase cycles and to keep in-memory
information, e.g., page-mapping structures. By using an FTL, it is possible to avoid most
drawbacks of flash chips while making use of the advantages. Therefore, the FTL is a
major performance-critical part of every SSD and manufacturers are eager to keep the im-
plementation details a secret. A more detailed explanation of flash memory, SSDs, and
their internal structures can be found in [RKM09, CPP+06].

3 Related Work

SSDs have been intensively explored in recent years with a focus on the characteristics of
SSDs, on its integration into (existing) hardware systems and on its effective exploitation.

Operating Systems At the device level, Wang et al. [WGK09] propose non-in-place
updates when writing to SSDs, which results in a performance improvement in their
work, but which is automatically performed inside modern SSDs to mitigate wear-out.
The same holds for flash-optimized file systems (e.g., YAFFS [Man02]) which employ
journaled writes to avoid random and in-place updates. FTL implementation proposals
[CPP+06, LPC+07, KKN+02] show different techniques that yield a logical-to-physical
block mapping. As the FTL is embedded inside the device firmware, it is unknown whether
any of theses techniques or which particular technique has been adopted by the SSD man-
ufacturers.

System Architecture Approaches concerning the system architecture try to find suit-
able solutions where to place SSDs in computer systems and how to incorporate them.
Three main strategies [RKM09] are feasible using SSDs: as extended system memory, as
storage accelerator, or as alternative storage device. Other works use a hybrid approach
of SSDs and conventional HDDs where the SSD serves as persistent buffer for HDDs in
order to mitigate I/O latency [CMB+10, KJKM09] or – depending on their workload – to
adaptively place pages on one of these device types [KV08].

DBMS-specific Optimizations The exploitation of SSDs to increase the performance of
data-intensive workloads still is in focus of the database systems community. An overview
of the knobs and layers which can be made SSD-aware in a database system is given by
Graefe [Gra09]. Of course, several components which interact and rely on external storage
have been incorporated to be aligned to the characteristics of flash memory, so a lot of
different proposals have been made in recent years. This includes amongst others SSD-



tailored DB buffer replacement algorithms [OHJ09], page layouts [THS+09], and index
structures [AGS+09, KJKK07, WKC07]. Do et al. [DP09] show the impact of SSDs on
join processing, mainly the tendency to become CPU-bound rather than being I/O-bound
when HDDs are used. Tsirogiannis et al. [THS+09] recommend late materialization for
speeding up join processing on SSDs.

SSD Measurements Papers in this area try to find out more about the SSD behavior and
how to react to certain situations in reality. Most of them are based on micro-benchmarks
used to reveal internal characteristics. Bouganim et al. [BJB09] and Chen et al. [CKZ09]
were the first who tried to derive the intrinsic characteristics of different SSDs. They
conclude that SSDs have to be considered as black boxes, as they follow no common
rule. SSDs in RAID configurations have been examined in [BdNSS10] and [PABG10],
where the latter one states that some effects of SSDs, e.g., the read-write asymmetry,
are amplified due to the RAID mechanism. Overall, some characteristics are differently
interpreted. [BJB09] state that they did not observe any performance improvements from
submitting I/Os in parallel, [BdNSS10] use long queue depths and asynchronous I/O in
order to increase the bandwidth.

As SSD advance, aspects covered by some approaches are already mitigated by the FTL.
Others base their finding on a theoretical flash model, mostly by applying the metrics for
read, write, and erase for raw flash chips or derive their results purely based on simulation.
Even though theoretical effectiveness can be proven in this way, there can be quite a sub-
stantial discrepancy with regard to real-life SSDs. This can be seen in some papers, where
the approaches are also verified on real SSDs, but the results are not as good as anticipated
or derived by simulation. Moreover most papers base their experiments on only one type
of SSD, neglecting the fact that their results could differ attributed to the employed SSD.

4 Methodology

For getting insights into SSD behavior, the read and write performance of the solid-state
disks was measured. To stress all devices with the same access patterns, we developed a
tool (similar to uFlip1 and IOmeter2) that allows us to perform benchmarks on the devices.
The tool is able to read and write different access patterns from/to the devices. The page
size the tool uses is adjustable. Figure 1 outlines the access patterns we used to bench-
mark the SSDs. The first test pattern is sequentially accessing n pages. This pattern is

  1  2  3  4  5           
(a) sequential access 

    5      2    3  1      4
(b) random acccess 

    1      2    3  4      5
(c) skip‐sequential access 

 

Figure 1: Access Patterns

full

empty

read

write

sequential

random

skip-sequential

Figure 2: Measurement Combinations

1http://uflip.inria.fr/∼uFLIP/
2http://www.iometer.org



common in database servers when scanning through a table where no tailored access paths
are available. Similarly, sequential writes are typical during log-flush operations. The sec-
ond pattern is randomly accessing all pages of the test file. We ensured that each page
gets accessed only once and that the pattern is repeatable. This pattern is often seen in
databases when accessing pre-selected leaf pages in a B-tree. Random writes occur when
updating several database tuples at a time or when flushing modified pages back to disk.
The final pattern we tested is called skip-sequential, which accesses pages sequentially,
but skips randomly over some pages. This pattern can be observed when a set of pages
needs to be accessed, e.g., when – upon reading scattered database pages – the I/O requests
are performed using ascending/descending physical addresses. Hence, this pattern evolves
from the random pattern by pre-sorting the page numbers. This helps conventional disks
to minimize head movement and, thus, reduces access times.

We set up a testing environment to benchmark all SSDs using the same hardware platform.
To measure the device’s energy consumption, we attached the computer to a measurement
device. This enables us to keep detailed track of the devices’ power consumption in addi-
tion to the performance measurements. A detailed description of the measurement setup
can be found in [SHH10]. Using the previously described setup, we ran several tests
against all SSDs and recorded their performance and energy consumption. The tests were
run on a 1GB file filled with random data. We repeated the tests using varying page sizes
and queue depths. First, we measured read and write patterns on a nearly empty drive (de-
noted by empty in Figure 2). After these measurements, we filled the drive with random
data, while preserving the 1GB test file, and ran the same tests again. Figure 2 shows the
benchmark combinations we ran for each device. We verified our results for sequential
and random access by comparing it to results obtained by IOmeter and got more or less
the same performance figures (±10%).

5 Experimental Results

In this section, we will present our measurement results for each SSD individually and
discuss the observations. We measured using 32K pages for bandwith and 2 – 8K pages
for IOPS measurements.3 After we have shown all results, we will compare them and
derive common patterns.

SSD1 – SuperTalent FSD32GC35M 32GB This SSD is the oldest one we tested. Re-
sults clearly show slow performance under all tested patterns as well as heavily degraded
write performance. On the other hand, as the results show, random read is as fast as
sequential read. SuperTalent states in the data sheet that this device can perform over
58,000 IOPS, a number we could not even get close to. Unfortunately, no further informa-
tion about page sizes or queue depths is given.

SSD2 – Mtron MSP-SATA7525 The next SSD shows improved performance compared
to SSD1, as depicted in Figure 5. Still, random writing is tremendously slower than other
access methods. The SSD’s data sheet tells a lot more about the parameters used for

3According to [BJB09], 32KB is the preferable page size for SSDs.



 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

SEQ RAND SKIP‐SEQ SEQ RAND SKIP‐SEQ

READ WRITE

SSD1
pages/sec

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

SEQ RAND SKIP‐SEQ SEQ RAND SKIP‐SEQ

READ WRITE

SSD2
pages/sec

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

SEQ RAND SKIP‐SEQ SEQ RAND SKIP‐SEQ

READ WRITE

SSD3
pages/sec

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

SEQ RAND SKIP‐SEQ SEQ RAND SKIP‐SEQ

READ WRITE

SSD4
pages/sec

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

SEQ RAND SKIP‐SEQ SEQ RAND SKIP‐SEQ

READ WRITE

SSD5
pages/sec

Figure 3: Performance Measurements Using Different SSD Types

testing. It documents page sizes, queue depths, and access patterns used; therefore, the
measurements are far more comprehensible. Though, we could not reproduce the stated
performance, but get closer to it than we could for the first SSD we tested.

SSD3 – Intel X25-M G1 SSD3 represents the first Intel generation. As shown in Fig-
ure 5, this drive is really good at sequential reading, while random reading is comparatively
slow. Then again, all write patterns are performing equally well. This is a significant oper-
ational difference compared to the first two SSDs. Intel’s data sheet documents the queue
depth, but not the page size used for benchmarking sequential access patterns. For random
accesses, the page size is mentioned. We were unable to get the same performance, even
with the same parameters as in the data sheet.

SSD4 – Intel X25-M G2 The next generation of Intel SSDs came with the additional
feature TRIM support4. Figure 5 indicates improved overall performance for all patterns.
Nevertheless, the disk is showing the same challenges as the first generation. We could
get closer to the performance reported in the data sheet, but were still unable to reach
the advertised 35,000 IOPS. At least, we were able to measure the same sequential read
bandwidth as stated (not shown in this figure).

SSD5 – Crucial RealSSD According to the manufacturer’s data sheet, the device can
read up to 60,000 and write up to 45,000 pages/second. Our own measurements show
quite a different picture. While reading on SSD5 is faster than on all other SSDs we
tested, random writing stresses this device remarkably. Although the data sheet promises
60,000 IOPS for random read, we could not get even close to this number.

6 Results Interpretation

After we presented individual measurement results for each SSD, we are going to examine
some common patterns observed on more than one device. In this section, we will also

4http://t13.org/Documents/MinutesDefault.aspx?keyword=trim



examine common assumptions regarding SSDs and show that not all of them are true.

Random Access Interestingly, though SSDs do not have moving parts and therefore
should not suffer from random access, in fact, they do. Our measurements show that
random access may be substantially slower than sequential access. Dependent on the
device, this effect ranges from -5% performance on SSD1 and SSD2 up to -50% on SSD3
and SSD4. Therefore, sequential accesses should still be preferred over random accesses,
although it is not as vital as on hard disks.

Considering the break-even point for selecting index-based access over sequential table
scan, there is now a shift on SSDs. For conventional hard disks, a rule of thumb says
to use an index-based scan only if the selectivity is below 1 - 3%, otherwise to scan the
whole table sequentially. On solid-state disks, the selectivity factor can be shifted to higher
percentages. Because of the different performance characteristics of solid-state disks, it is
not possible to spot a clear break-even point. For example for SSD1 and SSD2, break-
even would be at ∼90%, while on SSD3 and SSD4, break-even is at only ∼50%, due
to their worse random access performance. On SSD5, break-even lies at ∼75%, thus a
considerable divergence is visible for SSDs. Our results show that there is a trend towards
faster write support on SSDs. Clearly, SSD1 and SSD2 suffer heavily from random writes,
whereas the newer SSDs from Intel cope with them much better. SSD5, on the other hand,
is again performing badly at random writing while providing fastest sequential writes.

Database query optimizers can decide between random and sequential access based on
configurable disk parameters.Hence, the same care that has to be taken for conventional
disks also has to be applied when using SSDs. Unfortunately, performance characteris-
tics of SSDs are much harder to quantify than for spinning disks: On conventional disks,
RPM, cache size, and bus delay are the only vital characteristics to estimate performance.
On SSDs, there are no key performance indicators and characteristics can only be derived
from measurements. The decision whether to write random pages (logically) in-place or
to employ log-structured sequential writes strongly relies on the behavior of the under-
lying SSD. Therefore, optimizing algorithms for wrong device models can make overall
performance even worse. Especially developers for flash-aware buffer algorithms have to
consider that device-specific tweaks might be obsolete in no time.

Unstable Behavior While verifying the results using IOmeter, we observed another ef-
fect on SSD3. We did some changes to the source code of IOmeter to enable per-second
tracking of measurement values. Using this tweaked version, we were able to get more
detailed performance data from our devices. Figure 4 visualizes the write performance
of SSD3 in pages/second on a per-second basis. As illustrated, every 4 to 5 seconds,
performance is heavily degraded for about 3 seconds. We conclude, the drive is perform-
ing internal re-organization like freeing up flash blocks or searching for another writable
block. We measured the same behavior for sequential writes, though the timespan between
drop-offs was about 3 times longer. On SSD4 – the successor of SSD3 –, we measured
similar behavior, although the performance drops during writes were not that severe.

While benchmarking SSD4, we had a look at the TRIM command introduced for this
model and observed an interesting behavior. Figure 5 depicts our write-performance mea-



0

500

1000

1500

2000

2500

3000

1 6 11 16 21 26 31 36 41 46 51 56

SSD3 random accesspages/sec

sec

Figure 4: IOmeter per Second

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26 31 36 41 46 51 56

SSD4 write after TRIMpages/sec

sec

Figure 5: Write after TRIM

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16

SSD5

SSD4
SSD3
SSD2

SSD1

IOPS

QD

Figure 6: Queue Depth

surement right after deleting ∼130 GB of files on the drive and issuing corresponding
TRIM commands to the drive. In this graph, a heavily degraded performance in the first
half of the measurement is evident. Apparently, the SSD tries to free up flash blocks while
we were simultaneously applying a write load to it. The proprietary FTL mapping partic-
ularly concerns device caching, block allocation, and garbage collection. All these mech-
anisms are software controlled and entirely hidden to the upper software layers. Hence,
optimization decisions in the OS or DBMS may be counterproductive and sometimes even
worsen the time-consuming house-keeping activities. As inferred from Fig. 4, write la-
tency may extremely vary. While less than ∼400 µs in the best case, we have observed
outliers of more than some hundred ms, that is a device-dependent variance of more than
∼200 – 500.5 Compared to that, a magnetic disk with a device-dependent variance of ∼2
- 5 exhibits quite a stable access behavior and lends itself to reliable optimizer decisions.

Another aspect is a kind of heterogeneity among the SSD types present in a DBMS envi-
ronment, where several heterogeneous SSDs may coexist in an application (or they may
be dynamically exchanged). As a consequence, tailor-made algorithms for specific SSD
types, e.g., concerning indexing or buffer management, are not very useful. The same
arguments apply for specific workload optimizations (pure OLTP or OLAP processing,
mixed workloads with varying degrees of reads/writes). A continuous adjustment or ex-
change of algorithms affected is not very practical in productive DBMS applications.

Read/Write Asymmetry As mentioned in the literature, reading flash pages is about
10 times faster than writing them because of intrinsic electrical properties. In conclusion,
writing to SSDs should be equally slower than reading. Our measurements show that this
is not true in general. SSD1 and SSD2, for example, do not exhibit degraded performance
for (sequential) write, they are equally fast as sequential read. On all other SSDs, an
asymmetry is measurable, but still not as bad as advertised.

Especially for buffer management algorithms, read/write asymmetries introduce a big po-
tential for optimizations. On conventional disks, reading and writing cost the same; there-
fore, it does not make a big difference whether a clean or a dirty page gets evicted from
the buffer. Considering solid-state disks, dependent on the device, the difference can now
be significant. As mentioned earlier, current research papers already gave attention to this
and flash-aware access algorithms were introduced. Nevertheless, it is crucial for these al-
gorithms to know the exact properties of the underlying device, i. e., the precise read/write
behavior, to enable optimizations.

5Note, we observed similar variance factors at the level of DBMS operations, e.g., splits in B*-trees, but these
were provoked by algorithmic or implementation weaknesses.



Slower When Full? SSDs have to erase flash blocks prior to writing new values to it. As
a consequence, overwriting some blocks on a full disk should be much slower than writing
to an empty disk. We verified this assumption by filling all drives with random data and
repeating our tests afterwards. No significant differences were measurable. Therefore, the
common advice to leaving some empty space on the SSD to help the FTL find free/erasable
pages can be abandoned. In fact, this is a waste of storage space, since our measurements
do not indicate differences between empty and full drives.

Impact of Queue Depth As mentioned earlier in this paper, the queue depth (QD), that
is, the number of concurrent requests needing access to the device, can make a great dif-
ference to the overall performance. Due to a technique called Native Command Queueing
(NCQ), the device can re-order the sequence of requests in the queue to optimize its in-
ternal access path and improve throughput. This was primarily invented for hard disks to
optimize their access path along the spinning platter. SSDs can still increase performance
by optimizing switches between different flash planes. Furthermore, because access la-
tency of SSDs is very low, bus delays gain greater influence in the overall access delay.
To minimize communication overhead, higher queue depths in combination with NCQ
can also be used to send bulk requests to the drive [Gas08]. This reduces the overhead to
1/bulk size of the original overhead. SSD manufacturers know this fact and tweak their
performance measurements accordingly. A high queue depth results in increased overall
data throughput and higher IOPS, while a queue depth of 1 primarily minimizes access
latency.

To gain more insights, we repeatedly measured various queue depths. By using a random
read pattern, we give the FTLs a fair chance to optimize the queue. As Figure 6 indi-
cates, the only significant improvement is between QD 1 and QD 2. Beyond this point,
extending the QD did not improve data throughput. We did not expect this result, be-
cause manufacturers use even higher queue depths for their performance measurements.
Also, current database servers do benefit from increased queue depths on conventional
hard disks. As mentioned, some papers observed the same behavior [BJB09], while other
papers explicitly recommend using longer queues [BdNSS10]. We see that it is not nec-
essary to maintain long request queues for SSDs, thus database applications do not have
to worry about getting maximum asynchronous I/O rates. A fair amount of outstanding
requests is sufficient to keep an SSD at high bandwidth.

Energy Consumption As energy efficiency is getting a more and more critical factor
for large data centers nowadays, we evaluated the SSDs’ energy consumption. Figure 7(a)
shows the absolute power consumption of the SSDs we tested. For this test, a sequen-
tial read pattern is used. Write patterns might consume even more energy. Obviously,
the drives do consume energy when being idle; therefore, they are not as energy sav-
ing as expected. The SSDs’ power profiles are similar to those of conventional hard disks,
although their peak power consumption is considerably lower. Power consumption of con-
ventional disks ranges from 4 – 6 Watts for mainstream disks to 9 – 14 Watts for enterprise
server hardware. Figure 7(b) shows how many pages can be read by each SSD consum-
ing one Joule of energy. As illustrated, pages/Joule are constantly rising, thus newer
SSDs are getting more energy efficient. On conventional disks we measured only 600 –
1800 pages/Joule. Anyway, a more differentiated comparison is cumbersome, because



0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

SSD1 SSD2 SSD3 SSD4 SSD5

Energy Consumption 

variable part
idle

Watt

(a) Energy Consumption in Watts

0

2000

4000

6000

8000

10000

12000

14000

16000

SSD1 SSD2 SSD3 SSD4 SSD5

Pages  / JoulePages / J

(b) Pages Read per Joule

Figure 7: Energy Consumption Measurements

of the different performance characteristics and their implications on energy efficiency. In
general, the best performing SSDs are still the most energy efficient.

7 Limitations

We explored the performance of I/O patterns typically occurring in a DBMS environment.
However, we were and still are not aware of the tricks and assumptions, e.g., massive I/O
parallelism, of the manufacturers under which their performance behavior was achieved as
reported in the data sheets. Our results sometimes indicate substantial deviations confirm-
ing that the “promised” device behavior may not be fully exploited by DB applications.
Although we took care that our measurements are accurate and reliable, there might be
some limitations to our approach. In order to keep up fair publishing policies, we do not
want to hide them from the readers. We mainly focused on two ideas, why our measure-
ments might not be 100% reliable.

SSD Choice The solid-state disks we tested were not fresh out-of-the-box, but were
rather used by our research group for several benchmarks previously. Ranging from SSD1,
which is approximately 3 years old, to our recently bought SSD5, all drives were used in
varying degrees. Therefore, the observations and claims we made in this paper might only
be true for our particular devices. Since the older drives (SSD1 to SSD3) do not support
the TRIM command to free up flash pages, these devices might be worn out exceptionally.
Due to a limited budget, we tested only one device for every model; therefore, we cannot
not make assumptions for whole product models, but rather for single product instances.

Measurement Platform Choice The original use for our measurement track was to
measure and optimize energy consumption. For this reason, we only used a small server
board for testing, which might not have a high-performance SATA bus controller. This
might bottleneck our measurements. In order to eliminate this possibility, we verified our
measurements using a dedicated SAS controller card. Nevertheless, the results stayed the
same and we were unable to get the performance promised in the data sheets. We even
switched the entire hardware to a different system, which did not lead to an improvement.
We can not resolve all doubts for sure, but we assume our measurements were correct
and there is in fact a major gap between manufacturer’s data sheets and real-world perfor-
mance.



8 Conclusion

As the measurements clearly discover, each SSD exhibits a differing performance profile.
We were able to identify some common patterns and outlined areas that are improving
continuously, e.g., write performance. Still, manufacturers’ claims about their drives’ per-
formance can not be blindly trusted. Because a common benchmarking procedure does not
exist, performance claims of data sheets can hardly be reproduced in real-world scenarios.
Due to the advancement of the internal FTL, larger write caches, and TRIM support, we
believe that the often mentioned drawbacks of SSDs, e.g., slow writes, will soon disappear.
Also, write endurance of SSDs is constantly rising and we do no longer have to care about
destroying the disk by constantly writing to it. As we have proven by our experiments,
every drive has its own characteristics. Optimization towards a single drive or against
flash-chip access characteristics is no longer suitable under these circumstances. A lot of
literature focuses on improved algorithms for flash chips, although there are no bare-metal
flash chips in server systems. As we have shown in Section 6, current solid-state disks
embody unpredictable behavior and performance may sometimes drop unexpectedly. In
order to use SSDs in time-critical operations, like meeting deadlines in a real-time DBMS,
algorithms have to be aware of these characteristics to anticipate even worst-case situa-
tions. More generic algorithms – not adjusted to single SSD types, but able to handle
a widespread of different device characteristics – would be better suited and rather eli-
gible for DBMS use. To suit a specific device, its characteristics could be determined
either offline – prior to using the device in a productive environment – or online – during
use. Then, according to the measured properties, the algorithm could automatically tune
itself to maximize its performance. We propose that this approach would be more sustain-
able, even over SSD generations with changing behavior and be, therefore, more useful
than highly specialized algorithms fitting particular SSDs only. Our benchmarks of todays
solid-state disks unveiled a lot of pitfalls, although these measurements are far from be-
ing complete. For example, focusing on smaller grained, longer running benchmarks could
help identify a lot more peculiarities of SSDs. For example, long running stress tests could
reveal resource exhaustion inside the FTL or, by cutting power to the SSDs, persistence
tests could be performed. Nearly all of the measurements we ran have discovered another
fact for SSDs; therefore, we think there is a lot more to detect. Hopefully, future SSD
generations will no longer need special treatment by the upper layers, because FTLs will
contain more and more logic. We propose that SSDs will soon unite the advantages of
conventional hard disks combined with faster random access behavior.

References

[AGS+09] Devesh Agrawal, Deepak Ganesan, Ramesh K. Sitaraman, Yanlei Diao, and Shashi
Singh. Lazy-Adaptive Tree: An Optimized Index Structure for Flash Devices. PVLDB,
2(1):361–372, 2009.

[BdNSS10] Stephan Baumann, Giel de Nijs, Michael Strobel, and Kai-Uwe Sattler. Flashing
Databases: Expectations and Limitations. In DaMoN, 2010.



[BJB09] Luc Bouganim, Björn Thór Jónsson, and Philippe Bonnet. uFLIP: Understanding Flash
IO Patterns. In CIDR, 2009.

[CKZ09] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding intrinsic charac-
teristics and system implications of flash memory based solid state drives. In SIGMET-
RICS/Performance, pages 181–192, 2009.

[CMB+10] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A. Ross,
and Christian A. Lang. SSD Bufferpool Extensions for Database Systems. PVLDB,
3(2):1435–1446, 2010.

[CPP+06] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-Won Lee, and
Ha-Joo Song. System Software for Flash Memory: A Survey. In EUC, pages 394–404,
2006.

[DP09] Jaeyoung Do and Jignesh M. Patel. Join Processing for Flash SSDs: Remembering
Past Lessons. In DaMoN, pages 1–8, 2009.

[Gas08] Geoff Gasior. Intel’s X25-E Extreme Solid-state Drive. Technical report, The Tech
Report, 2008.

[Gra09] Goetz Graefe. The Five-Minute Rule 20 Years Later (and How Flash Memory Changes
the Rules). Commun. ACM, 52(7):48–59, 2009.

[KJKK07] Dongwon Kang, Dawoon Jung, Jeong-Uk Kang, and Jin-Soo Kim. mu-Tree : An
Ordered Index Structure for NAND Flash. In EMSOFT, pages 144–153, 2007.

[KJKM09] S.-H. Kim, D. Jung, J.-S. Kim, and S. Maeng. HeteroDrive: Re-shaping the storage
access pattern of OLTP workload using SSD. In IWSSPS, pages 13–17, 2009.

[KKN+02] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, and Yookun Cho. A space-
efficient Flash translation layer for CompactFlash systems. IEEE Transactions on Con-
sumer Electronics, 48:366–375, 2002.

[KV08] Ioannis Koltsidas and Stratis Viglas. Flashing up the storage layer. PVLDB, 1(1):514–
525, 2008.

[LPC+07] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and
Ha-Joo Song. A log buffer-based flash translation layer using fully-associative sector
translation. TECS, 6(3), 2007.

[Man02] Charles Manning. YAFFS (Yet Another Flash File System)
http://www.yaffs.net/, 2002.

[OHJ09] Yi Ou, Theo Härder, and Peiquan Jin. CFDC: A Flash-aware Replacement Policy for
Database Buffer Management. In DaMoN, pages 15–20, 2009.

[PABG10] Ilia Petrov, Guillermo G. Almeida, Alejandro P. Buchmann, and Ulrich Gräf. Building
Large Storage Based On Flash Disks. In ADMS, 2010.

[RKM09] David Roberts, Taeho Kgil, and Trevor N. Mudge. Integrating NAND flash devices
onto servers. Commun. ACM, 52(4):98–103, 2009.

[SHH10] Daniel Schall, Volker Hudlet, and Theo Härder. Enhancing Energy Efficiency of
Database Applications Using SSDs. In C3S2E, pages 1–9, 2010.

[THS+09] Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L. Wiener, and
Goetz Graefe. Query Processing Techniques for Solid State Drives. In SIGMOD,
pages 59–72, 2009.

[WGK09] Yongkun Wang, Kazuo Goda, and Masaru Kitsuregawa. Evaluating Non-In-Place Up-
date Techniques for Flash-Based Transaction Processing Systems. In DEXA, pages
777–791, 2009.

[WKC07] Chin-Hsien Wu, Tei-Wei Kuo, and Li-Ping Chang. An efficient B-tree layer implemen-
tation for flash-memory storage systems. TECS, 6(3), 2007.


