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ABSTRACT 
XML is a tree-based data representation format which combines 
data and structure. Therefore, XML queries not only contain 
predicates to filter data but also refer to relationships between 
document elements searched. The existing elements in an XML 
query are connected to each other using a tree-pattern structure, 
called Query Tree Pattern (QTP). Finding elements of a 
document, which satisfy the given QTP, is the main task during 
query execution. To optimize this processing, we presented two 
methods in [13]. Instead of directly executing the QTP against the 
document, our methods first evaluate a guidance structure, called 
QueryGuide. Using the extracted information, called match 
pattern, we provided a focused document access and minimized 
the required I/O. However, we only supported the logical operator 
AND (called AND-QTPs). 
In this paper, we use a new structure, called Evaluation Tree, to 
execute QTPs. We also extend our method to support QTPs 
having logical operators OR, XOR, and NOT. Parsing QTPs into 
some AND-QTPs is typically assumed non-efficient. To process 
QTPs having logical operators OR and NOT, we therefore parse 
them but we use an efficient method to prevent redundant I/O and 
QTP matching.  This is done by optimizing the selection of match 
patterns which were derived from the QueryGuide during QTP 
parsing. As a result, QTP execution is not inefficient anymore. 

1. INTRODUCTION 
The flexibility of XML provides suitable data representation 

formats for many applications, especially for those dealing with 
semi-structured data. Furthermore, the emergence of XML 
database management systems (XDBMSs) is a response to the 
growing popularity of XML in various domains, where collections 
of huge XML documents have to be managed. Querying such data 
volumes poses new challenges, especially related to the structure 
of XML documents, which combine tree structure with document 
content. XPath [2] and XQuery [3], the two most popular query 
languages in the XML domain, reflect the XML tree structure in 
their syntax using path expressions. As a consequence, XML 
queries enable the specification of so-called query tree patterns 
(QTP). Such QTP evaluations on large XML documents, 
however, are very expensive, because all XML fragments 
matching a given QTP have to be located. 

Consider the query Q1: //A[.//B]/C//D. Figure 1 represents the 
QTP of Q1, which has two branches: A//B and A/C//D. To evaluate 
Q1, it is sufficient to access the document nodes related to 
elements occurring in Q1. These nodes may be part of the final 
result if they satisfy the related path conditions and also have 
counterparts to satisfy the other branches specified in the QTP. In 

the Q1 example, document nodes related to B must have an A 
element as their ancestor to satisfy the left branch. Furthermore, 
such A elements must have a C element as child and, in turn, at 
least a D element as descendant of this C element. QTP evaluation 
may become even more complicated and expensive if more than 
two branches occur in a query. Further, branches of a QTP may be 
connected by logical operators other than AND. In particular, 
branches of QTPs may contain the logical operator NOT.   

1.1 Related Work 
We have addressed the problem of QTPs having branches 

connected only by the logical operator AND (AND-QTPs) in [13]. 
Some methods have been proposed to efficiently evaluate AND-
QTPs against huge XML documents. Structural Join is one of the 
first methods [1] decomposing a given QTP into its binary 
relationships, where each binary relationship, e.g., C//D, is 
separately executed against the document thereby producing huge 
volumes of intermediate results.  Eventually, the final result is 
formed by combining these intermediate results. Some other 
methods such as those described in [9][15] attempt to improve the 
efficiency of the Structural Join.  TwigStack [4] provided a novel 
solution avoiding the decomposition of a query into its basic 
relationships. Instead, intermediate results are evaluated for each 
QTP leg (root-to-leaf path) in the first phase. These single-path 
matches are then merged to produce the final result in the second 
phase. To improve TwigStack, various index structures were 
proposed [7] [8] [16]. Furthermore, TwigOptimal [11] introduced 
the idea of jumping over non-qualified elements in the indexes to 
achieve superior performance. 

Inspired by TwigStack, TJFast [20] reduced I/O using a 
refined version of the Dewey labeling method (see Section 1.2). 
Each Dewey label enables the identification of the entire path 
from the root to its related node in the document. Therefore, 
TJFast could easily produce partial results related to each QTP leg 
by only accessing the potential target nodes of QTP leaves. 
The main problem with these methods is their expensive merging 
phase. As an answer to this drawback, Twig2Stack [6] and its 

Figure 1. Related QTP of query Q1. 
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refined version TwigList [22] eliminate the merging phase. But, in 
turn, these methods introduce a severe shortcoming: they have to 
fetch the entire document into main memory in the worst case. 

All the above mentioned algorithms are limited to processing 
AND-QTPs. The importance of logical operators such as OR and 
NOT, therefore, attracted researchers to design more powerful 
solutions. GTwigMerge [17] handles QTPs containing logical OR 
operators. QTP processing is performed by converting AND-QTPs 
using the concept of OR-Blocks. Similar to TwigStack, 
GTwigMerge is a two-phase method, where potential target nodes 
of all QTP nodes have to be accessed in the first phase. 
PathStack¬ [18] extends the PathStack [4] method, which only 
evaluates single path queries containing logical NOT operators. 
TwigStackList¬ [26] is an extension of TwigStack, which enables 
processing of QTPs containing logical NOT operators. In addition 
to chained stacks used in TwigStack, this method accelerates QTP 
processing by a look-ahead approach, where potential target nodes 
are fetched for each QTP node. Finally, AllTwigMerge [5] is a 
method, inspired by GTwigMerge, designed to evaluate QTPs 
containing logical OR and NOT operators by converting QTPs 
into a normalized form.  

In this paper, we use the following concepts whose detailed 
definitions can be found in [13]: 

• XTS: is a logical representation of an XML 
document. 

• DeweyID:  is a kind of label assigned to XTS 
nodes. Label of each node contains label of its 
parent. 

• Structural Summary: is a structure summarizing 
existing paths of an XML document. 

• QueryGuide: is a combination of a Structural 
Summary in addition to a Reference Section which 
indexes document nodes related to each node of the 
Structural Summary. Figure 2 represents an XTS 
representation of an XML document and its related 
QueryGuide is shown in Figure 3. 

• Match Pattern: is a structure enabling focused 
document access. Execution of a QTP against the 
document’s Structural Summary results in a set of 
match patterns, called SMP. 

1.2 Contribution of this paper 
One of the major ideas to improve QTP performance is to 

reduce I/O. We prevent accessing document nodes that definitely 
do not participate in the final result or if their related information 
can be evaluated from other nodes accessed. To reach this goal, 
we proposed the QueryGuide in [13] which contains a summary 
of the document structure. Then, the execution of QTPs against 
the QueryGuide enables us to identify which parts of the 
document are mandatory for the evaluation of the final matches.  

Furthermore, we use the Dewey labeling method [12] to 
assign a label to each document node. Therefore, each node 
accessed provides information related to all its ancestors and helps 
to eliminate I/O previously needed to access their information.  

In [13], we proposed two methods S3 and OS3 for processing 
AND-QTPs. In this paper, we refer to them as S3.v0 and S3.v1, 
respectively; we improve these methods and enhance them by the 
logical operators OR, XOR, and NOT. It is worth noting that 
GTwigMerge, PathStack¬, TwigStackList¬, and AllTwigMerge 
are based on the TwigStack method. As we reported in [13], our 
methods S3.v0 and especially S3.v1 clearly outperform TwigStack 

for AND-QTPs. In this paper, our main contributions and 
improvements are: 

• Evaluation Tree as a new structure which is formed 
based on the given QTP1 and is fed by document 
nodes to evaluate final matches. 

• Execution of QTPs with logical operators OR and 
NOT by parsing QTPs into AND-QTPs using the 
QueryGuide to achieve an efficient evaluation.  

• Introduction of “super-patterns” to decrease the 
number of match patterns necessary to execute 
QTPs having logical operators OR and NOT. 

• Grouping of super-patterns to reduce redundant 
I/O. 

The rest of this paper is organized as follows: Basic concepts 
used in this paper are described in Section 2. A brief description 
of methods proposed in [13] is reviewed in Section 3. In Section 
4, we introduce our new structure, called Evaluation Tree, and its 
use for QTPs having logical OR operators. Section 5 describes 
how we support the logical operator NOT. In Section 6, we 
present our method for the logical operators AND, OR, and NOT 
together. Finally, we summarize the experimental results in 
Section 7 and conclude our work in Section 8. 

2. PRELIMINARIES 
In order to represent an overview of our previous methods 

and make this paper more self-contained, it is necessary to take a 
quick look at some definitions and concepts. Details can be found 
in [12][13].  

Definition 1. An XML Tree Structure (XTS) X is a tree 
defined by a tuple (r, NX, E, I, T, V): 

• r∈ NX as an auxiliary node is the root of the XML 
tree. 

• NX is a set of XTS nodes. 
• E ⊂ NX×NX represents relations between nodes 

(branches of the tree). 
• I: NX → String is a function returning the unique 

label of the requested node 
• T: NX → {"root", "element", "attribute", "text"} is a 

function which returns the type of a node. 
• V: NX → String is a function which returns the 

value of a node. "root" is the value assigned for the 
auxiliary root of the XML tree (V(r)="root"). 

 
Definition 2. A QTP is a tree structure defined by the tuple 

(r", Q, O, E", U, V", C) over an XTS object X: 
• r"∈ Q is the root of the QTP. 
• Q is a set of query nodes in the QTP defined as 

follows: Q={x | ∃n ∈ NX, T(n)="element" ∨ 
T(n)="attribute", V(n)=V"(x)} 

• O={∧, ∨, ¬, ⊕} is a set of logical operator nodes in a 
QTP. (∧, ∨, ⊕) represent the binary AND, OR, and 
XOR logical operators, respectively. (¬) is the unary 
NOT operator. 

                                                                 
1 For sake of simplicity, we focus on QTPs with nodes having 

children connected by only one of the AND or OR logical 
operators. Covering QTPs with nodes having combinations of 
logical operators does not have a major impact on our 
algorithms (see Appendix B). 
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Figure 2. (a) A simple XML document (b) XTS representation of the document (X1) labeled by DeweyIDs 

b4(7, 1.11.1.1)

x1 (1, 1)

c1(2, 1.1)

d1(3, 1.1.1)

b1(7, 1.5.1.1)

m1(6, 1.5.1)

a2(4, 1.5)

c2(5, 1.3.1)

a1(4, 1.3)

d2(9, 1.5.3.1.1)

c3(8, 1.5.3.1)

m2(6, 1.5.3)

a5(4, 1.11)c5(2, 1.9)

a4(12, 1.9.1)

b3(13, 1.9.1.1)

m5(6, 1.11.1)

a3(4, 1.7)

d3(11, 1.7.3.1.1)

m4(10, 1.7.3.1)

c4(5, 1.7.3)

b2(7, 1.7.1.1)

m3(6, 1.7.1)

r
<X>
<c> <d>text1</d> </c>
<a><c>text2</c> </a>
<a>
<m> <b>text3</b></m>
<m><c> <d>text4</d> </c> </m>

</a>
<a>
<m> <b>text5</b> </m>
<c><m><d>text6</d> </m> </c>

</a>
<c> <a> <b>text7</b> </a> </c>
<a> <m> <b>text8</b></m></a>
</X>

a b 

• E"⊂ (Q ∪ O)×(Q ∪ O) represents branches of QTP. 
All leaves of the QTP are query nodes. 

• U: Q×{"A-D", "P-C"} indicates a kind of relationship 
between a query node q and its nearest query node 
among the ancestors of q. "P-C" shows a parent-child 
(/) relationship, while "A-D" represents an ancestor-
descendant (//) relationship between nodes of the 
QTP, which has to be satisfied during the matching 
process over the associated XTS object X. 

• V": Q  → String returns the value of a node. 
• C: Q×NX → {true, false} is a Boolean function 

deciding whether or not a node n ∈ NX satisfies the 
constraints associated with query node q. 

Definition 3. The Potential Target Nodes (PTN) of a query 
node q in QTP(r", Q, O, E", U, V", C) defined over the XTS object 
X(r, NX, E, I, T, V) are contained in an ordered list of X nodes 
(PTN, <): 

a) PTN(q)={n| n ∈ NX, V(n)=V"(q) ∧ C(q, n)} 

b)  ∀  n1 , n2 ∈ NX :   n1 < n2 iff n1 is visited earlier than 
n2 in a pre-order traversal through X. 

DeweyID: Performing query evaluation against a huge XML 
document with acceptable performance needs the document to be 
stored in a format that provides facilities like indexes [14]. The 
first step is to assign a label to each node in the document. In this 
way, XML documents are stored in a structured format. 

Comparisons of labeling schemes and their empirical evaluation 
[12] led us to use a prefix-based scheme, based on the concept of 
Dewey order [21], for the labeling of tree nodes. Historically, 
Dewey labeling was first used in libraries providing a better way 
to find items on the shelves [10]. Dewey labels used in the XML 
database domain consist of so-called divisions (separated by dots) 
representing the node path from the document root to the node 
itself. The label of each node is constructed by adding a new 
division to the label of its parent; therefore, it contains the labels 
of all its ancestors. Dewey labels also contain other valuable 
information. The odd-numbered divisions in a label enable the 
derivation of the depth of a document node. Furthermore, the 
relation between two nodes such as ancestor-descendant, parent-
child, or their order in the document can easily be identified just 
by comparing the labels of the respective nodes. Several labeling 
methods based on Dewey labeling were proposed. Our 
mechanism, referred to as DeweyID, is characterized by some 
distinguished features described in [12]. DeweyIDs have nice and 
practical properties. For example, they are immutable, that is, they 
allow the assignment of new IDs without reorganizing the IDs of 
present nodes. Figure 2 represents a sample XML document 
labeled by DeweyIDs. 

QueryGuide: Evaluation of queries against huge XML 
documents may require lots of document scans. In such situations, 
indexes in the form of B*-trees can be a solution to minimize the 
volume of I/O. However, the particular form of XML documents 
implies that there is a need to capture the structure of XML 

B(13)

X (1)

C(2)

A(12)
D(3)

A(4)

C(5)

M(10)

D(11)

M(6)

B(7) C(8)

D(9)

r

Figure 3. QueryGuide for X1 in Figure 2: (a) Structural Summary S1(b) reference section 

1 1
2 1.1; 1.9
3 1.1.1
4 1.3; 1.5; 1.7; 1.11
5 1.3.1; 1.7.3;
6 1.5.1; 1.5.3; 1.7.1; 1.11.1
7 1.5.1.1; 1.7.1.1; 1.11.1.1
8 1.5.3.1
9 1.5.3.1.1
10 1.7.3.1
11 1.7.3.1.1
12 1.9.1
13 1.9.1.1

a b 
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documents beside their content. QueryGuide explained in [13] is 
our solution. It consists of two parts: Structural Summary and 
Reference Section. A Structural Summary is itself an XTS object 
representing the XML structure of a single document.  Each path 
instance in a given document is mapped to a single path in the 
Structural Summary, called its path class. Therefore, a Structural 
Summary covers the entire path instances of the document and, in 
turn, each node in the Structural Summary is the representative of 
all instance nodes, which are the nodes in the document having 
the same path labeled by a unique CID (Class ID).  The Reference 
Section indexes DeweyIDs of instance nodes related to Structural 
Summary nodes (CIDs). 

Lemma 1[13]. Considering an XML object X and its related 
Structural Summary SX, if n1, n2 ∈ NX and n1 is ancestor of n2, 
then their related nodes in SX also have the same relationship. 

3. OVERVIEW OF S3.v0 AND S3.v12 
The power of our methods is founded upon the previously 

introduced concepts, DeweyIDs and QueryGuide, which provide 
valuable information for QTP processing.  The execution of a 
QTP against the related Structural Summary of the QueryGuide 
leads to a set of Match Patterns (MPs). This set (referred to as 
SMP hereafter) enables focused document access. Using the 
strength of Dewey labels, the extracted nodes are efficiently 
compared and joined in the matching process based on MPs. 
Figure 4 shows the overall process of QTP matching in our 
method. 

3.1 Matching Process 
The volume of I/O during a matching process is a critical 

issue for the efficiency of a QTP processing method. We have 
optimized it by the use of DeweyIDs and SMPs.  In our method, 
only the extraction of potential target nodes of QTP leaves is 
essential. The DeweyID of an extracted node can be used to 
produce the label of potential target nodes of inner QTP nodes 
whenever required. Furthermore, the execution of a QTP against 
the Structural Summary produces an SMP. For each QTP leaf, the 
SMP contains a useful subset of CIDs of potential target nodes 
needed to be extracted. The corresponding nodes of these CIDs 
satisfy one of the QTP legs in the document and often enable the 
finding of other nodes to produce a match for the given QTP as 
well. 

Example 1. Consider QTP  Q1 (Figure 1) and XTS object X1 
(Figure 2).  Q1 is first executed against Structural Summary S1 
(Figure 3(a)). The result is a single match (A4, B7, C5, D11).  As a 

                                                                 
2 In this paper, we refer to S3 and OS3, our proposed methods in 

[13], as S3.v0 and S3.v1, respectively. 

result, only those members of PTN(B) having CID 7 and members 
of PTN(D) having CID 11 have to be extracted. A closer look at 
X1 indicates that d1 with CID 7 has no A element as an ancestor to 
satisfy D-leg (//A/C/D) of  Q1, and d2 cannot satisfy the D-leg 
because c3 is not a child of a2. On the other hand, S1 reveals that, 
while all members of PTN(B) can satisfy the B-leg, B elements 
with CID 13 have no counterpart to match  Q1. This fact is 
observable in X1. ♣ 

As illustrated in the above example, the execution of QTPs 
against a Structural Summary provides valuable information to 
optimize the evaluation of QTPs. Based on the Structural 
Summary definition, we can claim that the use of SMPs, as input 
of the matching process, does not discard any potential final 
match as proved in the following theorem. 

Theorem 1[13]. For each final match of a given query tree 
pattern QTP against an XML object X with Structural Summary S, 
exactly one MP could be found that has the same sequence of 
CIDs as the sequence of CIDs of that match. ♣ 

Theorem 1 demonstrates that it is possible to classify the 
final matches of a given QTP into some categories and each 
category would belong to one of the MPs in the SMP. Each MP 
has enough information to produce all final matches belonging to 
it. Therefore, QTP is first executed against the document’s 
Structural Summary in S3.v0.  Considering a resulted match 
pattern MP, for each leaf li, a stream of sorted DeweyIDs, 
referenced in the Reference Section by CID of MP(li), is then 
extracted. The matching process related to MP starts by joining 
the extracted nodes of the first two leaves. Consider two leaves li 
and lj and the pair of DeweyIDs (di, dj). di satisfies the li-leg, 
because MP(li) satisfies the li-leg (Lemma 1). The same is true for 
dj.  di and dj can be joined if they have the same ancestor related to 
the nearest common ancestor (NCA) of li and lj (jp) in the QTP. 
This is possible if di and dj have the same prefix w.r.t. the level of 
jp in the Structural Summary. The matching process (related to 
MP) continues by joining the produced intermediate results with 
the nodes related to the next leaf. The matching process is finished 
when all leaves of the QTP are covered. 

Example 2. Consider Structural Summary S2 and QTP Q2 in 
Figure 5. We first execute Q2 against S2 which results in a single 
match pattern MP(E2, N3, G4, H5, L8). Q2 has three leaves G, H, 
and L. Hence, in the matching process three streams of potential 
target nodes w.r.t. G4, H5, and L8 are created. Assume that RF(4) 
= {1.3.5.3, 1.5.7.1, 1.5.7.5, 1.9.5.1}, RF(5) = {1.1.3.5, 1.5.7.3, 
1.5.7.7, 1.7.9.11, 1.9.5.3}, and RF(8) = {1.3.7, 1.5.11, 1.7.3, 1.7.5, 
1.9.3}. As explained above, the first two leaves of Q2 are selected 
(G and H). All streams related to these leaves are joined. N is the 
NCA of G and H. Therefore, those nodes could be joined which 
have the same N node as their common ancestor. The entire nodes 
related to G4, H5 (RF(4) and RF(5)) have an N node as their 
ancestor because N3 is an ancestor for both G4 and H5. N3 is 
placed in the third level of S2. This means that the prefixes with 
length 3 of DeweyIDs in RF(4) and RF(5) is the DeweyID of an N 
node with CID 3. As a consequence, those nodes of RF(4) and 
RF(5) can be joined that have the same prefix with length  3. The 
resulting pairs have to be joined with nodes related to the third 
leaf of Q2 (RF(8)). H5 and L8 have E2 as their common ancestor, 
which is placed in the second level of S2. As a result, we can join 
an l node with a pair of (g, h) if the prefix (with length 2) of the 
DeweyID of the l node and the g node are the same. This prefix is 
the DeweyID of an e node related to E2 as common ancestor of l 

XML 
document 

Query 
Guide 

QTP apply SMP match final result 

Figure 4. Overview of the S3 methods. 
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and g. It is straightforward to show that e is also the ancestor of g. 
The relevant matching process is depicted in Figure 6.♣ 

Note that matching is done by a pipelining strategy as 
illustrated in Figure 6. Join results are sent to the next joining step 
to form a more complete match immediately after they are 
produced. These intermediate results are discarded as soon as they 
are used in the matching process. Therefore, the entire matching 
process is carried out without consuming a huge amount of main 
memory. 

3.2 I/O Optimization 
S3.v0 executes QTPs against the Structural Summary of the 

QueryGuide to perform a focused search to minimize the volume 
of I/O during the matching process. However, S3.v0 misses this 
goal, if a common leaf node is repeated in a large number of MPs 
of the resulting SMP. To minimize the repeated I/O accesses, we 
proposed an enhanced version of S3, named S3.v1. In this method, 
MPs having common nodes in an SMP are found and arranged to 
form so-called grouped MPs (GMP). Each GMP is responsible to 
produce the entire results related to its wrapped MPs. In order to 
form GMPs, the distinct number of node occurrences in the SMP 
related to each QTP leaf is counted. The leaf, whose related nodes 
have minimum distinct occurrence, has maximum repeated nodes 
in the SMP and is selected to group MPs. Those MPs having a 

common node related to the selected leaf are grouped into a 
separate GMP. Inspired by S3.v0, for each GMP, a matching 
process is run, in which, for each leaf li, a stream of nodes related 
to the GMP(li) is assigned. However, in S3.v1, GMP(li) 
corresponds to a set of Structural Summary nodes -  not a single 
node. Furthermore, based on each wrapped MP in GMP, there is 
probably a different join-point level. To cover these problems, for 
each GMP(li), a sorted stream of nodes is created. For each CID in 
GMP(li), a stream of nodes is created and, in each access, the 
minimum node among these streams is selected and returned. The 
next difficulty is the existence of different join-point levels for 
each leaf pair. As a solution, the minimum join-point level among 
different wrapped MPs is selected for each leaf pair. Now the 
matching process is done in almost the same way as in S3.v0.  

Contrary to S3.v0, the joining process in S3.v1 may produce 
false-positive outputs. This problem arises when the join point of 
a pair of nodes related to a wrapped MP is searched in higher than 
the actual level of the Structural Summary. Moreover, the node 
stream used in S3.v1 contains nodes related to different MPs. 
Consequently, a pair of nodes not related to the same MP is 
probably considered as output (false-positive result). This fact 
indicates that there is a need to check the output of the joining 
process in S3.v1 to match it against wrapped MPs. If none of the 
wrapped MPs matches an output result, then this output is 

H(9)

K(10)

K(13)

H(12)

L(14)

N(3)

K(6)

E (2)
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Figure 6. Matching process for Q2. 

1.3.5.3
1.5.7.1
1.5.7.5

1.9.5.1

(G(4))

1.1.3.5
1.5.7.3
1.5.7.7

1.7.9.11
1.9.5.3

(H(5))

join based on
third level

join based on
third level

(1.5.7.1, 1.5.7.3)
(1.5.7.5, 1.5.7.3)
(1.5.7.1, 1.5.7.7)
(1.5.7.5, 1.5.7.7)

(1.9.5.1, 1.9.5.3)

(G(4), H(5))

join based on
second level

join based on
second level

1.3.7
1.5.11

1.7.3
1.7.5
1.9.3

(L(8))

(1.5.7.1, 1.5.7.3, 1.5.11)
(1.5.7.5, 1.5.7.3, 1.5.11)
(1.5.7.1, 1.5.7.7, 1.5.11)
(1.5.7.5, 1.5.7.7, 1.5.11)

(1.9.5.1, 1.9.5.3, 1.9.3)

(G(4), H(5) , L(8))



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6 
 

discarded.  On the other hand, output of the joining process in 
S3.v1 may match more than one wrapped MP. This is possible 
when two or more wrapped MPs have the same node 
corresponding to some QTP leaves. In this situation, the nodes 
related to the inner QTP nodes are different and, for each wrapped 
MP matched, a separate result is formed. 

Example 3. Consider QTP Q3 and Structural Summary S2 in 
Figure 5. Execution of Q3 against S2 results in the following SMP: 
{mp1(E2, G4, H5, K6, L7), mp2(E2, G4, H9, K10, L11), mp3(E2, G4, 
H12, K13, L14), mp4(E2, G4, H9, K10, L14), mp5(E2, G4, H9, K13, L11), 
mp6(E2, G4, H9, K13, L14)}. A quick look over the resulting SMP 
indicates that G4 is repeated in the six match patterns and, 
therefore, S3.v0 repeatedly extracts the target nodes of G4 and the 
matching process considers them six times. In S3.v1, since nodes 
related to leaf G have minimum distinct occurrence (only G4), the 
resulting SMP is transformed to a grouped SMP (SGMP) based on 
leaf G. The resulting SGMP only has one GMP {(E2, G4, (H5, H9, 
H12), (K6, K10, K13), (L7, L11, L14))}. This means that nodes related 
to G4 (nodes with CID 4) are fetched only once in S3.v1 instead of 
six times done by S3.v0.  

The join-point level for leaves G and K is set to 2, because 
this level is also 2 for all MPs. The minimum join-point level for 
leaves K and L is 3 (The join-point level for these leaves is 3 for 
mp2, mp4, mp5, and mp6. It is 4 for mp1 and 5 for mp3). Now 
assume that RF(4) = {1.3.5.3, 1.9.5.1}, RF(6) = {1.3.7.1.3}, RF(7) 
= {1.3.7.7.3}, RF(10) = {1.5.3.7}, RF(11) = {1.3.7.9}, RF(13) = 
{1.9.3.5.9.1}, and RF(14) = {1.9.3. 5.9.3}. For the above GMP, 
the joining process in S3.v1 returns the combinations of three 
elements w.r.t. the leaves of QTP (G, K, L) as follows: {m1[(4, 
1.3.5.3), (6, 1.3.7.1.3), (7, 1.3.7.7.3)], m2[(4, 1.3.5.3), (6, 
1.3.7.1.3), (11, 1.3.7.9)], m3[(4, 1.9.5.1), (13, 1.9.3.1.5.9.1), (14, 
1.9.3.5.9.3)]}. These results have to be checked to remove false 
positives. m1 has proper CIDs to match mp1, but m1 can’t match 
mp1, because 1.3.7.1.3 and 1.3.7.7.3 have the same prefix with 
length 3, but the actual join-point level for leaves K and L in mp1 
is 4 (level of H5). The next output is m2 which can’t match any 
MPs. The problem with m2 is that, although 1.3.7.1.3 and 1.3.7.9 
belong to CIDs, which cannot match any MPs, they incidentally 
have the same prefix with length 3 and, therefore, they are joined 
in the joining process. The last output is m3, which matches both 
mp3 and mp6. ♣ 

 

4. PROCESSING QTPs WITH OR AND XOR 
NODES 

In this section, we demonstrate how to process QTPs having 
OR nodes. The most straightforward method to process such 
QTPs is to parse them to form some AND-QTPs. The final result 
is formed by merging execution results of each parsed AND-QTP.  

Definition 4. Consider a given QTP Q. The output nodes of 
Q are a subset of query nodes of Q, called Output(Q), such that 
each node does not have any operator other than logical AND in 
its ancestors. Furthermore, the final results matching Q only have 
DeweyIDs w.r.t. members of Output(Q). ♣ 

The methods S3.v0 and S3.v1 are specially designed for 
AND-QTPs. It is possible to use these methods for processing 
QTPs containing OR nodes by parsing the QTP into some AND-
QTPs. We refer to this type of QTP processing as S3.v2.  

Parsing a QTP into AND-QTPs is not an optimal method for 
processing QTPs containing OR nodes. While only potential 
target nodes of QTP leaves are accessed during the matching 
process, these nodes may be accessed w.r.t. most of resulting 
AND-QTPs. This imposes a lot of I/Os and matching processes. 
The result of each AND-QTP may not be disjoint. Consequently, 
lots of those operations during QTP evaluation are redundant.  

Example 4. Consider QTP Q4 in Figure 7a and XML 
document X1 (Figure 2) and its Structural Summary in Figure 3(a). 
Parsing Q4 yields seven AND-QTPs shown in Figure 7b. Nodes 
with CID 7 are accessed nine times because of the parsed QTPs 
P1, P5, P6, and P7 (one time for P1, two times for P5 and P6 and 
four times for P7). These redundant document accesses do not 
necessarily produce useful results. For example, (a2, b1) and (a3, 
b2) are results of P1 and (a2, b1, c3) and (a3, b2, c4) are results of P5. 
We have to discard results of P1 because the above results of P5 
cover them. Moreover, the above results of P5 will be discarded 
by results of P7. However, (a5, b4) is one of the P1 results, which 
does not have any counterpart in P5. This shows the contradiction 
between the necessity of executing each parsed QTPs against the 
Structural Summary to identify all possible results and the 
operational redundancy arising because of this need.♣ 

An idea to solve this redundancy is to use an approach 
inspired by one used in S3.v1 [13]. By wrapping MPs into GMPs, 
we can avoid most of the redundant I/Os. However, the matching 
process used in S3.v1 is not easily applicable here. In S3.v2, 
parsed QTPs are executed separately and then their results are 
checked to see if they are already covered by results coming from 
other parsed QTPs. Producing GMPs based on the entirety of 
resulting MPs of parsed QTPs is applicable, but the main problem 
is how to process these GMPs. The wrapped GMPs in this 
situation, contrary to GMPs in S3.v1, may be related to different 
QTPs with different leaves.  

4.1 Evaluation Tree 
The matching process in S3.v1 is based on wrapped MPs 

corresponding to a single AND-QTP. The process starts by joining 
nodes related to the first two QTP leaves and continues to cover 
the entire leaves. In S3.v2, the related QTP of each MP is known 

b

Figure 7. (a) QTP Q4; (b) its parsed AND-QTPs. 
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and the matching process is formed based on the related QTP 
leaves. If we form GMPs, then each GMP probably contains MPs, 
which are related to some QTPs having different leaves. To form 
the matching structure, we have to build a QTP covering all 
related QTPs of a GMP. The matching process in S3.v1 returns 
results when joinable nodes are present for each leaf. But when 
QTP leaves are connected by a logical OR, there is no need for all 
leaves to have a joinable node. Consequently, considerable 
changes are needed in the matching process of S3.v1 to overcome 
its defects when processing OR nodes. Therefore, a new join 
approach may be the better solution. For this purpose, we form a 
processing structure called Evaluation Tree.  

Definition 5. For a given QTP Q, its related Evaluation Tree 
ET is a summarization of Q. The root and each inner node of ET 
are associated to join points of Q, and its leaves are associated to 
leaves of Q. The ancestor-descendant and parent-child 
relationships between Evaluation Tree nodes are the same as the 
relationships of their associated QTP nodes in Q. However, they 
may be reduced to a parent-child relationship. ♣  

It is worth noting that we refer to the QTP node associated to 
an Evaluation Tree node E as QN(E) and upper nodes of QN(E) 
up to the first upper join point or root of the QTP as UQN(E). We 
use the Evaluation Tree to perform the matching process related 
to a match pattern. This tree is formed based on the QTP structure 
shown in Figure 21 using pseudo-code (function getEvalTree). 
The matching process begins with the extraction of target nodes of 
QTP leaves by their corresponding Evaluation Tree leaves. Then, 
the inner nodes are used to join the results of their children, which 
may be leaves of the tree or other inner nodes. When a leaf 
retrieves a target node (i.e., its label) of the associated QTP leaf, it 
can use this label and related MPs of the Evaluation Tree to 
produce labels related to the associated QTP node of its parent 
and QTP nodes in between. Therefore, when an inner node of 
Evaluation Tree IE reads results of its children, they contain the 
label related to QN(IE). As a result, considering the kind of 
logical operator associated to the QN(IE), IE has enough 
information to join its inputs and enrich join results by labels 
related to  UQN(IE).  

Example 5. Again consider QTP Q2 in Figure 5(b) and the 
sample target nodes presented in Example 2. The corresponding 
Evaluation Tree of Q2 is depicted in Figure 8. Obviously, the 
resulting Evaluation Tree has a similar structure as Q2, because all 
nodes of Q2 are join points or leaves. Node G reads the target 
nodes of G4. Because UQN(G) = {N} and N3 is placed in the third 
level of S2, node G enriches the target nodes read with their prefix 
having length 3 and sends them to node N. As can be seen, node G 
reads 1.3.5.3 and then combines it with its prefix of length 3 as 
DeweyID related to node N (1.3.5, 1.3.5.3). The same procedure 
is done in Node H. Therefore, sub-results read by Node N have 
labels related to N and any combination of sub-results having the 
same label related to QTP node N are joined with each other. For 
example, node G has two output elements having DeweyID 1.5.7 
related to node N. Furthermore, node H has two output elements 
having DeweyID 1.5.7. Since these sub-results have the same 
DeweyID related to node N, they are joined in node N of the 
Evaluation Tree producing four sub-results having DeweyIDs 
related to nodes G, H, and N. Again sub-results produced in node 
N have to be enriched. Since UQN(N) = {E} and E2 is placed in 
the second level of S2, the join results in node N are enriched with 
the prefix having length 2 of the labels related to QTP node N. 

Finally, node E reads the sub-results from node N and L to 
produce the final results. ♣  

As depicted in the above example, the leaves of the 
Evaluation Tree are responsible to extract target nodes of their 
associated QTP leaf. Each inner node is responsible to join its 
inputs and send results to its parent. The final results are produced 
by the root of the tree. In other words, using a pipeline strategy, 
the root of the tree gets the sub-results from its children and joins 
them to produce the final results. Children of the root follow the 
same procedure to produce their related results, as well. This 
process spreads recursively from the root to the leaves of the 
Evaluation Tree. We refer to S3.v3 as a method using this type of 
joining process.  

4.2 Construction of an Evaluation Tree 
In order to process a given QTP Q in S3.v3, an Evaluation 

Tree is first formed based on Q and then Q is parsed to produce its 
related AND-QTPs (similar to S3.v2). The match patterns, which 
are the results of executing the parsed QTPs against the 
document’s Structural Summary, are used to feed the Evaluation 
Tree. For each leaf l of the Evaluation Tree and a given match 

Figure 8. Evaluation Tree used to process Q2. 
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pattern MP, a target node stream corresponding to MP(l) is 
considered. If MP does not have a member corresponding to l, an 
empty input is assigned to l. Since these kinds of leaves are those 
leaves of Q having at least one logical OR in their path to the root 
of the Q, null inputs do not have any side effect on the results 
related to these types of match patterns. Therefore, there is no 
need to create specific Evaluation Trees related to each parsed 
QTP.  Evaluation Trees will have the same structure, but their 
input streams will be set based on the related match pattern. This 
kind of joining process opens the way to deal with logical 
operators other than AND. Each node in an Evaluation Tree 
retrieves output results of its children simultaneously. Therefore, 
the decision whether a set of input results would be joined or not 
can be simply made based on the kind of relationship between a 
node and its children.  

When a QTP is given, it is traversed from the root to the first 
join-point node (lines 43-49 in Figure 21). Traversed nodes 
(upperNodes in Figure 21), which have only one child (forming a 
direct path), are assigned to the Evaluation Tree node 
corresponding to the join point. Therefore, each node E in the 
Evaluation Tree has enough information to produce proper 
DeweyIDs for UQN(E). Each Evaluation Tree leaf LE retrieves its 
inputs from its assigned node stream and, then, adds proper 
DeweyIDs for UQN(LE) in the QTP (lines 6-17 in Figure 23). As 
a result, each inner node of an Evaluation Tree IE receives sub-
matches containing a DeweyID related to QN(IE) from its 
children. Based on the specified logical operator, the sub-results 
are joined and then the proper DeweyIDs for each QTP node of 
UQN(IE) are produced and inserted into the join results. These 
results are sent to the parent of the Evaluation Tree node. 
Consequently, the root of an Evaluation Tree produces the final 
result that matches the entire main QTP. 

4.3 Matching Process using an Evaluation Tree 
  Figure 23 depicts how logical operators AND and OR are 

processed. If children of an inner node IE of an Evaluation Tree 
are connected to it by AND operators, joining sub-results of 
children is possible when all of them contain the same DeweyID 
related to QN(IE) (procedure processAND in Figure 23). As a 
result, sub-results of children have to be checked two-by-two. 
Consider children of IE as C1, ..., Cn, if the DeweyIDs of two 
children Ci and Ci+1 related to QN(IE) (di and di+1) are equal, then 
di+1 and di+2 are compared. If di is greater than di+1, the output of 
Ci+1 is fetched and skipped to reach a sub-match that makes di+1 
equal or greater than di (procedure skip in Figure 22). When Ci 
and Ci+1 are compared, if di is smaller than di+1, it means that all 
dj, j≤i, are smaller than di+1. Consequently, the output of each Cj is 
skipped (using procedure skip in Figure 22) and the process starts 
from the first child (C1). We refer to this process as balancing of 
children for processing logical AND (see procedure ANDBalance 
in Figure 23). The balancing procedure continues until all Cis 
have the same di and get balanced or the output of one child is 
finished. 

If Cis get balanced, then we can join dis, but each Ci may 
have other sub-matches having the same DeweyIDs related to 
QN(IE) and equal to di. These sub-matches can also be used to 
produce more than one join result. As a consequence, when 
children get balanced, a list of sub-matches having the above 
feature is formed for each of them (procedure advance in Figure 
22). All members of these lists are joinable, because they have the 
same DeweyID related to QN(IE). These members are joined 
using a Cartesian product (procedure xProduct in Figure 23), 

preparing outputs of IE which will be sent to its parent. The 
outputs will be enriched by DeweyIDs related to each node in 
UQN(IE) based on the DeweyID related to QN(IE), before 
sending an output to the parent of IE (procedure 
completeToUpperJoinPoint in Figure 22). 

The main difference between processing OR and AND 
operations is related to their balancing process. An inner 
Evaluation Tree node IE carrying a logical OR joins sub-matches 
of its children as its outputs even when they all do not have the 
same DeweyID related to QN(IE). As a result, the balancing 
process will be finished as soon as a subset of children (even one 
child) is found that have the smallest DeweyIDs related to 
QN(IE). Instead of processing the children of a node from left to 
right (as done in the AND case), you look at the smallest 
DeweyID each one provides initially related to QN(IE) and sort 
them according to these DeweyIDs. This results in the order Ci1, 
…, Cin. We refer to the mentioned DeweyID of  Cij as dij. The 
balancing process begins from Ci1. Notice that dij ≤ dij+1. If dij< 
dij+1, it shows that all dik, k ≤ j , are the smallest DeweyIDs among 
all children. As a result, Cik s are the balanced children that will 
participate in the joining process (procedure ORBalance in Figure 
23). The rest of the process is similar to what we outlined for 
logical AND. For each balanced child, a list of joinable DeweyIDs 
is formed (lines 123-124 in Figure 23). Members of these lists are 
joined using a Cartesian product and each result is enriched w.r.t. 
members of UQN(IE). 

Processing a logical operator XOR is similar to OR, but the 
balancing process needs some modifications. After the balancing 
process is done similar to logical OR, if the number of balanced 
children is greater than one, the results of these children are 
skipped. The balancing process will be finished when only one 
child of Evaluation Tree node is the result of balancing. Hence, 
we will not pay further attention to XOR in the rest of this paper. 

Lemma 2. S3.v3 correctly computes all possible matches for 
a given QTP Q with only one join point against XML document 
Doc. 

Proof. Suppose that the only join point of Q is JP and its 
leaves are L1, ..., Ln. Considering the algorithm demonstrated in 
Figure 21, Q is traversed from its root. If the root is itself the node 
JP, the root of the Evaluation Tree is formed related to the root of 
Q (line 62) and then all branches of JP are traversed (lines 63-66). 
Since these branches do not have any join point, each constructed 
Evaluation Tree related to them has only a single node. On the 
other hand, if the root is not the node JP, then Q is traversed to 
node JP. An Evaluation Tree node ER is formed based on node 
JP. Then, the traversed nodes from the root of Q to node JP are 
set as nodes for which ER is responsible to produce proper 
DeweyIDs (lines 39- 60). Traversing Q from node JP is the same 
as mentioned before. As a result, the Evaluation Tree related to Q 
is the tree ET having two levels. The root of ET is related to JP 
and its leaves (EL1, ..., ELn) are related to the leaves of Q (L1, ..., 
Ln), respectively.   

 As depicted in lines 6-17 in Figure 23, the  Evaluation Tree 
leaves fetch document nodes based on the match pattern assigned 
to the Evaluation Tree. Then, each leaf (for example EL1) forms a 
sub-match containing DeweyIDs related to L1 and UQN(L1), 
based on the DeweyIDs of fetched nodes and using UQN(L1) (see 
upperNodes list in Figure 21). The list upperNodes used in Figure 
21 contains node JP because, when procedure getEvalTree is 
called recursively, we are at the node that is a join point. 
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Therefore, when procedure getEvalTree is called for a child of the 
join point, the child is sent to the procedure as the variable root 
and the parent of root is the join point itself. As a result, in lines 
35-37 in Figure 21, the join-point node is added to the list 
upperNodes of each child of the Evaluation Tree node related to 
the respective join point (here, JP is added to upperNodes lists of 
EL1, …, ELn). 

Considering the above situation, the entire sub-matches that 
EL1, ..., ELn send to ER contain a DeweyID related to JP. 
Consequently, during the balancing process in ER, all required 
information is available. ER can simply check whether its children 
are balanced based on its associated logical operator or not 
(procedures processAND and processOR in Figure 23). As a 
result, ET is able to produce all required matches related to a 
given match pattern. In addition, each possible result that matches 
Q belongs to one of the AND-QTPs resulting from parsing Q. 
Furthermore, we are able to produce all matches related to each 
parsed AND-QTP PQ, because each result matching PQ 
corresponds to one of the match patterns obtained by executing 
PQ against the Structural Summary of Doc (see Theorem 1 in 
[13]). Based on the following facts, S3.v3 correctly computes all 
possible matches, because each final match belongs to one of the 
parsed AND-QTPs and we are able to produce all matches related 
to each parsed AND-QTP.♣ 

Notice that, when AND-QTPs are executed against the 
Structural Summary of a document, the resulting match patterns 
differ at least in one member. Therefore, their related matches also 
differ at least in one member.  But when other logical operators 
are involved in a given QTP Q, two or more of the resulting match 
patterns may be found to be equal w.r.t. Output(Q). Therefore, 
their related matches may be equal, too, and only one of the equal 
results is considered as output.  

Theorem 2. The method S3.v3 correctly computes all 
possible matches for a given QTP Q against XML document Doc. 

Proof. Consider that ET is the Evaluation Tree constructed 
based on Q. If LP1, ..., LPn is the lowest join point in Q (there is 
no other join point between the above nodes and leaves of Q), 
then the sub-trees which have LP1, ..., LPn  as their roots are trees 
with a single join point (see Definition 5). Consider a given match 
pattern MP. Based on Lemma 2, using each LPi and its related 
subset of MP, we are able to produce all required sub-matches 
related to LPis. These join points (LPis) are divided into some 
groups. Members of each group are descendants of a join point in 
Q (Consider the nearest join point that may be the root or an inner 
node of Q). Suppose that G1 is one of these groups, which is a 
descendant of the join point IP1. In this case, the sub-tree of Q 
with root IP1 has members of G1 as its leaves and is a tree with a 
single join point (see Definition 5). As mentioned before, the 
Evaluation Tree nodes of ET related to members of G1 are able to 
produce all related sub-matches containing DeweyIDs related to 
the associated QTP node of members of G1. Therefore, members 
of G1 produce all required DeweyIDs. Since the sub-QTP is 
bounded to IP1 and members of G1, and members of G1 produce 
all required DeweyIDs, then, based on Lemma 2, the node of ET, 
which is associated to IP1, produces all expected sub-matches. 
Using the same argument, we can show that the root of ET 
produces all possible matches related to the match pattern MP. 
Consequently, with the same argument coined in Lemma 2, we 
prove that S3.v3 correctly computes all possible matches for QTPs 
against XML documents. ♣  

4.4 Correlated Match Patterns and Super-Patterns 
S3.v3 still has the problem of redundant I/O and matching 

processes especially when a given QTP contains logical OR. In 
order to find all document nodes matching a QTP containing OR, 
the QTP should be parsed. If we execute a given QTP against the 
Structural Summary of an XML document without considering 
the logical OR operators, then we lose those match patterns that 
only match at least one branch of OR (not the entire branches). 
Consequently, final matches related to this kind of match patterns 
are also lost. As illustrated in Example 4, parsing QTPs is the 
main source of redundant I/Os as well as matching processes that 
arise from match patterns having common members. A first idea 
to solve this problem is to identify those match patterns (called 
correlated patterns), of which one of them is a subset of another, 
and produce DAGs of such match patterns. Thus, results of a 
match pattern can be sent to an upper match pattern (its superset) 
in the DAG. Final results are gained from DAG nodes that do not 
have any successor (match patterns without any other superset). 
Using this strategy enables a substantial improvement. Since some 
of the match patterns will receive sub-results from different match 
patterns, they do not have to perform all document accesses and 
matching processes required.  

Example 6. Consider QTP Q1 and Structural Summary S1 
again. Figure 9 shows a correlated DAG of match patterns. An 
Evaluation Tree is formed for each match pattern. Evaluation 
Trees, related to match patterns MP1, MP2, and MP3 (denoted as 
E1, E2 and E3), fetch document nodes and produce the 
corresponding results. E5 receives data from E1 and E2 and, 
therefore, E5 does not need to fetch anything from the document. 
E5 is responsible to join its input results received from E1 and E2 
and augment its output with additional information. In addition, 
E5 has to send those results, which cannot be joined with any 
other results, to E7. This task is necessary because, while these 
kinds of results are not joinable with other results, they match Q1 
w.r.t. E1 or E2. For example, (a2, b1) and (a5, b4) are results 
produced by E1. E5 joins (a2, b1) with (a2, d2) produced by E2 and 
forms (a2, b1, d2), but (a5, b4) does not have any counterpart 
produced by E2 but matches Q1 as a final result. Furthermore, E7 
receives results from E4, E5, and E6. It is obvious that E7 only 
needs two of these inputs and the third one is completely 
redundant. ♣  

Although forming DAGs of correlated match patterns helps 
preventing lots of redundant I/O and matching processes as 
depicted in Example 6, Lemma 3 below provides us with a simple 
way to optimize the matching process. We exploit the power of 
Lemma 3 in the next generation of the S3 algorithms, called S3.v4: 

Figure 9. Sample DAG of correlated match patterns 
related to QTP Q1 and Structural Summary S1. 

MP7

MP1 MP2 MP3

MP5 MP6 MP4

P1: (A4, B7) P2: (A4, C8) P3: (A4, D9)

P5: (A4, B7, C8) P6: (A4, B7, D9) P4: (A4, C8, D9)

P7: (A4, B7, C8, D9)
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Lemma 3. Consider a given QTP Q, two match patterns MP1 
and MP2 and their related Evaluation Trees E2 and E2. If MP1 ⊂ 
MP2 then matches returned by E2 cover all matches returned by 
E1. 

Proof. Let LS1 be leaves of QTP covered in MP1 and LS2 be 
leaves of QTP covered in MP2. Because MP1 ⊂ MP2 and each 
member of these match patterns is related to one of the QTP nodes 
of Q, then the leaves covered in MP1  are a subset of leaves 
covered in MP2 (LS1 ⊂ LS2). Let L1 ∈ LS1, L1 ∈ LS2, L2 ∈ LS2, but  
L2 ∉ LS1. Suppose that JP is the join point of L1 and L2 in Q. MP1 
and MP2 are execution results of Q against the Structural 
Summary of the XML document. As a consequence, both MP1 and 
MP2 match Q. Since MP1 ⊂ MP2, we can conclude that all CIDs 
associated to L1 and its ancestors (including JP) are the same in 
MP1 and MP2. L1 and L2 are descendants of JP and JP is satisfied 
in both MP1 and MP2 while MP1 does not have any CID related to 
L2 and its ancestors up to the JP. Since JP is satisfied once with 
branch L2 and once without it, it is clear that JP carries the logical 
operator OR. Therefore, the join points of each leaf in the set (LS2 
– LS1) and all leaves in the set (LS2 ∩ LS1) have a logical OR 
operator. 

Because MP1 ⊂ MP2, input streams associated to leaves in 
LS1 are the same for E1 and E2. Therefore, each result like r1 
formed by E1 will also be formed by the subset of E2 which 
corresponds to members of LS1 as a sub-result. They should not be 
discarded, because joining these sub-results with sub-results 
produced by the subset of E2 (which corresponds to members of 
(LS2 – LS1)) have to be checked in join points having logical OR. 
Consequently, if sub-results like r1 have a joinable counterpart 
sub-result (corresponding to leaves in (LS2 – LS1)), they turn into a 
more complete result. Otherwise, they are not discarded and 
considered alone as a match, because they are the same as outputs 
of E1 which match Q.♣ 

The main difference between S3.v3 and S3.v4 lies in the 
optimized selection of match patterns done in S3.v4 to produce the 
final result. In S3.v4 prior to using the Evaluation Tree to produce 
matches related to match patterns, DAGs of correlated plans are 
formed. Those match patterns that do not have any successor 
(match patterns that do not have any other superset) are selected 
(called Super-Patterns) as candidates to produce the final result. 

Theorem 3. The algorithm S3.v4 computes all possible 
matches for a given QTP Q against an XML document Doc.  

Proof. As described in Theorem 2, we can use the 
Evaluation Tree E, constructed w.r.t. Q, to produce all results 
related to a match pattern. Suppose that m is one of the final 
results of Q that is not produced by S3.v4. It is clear that m is 
related to one of match patterns (consider MP) obtained by the 
execution of parsed AND-QTPs against the Structural Summary of 
Doc. Each final result has to match one of the parsed AND-QTPs. 
MP could not be one of super-patterns selected by S3.v4, because, 
based on Theorem 2, match patterns produce the complete results 
related to them using the Evaluation Tree. MP is not one of the 
other match patterns obtained by the execution of parsed AND-
QTPs against the Structural Summary of Doc, because each of 
them is a subset of one of the selected super-patterns and, based 
on Lemma 3, super-patterns produce the complete results of their 
correlated patterns. As a consequence, m is not related to any of 
the above match patterns which is a contradiction. ♣ 

5. PROCESSING NOT OPERATORS 
An important logical operator is NOT. Due to the flexible 

structure of XML documents, it becomes highly probable to 
search document for elements that do not have a specific pattern 
among their descendants. For example in Q5 below, we search for 
A elements which do not have the pattern (B[/C]/D) among their 
descendants.  

 Q5: //A[NOT(.//B[./C]/D)] 

Definition 6. Consider QTP Q and N as one of Q’s nodes. N 
is a NOT-Point if it has a child connected to it by a NOT operator. 
The descendants of N are referred as NOT-Pattern. 

For example in QTP Q5, A is a NOT-Point. Queries may have 
more than one NOT-Point, even in a nested manner, like Q6 
below. In an XML document, A elements are considered as final 
results of Q6 if they have a B element among their descendants 
and the respective B definitely has a C element as its child.  

Q6: //A[NOT(.//B[NOT(./C)])] 
Since those patterns are searched, when logical NOT 

operators are present, that a specific sub-patterns (NOT-Pattern) is 
not associated to them, an idea is to execute the QTP without its 
NOT-Pattern and then execute the entire QTP without considering 
the NOT operator. Therefore, final results are those results of the 
first execution that are not a subset of a result of the second 
execution. Processing QTPs having NOT operators also needs 
parsing the QTP into some AND-QTPs. During the parsing of a 
QTP, when a NOT-Point is reached, the QTP is divided into two 
sections. The first section is made by trimming the QTP at the 
NOT-Point, called Positive part. The second part, called Negative 
part, is the cut part of the QTP in the previous step. These two 
parts are parsed separately. Parsed QTPs related to the positive 
part together with each parsed QTP related to the negative part are 
considered as parsed QTPs of the main QTP. After execution of 
each parsed AND-QTP, we achieve some match patterns that 
match the QTP as a whole, without consideration of NOT 
operators and some match patterns match only the positive part of 
the QTP. Both kinds of these match patterns are needed. The first 
one produces results that match the positive part. Some of these 
results are false positives, with a pattern of nodes in their 
ancestors that match the negative part of the QTP. These false-
positive results are filtered using the second kind of match 
patterns. However, as explained above, the execution of simple 
queries at least needs the execution of two parsed AND-QTPs, 
which may have redundant I/O and matching processes. 

As described, the key feature of S3.v4 is to reduce this 
drawback arising from parsing QTPs needed to support logical 
OR operators. This method is also extensible to support logical 
NOT operators. We refer to this extended method as S3.v5. QTP is 
parsed as mentioned above and super-patterns are selected in the 
same manner as done in S3.v4.  The process of constructing the 
Evaluation Tree is almost similar to what is done in S3.v4. The 
main difference is that during QTP traversal - similar to a join 
point,  if a NOT-Point is reached - a new Evaluation Tree node is 
instantiated (procedure getEvalTree in Figure 25). Furthermore, 
the children of an Evaluation Tree node are divided into two 
categories (procedure addChild in Figure 26): NOTChildren 
denotes the list of children that are connected to their parent 
(NOT-Point) with a NOT operator, other children are assigned to 
the list POSChildren. The entire children are still accessible as 
before via the list children. 
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5.1 Evaluation Tree Construction 
Note that, in all previous S3 methods, DeweyIDs related to 

inner nodes of a QTP are evaluated using DeweyIDs related to 
QTP leaves. In other words, processing QTPs is done only by 
extracting a subset of target nodes in the document, which are 
related to QTP leaves. However, extracting nodes described above 
does not always suffice to evaluate the final results when a QTP 
has a NOT operator. Some of final results are related to nodes that 
do not have any descendants related to the NOT-Pattern of a 
query. For example, in Q5, the entire A elements that do not have 
any B, C, and D elements among their descendants are matches of 
Q5. Consequently, when there is not any DeweyID related to QTP 
leaves (here C and D), it is not possible to evaluate the DeweyID 
of such A elements.  
Now consider the following query: 

Q7: //A[.//B][NOT(.//C)] 
By Q7, we search for A elements which have a B element, but no C 
elements, as their descendants. Therefore, DeweyIDs of related B 
elements, along with DeweyIDs of related C elements (leaves of 
QTP) suffice to evaluate all final results. These examples show 
that, when a NOT operator is involved, it is sometimes required to 
fetch target nodes related to the NOT-Point directly from the 
document. In this kind of situations, an Evaluation Tree node is 
instantiated to fetch such nodes and is assigned to the Evaluation 
Tree node related to the NOT-Point as an ordinary positive child, 
called virtual child. This process is summarized by three cases 
below: 

Case 1: if the NOT-Point NP has only one child NC, then an 
Evaluation Tree node N is instantiated associated to NP. Then the 
Evaluation Tree NE related to sub-QTP rooted at NC is evaluated 
and assigned to N as a NOT-Child. A virtual child V is also 
instantiated to fetch target nodes related to MP(NP). V is set as an 
ordinary child of N (lines 14-19, 29-34 in Figure 25). Now the 
NOT-Point has two children and we consider an AND Operator as 
the applicable logical operator of N. Therefore, the procedure 
processAND (see Figure 26) is executed to process NOT-Points 
having only one child and results of N are those outputs of V that 
are not produced by NE. 

Case 2: if the NOT-Point NP has more than one child and its 
children are connected to NP with a logical AND-operator, then an 
Evaluation Tree node N is instantiated associated to NP. With 
respect to each child Ci of NP, a related Evaluation Tree CEi is 
formed. If Ci is a positive child, then CEi is added to N as a 
positive child; otherwise, it is added as a NOT-child. Furthermore, 
usage of a virtual child is dependent on the condition of child 
nodes of NP. There are two possibilities: If NP has at least one 
ordinary (positive) child, then there is no need to extract target 
nodes related to MP(NP), because NP has positive branches and 
final results have to have data for the entire positive branches. 
Therefore, the DeweyID of NP can be evaluated by these 
branches. However, if NP has no positive child, then we have to 
extract target nodes related to MP(NP) via a virtual child V as an 
ordinary (positive) child of NP, because NP elements, that are 
results of N, do not satisfy all children of NP. Therefore, we may 
have no information to evaluate proper results for N. 

Case 3: if the NOT-Point NP has more than one child and its 
children are connected to NP with a logical OR operator, then an 
Evaluation Tree node N is instantiated associated to NP. The 
Evaluation Trees related to children of NP are evaluated and 
assigned to N, similar to case 2. In this case, usage of a virtual 
child related to MP(NP) is mandatory because, if NP even has 

positive children, those NP elements that do not satisfy the entire 
positive children, but satisfy as least one NOT-Child, are results of 
N. We may have no information to produce the DeweyID related 
to NP for this kind of results.  

In general, when a NOT-Point has no positive children or 
they are connected to it by a logical OR operator, it is necessary to 
extract target nodes related to the NOT-Point via a virtual child. 
The algorithm of constructing the Evaluation Tree in S3.v5 is 
depicted in Figure 25. Note that, for each leaf of an Evaluation 
Tree, a virtual node is also assigned to provide a uniform method 
for extracting document nodes. However, these virtual nodes are 
not considered as a new level (new leaves) in the Evaluation Tree.  

5.2 Matching Process 
Processing Evaluation Tree ET begins from the root of ET 

and each node of ET (including its root) recursively starts the 
matching process related to its children (procedure open in Figure 
26). Each node N in the Evaluation Tree has one of the following 
situations: 

Case 1: if N is associated to a QTP leaf, its results are 
directly fetched from the document (lines 36-46 in Figure 26). 

Case 2: if N is associated with a logical AND operator, then 
N  has at least one positive child. This is because, if QN(N) is a 
NOT-Point with one child, then a positive virtual child is added as 
mentioned before. On the other hand, if N has more than one child 
and all children of N are NOT-Children, again a positive virtual 
child is added to N. Consequently, we have at least one positive 
child for nodes like N. To evaluate the sub-matches related to N, 
first only positive children are considered and the balancing 
process is done for them (line 67 in Figure 26). If the positive 
children get balanced, then, as described in S3.v3, the lists of 
joinable nodes related to each child are formed and joined 
together (lines 73-75 in Figure 26). Results evaluated up to this 
point are considered as results of N, if one of the following 
conditions exists: 

1) If QN(N) does not have any NOT-Child. 
2) If all NOT-Children of N have no more results and, thus, 

all of them are removed (lines 76-84 in Figure 26). 
If none of the above conditions exists, then the results have to be 
checked to see whether or not they satisfy existing NOT-Children. 
Satisfying the NOT-Children is possible only when all NOT-
Children are not able to produce DeweyIDs equal to DeweyIDs of 
evaluated results w.r.t. QN(N). Therefore, if at least one of these 
NOT-Children produces such an ID, the evaluated results have to 
be omitted. To find IDs, described above, NOT-Children have to 
be first balanced using the same balancing process as for the 
logical operator OR. Therefore, we are able to find those children 
having the smallest DeweyIDs related to QN(N). If the DeweyID 
NID (related to QN(N)) of balanced NOT-Children is smaller than 
that of the evaluated results of positive children (consider PID), 
then the balancing process is repeated for NOT-Children until a 
NID is reached that is greater than or equal to PID. If the NID 

Figure 10. (a) QTP Q8; (b) Structural Summary S3. 
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reached is equal to the PID, then the evaluated results related to 
positive children have to be omitted. (procedure ANDExclude in 
Figure 26) 
Case 3: If N is associated with a logical OR operator, then N may 
have a result if at least one of its positive children produces a sub-
match. In this case, if all NOT-Children do not produce sub-
matches with the same DeweyID related to QN(N), the result of 
positive children will not be omitted. On the other hand, if there 
exists a target node n of QN(N), such that none of the positive 
children produce the DeweyID of n and at least one of NOT-
Children or all of them are not able to produce sub-matches 
having the DeweyID of n, then n is a result for N. In this situation, 
the children of N do not provide any information to produce such 
an ID. This shows the reason why a virtual child is necessary 
when an Evaluation Tree node has NOT-Children. In order to 
evaluate the sub-matches related to N, the balancing process is 
executed for all children (including the probable virtual child) of 
N (line 20 in Figure 27). After the balancing process is finished, 
those children are identified whose current result has the smallest 
DeweyID related to QN(N) among all children of N. Then a list of 
joinable nodes related to each balanced child is formed and, 
finally, these lists are joined together (lines 21-23 in Figure 27). 
This evaluation is considered producing the results of N if: 

1) There exists at least one sub-match related to one of the 
positive children (without considering the probable 
virtual child) (lines 25-33 in Figure 27). It is not 
necessary to check the virtual child here, because a 
target node n of QN(N) that does not satisfy any child of 
N is not a result of N. However, the virtual child 
participates in the balancing process and produces the 
DeweyID of n, too. Therefore, the virtual child has not 
to be considered at this point to enable us to omit sub-
results that neither satisfy original, positive children of 
N nor NOT-Children of N. 

2) The evaluated results do not have a sub-match related to 
one of the NOT-Children of N (lines 34-42 in Figure 
27). As mentioned before, when an Evaluation Tree 
node has at least one NOT-Child, a virtual positive child 
is added to it. Thus, if we have a target node n that does 
not satisfy positive children of N, but satisfies all NOT-
Children, then the DeweyID of n will be produced in N 
because the virtual child participating in the balancing 
process provides the DeweyID of n.  

3) If one of the NOT-Children of N has no more results, 
then all evaluated results from this point are definitely 
results of N, because they at least satisfy one child of N 

(the finished NOT-Child) (lines 13-18, 24 in Figure 27). 

Note that in previous methods like S3.v4, each output U of an 
Evaluation Tree ET is actually a final result for a given QTP Q 
because U has proper DeweyIDs w.r.t. nodes of Q. However, 
when a logical NOT operator is involved in a QTP, any output of 
an Evaluation Tree is not necessarily a final result.  

Example 7. Consider the QTP Q8 and Structural Summary S3 
in Figure 10. Executing Q8 against S3 results in the following SMP 
{MP1(A1, B2), MP2 (A1, B3)}. Therefore, the Evaluation Trees ET1 
and  ET2 are fed by MP1 and MP2 , respectively, to evaluate the 
final results. However, consider a as a target node of A1 which has 
a B element b related to B2 as its child but does not have any B 
elements as its ancestor related to B3. It is obvious that a has at 
least one B element as its descendant (or child) and it cannot 
match Q8. However, if we perform the matching process using the 
above SMP, a is considered as a match for Q8 (a false-positive 
result) w.r.t. MP2. The target node a is extracted by a virtual child 
V of node A in ET1 and b is extracted by node B. Node V sends the 
DeweyID of a directly to node A and node B produces the 
DeweyID of a based on MP1 and sends it to node A of ET1. It is 
obvious that the DeweyID of a is discarded in the A node of ET1. 
On the other hand, a is also extracted in the Evaluation Tree ET2 
by a virtual child V. Since there is not any B element in the target 
nodes of B3 as child of a, node A of ET2 receives the DeweyID of 
a only from its virtual child and therefore outputs a as a match 
while it is a false-positive result.♣ 

In fact, when we process a target node n of a NOT-Point N in 
a given QTP Q, we have to be confident that n has no pattern of 
elements among its descendants that match a sub-QTP rooted at 
N. However, as illustrated in the above example, it is probable that 
a target node of a NOT-Point is processed in two or more 
separated match patterns and, therefore, related Evaluation Trees 
are not able to verify that their results are a final result or a false-
positive one. Consequently, when at least one logical NOT 
operator is involved in a QTP, more investigation is needed. 

It is clear that a false-positive result such as f1 is an output 
that satisfies at least one of the match patterns such as MP1 w.r.t. 
Output(Q). However, there should be at least another match 
pattern MP2 such that: for each q ∈ Output(Q), MP1(q) is equal to 
MP2(q). Now, it is possible to form a false match f2 using target 
nodes related to MP2, which has equal DeweyIDs to those of f1 
related to Output(Q). With respect to Definition 4, consider that 
NList is a list which contains those members of Output(Q) which 
are not leaves of Q and, in addition, none of them have a 
descendant that is member of Output(Q). If f2 does not match Q 
(as it is our assumption to have f1 as a false positive), it means that 

Figure 11. (a) QTP Q9; (b) Structural Summary S4; (c) correlated DAGs of match patterns. 
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f2 cannot satisfy at least one of QTP nodes listed in NList and 
therefore does not match Q. Example 7 depicted a sample instance 
of this situation. Since f2 is not formed in the Evaluation Tree fed 
by MP2, therefore there is not enough information to omit f1 as a 
false-positive result. As a result, an expensive procedure should 
be done to recheck the entire results of Evaluation Trees when a 
QTP involves at least one logical NOT operator.  

Fortunately, there is an efficient method to deal with false-
positive results. In each NOT-Point, when a (sub-)match has to be 
deleted because of NOT-Children, it is marked as a dummy match 
instead of its deletion. Therefore, it is possible to verify outputs of 
Evaluation Trees to remove false-positive results. Those outputs 
that are equal w.r.t. Output(Q) and at least one of them is a 
dummy output are considered as false-positive results and will be 
omitted. Consequently, false-positive results are identified without 
further document access. Note that we did not describe how we 
deal with false positives in pseudo codes of S3.v5 (Figure 26 and 
Figure 27) for sake of simplicity. 

Theorem 4. The algorithm S3.v5 computes all possible 
matches for a given QTP Q against an XML document Doc.  

Proof. If Q does not have a logical NOT operator, S3.v5 
behaves the same as S3.v4. However, if at least one logical NOT 
operator is involved in Q as described above, there are three 
situations for which enough information may not be available to 
evaluate the DeweyID related to a NOT-Point:  
1) It has only one child.  
2) It is associated with a logical AND operator and has no positive 
child.  
3) It is associated with a logical OR operator.  
All three cases are described above. We showed how virtual 
children are used to obtain enough information to evaluate 
DeweyIDs related to NOT-Points. Furthermore, we described how 
we deal with false-positive results.♣  

6. I/O OPTIMIZATION 
As described in previous sections, processing QTPs, 

containing a logical OR or NOT, is done by parsing these QTPs 
into some AND-QTPs. The execution of each parsed QTP against 
the document’s Structural Summary results in some match 
patterns that may have common members related to leaves of a 
given QTP or its NOT-Points. This implies that some target nodes 
are fetched several times due to the separate execution of each 
match pattern.  

In S3.v4, we proposed the idea of super-patterns to get rid of 
matching processes and results which may also be produced by 
correlated patterns. Note, all results could be produced using the 
match pattern that is a superset of all correlated match patterns. 
However, there are situations that these super-patterns also have 
common members. Inspired by S3.v1, it is a good idea to form 

grouped match patterns (GMPs) of super-patterns by grouping 
those patterns having common members. S3.v6 uses this idea.  

Example 8. As depicted in Figure 11, we obtain six match 
patterns by parsing Q9 and then executing the resulting parsed 
AND-QTPs against the Structural Summary S4. These match 
patterns can be classified into two DAGs of correlated plans. MP3 
and MP6 are selected as two super-patterns that are able to 
produce the final results in S3.v5.  As a consequence, the I/O 
corresponding to target nodes of B with CID 3 is reduced to one 
third, whereas it is halved for target nodes of C and D with CIDs 
5, 8, 9 and 10. However, super-patterns MP3 and MP6 still have 
common nodes (B3). Grouping these two super-patterns helps to 
optimize access to target nodes of B3. ♣ 

6.1 Grouping of Super-Patterns  
Similar to S3.v5, a given QTP is first parsed in S3.v6. Then 

the resulting AND-QTPs are executed against the Structural 
Summary of the document, and super-patterns are identified using 
DAGs of correlated plans (lines 15-23 Figure 28). Then the list of 
QTP nodes having direct document access (LD) is formed. LD is 
sorted in ascending order based on the distinct occurrences of 
CIDs related to each member of LD. It is clear that grouping 
super-patterns having the same CID related to LD[0] produces the 
minimum number of groups. Furthermore, those super-patterns 
that may not have a CID related to LD[0] are classified based on 
the next member of LD. The classification continues until all 
super-patterns are grouped (lines 1-10 Figure 28).  

Evaluation Trees are formed using the main QTP and are fed 
by grouped super-patterns. These Evaluation Trees are 
constructed in the same way as in S3.v5. However, each virtual 
child may be associated to more than one CID because of the 
existence of different CIDs in a GMP related to a QTP node. 
Therefore, each virtual child extracts target nodes with different 
CIDs, but outputs them in a sorted manner (function 
groupedStream used in Figure 29). 

Processing of a given Evaluation Tree ET begins from its 
root. Each node in ET recursively achieves sub-matches from its 
children to produce its related results. The main difference 
between S3.v6 and S3.v5 is that Evaluation Trees are associated 
with a simple match pattern in S3.v5, but they are associated with 
a grouped match pattern (GMP) in S3.v6.  Therefore, in S3.v5, 
when sub-matches are joined together in a given node N, each join 
result is enriched with DeweyIDs related to ancestors of QN(N) 
up to UQN(N), based on the associated match pattern of ET. 
However, Evaluation Trees are associated to grouped match 
patterns in S3.v6, which probably contain more than one simple 
match pattern. As a result, ancestors of QN(N) probably have 
different CIDs in the associated GMP of ET. Hence, for each 
group of wrapped match patterns in GMP, having the same CIDs 

A

C

∧

B

¬

N(7)

C(9)

A(8)

B(10)

M (1)

C(3)

A(2)
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C(5) B(11)

a b

Figure 12. (a) QTP Q10; (b) Structural Summary S5. 
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w.r.t. each ancestor of QN(N) up to UQN(N), one separate result 
is formed (function completeToUpperJoinPoint in Figure 30). 

6.2 False-positive Results  
Note, although the idea of grouping match patterns in S3.v6 

is inspired by S3.v1, those false-positive results that are produced 
in S3.v1 are not formed in S3.v6. The following example 
illustrates this point. 

Example 9. Consider the Structural Summary S2 and QTP Q3 
in Figure 5. Execution of Q3 against S2 results in the following 
SMP {MP1(E2, G4, H5, K6, L7), MP2(E2, G4, H9, K10, L11), MP3(E2, 
G4, H12, K13, L14), MP4(E2, G4, H9, K10, L14), MP5(E2, G4, H9, K13, 
L11), MP6(E2, G4, H9, K13, L14)}. As explained in Example 3, 
grouping the above match patterns results in an SGMP having 
only one GMP {(E2, G4, (H5, H9, H12), (K6, K10, K13), (L7, L11, 
L14))}. Therefore, the target nodes of G4 are extracted only once in 
S3.v1 and S3.v6 during the matching process.  

Again consider the following target nodes: RF(4) = {1.3.5.3, 
1.9.5.1}, RF(6) = {1.3.7.1.3}, RF(7) = {1.3.7.7.3}, RF(10) = 
{1.5.3.7}, RF(11) = {1.3.7.9}, RF(13) = {1.9.3.5.9.1}, and RF(14) 
= {1.9.3. 5.9.3}. As explained in Example 3, the joining process in 
S3.v1 returns the following three results {m1[(4, 1.3.5.3), (6, 
1.3.7.1.3), (7, 1.3.7.7.3)], m2[(4, 1.3.5.3), (6, 1.3.7.1.3), (11, 
1.3.7.9)], m3[(4, 1.9.5.1), (13, 1.9.3.1.5.9.1), (14, 1.9.3.5.9.3)]}. 

 We explained in Example 3 why m1 and m2 are false-
positive results, while they are results of the joining process. One 
of the advantages of S3.v6 over S3.v1 is that false-positive results 
are not formed during the joining process in S3.v6 and, therefore, 
the evaluated results do not need more investigation. Consider ET 
as the Evaluation Tree formed based on Q3 in S3.v6. The leaf node 
G in ET receives RF(4) and, based on the above GMP, is 
responsible to enrich the received sub-matches with a proper 
DeweyID related to E2. Therefore, the output of node G in ET is: 
{g1:(1.3, 1.3.5.3), g2:(1.3, 1.9.5.1)}. The leaf node K in ET 
receives RF(6), RF(10), RF(13). Members of RF(6) only match 
MP1. Members of RF(10) match MP2 and MP4 which both of 
them have H5 in common. Members of RF(13) match MP3, MP5, 
and MP6. With respect to H as the ancestor of K, MP3 has H12 and 
MP5 and MP6 have H9 in common. Therefore, corresponding to 
the each member of RF(13), node K in ET produces two separate 
sub-matches. In this example, the output of leaf node K in ET is: { 
k1:(1.3.7.1, 1.3.7.1.3), k2:(1.5.3, 1.5.3.7), k3:(1.9.3, 1.9.3.5.9.1), 
k4:( 1.9.3.5.9, 1.9.3.5.9.1)}. With the same manner, the output of 
node L in ET is: { l1:(1.3.7.7, 1.3.7.7.3), l2:(1.3.7, 1.3.7.9), 
l3:(1.9.3, 1.9.3.5.9.3), l4:(1.9.3.5.9, 1.9.3.5.9.3)}.  

The node H in ET receives the above sub-matches of nodes K 
and L in ET. These sub-matches are joined based on their related 
DeweyID of H. Therefore, k1 and l1 are not joined (1.3.7.1 ≠ 
1.3.7.7) while 1.3.7.1.3 and 1.3.7.7 are joined in S3.v1 as part of 
m1.  Furthermore, k1 and l2 are not joined in S3.v6, too, because 
they have different DeweyIDs related to H whereas 1.3.7.1.3 and 
1.3.7.9 are joined in S3.v1 as m2 while their related CIDs do not 
match any match pattern in the above SMP. Finally, the output of 
node H in ET is {(k3, l3), (k4, l4)}, where these sub-matches are 
joined with g1 and g2 , respectively,  in node E of ET (its root) to 
form the final results of Q3.♣ 

The above examples illustrated that false-positive results 
appearing in S3.v1 are not formed anymore during the matching 
process in S3.v6. However, the following example reflects that, if 
a QTP has a logical NOT operator, false-positive results appearing 
in S3.v5 also appear in S3.v6. 

Example 10. Consider QTP Q10 and Structural Summary S5 
(Figure 12). Execution of Q10 against S5 and a subsequent 
selection of super-patterns results in the following SMP {MP1(A2, 
B6, C3), MP2(A2, B6, C4), MP3(A2, B6, C5), MP4(A8, B10, C9), 
MP5(A8, B11, C9)}. A quick look over the resulted SMP indicates 
that it has a match pattern having common members (B6, C9). This 
fact confirms that grouping is helpful to optimize the I/O and 
matching process. B6 has the most occurrences in the above SMP. 
Therefore, leaf B is selected to group match patterns. The resulted 
SGMP is {GMP1(A2, B6, (C3, C4, C5)), GMP2(A8, B10, C9), 
GMP3(A8, B11, C9)}. Now consider a as a target node of A8 which 
has a B element b related to B10 and a C element c related to C9 as 
its children, but does not have any B elements as its descendant 
related to B11. It is obvious that a has at least one B element as its 
descendant (child) and it cannot match Q10. However, if we 
perform the matching process using the above SGMP, (a, c) is 
evaluated as a false-positive result. Since b and c are related to 
GMP2, both of them produce the DeweyID of a and send it to 
node A in the Evaluation Tree ET2 associated with GMP2. It is 
obvious that the DeweyID of a is discarded in the A node of ET2. 
On the other hand, c is also extracted in the Evaluation Tree ET3 
which is associated to GMP3 (C9 is in common between GMP2 
and GMP3). Since there is not any B element in target nodes of B11 
as child of a, node A of ET3 receives the DeweyID of a only from 
its C child and outputs (a, c) as a match, while it is a false-positive 
result.♣ 

As illustrated in the above example, false-positive results are 
produced when match patterns, which must be processed together, 
are distributed among different GMPs. In Example 10, A elements 
should have no B elements in their ancestors to be a match for 
Q10. Therefore, it is reasonable to process MP4 and MP5 together 
as a GMP. If this happens, then A elements that only have a B 
element as their child related to B10 are discarded in node A of the 
related Evaluation Tree because node B has enough information 
to send a DeweyID of this kind of A elements to node A. 
Therefore, a key idea is to delay grouping of super-patterns. After 
execution of a given QTP Q against the Structural Summary of a 
document and selection of super-patterns, the QTP node for which 
grouping should be done has to be selected. Now the above super-
patterns are processed to find the ones that are equal w.r.t. 
Output(Q) and they are grouped. Then these grouped patterns, 
along with the other super-patterns that are not grouped, are 
transformed to some GMPs based on the QTP node selected for 
grouping (function groupSuperPattern in Figure 28). Therefore, 
when super-patterns are grouped, we are sure that those match 
patterns having the same members related to the entire members 
of Output(Q) are grouped into a single GMP. 

Example 11. Consider QTP Q10 and Structural Summary S5 
again. Output nodes of Q10 are nodes A and C. As can be seen in 
Example 10, MP4 and MP5 are equal w.r.t. Output(Q10). 
Therefore, first MP4 and MP5 are grouped and then the resulting 
GMP is grouped with MP1, MP2, and MP3. The final SGMP 
would be {GMP1(A2, B6, (C3, C4, C5)), GMP2(A8, (B10, B11), C9)}. 
Now, only a single Evaluation Tree related to GMP2 extracts 
instance nodes of B10 and B11. Therefore, those instance nodes of 
A8 which have a B element related to B10 and a C element related 
to C9 as their children, but do not have any B elements as their 
descendants related to B11 , are omitted and are not considered 
even as false-positive results. ♣ 
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Lemma 4. Consider a given grouped match pattern GMP and 
an Evaluation Tree ET which is formed based on a given QTP Q 
as described in the algorithm S3.v6. If Q does not have any logical 
NOT operator, then ET produces all results related to GMP 
without producing false-positive results. 

Proof. Consider E as a node of ET. If E obtains its required 
input directly from the document (via a virtual child), its related 
outputs which are formed by applying function 
completeToUpperJoinPoint (see Figure 30) are sorted w.r.t. 
UQN(E) to UQ(E), because virtual children sort their extracted 
document nodes based on their DeweyID. On the other hand, if E 
is an inner node (or root) of ET, E produces its output using a 
Cartesian product. Therefore, if inputs of E are sorted w.r.t. 
QN(E), E is able to join the entire inputs having the same 
DeweyID related to QN(E). The entire join results are kept sorted 
after applying function completeToUpperJoinPoint w.r.t. UQN(E) 
to QN(E) (line 33 in Figure 30). It is straightforward to deduce 
that inputs of E are sorted w.r.t. QN(E), because these inputs are 
the result of some nodes of ET that directly or indirectly 
(recursively) achieve their inputs via virtual children. Therefore, 
the root of ET is able to produce all results related to GMP. To 
show that none of the above results are false positives, consider 
MP1, MP2 ∈GMP and E as a node of ET having at least two 
children B and C. Also, consider B1 as output of node B w.r.t. 
MP1, C1 as output of node C w.r.t. MP1, B2 as output of node B 
w.r.t. MP2, C2 as output of node C w.r.t. MP2. 

It is clear that, if two sub-results of B1 and C1 join w.r.t. to 
the logical operator associated to E, the result is an output for E 
w.r.t. MP1. We have the same story for sub-results of B2 and C2. 
However, if a sub-result of B1 joins with a sub-result of C2, the 
result may be a false positive. If MP1(A) does not have any CID in 
common with MP2(A), then it is not possible to have a join 
between sub-results of B1 and C2 because CIDs and, therefore, 
DeweyIDs related to E which produced by node B definitely differ 
from those produced by node C. However, if MP1(A) has at least 
one CID in common with MP2(A),  then it is probable that both B1 
and C2 produce sub-results having the same DeweyID related to 
E. Therefore, such sub-results join in node E and clearly satisfy 
sub-QTP rooted at QN(E). It is obvious that results like ER, 
formed by joining sub-results of B1 and C2, belong to a match 
pattern other than MP1 or MP2, say MP3. Furthermore, ER will be 
involved in a final result FR in ET. If MP3 has been grouped in a 
grouped match pattern other than GMP, say GMP2, FR is also 
produced in the Evaluation Tree ET2 related to GMP2. On the 
other hand, results related to GMP and GMP2 have to be different 
at least w.r.t. to the leaf G for which the grouping is done (each 
match pattern has a distinct CID related to G). However, FR is 
produced in both ET and ET2, and this is a contradiction; 
therefore, MP3 has to be grouped into GMP. Hence, ET produced 
all results related to GMP without producing false positives. 

Lemma 5. Consider a given grouped match pattern GMP and 
an Evaluation Tree ET which is formed based on a given QTP Q 
as described in the algorithm S3.v6. If Q has at least one logical 
NOT operator, then ET produces all results related to GMP 
without producing false-positive results. 

Proof. With respect to the rule of grouping in S3.v6, the 
entire match patterns having the same members related to the 
entire members of Output(Q) are grouped into a single grouped 
match pattern. Consider MPi ∈ GMP is a set of match patterns 
having the same members related to all members of Output(Q). 
Furthermore, consider that P is a set of target nodes that, for each 

member pj of P, there exists a QTP node q∈ Output(Q) such that 
pj is a target node of q. If P satisfies Q without considering the 
non-output nodes of Q, but does not satisfy Q as a whole because 
of some MPis like MPN (by considering descendants of its 
members), then P is not a final match for Q. It is obvious that P is 
not able to satisfy at least one of the NOT-Points like NP ∈ 
Output(Q). Node NP occurs in one of the following situations: 

1) NP has only a single child: In this situation, node 
ET(NP)3 obtains sub-results having DeweyIDs equal to 
P(NP) w.r.t. MPN. Since ET(NP) achieves all instance 
nodes of (MPN(NP)) via its associated virtual child, all 
results having DeweyID  equal to P(NP) are omitted in 
ET(NP) and, therefore, there is not any possibility to 
produce P (see procedure processAND in Figure 30 as it 
is used for NOT-Points having only a single child). 

2) The associated logical operator of NP is a logical AND 
and all children of NP are NOT-Children: In this 
situation, at least one of NOT-Children produces a sub-
result having a DeweyID equal to P(NP). Therefore, the 
same NOT-Child produces a sub-result having a 
DeweyID equal to P(NP) in ET which leads to the 
omission of the DeweyID equal to P(NP) extracted by 
virtual child associated to node NP in ET. As a result, 
there is no possibility to form P in this situation 
(procedure processAND in Figure 30).  

3) The associated logical operator of NP is a logical AND 
and NP has at least one positive child: If, w.r.t MPN, at 
least one of the NOT-Children produces a sub-result 
having a DeweyID equal to P(NP), then,  as described 
in the previous situation, there is no possibility to form 
P. Otherwise, if none of the NOT-Children produces a 
sub-result having a DeweyID equal to P(NP) w.r.t. 
MPN, then one of positive children of NP like PC has to 
be the reason that P does not satisfy MPN. Therefore, we 
have the following cases w.r.t. the sub-QTP SQ which is 
rooted at QN(PC):  
a) If there exists no logical NOT operator in SQ: then 

all members of SQ are members of Output(Q). 
Therefore, those members of each MPi related to 
SQ are the same in all MPis.  As a result, since 
node PC in ET is not able to produce a sub-result 
having a DeweyID equal to P(NP) w.r.t. MPN, 
other MPis are not able to produce such sub-
results, too. Further, false-positive results are not 
produced in ET(PC) (Lemma 4). Hence, there is 
no possibility to form P in this case.   

b) If there exist only NOT-Points like NPL1 in SQ, 
such that NPL1 does not have any other NOT-Point 
in its descendants:  It is clear that children of 
ET(PC) are divided into two groups: 1) a child C1 
that does not have any NOT-Point in its 
descendants and, therefore, C1 and all descendants 
are members of Output(Q). As described before, 
sub-results formed by C1 are actual results (not 
false-positive ones), which are the same w.r.t. all 
MPis. 2) a child C2 that has a node N2 among its 
descendants which is connected to its parent PN2 
by a logical NOT operator. If PN2 is the node that 

                                                                 
3 If ET is an Evaluation Tree and q is a QTP node of a given QTP 

Q, ET(q) is a node of ET which is associated to q. 
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is the cause of preventing PC and, therefore, NP to 
produce a sub-result s1 to form P, then it means 
that N2 produces a sub-result like ns1 that omits s1 
in PN2.  It is obvious that ns1 is formed in ET 
w.r.t. MPN and therefore omits all results produced 
w.r.t. all MPis having the same DeweyID as s1 
related to QN(PN2).  Since sub-results like s1 are 
not formed in PN2 at all, then PC and, therefore, 
NP are not able to produce such sub-results to 
form P. Consequently, if there exists a match 
pattern MPN that it is not possible to produce 
DeweyID P(NP) w.r.t. it, then the above DeweyID 
is not formed in ET considering all MPis and, 
therefore, P is not produced as a false positive. 

c)  If there exist only NOT-Points in SQ that, in each 
of their branches, only one NOT-Point at most 
could be found as their descendant: it is possible 
to show that DeweyID P(NP) is not produced in 
ET(NP) in the same way as described in (b).  
Consequently, it can be recursively deduce that, if 
nodes NP have different levels of nested NOT-
Points, they also do not produce DeweyID P(NP).  

4) The associated logical operator of NP is a logical OR: 
With respect to MPN, all positive children of NP do not 
produce any sub-results having DeweyID P(NP) and all 
NOT-Children of NP produce at least one sub-result 
having DeweyID P(NP). Therefore, considering all 
MPis, NOT-Children of NP produce sub-results having 
DeweyID P(NP). Hence, ET(NP) is not satisfied by all 
its NOT-Children. Now consider one of the positive 
children of NP also as PC. As stated in (3), we can show 
when DeweyID P(NP) is not formed in ET(NP) w.r.t. 
MPN to form P, it is not produced by all MPis, too. 

Considering the above discussion, we can conclude that, if P 
w.r.t. its descendants in the document cannot satisfy some of the 
MPis, then it is not formed in the ET, even by considering all MPis 
too. It is obvious that no grouped match pattern other than GMP is 
able to produce P because those match patterns having a 
possibility to produce P have equal members w.r.t. all members of 
Output(Q) and these match patterns have to be grouped in GMP 
w.r.t. to grouping rules of S3.v6 (line 4 in Figure 28). 

Consequently, all nodes of ET (including its root) derive their 
expected sub-results and produce all results corresponding to 
GMP members without producing any false positives. ♣  

Theorem 5. The algorithm S3.v6 computes all possible 
matches for a given QTP Q against an XML document Doc.  

Proof. During the grouping process of match patterns in 
S3.v6, none of the match patterns is deleted and each of them is 
grouped in a GMP. Therefore, all possible classes of final results 
are considered. Furthermore, all target nodes related to match 
patterns grouped in GMP are fetched from the document via 
virtual children. With respect to Lemma 5, each Evaluation Tree 
produces all results related to its associated GMP and false-
positive results are not produced during the matching process. 
Consequently, we can conclude that S3.v6 computes all possible 
matches for a given QTP Q against an XML document Doc. ♣ 

7. EXPERIMENTAL RESULTS 
7.1 Experimental Setup 
We did exhaustive experiments in our previous paper [13] to 
measure the performance of our methods S3.v0 and S3.v1 in 
comparison with the following well-known QTP processing 
methods: TwigStack [4], TJFast [20], and TwigList [22]. Figure 13 
presents a summary of the experimental results reported in our 
previous paper [13], which clearly confirm the superiority of our 
methods (The queries used in Figure 13 can be found in Table 2). 
In [13], we have used QTPs having different features in our 
experiments: QTPs having only a single path, as well as some 
shallow and some deep QTPs. Furthermore, our scalability 
analysis revealed that the execution time for our competing 
methods linearly increased with document size. In contrast, the 
growth rate of the execution time of our methods is less than 
others as represented in our experiments [13]. On the other hand, 
our scalability analysis further confirmed that our methods S3.v0 
and S3.v1 operate using minimum possible memory while the 
competing methods need more memory to reach their optimum 
performance. 

In this paper, our goal is a cross-comparison of the proposed 
methods for AND-QTPs. Moreover, we compare our methods to 
trace the improvement of their performance, when processing 
QTPs using the logical operators OR and NOT. We have 

Aspect DBLP XMark(5) Nasa SwissProt 
Data size (MB) 404 558 23.88 109 

Nodes (Mio) 31.88 23.96 1.22 11.4 

Max/avg depth 8/4.8 14/7.8 10/7.7 7/5.4 

Table 1. Characteristics of XML datasets used

Figure 13. Summary of experimental results reported in [13]. 
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implemented our methods using our native, Java-based XML 
database management system, called XTC [24]. The system 
configuration used for all experiments is as follows: Java 
1.6.0_14-b08, Dell® Latitude™ E6500 laptop having Intel® 
Core™2 Duo CPU P9500 (2.53 GHz), 4 GB main memory, 250 
GB hard disk, running Windows Vista™ Business. We have used 
the well-known datasets DBLP [19], XMark [23] with scaling 
factor 5, Nasa [25], and SwissProt [25] to verify the robustness, 
scalability, and structure insensitivity of our methods. 
Characteristics of our selected datasets are shown in Table 1.  The 
size of the datasets listed is their size in plain text format. The 
number of nodes along with maximum and average depth of the 
datasets is computed from the physical representation of these 
datasets in XTC. For each dataset, different QTPs are chosen 
representing different features: some of the QTPs are single-path 
queries, some are shallow, and some are deep. AND-QTPs are 
selected from QTPs used in [13] to compare the performance of 
S3.v2 to S3.v6 against S3.v0 and S3.v1. The set of queries used in 
our experiments are listed in Table 2. Our experiments include 
cross-comparison of our methods based on their ability to process 
logical operators in terms of execution time, I/O time, and number 
of elements read. Furthermore, we have performed a scalability 

analysis in terms of document size and memory available. 
Execution time is the time elapsed between the arrival of a QTP in 
XTC and the delivery of the complete result to the user. Number 
of nodes read represents the amount of document nodes (in its 
physical storage format in XTC) that are physically accessed and 
I/O time is the time spent to perform document access fetching the 
requested nodes. 

7.2  Cross-Comparison 
All methods proposed (S3.v0 to S3.v6) are able to process 

AND-QTPs; therefore, it is reasonable to compare their 
performance for evaluating this kind of QTPs. S3.v0 uses the 
concepts QueryGuide and DeweyID to perform a focused 
document access resulting in significant performance. Since some 
match patterns used for QTP processing have common members, 
separate execution of each of them leads to repeated access of 
distinct document nodes, which is in contrast to our optimization 
goal. S3.v1 attempts to group such match patterns into GMPs to 
avoid such redundant document accesses. S3.v2 is a simple 
extension of S3.v0 to support the logical OR operator. QTPs 
containing OR are parsed into some AND-QTPs, which are 
separately executed; the intermediate results are subsequently 
merged to prepare the final answer. S3.v3 utilizes an Evaluation 

Name Query Dataset Matches 

D1 //article/title DBLP 346554 

D2 /dblp/inproceedings[title]/author DBLP 1519938 

D3 /dblp/inproceedings[.//cite/label][title]//author DBLP 132902 

D4 //article[.//mdate][.//volume][.//cite]//journal DBLP 47323 

D5 //inproceedings[(.//pages) OR (.//crossref) OR (.//title//sub)] DBLP 575316 

D6 //inproceedings//title[(.//sub) OR (.//i)] DBLP 2322 

D7 //article[(.//volume) OR (.//cite) OR (//journal)] DBLP 346333 

D8 // article //title[NOT(.//sub)] DBLP 344620 

D9 //inproceedings[.//title[NOT(.//sup/i)][NOT(.//tt)]][//cite/label]//booktitle DBLP 55718 

D10 //inproceedings//title[[NOT(.//sub)] OR [NOT(.//i)]] DBLP 582563 

X1 /site/regions//item/location XMark 108750 

X2 //people//person[.//address/zipcode]/profile/education XMark 15859 

X3 //item[location]/description//keyword XMark 136282 

X4 //item[location][.//mailbox/mail//emph]/description//keyword XMark 86533 

X5 //item[location][quantity][//keyword]/name XMark 207632 

X6 //item//description[(.//text//bold) OR (.//parlist//emph)] XMark 62162 

X7 //item[(.//location) OR (.//quantity) OR (//parlist//keyword)] XMark 108750 

X8 //item//description//text[NOT(.//emph)] XMark 117806 

X9 //item[[NOT(.//keyword)] OR [NOT(.//location)] OR [(.//shipping)]] XMark 217500 

X10 //item[[(.//shipping)][NOT(.//description[NOT(.//keyword)]]] XMark 58596 

N1 //revisions[//year][//para]//creator Nasa 1043 

N2 //tableHead[./tableLinks/tableLink/title]//fields/field[definition]/name Nasa 103380 

N3 //dataset[(.//para) OR (.//heading)] Nasa 2435 

N4 //definition[(.//footnote) OR (.//para)] Nasa 11586 

N5 //dataset//description[NOT(.//para)] Nasa 116 

S1 //Entry//PIR[prim_id][sec_id] SwissProt 30427 

S2 //Entry/Features[/DISULFID[/from][/to]/Descr][/CHAIN[/from][/to]/Descr] SwissProt 22437 

S3 //Entry[(.//Ref/Author) OR (.//Keyword)] SwissProt 50000 

S4 //Entry[mtype][NOT(.//Mod)][NOT(.//Descr)] SwissProt 0 

Table 2. Queries used in the experiments
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Tree for QTP matching, which provides efficient support of the 
logical operators OR and NOT. Because QTP parsing leads to 
match patterns, which are frequently overlapping and, therefore, 
causing redundant I/Os, S3.v4 uses the concept “super-pattern” to 
get rid of those match patterns which are covered by a super-
pattern. S3.v5 provides support of the logical operator NOT. 
Additionally in S3.v6, inspired by the idea leading to S3.v1, super-
patterns that still have some overlaps are grouped to optimize I/O 
and execution time of QTP processing.  

AND-QTPs: We chose shallow QTPs in [13], to compare our 
methods (S3.v0 and S3.v1) against TwigStack and TwigList, 
because the I/O needed by these methods  is comparable to ours. 
QTPs having several leaves (three or more) are selected to 
challenge TwigList, because it circumvents the time-consuming 
merging phase burdening  TwigStack and others. Figure 14 shows 
our experimental results for four AND-QTPs against the DBLP 
dataset. Obviously, our methods roughly deliver the same 
performance for AND-QTPs. Therefore, methods S3.v2 to S3.v6 
are also proper solutions for evaluating AND-QTPs. Our 
experimental results for AND-QTPs against XMark (scale 5) 
(Figure 15), Nasa, and SwissProt (Figure 16) also confirm their 
efficiency and comparability. It is worth noting for QTPs such as 
X1, X2, and X3 in Figure 15 that the runtime differences of S3.v1 
and S3.v6 are caused by the grouping mechanism used by them. 

OR-QTPs: Our methods S3.v2 to S3.v6 are able to process 
QTPs containing the logical OR operator.  Figure 17 shows our 
experimental results for three QTPs using OR operators. Parsing 
QTP D7 leads to seven AND-QTPs to be executed. Because a 
super-pattern can be exploited, S3.v4 to S3.v6 have lower I/O cost 
and better performance. Moreover, D5 leads to seven AND-QTPs 
and finally eleven match patterns, where two of them are selected 
as super-patterns and, in turn, are grouped into a single GMP in 
S3.v6. As a consequence, S3.v6 has the best performance and 
lowest I/O cost for D5 (see Figure 17).  QTP X6 clearly reveals the 
effect of the grouping idea. Execution of X6 leads to three AND-
QTPs and finally 594 match patterns which are reduced to 486 

super-patterns. Using S3.v6, these super-patterns turn into 6 
GMPs. Our experiments show that S3.v6 executes X6 about three 
to ten times faster than other methods and requires about an order 
of magnitude less I/O cost. The efficiency of grouping used in 
S3.v6 can also be observed in the remaining QTP executions. 

NOT-QTPs: S3.v5 and S3.v6 are methods to process QTPs 
containing logical NOT operators. Figure 18 shows the 
comparison of S3.v5 and S3.v6 for three QTPs. Obviously, 
grouping of match patterns has a major effect on the performance 
of QTP evaluation. For example, compared to S3.v5, S3.v6 runs 
D10 seven times faster thereby reducing the I/O cost about six 
times. We gained the same improvement for X10 against the 
XMark dataset. Experimental results related to S4 also confirm a 
runtime and I/O reduction of about an order of magnitude.  

The methods GTwigMerge, PathStack¬, TwigStackList¬, 
and AllTwigMerge are dropped from our cross-comparison, 
because they are all based on TwigStack. These methods read the 
entire instance nodes related to the QTP and, therefore, cause the 
same I/O as TwigStack causes for the AND-QTP with the same 
tree structure (henceforth referred as AND-VIEW of a QTP). 
Furthermore, processing of a QTP containing logical operators 
like OR and NOT is more expensive than its AND-VIEW because 
of the inherent overhead of logical OR and NOT operators. On the 
other hand, using the super-pattern concept, we are sure that 
redundant I/Os are avoided and I/O cost is optimal, because only 
potential target nodes of QTP leaves are extracted by S3 methods. 
Furthermore, the processing time using the Evaluation Tree is 
dependent to the tree structure and the number of nodes read 
instead of the logical operators related to the nodes in the tree (As 
can be seen in the Figure 23, the execution time order of 
processAND and processOR procedures are similar). Therefore, 
the execution time of a QTP is comparable to its AND-VIEW in 
our proposed methods. Finally, as reported in [13] and illustrated 
in Figure 13, our methods S3.v0 and especially S3.v1 clearly 
outperform TwigStack for AND-QTPs and, as can be seen, our 
methods have similar performance for AND-QTPs (Figure 14).  

Figure 14. Experimental results for AND-QTPs against DBLP. 
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Figure 15. Experimental results for AND-QTPs against XMark (scale 5) . 
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7.3 Scalability Analysis 
In addition to the cross-comparison of our methods, 

scalability experiments for document size and memory available 
(maximum heap size of the Java Virtual Machine) were 
performed. Earlier results [13] showed that increasing the 
document size caused a sub-linear growth of the execution time 
for S3.v0 and S3.v1, whereas TwigStack, TJFast, and TwigList 
embodied linear behavior.   

To explore the size scalability of our methods, we chose 10 
XMark datasets with a scaling range from 1 to 10.  Figure 19 
visualizes the scalability characteristics for X4, X7, and X9, 
respectively. Our experiments show that the growth rate of the 
execution time of our methods is linear as depicted in Figure 19.  
The effect of grouping match patterns is also illustrated in Figure 
19. For example, execution of X4 leads to 162 match patterns 
where most of them overlap. Therefore, only the use of methods 
S3.v1 or S3.v6 is adequate, because the resulting match patterns 
turn into six GMPs. 

We have also checked the scalability of our methods in terms 
of document size for QTPs having logical operators OR or NOT. 
Figure 19 clearly shows that our methods (except S3.v2) follow 
sub-linear behavior. Execution of X7 leads into 54 match patterns, 
which turn into 6 GMPs in S3.v6.  Our experiments for X9 also 
confirm the major effect of grouping on S3.v6 scalability. 

The remaining set of experiments focuses on scalability w.r.t. 
memory available. Earlier results showed [13] that the 
performance of TwigStack, TJFast, and TwigList is more 
dependent on the amount of memory available, because they 
produce much larger intermediate results than S3.v0 and S3.v1. 

To check the memory effect, we have chosen four queries 
D2, X5, X7, and X9. Increase of memory size does not have a 
significant effect on the runtime of our methods (see Figure 20), 
which confirms their effective use of memory. Therefore, our 
methods behave efficiently when memory size is limited or shared 
with other transactions in real multi-user environments. 

Figure 16. Experimental results for AND-QTPs against Nasa and SwissProt. 
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Figure 17. Experimental results for QTPs using logical OR against DBLP, XMark(scale 5), Nasa, and SwissProt. 
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Figure 19. Scalability of document size: execution time (ms). 
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Figure 18. Experimental results for QTPs using logical NOT against DBLP, XMark(scale 5), Nasa, and SwissProt. 
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8. Conclusions 
We first reviewed some basic definitions and concepts from 

our previous work proposed in [13]. Our methods are founded 
upon two critical concepts: DeweyIDs and QueryGuide. We use 
DeweyIDs to label document nodes. These IDs contain all 
information about their own ancestors. Therefore, during QTP 
matching, all information related to ancestors of nodes accessed is 
available without further document access. Execution of a QTP 
against the Structural Summary of a document leads to an SMP, 
which helps us perform focused document access. 

We use the Evaluation Tree as a processing structure formed 
by QTP join points and its leaves to process match patterns. These 
patterns are results of QTP executions against the Structural 
Summary of the document. The main advantage of Evaluation 
Trees is the ease of evaluating join results. Therefore, use of 
Evaluation Tree is a way to support logical operators other than 
AND. We make parsing of a QTP into some AND-QTPs efficient 
and use it as the base of our methods. We initially introduced 
S3.v2 and S3.v3, but they suffer from redundant I/O and matching 
process caused by overlapping match patterns. Then, we 
developed the concept of super-pattern to solve this problem in 
S3.v4. We showed that a superset of match patterns covers all 
matches related to its sub-patterns. Therefore, the selection of 
super-patterns in S3.v4 largely reduces the I/O volume during 
QTP matching and makes QTP parsing an efficient solution.  

Using the strength of Evaluation Trees, we support the 
logical operator NOT in S3.v5. The main drawback of S3.v5 are 
false-positive results occurring during the matching process and 
caused by a lack of information in NOT-Points. Hence, we had to 
find and remove false positives from the results in S3.v5 by 
keeping results that have to be omitted in NOT-Points as dummy 
results. We implemented the idea of grouping match patterns as 
our final method in this paper. We reached two goals in S3.v6:  
1) We prevented this method from producing false-positive 
results. This is done by grouping those match patterns together 
having enough information to eliminate false-positive results.  
2) We reduced a considerable volume of I/O caused by super-
patterns having overlaps.  

Our experiments in [13] showed the superiority of our 
methods compared to Structural Join, TwigStack, TJFast, and 
TwigList. Our experiments show that all of our new methods have 
almost the same performance to process AND-QTPs. Moreover, 
the effect of using super-patterns and grouping idea is observable 
in our experiments. Furthermore, our scalability tests show that all 
our methods perform well, even if the size of memory available is 
limited. In addition, the growth rate of the execution time of our 
methods is linear when document size increases.   
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Appendix A 
In this appendix, we present pseudo codes of our methods S3.v3, S3.v4, S3.v5, and S3.v6. 

 
 

class EvalTreeNode-v3 implements NodeInput

1: constructor(QTPNode mainNode, upperNodes as list 
of QTPNodes) 

2: this.mainNode = mainNode; 
3: this.upperNodes = upperNodes; 
4:   
5: procedure setDirectInput(strm as NodeStream) 
6: this.directInput = strm; 
7:  
8: procedure skip(c as EvalTreeNode-v3) 
9: key = c.head.getID(this.mainNode); 
10: while (!c.isFinished & 

c.head.getID(this.mainNode) = key) 
11:   c.next(); 
12: end while; 
13:   
14: function advance(c as EvalTreeNode-v3) 
15: key = c.head.getID(this.mainNode); 
16: let lc be as an empty array; 
17: while (!c.isFinished & 

c.head.getID(this.mainNode) = key) 
18:   lc.add(c.head); 
19:   c.next(); 
20: end while;

22: procedure completeToUpperJoinPoint(res as Match) 
23: mID = res.getID(this.mainNode); 
24: for each upNode in upperNodes 
25:   let upID be the id corresponds to upNode based 

on mID; 
26:   res.addID(upNode, upID); 
27:  
28: procedure addChild(child as EvalTreeNode-v3) 
29: this.children.add(child); 
30:   
31: procedure open() 
32: for each ci in this.children 
33:   ci.open(); 
34: if(this.directInput != null) 
35:   this.directInput.open(); 
36: this.next(); 
37: if(this.head = null) 
38:   this.isFinished = true; 

 

Figure 22. Pseudo code of Evaluation Tree node used in S3.v3. 

Figure 21. Pseudo code of S3.v3 algorithm. 

class S3-v3 

1: constructor(Q as QueryTreePattern, Doc as XTS) 
2: this.Q = Q; 
3: this.Doc = Doc; 
4:   
5: procedure execute() 
6: let parsedQTPs be list of AND-QTPs resulted by 

parsing Q; 
7: for each PQi in ParsedQTPs do 
8:   let SMPi be execution result of PQi against the 

structural summary of Doc; 
9:   for each MPj in SMPi do 
10:     ET = getEvalTree(PQi, PQi.root, MPi, Doc); 
11:     this.ETList.add(ET); 
12:   end for; 
13: end for; 
14: for each ETi in ETList do 
15:   ETi.open(); 
16:   if ETi.isFinished  
17:     ETList.remove(ETi); 
18: end for; 
19: while (true) do 
20:   min = nextMatch(); 
21:   if (min = null) 
22:     break; 
23:   else 
24:     output min; 
25: end while; 
26:  
27: function nextMatch() 
28: if (this.ETList.size() = 0) return null; 
29: let min be the minimum this.ETList[i].head and 

minIndex be its index in the ETList; 
30: ETList[minIndex].next(); 
31: if (ETList[minIndex].isFinished) 
32:   ETList.remove(minIndex); 
33: return min; 

34: function getEvalTree(QueryTreePattern QTP, 
QTPNode root, MatchPattern MP, Document Doc) 

35: if (root.getParent() != null) 
36:   parent = root.getParent(); 
37:   upperNodes.add(parent, MP(parent).level); 
38: end if; 
39: if (!root.hasChildren) 
40:   strm = stream(MP, root, Doc); 
41:   eNode = new EvalTreeNode(root, upperNodes); 
42:   eNode.setDirectInput(strm); 
43: else if (root.children.size() = 1) 
44:   upperNodes.add(root, MP(root).level); 
45:   node = root.children[0]; 
46:   while (node has only one child) 
47:     upperNodes.add(node, MP(node).level); 
48:     node = node.children[0]; 
49:   end while; 
50:   eNode = new EvalTreeNode(node, upperNodes); 
51:   if (node has more than one child) 
52:     for each cNode as child of node do 
53:       cTree = getEvalTree(QTP, cNode, MP,Doc); 
54:       eNode.addChild(cTree); 
55:     end for; 
56:   else 
57:     strm = stream(MP, node, Doc); 
58:     eNode = new EvalTreeNode(root, upperNodes); 
59:     eNode.setDirectInput(strm); 
60:   endif; 
61: else 
62:   eNode = new EvalTreeNode(root, upperNodes); 
63:   for each cNode as child of root do 
64:     cTree = getEvalTree(QTP, cNode, MP,Doc); 
65:     eNode.addChild(cTree); 
66:   end for; 
67: endif; 
68: return eNode; 
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Figure 23. Pseudo code of Evaluation Tree node used in S3.v3. (cont’d) 

class EvalTreeNode-v3 

1: procedure next() 
2: if(!this.outputQueue.isEmpty()) 
3:   this.head = this.outputQueue.poll(); 
4:   return; 
5: endif; 
6: if (this node has no child) 
7:   this.directInput.next(); 
8:   res = directInput.head; 
9:   if(res != null) 
10:     this.head = completeToUpperJoinPoint(res); 
11:     return; 
12:   else 
13:     this.head = null; 
14:     this.isFinished = true; 
15:     return; 
16:   endif; 
17: endif; 
18: if(OP(this.mainNode) = AND) 
19:   processAND(); 
20: elseif(OP(this.mainNode) = OR) 
21:   processOR(); 
22: if (!this.outputQueue.isEmpty()) 
23:   this.head = this.outputQueue.poll(); 
24: elseif(!this.isFinished) 
25:   next(); 
26:   
27: procedure ANDBalance(inputs as array of 

EvalTreeNode-v3) 
28: let cn this.children.size(); 
29: if(cn > 1) 
30:   for(i = 0; i < cn; ) 
31:     l = inputs[i].head.getID(this.mainNode) 
32:     r = inputs[i+1].head.getID(this.mainNode) 
33:     c = compare(l, r) 
34:     while(c != 0) 
35:       if(c > 0) 
36:         skip(inputs[i]); 
37:         if (inputs[i].isFinished) 
38:           return false; 
39:       else if (c < 0) 
40:         i = 0; 
41:         for (j=0; j<i; ++j) 
42:           skip(inputs[j]); 
43:           if (inputs[j].isFinished) 
44:             return false; 
45:       else 
46:         i++; 
47:       endif; 
48:     end while; 
49:   end for; 
50: end if; 
51: return true; 
52:   
53: procedure processAND() 
54: for each ci in this.children 
55:   if(ci.isFinished) 
56:     this.head = null; 
57:     ci.isFinished = true; 
58:     return; 
59:   end if; 
60: end for; 
61: b = ANDBalance(this.children); 
62: if (!b) 
63:   this.head = null; 
64:   ci.isFinished = true; 
65:   return; 
66: end if; 
67: for each ci in this.children 
68:   lci = advance(ci); 

 

69: ANDJnRes = xproduct(lc); 
70: for each res in ANDJnRes 
71:   res = completeToUpperJoinPoint(res); 
72:   this.outputQueue.offer(res); 
73:   
74: function xproduct(lists as array of Match lists) 
75: if(lists.size = 0) return null; 
76: let result be an empty list 
77: for(i=0; i < lists[0].size(); ++i) 
78:   result.add(lists[0][i]); 
79: for(i=0; i < lists.size(); ++i) 
80:   let newRes be an empty list 
81:   for(j=0; j< result.szie(); ++j) 
82:     for(k=0; k <lists[i].size(); ++k) 
83:       newRes.add( 

result[j].concat(lists[i][k])); 
84:     end for; 
85:   end for; 
86:   result = newRes; 
87: end for; 
88: return result; 
89:   
90: function ORBalance(inputs as array of 

EvalTreeNode-v3) 
91: sort members of inputs w.r.t. inputs[i].head 
92: c = -1; 
93: let selected be an empty list 
94: for(i = 0; i < inputs.size(); ) 
95:   l = inputs[i].head.getID(this.mainNode) 
96:   r = inputs[i+1].head.getID(this.mainNode) 
97:   c = compare(l, r) 
98:   selected.add(inputs[i]); 
99:   if (c < 0) 
100:     break; 
101:   else 
102:     i++; 
103:   endif; 
104: end for; 
105: if(c = 0 || inputs.size = 1) 
106:   last = inputs.size() - 1; 
107:   selected.add(inputs[last]); 
108: endif; 
109: return selected;  
110:   
111: procedure processOR() 
112: for each ci in this.children 
113:   if(ci.isFinished) 
114:     this.children.remove(ci); 
115:   end if; 
116: end for; 
117: if(this.children.size() = 0) 
118:   this.head = null; 
119:   this.isFinished = true; 
120:   return; 
121: end if; 
122: selected = ORBalance(this.children); 
123: for each ci in selected 
124:   lci = advance(ci); 
125: ORJnRes = xproduct(lc); 
126: for each res in ORJnRes 
127:   res = completeToUpperJoinPoint(res); 
128:   this.outputQueue.offer(res); 
129: end for; 
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Figure 25. Pseudo code of S3.v5 algorithm. 

class S3-v5 extends S3-v4 

1: function getEvalTree(QueryTreePattern QTP, 
QTPNode root, MatchPattern MP, Document Doc) 

2: if (root.getParent() != null) 
3:   parent = root.getParent(); 
4:   if (MP(parent) != null) 
5:     upperNodes.add(parent, MP(parent).level); 
6: end if 
7: if (!root.hasChildren) 
8:   strm = stream(MP, root, Doc); 
9:   eNode = new EvalTreeNode(root, upperNodes); 
10:   eNode.setDirectInput(strm); 
11: else if (root.children.size() = 1) 
12:   if (MP(root) != null) 
13:     upperNodes.add(root, MP(root).level); 
14:   if (root.children[0].hasNOTAxis) 
15:     strm = stream(MP, root, Doc); 
16:     eNode = new EvalTreeNode(node, upperNodes); 
17:     eNode.setDirectInput(strm); 
18:     cTree = getEvalTree(QTP, root.children[0], 

MP, Doc); 
19:     eNode.addChild(cTree, true); 
20:   else 
21:     node = root.children[0]; 
22:     crn = node.children; 
23:     while (crn.size() = 1 & ! crn[0].hasNOTAxis) 
24:       if (MP(root) != null) 
25:         upperNodes.add(root, MP(root).level); 
26:       node = node.children[0]; 
27:       crn = node.children; 
28:     end while; 
29:     if (crn.size() = 1 & crn[0].hasNOTAxis) 
30:       strm = stream(MP, node, Doc); 
31:       eNode = new EvalTreeNode(node, 

upperNodes); 
32:       eNode.setDirectInput(strm); 
33:       cTree = getEvalTree(QTP, crn[0], MP, Doc); 
34:       eNode.addChild(cTree, true); 

35:     else if (crn.size() > 1) 
36:       eNode = new EvalTreeNode(node, 

upperNodes); 
37:       hasPOSChid = false; 
38:       hasNOTChid = false; 
39:       for each child in crn do 
40:         cTree = getEvalTree(QTP, child, MP,Doc); 
41:         notAxis = child.hasNOTAxis; 
42:         if (notAxis) 
43:           hasNOTAxis = true; 
44:         else 
45:           hasPOSChild = true;   
46:         eNode.addChild(cTree, notAxis); 
47:       end for; 
48:       if (!hasPOSChild !! (hasNOTChild && 

OP(node) = OR)) 
49:         strm = stream(MP, node, Doc); 
50:         eNode.setDirectInput(strm); 
51:       endif; 
52:     else //node is QTP leaf 
53:       if (node.hasNOTAxis & 

node.parent.children.size() = 1) 
54:         eNode = new EvalTreeNode(node.parent, 

upperNodes); 
55:         strm = stream(MP, node.parent, Doc); 
56:         eNode.setDirectInput(strm); 
57:         cTree = getEvalTree(QTP, node, MP, Doc); 
58:         eNode.addChild(cTree, true); 
59:       else 
60:         eNode = new EvalTreeNode(node, 

upperNodes); 
61:         strm = stream(MP, node, Doc); 
62:         eNode.setDirectInput(strm); 
63:       endif; 
64:     endif; 
65:   endif; 
66: else // if (root.children.size() > 1) 
67:   the same code as lines 36-50 
68: endif; 
69: return eNode; 

class S3-v4 extends S3-v3 

1: procedure execute() 
2: let parsedQTPs be list of AND-QTPs resulted by 

parsing Q; 
3: let SMPList be an empty list 
4: for each PQi in parsedQTPs do 
5:   let SMPi be execution result of PQi against the 

structural summary of Doc; 
6:   for each MPj in SMPi do 
7:     SMPLits.add(MPj); 
8: end for; 
9: build a DAG using SMPList members, SMPList[i] 

precedes SMPList[j], if SMPList[i] is subset of 
SMPList[j]; 

10: let superPlans be an array of those members of 
above DAG that don’t have any successor; 

11: for each sp in superPlans do 
12:   ET = getEvalTree(Q, Q.root, sp, Doc); 
13:   this.ETList.add(ET); 
14: end for; 
15: for each ETi in ETList do 
16:   ETi.open(); 
17:   if ETi.isFinished  
18:     ETList.remove(ETi); 
19: end for; 
20: while (true) do 
21:   min = nextMatch(); 
22:   if (min = null) 
23:     break; 
24:   else 
25:     output min; 
26: end while; 

Figure 24. Pseudo code of S3.v4 algorithm. 
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Figure 26. Pseudo code of Evaluation Tree node used in S3.v5. 

class EvalTreeNode-v5 extends EvalTreeNode-v3 

1: procedure open() 
2: if (POSChildren.size() = 1 & NOTChildren.size() 

=1 & POSChildren[0] is instance of DirectInput) 
3:   this.isLeaf = true; 
4:   this.directInput.open(); 
5:   if (this.directInput.isFinished) 
6:     this.head = null; 
7:     this.isFinished = true; 
8:   else 
9:     res = this.directInput.head; 
10:     this.head = completeToUpperJoinPoint(res); 
11:   endif; 
12:   return; 
13: endif; 
14: this.checkForNOT = true; 
15: for each ci in this.POSChildren 
16:   ci.open(); 
17: for each ci in this.NOTChildren 
18:   ci.open(); 
19: this.NOTChildrenNo = this.NOTChildren.size(); 
20: this.next(); 
21: if(this.head = null) 
22:   this.isFinished = true; 
23:   
24: procedure addChild(child as EvalTreeNode-v5, 

NOTChild as boolean) 
25: if (NOTChild) 
26:   this.NOTChildren.add(child); 
27: else 
28:   this.POSChildren.add(child); 
29: this.children.add(child); 
30:   
31: procedure setDirectInput(strm as NodeStream) 
32: this.directInput = strm; 
33: this.addChild(new DirectInput(this.directInput), 

false); 
34:   
35: procedure next() 
36: if (this.isLeaf) 
37:   this.directInput.next(); 
38:   if (this.directInput.isFinished) 
39:     this.head = null; 
40:     this.isFinished = true; 
41:   else 
42:     res = this.directInput.head; 
43:     this.head = completeToUpperJoinPoint(res); 
44:   endif; 
45:   return; 
46: endif; 
47: if(!this.outputQueue.isEmpty()) 
48:   this.head = this.outputQueue.poll(); 
49:   return; 
50: endif; 
51: if(OP(this.mainNode) = AND) 
52:   processAND(); 
53: elseif(OP(this.mainNode) = OR) 
54:   processOR(); 
55: if (!this.outputQueue.isEmpty()) 
56:   this.head = this.outputQueue.poll(); 
57: elseif(!this.isFinished) 
58:   next(); 

 

59: procedure processAND() 
60: for each ci in this.POSChildren 
61:   if(ci.isFinished) 
62:     this.head = null; 
63:     ci.isFinished = true; 
64:     return; 
65:   end if; 
66: end for; 
67: b = ANDBalance(this.POSChildren); 
68: if (!b) 
69:   this.head = null; 
70:   ci.isFinished = true; 
71:   return; 
72: end if; 
73: for each ci in this.children 
74:   lci = advance(ci); 
75: ANDJnRes = xproduct(lc); 
76: Excluded = false; 
77: for each ci in this.NOTChildren 
78:   if(ci.isFinished) 
79:     this.NOTChildren.remove(ci); 
80:     this.children.remove(ci); 
81:   end if; 
82: end for; 
83: if (this.NOTChildren.size() > 0) 
84:   excluded = this.ANDExclude(ANDJnRes[0]); 
85: if (!excluded) 
86:   for each res in ANDJnRes 
87:     res = completeToUpperJoinPoint(res); 
88:     this.outputQueue.offer(res); 
89:   
90: function ANDExclude(Match res) 
91: if(this.NOTChildren.size() = 0) 
92:   return false; 
93: selected = ORBalance(this.NOTChildren); 
94: rID = res.getID(this.mainNode); 
95: sID = selected[0].head.getID(this.mainNode); 
96: c = compare(rID, sID); 
97: while(c > 0) 
98:   for each ci in selected do 
99:     this.skip(ci); 
100:     if(ci.isFinished) 
101:       this.NOTChildren.remove(ci); 
102:       this.children.remove(ci); 
103:     endif; 
104:   end for; 
105:   if(this.NOTChildren.size() = 0) 
106:     return false; 
107:   selected = ORBalance(this.NOTChildren); 
108:   rID = res.getID(this.mainNode); 
109:   sID = selected[0].head.getID(this.mainNode); 
110:   c = compare(rID, sID); 
111: end while; 
112: if(c = 0) 
113:   return true; 
114: return false; 
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class EvalTreeNode-v5 extends EvalTreeNode-v3 

1: procedure processOR() 
2: for each ci in this.POSChildren 
3:   if(ci.isFinished) 
4:     this.POSChildren.remove(ci); 
5:     this.children.remove(ci); 
6:   end if; 
7: end for; 
8: if(this.children.size() = 0) 
9:   this.head = null; 
10:   this.isFinished = true; 
11:   return; 
12: end if; 
13: for each ci in this.NOTChildren 
14:   if(ci.isFinished) 
15:     this.checkForNot = false; 
16:     this.NOTChildren.remove(ci); 
17:     this.children.remove(ci); 
18:   end if; 
19: end for; 
20: selected = ORBalance(this.children); 
21: for each ci in selected 
22:   lci = advance(ci); 
23: ORJnRes = xproduct(lc); 

24: if(this.checkForNOT) 
25:   for each res in ORJnRes do 
26:     AllNegative = true; 
27:     for each ci in this.POSChildren 
28:       node = ci.mainNode; 
29:       if(node != this.mainNode & res.getID(node) 

!= null) 
30:         AllNegative = false; 
31:         break; 
32:       end if; 
33:     end for;  
34:     if(AllNegative) 
35:       for each ci in this.NOTChildren 
36:         node = ci.mainNode; 
37:         if(res.getID(node) = null) 
38:           AllNegative = false; 
39:           break; 
40:         end if; 
41:       end for; 
42:     endif; 
43:     if(AllNegative) 
44:       ORJnRes.remove(res); 
45:   end for; 
46: endif; 
47: for each res in ORJnRes 
48:   res = completeToUpperJoinPoint(res); 
49:   this.outputQueue.offer(res); 
50: end for; 

Figure 27. Pseudo code of Evaluation Tree node used in S3.v5. (cont’d) 

class S3-v6 extends S3-v5 

1: function groupSuperPattern(superPattern array of 
MatchPattern) 

2: let lf be an array of this.Q’s leaves, in 
addition to NOT-Points which have direct input 

3: sort lf ascending based on distinct number of 
CIDs related to each lf member using 
superPatren. 

4: group those members of superPattern that are 
equal w.r.t. Output(this.Q) and form NGP as a 
list of GMPs. 

5: remove super patterns that are participated in 
NGP from superPattern.  

6: c = 0; 
7: while superPattern or NGP has ungrouped member 

do 
8:   group Super-Patterns having same CID related 

to lf[c] into GMP[c] 
9:   c++; 
10: end while; 
11: let SGMP be array of GMP[i], 0 < i < lf.size() 
12: return SGMP; 
13:   
14: procedure execute() 
15: let parsedQTPs be list of AND-QTPs resulted by 

parsing Q; 
16: let SMPList be an empty list 
17: for each PQi in parsedQTPs do 
18:   let SMPi be execution result of PQi against the 

structural summary of Doc; 
19:   for each MPj in SMPi do 
20:     SMPLits.add(MPj); 
21: end for; 

22: build a DAG using SMPList members, SMPList[i] 
precedes SMPList[j], if SMPList[i] is subset of 
SMPList[j]; 

23: let superPatterns be an array of those members 
of above DAG that don’t have any successor; 

24:  
25: SGMP = groupSuperPatterns(superPatterns); 
26: for each GMP in SGMP do 
27:   ET = getEvalTree(Q, Q.root, GMP, Doc); 
28:   this.ETList.add(ET); 
29: end for; 
30: for each ETi in ETList do 
31:   ETi.open(); 
32:   if ETi.isFinished  
33:     ETList.remove(ETi); 
34: end for; 
35: while (true) do 
36:   min = nextMatch(); 
37:   if (min = null) 
38:     break; 
39:   else 
40:     output min; 
41: end while; 
42:  

Figure 28. Pseudo code of S3.v6 algorithm. 
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class EvalTreeNode-v6 extends EvalTreeNode-v5

1: constructor(QTPNode mainNode, upperNodes as list 
of QTPNodes, GMP as GMP) 

2: this.mainNode = mainNode; 
3: this.upperNodes = upperNodes; 
4: this.GMP = GMP; 
5:  
6: procedure processAND() 
7: the same code as lines 60-84 in procedure 

processAND of EvalTreeNode-v5 (Figure 26); 
8:  
9: if (!excluded) 
10:   for each res in ANDJnRes 
11:     resArr = completeToUpperJoinPoint(res); 
12:     this.outputQueue.offerAll(resArr); 
13:   end for; 
14:  
15: procedure processOR() 
16: the same code as lines 2-46 in procedure 

processOR of EvalTreeNode-v5 (Figure 27); 
17:  
18: for each res in ORJnRes 
19:   resArr = completeToUpperJoinPoint(res); 
20:   this.outputQueue.offerAll(resArr); 
21: end for; 

 

22: function completeToUpperJoinPoint(res as Match) 
23: let resArr be an empty list of Matches; 
24: for each MP in this.GMP do 
25:   if(res match MP)  
26:     newRes = res.clone(); 
27:     mID = res.getID(this.mainNode); 
28:     for each upNode in upperNodes 
29:       let upID be the id corresponds to upNode 

based on mID; 
30:       newRes.addID(upNode, upID); 
31:     end for; 
32:     if(!resArr.contains(newRes)) 
33:       Add newRes to resArr and keep resArr 

sorted ascending base on upperNodes; 
34:   endif; 
35: end for; 
36: return resArr; 

Figure 30. Pseudo code of Evaluation Tree node used in S3.v6. 

Figure 29. Pseudo code of S3.v6 algorithm. (cont’d) 

class S3-v6 extends S3-v5 

1: function getEvalTree(QueryTreePattern QTP, 
QTPNode root, GroupedMatchPattern GMP, Document 
Doc) 

2: if (root.getParent() != null) 
3:   parent = root.getParent(); 
4:   upperNodes.add(parent, MP(parent).levels); 
5: end if 
6: if (!root.hasChildren) 
7:   strm = groupedStream(GMP, root, Doc); 
8:   eNode = new EvalTreeNode(root, upperNodes, 

GMP); 
9:   eNode.setDirectInput(strm); 
10: else if (root.children.size() = 1) 
11:   upperNodes.add(root, GMP(root).levels); 
12:   if (root.children[0].hasNOTAxis) 
13:     strm = groupedStream(GMP, root, Doc); 
14:     eNode = new EvalTreeNode(node, upperNodes, 

GMP); 
15:     eNode.setDirectInput(strm); 
16:     cTree = getEvalTree(QTP, root.children[0], 

MP, Doc); 
17:     eNode.addChild(cTree, true); 
18:   else 
19:     node = root.children[0]; 
20:     crn = node.children; 
21:     while (crn.size() = 1 & ! crn[0].hasNOTAxis) 
22:       upperNodes.add(root, GMP(root).levels); 
23:       node = node.children[0]; 
24:       crn = node.children; 
25:     end while; 
26:     if (crn.size() = 1 & crn[0].hasNOTAxis) 
27:       strm = groupedStream(GMP, node, Doc); 
28:       eNode = new EvalTreeNode(node, upperNodes, 

GMP); 
29:       eNode.setDirectInput(strm); 
30:       cTree = getEvalTree(QTP, crn[0], GMP, 

Doc); 
31:       eNode.addChild(cTree, true); 
32:     else if (crn.size() > 1) 
33:       eNode = new EvalTreeNode(node, 

upperNodes); 

34:      hasPOSChid = false; 
35:       hasNOTChid = false; 
36:       for each child in crn do 
37:         cTree = getEvalTree(QTP, child, 

GMP,Doc); 
38:         notAxis = child.hasNOTAxis; 
39:         if (notAxis) 
40:           hasNOTAxis = true; 
41:         else 
42:           hasPOSChild = true;   
43:         eNode.addChild(cTree, notAxis); 
44:       end for; 
45:       if (!hasPOSChild !! (hasNOTChild && 

OP(node) = OR)) 
46:         strm = groupedStream(GMP, node, Doc); 
47:         eNode.setDirectInput(strm); 
48:       endif; 
49:     else //node is QTP leaf 
50:       if (node.hasNOTAxis & 

node.parent.children.size() = 1) 
51:         eNode = new EvalTreeNode(node.parent, 

upperNodes, GMP); 
52:         strm = groupedStream(GMP, node.parent, 

Doc); 
53:         eNode.setDirectInput(strm); 
54:         cTree = getEvalTree(QTP, node, GMP, 

Doc); 
55:         eNode.addChild(cTree, true); 
56:       else 
57:         eNode = new EvalTreeNode(node, 

upperNodes, GMP); 
58:         strm = groupedStream(GMP, node, Doc); 
59:         eNode.setDirectInput(strm); 
60:       endif; 
61:     endif; 
62:   endif; 
63: else 
64:   the same code as lines 33-47 
65: endif; 
66: return eNode; 
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Appendix B 

 
As noted in the paper, our focus is on QTPs with nodes having children connected by only one of the AND or OR logical operators 

(besides NOT operators). If a QTP has nested logical operators, then its children form a logical expression. Obviously, each logical 
expression containing nested AND/OR can be rewritten into a Disjunctive Normal Form (DNF), which is a disjunction of conjunctive 
clauses. Then, each clause can be considered a single child and parsing of QTP is done as described above. For example, consider the QTP 
Q11 in Figure 31. Children of node A form the logical expression: B ∧ (C ∨ D), which can be transformed into its DNS form:  (B ∧ C) ∨  (B 
∧ D). Therefore, the QTP can be reconsidered as the QTP in Figure 31(b). This new QTP is parsed by considering a conjunctive clause as a 
single child and using the following transformation: (B ∧ C) ∧  (B ∧ D) ≡ (B ∧ C ∧ D). Therefore, QTP Q11 is finally parsed into three 
AND-QTPs, which are shown in Figure 31(c). 

The Evaluation Tree is constructed based on the original QTP structure. The only difference is that nested logical operators in the QTP 
are also considered as join points and a separate node is used for them in the Evaluation Tree. The condition of the joining process for this 
kind of nodes is the same as that for the parent of these nodes. It is worth noting that after the translation of a QTP node into the DNS form, 
QTP parsing in the presence of logical NOT operators is done in the same way as described above. 
 

b 

Figure 31. (a) QTP Q11; (b) DNF for of Q11; (c) parsed QTPs 
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