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Abstract

Over the past three decades, the history of query processing in database

management systems has shown that cost-based query optimization is an

effective approach for finding sufficient low-level evaluation strategies for

queries written in high-level declarative query languages like SQL.

In recent years, the eXtensible Markup Language (XML) (Bray et al., 2008) has

been established as the de-facto standard for exchanging semi-structureddata

between individuals, business partners, and various organizations. Today’s

native XML database management systems (XDBMSs) provide a stable infras-

tructure for efficiently storing, indexing, and querying small-to-large XML

documents.

Boag et al. (2007) introduced XQuery as a semi-declarative programming

language that is now considered to be the language of choice to query XML

documents.

Nowadays, in an XDBMS, we can dispose of a potpourri of various join

operators (structural joins and value-based joins) and a still growing set of

indexes as low-level building blocks for query processing. For the evaluation

of an XQuery expression in an XDBMS, numerous semantically equivalent

combinations of these operations are possible. Choosing the most efficient

one out of a tremendously large set of combinations is crucial for effective

query processing in throughput-oriented systems. To achieve this goal, the

cost of each building block is modeled as the sum of IO cost and CPU cost.

Using these cost formulæ, a query optimizer can choose the cheapest one out

of several alternative building blocks and, finally, combine them in an optimal

way.

In this thesis, we assess how and whether concepts and techniques of rela-

tional cost-based query optimization can be reused in the context of XDBMSs

to optimize XQuery expressions. Furthermore, we show which new tech-

niques make cost-based optimization even more effective in such systems.

In summary, this thesis contributes to the following research topics:

• Transformation Rules To enable a query optimizer to generate seman-

tically equivalent plans, various transformation rules are introduced for

structural joins, valued-based joins, and index structures.
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• Cost Model Based on the analysis of the low-level building blocks used

for query evaluation, we develop a cost model for estimating the CPU

and IO costs.

• Cardinality Estimation To allow the plan generator to make use of the

costmodel, reliable estimates for XQuery expressionsmust be furnished.

In this work, we contribute to the dependable estimation of structural

and value-based XQuery expressions.

• Generic Query Optimization Framework By describing and imple-

menting an extensible query optimization framework, a testbed for empir-

ically evaluating all concepts developed in this thesis is provided.

• Empirical EvaluationWe empirically assess the correctness of our cost

model. By employing and comparing several instances of our query

optimization framework,we (1) derive aminimal set of rewrite rules that

allow for stable cost-based query optimization and (2) provide several

design recommendations (e. g., when it is useful to generate indexes on

particular paths) serving as simple heuristics for simplifying database

administrators’ lives.
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Conventions

URL URLs in footnotes, text, or bibliography

Text Emphasized text

Code XQuery code if presented standalone

Code Inlined XQuery language constructs

IDENTIFIER Rule identifier (transformation or cardinality inference)

Identifier Abstract plan type or identifier of rewrite patterns

function(. . .) Function identifiers in algorithms

= Comparison operator in rules and algorithms

←− Value assignments in transformation rules (Chapter 6)

=! Assignment of inferred cardinality value in Chapter 7

⊑! Inferred domain inclusion relationship in Chapter 7

iii



iv



Nomenclature

BP Base Profile

CAS Content-and-Structure Index

DAG Directed Acyclic Graph

EXsum Element-Centered XML Summarization

HTJ Holistic Twig Join

IP Intermediate Profile

PAL Physical Algebra

PAP Primary Access Path

PCR Path-Class Reference

PPO Path Processing Operator

PS Path Synopsis

QEP Query Execution Plan

RDBMS Relational Database Management System

SAP Secondary Access Path

SJ Structural Join

TAP Tertiary Access Path

XDBMS XML Database Management System

XQGM XML Query Graph Model

XTC XML Transaction Coordinator

XTCcmp XTC XQuery-to-XQGM compiler

XUG XTC Universal GUI
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1 Motivation

“We should not look back unless it is
to derive useful lessons from past
errors, and for the purpose of profiting
by dearly bought experience.”

(George Washington)

In 1998, the World Wide Web Consortium (W3C) gave birth to the Extensible

Markup Language (XML) by publishing the first W3C Recommendation dealing

with this novelmeta language (Bray et al., 1998). Being nowmore than10years

publicly available, it has become the de-facto standard for exchanging and

representing semi-structured data in numerous application areas. Therefore,

it is not astonishing that there exists, for almost every business scenario,

at least one standardized XML format, for example, FIXML1 for financial

applications—that allows for collaboration within and across enterprises.

1.1 Managing XML

Today, efficient management of XML documents is of utmost importance.

Even though XML started as an exchange format, enterprises would like—or

even have to—permanently store XML documents, for example, due to legal

issues. The management of such documents raises new challenges for trans-

action isolation and query processing. For example, in financial application

logging scenarios, cooperative and concurrent actions of hundreds of users

must be supported (Härder et al., 2010).

For almost two score years, Relational Database Management Systems

(RDMBSs) have been a reliable means for efficiently handling very large

databases. Therefore, it seems to be quite natural to use them for coping

with XMLdocuments. Normally, XMLdocuments are tree-structured graphs,

hence, storing themusing anRDBMSraises several problems: (1) StoringXML

documents in a relational storage (flat and tuple-based) requires to split—

here, the terminus technicus is “to shred”—the XML tree into probably nu-

merous tables. (2) Shredding makes efficient transaction isolation laborious

and avoids direct access to it using an XML query language (Haustein and

1For more information, see: http:�www.fixprotocol.org/specifications
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Härder, 2007). To avoid expensive transitions between the relational and the

XML data model, native XML Database Management Systems (XDBMSs) pro-

vide an alternative approach that allows to store XML documents as they are.

By preserving their structure, fine-granular transaction isolation and efficient

XML query processing are possible. Furthermore, it is promising that even

major database vendors such as IBM or Oracle rely nowadays on a native

XML storage mechanism, even though they originally started with hybrid or

shredding techniques.

1.2 Querying XML

Inaccordancewith the rapidproliferationofXML,usershavebeendemanding

for a tailor-made query language. In the past, we have seen several language

proposals such as XPath 1.0, Quilt, XQL, or XML-QL that finally led to the

development of XQuery 1.0 (Boag et al., 2007; Lehner and Schöning, 2004).

XQuery is much more than a query language—it is a Turing-complete, semi-

declarative programming language. As SQL is the mother tongue of every

relational database system, XMLdatabase systemsmust at least fluently speak

XQuery, because both languages are considered de-facto standards in their

fields.

For the evaluationofXQuery expressions innativeXDBMSs,we candispose

of a potpourri of join operators (structural joins and value-based joins) and

a still growing set of indexes as low-level building blocks for query process-

ing (Mathis, 2009). Using these physical operators, numerous semantically

equivalent plans can be derived. Choosing the most efficient one out of a

tremendously large set of combinations is crucial for effective query process-

ing in throughput-oriented systems.

1.3 Cost-Based XQuery Optimization

In the mid-1970s, System R—the fist prototype of a relational database man-

agement system—was developed by Astrahan et al. (1976). Even in this early

stage, this system incorporated a cost-based query optimizer (Selinger et al.,

1979). Database research history teaches us that RDBMSs became extremely

successful, because of their unique way for handling queries: They provide

a declarative query language (SQL), which supports the user in describing

what he is searching for, instead of how to get it. Combining this language

with a cost-based optimization infrastructure allows to formulate and eval-
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uate complex queries in an efficient way; even if the user is not a database

expert.

Even though XQuery—taken as a whole—is not completely declarative,

the language fragment that is primarily used in database systems, is mainly

declarative. Hence, cost-based optimization is also a possible way to handle

these queries. In an interviewwith the Communications of the ACM, cost-based

query optimization pioneer Patricia G. Selinger states on XQuery processing

in database systems:

“[...] I think it is absolutely essential to continue on the path of automatic

query optimization rather than put programmers back into the game of

understanding exact data structures and doing the navigation in the

application program manually” (Patricia G. Selinger, as quoted in

Hamilton, 2008).

Her statement is promising and especially true, if we recall that the search

space for XQuery execution plans is even larger than in the relational case

(Section 1.2). Furthermore, rules-of-thumb-based optimization is overbur-

dened, if an unexpected situation occurs.

1.4 Research Objectives

This thesis has four main objectives and accompanied research questions:

• Analyzing Which concepts of relational query optimization can be re-

used in the context of XDBMSs? Are there new techniques that are

novel to XML query optimization and do not have a direct counterpart

in relational query optimization?

• UnderstandingWhat is the impact of the classical and novel concepts of

query optimization on the overall query optimization process in general

and on specific query optimizers in particular?

• Modeling How can we model the system behavior in terms of CPU

cycles and IO costs to reflect the actual processing costs of a query?

• Evaluating Does our cost model, which serves as a set of hypotheses

on the system behavior, reflect the reality? How high or low is the

quality of various optimizers equipped with this cost model? How

does a particular optimizer configuration behave in different hardware

setups?
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1.5 Overview

This work consists of four parts:

• Part I discusses the related work on relational and XML query opti-

mization. Moreover, it provides an introduction to the XML Transaction

Coordinator (XTC), our prototype of a native XDBMS, that furnishes the

infrastructure for our query optimizer. Finally, it sketches the logical

XQuery algebra called XML Query Graph Model (XQGM) that serves as

input for query optimization.

• Part II encompasses the main theoretical contribution of this thesis.

First, it introduces selection push-up rules that allow to delay expensive

accesses to fn:text() functions as long as possible. Moreover, it discusses a

plan graph abstraction that is themaindata structure beingmanipulated

during cost-based query optimization. Next, we discuss the novel set

of query transformation rules that allow to derive semantically equiv-

alent plans. For effective cost estimation, we need reliable cardinality

information. This information is gathered using a set of inference rules.

Thereafter, we discuss the cost model that helps to assign to each plan

graph, which was derived by applying the transformation rules, a cost

factor. Finally, we describe our plan generation approach.

• Part IIIprovides insight into the implementation of the cost-based query

optimization framework and contains the empirical evaluation of our

optimization approach.

• Finally, Part IV concludes this thesis and points out future research

questions.
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“Because if you have a strong
foundation like we have, then you
can build or rebuild anything on it.
But if you’ve got a weak foundation
you can’t build anything.”

(Jack Scalia)

In this chapter, we give a brief overview of important query processing tech-

niques, which are necessary to understand the optimization approach devel-

oped in this thesis. Section 2.1 introduces query optimization in database

systems. It describes the Query Evaluation Process and the most important

components of query optimizers (search strategies, query rewrite rules, and

cost formulæ). Next, Section 2.2 shows which new challenges are raised by

native XML query optimization. Furthermore, it provides an overview of

the various path processing operators (different types of join operators) and

the plethora of access paths being available to an optimizer’s plan generator.

In Section 2.3, we look at the query optimization frameworks of important

relational and XML database systems. Thereafter, we analyze and compare

these systemswith the cost-based query optimizer of XTC. Finally, Section 2.4

concludes this chapter with a short summary.

2.1 Principles of Query Optimization

The query processor is an integral part of every modern database system

whose quality directly influences the performance of the whole system (Jarke

and Koch, 1984). If we have a look at the layered architecture for database

systems, which was proposed by Härder and Reuter (1983), we can see that

the query processor bridges the gap between the top-most layers (L 4 and L 5).

Here, it mediates between a declarative query language (SQL or XQuery)with

its access-path-independent data model and record-oriented access to specific

access paths (Härder, 2005).

In conformity with Graefe (1993), we can split query processing into two

subtasks: query optimization and query execution. During query optimization,

a declarative query is translated into a tree (or graph) consisting of several
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physical plan operators1. Thereafter, it is run by the execution engine. In gen-

eral, finding the optimal plan for a given query is computationally intractable

(Jarke and Koch, 1984). Incomplete and imprecise statisticsmake the situation

worse. Finding the optimal join order is one of the fundamental optimiza-

tion problems in database systems. Ibaraki and Kameda (1984) have shown

that this problem is NP-hard. Hence, the term “query optimization” is a bit

too promising, because most optimization strategies, which are in most cases

cost-based heuristics, tend to restrict their job to reduce costs significantly in-

stead of trying to find globally optimal solutions (Jarke and Koch, 1984). From

the point of view of industry expert Pat Selinger, customers are much more

satisfiedwith reliably good plans for a broad range of queries, instead of find-

ing optimal solutions for corner cases (Hamilton, 2008). Pursuant to private

communications of the author with senior researchers like Goetz Graefe and

Johann-Christoph Freytag, this can be boiled down to the following dictum:

“We do not insist on finding the optimal plan anymore. Instead, we just

want to omit bad plans.” (private communication).

The notion of query optimization can be further refined: Freytag (1989) iden-

tifies two main aspects of query optimization: query rewrite and query trans-

lation. During query rewrite, the optimizer modifies—but keeps intact—the

non-procedural description of the query. For example, it simplifies the query

or removes redundant parts, for example, by normalizing predicates into con-

junctive or disjunctive normal form. On the other hand, query translation

employs a search strategy (borrowed from artificial intelligence program-

ming) to generate a plethora of physical alternatives for a query, for example,

by applying query transformations such as join commutativity or join asso-

ciativity. Finally, it maps the most promising plan onto a physical plan, which

we refer to as query execution plan (QEP) (Jarke and Koch, 1984; Graefe, 1993).

A full-fledged query processing infrastructure uses numerous operators

and mechanisms to execute complex queries. In the query processing world,

it is quite common to refer to these primitives as physical algebra operators

(Graefe, 1993). Conceptually, the physical algebra is strongly related to its

counterpart—the logical algebra. The logical algebra is dependent on a spe-

cific data model (e. g., the relational model for SQL or the XML Query Graph

Model for XQuery) and defines which queries are valid in it. Query rewrite

modifies logical algebra expressions, therefore, it is often referred to by the

more general term algebraic optimization.

On the contrary, the physical algebra is completely system-specific. Even

though two given systems may implement the same logical algebra, their

1In accordance with many publications on query processing, we refer to this graph as plan.
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Figure 2.1: Archetypical shapes of query graphs (after Graefe, 1993)

physical algebra may differ significantly. Cost formulæ used during cost

estimation are always associated with physical algebra operators, because

only a physical algebra operator has a corresponding algorithm in the system.

Consequently, to perform cost-based query optimization, a logical plan must

be mapped first onto a physical plan, which embodies all physical properties

needed to estimated its IO and CPU costs.

Graefe (1993) lists four different types of mappings from logical to physical

algebra operators: (1) A single physical operator can implement a cascade

of logical operators. For example, a join operator may additionally support

the evaluation of selection predicates and projection. (2) A physical operator

can only evaluate one part of a logical operator. For example, a duplicate

elimination algorithm alone is not sufficient for implementing a relational

projection operator. (3) A physical operator might not have a counterpart

in the logical algebra. For example, a sort operator does not exist in the

relational calculus, because it is unordered. (4) Finally, there are properties

that exist in the logical algebra, but not in the physical one. For example, even

though joins are commutative in the relational algebra, the nested-loops join

algorithm does not handle its inputs equally (Graefe, 1993).

The interface of every physical operator has three operations that allow for

a communication between operators: open(), next(), and close(). The open()

operation initializes the physical operator, for example, by allocatingmemory

for an in-memory sort operator. The next() operation returns the results of the

physical operator. Finally, close() helps to perform clean-up operations, for

example, memory deallocation in a hash join operator (Graefe, 1993).

As we have mentioned before, in database systems, queries are normally

expressed as trees. We can distinguish between three archetypical shapes of

query graphs: left-deep, bushy, and right-deep query graphs. Figure 2.1 shows

the three different shapes for four relations A, B, C, and D (Graefe, 1993).
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The class of bushy trees encompasses left-deep and right-deep plans. Which

types of query graphs are supported by a plan generator determines how

large or small the search space is. The larger the search space, the higher

the chance that it contains an efficient plan. On the other hand, increasing

the plan generator’s freedom of action can raise dramatically higher costs for

search-space exploration. The designer of a query optimizer must always be

aware of this stress ratio. For example, the query optimizer of System R—the

first prototype of a relational database system—only supported the creation

of left-deep query plans (Astrahan et al., 1976; Selinger et al., 1979).

2.1.1 Query Evaluation Process

As you are now familiar with the fundamental notions of query processing,

we can move on to a description of a complete query processing pipeline.

In the style of Mitschang (1995), we identify three major steps for an overall

query evaluation process: analysis, optimization, and code generation. Figure 2.2

shows the different steps in chronological order.

Analysis

The analysis stage receives a query in a textual representation. At the be-

ginning, this representation is parsed (syntactic analysis) and mapped onto

an abstract syntax tree (AST). During the semantic analysis step, the optimizer

checks whether the user, which posed the query, has all access privileges

needed for evaluating this query and whether there exist violations of in-

tegrity constraints, for example, queried relations that do not exist in the

database. During normalization, selection predicates are transformed into dis-

junctive or conjunctive normal form (Jarke and Koch, 1984). Simplification

aims at reducing the complexity of the query by finding redundant predi-

cates. Furthermore, this step helps to identify contradictory predicates that

allow the query optimizer to immediately stop optimization, if the query will

not return any result. Finally, the query is mapped onto a logical algebra

expression (query graph2) that serves as input for the optimization stage.

Optimization

The optimization stage performs query rewrite and query transformation. Dur-

ing query rewrite, several algebraic equivalence rules are applied (algebraic

2A prominent internal representation for query graphs is, for example, the Query Graph Model
(Pirahesh et al., 1992).
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Figure 2.2: Query evaluation process (after Mitschang, 1995)

optimization) to the logical algebra expression (query graph). The main goal

of these heuristic rules is the restructuring of the query graph in such a way

that:

1. query transformation can be performed more easily. For example,

Mathis (2009) introduces several rewrite rules for unnesting XQuery

expressions to achieve a more convenient evaluation of them using spe-

cialized n-ary join operators (so-called twig joins).

2. the restructured version can be evaluated more efficiently, even if no

further optimizations would be applied. For example, in the relational
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world, predicate push-down is a prominent heuristics that assumes that

evaluating predicates as early as possible (during retrieving tuples from

an access path) helps to speed-up query evaluation (Härder and Rahm,

2001).

So far, all tasks (the whole analysis stage as well as query rewrite) that we dis-

cussed, served solely for preparing the query graph for the most challenging

job of a query optimizer—query transformation.

In Figure 2.3, you can see the query transformation cycle. The search strat-

egy (Section 2.1.2) receives the rewritten query graph and passes it on to the

plan generator that creates several alternative plans using a set of transfor-

mation rules, for example, by exchanging the inputs of a join operator (join

commutativity) or reordering join operators (join associativity). Further alter-

natives are created by exchanging the implementation of the query graph’s

subtrees (e. g., a relational join operator could be implemented using a nested-

loops join, a hash join, or a sort-merge join). After enumerating alternative

plans (p1 . . . , pn), they are handedover to the cost estimator. The cost estimator

employs a costmodel (a set of formulæ describing the costs for low-level oper-

ations such as scans or join evaluation). The cost estimator is associated with

the statistics component that offers access to value distributions and attribute-

value (relational model) or element (XML world) cardinalities to estimate the

expected cost3 of an alternative plan. After assigning each alternative a cost,

the pruning component cuts off all plans apart from the one with the lowest

cost. Next, the optimizer makes a binary decision whether the optimization

goal is already satisfied or not. If the answer is negative, the aforementioned

process continues—now, with the currently cheapest plan as input—until no

further plans can be generated or another termination criteria is met (e. g.,

time restriction or no cost reduction after n consecutive optimization cycles).

Conventionally, plan generation is not performed on the query graph itself.

Instead, alternative plans are captured by an internal data structure called

search tree (Freytag, 1989). Thefinal step of query optimization is nowmapping

the optimal plan onto a QEP. This task can be easily performed by a left-most

depth-first traversal of the optimal plan and a 1:1 translation of it to a graph

of physical algebra operators. Finally, the QEP is passed on to the execution

engine.

3The measure of cost is strongly dependent on the optimization goal. For example, if we want to
achieve maximum throughput, CPU and IO costs must be minimized. On the other hand, if we
want to minimize energy consumption, operators that consume the lowest amount of energy
should be preferred.

12



2.1 Principles of Query Optimization

Cost EstimationPlan Generator

Continue

Termination

Translation

Query Transformation Rules Cost Model

Statistics

Search Parameters

Query Translation RulesQEP

Search Strategy

Pruning

p1, . . . , pn

p1, . . . , pn

Search Space Optimal Plan

. . .

pi, . . . , p j

scurr

yes

no

(e. g., join reordering)

Physical Alternatives
(e. g., nested-loops join and hash join)

Rewritten
Query
Graph

Figure 2.3: Query transformation cycle (adapted from Härder and Rahm,

2001)

Query Execution

The query execution engine receives a QEP and has two options for executing

it: code generation or direct interpretation. Code generation creates a module

out of the QEP before executing it. This option is especially meant for queries

that occur repetitively in the system, because we can spare the expensive

task of query optimization and just execute the module over and over again4.

Especially for ad-hoc queries, direct interpretation is the method of choice,

4Please note, this is only possible if there were no updates on the database or any changes in the
statistics. Otherwise, there might exist a QEP that is more efficient than the one compiled into
the module.
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because generating a module—which is probably never used again—is too

expensive.

Proliferation

The final step of query processing is proliferation. Here, the query result is

exposed to a programming environment or can serve as input for a nested

query. In native XML database systems, this step is costly, because the QEP

mostly produces sequences of node identifiers and does not output XML

subtrees. During proliferation, which we call in the context of XML databases

materialization, these identifiers must be resolved by accessing the queried

XML document (see Section 2.2).

2.1.2 Strategies for Search-Space Exploration

In Section 2.1.1, we argued that the search strategy plays a major role in query

optimization, that is, it provides the “heartbeat” for the query optimizer,

because it dictates how the search space is explored for alternative plans.

Moreover, it determines whether a sufficient solution has been found. In

general, we can distinguish between two classes of strategies: exhaustive search

and probabilistic search.

Exhaustive Search

Exhaustive strategies perform a bottom-up full enumeration of the search

space and prune expensive subtrees as soon as possible. Therefore, it is

guaranteed that they find the optimal solution. Nevertheless, though the

search space grows quadratically with the number of joins to be reordered, in

practice, this approach is only applicable if a limited number of joins (10–15)

is involved (according to Ioannidis, 1997).

To give you an impression how exhaustive search works, we have a brief

look at the search strategy of System R (see Section 1.3). Its dynamic program-

ming algorithm generates a search tree using a bottom-up approach for query

graphs consisting of access paths as leaf nodes and join operators as inner

nodes. The algorithm starts at the leaf nodes of a query graph. For every

access path that is associated with a relation, it generates a possible access

plan. For each leaf node, only the cheapest access path is retained. Next,

the algorithm proceeds to the next level in the query graph and generates all
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interesting join orders5 using the cheapest access paths from the first step.

Next, all interesting orders are generated for two consecutive joins and so on,

until the root of the query graph is reached, whereupon in every step only the

cheapest join order is kept.

Probabilistic Approaches

If very large join trees (more than 15 join operators) shall be optimized, we

have to give up exhaustive search. Instead, it is quite common—as in artificial

intelligence programming, too—to use probabilistic methods (Russell and

Norvig, 2003) for top-down optimization. Probabilistic approaches do not

guarantee to always find the optimal solution. Nevertheless, because join

reordering is NP-hard, it is our only chance to get at least near-optimal plans

for large join graphs. Every solution to a combinatorial optimization problem

can be expressed as a state in a solution space, for example, a graph where

each vertex represents a valid solution. Every state is annotated with a cost

factor that is estimated using the cost model. To achieve their goal, finding

the state with the globallyminimal cost, probabilistic (also called randomized)

algorithms take random walks through the search space. Each walk is formed

by a sequence of moves from one state to another one. After each walk, the

costs are recalculated. We call a state s a neighbor of state s′, if and only if s′

can be reached from s via a single move. We distinguish between up-hill moves

and down-hill moves. A state transition is called an up-hill move (down-hill

move), if the goal state has higher (lower) costs than the original state. We

say a state is a local minimum, if there is no neighbor state that can be directly

reached via a down-hill move. Instead, if a state has no neighbor that can

be reached using an up-hill move, we call it a plateau. Finally, a state whose

cost is lower than the cost of any other state is referred to as global minimum

(Ioannidis and Kang, 1990).

In the literature, there exist many probabilistic search algorithms (compare

Russell andNorvig, 2003). In thedatabase context, themost relevant strategies

are: Iterative Improvement, Simulated Annealing, and 2-Phase Optimization

(Ioannidis, 1997).

Ioannidis and Kang (1990) introduce Iterative Improvement (Algorithm 2.1).

They assume an initial random state S∞ with maximum cost∞. The function

cost(S) returns the cost of state S. Using the function neighbor(S), we get

all neighbor states of S generated by applying transformation rules. The

5The concept of interesting join order plays an important role in the System R optimizer, because
it restricts it to only generate left-deep query plans without introducing additional Cartesian
products (Selinger et al., 1979).
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Smin = S∞;1

while ¬(stopping condition) do2

S = random state;3

while ¬
(

local minimum(S)
)

do4

S′ = random state in neighbors(S);5

if cost(S′) < cost(S) then6

S = S′;7

end8

end9

if cost(S) < cost(Smin) then10

Smin = S;11

end12

end13

return Smin;14

Algorithm 2.1: Iterative Improvement (Ioannidis and Kang, 1990)

inner loop of Algorithm 2.1 (lines 4–9) performs down-hill moves as long

as the current cost (Smin) is reduced and no local minimum is found. Local

optimization continues until the termination criteria is satisfied, for example,

consecutive local optimizations do not lead to a further cost reduction. Finally,

the local minimum with the lowest cost is returned as best plan. According

to Ioannidis and Kang (1990), the probability that the algorithm also finds the

global minimum converges to 1.0, though, the quality of the result is strongly

dependent on the cost model.

In contrast to Iterative Improvement, where the search algorithm accepted

only down-hill movements, Simulated Annealing (Ioannidis and Wong, 1987)

additionally permits up-hill moves with a certain probability to avoid getting

stuck in local cost minima (Ioannidis and Wong, 1987; Ioannidis and Kang,

1990). The inner loop (Algorithm 2.2, lines 5–17) consists of several stages. Ev-

ery stage is executed using an arbitrarily but consistently chosen parameter

T (temperature). The temperature determines the probability, which is calcu-

lated using the formula e−(∆ C/T), that up-hill moves are accepted. Here, ∆C

is the cost difference between the original state and its neighbor. Every stage

ends, if an equilibrium6 is reached. Next, the temperature value is reduced

using reduce(T), for example, by 5%. Thereafter, the search continues with

the next stage. Over time, the temperature decreases monotonically until it is

equal to 0 (frozen).

6For example, Ioannidis andWong (1987) define the equilibriumas a fixed number of re-executions
without cost reduction, which are proportional to the total number of joins involved.
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S = S0;1

T = T0;2

Smin = S;3

while ¬(frozen) do4

while ¬(equilibrium) do5

S′ = random state in neighbors(S);6

∆C = cost(S′) − cost(S);7

if ∆C ≤ 0 then8

S = S′;9

end10

if ∆C > 0 then11

S = S′ with probability e−(∆ C/T);12

end13

if cost(S) < cost(Smin) then14

Smin = S;15

end16

end17

T = reduce(T);18

end19

return Smin ;20

Algorithm 2.2: Simulated Annealing (Ioannidis and Wong, 1987)

Ioannidis and Kang (1990) showed that the probability of finding the global

minimum using Simulated Annealing also converges to 1.0. To allow the

algorithm to terminate in finite time, the parameters must be chosen wisely—

a task that turns out to be error-prone in practice.

Finally, 2-Phase Optimization (Ioannidis and Kang, 1990) combines Iterative

Improvement and Simulated Annealing. In an initial step, a locally optimal

solution SII is determined using Iterative Improvement. In the second step, SII
serves as input for Simulated Annealing and replaces the previously chosen

initial state S0. Furthermore, the temperature T is initialized with a much

smaller value than before—T = 0.1 · cost(SII)—, to restrict Simulated Anneal-

ing’s movements to the neighborhood of SII. Ioannidis and Kang (1990) have

shown that this approach can provide better performance and quality com-

pared to exclusively using Iterative Improvement or Simulated Annealing.

2.1.3 Cardinality and Cost Estimation

In Section 2.1.1, we said that cost is the main criteria for restricting the search

space for query optimization. Hence, the optimizer’s ability to propose good

plans is strongly dependent on the quality of the cost estimates provided by
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the cost model. For every operator in a query graph, we are mainly interested

in finding answers to the following questions:

1. Given a number of input tuples for the operator, how many output

tuples can we expect? (cardinality estimation)

2. How much cost is raised for processing the inputs? (cost estimation)

A database management system maintains statistical information for each

relation (RDBMS) or document (native XDBMS). Using such statistical sum-

maries, for example, histograms (Chaudhuri, 1998), and simplifying assump-

tions, for example, a uniformdistributionof values or statistical independence

of predicate values in conjunctive clauses, the query optimizer can provide

satisfying answers to the first question.

To answer the second question, the query optimizer uses the statistical in-

formation and the cost model, which is consisting of a set of formulæ describing

the execution cost of each physical operator with respect to its inputs7.

Statistical Profiles

According to Mannino et al. (1988), statistical profiles are compact data struc-

tures formanaging relevant quantitative descriptors (e. g., standard deviation,

minimum, or maximum of an numeric attribute value) in a database. We can

distinguish between two types of profiles: base profiles (BP) and intermediate

profiles (IP) (Mannino et al., 1988).

Base profiles are accurate and associated with “real” objects that physically

exist, such as relations (RDBMS) or documents (XDBMS). On the other hand,

intermediate profiles contain estimated information for intermediate objects

and do not physically exist, for example, tuple streams created by joining two

relations (RDBMS) or several element node streams (XDBMS).

Every leaf node in a query graph (e. g., an Access operator) has its own BP

that reflects its statistical properties according to the metadata catalog of the

database system, for example, the total number of pages that are consumed

or the total number of distinct attribute values.

Intermediate profiles are associated with the inner nodes of query graphs.

They provide estimated information about the output of intermediate oper-

ators that do not necessarily receive their inputs directly from access paths,

for example, for a join operator, they provide the estimated cardinality of the

7Please keep in mind that cardinality estimates are always invariant for semantically equivalent
plans. This statement does not hold for cost estimates, because cost is solely dependent on the
physical characteristics of an operator that typically changes from one physical alternative to
another one (Chaudhuri, 1998).
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(a)

BuildDatabase Base Profile

(b)
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(c)

Estimate

Base Profile
Revised Base Profile

Profile(s)
Operation Description New Intermediate Profile

Database Operation

Figure 2.4: Statistical profile operations (after Mannino et al., 1988)

join result, whose calculation is based on the information furnished by (base

or intermediate) profiles associated with its input operators.

Figure 2.4 shows the three basic operations that can be applied to base and

intermediate profiles: Build, Update, and Estimate (Mannino et al., 1988). The

Build operation, which is triggered by the database administrator’s call to a

statistics collection tool, creates BPs based on a lookup to the database catalog,

sampling, or histograms. If the database changes over time, the Update

command recalculates property values of BPs, for example, the average value,

minimum, or maximum of numeric attributes. Such updates are performed

automatically—but only for the most primitive properties. For more complex

properties, the Build operationmust be run again. Finally, the query optimizer

uses the Estimate operation to derive IPs, which are needed for cardinality

and cost estimation.

Cardinality Estimation

In database systems, the cardinality of intermediate results is primarily de-

termined by the “selectiveness” of predicates, that is, how many tuples of the

input stream satisfy the predicate. In turn, by estimating the selectivity of a

predicate, we can estimate the expected cardinality of the intermediate result:

Let s(p) = |σp(R)|/|R| be the selectivity of predicate p, where |R| is the cardi-

nality of the base relation R and |σp(R)| is the cardinality of the intermediate

result after applying p on it. Hence, we can calculate the cardinality of the

intermediate result by: |σp(R)| = s(p) · |R|.
Exact cardinality estimation is a complex task. Since the beginning of cost-

based query optimizers (see Selinger et al., 1979), their cardinality estimation

frameworks have been strongly relying on simplifying assumptions, for ex-

ample, a uniform distribution of attribute values or the statistical independence
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of attribute values (Selinger et al., 1979; Mannino et al., 1988). Based on these

assumptions, Selinger et al. (1979) define a set of simple formulæ that can be

used for selectivity estimation. If there is no statistical information, they use

a set of default values as selectivity estimates. For example, for an equality

predicate, a selectivity of 1/10 is assumed.

Honestly, the simplifying assumptions are not always met in reality8. For

example, if we consider an employee table with an age attribute, its values are

not uniformly distributed, because the vast majority of employees are mid-

agers (e. g., between 28 and 45) and only a few are young (< 20) or mature

(> 60). To overcome this deficit, more accurate value distributions can be

gained by building histograms9 for relevant attributes (compareMannino et al.,

1988; Chaudhuri, 1998).

Especially the statistical independence of attribute values is error-prone.

Let us have a look at the following predicate, which shall be evaluated on

an employee table: (age ≤ 25) ∧ (work experience > 10). The attribute val-

ues are not statistically independent, because only few young employees can

have such a long work experience. To model the value distribution of statis-

tically dependent attributes, multi-dimensional histograms can be used (e. g.,

Muralikrishna and DeWitt, 1988; Poosala and Ioannidis, 1997).

Cost Model

For every physical operator in a database system, there exists a cost formula

that describes its execution cost for a given input. Altogether, the set of cost

formulæ is called the cost model. In throughput-oriented systems, execution

costs are primarily determined by a weighted sum of IO and CPU cost, where

the weight w allows to adapt the estimation to CPU-bound or IO-bound

systems:

Costtotal = CostIO +w ·CostCPU

Here, the IO cost is assumed to be proportional to the total number of page

fetches that must be performed to load all relevant pages into the database

buffer. In contrast, the CPU cost is measured as the total number of calls to

the physical operator’s next() function.

Statistical profiles are only one ingredient to allow for cost estimation. More

precisely, it is impossible without additional information on the characteris-

8Recently, new approaches for improving statistical estimation accuracy can be observed (compare
Chaudhuri, 2009; Beyer et al., 2009).

9A histogram divides the domain of an attribute value into a constant number of buckets. Only
within buckets, a uniform distribution of values is assumed (Ioannidis, 1997). There exists a
plethora of different histogram types whose taxonomy is given by Poosala et al. (1996).
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Query 2.1 A simple XQuery expression

let $auction := doc("auction.xml")

return for $b in $auction/site/people/person[@id = "person0"]

return $b/name/text()

tics of physical operators. For example, some operators need sorted input

streams (e. g., sort-merge join) that must be built at additional cost or a hash

join operator can only be used if the join predicate involves only equality pred-

icates. Graefe and DeWitt (1987) call such characteristics physical properties.

We call the universe of all physical properties for a given physical operator a

physical profile, whereas statistical profiles can be considered logical profiles in

this context.

2.2 Native XML Query Processing

Today, XQuery (Boag et al., 2007) is the predominant query language in native

XML database systems. XQuery is a hybrid of a declarative query language,

describing what should be searched for, and a functional programming lan-

guage, specifying how the result is retrieved. Even if we only consider XQuery

as a stand-alone language, it is fairly complex to optimize. Traditionally,

XQuery is normalized into the XQuery Core Language (Draper et al., 2007),

a minimal subset of XQuery that specifies its formal semantics. Even though

we gain a proper definition of its semantics, some important information for

query optimization (e. g., path expressions) are becoming intransparent. For

example, let us consider Query 2.1 that selects the name of all person nodes

having an id attribute whose value is equal to “person0”, where you can easily

see the specification of the path to person nodes.

After normalizing and slightly simplifying this query, we get the expression

depicted in Query 2.2. Now, it is not so easy anymore to identify the path

expression. In the context of query optimization in native XDBMSs, where we

want to exploit efficient access paths (e. g., path indexes), this is a big problem,

because it is in general not trivial to reconstruct the actual path. Moreover,

XQuery relies on a node-at-a-time processing paradigm (nested for-loops),

whereas query processing in database systems is traditionally set-at-a-time

processing.

To overcome both deficits, there exist several approaches for transforming

XQuery expressions into a representation where (1) the query optimizer can

effortless detect path expressions by applying unnesting rules that annihilate
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Query 2.2 Normalized version of Query 2.1

for $b in fn:distinct-doc-order(

for $fs:dot in doc("auction.xml")

return fn:distinct-doc-order(

for $fs:dot in child::site

return fn:distinct-doc-order(

for $fs:dot in child::people

return for $fs:dot in child::person

where fn:data(attribute::id) = person0

return $fs:dot

)))

return fn:distinct-doc-order(

for $fs:dot in $b

return fn:distinct-doc-order(

for $fs:dot in child::name

return child::text()

))

path nestings introduced by the normalization of XQuery and (2) set-at-a-

time processing is supported for most parts of an XQuery expression (Mathis,

2009). Nevertheless, being “forced” to destroy important information in the

firstplace andcostly reconstructing it in the second step, seems tobeabsolutely

cumbersome.

2.2.1 The Challenges of XML Query Optimization

Even thoughmany architectural aspects of native XDBMSs are inherited from

their relational predecessors (e.g., its five-layered architecture), there are novel

challenges that make XML query processing in general and XQuery optimiza-

tion in particular an even more interesting and challenging task.

Schema Evolution

According to Loeser (2008), flexibility, especially in terms of rapid schema evo-

lution, is one of the main sales arguments for introducing XML databases to

enterprise information management. Hence, we can expect that the schemas

of XML documents will change frequently. Schema evolution may occur

within a document (Balmin et al., 2006) or on a document-to-document ba-
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sis. In the worst case, there exists no schema at all. In this situation, an

approximation of the schema can be provided by summarization techniques

likeData Guides (Goldman andWidom, 1997). Having no schema information

or only a rough approximation of it, makes query processing more difficult.

For example, for element cardinality estimation, a schema making use of the

XML Schema (Fallside and Walmsley, 2004), language primitives minOccurs

and maxOccurs could provide exact lower and upper bounds of element oc-

currences on a specific path. If there is no schema, the optimizer must rely on

estimated information that is sometimes error-prone.

Heterogeneity

In the relational world, due to the simplicity of the data model with its ho-

mogeneous rows, value-based cardinality estimation works fine. As XML

explicitly supports heterogeneity, two documents—let us refer to them as d1
and d2, respectively—complyingwith a given schema do not necessarily share

the same structure, e. g., an element e can occur in d1 several times, but never

in d2. Furthermore, XML does not support explicitNULL values for elements

(Balmin et al., 2006).

In addition to querying XML documents, XQuery allows to process and

generate arbitrary nestings of sequences using its let and for language features.

Especially for let, where the length of the bound sequence may vary in every

iteration over a related and for-quantified sequence, cardinality estimation is

hindered.

Hierarchical Data Model

XML is based on a hierarchical data model, where structural relation-

ships, for example, child and descendant,—in addition to classic value-based

relationships—play an important role; especially during query evaluation.

Therefore, an XML query optimizer has to deal with value-based joins as well

as with structural joins and must arrange them in an at least near-optimal

way. Ibaraki and Kameda (1984) have shown that finding the optimal join

order for value-based joins in relational database systems is NP-hard. Now,

by additionally taking structural joins into consideration, the query optimizer

must inspect an even larger search space.

Query processors in relational database systems and in XML database sys-

tems make generous use of indexes for speeding-up query evaluation. The

hierarchical data model of XML allows to define several kinds of indexes on

element names, attribute values, complete paths in the document, or even
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on the content residing on specific paths. The index selection problem—

finding an optimal set of indexes that provides maximum speed-up for query

processing—is an NP-complete problem, too (Piatetsky-Shapiro, 1983). Due

to the tremendous diversity of XML index types, this problem becomes even

more challenging in XML database systems.

Physical Operators—A Plethora of Possibilities

In addition to value-basedpredicates, XQuery (and its subsetXPath) introduce

structural predicates. Each XPath path expression is a sequence of structural

predicates. For example, the path expression a/b/c qualifies all c nodes that

are on the path a/b. In XDBMSs, structural relationships are evaluated using

Path Processing Operators (PPOs). The simplest type of a PPO is a Navigation

operator that evaluates the structural predicate similar to a relational nested-

loops join. More advanced PPOs belong to one of the following operator

classes: Structural Joins (SJs) (e. g., Al-Khalifa et al., 2002) and Holistic Twig

Joins (HTJs) (e. g., Bruno et al., 2002).

Structural joins decompose eachpath expression into n binary relationships,

evaluate each of them separately, and finally “stitch” their results together.

On the other hand, HTJs are capable of evaluating path expressions (and even

more complex tree patterns) using a singlen-way join operator. Both classes of

operators must provide their results in document order and sometimes need

to perform duplicate elimination which additionally increases the complexity

of these operators. Compared to classical value-based join operators, like

nested-loops join or sort-merge join, estimating the CPU costs of SJ or HTJ

operators is hard and needs much more effort and empirical analysis.

Efficient XML query processing is impossible without tailor-made indexes.

XML provides many opportunities for indexing: (1) Content indexes provide

access to text() nodes being leaf nodes of an XML document. Moreover, they

provide efficient access to attribute values. In most cases, content indexes are

implemented as classical B∗-trees. A more general type of content index is

the full-text index that provides access to the atomization of complete subtrees.

(2) Element indexes (e. g., Bruno et al., 2002; Chien et al., 2002; Rao and Moon,

2003; Jiang et al., 2003) allow to index all element nodes of an XML document.

Element indexes can be used by SJs and HTJs as efficient access paths. (3)

Path indexes (e. g., McHugh and Widom, 1999; Beyer et al., 2006; Mathis, 2009)

can be considered as materialized views on certain paths of XML documents.

(4) Finally, Content-and-structure indexes (CAS) (e. g., Rizzolo and Mendelzon,

2001; Wang et al., 2003; Kaushik et al., 2004; Mathis et al., 2009) allow hybrid

indexing of content and structure at the same time.
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The plethora of access paths increases the search space for a cost-based op-

timizer tremendously, because they are not only providing input streams for

join operators, e. g., by using element indexes, but may also completely re-

place them by path indexes or CAS indexes. Consequently, such advanced

indexes are competing with SJs and HTJs for a first-class citizenship, because

they can replace parts of—or even complete—cascades of join operators.

2.2.2 Historical Note

Having a look at the long history of relational database systems and the

rather short history of XML database systems reveals an interesting common

ground. Query processing in both types of systems started using a bottom-up

approach (e. g., Jarke andKoch, 1984;Al-Khalifa et al., 2002; Bruno et al., 2002):

therewas a strong emphasis on efficient evaluation algorithms and processing

strategies for interesting queries rather than on providing a complete picture

of query processing. Quickly, bottom-up approaches met their limits in both

system classes. As a result, a top-down approach consisting of four stages

emerged for relational database systems (Jarke and Koch, 1984) that can also

serve as trail blazer for XML query processing:

1. Development of an internal query representation that allows to easily

express all relevant language constructs

2. Introduction of logical query transformations that allow to standardize,

simplify, and prepare the internal representation for efficient evaluation

3. Generation of different implementation alternatives for the internal rep-

resentation

4. Estimationof the costs of every implementation alternative and selection

of the most promising one

In the context of nativeXDBMS, the first andmost parts of the second stephave

been addressed in previous works (e. g., Mathis, 2009). The work at hand

improves the second step and contributes novel concepts for the third and

fourth step to provide a complete and efficient cost-based query optimization

infrastructure for XQuery.

2.3 Related Work

This section discusses important concepts contributed by seminal research

projects on cost-based query optimization. First, in Section 2.3.1, we have a
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Figure 2.5: Evolution of query optimizers

look at important relational query optimizers. Thereafter, we show in Section

2.3.2, which progresshas beenmade so far in optimizing XMLqueries. Finally,

in Section 2.3.3, we compare our query optimization technique with previous

XML query optimization approaches.

2.3.1 Query Optimization in Relational Database Systems

Figure 2.5 shows how the different research prototypes emerged over time.

Most interestingly, research on modern query optimizers in database systems

did not start in academia. Essentially, it started in industry. More precisely,

the success story began at IBM San Jose Research (nowadays, it is called

IBM Almaden Research Center) with the System R project—the progenitor of

relational database systems (McJones, 2011). Additionally, IBM started System

R* as well as the very influential Starburst project. The second branch of

prototypes (EXODUS, Volcano, and Cascades) was advanced by contributions

of famous academic researchers likeMichael J. Carey,GoetzGraefe, andDavid

J. DeWitt10.

System R

Selinger et al. (1979) described the first cost-based query optimizer, which was

part of System R—the prototype of the first relational database system. The

optimizerwas capable of optimizing simple and linear SPJ (select, project, and

join) queries. The authors introduced a simple cost model based on weighted

IO and CPU costs and used statistics on the number of data pages consumed

10Even though this sectionwill discuss themost important concepts of relational queryoptimization,
providing the complete picture of 30+ years of research is out of scope of this work. Youwill find
more detailed information in important surveys (e. g., Jarke and Koch, 1984; Chaudhuri, 1998;
Graefe, 1993; Hameurlain and Morvan, 2009; Moerkotte, 2009).
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by relations to bind the cost model’s variables to concrete values. Their dy-

namic programming algorithm initially selects optimal operator fittings for

access paths. Thereafter, an optimal join order is determined based on a local

optimality assumption. To early prune the search space, not all possible enu-

merations are taken into account. Instead, they only focus on interesting join

orders, that is, orders that do not require additional introductions of Cartesian

products.

System R*

The SystemR* project (Lohman et al., 1985; Mackert and Lohman, 1986; Kacimi

and Neumann, 2009) focussed on the development of a distributed query

processing infrastructure. Here, relations are scattered over several sites.

System R* was capable of handling distributed queries—queries that involve

tables from different sites. The site where the query is issued is called master

site. All query optimization tasks are also distributed over the affected sites.

The master site is responsible for all inter-site decisions (e. g., it selects the

optimal join site and chooses the best shipping method), whereas inner-site

optimization (e. g., join reordering and access path selection) is performed by

local optimizer instances. Even though the System R* optimizer is mostly

based on the cost-based optimizer of System R, there are several differences

and enhancements: In System R*, the CPU costs are modeled more precisely

than in System R. Instead of just approximating the CPU costs by counting

the total number of calls to the record-level storage, the total number of

instructions is used as a more precise measure. Furthermore, the cost model

consists now of four components. Besides CPU and IO costs, System R*

considers communication costs (total number of bytes to be transfered and

total number of messages), too. Moreover, the cost model allows to access

each cost component individually to allow for more fine-granular decisions.

Starburst

Haas et al. (1989) elevated query processing to the next level of abstraction.

The primary goal of the Starburst project was to easily allow to extend the

system by adding new language constructs, data management capabilities,

and language processing features.

One of the pillars of the Starburst prototype was the novel query language

processor called Corona. As an internal query representation for Corona, the

authors introduced the so-called Query Graph Model (QGM) (Pirahesh et al.,

1992)—an extended relational algebra with a strong emphasis on structural
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Figure 2.6: Query evaluation in Starburst (according to Haas et al., 1989)

relationships between language constructs. QGM allows to express queries

as high-level operations on tables. The most important operation in QGM is

called SELECT, which allows to express selection predicates, projections, and

joins. Using QGM, new language features can be seamlessly integrated11.

In the context of System R and System R*, query optimization primarily

meant join reordering and access path selection (non-algebraic optimization).

In Starburst, query rewrite as a way of optimizing queries at the logical (alge-

braic) level was taken into consideration, too. Starburst supports three classes

of query rewrites for QGM: migration of predicates, projection push-down,

and merging of operators (Haas et al., 1989). Every query rewrite rule is spec-

ified as a transformation rule (described using the programming language C)

consisting of a condition (qualifying a QGMgraph) and an action part (specify-

ing how to perform themodification). Using Starburst’s flexible rule engine, a

set of rewrite rules can be applied to QGM.According to Pirahesh et al. (1992),

even advanced features like the optimization of recursive queries and magic

set transformations are supported. Figure 2.6 shows the Starburst query eval-

uation process and illustrates how query rewrite seamlessly integrates into

the overall query evaluation process.

Starburst also uses a rule-based approach for plan generation. Thereby, it

employsgrammar-likeproduction rules (Lohman, 1988) that are called strategy

alternative rules (STARs). The terminals of these rules are formed by so-called

low-level plan operators (LOLEPOPs)12. By redesigning the plan generator,

more flexible search-space exploration became possible. For example, the

11Most notably, IBMmanaged to integrated XQuery—a completely different language—into QGM,
even after being more than 20 years available to the market (Beyer et al., 2005).

12In Section 2.1, we referred to LOLEPOPs by the more general term physical operators.
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plan enumerator provided tuning knobs for modifying several parameters

for restricting or enlarging the search space by prohibiting or allowing bushy

trees, respectively.

EXODUS

As indicated by its name, the goal of the EXODUS project13 was to overcome

the traditional thinking of monolithic systems in database research. EXODUS

provides ageneric framework for generatingmodular andapplication-specific

database systems. Hence, EXODUS provides a complete data management

infrastructure that is not tied to a specific data model.

For extensible query evaluation, EXODUS provides a rule-based optimizer

generator (Graefe, 1987; Graefe and DeWitt, 1987) that helps to assemble and

compile query optimizers for arbitrary algebraic query languages. Figure

2.7 sketches the EXODUS optimizer generation approach. The optimizer

generator receives amodel description file,whichdescribes the supported logical

and physical operators as well as sets of transformation and implementation

rules. Based on this description and further parameters (e. g., the actual search

13Probably, for paying attention to the Zeitgeist of the late 80s, where object-oriented database
systems were en vogue, EXODUS may also be an abbreviation for EXtensible Object-Oriented
Database System (Carey et al., 1990).
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strategy), the optimizer generator creates code written in the C programming

language. Finally, the C compiler produces an executable optimizer.

Volcano

Graefe and McKenna (1993) promoted the Volcano project as an advancement

of EXODUS that followed its optimizer generation paradigm (Figure 2.7).

Besides several improvements in the search engine (plan generation using

backward chaining) allowing for more efficient plan generation, their concept

provides a clear separation between the logical and the physical algebra—as

we have already discussed in Section 2.1. Furthermore, they introduce the

distinction between logical properties (e. g., cardinality) that can be derived

from the logical algebra and physical properties (e. g., sort order) that are

operator-specific. Whenever the plan generator creates a new (intermediate)

state, a physical property vector is attached that encapsulates all physical prop-

erties. Volcano uses so-called enforcers, that is, operators that are only present

in the physical algebra—but unavailable in the logical algebra—, to provide

semantically correct QEPs, for example, by enforcing the plan generator to

sort the inputs of a sort-merge join operator.

Graefe (1990) introduces so-called exchange modules that serve as a cap-

sule around physical operators allowing to parallelize their execution with-

out changing their implementation (operator-level parallelism)14. Every ex-

change module provides an exchange iterator whose interface is compliant

with the open-next-close protocol (see Section 2.1).

Exchange modules allow for realizing pipeline parallelism (vertical paral-

lelism) and intra-operator parallelism (horizontal parallelism). The exchange

operator acts as façade for the subtree below it, for which it creates a new

process. By following the classical producer-consumer pattern, the exchange

operator’s iterator running in a parent process consumes tuples via inter-

process communication produced by the producer (child) process, which, in

turn, concurrently executes the subtree below the exchange operator.

Figure 2.8 shows a simple query graph with two join operators that is

enriched with exchange modules (XCHG operator). Here, the scans are per-

formed in parallel (pipelining). If we assume that the top-most join operator

is implemented as sort-merge join, the merging of the different runs can be

performed in parallel, too (intra-operator parallelism).

14By using exchangemodules, the paradigmof demand-driven (lazy) execution is given up in favor
of dataflow-driven (eager) execution.
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Cascades

The experiencesmade in theEXODUSand theVolcanoprojects converged into

the Cascades framework15 (Graefe, 1995). Besides a more robust and object-

oriented redesign of the framework architecture, the generator paradigm of

its predecessors was abolished, because it proved to be too cumbersome. As

a consequence, a query optimizer is now created by implementing abstract

base classes rather than compiling a model description file into programming

language code.

2.3.2 Query Optimization in XML Database Systems

In this section, we introduce several XML database systems (providing native

or relational XML storage) and discuss their query processing capabilities.

Figure 2.9 on page 32 illustrates the temporal emergence of the different sys-

tems, which we will discuss consecutively.

Lore

In 1997, the Lore (Lightweight Object REpository for Semistructured Data)

prototype (McHugh et al., 1997), which was developed at StanfordUniversity,

made its way to become the ancestor of XML database management systems,

even though it did not use XML as a data model; but, instead, used the Object

Exchange Model (OEM), which is though closely related to XML.

Abiteboul et al. (1997) introduced Lorel (Lore Language) as a declarative

query language for Lore. For the efficient evaluation of Lorel expressions,

the classic work of McHugh and Widom (1999) describes cost-based query

optimization in Lore. Their optimizer relies on a simple cost model that

15Cascades also provided the basis for the query optimizer ofMicrosoft’s SQL Server (Graefe, 1996).
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Figure 2.9: The short history of XML databases

considers IOandCPUcosts for the cost estimationof alternativeplans. Besides

statistics provided by the system catalog, statistical information about all

possible subpaths up to a fixed length k are collected as well.

Even though the Lore query processor was only capable of a navigational

evaluation of path expressions, it already supported a rich set of index struc-

tures (McHugh and Widom, 1999). The value index (Vindex) allows to retrieve

content values. Using the label index (Lindex), all parents of a node having

a specified label can be found. The edge index (Bindex) helps to query all

parent-child pairs with a given label. Finally, a path index (Pindex) allows to

select all nodes on a specific path in the document. For this task, it employs

a DataGuide, a structural summary of an OEM document, providing dynamic

schema information (Goldman and Widom, 1997).

Natix

Natix (Fiebig et al., 2002) is one of the first XML database systems that al-

lowed to store XML documents natively. This means that the hierarchical

structure of XML documents as well as the order among nodes is preserved.

In contrast to relational storage, where XML documents must be shredded

into several tables, native XML query processing allows for a more efficient

and convenient way for querying XML documents16. Natix provides support

for the evaluation of XQuery expressions on XML documents. As an internal

query representation,Natix uses the tuple-based algebraNAL (Natix Algebra)

(Brantner et al., 2005)—which also supports nested tuples—that strongly in-

fluenced the data model of XTC’s logical algebra called the XML Query Graph

Model (XQGM) (Mathis, 2009).

16This approach has been strongly adopted by many XML database research projects and is the
method of choice in today’s commercial database systems, e. g., IBM DB2 or Oracle.
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Queryoptimization inNatix primarilymeans algebraic optimization. Accord-

ing toMay (2007), Natix incorporates a simple cost-based query optimizer that

performs (structural) join reordering and access path selection, but does not

take advanced indexes (e. g., CAS indexes) or n-way join operators (e. g., twig

joins) into consideration. Furthermore, the details about cardinality estima-

tion as well as statistics collection are unclear.

TIMBER

Jagadish et al. (2002) sketch the architecture ofTIMBER, a nativeXMLdatabase

system whose query processor relies on a tree-based algebra called TAX (tree

algebra for XML). In contrast to the Natix approach, TIMBER strongly focuses

on set-at-a-time processing of XPath/XQuery expressions.

In the context of TIMBER, one of the most important operators for efficient

XML query processing was developed—the SJ operator StackTree (Al-Khalifa

et al., 2002) that evaluates a structural predicate (e. g., descendant relationship)

on its ordered input sequences17. Moreover, Wu et al. (2003) proposed five

novel dynamic programming algorithms for SJ reordering. Their approach is

orthogonal to ourwork, that is, it can be employed to choose the best join order

in scenarios where the optimizer can only rely on SJs. Compared to our work,

they use only a very simple cost model for driving the join-reordering process

and do not consider the combination of SJs and HTJs as well as different

index-based (and more advanced) access operators.

Galax

Galax is an open-source project that aims to provide a full implementation

of the XQuery 1.0 standard (Fernández et al., 2003) and relies on a file-based

storage mechanism. Its evaluation strategy for XQuery expressions directly

derives from the guidelines provided by the Formal Semantics of XQuery 1.0

(Draper et al., 2007). Hence, they do not support set-at-a-time processing

(e. g., by evaluating path expressions using SJs), but, instead, use node-at-a-

time processing that is driven by the nested for-loops introduced during query

normalization18.

Query optimization in Galax (Ré et al., 2006) is plain algebraic optimization.

Hence, it does not use a cost-based query optimizer. In fact, the authors

provide rules for mapping XQuery Core Language constructs to their logical

17As we will see soon, SJs are used to evaluate XPath path expressions.
18Evaluating XQuery expressions using nested for-loops is similar to an evaluation of relational

queries using nested-loops joins.
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algebra and introduce several optimization rules. Most notably, Michiels

et al. (2007) develop techniques allowing to detect tree patterns in XQuery

expressions—a task often neglected by researchers providing operators for

the evaluation of such patterns (e. g., Bruno et al., 2002).

MonetDB/XQuery

In contrast to the native XML database systems, which we discussed before,

MonetDB/XQuery (Boncz et al., 2006) takes a completely different road to

XML data management by exploiting mature relational data management

technologies for efficient XQuery evaluation. MonetDB/XQuery is a hybrid

of the Pathfinder XQuery compiler (Boncz et al., 2005) and the relational

database system MonetDB (Boncz, 2002). Pathfinder pre-optimizes and com-

piles XQuery into an extended relational algebra. In MonetDB, this extended

relational algebra is called Monet Interpreter Language (MIL) that provides the

so-called Staircase Join operator (Grust et al., 2003). The Staircase Join allows to

efficiently evaluate XPath path expressions—in a similar way as SJs in native

XDBMSs do—using a relational query processing infrastructure.

Cardinality estimation in the context of XQuery is difficult, as we have

pointed out before. Teubner et al. (2008) present an interesting approach for

reliable XQuery cardinality estimation. As we will see later, their approach

strongly influenced the advanced cardinality estimation capabilities of XTC’s

cost-based query optimizer.

System RX/DB2 pureXML

IBM started its endeavors in XML database management by developing a

new system prototype called System RX (Beyer et al., 2005). System RX is a

hybrid of a traditional relational database system and a tailor-made native

XML storage with novel indexes and an extension to SQL supporting XQuery

expressions, too. According to Beyer et al. (2005), they also use an extension

of the seminal Query Graph Model allowing to represent SQL and XQuery in

a single model. Moreover, System RX’s cost-based query optimizer follows

the traditional approach of System R.

Nevertheless, the publicly available resources discussing DB2 pureXML—

the commercial database product that is based on System RX—do not reveal

many details (compare Balmin et al., 2006; Beyer et al., 2006). Though, there

are several differences between XTC’s XML Query Graph Model and the

extension by IBM. For example, in System RX, XPath expressions are not

normalized. Instead, they are treated as a whole. This probably provides for a
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more convenient usage of path indexes. Their physical algebra provides three

novel operators: (1)XML Scan (XSCAN), which is similar to a traditional table

scan in the relational world, (2) XML Index Scan (XISCAN), comparable to a

relational index scan, and (3)XANDOR allowing to perform the set operations

AND and OR on XML index streams. For the evaluation of path expressions, the

XML Navigation (XNAV) operator is provided.

Other Approaches to XML Query Processing

Tamino (Schöning, 2001) is a commercial native XML database management

system that supports XQuery 1.0 and more advanced features like updates

and schema-awareness. According to private communication with two of

Tamino’s architects during a visit in our research group, their system fol-

lows a heuristics-based query optimization approach and does not provide

a cost model. The internal query representation as well as query rewriting

(especially query unnesting) are strongly influenced by Natix.

Saxon (Kay, 2008) is a stand-alone XQuery/XSLT processor that is available

in two different versions. Saxon-B is a complete open-source implementation

of XQuery 1.0 (Boag et al., 2007). In addition to that, the commercial product

Saxon-SA adds, amongst others, schema-awareness and the support of the

XQuery Update Facility (Chamberlin et al., 2009). In Saxon, path expressions

are not unnested. Hence, they must be evaluated using navigational primi-

tives. Saxon does not provide a tailored storage engine that would allow to

store documents or support to materialize indexes19.

Even thoughweaim at providinga complete picture of different approaches

to XML query processing, the relatively short history of XML data man-

agement has revealed an overwhelmingly large number of systems (e. g.,

Naughton et al., 2001; Bohannon et al., 2002; Meier, 2002; Meng et al., 2003;

Fomichev et al., 2006) that cannot be discussed in detail here, either because

they are outdated or do not substantially overlap with the approach followed

in this work.

2.3.3 Comparison

So far, we only had a look at the history of query processing in relational and

XML database systems. In this section, we compared the query processing

capabilities of theXMLTransactionCoordinator (XTC),which is ourprototypeof

a native XML database system, with the approaches taken by its competitors.

19Actually, if Saxon wants to exploit an index for query evaluation, it must be created at runtime,
resulting in severe performance drawbacks in many situations.
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Lore Natix TIMBER Galax MonetDB/ System RX/ Tamino Saxon XTCa

Property

System

XQuery DB2 pureXML

native native native native relational native native native native
Storage mechanism

(DBMS) (DBMS) (DBMS) (file system) (DBMS) (DBMS) (DBMS) (file system) (DBMS)

Query language Lorel XQuery XQuery XQuery XQuery XQuery XQuery XQuery XQuery

OQL-based NAL TAX XQuery Algebra Rel. algebrab QGM NAL XQuery Core XQGM
Logical algebra

(graph-based) (tuple-based) (tree-based) (seq.-based) (seq.-based) (tuple-based) (tuple-based) (seq.-based) (tuple-based)

Cost-based optimizer X X X X X X

X X X X X X
Cardinality estimation

(Lorel) (XPath) (XPath) (XQuery) (XPath) (XQuery)

Flexible search strategies X

Rule-based plan generation X X

Seamless query visualization
(X) (X) X

(partially) (only QEP)

Navigation Navigation, Navigation, Navigation, Navigation, Navigation, Navigation Navigation Navigation,
Struct. Join Struct. Join Struct. Join, Staircase Join Twig Join Struct. Join,Path processing operators

Twig Join Twig Join

Supports indexing of c

Content, Full-text, Content, d Content, Content, Content,

elements, elements elements elements, elements, elements,
paths paths, Full-text paths,

CASe , CAS
Full-text

X X X X X (X) f X X
Parallel query execution

(pipelining) (pipelining) (pipelining) (pipelining) (pipelining) (pipelining) (pipelining)

Table 2.1: Comparison of XML query processing infrastructures

aThe features of XTC reported here, already include the contributions of this thesis, for example, a cost-based query optimizer.
bTo be precise, MonetDB/XQuery relies on an extended relational algebra.
cHere, we only consider materialized indexes and omit main-memory indexes.
dWe are not aware of any XML-specific indexing capabilities.
eHybrid indexing of content-and-structure (CAS)
fEven though the literature does not provide any information on the parallelization opportunities, we assume that Tamino, being a commercial
database system, supports it.
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Table 2.1 shows the results of the comparison. At first sight, XTC shares many

features with its competitors. Nevertheless, XTC’s query optimization frame-

work has several features that makes it second to none: (1) XTC provides an

extensible framework for the integration of arbitrary search strategies. At the

moment, XTC provides six search strategies out-of-the box (e. g., bottom-up

optimization and Simulated Annealing). (2) A substantial repertoire of PPOs

and index operators provide plenty of opportunities for plan enumeration.

(3) XTC provides a visualization component (Weiner et al., 2010) that allows

to track the complete query evaluation process from the beginning to the

end. Using this tool, every modification of the query graph (during query

rewrite) and every possible QEP derived during plan enumeration can be vi-

sualized. (4) XTC is the only native XDBMS that supports XQuery cardinality

estimation. (5) Fine-granular transaction isolation is key for efficient query

processing in transaction-oriented application scenarios.

2.4 Summary

In this chapter, we gave a short introduction to query processing in database

systems. In Section 2.1, we had a look at the principles of query optimization.

Even though these concepts have been developed in the context of relational

database systems, we will see later that they remain valid for native XDBMSs.

Section 2.2 discussed the novel challenges of XML query optimization. More-

over, we introduced several types of physical join operators (e. g., structural

joins and holistic twig joins) and index structures (e. g., element index) that

are necessary for efficient XML query processing. Finally, Section 2.3 first

discussed the intersections with related relational database systems as well

as with XML database systems. Second, we compared XTC, our prototype of

a native XDBMS that serves as testbed for our query optimization approach,

with its competitors and revealed the novel features developed in this work.

Consecutively, Chapter 3 discusses the architecture of XTC in general and

its index structures in particular. Beyond that, we will have a look at XTC’s

logical algebra—the XML Query Graph Model (XQGM).
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“To get through the hardest journey,
we need take only one step at a time,
but we must keep on stepping”

(Chinese proverb)

In this chapter, we introduce the internals of the XML Transaction Coordinator

(XTC) that are relevant for understanding our query optimization approach.

In Section 3.1, we give a brief overview of XTC’s system architecture. We

discusswhy the DeweyID concept—as a node labeling scheme—is absolutely

necessary for efficient query processing. Moreover, we introduce the access

paths that the query optimizer can use for query evaluation. Next, we will

have a look at the Path Processing Operators that are capable of efficiently

evaluating (cascades of) structural predicates. Consecutively, we sketch the

major components of the XML Query Graph Model (XQGM) that serves as our

logical XQuery algebra. Thereafter, we deal with XTC’s effective cardinal-

ity estimation framework EXsum. Afterwards, we give an overview of the

query processing pipeline in XTC. In Section 3.2, we discuss the strengths and

weaknesses of XTC’s current query processor and reveal the roadmap to the

cost-based XQuery optimizer being developed in this work. Subsequently, a

reviewof relatedwork is given in Section 3.3. In the end, Section 3.4 concludes

this chapter with a short summary and an outlook on Part II.

3.1 System Architecture

Originally, the XML Transaction Coordinator (XTC)1 was developed as a

testbed for comparing different lock protocols for XML transaction process-

ing (Haustein, 2006). Soon, it matured to a full-fledged native XML database

system supporting, amongst others, ACID transactions and a large fragment

of the XQuery language (Härder et al., 2010).

Figure 3.1 on page 40 shows the architecture of XTC (Haustein and Härder,

2007), which follows the classical five-layered architecture introduced by

1More information about the project can be found online at: http:�www.project-xtc.de.
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Figure 3.1: Architecture of XTC (after Härder et al., 2010)

Härder and Reuter (1983). The lowest levels are formed by the File Ser-

vices and the Propagation Control. The File Services allow for block-oriented

access to the external memory. Atop of it, the Propagation Control provides

a Buffer Manager, which supports various replacement strategies, that offers a

page-oriented interface to upper layers. The Transaction Services are manda-

tory for ACID transactions in XTC. Using the Transaction Manager, which is

responsible, amongst others, for the physiological logging of database oper-

ations, permits to reconstruct a consistent system state after a system crash.

The ACID paradigm properties atomicity and durability can be guaranteed

by levels 1 and 2, whereas consistency and isolation can only be realized in

higher levels. In level 3 (Access Services), where record-oriented operations

are supported, for example, loading of records or reconstruction of subtrees,

various index structures are situated (e. g., the document index serves as de-

fault access path). Moreover, level 3 is responsible for the management of

the metadata (Catalog Manager). For node-oriented operations, XTC employs

the Node Processing Services as a means for realizing the DOM axes operations

40



3.1 System Architecture

Figure 3.2: XML document labeled with DeweyIDs

(e. g., fetching the first child of a given context node). Here, the Node Manager

interacts with the Lock Manager, which is responsible for transaction isolation,

to guarantee a logical single-usermodewhile concurrently processing several

transactions. In the context of this work, layer 5 (XML Processing Services) is of

utmost importance. Here, the XML Manager furnishes different interfaces for

accessing and manipulating XML data, for example, Sax, DOM, and XQuery.

Most importantly, the XML Manager interacts with the cost-based XQuery

optimizer to derive an efficient QEP for an XQuery expression. Finally, the

Interface Services provide a multi-lingual API for interacting with documents

stored in the XTC server.

3.1.1 Node Labeling

In XML documents, we can identify two types of relationships between lan-

guage constructs: value-based relationships and structural relationships. Value-

based relationships are well-known from the relational world, for example,

relationships between foreign and primary keys2. In the context of XML, we

are additionally confronted with structural relationships. Let us consider the

XML document shown in Figure 3.2, which is illustrated as a tree of element,

attribute, and text nodes. Here, the most obvious structural relationships are

parent and child. More precisely—theXPath query language (Boag et al., 2007),

which is a sublanguage of XQuery and the predominant language for qualify-

ing specific nodes in an XML document—distinguishes between 13 different

structural relationships (so-called axes).

The naı̈ve approach for evaluating a structural relationship, for example,

the descendant axis, would require a traversal of the document. As we will

2In XML documents, value-based relationships may be expressed using the ID/IDREF construct.
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see soon, real-world XML queries make excessive use of axis relationships

to identify nodes related to a specific context node in the document. Hence,

the drawback of the naı̈ve approach is obvious: it requires numerous and

expensive accesses to the document. If we could decide this problem based

on a static property andwithout any document accesses, we could immensely

speed-up query processing. The precondition for achieving this goal is a node

labeling scheme. Such a scheme assigns to each node of an XML document

a unique identifier in left-most depth-first traversal order. Prominent rep-

resentatives of node labeling schemes are prefix-based schemes (Härder et al.,

2007).

Intrinsically, prefix-based node labels encode the complete path from the

document root to the associated node. Hence, by simply comparing the labels

of two XMLnodes, we can decidewhether they are structurally related to each

other with respect to a specific axis. In XTC, we use the so-called DeweyID

concept that relies on the famous prefix-based and hierarchical node labeling

schemeORDPATH (O’Neil et al., 2004). In contrast to theORDPATHapproach,

XTC’s DeweyID concept has a more refined DeweyID order mapping and

supports a mechanism allowing to reserve some gaps for overflow handling

(Härder et al., 2007).

For example, let us reconsider the XMLdocument shown in Figure 3.2. Each

DeweyID consists of several divisions that are separated by the character “.”.

The root of the document is always labeled with DeweyID 1. Using a left-

most depth-first traversal of the document, each child node extends its parent

node’s DeweyID by a new division, where each division value increases from

left to right. Initially, only odd division values are assigned. Even division

values might be inserted later on, if an overflow occurs. For determining the

tree level of a given node, we just count the total number of odd divisions

of its DeweyID. For example, the DeweyID 1.5.5 indicates that the associated

book node is on level 3. Moreover, we can infer that 1.5.5 is an ancestor of

1.5.5.5.5, because both labels share the same prefix. But, in turn, 1.5.5.5.5

is not a child of 1.5.5, because their levels differ by more than one, though

they share a common prefix. Actually, DeweyIDs allow to decide all relevant

axis relationships used in XQuery3. This property makes them essential for

efficient query processing in XTC4.

3Adetaileddiscussionof the benefits and drawbacks of different node labeling schemes, in general,
and the DeweyID concept, in particular, is out of scope of this work. You will find more infor-
mation about the efficient implementation of the concept and its benefits for query processing as
well as fine-granular transaction isolation in the comprehensive article by Härder et al. (2007).

4It is not an exaggeration to claim that without such a labeling scheme, no efficient native XDBMS
can be built at all.
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3.1.2 Path Processing Operators

In Section 2.2.1 on page 24, we discussed the challenges for XML query pro-

cessing. Probably the most important challenge for query processing is effi-

cient evaluation of structural relationships. XTC provides three types of Path

Processing Operators (PPOs) for the evaluation of structural predicates: the

navigational operatorNavTree, the SJ operator Extended StackTree, and the HTJ

operator Extended TwigOpt (Mathis, 2009)5.

The NavTree operator returns for a single node (context node) or for a

sequence of nodes, all nodes that satisfy an XPath axis step—which may

be filtered by an additional name test. Rather than evaluating structural

predicates in a nested-loops style (NavTree), StackTree evaluates a structural

predicate similar to a relational sort-merge join. In contrast to the classical

StackTree operator, Extended StackTree allows to evaluate semi joins andouter

joins. As we will see soon, cascades of Extended StackTree operators can be

optimized using classical relational optimization techniques.

Finally, the Extended TwigOpt operator is an n-way join operator that eval-

uates so-called twig query patterns in a holistic manner. Hence, there is no

need to evaluate each binary relationship separately; as it would be the case

for a cascade of SJs. Even though Bruno et al. (2002) once promoted HTJs as

superior over SJs, we will see later that in realistic XQuery evaluation scenar-

ios, the opposite is true6. In fact, HTJs do not providemuch opportunities for

query optimization, because they are more or less a “black box” for the query

optimizer and solely allow for cost-based access path selection. In contrast,

SJ operators can be optimized using classical join reordering techniques and

support query evaluation using pipeline parallelism.

3.1.3 Access Paths

As we have already mentioned in Section 2.2.1 on page 24, there exists a

plethora of different XML indexes for accelerating query evaluation. In the

context of XTC,we distinguish between three classes of access paths: primary,

secondary, and tertiary access paths.

5As their names indicate, both operators are extensions of previously introduced operators. The
classical StackTree operator was introduced by Al-Khalifa et al. (2002), whereas Fontoura et al.
(2005) described the original TwigOpt operator.

6In our opinion, HTJs are only superior to cascades of SJs, if obscure patterns shall be evaluated,
which aremakingalmost exclusiveuse of the “�” axis andwhose semantics is therefore becoming
fuzzy. Such patterns may occur in information retrieval scenarios, but are rarely seen in classical
database queries.
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(a) Document index (b) Element index

Figure 3.3: Primary and secondary access path

Primary Access Paths

The primary access path (PAP) of XTC is called document index. This data struc-

ture is available per default and indexes an XML document using its unique

DeweyIDs as keys. For example, Figure 3.3(a) depicts the document index

for the XML document illustrated in Figure 3.2 on page 41. The document

index is implemented as a classical B∗-tree. For navigational query evaluation

(with respect to a specific context node), this data structure helps to identify

all relevant nodes by their DeweyIDs, for example, finding all descendant

nodes of a given context node can be easily solved by a range scan over the

leaf nodes. Nevertheless, it is quite insufficient for finding all nodes having

the same name. For example, finding all book element nodes would require to

scan all leave pages of the index, even though only a small fragment of them

actually contains book records.

Secondary Access Paths

To overcome the deficits of the document index, XTC provides an element

index as secondary access path (SAP). This index is implemented as a two-stage

index consisting of a name directory (B-tree) and a set of node-reference indexes

(B∗-tree), as illustrated in Figure 3.3(b). The name directory uses all unique

element names of the document as keys. Each key points to a node-reference

index that contains all DeweyIDs in document order, which share the same

element name.

As we will see soon, the element index is crucial for efficient query evalua-

tion. Structural joins and holistic twig joins rely on it as an efficient means for

providing streams of DeweyIDs having the same element name. This opera-

tion is particularly important for evaluating the omnipresent path expressions.
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(a) Path synopsis (b) Path index

Figure 3.4: Path synopsis and path index

Tertiary Access Paths

In XTC, we distinguish between path indexes and content-and-structure in-

dexes. Advanced indexing in XTC is supported by tertiary access paths (TAPs),

which rely on the path synopsis (PS). The PS is a small, memory-residing

data structure, which is an extension of the seminal DataGuide (Goldman

and Widom, 1997), serving as a structural summary or a dynamic document

schema. Moreover, the PS provides valuable statistical information for cardi-

nality estimation. Figure 3.4(a) shows the PS for the XML document depicted

inFigure 3.2. Eachuniquepath in thePS is annotatedwith a so-called path-class

reference (PCR) number (Mathis et al., 2009).

Path Index Figure 3.4(b) shows an instance of XTC’s path index. The

path index allows to index complete paths (including potential leaf node

values). It uses a combination of PCR and DeweyID as key and allows to

cluster its records by PCRs or by DeweyIDs, respectively. If a path ends on

a content node, for example, for PCR 7, its content value is also stored in the

corresponding record. For example, if we would like to find all nodes that

satisfy the path expression �bib�book we just need to scan the path index for

records having PCR 3.

Content-and-Structure Index XTC’s content-and-structure index (CAS in-

dex) allows to index content and structural information at once. Figure 3.5

shows a CAS index. Here, the content value acts as key in the B∗-tree and
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Figure 3.5: Content-and-structure index

a combination of PCR and DeweyID, or vice versa, serves as index value,

depending on the chosen clustering.

For example, using the CAS index depicted in Figure 3.5, we would effi-

ciently find an answer to the question: Whose author name is in lexicographical

order lower than “C”. By identifying the qualifying nodes, we get the corre-

sponding DeweyIDs and the PCR numbers allowing to reconstruct the com-

plete path from the node to the document root. Otherwise, answering this

question without an CAS index would force us to first retrieve all nodes sat-

isfying bib/books/book/author using cascades of SJs or an HTJ and then filter out

all author nodes whose content is larger or equal than “C”7.

3.1.4 The XML Query Graph Model

The basis for every query optimization is a suitable logical algebra serving

as internal query representation. Mathis (2009) introduced the XML Query

Graph Model (XQGM) as XTC’s logical algebra. In this section, we give a brief

introduction to the basic concepts of XQGM that are necessary to understand

our query optimization approach.

7You can imagine that this approach raises much more IO and CPU cost compared to an access to
the CAS index, where, in contrast, access and processing costs are reduced to a minimum.
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Figure 3.6: The XQGM data model (after Mathis, 2009)

The XQGM Data Model

The XQGMdata model is based on the XQuery Data Model (XDM) (Fernández

et al., 2007), which provides atomic values, items, and sequences as model prim-

itives. The XQGMData Model complements these primitives by tuples. More

precisely, every XQGM Data Model object is a tuple (Mathis, 2009). Figure

3.6 shows a UML diagram of the different data model primitives. An item is

either (1) a node, (2) an atomic value, or (3) an ordered list of tuples which we

denote as tuple sequence. Consequently, tuple sequences allow for expressing

nested tuples. We call a tuple sequence that contains exactly one tuple a sin-

gleton tuple sequence and a tuple that is formed by a single item is referred to as

singleton tuple8. We say that a singleton is always equal to its unique element.

Moreover, a tuple sequence is an XQuery sequence, if and only if it contains

only singleton tuples or is equal to an empty sequence (Mathis, 2009).

XQGM Example

Figure 3.7 on page 48 shows an XQGM instance for Query 3.1, which returns

the author names of books whose price is larger than 1.99.

In XQGM, operators are not connected with each other directly. Instead,

an operator contains so-called tuple variables that handle the tuple sequences

emitted by its input operators. Tuple variables can have three different types

8For the rest of this work, whenever the context is unambiguous, we just refer to them as singleton.
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Figure 3.7: Sample XQGM instance
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Query 3.1 Simple XQuery expression with value-based and structural predi-

cates
<result> {

for $b in doc("sample.xml")/descendant::book

where $b/price > "1.99"

return

<author>{ $b/author/text() }</author>

} </result>

of quantifiers: for (F), let (L), and exists (E), whereupon the first and the second

quantifier have a similar semantics as the correspondent XQuery constructs:

A for-quantified tuple variable iterates tuple-wise over the tuple sequence

received from its connected child operator. In contrast, let-quantified tuple

variables expose their input only once as a complete tuple sequence with

respect to a specific context node. Finally, exists-quantified tuple variables

are only used in combination with predicates to check for the existence of a

non-empty tuple sequence.

Now let us divedeeper into theXQGMsemantics anddiscuss the evaluation

of our sample query: Query evaluation starts at the left-most subtree, whose

root is the SJ operator. The SJ operator evaluates the structural predicate

(descendant axis) between the virtual document root and all book elements.

Actually, SJ is a semi join operator, because only the tuple variable that is

connected to the Access operator providing book elements is, in turn, con-

nected to the projection specification. The parent Select operator receives a

tuple sequence of all book elements and iterates over it: First, it passes the

current evaluation context to the Access operator connected to it via the ex-

ists-quantified tuple variable9. The Access operator selects a sequence of all

price element nodes that are children of the current (context) book element and

returns only those items that satisfy the predicate. Next, the Select operator

passes the current context to the right-most Access operator, which returns all

author nodes that are connected to the current context node via the child axis.

For each match, the parent Select operator evaluates the fn:text() function.

Now, the Select operator, which is at the heart of the query graph, can pro-

duce the output: It creates a new XML element <authors>seq</authors>, if the

sequence bound to the exists-quantified tuple variable is not empty, where seq

is the tuple sequence received by the let-quantified tuple variable. Finally, the

9In the graphical XQGM representation, the context passing is illustrated as a dashed line from the
“sending” tuple variable to the receiving operator.
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Figure 3.8: Overview of the XQGM components (adapted fromMathis, 2009)
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top-most Select operator wraps its input in an opening <result> and a closing

</result> tag.

XQGM Overview

For the rest of this work, we will need some basic knowledge on the differ-

ent logical operators provided by XQGM. Hence, this section gives a brief

overview over all operators. Figure 3.8 illustrates the integral parts of XQGM:

• Access operators are leaf nodes in an XQGM instance and provide access

to XML nodes.

• The Select operator either simply evaluates predicates on a tuple se-

quence or mimics the for and let XQuery language constructs.

• The Set operator performs union, intersection, and difference on multi-

ple (union and intersection) and two (difference) input tuple sequences.

• The Split operator allows to send its output to multiple receiving oper-

ators.

• Whenever there is a Split operator in an XQGM instance, theMerge oper-

ator serves as its counterpart for reuniting the data flow to a single tuple

sequence and has the same semantics as an n-way outer join operator.

• As discussed earlier, the XQGM data model supports nested tuples.

Grouping an input tuple sequence according to a specific item position

can be performed by the GroupBy operator.

• Using the Unnest operator, which is the reverse operator of GroupBy,

we can expand a nested tuple sequence with respect to a given item

position.

• Query rewrite using query unnesting (Mathis, 2009) iteratively replaces

Select operators, which are evaluating nested subexpressions andwhich

are only evaluating structural predicates, by a Structural Join opera-

tor. Consequently, the node-at-a-time evaluation paradigm dictated by

XQuery is replaced by a set-at-a-time approach being inherent to struc-

tural joins10.

10Amongst others, query unnesting is mandatory for actually using structural joins for the evalua-
tion of arbitrary XQuery expressions. You will find more information about this complex query
rewrite in Mathis (2009).
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Figure 3.9: Sample EXsum summary node

3.1.5 Rudimentary Cardinality Estimation

In Section 2.1.3 on page 17, we argued that two components are absolutely

necessary for cost-based query optimization: (1) effective cardinality estima-

tion and (2) cost estimation. Aguiar Moraes Filho (2010) focused on the first

problem and brought rudimentary support for XPath cardinality estimation

to XTC.

Amongst others, Aguiar Moraes Filho (2010) provided a cardinality estima-

tion approach calledEXsum (Element-centeredXMLSummarization). EXsum

captures all structural relationships between XML element nodes. This ap-

proach can be used to estimate the cardinality of simple XPath expressions. In

contrast to previous techniques (e. g., Aboulnaga et al., 2001;Wang et al., 2004;

Zhang et al., 2006), EXsumgoes beyond cardinality estimation forwidely-used

XPath axes (e. g., child and descendant) and now supports, in principle, all

XPath axes. Moreover, it allows to estimate the value distribution of content

nodes.

EXsum maintains for every element name in an XML document an ASPE

(Axes Summary Per Element) node. Figure 3.9 shows an ASPE node for the

element books, which occurs in the XML document depicted in Figure 3.2.

Here, the total number of occurrences is recorded (# occurrences) and an Input

Counter (IC) aswell as anOutput Counter (OC) keep track of the cardinalities of

those elements that are structurally related to the context node via a forward

axis or a reverse axis, respectively. Let us assume that our XML document

encompasses information about 1,024 books. Moreover, let us assume that
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every book has a title child node, but only 75% of all books have a price tag.

According to the PS depicted in Figure 3.4(a), books is the parent of book

nodes and title nodes are descendants of books nodes. The illustration of the

corresponding ASPE node reflects this information. The IC for book elements

indicates that book nodes have exactly one parent: books. Moreover, books has

1,024 book nodes as children.

To estimate the cardinality of a single XPath axis step, EXsum probes

the ASPE node of the context node and returns the exact cardinality of the

structurally-related node. For a multi-step path expression, EXsum retrieves

the corresponding ASPE nodes and interpolates the intermediate values to

get a more accurate estimation11.

3.2 Discussion and Roadmap

So far, this chapter briefly introduced different aspects of XTC. Now, we will

analyze the deficits of the current approach and provide a roadmap for this

thesis describing the steps that will be taken to finally establish cost-based

query optimization in XTC.

3.2.1 Twig Discovery Considered Harmful

Mathis (2009) provides the groundwork for query optimization in XTC by in-

troducing new storage and index structures, a logical query algebra (XQGM),

several query simplification rules, for example, query unnesting, and a set of

physical algebra operators. However, this approach only supports heuristics-

based query processing, that is, XQGM-to-QEPmappings are hard-wired, but

can be changed manually by an administrator. The coupling between XQGM

and the corresponding QEP is rather tight, making it difficult to integrate

arbitrary bottom-up or top-down plan generators, which are necessary for

implementing flexible query optimizers.

Twig discovery is advocated as a technique that alreadydetects opportunities

for applying physical HTJs during logical query rewrite (Mathis, 2009). In our

opinion, this approach is a perfect match for the (computer) science dictum:

“premature optimization is the root of all evil” (Knuth, 1974, p. 268)

At first glance, this idea seems to be attractive, because it promises to dra-

matically reduces the number of operators involved in XQGM instances and

11There exist several corner cases that must be taken care of during cardinality estimation. Dis-
cussing theses situations is out of the scope of thiswork. More detailed information can be found
in Aguiar Moraes Filho (2010).

53



3 Towards Cost-Based XQuery Optimization

consequently restricts the number of intermediate results. Unfortunately, this

approach takes away almost all room for cost-based optimization, because:

1. it makes decoupling during cost-based optimization expensive, if the

plan generator decides that query execution using optimally-reordered

SJs is actually faster.

2. now, no join reordering can be performed anymore. Thus, the search

space is reduced and might no longer contain the optimal plan. More-

over, the plan generator’s job is limited to finding the optimal set of

access paths.

3. cascades of SJs can be parallelized more easily using pipelining than

HTJs.

The HTJ community (headmost, Bruno et al., 2002) always claimed that HTJs

are also superior to SJs in terms of performance. In fact, the empirical results

provided by Mathis (2009), which, amongst others, trade HTJs off against

SJs in real XQuery processing scenarios, show that this claim is not true.

Rather, it seems that HTJs are only superior to SJs, if an XML document is

queried for obscure twig patterns, for example, patterns that only involve the

descendant axis and whose actual semantics is—at least—questionable (also

have a scrutiny at the empirical evaluation in Bruno et al., 2002).

Moreover, we experienced that the decision for or against HTJs is not as

performance-critical as expected. For example, if we consider the XMark

benchmark queries, which encompass fairly complex XQuery expressions,

the performance of SJs and HTJs is mainly thwarted by blocking operators

like GroupBy, Unnest, and Merge that actually determine the “heartbeat” of

the execution.

Having these facts in mind, our query optimizer still considers HTJs as

a possible alternative, but does not overestimate its importance for efficient

execution. Thanks to our rule-based XQuery-to-XQGM compiler XTCcmp

(Mathis et al., 2008), we can easily switch off the twig discovery rule. We

will see later that the query optimizer’s ability of making the most out of the

various SAPs and TAPs has much greater influence on the performance than

deciding the cumbersome SJ-versus-HTJ debate.

3.2.2 Cardinality Estimation for Path Expressions

XTC’s current cardinality estimation framework EXsummainly targets at car-

dinality estimation for XPath expressions. For cost-based XQuery optimiza-

tion, this is insufficient, because it does not help to estimate the cardinalities
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Figure 3.10: XQGM instance for XMark benchmark query Q8
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Query 3.2 XMark benchmark query Q8 (Schmidt et al., 2002)

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person

let $a :=

for $t in $auction/site/closed_auctions/closed_auction

where $t/buyer/@person = $p/@id

return $t

return <item person="{$p/name/text()}">{count($a)}</item>

for complex for and let bindings. To illustrate the fundamental problem, let us

have a look at an example.

Figure 3.10 on page 55 shows the corresponding XQGM instance for Query

3.2. This query involves a value-based join (expressed as a predicate in a

Select operator). As in the relational case, value-based joins can be evaluated

using well-known physical operators: nested-loops join, sort-merge join, and

hash join. For equality predicates, the hash join is most often a good choice.

As the evaluation of a hash join can only be efficient, if its hash table is built

for the smaller input rather than for the larger one, cardinality estimates are

absolutely necessary for determining the correct proportions.

Let us test the capability of EXsum to furnish sufficient cardinality esti-

mates: In this example, EXsum can only provide cardinality estimates for

the abbreviated path expressions (sketched as boxes with dashed borders)

that are normally expressed as cascades of structural semi join operators in

XQGM. Such cascades emit only tuple sequences that are singleton tuples.

For all other operators, the current approach is not applicable. For example,

the left-most SJ operator evaluates an outer join and the SJs on the right side

evaluate full joins. Both types of joins emit tuple sequences that contain binary

tuples—one item for each join partner.

Moreover, EXsum has nomeans for estimating the cardinalities of GroupBy

operators, which contain nested tuples. Consequently, we cannot provide

correct cardinality estimates for the value-based join and probably hash the

larger input instead of the smaller one, whichmay cause a severe performance

loss.
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Figure 3.11: The XTC query optimization process

3.2.3 Roadmap

After our discussion of the deficits of the current XTC server with respect to

its query processing and query optimization capabilities, we will now outline

the roadmap for our query optimizer.

Figure 3.11 shows the complete query evaluation process of XTC’s cost-

based optimizer. We retain the XTCcmp component for compiling XQuery

expressions into XQGM and use almost all query rewrite techniques—except

twigdiscovery—proposed byMathis (2009). TheOptimization Framework (Part

II) is one of the major contributions of this work that performs cost-based

query optimization by generating and evaluating semantically-equivalent

plans. Moreover, this component uses an advanced cardinality estimation
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framework that pays attention to the XQGM data model. Finally, XTC’s Exe-

cution Engine is reused to run the optimal QEP.

In Chapter 4, we will discuss logical query rewrite rules that are applied

to an XQGM instance before optimization. Chapter 5 describes the formal

representation of plans in our optimization framework. Next, logical query

transformations, for example, structural join associativity or join fusion, are

introduced in Chapter 6. These transformations allow to derive semantically

equivalent plans for a single expression and empower the plan generator to

inspect the search space. Chapter 7 deals with the advanced cardinality esti-

mation framework of XTC. Chapter 8 provides the cost formulæ forming the

query optimizer’s cost model. Finally, Chapter 9 discusses how the concepts

developed inChapters 4–8 are used to performcost-based queryoptimization.

After providing the theoretical background for query optimization inPart II,

we elaborate on the implementation details and provide an in-detail empirical

evaluation of our approach in Part III. In the end, Part IV concludes this work

and provide an outlook on potential future work.

3.3 Related Work

As we have already mentioned before, Haustein (2006) provided the initial

XTC prototype and introduced important concepts such as the taDOM family

of lock protocols that allows for fine-granular transaction isolation based on

the Dewey labeling scheme. Additionally, the early XTC prototype provided

the document index (PAP) as well as the element index (SAP) (Haustein and

Härder, 2007).

The comprehensive work of Mathis (2009) introduces several new aspects

to XTC. As we have discussed before, mapping a large fragment of the

XQuery language onto XQGM and providing heuristics for query optimiza-

tion (e. g., query unnesting and twig discovery) is one of the integral parts

of this work. Moreover, the thesis specifies two TAPs: path indexes and

content-and-structure indexes that allow to speed-up query evaluation signif-

icantly. Finally, the work defines a fixed mapping of XQGM instances onto

a set of physical algebra operators and provides an empirical evaluation of

the effectiveness of the query rewrite rules with respect to query evaluation

performance. Unfortunately, this work does not discuss cost-based query

optimization.

Aguiar Moraes Filho (2010) contributes techniques for cardinality estima-

tion of simple path expressions that rely on the path synopsis. The most

advanced data structure (EXsum) can even handle value distributions. The
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experimental evaluation compares thedifferent approacheswith eachother by

taking space consumption, estimation quality, and performance into consid-

eration. This approach is only a small steps towards XQuery-level cardinality

estimation that is quintessentially necessary for our cost-based optimizer.

3.4 Summary

In this chapter, we had a look at the most important concepts of XTC. In

Section 3.1, we introduced the architecture of XTC and presented some “in-

gredients” needed for query optimization: Path ProcessingOperators for effi-

ciently evaluating structural predicates, various access paths, and the logical

XQuery algebra XQGM (XML Query Graph Model). Moreover we looked at

the rather limited technique for cardinality estimation. Section 3.2 discussed

the shortcomings of XTC’s current query engine and provided a roadmap for

the techniques that will be developed in this thesis to establish a cost-based

XQuery optimizer. Finally, a short overview of related works is given in

Section 3.3.

This section concludes Part I of this thesis. Consecutively, in Part II, we will

introduce the theoretical background for our cost-based XQuery optimizer.
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4 Query Rewrite

“Things alter for the worse
spontaneously, if they be not
altered for the better designedly.”

(Francis Bacon)

In this chapter, we introduce two types of cost-aware query rewrites that can

be applied even before the classical query optimization phase starts.

In Section 4.1, we will see how we can push-up expensive fn:text() accesses

in XQGM instances and, therefore, delay their evaluation as long as possible.

Moreover, Section 4.2 provides a termination criteria for query unnesting that

helps to avoid the counterproductive application of them.

Finally, Section 4.3 summarizes this chapter and provides an outlook on the

next chapter.

4.1 Push-Ups of fn:text() Accesses

In the relational world, selection push-down is a simple—but effective—

heuristics to restrict the inputs for join operators by pushing down selection

predicates to their access operators.

Query 4.1 Slightly modified XMark benchmark query Q 1 (Schmidt et al.,

2002)

let $auction := doc("auction.xml") return

for $b in $auction/site/people/person

where $b/@id = "person0"

return $b/name/text()

In native XDBMSs, the evaluation of value-based predicates in general and of

XQGM fn:text() functions in particular is very costly, because they require ad-

ditional accesses to the document. Therefore, wewant to avoid the evaluation

of this function as long as we can be sure that it is evaluated only for those tu-

ples that are actually part of the final query result and that are not filtered out
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Figure 4.1: Modified XMark benchmark query Q1—without push-up
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Figure 4.2: Modified XMark benchmark query Q1—after push-up
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(a) Left-hand side (b) Right-hand side

Figure 4.3: SelectionPushUp pattern in action

by structural or positional predicates. Let us have a look at Query 4.1 on page

63. Figure 4.1 on page 64 shows the respective XQGM representation. Here,

after joining name and person nodes, all fn:text() values for name are fetched as

well.

The Merge operator returns only those nodes on doc(. . .)/site/people/person

that satisfy the where condition. Let us assume that the predicate is very

selective, hence, we can expect that only few name/text() nodes will be part of

the final result. Nevertheless, we had to evaluate the fn:text() function on all

name nodes before!

To rectify this suboptimal situation, we will apply a query rewrite that we

call fn:text() push-up. If we apply this rewrite to the XQGM instance depicted

in Figure 4.1, we end up with a modified graph (Figure 4.2) Now, all evalu-

ations of the fn:text() function are performed in the top-most Select operator.

Consequently, the function is evaluated only for those name nodes that are

part of the final result. After showing the big picture of the push-up heuris-

tics, we are well-prepared to step on to the specification of the rewrite rules

as patterns consisting of a condition (left-hand side) and an action part (right-
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hand side). In a classical divide-and-conquer manner, we split this complex

task into three patterns that are executed in a sequence: SelectionPushUp,
TextAccessIntoMergePushUp, and finally TextAccessIntoSelectPushUp. All

patterns can be easily integrated into the pattern-based rewrite engine of XTC

(Mathis et al., 2008).

4.1.1 Selection Push-Up

Figure 4.3(a) shows the condition part of the SelectionPushUp pattern: It

searches for a unary Select operator that (1) evaluates the fn:text() function

and (2) has an Access operator as child node. The Access operator receives

correlated input from Select operator➁ that is, in turn, an ancestor of Select

operator➀. On the path between operator➀ and operator➁, there may be

additional operators whose projection specification must propagate at least

those item positions, on which operator➀ evaluates the fn:text() function and

may not contain any value-based predicates. Moreover, the pattern matches

only if operator➁ propagates the text value to its parent, too.

Figure 4.4: Query

after unnesting

In Figure 4.3(b), we can see the rewritten query frag-

ment that results from applying the SelectionPushUp
pattern. Select operator➀ is now the parent of oper-

ator➁. The benefit of this rewrite rule may not be ob-

vious at first sight. To understand its real impact on

query performance, we have to take a wider perspec-

tive: The SelectionPushup pattern may serve as a pre-

liminary step for queryunnesting. Queryunnesting is a

rewrite strategy that iteratively replaces the evaluation

of structural predicates using nested and correlated Se-

lect operators, for example, as shown in Figures 4.3(a)

and 4.3(b), by Structural Join operators, which evalu-

ate structural predicates using set-at-a-time evaluation

in contrast to node-at-a-time evaluation. Especially in

low-selectivity scenarios, set-at-a-time evaluation out-

performs node-at-a-time evaluation (Mathis, 2009). If

we apply query unnesting to the query fragment de-

picted in Figure 4.3(b), we end up with the graph illus-

trated in Figure 4.4. Let us assume that the Structural

Join has a selectivity of 80%. If we would have not

applied the SelectionPushUp pattern before, the Select

operator, which evaluates the fn:text() function, would still reside between the

Structural Join and the Access operator. Hence, 20% of the function evalua-
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(a) Left-hand side (b) Right-hand side

Figure 4.5: TextAccessIntoMergePushUp pattern in action

tions are superfluous, because these tuples will not be part of the operator’s

result. In contrast, after applying the pattern, the function is evaluated after

the Structural Join and only for those tuples that really satisfied the structural

predicate. Even if the structural predicate would have a selectivity of 100%,

the query performance of the rewritten query graphwould not be affected in a

negative way. Wewill see later in Chapter 12 that the application of the Selec-
tionPushUp pattern will really pay off in terms of a substantial performance

gain.

4.1.2 Text Function into Merge Push-Up

The TextAccessIntoMergePushUp pattern helps to push the evaluation of the

fn:text() function into the projection specificationof aMerge operator. Together

with the TextAccessIntoSelectPushUppattern (Section 4.1.3), we can perform

the query rewrite already shown in Figures4.1 and 4.2. In Figure4.5(a), we can

see the conditional part of the TextAccessIntoMergePushUppattern. First, we

are looking for a unary Select operator that (1) evaluates the fn:text() function
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andwhose results are projected out and (2) sent to the Select operator’s parent.

Starting at the Select operator, we traverse the query graph up to its root,

but stop immediately if a Merge operator is found. During traversal, we

check for each intermediate operator whether it requires the actual text value,

for example, for the evaluation of a predicate. Moreover, we must know

whether the text values are always projected out and, hence, finally end up

in the Merge operator. If all intermediate operators satisfy these conditions,

the pattern matches and the rewrite can be applied. Figure 4.5(b) shows the

XQGM fragment after rewrite. Now, theMerge operator evaluates the fn:text()

function as part of its projection specification, whereupon the superfluous

Select operator is removed1. If we once again have a look at the XQGM

graph shown in Figure 4.1, the TextAccessIntoMergePushUppattern helps us

to push the fn:text() function up into the Merge operator. Nevertheless, we

have not yet met the goal of our selection push-up heuristics, that is, pushing

fn:text() function calls as far as possible upwards in XQGM instances.

4.1.3 Text Function into Select Push-Up

Finally, to complete selection push-up, the TextAccessIntoSelectPushUp pat-

tern moves fn:text() function calls, which are evaluated in Merge operators,

upwards into the top-most unary Select operator.

The TextAccessIntoSelectPushUp rewrite rule looks for Merge operators

whose projection specification contains fn:text() function calls, for example, as

illustrated in Figure 4.5(b).

In this situation, we use the Merge operator as starting point and search

for the top-most Select operator that still accesses the tuples produced by the

fn:text() function call.

If there exist only operators between Select and Merge that (1) do not filter

out the fn:text() tuples and that (2) do not evaluate value-based predicates

requiring the availability of the fn:text() tuples, the pattern matches and the

rewrite is performed as follows: All accesses to fn:text() are moved from

the projection specification of the Merge operator into the matched Select

operator’s projection specification. If the Select operator evaluates a value-

based predicate, we have to wrap the corresponding tuple variable reference

in the predicate expression with the fn:text() function call. Moreover, in the

presence of a sorting specification, we have to adjust it accordingly. For

example, Figure 4.6 shows the query fragment depicted in Figure 4.5(b) after

1In this example, we assume that the Select operator does not evaluate other functions.
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Figure 4.6: After push-up

applying theTextAccessIntoSelectPushUppattern. Now, the fn:text() function

is only evaluated for those tuples that “survive” the previousMerge operator.

The three rewrite rules for selection push-up, that we discussed just few

lines above, can be easily integrated into the pattern-based query rewrite

engine of XTC. They are yet another way of improving query evaluation

performance, even before the cost-based query optimizer steps into the scene.

4.2 Cost-Based Query Unnesting

Mathis (2009) introduced query unnesting, that is, a means for XML query de-

correlation that helps to speed-up XQuery evaluation in low-selectivity sce-

narios. In Section 2.2 onpage 21, we have already shown that the XQueryCore

Language (Draper et al., 2007) favors node-at-a-time evaluation for XQuery

evaluation. Traditionally, database systems are optimized for set-at-a-time

processing. For example, SJs also follow this classical principle. To allow for

XQuery evaluation using them, the query evaluation strategy must be trans-
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(a) Before unnesting (b) After first unnesting

Figure 4.7: Cost-aware query unnesting
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Query 4.2 XPathMark-A benchmark; query A 3 (Franceschet, 2005)

doc("auction.xml")/site/closed auctions/closed auction�keyword

formed from node-at-a-time processing to set-at-a-time processing (see also

Section 2.2 on page 21).

The current approach (Mathis, 2009) handles this transition using a pattern-

matching and transformation engine. This engine applies transformations

in an eager mode, that is, they are applied as long as a match is found. In

contrast to RDBMSs, where algebraic optimization—that is, query rewrite—

is purely based on heuristics and only non-algebraic optimization takes cost

information into account, we weaken this strict separation in native XDBMSs

and make the application of query rewrite rules dependent on their benefit

for cost reduction even at the logical level.

Using the refined cardinality inference rules thatwill be introduced inChap-

ter 7, we canderive statistical information that help todetermine the selectivity

of XQGM subexpressions. Based on this information, we are able to control

the query unnesting process at a fine-granular level. Hence, we can immedi-

ately stop unnesting, if we expect that the rewrite will be counterproductive,

that is, results in increased costs.

Let us have a look at an example: Query 4.2 is a simple XPath query that

is part of the XPathMark benchmark2. Figure 4.7(a) shows the corresponding

XQGM representation. So far, query unnesting was not performed, therefore,

the dataflow of the query follows the node-at-a-time processingparadigm: for

each tuple sequence received by a Select operator via its for-quantified tuple

variable, the connected location step (e. g., child::site) is evaluated using anAc-

cess operator that, in turn, sends its output to the consecutive Select operator.

This approach resembles the evaluation of nested for loops in conventional

programming languages like C or of a nested-loops join in RDBMSs.

On the other hand, Figure 4.7(b) shows the same XQGM instance after

applying the unnest pattern for the first time. Accordingly, the last location

step is evaluated using a single Structural Join operator. Hence, the workflow

is now a hybrid of node-at-a-time evaluation and set-at-a-time evaluation.

At this point, youmight askwhichversion canbe evaluatedmore efficiently.

The answer to this question mainly depends on the selectivity of the location

step. Letus assume that there exist 100 closed auctionnodes that satisfy thepath

expression site/closed auctions/closed auction and that there are a total number

2The benchmark queries are available at: http:�sole.dimi.uniud.it/̃ massimo.franceC
schet/xpathmark/PTbench.html
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of 1,000 keyword nodes. In this regard, we distinguish between two fairly

antipodal selectivity scenarios: The location step closed auction�keyword is

satisfied by:

1. 900 keyword nodes (selectivity = 0.9)

2. only 5 keyword nodes (selectivity = 0.005)

If we evaluate this subexpression using the nested version as illustrated in

Figure 4.7(a), for each closed auction, which serves as context node, we have to

traverse the document (e. g., by accessing the DOM interface or by performing

a scan over a PAP or SAP) to get the related keyword nodes. In scenario 1, this

strategy is very expensive, because it causes many random IO operations. In

contrast, in scenario 2, this approach is very effective, because there exist only

a few keyword nodes that potentially cause random IO operations.

In Figure 4.7(b) (unnested version), we access the sequence of all keyword

nodes. This approach is very effective in scenario 1, because almost all keyword

nodes contribute to the query result, whereas in scenario 2, many tuples are

fetched that donot contribute to the final result. In scenario 1,we consequently

opt for the unnested version, whereas in scenario 2, we prefer the nested

version to prevent a tremendous performance loss. Both scenarios show

two extreme situation that must be considered during query optimization.

Therefore, applying query unnesting in an obstinate way is not always a

good decision. Now, we have to find a way that helps the rewrite engine

to select the proper evaluation strategy. If we recall that database textbooks

(e. g., compare Härder and Rahm, 2001) often refer to the classical 1% rule-

of-thumb—that is, dependent on disk and file characteristics, sequential IO

operations are preferred over random IO operations, if the selectivity of the

predicate is larger or equal than 1%—we can use this heuristics as well as a

decision criteria for guiding cost-aware query unnesting.

4.3 Summary

In this chapter, we discussed two rewrite techniques that support plan

generation—even at the very early stage of algebraic optimization—in pre-

venting bad plans.

First, Section 4.1 discussed three rewrite patterns that help to push-up

fn:text() accesses as far as possible towards the root of the XQGM graph. In

the best case (low predicate selectivity), this rewrite reduces expensive but

unnecessary fn:text() accesses to a minimum. Even in the worst case, it does

not negatively affect the overall query performance.
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In Section 4.2, we introduced a decision criteria that allows for cost-aware

query unnesting. By taking the estimated selectivity of location steps into

account, we can decide whether query unnesting leads to a performance

benefit or is counterproductive.

Both rewrite techniques are only complementary means for enabling effi-

cient and effective plan generation, which is at the heart of this thesis. In

Chapter 5, we will introduce the plan abstraction that provides the basis for

discussing the cost-based optimization and plan generation techniques.
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5 Plan Abstraction

“One of the major tasks of
Computer Science is
systematic abstraction.”

(Hartmut Wedekind)

In this chapter, we introduce the plan abstraction that serves as the main data

structure in our cost-based query optimization approach.

To allow for a convenient formulation of the query transformation and car-

dinality inference rules, Section 5.1 introduces a unified notation for plans. In

Section 5.2, we discuss the mapping from XQGM instances to plans. There-

after, Section 5.3 briefly sketches the translation of plans to physical algebra

(PAL) operator graphs. Finally, Section 5.4 summarizes this chapter and pro-

vides an outlook on the subsequent chapter.

5.1 Introduction

To express and discuss the different query transformation, cardinality infer-

ence, and translation strategies, which are introduced in this thesis, we need

a formalization of the basic structures that are manipulated by the cost-based

query optimizer.

For query optimization in general and plan generation in particular, many

XQGMdetails are irrelevant. Therefore, we abstract from these heavy-weight

structures and use a plan abstraction (plan graph) that focuses on dynamic

properties, for example, the currently assigned implementation or cost values.

Each XQGM operator corresponds to a plan in a plan graph. Table 5.1 sum-

marizes the common plan properties. A plan graph has static and dynamic

properties. All static properties are derived from the corresponding XQGM

instance (e. g., the projection specification or predicates) and are not changed

during query optimization. In contrast, dynamic properties—which are not

present in XQGM instances—, for example, the currently assigned physical

operator or cardinality estimates, are continuously manipulated during query

optimization.

By applying a logical query transformation rule on a plan graph G, we get

a semantically equivalent plan graph G′ (Definition 5.1).
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Property Description Notation

S
ta
ti
c

Predicate Predicate of the corr. XQGM operator ppred
Projection spec. Items i1, . . . , in that are projected out p[P : i1, . . . , in]

Items i1, . . . , in that must be sorted in p[S : i1(order),
ascending document order (ASC) or . . . ,Sorting specification
descending document order (DESC) in(order)]

Tuple variables Tuple variables of XQGM operator ptupVars

D
yn

am
ic

CPU cost Estimated CPU cost pCPUcost

IO cost Estimated IO cost pIOcost

Output cardinality Estimated output cardinality |p|
Implementation Currently assigned implementation pimpl

Parent The plan’s parent node pparent
Children List of the plan’s child nodes pchildren
Goal state Indicator for plan generation pisGoal

Abstract domain Abstract domain identifiers derived
padiidentifiers during cardinality estimation

Table 5.1: Common plan properties

Definition 5.1 (Semantic Equivalence) Two plan graphs G and G′ are called se-

mantically equivalent (we write G ≡ G′), if and only if G and G′ produce exactly

the same output tuple sequence.

During cost-based query optimization, the plan generator derives numerous

semantically equivalent plans. Using the cardinality inference rules and the

cost model, the plan generator assigns to each plan the corresponding IO

and CPU costs as well as the estimated output cardinality. Based on this

information, the plan generator determines the cheapest plan and finally

translates it into an Query Execution Plan (QEP) (Definition 5.2).

Definition 5.2 (Query Execution Plan) A Query Execution Plan Q(O,E) is a
tree-structured graph, where O is the set of physical algebra (PAL) operators and

E ⊆ O×O resembles the parent-child relationship between operators.

Besides the common properties, each operator class may inherit complemen-

tary properties from their corresponding XQGM instances. Before we discuss

the properties in detail, Table 5.2 shows the different plan types supported by

our plan generator.

Accesses to the document root are handled by theDocAccess plan, whereas

the Access plan can return attribute nodes and element node sequences; but

can also be used for the evaluation of context-dependent location steps (node-

at-a-time processing).

In XQGM,projection, sorting, and duplication elimination are integral parts

of operators and expressed using the projection specification or the sorting
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Plan XQGM operator Description
DocAccess Access operator Only for document root accesses
Access Access operator For attribute, node, and sequence accesses

Created for each operator that
DDO Arbitrary operator

performs duplicate elimination

Project
Created for each operator that

Arbitrary operator
has a projection specification
Created for each operator that

Sort Arbitrary operator
contains a sorting specification

GroupBy GroupBy operator –
Unnest Unnest operator –
Merge Merge operator –
Select Select operator –

Split Split operator –
SplitRef – Handles references to Split
ParentResolution – Only in combination with CAS index scans
Reference Tuple variable ref. –

Union Set operator –
Intersect Set operator –
Difference Set operator –

StructuralJoin(\) Structural Join op. –
No XQGM equivalent, because no
twig discovery is performed atTwigJoin –
the logical level

IndexAccess – Derived during plan generation

Table 5.2: Plan overview

specification. To enhance the flexibility of plan generation and for simplify-

ing the subsequent mapping onto physical algebra operators, we use three

different plans to express these tasks—DDO, Project, and Sort, respectively.
Set operations are represented as a single operator in XQGM, where a flag

distinguishes between the three actual operations: union, intersection, and

difference. In contrast, we use three different plans (Union, Intersect, and
Difference) to express the semantics of the three set-based operations, mainly

to enhance plan-generation flexibility, too.

The Split plan sends its input to multiple consumers. To reduce the com-

plexity during plan generation—obviously, trees can be handled more easily

than graphs—, every Split plan has only one real consumer, whereas the re-

maining n − 1 consumers receive their input from a dummy SplitRef plan
that—as indicated by its name—simply references the corresponding Split
plan. The Reference plan is a substitute for XQGM tuple variable references

(Mathis, 2009).
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Plan Property Description Notation
Document name – pdocNameDocAccess
Collection name Name of document collection pcollName

Access

Document name – pdocName

Collection name Name of document collection pcollName

Node test Predicate on input pnodeTest
Access type Node, sequence, or attribute paccessType
Axis Axis, if access type is node access paxis
Correlated op. ID of correlated operator, pcorrID

if access type is node access
Sort Order spec. – porderSpec
GroupBy Nesting spec. – pnestSpec
Unnest Nesting spec. – pnestSpec
Merge Merge spec. – pmergeSpec

Structural pred. ai θ b j , where θ is an XPath axis \ai θ bj

and ai, b j are tuple itemsStructuralJoin
Output order Result sorted by left or right input \outOrder

IndexAccess Index definition – pindexDef

Table 5.3: Additional plan properties

The ParentResolution plan can be injected above CAS index scans, if a sub-

sequent plan requires the parent nodes of the content values stored in the

index. The semantics of the ParentResolution plan is: For every input tuple,

it returns the corresponding parent node and removes duplicates if the parent

occurs more than once.

For the representation of the various join types, we use the standard sym-

bols: ⋉p (structural left-semi join), ⋊p (structural right-semi join),\p (structural

full join),1p (structural left-outer join), and2p (structural right-outer join).

The structural join evaluates a structural predicate p described as follows:

ai θ b j, whereupon ai is an item of tuple sequence q1, b j is an item of tuple

sequence q2, and θ is an XPath axis, for example, descendant.

A closer look on Table 5.2 reveals that there are two plans that have no

correspondent XQGM operator: TwigJoin and IndexAccess. As we have

argued in Section 3.2.1 on page 53, we do not apply twig discovery (compare

Mathis, 2009) during logical query rewrite. Instead, we will consider HTJs

during cost-based plan generation as alternative implementations for SJs.

Furthermore, IndexAccess plans are derived during query transformation

and may be an alternative way for evaluating cascades of SJs or single HTJs

using TAPs.

In Table 5.3, we summarize the additional plan properties. The DocAccess
operator additionally provides information on the document name and the

collection it belongs to. Likewise, the Access operator may have a node test
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(predicate) and can access different types of input. For example, a sequence of

nodes (set-at-a-time processing) or attribute node values. Also, it can evaluate

a location step or a predicate stepwith respect to an XPath axis using the tuples

emitted by a correlated operator as context nodes.

Sort, GroupBy, Unnest, and Merge are enrichedwith information about the

output ordering (porderSpec), which itempositions shall be unnested (pnestSpec),

according to which item positions nesting shall be performed (pnestSpec), and

which item positions must be merged (pmergeSpec), respectively.

The StructuralJoin operator contains a structural predicate, that is, it evalu-

ates an XPath axis between its left and right input tuple sequences. Moreover,

its output order property describes whether the output is sorted according to

the left or right tuple sequence. Finally, IndexAccess plans allow to access the

corresponding index definition.

5.2 From XQGM instances to Plan Graphs

Mapping XQGM instances onto plans results in an almost identical graph.

Nevertheless, subtle differences exist. To explain the mapping rationale, let us

reconsider the slightly modified XQuery expression defined in Section 4.1 on

page 63. Figure 5.1 illustrates the associated XQGM graph after applying all

rewrite rules described inMathis (2009) as well as those introduced inChapter

4.

For deriving the plan, we traverse the XQGM graph in left-most depth-

first order and map each XQGM plan onto its corresponding plan. For each

XQGM instance, we simply copy the properties listed in Table 5.1 and Table

5.3. Whenever an XQGM operator contains a projection specification, a sort-

ing specification, or an order specification, we “inject” the corresponding plan

operators into the plan. Sometimes, XQGM instances are not trees—but pure

graphs. XQGM instances may degenerate to graphs, because Split operators

may supply several operators with its output. Moreover, tuple variable ref-

erences can be connected to operators that must not be their parent or child

nodes. In general, graph structuresmake plan generationmore difficult—this

is especially true for bottom-upplan generation1. DuringXQGMtraversal, we

map only the first occurrence of a Split operator onto a Split plan. Whenever

we touch the Split operator once again during traversal, we use a SplitRef
plan instead, which “virtualizes” the actual occurrence. The same idea is

used to capture tuple variable references. When plan generation is finished,

the virtual references to the Split can be easily reconstructed.

1The recent article by Neumann and Moerkotte (2009) might help to overcome this problem.
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5 Plan Abstraction

Figure 5.1: XQGM instance for XMark benchmark query Q1
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5.2 From XQGM instances to Plan Graphs

(a) Initial plan graph after XQGM-to-plan mapping

(b) Plan graph after rewrite

Figure 5.2: Plan graph before and after logical query transformation
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Figure 5.2(a) shows the plan graph that is derived from the XQGM instance

illustrated in Figure 5.1. You can see the various Project operators that were

injected during XQGM-to-plan mapping. Moreover, two SplitRef operators
are now “virtually” connected to the Split operator (dotted edges).

As we pointed out before, plan graphs mainly focus on the structure

of the query as well as the details that are currently relevant for plan

generation. The grey box around the subtree of the first location step—

doc(”auction.xml”)�person—shows some details. The right-most Access op-

erator performs a node test on person nodes. Moreover, the plan generator

assigned a document index scan as physical access path. For the remainder

of this work, we will only describe the subtrees that are relevant for a specific

plan generation task, for example, plan transformation or cost estimation, in

detail and keep the remaining parts of the graph as abstract as possible to

prevent us from drawing off the attention from important details.

The plan generator will modify the plan graph shown in Figure 5.2(a) in

manifold ways. For example, the highlighted subtree could be evaluated

using a single TAP. Figure 5.2(b) illustrates this possible rewrite, where the

four operators are replaced by a single IndexAccess plan that could be imple-

mented using a scan over a CAS index for path doc(”auction.xml”)�person.

Before, we roughly sketched the mapping from XQGM instances onto plan

graphs. The intention was just to give you an idea how it works in principle.

Definitely, amore in-detail discussion is necessary for completely understand-

ing this initial step of plan generation. Therefore, Section 10.1.1 on page 160

will treat the implementation of the XQGM-to-plan mapping more compre-

hensively in the context of the query optimizer’s system architecture.

5.3 From Plan Graphs to Query Execution Plans

Mapping a plan graph onto an QEP is the final step of plan generation. In

most cases, this procedure results in a one-to-one mapping from plans to

physical operators, where a plan p is mapped onto the physical operator that

is specified by the pimpl property.

Let us reconsider the query illustrated in Figure 5.1 and the correspond-

ing plan graph depicted in Figure 5.2(a), which is used as data structure

for plan generation. In Figure 5.3, we can see a possible QEP that was de-

rived by the cost-based query optimizer. In this case, the first location step

(doc(”auction.xml”)�person) is evaluated using the structural join algorithm

StackTree that receives the sequence of person nodes by an Element Index Scan.

The location step between person nodes and name nodes is evaluated using
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Figure 5.3: A possible QEP for XMark query Q1
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StackTree, too. In contrast, for accessing the id attributes, a navigational oper-

ator (PalAttributeNavigationalOperator) is used. For the remaining operators, a

direct translation from plan operators to their physical counterparts is done.

Technically, the plan-to-PAL mapping is performed almost the same way

as in the heuristics-based query engine (Mathis, 2009). Therefore, in Section

10.1.7 on page 169, we will only roughly sketch in which way our translation

procedure differs from the original one.

5.4 Summary

In this chapter, we provided the preliminaries for the discussion of our query

optimization approach. Therefore, we introduced the notion of a plan graph

that consists of plan nodes.

Plan graphs are the data structures that are manipulated by the query op-

timizer introduced in this work (Section 5.1). Plan graphs are an abstraction

of XQGM instances that focus on their structure and help to define query

transformation and cardinality inference rules more easily. In addition to

all properties inherited from the corresponding XQGM instances, which are

static, plans have additional dynamic properties that are manipulated during

query optimization, for example, CPU cost or the currently assigned imple-

mentation.

In Section 5.2 and in Section 5.3, we explained how to transform XQGM

instances into plan graphs and in which way they are finally transformed into

QEPs.

In Chapter 6 to Chapter 9, we provide the basic ingredients for cost-based

query optimization: Chapter 6 introduces a set of plan transformation rules

that allow to span the search space. Next, Chapter 7 provides a comprehen-

sive set of rules for cardinality inference that allow for an approximation of

the value domains that are taken by XQGM operators at runtime. Thereafter,

Chapter 8 will elaborate on our cost model that we use to assign cost fac-

tors to plans. Finally, Chapter 9 outlines the bottom-up and top-down plan

generation algorithms.
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“It is an ill plan that
cannot be changed.”

(Latin proverb)

In this chapter, we describe various logical query transformation rules for

deriving semantically equivalent plans. First, Section 6.1 provides a general

discussion of the importance of transformation rules. Next, Section 6.2 intro-

duces the various implementations that can be considered as alternatives.

In Section 6.3, we discuss several structural variations of plans. Though,

structural variations of value-based joins, which are discussed in Section

6.3.1, are well-known from the relational scene, subtle differences exist in

the XQuery context. Effective rewriting of structural joins is necessary for

providing sufficient performance for XQuery expressions. Hence, Section

6.3.2 discusses the set of join associativity rules and the join commutativity

rule for structural joins. Join fusion (Section 6.3.3) is yet another logical query

transformation that helps to consider holistic twig joins as an alternative for

twig query patterns. The most promising rule in terms of expected perfor-

mance gain is TAP detection (Section 6.3.4). This approach helps to exploit

TAPs for query evaluation. Thereafter, Section 6.4 discusses a comprehensive

example. Finally, Section 6.5 summarizes this chapter and provides a glimpse

on subsequent chapters.

6.1 Introduction

The primary goal of query optimization in database systems is deriving al-

ternative implementations and evaluation orders for given queries as well as

identifying the most promising variant. Logical query transformations en-

able a query optimizer’s plan generator to create alternative expressions. The

remaining task is left to other optimizer components.

In general, search spaces for database queries have two orthogonal dimen-

sions that are open for variations (Figure 6.1). First, there might exist various

implementations for a single plan operator. For example, anAccess plan can be

implementedusing aDOM-navigational operator or a scanover thedocument
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Structural variation
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Figure 6.1: The two dimensions of logical query transformations

index. On the other hand, there are manifold ways for varying the structure

of plans. For example, the evaluation order of a subtree can be modified (e. g.,

join reordering), the input order of an operator can be changed (e. g., join

commutativity), a cascade of non-leaf nodes can be substituted by an operator

(e. g., join fusion), and finally, a subtree can be completely replaced by a single

operator (e. g., TAP detection).

If we compare native XDBMSs and RDBMSs with respect to their possi-

ble search space variations, native XDBMSs offer a much larger variety of

operators: There is a plethora of access paths that can be considered in the

implementation variation dimension. Moreover, structural relationships, in ad-

dition to classical value-based relationships, increase the possibilities in the

structural variation dimension, too.

Structural relationships are of utmost importance in native XDBMSs. Often,

for identifying an element in an XML document, a path expression consisting

of several location steps must be evaluated. Traditionally, such path expres-

sions are evaluated using cascades of structural join operators. Even if we

only consider the structural variation dimension and neglect implementation

variation, the number of possible evaluation orders increases—in the worst

case—exponentially with the total number of joins involved. As a conse-

quence, search spaces in native XDBMSs can become even larger than in

RDBMSs. We will see later in Chapter 9 which plan generation strategies are

able to handle these new challenges.
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6.2 Implementation Variation

In this section, we will discuss the implementation variation dimension. Mathis

(2009) already introduced the physical implementations (PAL operators) for

various XQGM operators. We retain these alternatives, but allow the plan

generator to choose the best implementation depending on its cost, rather

than on hard-wired recommendations.

6.2.1 Overview

For your convenience, we summarize the different implementations for plans

in Table 6.1 on page 88. Selecting the cheapest access path for fetching single

nodes or node sequences is crucial for the performance of QEPs. For Access
plans, we support five different access methods:

• Document Index Scan: This operator performs a scan over the document

index to get a node sequence (e. g., all book element nodes) and may

evaluate a value-based predicate.

• Navigational Operator: For each XPath axis, there exists a specific navi-

gation operator that retrieves for a given context node all nodes that are

structurally related to it via the given XPath axis. For example, for the

child axis, this operator is called Child Navigational Operator.

• Element Index Scan: This operator allows to fetch all element nodes

having the same element name from the element index.

• Path Index Scan: This operator can be used for retrieving attribute or

element nodes from a path index that contains all paths ending on a

given element or attribute name.

• CAS Index Scan: If an Access plan evaluates a value-based predicate on

its input element or attribute sequence, a CAS index that contains all

paths ending on the specified element or attribute name might be the

appropriate access path.

Currently, StructuralJoin plans are evaluated using Extended StackTree and

NavTree. Extended StackTree is a classical structural join operator (compare

Section 2.2.1), whereas NavTree’s evaluation scheme resembles that of tradi-

tional nested-loops joins in RDBMSs.

The Select plan has five different implementations that are strongly depen-

dent on the properties of the plan:
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Plan PAL Operator Description

Document Index Scan –
Navigational Operator Navigational access with respect to a

context node; one for each XPath axis
Element Index Scan –
Path Index Scan Only for single loc. steps, e. g., �book

Access

CAS Index Scan Only for single loc. steps, e. g., �title

Path Index Scan For arbitrary document paths
IndexAccess

CAS Index Scan For arbitrary document paths

Extended StackTree A pedigreed structural join operator
StructuralJoin

NavTree Similar to a relational nested-loops join

Value-Based Hash Join Binary Select, value-based eq. pred.
Value-Based Merge Join Binary Select, value-based pred.
Value-Based Nested-C Binary Select, value-based pred.
Loops Join
Select Operator Multi-way Select operator with pred.
Select Operator with Lazy Evaluation of for-let bindings

Select

or Eager Tuple Generator

Twig Join Extended TwigOpt –

DocAccess Document Access For document root access

DDO DDO Operator For duplicate elimination

Project Project Operator –

Sort Tuple Sort Operator –

GroupBy GroupBy Operator –

Unnest Unnest Operator –

Merge Merge Operator –

Split Split Operator –

Reference Tuple Access Operator

Union Union Operator –

Intersect Intersect Operator –

Difference Except Operator –

Table 6.1: Implementation alternatives for plans

• Value-Based Hash Join: This alternative can be used for the implemen-

tation of binary Select plans (having exactly two tuple variables) that

evaluate a value-based equality predicate.

• Value-Based Merge Join: Using this operator, binary Select plans can be

implemented that evaluate either value-based equality or non-equality

predicates.
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• Value-Based Nested-Loops Join: This operator represents yet another im-

plementation for evaluating value-based joins.

• Select Operator: This is a general alternative for Select plans that may

evaluate arbitrary predicates and can have multiple inputs.

• Select Operator with Tuple Generator: This alternative is used for Select
plans that mimic the for-let bindings that could not be transformed to

structural joins in the course of query unnesting (compareMathis, 2009).

As we have argued in Section 3.2.1, HTJs are not as important for efficient

query evaluation as earlier expected. Nevertheless, they are an alternative

way for twig query evaluation that must be considered by a typical native

XDBMS query engine. TwigJoin plans can be derived from cascades of Struc-
turalJoinplans using the join fusion transformation rules (Section 6.3.3). Today,

we can only dispose of a single—but very powerful—HTJ operator Extended

TwigOpt (Mathis, 2009).

For the remaining operators, for example, Project or Split, we currently do

not provide alternative implementations. Though, it might be helpful to add

further alternatives in the future. For example, additional implementations

for Sort plans, for example, specialized external-sorting algorithms, could be

beneficial.

6.2.2 Rules for Implementation Variation

After providing an overview of the various implementation alternatives for

plan operators, we are now ready to discuss the implementation variation

rules for Access, IndexAccess, StructuralJoin, and Select in detail.

For the remainder of this chapter, we use the following notation to describe

the query transformation rules: the implementation of plan p can be changed

from i1 to i2, if and only if the condition is satisfied, where plan p′ is an exact

copy of p that only differs in the selected implementation1:

pimpl=i1 ∧ condition

p′impl←− i2

ForAccess plans, aDocument Index Scan is the default implementation. Figure

6.2 on page 90 shows the corresponding implementation variation rules.

Rule IS-ACCESS-1 shows the implementation variation for an Access plan

that handles node accesses. Here, a Navigational Operator can be used as an

1Please note, we use the “←−” symbol for assignments and the “=” symbol for comparisons.
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Access p ∧ pimpl=Document IndexScan ∧ paccessType=node∧

paxis, null ∧ pcorrID,−1

p′impl←−Navigational Operator (IS-ACCESS-1)

Access p ∧ pimpl=Document IndexScan ∧ pnodeTest=e1 ∧

paccessType=sequence ∧ pcollName=c1 ∧ pdocName=d1 ∧

indexAvailable(d1, c1, e1, Element Index)

p′impl←−Element IndexScan (IS-ACCESS-2)

Access p ∧ pimpl=Document IndexScan ∧ pnodeTest=e1 ∧

paccessType=sequence ∧ pcollName=c1 ∧ pdocName=d1 ∧

indexAvailable(d1, c1,�e1, Path Index)

p′impl←−Path Index Scan (IS-ACCESS-3)

Access p ∧ pimpl=Document IndexScan ∧ pnodeTest=e1 ∧

(paccessType=sequence ∨ paccessType=attribute) ∧ ppred=p1 ∧

pcollName=c1 ∧ pdocName=d1 ∧

indexAvailable(d1, c1,�e1, p1, CAS Index)

p′impl←−CAS Index Scan (IS-ACCESS-4)

Figure 6.2: Implementation Variation for Access plans

alternative implementation for a document index scan, if the axis and the

context node is provided.

An Element Index Scan is a possible implementation for an Access plan,

if there exists an element index (function indexAvailable) that contains all

elements having name e1 in document d1 of collection c1 (Rule IS-ACCESS-
2).

A Path Index Scan (Rule IS-ACCESS-3) may be employed, if this index

allows to evaluate the path expression �e1, that is, it contains all paths of

document d1 that end on element e1.

Finally, Rule IS-ACCESS-4 describes the precondition that qualifies a CAS

Index Scan as complementary implementation. The Access plan may access

a node sequence or an attribute node and evaluate a value-based predicate.

If subsequent operators do not need the content values returned by the CAS

index scan, but require their parent (element or attribute) nodes instead, a
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StructuralJoin p ∧ pimpl=Extended StackTree

p′impl←−NavTree (IS-SJ)

Figure 6.3: Implementation Variation for StructuralJoin plans

ParentResolution plan must be injected between the Access operator and its

parent operator.

As we have already pointed out before, IndexAccess plans are created

during TAP detection. In this case, we do not need specific implementation

variation rules, because during TAP detection, for every matching index, a

separate plan is created.

For StructuralJoin plans, we can currently dispose of two different evalua-

tion algorithms: NavTree and Extended StackTree. Figure 6.3 shows the corre-

sponding IS-SJ rule. Here, the Extended StackTree algorithm is the default

implementation for StructuralJoin plans.

For Select plans that evaluate a value-based predicate, we use the Value-

BasedNested-Loops Join algorithmas default implementation. As an alternative

implementation for it, the plan generator can use the Value-Based Merge Join

operator, if the inputs of the Selectplan are sorted in document order2 (Figure

6.4 IS-SELECT-1) .
If a Select plan evaluates a value-based equality predicate, the Value-Based

Hash Join algorithm qualifies as alternative implementation. Figure 6.4 shows

the corresponding implementation variation rule IS-SELECT-2.

6.3 Structural Variation

After introducing the implementation variation rules in Section 6.2, we can

now focus on the second aspect of query transformation. Structural variations

are possible in two dimensions: First, they can replace the evaluation order

of operators. Second, several adjacent operators may be replaced by a single

one.

In some cases, it is more intuitive for the reader to get a visual impression

of the plan structure and its equivalent rewrite, instead of simply looking at

mere inference rules. Therefore, we will use the following notation A ≡ B,

where A and B are plans, to indicate that A and B are semantically equivalent

(see Definition 5.1 on page 76).

2This property can be checked using the function isInDocOrder.
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Select p ∧ pimpl=Value-Based Nested-Loops Join ∧

ppred=p1 ∧ isValueBased(p1) ∧ isInDocOrder(pchildren[0])∧

isInDocOrder(pchildren[1])

p′impl←−Value-Based Merge Join (IS-SELECT-1)

Select p∧
pimpl,Value-Based Hash Join ∧

ppred=p1 ∧ isValueBased(p1) ∧ isEquality(p1)

p′impl←−Value-Based Hash Join (IS-SELECT-2)

Figure 6.4: Implementation Variation for Select plans

6.3.1 Rewrite of Value-Based Joins

Everybody that dealt with RDBMSs in the past, knows value-based joins

very well. In native XDBMSs, they are complementary to structural joins.

Figure 6.5 shows an XQGM fragment of a value-based join. Select operator

➀ iterates over the input sequence bound to the for-quantified tuple variable.

Each item is sent to Select operator ➁’s let-quantified tuple variable as current

evaluation context. Now, operator➁ iterates over the tuple sequence provided

by the operator bound to its for-quantified tuple variable and checks using the

fn:data() function which items have the same content value as the current

context item, which was provided by operator ➀. For each match, the result

is propagated to operator ➀. Operator ➀ emits tuples where each sequence of

matches received from operator ➁ is nested below the current context tuple.

Therefore, a certain order is predetermined that must be preserved by a query

transformation rule.

In the relational world, value-based join commutativity is a well-known

transformation rule, where the left and the right join partner are exchanged.

This is possible, because the classical relational data model does not support

nested tuples. In contrast, for value-based joins in XQGM, join commutativity

would mean to exchange the subtrees outlined with ∗ below operator ➀ and

➁, respectively. By doing so, we would violate the nesting order proposed

in the original XQGM graph. Hence, join commutativity is not possible for

value-based joins.

Now, the question ariseswhether value-based joins in native XDBMSs are at

least associative, that is, allow for exchanging the join order of two consecutive
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Figure 6.5: XQGM fragment of a value-based join

joins. Unfortunately, here, the situation remains unchanged: In general, it is

not possible to preserve the correct nesting order. Therefore, join associativity

is also not an option for value-based joins in native XDBMSs.

Though we cannot do anything on the logical level for speeding-up value-

based join evaluation, we can at least influence the way how these joins are

evaluated on the physical level. Let us assume the query optimizer decides to

evaluate the value-based join depicted in Figure 6.5 using theValue-BasedHash

Join operator. In this case, the performance-critical question is, forwhich input

shall the hash table be built and which input is probed against the hash table.

Traditionally, the hash table is built for the smaller input sequence and the

larger input sequence is probed against it (compare Härder and Rahm, 2001).

To estimate the tuple sequence sizes, which help to answer this question, we

can employ the cardinality inference rules that will be presented in Chapter 7.

6.3.2 Rewrite of Structural Joins

Structural joins are the main ingredients of native XML query processors.

This class of operators has—under certain conditions—the same properties as

relational joins: commutativity and associativity (Weiner et al., 2008b).

93



6 Query Transformation

StructuralJoin p ∧ paxis,self a ∧ pchildren[0] c0 ∧ pchildren[1] c1

p′
axis←−invertAxis(a)

∧ p′
children[0]←− c1

∧ p′
children[1]←− c0 (SJ-COMM)

Figure 6.6: StructuralJoin commutativity

Join Commutativity

Join commutativity, that is, the exchange of the left and the right input of a

structural join operator can be easily accomplished. Structural joins evaluate

structural predicates (XPath axes) that can be partitioned into forward axes,

for example, child, and reverse axes, for example, parent. Each forward axis,

except for the self axis, has a corresponding reverse axis and vice versa.

The StructuralJoin commutativity rule (SJ-COMM), which is depicted in

Figure 6.6, performs the join order exchange in two steps: First, function

invertAxis returns for a forward axis the corresponding reverse axis and vice

versa. Second, the left and the right inputs are swapped.

Join Associativity

In the XQuery world, describing StructuralJoin associativity using a single

rule is foiled by the need for early duplicate elimination and for preserving

the document order. Though early duplicate elimination is only necessary at

the physical level, we can help to preserve this goal even at the logical level.

In contrast, the document order must be guaranteed at the logical level.

On the one hand, every plan that forms the root of a query plan has to

perform duplicate elimination and sorting, independent of its operator type.

On the other hand, plans that have incoming and outgoing edges potentially

need to apply duplicate elimination.

Fortunately, not every StructuralJoin plan needs additional duplicate elim-

ination. For example, a structural full join will not create any duplicates,

independent of the structural predicate it evaluates. Contrariwise, a struc-

tural semi join can produce duplicates.

We can partition structural semi joins into two equivalence classes depend-

ing on the necessity of duplicate elimination: (1) semi join operators where

only tuples of one incoming tuple sequence can contain duplicates after join

evaluation (join operators that evaluate, for example, child or previous-sibling

axes), and (2) semi joins where both incoming tuple sequences can contain
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DDO[P: a]

Project[P: a]

⋉b desc−or−selfc

Project[P: a, b]

\a desc−or−selfb

A[P: a]
B[P: b]

C[P: c]
≡

D[P: a]

Project[P: a]

⋉a desc−or−selfb

A[P: a]
D[P: b]

Project[P: b]

⋉b desc−or−selfc

B[P: b] C[P: c]

(SJ-AS-DD-A)

Figure 6.7: A sample StructuralJoin associativity rule

duplicates after join evaluation (join operators that evaluate, for example,

descendant or previous axes).

Let adenote the left joinpartner, bdenote the right joinpartner of a structural

semi join p that evaluates the child axis. If p only produces a tuples satisfying

the structural predicate, then duplicate elimination has to be performed, be-

cause every node can have multiple child nodes. In contrast, if p only delivers

b tuples as output, then duplicate elimination is not needed, because every

node has at most one parent node. If pwould evaluate a descendant axis, then

duplicate elimination could become necessary in both cases, because every

node can have multiple descendants and multiple ancestors.

To provide a complete set of associativity rules, all combinations of axes

have to be considered. Additionally, different outputs need to be taken into

account, too. An input plan is called an output node if the tuple sequence

emitted by it contributes to the query result or is processed in a subsequent

plan. Figure 6.7 shows the associativity rule for one output node (plan A) and
two adjacent StructuralJoin plans that evaluate the descendant-or-self axis3. To

support a more fine-granular treatment of sorting and duplicate elimination,

we replace DDO plans, which only eliminate duplicates, by D. Furthermore,

we assume that the output of each join operator is implicitly sorted by the

input that is used by a subsequent plan or that contributes to the final result.

On the left hand side of Figure 6.7, a structural full join (\) is performed

3This query graph corresponds to the following XPath expression: a[.�b�c].
To simplify the presentation, we have not fully expanded the “�” abbreviation to descendant-or-
self::node()/, instead, we only use desc-or-self for short.
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between tuples of A and B, which needs no additional sorting or duplicate

elimination.

The corresponding right-hand side, which contains only left-semi joins (⋉),

requires duplicate elimination and sorting for two reasons: (1) it has only

incoming edges and (2) each tuple of the incoming tuple sequence can have

multiple descendant c nodes. On the right side, a StructuralJoin is performed

first between B and C. Because this structural relationship is evaluated using

a semi join, we need additional duplicate elimination, because every b node

can have multiple c descendants. The following semi join operator needs

duplicate elimination for the same reason, but it needs no additional sorting,

due to our implicit sorting assumption.

In essence, all StructuralJoin associativity rules follow the principles dis-

cussed in this section4. You can look at more join associativity rules in Ap-

pendix B on page 221.

6.3.3 Join Fusion

In Section 3.2.1, we argued that applying twig discovery too early in the op-

timization process, that is, identifying opportunities for using HTJs at the

logical level, is harmful. Nevertheless, HTJs are yet another way for evalu-

ating structural patterns. Therefore, our plan generator must take them into

consideration. Employing this operator is really useful, if the query engine

has to evaluate path expressionswhere the majority of location steps evaluate

the descendant axis (Bruno et al., 2002).

Figure 6.8 shows the two StructuralJoin fusion rules for three location steps

involving four Access operators and up to two StructuralJoin plans. Using

both rules, the plan generator can iteratively replace the StructuralJoin plans

by a single TwigJoin. Discussing a generalized version of join fusion, that

is, fusion of n-way joins is really bulky. For this reason, we restrict our

discussion to the example shown in Figure 6.8. However, the general idea

should be comprehensible.

Figure 6.8(a) shows the initial rule for join fusion (SJ-FUSION-1), which is

always applied bottom-up. Here, two StructuralJoin plans are replaced using

a 3-way TwigJoin that receives its inputs from three Access plans A1,A2, and

A3
5. On the right-hand side of Figure 6.8(a), items a1 and a2 are joined in

the first step, whereas the second steps allows for joining a1 or a2 with a3.

4In fact, we already introduced a similar set of SJ associativity rules in Weiner (2007). However, at
that time, they were discussed in the context of a very primitive predecessor of today’s XQGM.

5In Figure 6.8, we simply abbreviated the Access identifiers by Ax for to the sake of readability.
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ctu
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V
ariation

(a)

. . .

Project[P:...]

\ai θ2 a3 with i∈{1,2}

Project[P:...]

\a1 θ1 a2

A1 [P: a1 ]
A2 [P: a2 ]

A3 [P: a3 ]
≡

. . .

Project[P:...]

TwigJoin(a1 θ1 a2)∧ (ai θ2 a3) with i∈{1,2}

A1 [P: a1]
A2 [P: a2 ]

A3 [P: a3 ]
(SJ-FUSION-1)

(b)

. . .

\a j θ a4 with j∈{1,2,3}

Project[P:...]

TwigJoin(a1 θ1 a2)∧ (ai θ2 a3) with i∈{1,2}

A1 [P: a1 ]
A2 [P: a2 ]

A3 [P: a3 ]

A4 [P: a4]

≡

. . .

Project[P:...]

TwigJoin(a1 θ1 a2)∧ (ai θ2 a3)∧ (a j θ3 a4) with i∈{1,2}, j∈{1,2,3}

A1 [P: a1 ]
A2 [P: a2 ]

A3 [P: a3]
An [P: an ]

(SJ-FUSION-2)

Figure 6.8: The StructuralJoin fusion rule
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Which join partner will be actually chosen in the second step depends on the

projection specification of the lower StructuralJoin subtree (left-hand side).

Rule SJ-FUSION-1 helped us to derive heterogeneous plans, that is, plans

that may consist of StructuralJoin plans and a TwigJoin plan. Figure 6.8(b)

shows the second rule (SJ-FUSION-2) that is used as a follow-up to rule SJ-
FUSION-1. Using this rewrite, we can further integrate StructuralJoin plans

into the TwigJoin. Again, the last location step can contain a join between

a1, a2, or a3 with a4 depending on the structure of the twig pattern.

In Weiner and Härder (2009), we introduced a cost-aware decision criteria

that helps the plan generator to check whether applying join fusion leads to a

performance gain or loss. We will discuss this criteria in Chapter 8 where we

deal with cost-related aspects of plan generation.

6.3.4 TAP Detection

In Section 3.1.3, we introduced TAPs as the most versatile class of access paths

that modern native XDBMSs can dispose of. Allowing the plan generator to

make use of them motivated the TAP detection rules that we will discuss in

this section.

Figure 6.9 shows the TAP detection rules (TAP-1 and TAP-2). The first

rule replaces a cascade of structural joins with a corresponding IndexAccess
plan, if there exists an index for the associated document that is equivalent to

the path expression evaluated by the structural join operators. All structural

joins must be right-semi joins to preserve the correct output semantics. If a

predicate step like a[b] shall be supported, which is only possible for the last

step of a path expression, a ParentResolution plan must be injected during

plan generation, to guarantee the correct output semantics. Moreover, we

restrict both TAP detection rules to location steps with “vertical directions”,

such as child or descendant-or-self 6, because the evaluation of “horizontal” axes

like following-sibling cannot be efficiently supported by these access paths.

Rule TAP-2 describes the second step of TAP detection. It permits to in-

tegrate further location steps into an IndexAccess plan. Figure 6.9(b) shows

the definition of the rule. A location step (an θn an+1) can be integrated into a

present IndexAccess plan, if there exists an index definition in the document

that matches the following path: a1 θ1 a2 . . . an−1 θn−1 an θn an+1.

Using both rules, we can iteratively replace cascades of StructuralJoin and

Access plans by a single IndexAccess plan. Even at the logical level, the

benefits of this approach are obvious: (1) We reduce the total number of

6We additionally support the attribute axis, if it is exclusively evaluated in the last location step.
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V
ariation

(a)

. . .

Project[P: an ]

⋊an−1 θn−1 an

. . .

Project[P: a2 ]

⋊a1 θ1 a2

Access1 [P: a1 ]
Access2 [P: a2 ]

Accessn [P: an ]

≡

. . .

Project[P: an ]

IndexAccessindexDef=a1 θ1 a2 ... an−1 θn−1 an
(TAP-1)

(b)

. . .

Project[P: an+1]

⋊an θn an+1

Project[P: an ]

IndexAccessindexDef=a1 θ1 a2 ... an−1 θn−1 an

Accessn+1 [P: an+1]

≡

. . .

Project[P: an+1]

IndexAccessindexDef=a1 θ1 a2 ... an−1 θn−1 an θn an+1

(TAP-2)

Figure 6.9: TAP detection99
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Query 6.1 XMark benchmark query Q1

let $auction := doc("auction.xml") return

for $b in $auction/site/people/person[@id = "person0"]

return $b/name/text()

operators involved in the query. Hence, we can save valuable CPU costs,

because we do not need to evaluate the complete path expression, but can

resort to the results of a materialized view on paths, that is, a path index or

CAS index and (2) we dramatically reduce random IO accesses, because we

only need to scan a single access path instead of evaluating n Access plans

for an n-step path expression.

6.4 Example

After the rather sober discussion of the various rules for implementation varia-

tion and structural variation, it is time to have a look at an example. Therefore,

let us consider Query 6.1. Figure 6.10 shows the corresponding XQGM in-

stance. In Section 4.1 and Section 5.2, we alreadydiscussed a slightlymodified

version of this query. In the current example, the predicate [@id = ”person0”]

is—in contrast to the previous example—not evaluated in an XQuery where

clause, but now, expressed as an XPath predicate step. This simple modifi-

cation has severe consequences on the shape of the XQGM instance, due to

additional opportunities for query unnesting. In this case, the final XQGM

instance looks much simpler than before. For the rest of this example, let us

assume that there exist three indexes for document auction.xml:

1. An element index on people and person nodes

2. A path index on doc(”auction.xml”)/site/people

3. A CAS index on all id attribute content nodes
(

we write �@id [String]
)

Figure 6.11 shows the initial plan, right after mapping the XQGM instance

on the corresponding plan representation. Subtree➀ is equivalent to the

path expression doc(”auction.xml”)/site/people/person. First, we could modify

the currently assigned implementations of the Access operators for people

and person using rule IS-ACCESS-2. As a consequence, we could derive three

new instances of subtree➀: In the first two subtrees, we would alternate the

exclusive assignment of one element index scan to people and person nodes,

respectively. In the third case, both Access plans would be implemented
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Figure 6.10: XQGM instance of XMark query Q1
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Figure 6.11: Initial plan for XMark Query Q1
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(a) Join reordering (b) TAP detection

Figure 6.12: Examples of logical query transformations on subtree➀

using element index scans. In total, we get four variants for subtree➀, just by

varying the implementations.

For each of these variants, we can perform join reordering. If we reconsider

the initial subtree➀, where all Access plans are evaluated using document

index scans and apply the join associativity rule SJ-AS-CC-C (Appendix B),

we can derive the subtree illustrated in Figure 6.12(a). Now, a structural full

join is evaluated between site and people nodes, because wemust retain the site

nodes that are joined with the virtual document root in the subsequent join.

Applying TAP detection for path doc(”auction.xml”)/site/people on the initial

subtree➀ results in the plan depicted in Figure 6.12(b). In addition to the

two location steps that are replaced by a path index scan, the adjacent Project
plan becomes superfluous, because, by definition, the path index returns only

people nodes. Depending on the clustering mode of the path index, we have

to additionally inject a Sort plan above the IndexAccess plan if the path index

is clustered by PCRs and not by DeweyIDs.

Before, we only discussed some variations of subtree➀. Thus, let us now

focus on subtree➁. Here, we can once again vary the implementation of

the Access operators. Using rule IS-ACCESS-4, we can exploit the CAS
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(a) Implementation variation (b) TAP detection

Figure 6.13: Logical query transformations on subtree➁

index on id attribute nodes. Figure 6.13(a) illustrates subtree➁ after applying

the transformation. The Access operator can directly evaluate the predicate

@id=”person0”on the CAS index, hence, we can remove the Select operator
above it.

In Section 3.1.3, we learned that TAPs are always accompanied by the

path synopsis, which is a kind of dynamic schema. Let us assume that a

look at the path synopsis tells us that id attribute nodes exist only below the

path /site/people/person. Hence, we can reuse the CAS index by applying the

TAP detection rule to cover subtree➀ and subtree➁. Figure 6.13(b) shows the

correspondingplan. Topreserve the correct semantics of the plan after rewrite,

we inject a ParentResolution plan that returns the duplicate-free sequence of

all person nodes whose related id attribute nodes were returned by the CAS

index scan performed by the IndexAccess plan.

Now, you might ask whether Figure 6.13(b) represents the ultimate plan.

Actually, the only structural variation that is possible now, is applying the join

commutativity rule SJ-COMM on the remaining StructuralJoin plan. Besides

that, we can vary the implementations of the StructuralJoin and the remaining
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Access plan. Even by neglecting cost information, the plan depicted in Figure

6.13(b) promises to be more efficient compared to the initial plan (Figure

6.11), because the query transformations reduced the number of Access and

StructuralJoin plans.

6.5 Summary

In this chapter, we introduced approaches for deriving alternative plans in

two dimensions of the search space: implementation variation and structural

variation. The first approach offers the plan generator multiple ways for eval-

uating single plans using different implementations, for example, different

access paths for Access plans. The second strategy allows for modifying the

structure of plan fragments in such a way, that a more efficient evaluation can

be expected.

Section 6.1 motivated the necessity of implementation variation and struc-

tural variation for effective query optimization. Next, Section 6.2 discussed

several means for implementation variation. Thereafter, Section 6.3 provided

opportunities for deriving differently shaped plan fragments. In detail, Sec-

tion 6.3.1 explained why the optimization of value-based joins is difficult in

native XDBMSs. In contrast, we introduced numerous rules for optimizing

XPath path expressions, for example, using SJ reordering or TAP detection.

As the major part of this chapter was mere theory, Section 6.4 provided a

comprehensive example to show the practical application and implications of

the various rules.

In the upcoming Chapter 7, we will detail the inference rules that help to

estimate the output cardinalities of plans. In combinationwith the costmodel,

which will be introduced in Chapter 8, and the logical query transformations

presented in this chapter, we can finally implement a cost-based XQuery

optimizer.

105



6 Query Transformation

106
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“Greetings! I am the Count. They
call me the Count because I love to
count things.”

(Count von Count, Sesame Street)

Reliable cardinality estimation is key for effective cost-based query optimiza-

tion. In this chapter, we enhance previous works on reliable cardinality esti-

mation for XQuery and define an inference rule set that helps to estimate the

cardinalities of XQGM expressions taken at runtime1.

Section 7.1 provides an introduction to the challenges of XQuery cardinality

estimation. Thereafter, we introduce in Section 7.2 important definitions such

as abstract domain identifiers. In Section 7.3, we define and discuss the

inference rule set. Next, Section7.4 compares thepresent approachwithearlier

related works. Finally, Section 7.5 summarizes this chapter and provides a

glimpse on subsequent chapters.

7.1 Introduction

In Section 4.2 on page 70, we introduced cost-based query unnesting. This al-

gebraic rewrite requires statistical information fordecidingwhether unnesting

shall be applied or not. Reliable cardinality information is even more impor-

tant for effective plan generation: Using the logical query transformations

presented in Chapter 6, the plan generator can derive a plethora of evaluation

orders for XQuery expressions. The grand challenge for cost-based query

optimization is now to pick only good plans out of this tremendously large

search space. To solve this task, cost factors—whose calculation is based on

cardinality estimates for query sub-expressions—are assigned to each alter-

native for distinguishing good plans from bad ones.

Full cardinality estimation support for XQuery is a strongly neglected re-

search topic in native XDBMSs (Weiner, 2011). Interestingly, the vast majority

of cardinality estimation frameworks developed for native XDBMSs only al-

1This chapter is partially based on Weiner (2011), whose content is reused in accordance with the
publisher’s copyright assignment (Gesellschaft für Informatik e. V.).
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Query 7.1 Simplified query definition for W3C Use Case “R” query Q13

<result> {

for $uid in distinct-values(doc("bids.xml")�userid),

$u in doc("users.xml")�user_tuple[userid = $uid]

let $b := doc("bids.xml")�bid_tuple[userid = $uid]

return

<bidder name="{$u/name}" bidCount="{count($b)}"/>

} </result>

lows for the estimation of XPath cardinalities (compare Section 7.4). Fairly,

XPath is an important fragment of XQuery and necessary for defining search

conditions on hierarchical document structures; but restricting cardinality

estimation to it is not enough to allow for effective XQuery optimization.

For getting deeper insights into this fundamental problem of XQuery car-

dinality estimation, let us discuss the estimation capabilities of present ap-

proaches with the help of Query 7.1, whose graphical representation is given

in Figure 7.1. The query returns for each user that placed a bid the user

name and the total number of bids. First, the result of expression distinct-

values(doc(“ids.xml”)�userid) is sent from operator➀ to operator➁. Select op-

erator➁ triggers the subsequentworkflow. Inoperator➂, the first value-based

join is evaluated. Operator➃ serves for evaluating the second expression in

the for clause, which is bound to $u. The structural outer join (operator➄) re-

turns (userid, user tuple) tuples and does not eliminate user tuple nodes, even if

there is no matching join partner. This is necessary, because the correct output

semantics for empty sequences in the final return clause must be guaranteed.

After the evaluation of the value-based join, the qualifyinguser tuplenodes are

sent to operator➅, which contribute to the name attribute in the query result.

Having a look at the query definition shows that there is a second value-based

join in the let clause (operator➈). Operator➆ provides the evaluation context

(dashed line) for the Access operator below operator➇. Finally, the result is

passed to operator➁ which, in turn, hands it over to operator➉.

Current cardinality estimation frameworks cannot provide decent results—

even for very simple queries like Query 7.1 (also compare Section 7.4). Let

us exemplify the restrictions of present frameworks using our sample query.

Most frameworks can only provide estimates for the outputs of the XPath

expressions that are bound to $uid. This situation is not satisfying, because

many optimization problems, for example, selecting an appropriate imple-

mentation for value-based joins (Section 6.3.1) or finding the optimal SJ order

(Section 6.3.2), are based on fuzzy and coarse-grained heuristics rather than
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Figure 7.1: Simplified W3C XQuery use case “R” query Q13 (Weiner, 2011)
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costs. For example, if the plan generator can dispose of a hash-based join

operator for value-based join evaluation, we can only hope that we chose the

smaller input for hashing and the larger input for probing. If our guess shapes

up as wrong, we consequently will face a tremendous performance loss.

Moreover, cardinality estimates for the final query result cannot be pro-

vided, too. Accordingly, this might have great influence on the selection of an

appropriate materialization strategy, for example, in the presence of few final

results, late materialization might be preferred over early materialization.

By systematically reviewing recent works (Section 7.4), we state that the

concept of abstract domain identifiers and the corresponding cardinality in-

ference rules, which were introduced by Teubner et al. (2008), provide an

elegant methodology for reliable XQuery cardinality estimation. Moreover,

their approach is more advanced than any other XQuery cardinality estima-

tion framework—at least to the best of our knowledge. Unfortunately, their

approach cannot be used out-of-the-box for our purposes, because it relies

on a completely different algebra and is tailor-made for the relational XQuery

processorPathfinder, which is part of XQuery/MonetDB (see Table 2.1 on page

36). Consequently, we must define a novel set of inference rules that cover

all language constructs of XQGM operators such as all variants of binary and

n-ary SJ operators (i. e., semi joins, outer joins, and full joins).

7.2 Preliminaries

In this section, we recapitulate important notions such as abstract domain iden-

tifiers and active domains that are necessary to develop the cardinality inference

rules (Section 7.2.1). Next, we discuss the generalization of the classical 10%

rule, which was introduced in the context of System R as a default selectivity

for predicates (Section 7.2.2).

7.2.1 Nomenclature

Teubner et al. (2008) introduced the concept of abstract domain identifiers. For

your convenience, we repeat the definition and adjust it to our needs in the

context of XQGM. As we have already learned in Section 3.1.4, each XQGM

operator consumes or emits tuple sequences. Naturally, the same statement

holds for plans, because they are simply a different view on XQGM instances.

Let s =< t1, . . . , tn > be a tuple sequence where each t j = [i j 1, . . . , i j m] is a

tuple with m items. Obviously, this tuple sequence has a “fixed schema”

with m columns (denoted by c1, . . . , cm), that is, every tuple has m (probably
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c1 . . . cm
t1 i1 1 . . . i1m
...

...
. . .

...

tn in 1 . . . inm

Table 7.1: Hypothetical schema

nested) items where each i j k shares a common domain (for an arbitrarily but

consistently chosen k). In Table 7.1, we illustrate this hypothetical schema.

Abstract domain identifiers (Definition 7.1) allow to estimate the value space

of tuple items that are taken by XQGM expressions at runtime.

Definition 7.1 (Abstract domain identifier) An abstract domain identifier rep-

resents the domain taken by tuple items at runtime, whichwe denote byGreek

letters such as α or β.

Definitions 7.2–7.5 introduce the notions used for the specification of the

numerous cardinality inference rules.

Definition 7.2 (Active domain) We call the set of all values taken by tuples

t1 . . . , tn in column ci the active domain of ci and denote it by αi.

Definition 7.3 (Domain size) The domain size of ci is the total number of dis-

tinct values in ci. We refer to the domain size of ci by ‖αi‖.

Definition 7.4 (Result domain set) We call dom(o) = {cα1
1
, . . . , cαmm } the result

domain set of the tuple sequence produced by XQGM operator o as output2,

where cαi
i

is the i-th column of the tuple sequence emitted by o with the

corresponding active domain αi.

Definition 7.5 (Inclusion relationship) For the abstract domain identifiers α

and β, we define the reflexive and transitive inclusion relationship β ⊑ α as

follows3: β ⊑ α⇐⇒ ∀ b ∈ β : b ∈ α.

7.2.2 The Generalized Ten-Percent Rule

The 10% heuristics was introduced by Selinger et al. (1979) in the context of

System R. The rationale of this rule is very simple: If there is no statistical

2Please note, here we assume that the identifiers α1, . . . ,αm have not been used before.
3Henceforth, we will denote the assignment of an inferred value by “=!” and an inferred inclusion
relationship by “⊑!”.
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7 Cardinality Estimation

information on the value distribution of a column that a query optimizer can

dispose of, we assume that a selection predicate (comparison with a constant

factor) on this column retains only 10% of its input. Even after more than 30

years, the 10% heuristics serves as default value in modern database systems

(compare, e. g., Chaudhuri, 1998; Härder and Rahm, 2001).

Teubner et al. (2008) generalized this rule in such a way that it can be used

in their XQuery cardinality inference framework. For your convenience, we

briefly discuss the generalization, because we will also make excessive use of

it in Section 7.3.

Let us assume that we have a hypothetical schema with m columns. Fur-

thermore, we assume that we have a selection predicate p with selectivity

σ(p), where 0 ≤ σ(p) ≤ 1 holds. If we apply p to the hypothetical schema

depicted in Table 7.1 and assume an independence between p and column ci,

we are able to estimate the output domain size of ci. Let |s| be the cardinality

of the tuple sequence, that is, the total number of tuples, as illustrated in Table

7.1, and ‖γ1‖ be the domain size of column ci in the operator’s input tuple

sequence (Table 7.2).

On the average, each a ∈ γ1 can be found |s|/‖γ1‖ times in the tuple sequence

s. Accordingly, the probability that all occurrences of a are not selected by

applying p on s is 4:

P 6ǫ =
(

1− σ(p)
)|s|/‖γ1‖

Consequently, the probability that at least one representative of a remains in

the output tuple sequence is given by: 1− P 6ǫ = Pǫ. We get:

Pǫ = 1−
(

1− σ(p)
)|s|/‖γ1‖

Definition 7.6 is used for the specification of the inference rules: If an XQGM

operator or a plan filters its input tuple sequence using a predicate on column

c, we estimate the selectivity using XTC’s cardinality estimation framework

EXsum or use a default constant. For every column that is independent, that

is, not affected by the predicate, we use the generalized 10% rule to derive a

rough estimation of the output domain size.

Definition 7.6 (Generalized 10% rule) Let σ(p) be the selectivity of predicate

p that is applied to a tuple sequence swith |s| tuples. Let s have a hypothetical

schema as illustrated in Table 7.2. We assume that p is independent of column

4If not stated otherwise, we will use σ(p) = 1/10 in the definition of the inference rules in Section
7.3.
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. . . ci . . .

i1 i
...

...
...

i1 i

...
...

...

ik i
...

...
...

ik i

Table 7.2: Generalization of the 10% rule

ci whose active domain is referred to by γ1. Hence, we estimate the output

domain size ‖γ2‖ for ci after applying p on s by:

‖γ2‖ = ‖γ1‖ ·
(

1−
(

1− σ(p)
)|s|/‖γ1‖

)

.

Example

Let us assume that operator o emits the hypothetical schema shown in Table

7.3. Here, we have three active domains α1, β1, and γ1 for columns a, b, and

c, respectively. The result domain of o is: dom(o) = {aα1 , bβ1 , cγ1 }. Column

a has only one distinct value (‖α1‖ = 1), column b has three distinct values

(‖β1‖ = 3), and, finally, column c has three distinct values (‖γ1‖ = 3), too.

If the tuple sequence shown in Table 7.3 serves as input for a Select plan
that filters out all items in cwhose node value is not equal to “ThomasMann”,

an access to a histogram built on column c valuesmight provide the selectivity

of the predicate on c, for example, σ(p) = 1/3 resulting in an output domain

size of ‖γ2‖ = 1. For columns a and b, we use Definition 7.6 to estimate the

corresponding output domain sizes ‖α2‖ and ‖β2‖, respectively:

‖α2‖ = 1 ·
(

1−
(

1− 1/10
)3/1
)

= 1−
(

9/10
)3

= 271/1000

‖β2‖ = 3 ·
(

1−
(

1− 1/10
)3/3
)

= 3 ·
(

1− (9/10)
)

= 3 · 1/10 = 3/10

According to the previous calculation, we derive the new output domain

sizes for α2 (‖α2‖ = 271/1000) and β2 (‖β2‖ = 3/10). To simplify calculations
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a b c
[node: books;C [node: book;C [node: author; value:"CharlesC

t1
DeweyID: 1.5] DeweyID: 1.5.5] Dickens"; DeweyID: 1.5.5.9.5]

[node: books;C [node: book;C [node: author; value:"ThomasC
t2

DeweyID: 1.5] DeweyID: 1.5.9] Mann"; DeweyID: 1.5.9.9.5]

[node: books;C [node: book;C [node: author; value:"CharlesC
t3

DeweyID: 1.5] DeweyID: 1.5.13] Dickens"; DeweyID: 1.5.13.9.5]

Table 7.3: Abstract domains in action

in subsequent estimation steps, floating point values will always be rounded

up to the closest integer value. In our example, if the estimates are rounded

up, the estimated output domain sizes are exact. Fairly, this is not always

the case, because the generalized 10% rule provides only a rough estimation.

Nevertheless, we will see in Chapter 12 that the estimates are precise enough

to effectively support the cost-based query optimizer.

7.3 Cardinality Inference

Now, we are well-prepared to introduce our cardinality inference framework,

which is at the heart of XTC’s cost estimator. In this section, we use the

following notation to describe the inference rules 5:

necessary condition

inference

where necessary condition describes a predicate that must be satisfied and that

is necessary for applying the inference rule. Accordingly, inference defines

which cardinality estimate is assigned to the tuple sequence of output plan

o and determines the structure and estimates for the corresponding result

domain set, which is denoted as dom(o).

7.3.1 Access Operators

Inference Rule Set 7.1 shows the inference rules for various Access plans. For

cardinality inference, which is dataflow oriented, we always start at the leave

nodes of plans. Hence, Access plans serve as entry points for cardinality

estimation, where we can assign exact numbers derived from the statistical

information stored in the database catalog. Based on this information, subse-

quent inference steps approximate the result sizes of intermediate plans. First,

5As our rule set is complementary to the work of Teubner et al. (2008), we borrow their notation.
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dom(DocAccess) =
{

cα ∧ ‖α‖ =! 1} (CARD-DOC-ACCESS)

dom(Access nodeTest=e; accessType=sequence; pred=p) =
{

cα ∧ ‖α‖ =! |e| · σ(p)
}

(CARD-ACCESS)

bβ ∈ dom(�)∧�provides evaluation context

dom(Access nodeTest=e; accessType=node; axis=θ; pred=p) =
{

aα ∧ ‖α‖ =! |e| · σ(bθ e)
}

(CARD-CTX-ACCESS)

Inference Rule Set 7.1: Inference rules for Access operators

rule CARD-DOC-ACCESS is the most primitive inference rule and serves for

deriving the input cardinality of the DocAccess plan that provides the initial

evaluation context (i. e., document root) for query evaluation.

We use rule CARD-ACCESS for Access plans providing sequences of ele-

ment or attribute nodes with name e (node test on e) for deriving their result

domain sets. Each plan may evaluate an optional predicate p. We estimate an

Access plan’s cardinality by the total number of element or attribute names

that share the name e. Selectivity estimation for p can be done using his-

tograms or by simply using System R’s famous 10% heuristics (Selinger et al.,

1979). Finally, for approximating the cardinality of Access plans whose out-

put depends on an evaluation context, we employ rule CARD-CTX-ACCESS.
Such Access plans are used in subexpressions that cannot be unnested using

the rules defined by Mathis (2009). We can use the active domain β of the

context-providing operator as a starting point for cardinality inference. In

expression σ(bθ e), b is the current context item, θ is the corresponding XPath

axis and e is the tuple stream issued by the current Access operator6.

Example

To exemplify the application of the inference rules for Access plans

defined in Inference Rule Set 7.1, let us consider the simple query

doc(”auction.xml”)/bib/book. In Figure 7.2(a) and Figure 7.2(b), we can see the

corresponding XQGM instance and a possible plan, respectively. Let us focus

on the plan depicted in Figure 7.2(b): For cardinality estimation of operator➀,

we use the CARD-DOC-ACCESS rule. Operator➁ retrieves the sequence

6Please note, in σ(bθ e), selectivity estimation is actually based on β and not on |b|.
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(a) XQGM instance (b) Corresponding plan

Figure 7.2: Cardinality inference for Access plans

of all book nodes. In this situation, rule CARD-ACCESS is used to estimate

the corresponding result domain set. Finally, operator➂ receives the current

evaluation context from the Select plan above and uses it for the evaluation of

the axis step (θ = child) between bib nodes and the current evaluation context.

Instead of estimating the cardinality of each individual step, we estimate the

cardinalities and the result domain set of all steps at once using rule CARD-
CTX-ACCESS. This is possible, because we already know the active domain

of the input bound to the for-quantified tuple variable of the Select operator

in Figure 7.2(a).

7.3.2 Cardinality Estimation for Structural Joins

In this section, we discuss the inference rules for the numerous variants of

StructuralJoin plans. We use the well-known symbols for denoting the re-

spective join types: ⋉p (structural left-semi join), ⋊p (structural right-semi

join), Zp (structural full join), 1p (structural left-outer join), and 2p (struc-

tural right-outer join). The structural join evaluates a structural predicate p
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a
αi
i
∈ dom(q1) ∧ b

β j

j
∈ dom(q2)

|q1 ⋉aiθb j q2| = ‖ai‖ · σ
(

ai [θ b j]
)

∧ dom(q1 ⋉aiθb j q2) =
{

c
γ2
2

∣
∣
∣γ2 ⊑

! γ1 ∧

c
γ1
1
∈ dom(q1)\{a

αi
i
} ∧ ‖γ2‖ =! ‖γ1‖ ·

[

1 − (1− 1/10)|q1 |/‖γ1‖
]}

∪
{

cγ
∣
∣
∣γ ⊑! αi ∧ ‖γ‖ =! ‖αi‖ · σ

(

ai[θ b j]
)}

(CARD-SJ-1)

a
αi
i
∈ dom(q1) ∧ b

β j

j
∈ dom(q2)

|q1 ⋊aiθb j q2| = ‖β j‖ · σ(ai θ b j) ∧ dom(q1 ⋊aiθb j q2) =
{

c
γ2
2

∣
∣
∣γ2 ⊑

! γ1 ∧

c
γ1
1
∈ dom(q2)\{b

β j

j
} ∧ ‖γ2‖ =! ‖γ1‖ ·

[

1− (1− 1/10)|q2 |/‖γ1‖
]}

∪
{

cγ
∣
∣
∣γ ⊑! β j ∧ ‖γ‖ =! ‖β j‖ · σ(ai θ b j)

}

(CARD-SJ-2)

Inference Rule Set 7.2: Inference rules for structural semi joins

described as follows: ai θ b j, where ai is an item of tuple sequence q1, b j is an

item of tuple sequence q2, and θ is an XPath axis, for example, descendant.

At first sight, the specification of the inference rules seems to be cumber-

some, however, their rationale is very simple: For approximating the result

size of active domains affected by structural predicate θ, we use two data

structures: For path expressions without path predicates, we employ the PS

(see Section 3.1.3 on page 45) to derive accurate cardinalities. In contrast, if

the path expression involves path predicates, we get the estimated cardinality

using XTC’s XPath cardinality estimation framework called EXsum (Aguiar

Moraes Filho, 2010).

Expression σ
(

ai[θ b j]
)

returns the selectivity of ai items connected to b j items

via the θ axis, that is, the percentage of ai nodes satisfying the structural

predicate. On the other hand, σ(ai θ b j) returns the selectivity of b j items. For

all remaining items, we use Definition 7.6 to estimate the new cardinalities of

active domains that are not directly affected by the structural predicate, that

is, non-join items: We use Definition 7.6 and assume σ(p) = 1/10 resulting in

‖γ2‖ =! ‖γ1‖ ·
[

1− (1 − 1/10)|q|/‖γ1‖
]

, where |q| is the cardinality of input plan q,

γ1 is the active domain cardinality of a column contained in the input tuple

sequence of q, and ‖γ2‖ is the inferred cardinality for the corresponding active

domain in the output tuple sequence.

RulesCARD-SJ-1 andCARD-SJ-2 (InferenceRule Set 7.2) depict the inference

rules for structural left-semi joins and right-semi joins, respectively. Here, the
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a
αi
i
∈ dom(q1) ∧ b

β j

j
∈ dom(q2) ∧ aiθb j is location step

|q1 Zaiθb j q2| = ‖β j‖ · σ(ai θ b j) ∧ dom(q1 Zaiθb j q2) =
{

c
γ2
2

∣
∣
∣

γ2 ⊑
! γ1 ∧ c

γ1
1
∈ dom(q1) ∪ dom(q2)\

{

a
αi
i
, b
β j

j

}

∧ ‖γ2‖ =! ‖γ1‖ ·
[

1−

(1− 1/10)(|q1|+|q2|)/‖γ1‖
]}

∪

{

cγ
∣
∣
∣γ ⊑! αi ∧ ‖γ‖ =! ‖αi‖ · σ

(

ai [θb j]
)}

∪
{

cγ
∣
∣
∣γ ⊑! β j ∧ ‖γ j‖ =! ‖β j‖ · σ(aiθb j)

}

(CARD-SJ-3)

a
αi
i
∈ dom(q1) ∧ b

β j

j
∈ dom(q2) ∧ aiθb j is predicate step

|q1 Zaiθb j q2| = ‖ai‖ · σ
(

ai[θb j]
)

∧ dom(q1 Zaiθb j q2) =
{

c
γ2
2

∣
∣
∣

γ2 ⊑
! γ1 ∧ c

γ1
1
∈ dom(q1) ∪ dom(q2)\

{

a
αi
i
, b
β j

j

}

∧ ‖γ2‖ =! ‖γ1‖ ·
[

1−

(1− 1/10)(|q1|+|q2 |)/‖γ1‖
]}

∪

{

cγ
∣
∣
∣γ ⊑! αi ∧ ‖γ‖ =! ‖αi‖ · σ

(

ai[θb j]
)}

∪
{

cγ
∣
∣
∣γ ⊑! β j ∧ ‖γ‖ =! ‖β j‖ · σ(aiθb j)

}

(CARD-SJ-4)

a
αi
i
∈ dom(q1) ∧ b

β j

j
∈ dom(q2)

|q12aiθb j q2| = ‖β j‖ ∧ dom(q12aiθb j q2) =
{

b
β j

j

}

∪
{

c
γ2
2

∣
∣
∣γ2 ⊑

! γ1 ∧ c
γ1
1
∈ dom(q1) ∪ dom(q2) \

{

a
αi
i
, b
β j

j

}

∧

‖γ2‖ =! ‖γ1‖ ·
[

1− (1− 1/10)(|q1 |+|q2|)/‖γ1‖
]}

∪
{

cγ
∣
∣
∣γ ⊑! αi ∧ ‖γ‖ =! ‖αi‖ · σ

(

ai[θb j]
)}

(CARD-SJ-5)

a
αi
i
∈ dom(q1) ∧ b

β j

j
∈ dom(q2)

|q11aiθb j q2| = ‖αi‖ ∧ dom(q11aiθb j q2) =
{

a
αi
i

}

∪
{

c
γ2
2

∣
∣
∣γ2 ⊑

! γ1 ∧ c
γ1
1
∈ dom(q1) ∪ dom(q2) \

{

a
αi
i
, b
β j

j

}

∧

‖γ2‖ =! ‖γ1‖ ·
[

1− (1− 1/10)(|q1 |+|q2|)/‖γ1‖
]}

∪
{

cγ
∣
∣
∣γ ⊑! β j ∧ ‖γ‖ =! ‖β j‖ · σ(aiθb j)

}

(CARD-SJ-6)

Inference Rule Set 7.3: Inference rules for full joins and outer joins

118



7.3 Cardinality Inference

q1 q2 q1 ⋉a1 θ b1 q2
a1 a2 a3 b1 b2 b3 b4 c1 c2 c3

t1 i1 j1 k1 t1 l1 m1 n1 o1 t1 i1 j1 k1
t1 i1 j1 k1 t2 l3 m2 n1 o2 t2 i1 j1 k1
t3 i3 j3 k2 t3 l1 m3 n1 o2 t3 i3 j3 k2
t4 i4 j4 k2

(a) Left input (b) Right input (c) Join result

Table 7.4: Output tuple sequences of operators q1 and q2

result domain set is equal to the domain set of the left or right input operator,

respectively. The cardinalities of the active domains’ join items are estimated

using the path synopsis or EXsum and all remaining cardinalities of the active

domains in the output domain set are approximated using the generalized

10% rule.

Inference Rule Set 7.3 shows the inference rules for structural full joins.

Rule CARD-SJ-3 and rule CARD-SJ-4 show the corresponding definitions,

which distinguish between the evaluation of location steps and predicate

steps. Both rules estimate the output cardinality of the join operator and the

active domains of join items ai and b j using the path synopsis. Once again,

the generalized 10% rule helps to approximate the active domains for items

that are independent of the join predicate.

In Figure 7.1 on page 109, several structural outer joins are used (e. g., op-

erator➄). Inference rules CARD-SJ-5 and CARD-SJ-6 allow for cardinality

inference of structural left-outer joins and structural right-outer joins, respec-

tively7. The active domain of the join item whose tuple sequence contributes

to the output’s outer part remains unchanged, and the cardinality of the other

join item is adjusted according toEXsum’s estimation. For all remaining active

domains, the generalized 10% rule is applied.

Example

Let us have a look at the cardinality inference rule for structural left-

semi joins (CARD-SJ-1). Therefore, let us assume that input operator q1
emits dom(q1) =

{

aα1
1
, aα2

2
, aα3

3

}

and input operator q2 provides dom(q2) =
{

b
β1
1
, b
β2
2
, b
β3
3
, b
β4
4

}

. Moreover, we assume that a1 and a2 are join attributes where

ip items from q1 and lp items from q2 satisfy the structural predicate θ, for

example, (i1 θ l1) = true. Table 7.4(a) shows the output tuple sequences of

7Please note, we do not use structural full-outer joins in XQGM.
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operator q1 and 7.4(b) illustrates the output of operator q2. Additionally, 7.4(c)

shows the join result after duplicate elimination.

Consequently, for dom(q1), we get: ‖α1‖ = 3, ‖α2‖ = 3, and ‖α3‖ = 2 as

well as for dom(q2): ‖β1‖ = 2, ‖β2‖ = 3, ‖β3‖ = 1, and ‖β4‖ = 2.

Now, let us assume thatwe are evaluating a structural left-semi joinbetween

q1 and q2. Hence, we have to use rule CARD-SJ-1 for cardinality inference.

First, we estimate the result cardinality:

|q1 ⋉a1 θ b1 q2| = ‖α1‖ · σ
(

a1[θ b1]
)

= 3 · 2/3 = 2

Let us assume that the join result has the following result domain set:

dom
(

q1 ⋉a1 θ b1 q2
)

=
{

c
γ1
1
, c
γ2
2
, c
γ3
3

}

The active domain size of c1, which equals to the former join column a1, is

estimated as follows:

‖γ1‖ = ‖α1‖ · σ
(

a1[θ b1]
)

= 3 · 2/3 = 2

For the remaining columns c2 and c3, we use the generalized 10% heuristics:

‖γ2‖ = ‖α2‖ ·
(

1− (9/10)
4/3
)

= 3 ·
(

1−
3
√

6561/10,000
)

≈ 0.393

‖γ3‖ = ‖α3‖ ·
(

1− (9/10)
4/2
)

= 2 ·
(

1− (9/10)
4/2
)

= 2 ·
(

1− 81/100
)

= 38/100

By rounding ‖γ2‖ and ‖γ3‖ up to the next integer, we get 1 for both active

domains. Figure 7.4(c) shows the join result after duplicate elimination. In

this situation, the inferred domain size ‖γ1‖ is estimated correctly, whereas

for ‖γ2‖ and ‖γ3‖ the sizes are underestimated. Moreover, in our example, the

output cardinality is expected to be 2 instead of 3.

7.3.3 Inference Rules for Grouping, Unnesting, and Miscellaneous

Operators

Grouping and unnesting are important operations in XQGM. They allow to

create nested and flat tuples, respectively. Document order and duplicate

elimination are important features of XQuery. Moreover, projection helps to

minimize memory consumption by cutting off items that are irrelevant for

subsequent operations. Finally, providing inputs for multiple consumers by a

single Split plan helps to keeps QEPs manageable. In this section, we discuss

the inference rules for the diverse plan types mentioned before. Inference

Rule Set 7.4 presents the corresponding definitions.
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a
αi
i
∈ dom(q)

|GroupByi(q)| = ‖αi‖ (CARD-GROUP-BY)

a
αi
i
∈ dom(q)

|Unnesti(q)| = flatCardi(q) (CARD-UNNEST)

� ∈ {Split,Project}

dom(�) =
{

a
αi
i

∣
∣
∣ a
αi
i
∈ dom(q) ∧ ai ∈ �projSpec

}

(CARD-MISC-1)

� ∈ {Sort,DDO}

|�(q)| = |q| · 2/3 (CARD-MISC-2)

Inference Rule Set 7.4: Grouping, unnesting, and miscellaneous operators

Rule CARD-GROUP-BY shows the inference for tuple grouping. Grouping

is always performed with respect to a specific item position i. The result

domain set of GroupBy is equal to the input domain set provided by operator

q. Therefore, it is not necessary to derive cardinality estimates for individual

items. But, instead, we must calculate the new output cardinality, which can

be simply achieved by using the domain size of the grouping item i, which

we denote by ‖αi‖.

As unnesting is the inverse operation of grouping, we employ a similar

approach for estimating the output cardinality of Unnest plans (rule CARD-
UNNEST). Here, we use the function flatCardi(q) that “flattens” the nested

input tuple sequence provided by operator q with respect to item position i.

Again, no modifications of the result domain set is performed.

The Split operator sends its input to multiple consumers and the Project

operator serves as classical projection operator. Rule CARD-MISC-1 simply

derives the result domain set by taking only those active domains into account

that are referred to in the projection specification. In this case, the cardinality

estimates remains unmodified.

Conventionally, every XQGM operator returns tuple sequences sorted in

document order and tries to reduce duplicates to a minimum. If duplicates

cannot be avoided, for example, if a full join using the descendant axis is

performed, additional duplicate elimination might become necessary (also

see Section 6.3.2). Sort plans and DDO plans retain a certain sort order or

eliminate duplicates. Inference rule CARD-MISC-2 defines the corresponding

rule for output cardinality estimation. Normally, we expect that most tuple
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|Merge(q1, . . . , qn)| =
n∏

i=1

|qi| · 1/10 ∧ dom(Merge(q1, . . . , qn)) ⊇

{

c
γ2
2

∣
∣
∣γ2 ⊑

! γ1 ∧ c
γ1
1
∈ ∪nj=1dom(q j) ∧ ‖γ2‖ =!

‖γ1‖ · [1− (1− 1/10)(
∏n
i=1
|qi |)/‖γ1‖]

}

(CARD-MERGE-1)

qi delivers outer sequence

|Merge(q1, . . . , qn)| = |qi| ∧ dom(Merge(q1, . . . , qn)) ⊇{

c
γ2
2

∣
∣
∣γ2 ⊑

! γ1 ∧ c
γ1
1
∈ ∪nj=1dom(q j) ∧ ‖γ2‖ =!

‖γ1‖ · [1− (1− 1/10)|qi |/‖γ1‖]
}

(CARD-MERGE-2)

Inference Rule Set 7.5: Inference rules for Merge plans

sequences are almost duplicate free and sorted, hence, we assume that two

thirds of their input tuples will “survive” sorting or duplicate elimination.

7.3.4 Inference Rules for Merge

Rules CARD-MERGE-1 and CARD-MERGE-2, which are part of Inference

Rule Set 7.5, show the inference rules for Merge plans. A Merge plan contains

only for-quantified tuple variables and calculates the Cartesian product on its

input tuple streams. Each plan contains a so-calledmerge specification (prop-

erty mergeSpec) that describes a complex selection predicate on the Cartesian

product. The predicate selects all tuples that have equal values for given po-

sitions in the tuple sequence. For the sake of simplicity, we use the 10% rule

to determine the output cardinality.

A special case is handled by ruleCARD-MERGE-2: If anouter tuple variable
appears in the merge specification of Merge, the outer semantics—which is

well-known fromouter joins—is used, that is, for every tuple sequence, where

a match does not exist, the tuple still appears in the Cartesian product and all

non-matching items are replaced by empty sequences (Mathis, 2009). Here,

the output cardinality is simply estimated using the cardinality of the tuple

sequence associated with the operator connected to the outer tuple variable.
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7.3 Cardinality Inference

Selectp(q1, . . . , qn) s ∧ Qfor, let =

{

q
∣
∣
∣ q ∈ {q1 . . . , qn} ∧

(

isForQuantified
(

q,Selectp(q1, . . . , qn)
)

∨

isLetQuantified
(

q,Selectp(q1, . . . , qn)
))
}

∧

Qexists =
{

q
∣
∣
∣ q ∈ {q1 . . . , qn} ∧

isExistsQuantified
(

q,Selectp(q1, . . . , qn)
)}

|Selectp(q1, . . . , qn)| =
∏

q∈Qfor, let ∧ q∈ sprojSpec

|q| · 1/10∧

dom(Select(q1, . . . , qn)) = Q′for, let ∪ Q′exists ∧

Q′for, let =
{

c
γ2
2

∣
∣
∣γ2 ⊑ γ1 j ∧ c

γ1
1 j
∈ dom(q j) ∧ q j ∈ Qfor, let ∧

‖γ2‖ =! ‖γ1 j‖ · [1− (1− 1/10)
|qj/‖γ1 j‖]

}

∧

Q′exists =
{

c
γ2
2

∣
∣
∣γ2 ⊑ γ1 j ∧ c

γ1
1 j
∈ dom(q j) ∧ q j ∈ Qexists ∧

‖γ2‖ =! ‖γ1 j‖ · [1− (1− 1/2)
|qj/‖γ1 j‖]

}

(CARD-SELECT)

Inference Rule Set 7.6: Inference rules for Select plans

7.3.5 Inference Rules for Select

In XQGM, the Select operator serves for calculating the Cartesian product. In

contrast to the Merge operator, the Select operator can contain tuple variables

with mixed quantifiers: for, let, or exists. The Select operator is the most

versatile operator in XQGM, as it allows to express, amongst others, value-

based joins and simple selection predicates aswell as triggeringXQuery for-let

bindings.

Rule CARD-SELECT, which is defined in Inference Rule Set 7.6, describes

the cardinality inference for Select plans8. The different for-quantified tuple

variables “drive” the output generation process, that is, they determine the

actual output cardinality. On the other hand, the tuple sequences bound to

let-quantified tuple variables are “nested” into the results generated by for-

quantified tuple variables, whereas exists-quantified tuple variables simply

allow for existence tests.

Having a look at the definition of rule CARD-SELECT shows that it uses

a similar approach for output cardinality estimation as described before for

8We assume that a Select plan always evaluates a predicate p. Fairly, there are also Select plans
that do not evaluate predicates, but evaluate only complex Cartesian products. For these plans,
we apply the same rule, but, instead, use a selectivity factor of 100%. For the sake of brevity, we
do not give a formal definition of this trivial case.
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7 Cardinality Estimation

Figure 7.3: Value-based join

Merge plans. In the necessary condition, we assume two sets: Qfor, let and

Qexists that contain all input operators of Select that are connected to a for-

quantified or let-quantified tuple variable as well as an exists-quantified tuple

variable, respectively. For estimating the output cardinality of Select plans,
we consider exactly those operators that are contained in Qfor, let and that are

also referred to in the projection specification.

For the estimation of the output domain sizes of inputs bound to for-

quantified and let-quantified tuple variables, we use the the generalized 10%

rule with a default selectivity of 1/10, whereas for approximating the output

domain sizes of exists-quantified tuple variables, we employ a default factor

of 1/2.

Example

Asmentionedbefore, Select operators play an important role inXQGM.There-

fore, we will have a look at some examples how cardinality inference will

work for these operators. Applying rule CARD-SELECT to Select plans that
contain only a single for-quantified or let-quantified tuple variable is trivial.

Therefore, we will only look at two more interesting cases: (1) evaluation of

value-based joins (2) triggering of for-let-bindings.

Section 7.1 on page 109 already discussed a query containing two value-

based joins, which are illustrated as operator➂ and operator➈ in Figure 7.1.
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7.3 Cardinality Inference

Figure 7.4: Complex selections

The general shape of a value-based join is depicted in Figure 7.3. Even though

only operator➁ evaluates the join predicate, it always needs another Select

operator that triggers the evaluation process (here, it is operator➀). Opera-

tor➁ projects out only those tuples that are provided by the for-quantified

tuple variable and that satisfy the predicate. The tuples received via the let-

quantified tuple variable are only used for predicate checking and do not

participate in the result. Operator➀ triggers the join evaluation by iterating

over its for-quantified tuple variable’s input tuple sequence and sends each

item to operator➁. The join result, which is bound to the let-quantified tuple

variable, can be part of the result sent to subsequent operators if it is contained

in operator➀’s projection specification. Nevertheless, it will always be nested

below the current context item that served for predicate evaluation.

For the second example, let us consider the XQGM instance depicted in

Figure 7.4 on page 125. Here, the top-most Select operator contains a for-

quantified, a let-quantified, and an exists-quantified tuple variable. In this case,

the let-quantified tuple variable is connected to the projection specification.

Hence, in this situation, it is the only tuple variable that must be considered
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7 Cardinality Estimation

for cardinality inference. Though the for-quantified tuple variable does not

directly influence the output cardinality, it triggers the emission of output

nodes—one sequence (containing one or more author nodes) per book element.

|q1| = |q2| = . . . = |qn |

| ∪ni=1 qi| =
n∑

i=1

|qi| ∧ dom(∪ni=1qi) = ∪
|dom(q1)|

k=1

{

c
γ2
2

∣
∣
∣
∣γ2 ⊑

! γ1 ∧

c
γ1
1k
∈ dom(q1) ∧ ‖γ2‖ =!

n∑

i=1

‖γik‖

}

(CARD-UNION)

a
α1
1
∈ dom(q1) ∧ . . . ∧ a

αn
n ∈ dom(qn)∧

|qk | = min{|q1|, . . . , |qn |}

| ∩ni=1 qi| = |qk| ·
2/3 ∧ dom(∩ni=1qi) =

{

c
γ2
2

∣
∣
∣γ2 ⊑

! γ1 ∧

c
γ1
1
∈ dom(qk) ∧ ‖γ2‖ =! ‖γ1‖ ·

[

1 − (1− 1/10)|qk |/‖γ1‖
]}

(CARD-INTERSECT)

|q1 \ q2| = |q1| · 1/10 ∧ dom(q1 \ q2) =
{

c
γ2
2

∣
∣
∣
∣ γ2 ⊑

! γ1 ∧

c
γ1
1
∈ dom(q1)∧

c
γ1
1
< dom(q2) ∧ |γ2‖ =! ‖γ1‖ ·

[

1− (1− 1/10)|q1 |/‖γ1‖
]}

(CARD-DIFFERENCE)

Inference Rule Set 7.7: Inference rules for set operators

7.3.6 Inference Rules for Set Operators

Aswe have alreadymentioned in Section 5.1 on page 75, there exists a specific

plan type for each set operation: union (Union), intersection (Intersect), and
difference (Difference). In XTC, Union and Intersect consume n inputs and

only Difference is a binary operator. The corresponding rules are specified in

Inference Rule Set 7.79.

Rule CARD-UNION describes the cardinality inference for Union plans. For

this operator, we assume that inputs q1 . . . qn have the same output cardinality

and all input tuple sequences have the same active domainswhose value range

may differ. In this case, γik denotes the active domain of operator i in column

k.
9To improve readability, we replaced the plan names Union, Intersect, and Difference by their
corresponding mathematical symbols “∪”, “∩”, and “\”, respectively.
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The cardinality inference for Intersect plans is given by rule CARD-
INTERSECT, where qk denotes the first operatorwhose cardinality isminimal

with respect to the cardinality of the remaining operators. In experiments

with our query optimizer, we found out that a constant factor of 2/3 is a good

heuristics for estimating the selectivity of n-way Intersect plans.
Finally, ruleCARD-DIFFERENCE illustrates the cardinality inference of the

binaryDifferenceplans, wherewe simply fall back to the generalized 10% rule

to estimate the domain sizes.

7.4 Related Work

Cardinality estimation in semi-structured database systems became first rel-

evant in the context of the Lore project (McHugh et al., 1997). In Lore,

DataGuides (Goldman and Widom, 1997) provide a simple method for han-

dling the cardinalities of unique paths in XML documents.

XTC’s statistics manager reuses this principle to provide the basic statistical

information needed to bootstrap our cardinality inference rules (compare Sec-

tion 3.1). If there are non-unique paths in an XMLdocument, the DataGuide is

insufficient to provide the necessary information. In recent years, numerous

researchersproposed concepts for estimating the path cardinalities in such sit-

uations (e. g., compare the approaches of Aboulnaga et al., 2001; Freire et al.,

2002; Zhang et al., 2006; Balmin et al., 2006; Fisher and Maneth, 2007; Aguiar

Moraes Filho, 2010). Most of them are only concentrating on estimation accu-

racy and onminimal space consumption of their data structures. Even though

path expressions are important building blocks of XQuery, these approaches

do not help to optimize more complex queries.

The early work of Sartiani (2004) claims to discuss cardinality estimation of

FLWR expressions10, but focuses mostly on for expressions.

Having a look at native XML database management systems that provide

cost-based query optimizers, for example, Natix (Fiebig et al., 2002) or Timber

(Jagadish et al., 2002), shows that their cardinality estimation capabilities are

restricted to cardinality estimation of simple path expressions11.

To the best of our knowledge, MonetDB/XQuery, together with its XQuery

compiler Pathfinder, is the only (non-native) XML database management sys-

tem that supports XQuery cardinality estimation (Teubner et al., 2008). They

use the general approach of abstract domain identifiers to estimate the value

space that is taken by tuple items at runtime. As their cardinality inference

10Their approach does not cover complete FLWOR expressions (they omit order-by clauses).
11A comparison of different native XDBMSs is summarized in Table 2.1 on page 36.
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7 Cardinality Estimation

rules are strongly tied to their logical algebra, they cannot be directly used in

the context of XQGM. In contrast, the present work reuses their concept of

abstract domain identifiers, but introduces a novel set of inference rules that

allow to gain reliable cardinality estimates for XQGM instances.

7.5 Summary

In this chapter, we introduced our cardinality inference framework, which is

based on the work of Teubner et al. (2008). In Section 7.1, we motivated the

need for advanced XQuery cardinality estimation. Next, Section 7.2 provided

the formal basis for the definition of the inference rules. Thereafter, we dis-

cussed the various inference rules in Section 7.3. In Section 7.4, we had a brief

look at the shortcomings of related works.

In the forthcoming chapter, we introduce the cost model for our query op-

timizer. There, for effective cost estimation, we can dispose of our cardinality

inference framework to derive the relevant cardinality information that will

be bound to the cost formulae’ parameters.
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8 Cost Estimation

“We are always in search of
the redeeming formula, the
crystallizing thought.”

(Etty Hillesum)

In previous chapters, we primarily dealt with logical aspects of query op-

timization by defining query rewrite rules (Chapter 4), introducing a plan

abstraction (Chapter 5) that helped to specify various query transformation

rules (Chapter 6), which empower a plan generator to derive numerous eval-

uation alternatives for an XQuery expression. In Chapter 7, we provided a

comprehensive framework for cardinality inference. Now, we have almost all

ingredients to build aplangenerator that can spana tremendously large search

spaces for XQuery expressions. To cope with them, we finally need a means

for early eliminating bad plans. In the past, cost factors—which are provided

by a cost model and that are assigned to plans—helped to distinguish efficient

from inefficient implementations.

Section 8.1 provides preliminary definitions, which are necessary for defin-

ing the cost formulæ in Section 8.2. Finally, Section 8.3 summarizes this

chapter and points out what you can expect in the subsequent chapters.

8.1 Introduction

The cost model is a system-dependent set of cost formulæ describing the costs

of every physical algebra operator based on statistics provided by the system

catalog as well as by using the cardinality estimates provided by the system’s

cardinality estimation framework.

In general, the cost of a physical algebra operator is estimated as the sum

of CostIO and weighted CostCPU:

Costtotal = CostIO +w ·CostCPU

In our case, CostIO describe the costs raised by accessing an XML node, for

example, an element node. In the context of database systems, this translates

to costs for loading the data pages holding these nodes into the database
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8 Cost Estimation

Constant Description

Cost for fetching a data page from the hard disk and loading it
PageFetchCostIO into the database buffer
SortCostCPU Cost for sorting a value
ComparisonCostCPU Cost for comparing two values in the main memory
GroupingCostCPU Cost for incrementally aggregating a value in the main memory
UnnestingCostCPU Cost for incrementally unnesting a value out of a tuple sequence
HashingCostCPU Cost for hashing a single value
ProbingCostCPU Cost for probing a single value in the hash table

Table 8.1: Overview of constant factors for cost formulæ

buffer1. On the other hand, CostCPU is raised by touching each node and

sending it to a consecutive operator or by applying predicates to it. The

weight w helps to adjust the estimates to CPU- or IO-bound situations.

Before we specify the different cost formulæ, we introduce some constants

and functions that help to simplify their definition. The concrete values for the

constant factors are system-specific, because they are primarily determined by

the current hardware and operating system setup. A possible means for gain-

ing the appropriate values is a calibration tool that runs several benchmarks

on a specific platform to derive realistic values.

Table 8.1 summarizes the constant factors that we use in our cost formulæ.

The IO costs of access paths are estimated based on the total numbers of

pages that must be fetched from disk into a cold database buffer. Con-

stant PageFetchCostIO specifies the cost for fetching a single page into the

buffer. The CPU costs for sorting a single value and comparing a single value

with a constant factor or another value is conducted using SortCostCPU and

ComparisonCostCPU, respectively. The XQGM data model supports nested tu-

ples, hence, nesting and unnesting are important operations. The average cost

for nesting a value into a tuple sequence is given byGroupingCostCPU, whereas

UnnestingCostCPU provides an average estimate for unnesting an item. Value-

based hash join operators have two operations that primarily determine their

costs: hashing and probing. In this context, HashingCostCPU represents the

costs for hashing a single value and ProbingCostCPU provides the estimated

cost for probing a single value.

Table 8.2 shows the various functions that we use in our cost model. The

evaluation cost for a predicate p are system-specific and can be determined

using the function EvaluationCost(p). The function TotalCard(x) returns the
total number of elements in a data structure x (e. g., the total number of entries

1Please note, we conservatively assume that none of the required data pages currently resides in
the buffer. Hence, for all pages, access costs must be accounted.

130



8.2 The Cost Model

Function Description

EvaluationCost(p) Evaluation cost of predicate p
TotalCard(x) Total number of elements in x
Cardx(y) Total number of y in x
PageCard(x) Total number of pages consumed by x
Selectivity(p) The selectivity of predicate pwith 0 ≤ Selectivity(p) ≤ 1.0
PathCard(p) The total number of instances of path p

Percentage of pages consumed by path e in index i:
PathSelectivityi(e) PathCard(e)/TotalCard(i)

BlockingFactor(x)
Average number of values per page in x:
TotalCard(x)/PageCard(x)

h(i) Height of B∗-tree i

Table 8.2: Overview of functions for cost formulæ

in a document index). Additionally, we can use function Cardx(y) to find out

how many y’s occur in data structure x (e. g., how many book element nodes

are contained in an element index). We can use function PageCard(x) to get

the total number of pages that are consumed by an access path x. With the help

of Selectivity(p), we can determine the selectivity of a value-based predicate

p. In many situations, it is useful to know the total number of occurrences of a

path p. This statistical information is returned by function PathCard(p) that,
in turn, uses the PS or EXsum to estimate the result. Finally, function h(i)
identifies the height of B∗-tree i, that is, the total number of pages that must

be accessed to reach the first leaf node of i, if left-most depth-first traversal is

applied.

8.2 The Cost Model

In this section, we define the cost formulæ for all physical operators that are

relevant for XQuery processing in XTC. First, Section 8.2.1 introduces the

cost formulæ of all access paths. In Section 8.2.2, we elaborate on the cost

formulæ for PPOs. Thereafter, Section 8.2.3 shows how we estimate the costs

of Select operators andvalue-based join operators. Next, Section 8.2.4 specifies

the cost formulæ for grouping, unnesting, merging, and sorting as well as for

all set operations.

8.2.1 Access Paths

In Section 3.1.3 on page 43, we introduced the access paths of XTC, which we

classified into three classes: PAP (e. g., document index), SAP (e. g., element

index), and TAP (e. g., path index and CAS index).
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Document Root Access

Estimating the costs for accessing the root node of an XML document is very

simple. Cost Formula 8.1 on page 132 illustrates the corresponding definition.

For retrieving the document root, we have to fetch at least one page. Here,

the CPU costs are negligible, hence, we assume only a figurative cost of 1.

CostIO = 1 · PageFetchCostIO

CostCPU = 1

Cost Formula 8.1: Document root access

Document Index

Thedocument index is the only access path inXTC that is available per default.

Figure 3.3(a) on page 44 depicts the document index in a schematic manner.

To perform a complete scan over a document index d, we first have to descent

to the first page. This operation raises h(d) pages fetches. Next, we have

to scan all data pages, where the total number of data pages is provided

by function PageCard(d). Actually, we only need to touch PageCard(d) − 1

data pages, because the first data page was already considered in the first

estimation step.

The CPU costs of a document index scan are primarily dependent on the

total number of nodes stored in the index, which can be determined using

functionTotalCard(d). Finally, a document index scan can evaluate apredicate

p on each node. The constant cost factor2 for evaluating p is calculated using

EvaluationCost(p). Cost Formula 8.2 shows the complete specification.

CostIO =
[

h(d) + PageCard(d) − 1
]

· PageFetchCostIO

CostCPU = TotalCard(d) · EvaluationCost(p).

Cost Formula 8.2: Document index scan

2Please note, if there is no predicate, EvaluationCost(p) always returns 1.
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Element Index

The element index was already introduced in Section 3.1.3. In Figure 3.3(b)

on page 44, you can see an illustration of this index type. For accessing all

elements with node name e from element index i, we once again have to

descent to the data pages: First, we need to access h(in) pages of the name

directory to find the entry point for the relevant node-references index. In turn,

to reach the data pages of the node-references index, we need h(ir) additional
page fetches. Now,we can use the same approach as applied for the document

index: We simply scan all data pages of the node-references index for element

e. We assume that all element nodes in i are equally distributed over all node-

references indexes. Hence, we can estimate the number of pages that must

be fetched using Cardi(e)/TotalCard(i) · PageCard(i), where Cardi(e) is the total

number of e nodes in i, TotalCard(i) returns the total number of element nodes

in i, and PageCard(i) represents the total number of pages consumed by i.

The estimation of the CPU costs follows the principle already applied for

document index scans—except that we only use the total number of elements

stored in the corresponding node-references index, instead of taking all nodes

into account. Cost Formula 8.3 shows the respective definition.

CostIO =




h(in) + h(ir) +

⌈

Cardi(e)

TotalCard(i)
· PageCard(i)

⌉

− 1




· PageFetchCostIO

CostCPU = Cardi(e) · EvaluationCost(p)

Cost Formula 8.3: Element index scan

Path Index

In Section 3.1.3, we already emphasized the importance of path indexes for

efficient query processing in XTC. Let p = doc(d)/n1/n2/ . . ./nn denote a

path in document d. A path index i, which covers p, provides access to all nn
leaf nodes.

We can distinguish between two clustering modes for path indexes: PCR

clustering and SPLID clustering. If a path index is PCR-clustered and p

matches more than one PCR, we need to sort the result in document order. In

this situation, the plan generator injects a Sort plan above the index scan and

takes the additional costs into account. On the other hand, if the path index

133



8 Cost Estimation

CostIO =
[

h(i) +
⌈

PathSelectivityi(p) · PageCard(i)
⌉

− 1
]

· PageFetchCostIO

CostCPU = Cardi(p) · EvaluationCost(pred)

Cost Formula 8.4: Path index scan

is SPLID-clustered, we have to scan all data pages of the index to be sure that

we do not miss a match.

Cost Formula 8.4 depicts the correspondingdefinition. For IO andCPU cost

estimation, we apply the same principle as before for document indexes and

element indexes. The fraction of data pages that must be fetched is primarily

determined by function PathSelectivityi(p). If the index is SPLID-clustered,

all data pages must be scanned, therefore, PathSelectivityi(p) = 1.0. For PCR-

clustered path indexes, PathSelectivityi(p) is defined as PathCard(p)/TotalCard(i)

(Table 8.2), where PathCard(p) can be easily inferred using the PS and

TotalCard(i) is provided by XTC’s metadata catalog.

Content-and-Structure Index

In Section 3.1.3, we learned that content-and-structure (CAS) indexes are hy-

brids of path and content indexes.

Let p = doc(d)/n1/n2/ . . ./nn/cbe apath expression indocument d, where

c is a content node and nn is either an attribute node or an element node. A

CAS index provides access to all values of t and can handle point queries as

well as range queries. Hence, the scan cost is reciprocally proportional to the

selectivity of predicate p, that is, the lower the selectivity the more data pages

must be read. If the index is SPLID-clustered, all data pages must be read to

find all relevant records. Thus, we define PathSelectivityi(e) = 1.0 in this case.

If the CAS index is PCR-clustered, we might be forced to inject an additional

sort operator above, for the same reason as explained before for path index

scans.

The IO cost and CPU cost for an CAS index scan are depicted in Cost

Formula 8.5. The formula is almost identical to the formula of a path index

scan. Additionally, we use the function Selectivity(p) to pay attention to range

or point queries. The statistics that are necessary to calculate Selectivity(p)
can be gained fromhistograms ormust be estimated using standard heuristics

like the classical 10% rule.
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CostIO =
[

h(i) +
⌈

PathSelectivityi(e) · Selectivity(p) · PageCard(i)
⌉

− 1
]

· PageFetchCostIO

CostCPU = Cardi(p) · Selectivity(p) · EvaluationCost(p)

Cost Formula 8.5: CAS index scan

Navigational Operator

Table 6.1 on page 88 mentioned that XTC provides a navigational access

operator that returns all nodes being structurally related to a given context

node. Such context-dependent accesses are possible for all types of access

paths: PAPs, SAPs, and TAPs. Let s = cθn be a location step and s′ = c[θn]
be a predicate step, where c is the context node, θ is an XPath axis, and n

is a node name (that might contain an additional point predicate or range

predicate). We use EXsum to estimate the selectivity of s or s′ and multiply it

with the IO cost (as specified by Cost Formulæ 8.2–8.5) that would be raised if

we would completely scan the corresponding access path. Doing cardinality

estimation for every context node is too costly and is expected to provide only

little gain in precision. Thus, we assume that all context nodes have an equal

number of n nodes related to it via θ and calculate the estimate only once.

8.2.2 Path Processing Operators

If no path indexes or CAS indexes can be exploited, structural relationships—

or cascades of them formed by path expressions—must be evaluated using

PPOs such as NavTree (context-dependent nested-loops join), Extended Stack-

Tree (structural join), or Extended Twig Opt (holistic twig join)—a detailed

description of these operators is given by Mathis (2009).

NavTree

As alreadymentioned in Section 6.2.1, NavTree resembles the functionality of

a classical nested-loops join, except that it is context-dependent. Cost Formula

8.6 shows how we estimate the IO and CPU costs of NavTree.

We assume that the left input provides the evaluation context. Conse-

quently, the IO cost are raised only once for this input. In contrast, for every

tuple provided by the left input, the right input is evaluated. Therefore,

TotalCard(left) · CostIO(right) IO costs are raised for the right input. In fact,
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CostIO = CostIO(left) + TotalCard(left) ·CostIO(right)

CostCPU = CostCPU(left) + TotalCard(left) ·CostCPU(right)·

EvaluationCost(p)

Cost Formula 8.6: NavTree

the CPU costs of NavTree are estimated using the same idea. The only dif-

ference is function EvaluationCost(p) that is used to estimate the costs for

evaluating the structural predicate p, that is, an XPath axis.

Extended StackTree and Extended TwigOpt

In Section 6.3.2 on page 93, we introduced several transformation rules for

structural joins. To allow the plan generator to decide which alternative is

the most promising one, CostFormula 8.7 provides a way for deriving the

expected IO and CPU costs. In a certain way, Extended StackTree (see Section

2.2.1 on page 24) is similar to a relational merge join, where each input is read

only once, hence, we can simply sum up the IO costs of the left and right

input.

CostIO = CostIO(left) +CostIO(right)

CostCPU = CostCPU(left) +CostCPU(right) + TotalCard(left)·

EvaluationCost(p)

Cost Formula 8.7: Extended StackTree

TheCPUcosts of Extended StackTree are estimated as the sumof theCPUcosts

of its input operators and the costs for evaluating the structural predicate p.

Holistic twig joins are able to evaluate a cascade of structural joins at once. For

estimating the costs of Extended TwigOpt (Section 2.2.1), we use Cost Formula

8.8 and apply it to every location or predicate step expressed by the twig

pattern.

At first sight, Cost Formula 8.7 and Cost Formula 8.8 have identical def-

initions. Having a closer look at them reveals that they differ in the shape

of their EvaluationCost(p) function. We will see later in Chapter 12 that, in

many situations, the execution times of structural joins and holistic twig joins
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do not differ significantly. Therefore, we use these simplified cost formulæ for

cost estimation. In Section 12.4.2 we will show how the EvaluationCost(p)
function can be derived for Extended StackTree and Extended TwigOpt.

CostIO = CostIO(left) +CostIO(right)

CostCPU = CostCPU(left) +CostCPU(right) + TotalCard(left)·

EvaluationCost(p)

Cost Formula 8.8: Extended TwigOpt

8.2.3 Select Operators

In previous chapters, for example, in Chapter 7, we saw that Select plans
can occur in various shapes. First, we will look at the cost formulæ of Select
plans evaluating value-based joins. Next, we discuss cost estimation for

simple (unary) Select plans. Finally, we will focus on the cost formulæ of

complex (n-ary) Select plans.

Value-Based Joins

The definitions of the cost formulæ for value-based joins are very close to

their relational counterparts. Cost Formula 8.9 illustrates the IO and CPU cost

estimation for the value-basednested-loops join. The IO costs are estimated by

simply following the nested-loops evaluation paradigm: For every left input

tuple, we have to compare it to the whole input tuple sequence provided by

the right input. The same approach is used for CPU cost estimation, except

that we now additionally consider, in every step, the cost for evaluating the

value-based predicate.

CostIO =CostIO(left) + TotalCard(left) ·CostIO(right)

CostCPU =CostCPU(left) + TotalCard(left) ·CostCPU(right)·

EvaluationCost(p)

Cost Formula 8.9: Value-based nested-loops join
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In Cost Formula 8.10, we can see how the cost for evaluating a value-based

merge join is determined. Using the IO costs of the left input—CostIO(left)—
and the right input—CostIO(right)—, we simply sum up both numbers to

derive the IO cost estimate, because we only need to read each input once.

For estimating the CPU costs, we use the CPU cost estimates of the input

operators and additionally consider the evaluation cost of the value-based

predicate p. Function EvaluationCost(p) returns the cost for evaluating p for

two tuples—one from each input stream. Conservatively, we multiply it with

the highest input cardinality.

CostIO = CostIO(left) +CostIO(right)

CostCPU = CostCPU(left) +CostCPU(right)

+max
(

TotalCard(left), TotalCard(right)
)

· EvaluationCost(p)

Cost Formula 8.10: Value-based merge join

Finally, Cost Formula 8.11 depicts the formula for a value-based hash join.

For IO cost estimation, we use the same idea as already described for value-

based merge joins. In contrast, for estimating the CPU costs, we consider the

two main operations of a hash join: hashing and probing. Besides taken the

CPU costs of input operators into account, we assume that the left input is

hashed and the right input is probed against the hash table. Hence, the costs

for hashing are dependent on the cardinality of the left input, whereas the

probing costs are directly related to the cardinality of the right input. Using

the constants HashingCostCPU and ProbingCostCPU—which describe the costs

for hashing and probing a single value, respectively—we can fine-tune the

formula to match a specific system environment.

CostIO = CostIO(left) +CostIO(right)

CostCPU = CostCPU(left) +CostCPU(right)

+ TotalCard(left) ·HashingCostCPU + TotalCard(right)·

ProbingCostCPU

Cost Formula 8.11: Value-based hash join
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Simple and Complex Selection

Simple Select plans, which contain only one tuple variable, serve for eval-

uating comparison predicates or positional predicates. Cost Formula 8.12

illustrates the corresponding definition. Evaluating a simple selection does

not raise additional IO. Hence, we only need to take the IO cost of its input

operator into account. Moreover, the CPU cost is determined using the CPU

cost of the input operator and the cost for checking the predicate on each input

tuple.

CostIO = CostIO(input)

CostCPU = CostCPU(input) + TotalCard(input) · EvaluationCost(p)

Cost Formula 8.12: Simple selection

A complex Select plan evaluates multiple for-quantified, let-quantified, and

exists-quantified tuple variables. Checking exists-quantified tuple variables

does not raise IO costs, because the actual tuples used for predicate checking

are providedby for-quantified and let-quantified tuple variables. Let the Select

operator have n input operators, where the first one triggers the evaluation

process. Cost Formula 8.13 shows the corresponding estimation method. The

IO costs are estimated using a generalization of the cost formula for nested-

loops joins (Cost Formula 8.9). Quintessentially, the Select operator evaluates

a complex Cartesian product on n input streams. Therefore, we estimate the

CPU costs as the sum of all input operator’s CPU costs and the product of all

costs for accessing the input operator’s tuple sequences.

CostIO = CostIO(input1) + TotalCard(input1) ·
n∑

i=2

CostIO(inputi)

CostCPU =
n∑

i=1

CostCPU(inputi) +
n∏

i=1

TotalCard(inputi) · EvaluationCost(p)

Cost Formula 8.13: Complex selection
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8.2.4 Miscellaneous Operators

In this section, we introduce the cost formulæ of the remaining physical op-

erators. First, we will have a look at the formulæ for the Project operator

and the DDO operator. Next, we introduce the cost formulæ for GroupBy

and Unnest. Thereafter, we discuss cost estimation for the Split operator. As

a follow-up action, we define the cost formulæ for Merge and the three set-

based operators (Union, Intersect, and Except). Finally, we have a look at the

cost formula for the Sort operator.

Projection and Duplicate Elimination

Inour costmodel, weuse the samecost formula for theProject operator and the

DDO operator. Cost Formula 8.14 depicts the corresponding definition. The

IO cost is simply derived from the associated input operator. We assume that

the cost for comparing an input tuple with the projection specification (Project

operator) or checking whether the tuple is a duplicate (DDO) raises a constant

cost. Therefore, we multiply the input cardinality with ComparisonCostCPU,

which describes the cost for performing an in-memory comparison.

CostIO = CostIO(input)

CostCPU = CostCPU(input) + TotalCard(input) ·ComparisonCostCPU

Cost Formula 8.14: Project and DDO

GroupBy and Unnest

GroupBy and Unnest are two complementary operators in XTC. For cost

estimation, we use the same idea as for the Project and DDO operator.

For considering the cost for grouping a single tuple, we assume that this

raises GroupingCostCPU cost units. In contrast, let us assume that unnest-

ing a tuple out of a tuple sequence costs UnnestingCostCPU units. Let

c ∈ {GroupingCostCPU,UnnestingCostCPU}, then Cost Formula 8.15 shows the

corresponding definition for GroupBy and Unnest, respectively.
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CostIO = CostIO(input)

CostCPU = CostCPU(input) + TotalCard(input) · c

Cost Formula 8.15: GroupBy and Unnest

Split

The Split operator is a trivial operator in our physical algebra. It simply splits

the data flow and passes its input to multiple consumers. For the sake of

completeness, Cost Formula 8.16 shows the simplistic definition.

CostIO = CostIO(input)

CostCPU = CostCPU(input)

Cost Formula 8.16: Split operator

Merge and Set

For cost estimation of Merge and the three set-based operators (Union, In-

tersect, and Difference), we use Cost Formula 8.17. Here, the IO cost is

determined by summing up all IO costs of the input operators. For CPU cost

estimation, we assess the CPU costs of the input operators and the costs for

evaluating the Cartesian product on n inputs as total CPU costs forMerge and

Set.

CostIO =
n∑

i=1

CostIO(inputi)

CostCPU =
n∑

i=1

CostCPU(inputi) +
n∏

i=1

TotalCard(inputi) · EvaluationCost(p)

Cost Formula 8.17: Merge and set operators
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Sort

Finally, we estimate the costs of the Sort operator using Cost Formula 8.18.

Here, we use quicksort (Hoare, 1962) as an in-memory sort algorithm. Though,

no additional IO is raised. Hence, the IO cost information is provided by the

input operator. According to Cormen et al. (2001), quicksort’s average case

complexity is in O(n · logn). Therefore, we can use this relationship for

estimating the CPU costs of the Sort operator, where we replace n by the

input cardinality and assume a constant factor SortCostCPU that represents the

average sort cost per value.

CostIO = CostIO(input)

CostCPU = CostCPU(input) +
[

TotalCard(input) · log
(

TotalCard(input)
)]

·

SortCostCPU

Cost Formula 8.18: Sort operator

8.3 Summary

In this chapter, we provided the cost formulæ for XTC’s physical algebra

operators. In Section 8.1, we introduced the nomenclature necessary for the

definition of the cost formulæ. Thereafter, Section 8.2 discussed the definition

of the numerous cost formulæ.

By ending this chapter, we almost reach the end of Part II. So far, we

developed all ingredients to build a cost-based XQuery optimizer. In the

following chapter, we will finally look at the plan generator that combines the

concepts for query rewrite and transformation as well as cardinality and cost

estimation.
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9 Plan Generation

“A good plan, violently executed
now, is better than a perfect plan
executed next week.”

(George S. Patton)

In this chapter, we reconsider all concepts developed in Part II so far and put

all pieces together to finally establish our plan generation approach.

First, Section 9.1 discusses the importance of effective plan generation for

efficient XQuery optimization in native XDBMSs.

Section 9.2 details our strategies for plan generation. First and foremost,

Section 9.2.1 describes the preliminary steps necessary to start plangeneration.

Section 9.2.2 introduces our bottom-up plan generation algorithm, which is

used as default plan generation strategy. Thereafter, we provide insights into

our top-down plan generation algorithms in Section 9.2.3.

In Section 9.3, we review related research papers and recommend textbooks

for further reading.

Finally, we summarize this chapter in Section 9.4. As this chapter completes

Part II, we take a retrospective view on the concepts developed so far.

9.1 Introduction

In Section 2.2.1 on page 24, we argued that one of the major challenges of

cost-based XQuery optimization is handling the ever growing set of PPOs

and indexes. Due to the duality of value-based and structural predicates in

XQuery, the search space becomes even larger than in the relational case.

Before we look at search space sizes of XQuery expressions, let us first

analyze the situation in the relational case. We consider a relational SPJ

(select-project-join) query with n relations. For such a query, the upper bound

for the search space size is the total number of permutations that can be

derived. Hence, we can derive n! possible join orders in the worst case

(Moerkotte, 2009), if we allow cross products and assume that every relation

can be joined with another one. Actually, in real-world query processing

scenarios, this hypothetical upper bound is not met, because (1) the domains

of join attributes differ and (2) the plan generator’s ability to derive all possible
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join orders is constrained by heuristics, for example, interesting join orders

(see Section 2.3.1).

If we consider XPath expressions without path predicates, for example,

a/b/c, we observe that they are so-called chain querieswithout cross products

(Moerkotte, 2009). This fact leads to a dramatic restriction of the search

space size. For example, for the aforementioned query, a join order like
(

(a \child c) \child b
)

is not allowed, because a is not directly related to c via

the child axis.

The search space sizes for chain queries without cross products depend on

the shapes of query trees that can be derived by the plan generator. According

to Moerkotte (2009), for a chain query with n relations, we can calculate

the search space sizes for left-deep plans, zig-zag plans, and bushy plans1,

respectively, using the following formulæ:

Left-deep plans Zig-zag plans Bushy plans

2n−1 22n−3 2n−1 ·C(n− 1)

For the further discussion, we denote the search space size of a chain query

without cross product by f (n). Let us assume that we can choose for each

relation out of k access paths and each join operator has m different imple-

mentations. For each possible join order, we can derivemn−1 implementation

variants for the join operators and kn implementation variants (access paths)

for the n relations. In total, the search space for such a query can be calculated

using:

f (n) ·mn−1 · kn

If we transfer this to the XML world and consider an XPath expression, then

n is equal to the total number of node tests involved,m is the total number of

binary PPOs available, and k is the total number of PAPs and SAPs present in

a system.

If we take this for granted, we observe the following: For typical XPath

expressions, n will be much larger than in the relational world, because n

directly depends on the depth of the queried document path. Moreover, m

and kwill also be larger than in the relational context, because the set of PPOs

and access paths is still growing.

So far, the formula for search-space size approximation considers only

StructuralJoinplans. In Chapter 6, we introduced join fusion and TAP detection

as additional means for deriving query plans.

Using join fusion, we can derive hybrid plans consisting of StructuralJoin
plans and a TwigJoin as well as plans that completely evaluate a path expres-

1Here, numbersC(n) are referred to asCatalan numbers (Cormen et al., 2001), whereC(n) = 1
n+1 (

2n
n
).
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n SJ reordering Join fusion TAP detection Total
1 4 – – 4
2 64 – 1 65
3 1,024 64 9 1,097
4 16,384 1,280 73 17,737
5 262,144 21,504 585 283,733
6 4,194,304 348,160 4,681 4,547,145

Table 9.1: Search space sizes for path expressions with 1 ≤ n ≤ 6 node tests

sion using a single TwigJoin. We can apply join fusion only, if the join tree

involves twoormore structural joins. The total number of hybrid join orders—

for a path expressionwith n > 2 node tests—having at least one TwigJoin plan

can be calculated using the following formula2: 1+
∑n−2

i=2 f (n− i).
Let us assume that we have o TwigJoin implementations, k access paths, and

m StructuralJoin implementations, we get: kn · o ·
(

1 +
∑n−2

i=2 f (n − i) ·mn−i−1
)

hybrid plans.

Additionally, we can iteratively replace (parts of) cascades of StructuralJoin
plans by a single IndexAccess plan (see Section 6.3.4). In this situation, we

do not consider different join orders. TAP detection can be applied on path

expressionswith n > 1 node tests. For example, if there is an IndexAccessplan
that covers two location steps of an n-step path expression, we can still assign

different implementations to n− 3 Access plans as well as implementations to

n− 3 StructuralJoinplans. Furthermore, let us assume that there are j different

implementations for IndexAccess plans, k implementations for Access plans,

andm implementations forStructuralJoinplans. We calculate the total number

of different plans generated by TAP detection using the following formula:

j ·
∑n

i=2(k ·m)n−i.
Finally, the total number of plans that can be derived for n-step path ex-

pressions using our plan generation approach is:

f (n) ·mn−1 · kn

︸            ︷︷            ︸

SJ reordering

+ kn · o ·
(

1+
n−2∑

i=2

f (n− i) ·mn−i−1
)

︸                                   ︷︷                                   ︸

Join fusion

+ j ·

n∑

i=2

(k ·m)n−i

︸            ︷︷            ︸

TAP detection

Table 9.1 illustrates the search space size for a typical query optimizer config-

uration, where we assumem = 2, k = 4, o = 1, j = 1, and left-deep plans, that

is, f (n) = 2n−1. The results reflect the search space sizes for path expressions

with 1 ≤ n ≤ 6 node tests.

2See Appendix D on page 231 for the formal proof.
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Structural join reordering still dominates the search space size. Though, by

additionally considering all possible plans created by join fusion and TAP

detection, the search space is notably increased. Hence, a complete traversal of

the search space is not feasible inacceptable time. Therefore,wehave to restrict

the search space using two strategies: (1) prohibit the application of non-

promising transformation rules and (2) early pruning of inefficient subtrees.

In the relational world, especially in the case of System R, strategy 1 primarily

focuses on interesting join orders (see Section 2.1.2 on page 14). Our plan

generator does not consider StructuralJoin plans that introduce additional

structural full joins. Moreover, for join fusion, we only consider left-deep

plans. In Section 2.1.2, we also learned that exhaustive search strategies

traverse the complete search space. Even if we apply strategy 1, the search

space will remain fairly large. Therefore, in strategy 2, for every iteration

of the exhaustive plan generation algorithm, we only retain the cheapest

solution and do not consider more expensive ones any further. This idea is

also borrowed from classical relational query optimization. As already shown

byOno and Lohman (1990), if a Starburst-style plan generatorwith bottom-up

enumeration is used, linear queries with a hundred or more tables, which are

similar to SJ trees for path expressions, can be optimized in acceptable time.

In Chapter 12, we will see that an XQuery optimizer that considers a search

space restricted by strategies 1 and 2, can deliver decent results.

9.2 Strategies for Plan Generation

Section 9.2.1 discusses preliminary steps for plan generation that are per-

formed for every plan generation strategy. The cost-based XQuery optimizer

of XTC uses a bottom-up plan generation algorithm (Section 9.2.2) as default

search strategy. Nevertheless, our optimization framework is not restricted

to it. If query processing scenarios involve queries with very long path ex-

pressions, for example, expressions that consist of 15 or more location steps,

we provide several top-down strategies (Section 9.2.3), which do—in contrast

to our bottom-up strategy—not inspect the entire search space, but take only

random walks through it to cope with the immensely large search space.

9.2.1 Preliminaries

Before we can start with plan generation, we have to perform some prelimi-

nary tasks. Each plan generation strategy takes an XQGM instance as input.

In Section 5.2 on page 79, we discussed how XQGM instances are mapped
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Input: A stack Open with Goal.size() ≥ 1
Output: A stack Goal containing the cheapest plan, where Goal.size()=1 and P is a

set of plans with P ∈ Goal, |P| = 1

Goal ← ∅;1

while ¬Open.isEmpty() do2

P ← Open.pop();3

if ¬ isGoal(P) then4

S ← ∅, S′ ← ∅;5

/* Derive all semantically equivalent plans. */

/* Invariant: |P|=1 */

S ← action(P);6

/* Eliminate all sub-optimal alternatives */

S′ ← prune(S);7

Open.push(S′)8

else9

/* Invariant: |P| = 1 */

Goal.push(P);10

end11

end12

return Goal;13

Algorithm 9.1: Skeleton bottom-up search algorithm (according to Lanzelotte

and Valduriez, 1991)

onto plan graphs—in most cases, by a simple 1:1 mapping. As we have al-

ready pointed out in Section 5.2, plan graphs are actually trees, because all

operators consuming from XQGM Split operators receive their inputs from

dummy SplitRef plans. For the previously derived plan graph, we perform

a bottom-up traversal and apply the cardinality inference rules, which we

introduced in Chapter 7, to annotate each plan with the corresponding output

cardinalities (|p|) and derive the abstract domain identifiers for each operator

(padi). Whenever we transform a plan into a semantically equivalent alter-

native, we simply copy the cardinality information as well as the abstract

domain identifiers to allow for cost estimation.

Each search strategy takes a stack as input (Open) and returns a stack (Goal)

as well. In both cases, the stack elements are sets of semantically equivalent

plans. For bottom-up strategies, we perform a left-most depth-first traversal

of the plan graph and push each plan in reverse order onto the Open stack

in such a way that each plan forms a singleton set. Moreover, all pointers

to parent and child plans are eliminated for the stack elements. Top-down

strategies use a complete plangraphas starting point. Therefore, itsOpen stack

contains exactly one element. The single stack element is a set that contains
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the plan graph’s root node as single element. Here, we do not eliminate the

parent and child pointers, but keep the hierarchical structure intact.

Input: A set of plans P
Output: A set of plans P′′

P′ ← ∅, P′′ ← ∅;1

/* Apply implementation variation rules to plan in P. */

/* Invariant: |P| = 1 */

P′ ← expand(P[0]);2

/* Apply structural variation rules to all plans in P′ */

P′′ ← transform(P′);3

return P′′4

Function 9.1: action(P)

Input: A set of plans Pwith |P| ≥ 1
Output: A singleton set P′ with |P′| = 1

minCost← 0;1

p′ ← NIL ;2

forall p ∈ P do3

/* Estimate the sum of IO and CPU cost */

currCost← getCostEstimate(p);4

if p′ = NIL then5

p′ ← p;6

minCost← currCost;7

end8

else9

if currCost < minCost then10

p′ ← p;11

minCost← currCost;12

end13

end14

end15

P′ ← {p′};16

return P′17

Function 9.2: prune(P)

9.2.2 Bottom-Up Plan Generation

Let us assume that we already can dispose of the Open stack that contains

all plan nodes in reverse traversal order as single-set elements. Let P be a

set of semantically equivalent plans and S be the set of all plans—including

those contained in P—that can be derived from plans contained in P using

148



9.2 Strategies for Plan Generation

the transformation rules introduced in Section 6.2 and 6.3, for example, join

fusion.

Algorithm 9.1 shows the skeleton of our exhaustive bottom-up search al-

gorithm, which follows the idea of generalized search strategy frameworks

introduced by Lanzelotte and Valduriez (1991). Function isGoal (line 4) re-

turns true, if and only if, ∀ p ∈ P : pisGoal=true, otherwise it returns false.

The two most important parts of this basic algorithm are lines 6 and 7. In

line 6, we use Function 9.1 (action) to derive semantically equivalent plans

(expressed as the set of successor plans S) from the input set P, where P ⊆ S

holds.

Function 9.1 (action) encapsulates all wisdom on how semantically equiva-

lent alternatives are generated. In the scope of this function, the generation of

alternatives is performed in two separate operations: expand and transform.

Function 9.3 (expand) creates alternatives by applying implementation vari-

ation rules (Section 6.2). In contrast, Function 9.4 (transform) uses structural

variation rules (Section 6.3) to get further alternatives.

We have pointed out before that the complete search space cannot be tra-

versed due to its exponential growth. Therefore, line 7 calls Function 9.2

(prune). This function inspects each alternative plan in P and retains only a

single plan, whose estimated cost is minimal amongst all alternatives. Cost

estimation is performed using the getCostEstimate function. During the ini-

tialization step, we already assigned cardinalities to each plan. For cost esti-

mation, function getCostEstimate simply performs a bottom-up traversal on

plan p and uses the cost formulæ introduced in Chapter 8 to get the estimated

cost (currCost), which is calculated as the weighted sum of IO cost (pIOcost)

and CPU cost (pCPUcost). Based on the estimate, we decide in line 10 whether

the current plan is cheaper than previous alternatives. If this is the case, we

remember its cost and the plan itself. Finally, we return P′ in line 16, which

contains the cheapest plan.

Function 9.3 (expand) uses the already finished plans, which were put on

stack Goal by previous plan generation steps. If the input plan p has no

children (line 1–11), that is, it is a leaf node such as an Access plan, we simply

retrieve all possible implementations for it from the metadata catalog (line

3) and create exact copies of p that only differ in their implementation (line

4–9). If p is an inner node, for example, a StructuralJoin plan, we have to do

a little bit more work. If we already have produced more than one goal plan,

we have to derive all possible combinations of them with respect to different

implementations. First, we check how many inputs are required by plan p

(line 15). If only one input is needed, we simply fetch the top-most plan set

from the stack and create the set of singleton plan sets P. Otherwise (line
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Input: A plan p
Output: A set of plans P

if p|children|=0 then1

P′ ← ∅;2

/* Derive all possible implementations for p */

I ← getImplementations(p);3

forall i ∈ I do4

p′ ← clone(p);5

p′
impl← i

;6

p′
isGoal← true

;7

P′ ← P′ ∪ {p′};8

end9

return P′;10

end11

else12

P ← ∅;13

if Goal.size() > 1 then14

/* Determine the total number of input operators for the

current implementation of p */

noComb ← getNoChildren(pimpl);15

if noComb = 1 then16

P′′ ← Goal.pop();17

forall p ∈ P′′ do18

P ← P ∪
{

{p}
}

;19

end20

end21

else22

/* Create all possible combinations of input plans

(different implementations), which are residing on

stack Goal; P is a set of plan sets */

P ← combine(noComb,Goal);23

end24

/* For each input combination in P, create a new plan using p
as root and P ∈ P as input plans */

P′′′ ← createGoal(p,P);25

return P′′′;26

end27

else if Goal.size() = 1 then28

P′′′ ← createGoal(p,Goal);29

return P′′′;30

end31

else32

return ∅;33

end34

end35

Function 9.3: expand(p)
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Input: A set of plans P
Output: A set of plans P′

P′ ← ∅;1

/* Get the set of all structural variation rules (T ) from the

metadata catalog, for example, SJ reordering or join fusion */

T ← getStructuralVariationRules();2

forall p ∈ P do3

P′ ← P′ ∪ {p};4

forall t ∈ T do5

/* Try to apply t on p, if possible, derive a new semantically
equivalent plan p′ */

p′ ← apply(t, p);6

if p′ , NIL then7

p′
isGoal← true

;8

P′ ← P′ ∪ {p′};9

end10

end11

end12

return P′;13

Function 9.4: transform(P)

22), we use the combine function that pops noComb plan sets from Goal and

combines them in such away, that all permutations of plans from the plan sets

are derived. For example, let us assume that noComb = 3 and we popped

the following plan sets3: P1 = {a1, a2}, P2 = {b1, b2}, and P3 = {c1, c2, c3}.

As a result, combine returns P =
{

{a1, b1, c1} . . . {a2, b2, c3}
}

. In line 25, we call

the createGoal function. For every implementation of p, and every input

candidate Pi ∈ P, we create a new plan p′ that usesPi as input (p
′
children←Pi

).

Finally, in line 28, we handle the trivial case that there is only a single

goal plan. Therefore, we can skip the rather expensive combine step and

immediately derive the output.

After applying implementation variation to the input plan, we can now use

the structural variation rules to further enlarge the search space. Function 9.4

(transform) shows how these rules are applied. First, we fetch all structural

variation rules from the metadata catalog (line 2). For each plan p ∈ P,

which was previously formed by Function 9.3, we try to apply each structural

variation rule t ∈ T (line 6). If the application was successful, we simply

collect the new alternative in the result setP′, which also contains the original

plan p.

3Please note, each plan set Pi contains only semantically equivalent plans that differ only in pimpl.
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9.2.3 Top-Down Plan Generation

In Section 2.1.2 on page 15, we already introduced the basic principles of

three top-down plan generation strategies: Iterative Improvement, Simulated

Annealing, and 2-Phase Optimization. In contrast to bottom-up approaches,

which can potentially traverse the entire search space, top-down approaches

take random walks through parts of the search space (compare Section 2.1.2

on page 14). Even though we do not assume that bottom-up search will meet

its limits for standard queries, we also implemented top-down strategies for

allowing to compare both classes of algorithmswith respect to the quality and

efficiency of their optimization results.

For the sake of brevity, we will only have a look at our implementation of

Simulated Annealing, as the implementation of Iterative Improvement and

2-Phase Optimization is very similar to it. Especially, for selecting a neighbor

plan in the search space, our implementations of Iterative Improvement, Sim-

ulated Annealing, and 2-Phase Optimization use the same approach. More-

over, the principles of Iterative Improvement and 2-Phase Optimization were

discussed adequately before.

As a starting point for query optimization, we use a complete plan graph,

where each plan is assigned its default implementation. To improve optimiza-

tion results, we already do cost-based optimization at the initialization stage

by assigning the cheapest access path to each Access plan in the initial graph.

Thereafter, the plan is passed on to the actual search algorithm.

Algorithm 9.2 depicts our implementation of Simulated Annealing. First,

we estimate the cost of the initial plan as a referencepoint for further optimiza-

tion steps (line 3). The initial temperature t is calculated using the runtime

constant INIT TEMPERATURE (line 6). Global optimization continues as long

as the condition4 of function stop() is not satisfied (line 7). Local optimiza-

tion stops (line 9) if an equilibrium is reached, that is, n local optimizations

were performed, where n is proportional to the total number of join operators

involved in the query.

In line 10, we choose a neighbor plan in the search space using function

getNeighbor(pc). This function traverses pc in randomorder: At each subtree,

this function randomly chooses either (1) an implementation variation rule

or (2) a structural variation rule. If the application of the rule selected in

(1) or (2) was successful, the newly derived plan is returned. Otherwise,

random traversal continues until a variation was applied. Consequently, the

neighbor plan derived using this function differs from pc either in a different

4Global optimization stops, if t < FROZEN TEMPERATUREor costUnchangedCount = FROZEN COUNT.
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9.2 Strategies for Plan Generation

Input: An initial plan p
Output: The cheapest plan p′ in the considered part of the search space

pmin ← p;1

pc ← p;2

minCost← getCostEstimate(p);3

costUnchangedCount← 0;4

localOptCount← 0;5

t ← INIT TEMPERATURE ·minCost;6

while ¬stop() do7

noLocalOpt← 0;8

/* Continue until a sufficient number of alternatives was

inspected
(

localOptCount = (EQUIL FACTOR · getNoJoins(p)
)

*/

while ¬equilibrium() do9

/* Randomly choose a neighbor plan by applying impl.

variation or structural variation to pc */

pl ← getNeighbor(pc);10

localCost← getCostEstimate(pl);11

currCost← getCostEstimate(pc);12

∆ ← (localCost − currCost);13

if ∆ ≤ 0 then14

pc ← pl;15

end16

else17

prob← e−(∆/t);18

if prob ≥ PROB THRESHOLD then19

pc ← pl ;20

end21

end22

cost ← getCostEstimate(pc);23

if cost < minCost then24

pmin ← pc;25

minCost← cost;26

costUnchangedCount← 0;27

end28

else29

costUnchangedCount++;30

end31

localOptCount++;32

end33

t ← t · TEMP REDUCTION;34

end35

return pmin;36

Algorithm 9.2: Simulated Annealing
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implementation for a subplan or in an alternative structural composition (e. g.,

rearranged join orders).

As already argued in Section 2.1.2, the quality and the efficiency of the

optimization results of top-down search algorithms is critically dependent on

how the runtime constants (e. g., PROB THRESHOLD) are chosen.

9.3 Related Work

In Section 9.2, we outlined the top-down and bottom-up search strategies

currently implemented in our framework. Fairly, there are many more plan

generation techniques than covered by this thesis. Nevertheless, we believe

that our query optimization framework is general enough to integrate further

bottom-up and top-down plan generation strategies.

Research Papers In Section 2.3.1, we already discussed the Volcano ap-

proach (Graefe and McKenna, 1993) for plan generation, which restricts the

search space using branch-and-bound pruning.

McKenna et al. (1996) specify a toolkit called EROC (Extensible, Reusable

Optimization Components) for developing tailor-made variants of Teradata’s

NEATO query optimizer. Instead of exclusively relying on bottom-up or top-

down plan generation, they combine both approaches: For implementation

variation, they use top-down search, whereas for structural variation, they

apply bottom-up search.

In Moerkotte and Neumann (2006), the authors propose a novel algorithm

for optimally reordering bushy trees without cross products. If we would

only consider SJ reordering in our system, we could implement this algorithm

as yet another bottom-up plan generation strategy.

DeHaan and Tompa (2007) introduce a novel class of join enumeration algo-

rithms,which is neither basedonSystemR’s optimizationapproachnor amere

extension of Volcano’s top-down enumeration algorithm. Their top-down

algorithm relies on branch-and-bound pruning and provides two pruning

heuristics that are called accumulated-cost bounding and predicted-cost bounding

(originally introduced by Shapiro et al., 2001). Accumulated-cost bounding

assigns a cost budget to the plan generation function. If the cost budget is

higher or equal to the estimated cost for a subtree, it is considered optimal.

Otherwise, if the budget is exhausted, the top-down traversal stops for the

considered recursive step. On the other hand, predicted-cost bounding is a

look-ahead approach that tries to determine a lower cost bound of a subtree

in the search tree even before actually touching it in a recursive decent.
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9.4 Summary and Conclusions

As we have outlined in Section 5.2, even though most XQGM instances are

DAGs, we transform them to trees to simplify query optimization. The ap-

proach ofNeumann andMoerkotte (2009) discusses the optimization ofDAG-

structuredQEPs. We believe that it can also be used in our system to speed-up

plan generation, especially when we start focusing on very large XQuery ex-

pressions in the future.

Neumann (2009) proposes a technique for optimizing very large star joins,

whose optimization is in general computational intractable, that simplifies

queries as long as their optimization is possible within a given period of

time. Even though XQuery optimization is more or less restricted to chain

queries,which canbe optimizedmore easily, we canapply this idea, ifminimal

optimization time—rather than minimal execution cost—is our optimization

criteria and we are willing to accept sub-optimal QEPs.

Textbooks Besides research papers, we consider two textbooks as very

useful for getting a deeper understanding of query processing.

Many ideas developed in this thesis are inspiredbyMitschang (1995), which

looks at query processing in relational database systems from a research per-

spective as well as from an engineering perspective.

The comprehensive work of Moerkotte (2009), which is currently under

development, focuses on all aspects of query optimization in database systems

and claims to become a standard textbook for query optimizer architects. In

addition to Mitschang (1995), it covers the research results that haven been

contributed since 1995.

9.4 Summary and Conclusions

This chapter concludes Part II. In Section 9.1, we had a look at potential search

space sizes and showed that search spaces for XQuery expressions—due to

an additional dimension (structural relationships)—can become even larger

than search spaces for similar SQL queries.

In Section 9.2, we described two of our plan generation algorithms. At an

abstract level, we discussed how the key concepts developed in Chapters 5–8

can be entangled in such a way, that we can derive the most promisingQEP—

according to the cost model—for a given XQuery expression. First, we had

a look at our bottom-up plan generation strategy that is based on dynamic

programming. Next, we exemplified top-down plan generation using our

implementation of the Simulated Annealing algorithm.
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9 Plan Generation

Now, as we have reached the end of Part II, we can dispose of the theoretical

background to build a cost-based XQuery optimizer:

• In Chapter 4, we specified logical query rewrite rules that supplement

the rules already introduced by Mathis (2009) and allow for pushing up

fn:text() accesses. This heuristics has a similar effect on query perfor-

mance as selection push-down in RDBMSs.

• Chapter 5 introduced a neat representation of query plans. Plans are the

maindata structures, which canbe easily derived fromXQGMinstances,

and are manipulated by the query optimizer.

• Query transformations, which are discussed in Chapter 6, are key for

generating alternative QEPs. First, we introduced implementation varia-

tion rules that allow to choose between alternative physical implemen-

tations of logical operators. Next, we added another dimension to the

search space by formulating structural variation rules that allow for rear-

ranging the compositional structure of QEPs by the query optimizer.

• As our approach relies on cost information that help to restrict the

search space to promisingQEPs, cardinality information are mandatory

for cost estimation. Hence, Chapter 7 discussed an XQuery cardinality

estimation approach that estimates the cardinalities of tuple sequence

items at runtime using abstract domain identifiers.

• Based on functions provided by the cardinality estimation framework,

which was derived in Chapter 7, we specified the cost formulæ in Chap-

ter 8 that finally support the query optimizer in calculating the costs of

alternative plans and help to identify the plan with the lowest cost

amongst all n alternatives.

In Part III, we will discuss the challenges of cost-based query optimization

from a software engineering perspective. Moreover, we will demonstrate—

using an extensive empirical evaluation—the strengths andweaknesses of our

system.
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10 Optimizer Architecture

“Architecture begins
where engineering ends.”

(Walter Gropius)

After providing the theoretical background of our cost-based XQuery opti-

mization approach in Part II, we will now look at the optimizer’s system

architecture.

In Section 10.1, we discuss the different components of our cost-based op-

timizer. Thereafter, Section 10.2 reviews related work on optimizer architec-

tures. Finally, Section 10.3 summarizes this chapter and leads over to Chapter

11.

10.1 System Architecture

In this section, we will have a closer look at the architecture and implementa-

tion aspects of our query optimizer. In Figure 10.1, we provide an overview

of the system components. We will focus only on the the query optimization

framework itself and do not discuss the surrounding infrastructure, that is,

(1) the Physical Algebra (PAL), (2) the XQGM implementation, (3) the Execution

Engine—because these components were already discussed comprehensively

in Mathis (2009)—, and, finally, (4) the Statistics component, which would re-

quire a deeper understanding of XTC’s implementation being out of the scope

of this work.

The Plan Generator component provides the glue between the optimization

framework and XTC. Consequently, its interface is rather simple: It only

provides a method called getBestPlan, that receives an XQGM instance as

input and returns one or more QEPs as result—depending on the currently

chosen plan enumeration strategy. Beyond that, it allows to influence the

overall setup of the query optimizer by selecting the search strategy and the

physical operators that shall be considered during plan generation1.

1More precisely, this configuration can be modified on-the-fly using the XTC Universal GUI (see
Chapter 11).
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10 Optimizer Architecture

Figure 10.1: Optimizer components (taken fromWeiner and Härder, 2010a)

10.1.1 Plan Space

The Plan Space component encapsulates the knowledge on the different plan

types. It provides aPlanFactory thatmapsXQGMoperators ontoPlan classes.

Figure 10.2: Plan interface

Figure 10.2 shows the common interface of

Plan classes2. The isGoal method helps to

determine whether the current plan was al-

ready optimized or not. Using method getIm-
plementation, the optimizer can retrieve the

specification of the currently assigned physi-

cal operator. When query optimization is fin-

ished and plan translation begins, the Trans-
lator (see Section 10.1.7) uses the isTranslated
method to verify whether the current plan has

already been mapped onto a corresponding physical operator. Cost estimates

and the output cardinality of the current plan can be derived using getIoCost,
getCpuCost, and getpOutputCard, respectively.

2Note, for the sake of readability, we only show the most important get methods and omit simple
manipulation methods, for example, for adding or removing child plans.
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10.1 System Architecture

Figure 10.3: Plan Space component

There are some tasks in query optimization that make a full traversal of plans

necessary, for example, cost estimation. The Visitor design pattern (Gamma

et al., 1995) provides a neat recipe for extensible traversal algorithms. Based

on this pattern, the accept method allows to register PlanVisitor objects that
are notified during plan inspection.

Figure 10.3 depicts the Plan class hierarchy as well as the PlanFactory class.

Specific implementations of the Plan interface, for example, a specialized

class for handling SJs (StructuralJoin objects), are only created within the Plan

Space component. Using the famous Factory design pattern (Gamma et al.,

1995), the component can expose Plan objects to other components. The

abstract subclass AbstractPlan provides basic implementations for common

functionality, for example, adding and removing of subplans. The subclasses

of AbstractPlan realize the functionality of the corresponding Plan subtypes,

which we already introduced in Chapter 5.

In essence, the so-called PlanFactory provides two categories of methods:

(1) getPlan methods that return a Plan object for a corresponding XQGM

operator (e. g., createPlan) and (2) methods that replace a Plan object with

an alternative, for example, a cascade of SJs is replaced by an IndexAccess
plan if possible (method createIndexAccess). The first category of methods is

only used during the initialization phase to bootstrap the query optimizer. In

contrast, methods of the second category are used during plan generation.
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10 Optimizer Architecture

10.1.2 Implementation Manager

It is worth noting that, conceptually, Plan objects are completely separated

from their actual physical implementation—as already indicated by the getIm-
plementation method. The ImplementationManager encapsulates all knowl-

edge about the currently available physical operator. It is directly connected

to XTC’s metadata catalog and knows everything about the implemented

physical algebra. Externally, the ImplementationManager is exposed using

the corresponding ImplementationManagerFactory.

Figure 10.4: Implementation

Manager interface

Figure 10.4 shows the interface of the Im-
plementationManager. Using the getAlter-
natives method, we can retrieve a list of

all valid implementations for a given plan.

The ImplementationManager assures that

getAlternativesreturns exactly those imple-

mentations that do not contradict the con-

ditions of the respective implementation

variation rules as specified in Section 6.2. To support this important task,

each Implementation object describes the metadata of a physical algebra oper-

ator. For example, each Implementation object specifies whether the operator

requires sorted (duplicate-free) input or provides sorted (duplicate-free) out-

put, respectively. Moreover, the Implementation can tell the Plan Generator

how many input streams it needs. Additionally, we can use method isIn-
dexAvailable to verify whether there exists a specific index for a well-defined

path.

10.1.3 Search Strategy

The Search Strategy component is probably the most important component of

the query optimizer, because it contains the essential plan generation algo-

rithms.

Figure 10.5 shows the different classes and interfaces of the Search Strat-

egy component. Search strategies are exposed to the Plan Generator using

the SearchStrategyFactory. Search strategies—no matter whether they are

bottom-up or top-down strategies—have a common interface called Search-
Strategy. This interface provides the basicmethoddefinitions for search-space

exploration. The Plan Generator calls the initializemethod for deriving an ini-

tial plan for a corresponding XQGM graph. Next, it employs the search
method to find an optimal plan. The stop methods informs the concrete
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Figure 10.5: Search Strategy component

search strategy whether the termination criteria is met (e. g., no more non-

goal plans or local cost minimum). Finally, the optimal plan can be retrieved

via the getGoalState method. Bottom-up search strategies inherit from class

AbstractBottomUpSearchStrategy several utility methods. Additionally, this

class provides abstract method definitions for the implementation of enumer-

ative search algorithms. In class EnumerativeSearch, we realize a generalized

version of our exhaustive bottom-up search algorithm (Algorithm 9.1 on page

147), which performs a full enumeration of the search space, that is, the prune
function has only a trivial implementation. This search strategy is only used

for experiments, because it is only applicable for small search spaces. Never-

theless, it helps to determine each possible plan for a given query and allows
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10 Optimizer Architecture

Figure 10.6: Transformer component

to record their respective execution times. As full enumeration is not feasible

for medium to large search spaces, its subclass SystemR overrides the prune
method in such a way, that only the cheapest alternative of each optimization

stage is retained (compare Function 9.2 on page 148).

Implementations of top-down search strategies are based on the abstract

class AbstractTopDownSearchStrategy that additionally provides method lo-
calStop, which helps to implement local stop conditions. Currently, we im-

plemented three top-down strategies using three subclasses of the abstract

base class: IterativeImprovement, SimulatedAnnealing, and TwoPhaseOpti-
mization. Algorithm 9.2 on page 153 already showed our implementation of

SimluatedAnnealing’s search method.

10.1.4 Transformer

In Chapter 6, we discussed implementation variation rules and structural

variation rules that allow to derive semantically equivalent plans. In our sys-

tem, the Transformer component provides the infrastructure for implementing

these rules. In Figure 10.6, we illustrate the different classes and interfaces

belonging to the Transformer component. Every structural variation rule is
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represented as a Transformation object. For example, implementations of the

Transformation interface, such as JoinFusion or JoinAssociativity provide an

apply method that allows to transform a plan into an equivalent alternative

according to the implemented rule.

The TransformerFactory exposes concrete Transformer objects to the plan

generator’s search strategy. The Transformer interface is implemented by two

classes: BottomUpTransformer and TopDownTransformer, whereupon the for-

mer one is associated with bottom-up search strategies and the latter one is

used by top-down search algorithms. To allow for runtime adaptivity, every

transformer does not have a fixed set of transformations. Instead, the frame-

work is open for novel transformation rules that can be switched on (method

register) and off (method unregister) using the optimizer configuration tool

(see Chapter 11).

In Section 9.2.2 on pages 150–151, we detailed our bottom-up plan gener-

ation approach. The BottomUpTransformer implements the expand function

(methodexpand) and the transform function (methodgetSuccessors) of Func-
tion 9.3 and Function 9.4, respectively3.

In contrast to BottomUpTransformer, TopDownTransformerdoes not imple-

ment the expand method. Instead, implementation variation and structural

variation are only applied in the getSuccessors method. Algorithm 9.2 on

page 153 shows our implementation of Simulated Annealing. There, the call

to function getNeighbor (line 10) internally invokes method getSuccessors
of the corresponding TopDownTransformer. Our optimization framework

provides two implementations of the getSuccessors method. The first im-

plementation is called linear top-down and the second approach is referred to

as random top-down. Linear top-down transformation works as follows: We

choose a complete path from the plan’s root node to a leaf node and try to

apply implementation variation or structural variation to each node on this

path. A successor is found, if a structural variation or an implementation

variation was successfully applied. If the leaf node was reached without any

modification of the plan, a new path is chosen and the process starts again.

The second approach (random top-down) works similarly, except the fact,

that it does not take a linear route through the plan, but, instead, it chooses at

each operator its future direction randomly.

Now you might ask why we put both types of variations into a single

method, instead of handling them separately as done in the BottomUpTrans-
former. The rationale is very simple: In top-down plan generation, we start

3Please recall, function expand applied implementation variation rules and generated all possible
combinations of already optimized plans, whereas function transform applied only structural
variation rules to the input plan.
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Figure 10.7: Cost Model component

with a complete plan graph and derive an equivalent plan by changing the

implementation or the structure, that is, we do not perform both operations at

the same time. In contrast, bottom-up plan generation always applies imple-

mentationvariationfirst andperforms structural variationonall permutations

derived in the previous step. Hence, bottom-up plan generation results in a

strict separation with respect to rule application, whereas top-down search

does not.

10.1.5 Cost Model

The cost formulæ of our cost model are implemented in the Cost Model com-

ponent. Figure 10.7 depicts the corresponding UML diagram. The Estimator

component (Section 10.1.6) uses the CostFormulaFactory to get the cost for-

mula for the currently visited physical operator4. All cost formulæ share a

common interface (CostFormula), where class AbstractCostFormula provides

a skeleton implementation of utility functions shared by all specific cost for-

mulæ, for example, StackTreeCostFormula.

10.1.6 Estimator

The Estimator component, whose interface and classes are depicted in Figure

10.8, offers an infrastructure for cost and cardinality estimation.

4Please note, the Implementation interface (see Figure 10.4) provides a method getImplementation
that returns a PhysicalOperator object. This object can be used as a parameter for method
getCostFormula to fetch the corresponding formula.
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Figure 10.8: Estimator component

For cost estimation, we have to traverse plan graphs. To accomplish this stan-

dard task, we rely on an implementation of the classical Visitor design pat-

tern (Gamma et al., 1995). The PlanVisitor interface provides a visit method

for all Plan classes specified in Section 10.1.1. The actual implementation

(EstimationVisitor) allows to inspect a plan graph in left-most depth-first

traversal order. A CostVector provides the current estimation context and

helps to collect the cost and cardinality information of previously visited

plans. Besides cost and cardinality information, the CostVector also manages

the current set of AbstractDomainIdentifier objects, which are used for cardi-

nality inference (as already introduced in Chapter 7). All cardinality inference

rules are implemented in the visit method of the respective plan type. For

example, Cardinality Inference Set 7.1 on page 115 is implemented in method

visit(Access access). For cost estimation, which is also done in the visit meth-

ods, we use the CostFormulaFactory (Section 10.1.5) to get the cost formula

for the currently assigned physical operator.
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Cost Model Estimator Cardinality Estimator
Inference

TotalCard(x) getTotalCard |e| getTotalCard
Cardx(y) getCard σ(a[θb])
PageCard(x) getPageCard σ(aθ b)

getSelectivity

Selectivity(p) getDefaultC σ(p) getDefaultC
Selectivity Selectivity

PathCard(p) getOutputCard
h(i) getHeight

(a) (b)

Table 10.1: Mapping of Estimator methods to cost model and cardinality

inference rule functions

To bootstrap cost and cardinality estimation, the EstimationVisitor uses the

Estimator class which serves as façade for XTC’s metadata catalog and its car-

dinality estimation framework EXsum (see Section 3.1.5 on page 52). Method

getOutputCard is used to estimate the output cardinality of complete paths.

Using getTotalCard, we can derive the exact number of occurrences of a spe-

cific object, for example, an element.

For the cardinality estimation of SJs, we must calculate the selectivity of the

structural predicate. This task is done using getSelectivity. For estimating the

selectivity of value-based predicates, we use method getDefaultSelectivity,
which returns the classical default values well-known from the relational

context, for example, for a simple selection predicate, we apply the classical

10% rule5. To determine the height of an index, we use method getHeight.
For retrieving the total number of data pages consumed by an index, we rely

on method getPageCard.
To emphasize the correspondence between the Estimator and the cardinal-

ity inference rules on one hand and with the cost formulæ on the other hand,

we summarize the mappings between Estimator methods and the parameters

of the inference rules as well as the cost formulæ in Table 10.1. Table 10.1(a)

shows the relationships between Estimator methods and the cost model func-

tions, whereas we can see in Table 10.1(b), how the expressions used for the

formulation of the cardinality inference rules relate to corresponding Estima-
tor methods.

5As already mentioned in Section 2.1.3 on page 19, the relational default selectivities can be error-
prone and might be improved using histograms. Nevertheless, we have not yet implemented
histograms for value-based predicates.
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Figure 10.9: Translator component

10.1.7 Translator

Finally, after an optimal QEP is found by the query optimizer, we have to map

it onto a corresponding physical plan. For the generation of physical plans,

we retain the principles introduced in Mathis (2009): We use a pattern-based

mapping approach. For each plan implementation, there exists a Transla-
tionPattern that describes the parameters for instantiating a concrete physi-

cal operator. Every TranslationPattern is registered at the TranslationWalker,
which completely traverses the plan graph and collects the already translated

subgraphs. It uses the Observer design pattern (Gamma et al., 1995) to notify

TranslationPattern objects, for example, an instance of ElementIdxScanPat-
tern, about the current position in the plan graph. If a pattern matches, the

corresponding translation code is executed and the resulting subgraph is col-

lected by the TranslationWalker. Whenever a plan is successfully translated,

it is marked as translated. To prevent conflicts during matching, we claim that

all conditions of TranslationPattern implementations must be disjoint, that

is, there may not exist two or more patterns that match for an arbitrary but

consistently chosen plan.
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10.2 Related Work

Selinger et al. (1979) introduced the fist cost-based query optimizer (see Sec-

tion 2.1). Our bottom-up search strategy is inspired by System R’s seminal

plan generation algorithm. Though, our algorithm is not restricted to left-

deep query graphs. Instead, our plan generation algorithm is capable of also

generating right-deep and bushy query graphs. Nevertheless, to honor this

seminal approach and for emphasizing the relationship of our implementa-

tion to it, we called our bottom-up plan generation algorithm SystemR (see

Figure 10.5)6.

Rosenthal and Reiner (1982) described a query optimization infrastructure

for relational and CODASYL-based databases. Though they rely on a different

storage mechanism, their overall goal is congruent with ours: evaluating the

effectiveness of different query optimization approaches under equal and

fair conditions using a single system. They rely on a query optimization

technique that incorporates three phases: the first and second phase serve as

preparation for cost-based query optimization, which is actually performed

in the third step. In the first stage, they create so-called join templates, which

are alternative join order graphs (similar to search trees formed in System R’s

optimization methodology). The second phase, which is optional, enriches

the join templates with additional knowledge on possible access methods

(so-called direct access structures). Finally, the third step derives a QEP using

cost-based optimization.

Lanzelotte and Valduriez (1991) contributed an extensible framework for

query optimization that models the search space without having a concrete

search strategy in mind. The architecture of our optimizer implementation is

strongly influenced by this paper. Developing an extensible query optimiza-

tion infrastructure that is open to different types of plan generation strategies

is hard, because, for example, bottom-up search strategies and top-down

search strategies differ significantly in the way how they traverse the search

space and not only in their direction of action (see Section 10.1.3): Bottom-up

strategies exhaustively generate all permutations of join orders, whereas top-

down strategies transit from one plan to another one by simplymodifying the

implementation or structure of a single (sub-)graph per optimization step.

Das and Batory (1995) propose a flexible rule specification framework called

Prairie that extends the rule-based optimizer generator Volcano (see Section

2.3.1 on page 30). The way how we specify the implementation variation

and structural variation rules are very close to the Prairie approach. Using

6A detailed discussion of the various search strategies can be found in Section 2.1.2 on page 14.
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Prairie’s nomenclature, our implementation variation rules and structural

variation rules are more or less equal to their transformation rules, whereas our

translation patterns correspond to Prairie’s implementation rules.

Kabra and DeWitt (1999) specify OPT++ as an object-oriented architecture

for extensible query optimization, which extends the work of Lanzelotte and

Valduriez (1991). Their approach combines a flexible search component with

an extensible logical and physical algebra representation.

Bruno et al. (2009) present a hinting framework called Phints that allows

to influence the optimizer’s choice of the best plan by injecting “external

knowledge”, for example, constraints that forbid the generation of certain

query shapes or always prefer certain implementation variants over equiva-

lent ones—no matter whether the cost estimator considers the first one more

or less efficient than the latter one. At the moment, our optimizer does not

provide such a hinting mechanism. Though, we could easily integrate it in

the future.

10.3 Summary

This chapter looked at the architecture of our query optimization framework

to give you a better understanding how the concepts developed in Part II are

realized in our system prototype.

First, in Section 10.1, we introduced the optimizer architecture from a bird

eye’s perspective. Thereafter, we had a glimpse at at the architecture of each

individual component. Next, in Section 10.2, we discussed how other authors

realized extensible query optimization architectures in the past.

By finishing this chapter, we end the discussion of the query optimization

framework. Now, we are familiar with the theoretical background and have a

decent impression of the actual implementation of our system. Beforewe step

on to empirically evaluating the query optimization framework inChapter 12,

we will discuss the XTC Universal GUI (Chapter 11) that (1) helps to visualize

the different outputs of our optimization pipeline (i. e., XQGM instances and

QEPs) and (2) allows for on-the-fly configuration of the query optimizer with

different search strategies and structural variation rules.
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“Try out your ideas by
visualizing them in action.”

(David Seabury)

In this chapter, we introduceXTCUniversal GUI (XUG) that allows to configure

and control our query optimizer at runtime. Moreover, it helps to get a deeper

understanding of cost-based XML query optimization by visualizing every

stage of the overall query optimization process—that is, from the translation

of an XQuery expression into XQGM up until the final QEP.

In Section 11.1, we describe the features of XUG. Thereafter, we summarize

this chapter in Section 11.2.

11.1 Visualizing Query Optimization

When we started with the implementation of the query processor, we needed

a visual explain tool that helped to debug the complex XQuery-to-XQGM

mappings of XTCcmp (see Section 3.2.3 on 57). Notably, we demonstrated the

initial version of our visual explain tool at VLDB (Mathis et al., 2008) as well

as at BTW (Weiner et al., 2009).

Even in the first phase of implementation, we immediately became aware

that the initial visual explain tool had to be enhanced to support the develop-

ment of the query optimizer in the same fruitful way as it did before in the

context of XTCcmp. Besides that, we performed a technological shift, that

is, we reimplemented the initial visual explain tool as an Eclipse plug-in1 and

added new features for configuring the query optimizer. Finally, in 2010, we

successfully presented our query optimization approach using the novel XTC

Universal GUI (XUG) at ICDE (Weiner et al., 2010).

1For more information on Eclipse, visit http:�www.eclipse.org.
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11.1 Visualizing Query Optimization

Figure 11.2: XUG configuration dialog

11.1.1 Overview

The name of XUG indicates that our aim was providing a complete control

center allowing to interact with XTC in a graphical manner; in addition to the

actual optimizer configuration that we are focusing on in this work.

Figure 11.1 shows an overview of XUG. In box➀, you can have a look

at the metadata of documents, database containers, and the database buffer.

Additionally, you can access the console for interacting with the XTC server

in a textual way. Box➁ shows the list of all documents currently stored

in a document collection. For each document, you can open a dialog for

querying the document using an XQuery statement as well as (1) creating

index definitions, (2) deleting documents, or (3) simply listing the complete

document. Index statistics, that is, (1) the index size, (2) the total number of

indexed elements (Card), (3) the height of the index, (4) the total number of

leave nodes and inner nodes, and, finally, (5) the clustering type are illustrated

in box➂.

The original explain tool of XTCcmp allowed to track the complete query

evaluation process from the beginning (translation of an XQuery expression
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Figure 11.3: XUG in action

into an XQGM instance), over query rewrite (e. g., query unnesting), to its

very end (plan of physical algebra operators). In XUG, we retain this feature

and create for each modification of an XQGM instance a new graphical repre-

sentation, which can be selected for visualization in box➃. The main canvas

of XUG is represented by box➄, where we display either (1) the query result,

(2) the query graph previously selected in box➃, or (3) statistics provided by

the query optimizer, for example, the estimated IO costs.

11.1.2 Optimizer Configuration

In Figure 11.2 on page 175, we illustrate one of the novel features of XUG: the

optimizer configuration dialog. It allows for an on-the-fly reconfiguration of

the query optimizer. In box➀, we can select a search strategy, for example,

SystemR. If there are multiple Transformers that are compatible with the pre-

viously chosen search strategy—for example, top-down search strategies can

be combined with a linear or a random top-down Transformer (see Section

10.1.4)—, box➁ allows to select one of them. In box➂, we can enlarge or

restrict the search space by adding or removing structural variation rules, for

example, join fusion (in XUG, they are simply called rewrite rules). Finally,

using box➃, we can assign search-strategy-specific parameters, for example,

the temperature reduction factor for Simulated Annealing (see Section 9.2.3

on page 152). XUG’s optimizer configuration file is specified in XML. In

Appendix A on page 219, you will find a sample configuration file.
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11.1 Visualizing Query Optimization

Furthermore, we enhanced XUG in such a way that it can output all possible

QEPs for a single query. This can be easily reached by choosing Full Enumer-

ative as search strategy in box➀; this strategy is basically the same as System

R, except the fact that it does not prune expensive subtrees2.

11.1.3 XTC Universal GUI in Action

Figure 11.4: Overview of XQGM

instances and QEPs available for

visualization

So far, we have shown some features

of XUG, but neglected the interaction of

users with it. As XTC and XUG are im-

plemented using the Java programming

language, we use the Java RMI API for

interaction. Figure 11.3 shows how de-

velopers can work with XUG to config-

ure the query optimizer.

In the first step, we can configure a

specific query optimizer using the dialog

shown in Section 11.1.2. Thereafter, XUG

interacts with XTC’s query optimization

framework and instantiates a new query

optimizer (second step). Now, a user

can expose a query in XUG and, hence,

initiate query optimization. The query

optimizer receives the query and pro-

cesses it according to XTC’s query eval-

uation process (Figure 3.11 on page 57).

When optimization is finished, the op-

timal physical plan is executed and the

result is returned to the user. During

query optimization, we recorded statis-

tics (e. g., query optimization and exe-

cution time as well as estimated costs

and cardinalities) and generated textual

representations—so-called dot graphs—

of each modified XQGM graph and of each QEP (one or more—depending

on the chosen search strategy). Statistics, dot graphs, and the query result

are sent back to XUG. XUG employs the GraphViz visualization framework

2As we have pointed out in Section 9.1 on page 143, this strategy can only be used for simple
queries with few SJs. Nevertheless, it provides a good means for evaluating the quality of the
cardinality inference rules and the costmodel as well as their influence on effective SJ reordering.
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(Ellson et al., 2003) for layouting the dot plans: All plans are translated into

Scalable Vector Graphic (SVG) instances and are renderedusing theApache Batik

SVG Toolkit3. Additionally, the actually executed QEP is annotated with nu-

merous runtime statistics, for example, the total number of tuples received

via a specific access path. Moreover, we generate a pie chart that shows the

relative time of different optimization stages (e. g., query optimization time

for plan generation) with respect to the total query execution time. Finally,

we generate a list of all XQGM instances and QEPs (Figure 11.1, box➃) that

can be visualized in XUG’s main canvas (Figure 11.1, box➄).

Figure 11.4 depicts the plan list for a sample query. In this situation, XUG

exposed 10 modifications of the original XQGM during logical query opti-

mization (box➀). Additionally, a full enumeration of the search space resulted

in 12 different QEPs (box➁), where the last entry in the list represents the vi-

sualization of the actually executed QEP that was annotated with runtime

statistics by the the Execution Engine. In the case of Figure 11.4, the main

canvas would show the SVG graph of QEP4.

11.2 Summary

In this chapter, we briefly discussed a helpful tool for developing and eval-

uating our query optimization framework. During the development of the

optimizer, it served as a utility for finding bugs in structural rewrite rules

as well as in the different plan generation strategies. Beyond that, it was

a precious tool for easily deriving camera-ready illustrations of XQGM in-

stances and QEPs in equal measure (In fact, XUG permits exporting the SVG

visualizations into numerous graphics formats).

The subtitle of this thesis mentions three aspects for looking at cost-based

query optimization in XML databases: theoretical concepts, implementation,

and an empirical evaluation. Until now, we have discussed the first and the

second aspect comprehensively. Now, we canmove on to the final step, where

we will empirically evaluate our concepts and our framework in Chapter 12.

3More information on Apache Batik is available at: http:�xmlgraphics.apache.org/batik
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“Doubt the conventional wisdom
unless you can verify it with reason
and experiment.”

(Steve Albini)

So far, this thesis outlined the theoretical background of cost-based XQuery

optimization and discussed its integration into the XTC prototype. Now, we

are ready to assess the system using a comprehensive empirical evaluation.

In Section 12.1, we describe the experimental setup (hardware, software,

and the different query sets) that is used for the empirical evaluation. Section

12.2 looks at the effectiveness of the push-up query rewrite rules as defined

in Chapter 4. The reliability of the cardinality inference rules, which were

proposed in Chapter 7, is studied in Section 12.3. Thereafter, Section 12.4

verifies the correctness of the cost model. Next, Section 12.5 assesses the

quality of our plan generation approach, for example, we performa scalability

test and look at search space sizes. Afterwards, Section 12.6 discusses related

work. Finally, Section 12.7 concludes this chapter with a short summary.

12.1 Experimental Setup

To perform all experiments under equal and fair conditions, we rely on a

common hardware and software setup and use documents and query sets

that are well-known in the XML query optimization community.

12.1.1 Hardware and Software

We conducted all experiments on an Intel XEON quad core (3350) computer

(2.66GHz CPUs, 4GB of main memory, 500GB of external memory) running

Linuxwithkernel version2.6.14. OurnativeXDBMSserverXTCand thequery

optimization framework were implemented using Java version 1.6.0 07. We

started the Java Virtual Machine (JVM) with 512MB of main memory and we

permitted it to consume up to 2GB. XTC’s storage systemwas initialized with

a page size of 16KB and its buffer was able to hold 256 16-KB frames. If not

mentioned otherwise, we used the bottom-up algorithm (Algorithm 9.1 on
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page 147) for plan generation and switched on all rules for implementation

variation and structural variation that were introduced in Chapter 6.

Every experiment was executed on a cold database buffer, that is, after stor-

ing a document and creating PAPs, SAPs, or TAPs, we performed a complete

shutdown of the server and restarted it for running the queries. Moreover,

before executing a query, we completely emptied the database buffer. The

results presented in this section reflect the arithmetic mean of four runs per

experiment1, whereupon we made sure that the standard deviation among

these four runs did not exceed 5%.

12.1.2 Query Sets

For the experiments, we rely on a standard set of documents and queries that

are widely used in the context of XML query optimizers. First, we use the

XMark benchmark (Schmidt et al., 2002) that provides a document generator

and a set of 20 simple to complex XQuery expressions (Appendix C.1 on page

223). In our opinion, XMark serves very well to test the effectiveness and the

ability of an XQuery processor to derive scalable QEPs. XMark’s document

generator produces XML documents whose sizes can be specified by a linear

scaling factor f . For example, if f = 1.0 or f = 10.0, then the document

generator creates adocument that has anapproximate size of 110MBor 1.1GB,

respectively.

In some situations, the conventional XMark benchmark queries are too

complex to assess certain aspects of query processing. Therefore, we retain

the original XMark documents, but replace the query set by XPath queries

(Appendix C.2) provided by the XPathMark-A2 benchmark.

12.2 Push-Up of Text Accesses

Before we start to assess the cost-based query optimizer, we will have a look

at the query rewrite rules introduced in Section 4. There, we defined several

rules that help to push-up accesses to the text() function as far as possible.

For verifying the effectiveness of the push-up rules, we used Query 4.1,

which we already introduced on page 63. We executed the query on an

XMark document with f = 4.0 and varied the selectivity of the value-based

1Actually, we executed five runs. But we did not consider the first run for the calculation of the
average, due to skews caused by “warming-up” the JVM that would have tampered the average
value.

2More information on the benchmark is available at: http:�sole.dimi.uniud.it/̃ C
massimo.franceschet/xpathmark/PTbench.html
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Figure 12.1: Effectiveness of fn:text() push-ups

predicate in the range between 0.001 and 1.0 (x-axis). On the y-axis, we put

the relative execution time of scenariowith push-upwith respect to the baseline

provided by without push-up.

Figure 12.1 illustrates the results we recorded for the aforementioned query

with respect to multiple selectivities. In the best case (selectivity=0.001), we

can reduce the evaluation time by 40%. For a moderate selectivity of 0.2, we

still get an reduction of the execution time by 20%. Even if the predicate is not

selective at all, the rewritten XQGM is as good as the original one.

12.3 Cardinality Estimation

In Chapter 7, we defined a set of inference rules, which are based on the

concept of abstract domain identifiers. These rules are used for cardinality

estimation in our optimization framework.

Three questions arise when we try to appraise the quality of the cardinality

estimator:

1. Do the rules provide precise estimates for intermediate operators?

2. If there are estimation errors, can the framework recover from them?

3. How close to reality is the estimated cardinality of the complete query?

The first and the second question affect the actual plan generation phase

(Section 12.3.1). For example, the bottom-up plan generation algorithmmakes

a local optimality assumption. If it is violated, for example, due to a cardinality

estimation error, consecutive optimization stepsmay use suboptimal plans. In
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contrast, the third question (Section 12.3.2) is almost only important for query

translation, as the output cardinality of the query might call for a different

materialization strategy.

12.3.1 Cardinality Estimates for Intermediate Operators

The initial experiment focuses on the first and second question. We executed

the XMark benchmark on a document with scaling factor f = 1.0. For each

query, we recorded the deviation of the estimated cardinality from the actual

cardinality of each intermediate operator.

Figure 12.2(a) illustrates the results. The y-axis is labeledwith the identifiers

of the 20 XMark benchmark queries. On the x-axis, you can see the deviation

of the estimated value from the actual value. The interpretation of the scale

is: a circle drawn at position 0 means that there was no deviation between the

estimated and the actual cardinality at all. In contrast, if a circle is drawn at 10

or 0.1, thenwe faced a 10-fold overestimate or a 10-fold underestimate, respec-

tively. All circles drawn at the left-hand side of 0.01 and on the right-hand of

10.0 summarize overestimates and underestimates beyond these limits. Some

XMark benchmark queries are very complex and contain numerous interme-

diate operators. Hence, for improving the readability of the results, we scaled

the diameters logarithmically with respect to the total number of operators

having the same deviation ratio. For example, for the majority of operators in

query Q 10, the inference rules estimated the correct output cardinality (here,

88% of the inferred cardinalitieswere correct). Consequently, the largest circle

is drawn at position 0. Additionally, the tiny circles between 0.1 and 0 and the

medium-sized circles on the right-hand side of position 10 represent outliers,

from which the estimation rules were able to recover successfully.

To sum up, the inference rules provided exact estimates for the majority of

queries and associated operators. Though the estimation procedure caused

some outliers, their effect on the structure of the QEP is negligible, because

the errors mostly affect operators like GroupBy and Unnest that cannot be

removed without violating the query semantics and for which we do not

provide physical alternatives at the moment.

12.3.2 Output Cardinality Estimation

Besides reliable cardinality estimation for intermediate results, we also want

to get decent results for the whole query. In Figure 12.2(b), we depict the

actual and the estimated values for the XMark queries’ output cardinalities.

Once again, we record the deviation of the estimated value from the actual
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cardinality on the x-axis. The semantics of the circle positions with respect

to the x-axis remains the same as before in Section 12.3.1. But there exists a

subtle difference: we do not need different diameters anymore, because there

is only a single output cardinality for each query. Once again, the y-axis is

labeled with the XMark query identifiers.

After clarifying the semantics of the axes, we can now analyze the empirical

results. The cardinality estimates for 14 out of 20 queries are close or equal to

the actual cardinality gained after executing the query.

We faced a significant deviation between the estimates and the actual values

for queries Q1–Q 3. In the case of Q1, the predicate selectivity is much lower

than expected according to the 10% heuristics. This is not an XML-specific

problemand could be easily overcome, if wewould usemore refined statistics

on value distribution, for example, histograms. For queries Q2 and Q3, the

estimation error, which was unfortunately propagated up to the estimate of

the final query result, is due to the incorrect selectivity estimation of posi-

tional predicates. Nevertheless, the cardinalities for all performance-critical

operators, such as access paths and SJs were estimated correctly. Therefore,

the query optimizer’s ability to provide scalable QEPs is not hindered in these

situations (see Section 12.5).

12.4 Cost Estimation

After evaluating the cardinality inference rules in the previous section, we can

now step on to verifying the correctness of the cost model.

First and foremost, we evaluate the cost formulæ for the various access

paths in Section 12.4.1. Next, Section 12.4.2 describes how we can derive

parameter values for EvaluationCost(p), which helps the plan generator to

prefer SJs over HTJs and vice versa. In Section 12.4.3, we look at cost estima-

tion for simple path expressions. Thereafter, we evaluate the quality of cost

estimation for value-basedpath expressions. Finally,we assess cost estimation

for more complex XQuery expressions in Section 12.4.5.

12.4.1 Access Paths

In Section 8.2.1 on page 131, we specified the cost formulæ for the numerous

access paths. Each cost formula uses a constant factor PageFetchCostIO that

represents the cost for loading and transferring a single page from hard disk

to main memory. In the first experiment, we performed complete scans over

PAPs, SAPs, and TAPs that were created for XMark documents with f = 2.0
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Access path Query f Est. IO [ms] Act. IO [ms] Error [%]

Docum. index
Full scan 2.0 9, 225 9, 133 +1.007
Full scan 10.0 46, 260 46, 451 −0.411

Element index
�text 2.0 329.84 320.20 +3.010
�listitem 10.0 828.32 894.80 −7.430
�bidder 10.0 748.96 721.80 +3.762

Path index
Path p1 10.0 115.15 125.80 −8.465
Path p2 10.0 303.80 293.40 +3.544

CAS index
Full, income 10.0 303.40 307.60 −1.365
Point, income 10.0 47.68 44.60 +6.095
Range, income 10.0 199.89 219.60 −8.975

Table 12.1: Estimated versus actual IO for access path scans (Weiner and

Härder, 2010b)

and f = 10.0. We recorded the timings for the complete scans and related

them to total number of pages consumed by the indexes. Table A.1 (Appendix

A.1) summarizes the average timings per page. Fairly, this is only a rough

approximation of the actual page fetch costs that could be looked at a more

fine-granular resolution (for example, the costs could be split up into transfer

costs to the buffer and costs for reading a single page).

Nevertheless, for our purposes, this approximation is good enough to pro-

vide reliable cost estimates for access paths. Even though the costmodel treats

IO costs and CPU costs separately, our main concern in query optimization is

minimizing IO. In our query optimizer, the plan generator only looks at the

CPU costs of access paths if their IO costs do not differ. To verify that the cost

formulæ are correct and reliable, we carried out a number of experiments.

Table 12.1 shows the empirical results we gained for PAPs, SAPs, and TAPs.

We performed full scans over the document index with scaling factors f =
2.0 and f = 10.0, respectively. For testing the cost estimation of the element

index, we scanned three node-reference indexes of varying sizes, which were

created for elements text, listitem, and bidder. Moreover, we defined and

scanned path indexes p1 and p2 (see Appendix C.4.1 for their definitions) on

an XMark document with f = 10.0.

Finally, we looked at CAS index scans. Besides a full scan over the content

of all income attribute nodes (p3 in Appendix C.4.1), we also exposed a point

query (income=9,876), and a range query (20,000 ≤ income ≤ 80,000).

Let us consider the simple operation of finding all text element nodes.

Using a document index scan on an XMark document with f = 2.0, we need

approximately 9 seconds, whereas using a scan over a corresponding element

index, only around 0.3 seconds are necessary. Hence, the second variant is
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30 times faster than the first one. This stark disproportion holds in general,

because (1) for fetching element nodes from the document index, a complete

scan is always necessary and (2) the element index is always much smaller

(i. e., consumes fewer pages) than the document index. Consequently, the

estimation error for element index scans, which is higher than for document

index scans, does not affect the query optimizer in selecting the right access

path.

As we have learned, for example, in Chapter 6, path indexes can substitute

cascades of SJs that, in turn, use document index or element index scans as

access paths. Recall, path index records contain PCR numbers that encode

the path from the document root to the leave node. Let us consider path

query p1. Using a path index on p1, a complete scan would take around 0.3

seconds. For retrieving the same result using SJs that are fed by document

index or element index scans, we would need to execute three scans; not to

mention the overhead for evaluating each path step using an SJ. Even if we

would perform a shared scan over the document index, that is, a scan that

collects all site, closed auctions, and closed auction elements in a single scan, this

would take 46 seconds. In fact, in this situation, an evaluation of p1 with a

corresponding path index scan is more than two orders of magnitude faster

than using SJ cascades.

For full CAS index scans, we observedonly a slight estimation error (around

1%). We have mentioned before that we use the standard heuristics for pred-

icate selectivity estimation and do not rely on histograms or more refined

techniques. By looking at the results for point and range scans over the CAS

index,we can see that these heuristics trade estimation accuracy for costmodel

simplicity. Nevertheless, the errors are still tolerable.

12.4.2 Calibration of EvaluationCost(p)

In the heydays of XML query processing, there was an argument which kind

of join operator (SJ or HTJ) would become the first-class citizen for structural

predicate evaluation.

Influenced by this debate, Weiner and Härder (2009) compared the perfor-

mance of StackTree (Al-Khalifa et al., 2002) and TwigOptimal (Bruno et al.,

2002) with respect to their relative performance in different selectivity and car-

dinality scenarios. We introducedameasure called the relative performance gain

(RPG) that correlates the execution times of both classes of operators for the

evaluation of an XPath location step. For example, let us denote the execution

times for StackTree and TwigOptimal by ts and tt, respectively. Accordingly,

the RPG of StackTree is defined as RPGs = tt/ts. If RPGs > 1.0, then StackTree
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Figure 12.3: Actual vs. estimated execution times on XPathMark-A bench-

mark

outperforms TwigOptimal and vice versa. Based on this analysis, we derived

a set of linear functions that approximate the RPG for StackTree and TwigOpti-

mal. These functions provide a decision criteria for EvaluationCost(p), which

we introduced in Section 8.2.2.

Mathis (2009) showed that SJs and HTJs do not differ much in their signif-

icance for efficient query evaluation. Moreover, this claim is supported by

forthcoming experiments in this chapter. Hence, we do not have a more de-

tailed look at RPG functions in this thesis. Nevertheless, we reperformed the

experiments using a novel hardware setup (Section 12.1) that differed from the

one inWeiner and Härder (2009) and adjusted the RPG functions accordingly.

12.4.3 Cost Estimation for Path Expressions

In the previous section, we only looked at the prediction quality of cost for-

mulæ for access paths. Now, we will step on to complete queries. Figure

12.3 shows the results for the XPathMark-A queries that were executed on

an XMark document with f = 5.0. For this experiment, we considered three

optimizer configurations: C1, C2, and C3. All configurations were able to

apply implementation variation and structural variation (see Chapter 6). In

configurationC1, the optimizerwas only permitted to use the document index

as access path. Moreover, in configuration C2, we created an element index as

alternative access path. Finally, in configuration C3, we additionally provided

three path indexes (p1, p2, and p4 in Appendix C.4.1).

For each configuration, we recorded the actual execution times (solid boxes)

and the estimated execution times (hatched boxes), which we determined
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using the IO cost estimates of the cost model. On the x-axis, we depict the

identifiers of the eight benchmark queries. In contrast, the y-axis is labeled

with the average execution times on a logarithmic scale.

Let us first have a look at the individual configurations: For configuration

C1, the estimated and actual values differ only insignificantly, that is, we

observed a minimal overestimation of the execution times. Compared to C1,

we can see a slightly higher difference between estimated and actual values in

configurations C2 and C3. In both cases, the actual execution times are slightly

underestimated by the cost model.

If we perform an inter-configuration analysis for C1 and C2, we observe a

harsh reduction of the actual execution times. For example, for query A6, the

optimizer reduces the execution time by more than two orders of magnitude.

Moreover, we see a strong correlation between decreasing estimated and ac-

tual execution times. By comparing C2 and C3, we realize that additional path

indexes can be beneficial in some situations, for example, for query A1, where

we noticed a further cost reduction. Nevertheless, in general, for C3, we did

not observe such a strong reduction compared to the first two configurations.

12.4.4 Cost Estimation for Value-Based Path Expressions

In Section 12.4.3, we had only a look at simple path expressions. In this section,

we will look at XPath queries with value-based predicates. In Appendix C.3

on page 229, you find the definition of queries B 1–B 4, which we will use

in this section to verify whether the query optimizer recognizes the ability

for exploiting CAS indexes3. For this experiment, we reused configurations

C1–C3 as specified in Section 12.4.3. For configuration C3, we created the CAS

indexes defined in Appendix C.4.2.

Figure 12.4 shows the experimental results for an XMark document with

scaling factor f = 5.0. Again, on the y-axis, we show the execution times

in milliseconds on a logarithmic scale, whereas the x-axis depicts the query

identifiers. Bars drawn in solid colors represent the actual execution times,

whereas hatched bars illustrate the estimated execution costs.

Obviously, there are gaps between estimated and actual costs in all three

configurations. This is mainly due to simplifying assumptions, for example,

uniform distribution of values (see also Section 2.1.3). Moreover, for B 3, we

can see a huge gap between estimated and actual costs in configuration C3.

Though the optimizer used the corresponding CAS index, which is indicated

by an obvious speed-up factor of ∼5, the cost did not decrease as estimated.

3In Section 3.1.3 on page 45, we already discussed the benefits of CAS indexes for efficiently
evaluating value-based predicates.
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Figure 12.4: Actual vs. estimated execution times on value-based queries

The main reason for this behavior is due to a ParentResolution plan, which

causes additional CPU costs, that must be injected by the plan generator to

retrieve the parent nodes of keyword nodes that actually form the query result

(see also Section 5.1).

In configurations C1 and C2, all values must be fetched using further ac-

cesses to the document index. Only in configuration C3, the optimizer has

the ability to exploit CAS indexes. We observed for all four queries that the

optimizer selected the appropriate indexes. This fact is also indicated by the

actual execution times for C3. For example, if we compare the average speed-

up between C1 and C3, we observed a factor of ∼446. Even more impressing,

for query B 1, the plan derived in C3 is more than three orders of magnitude

faster than the equivalent plan in C1. Even for query B 4, we still noticed a

speed-up factor of ∼1.2 (compared to configuration C2).

Though the estimates are coarse-grained on the intra-configuration level,

they are precise enough on the inter-configuration level, that is, the query

optimizer does not miss chances to exploit CAS indexes.

12.4.5 Cost Estimation for XQuery Expressions

Before, we exclusively looked at XPath queries. In this section, we appraise

whether the cost estimates are still valid, if we consider XQuery expressions

instead of simple XPath queries. For this experiment, we used the XMark

benchmark queries and executed them on a document with scaling factor

f = 6.0 (≈ 600MB). We reconsidered the three configurations C1, C2, and C3

proposed in Section 12.4.3. For configuration C3, we used XTC’s autonomous

index advisor (Schmidt and Härder, 2010) for path index and CAS index

creation.
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Figure 12.5: Actual vs. estimated execution times on XMark benchmark

Figure 12.5(a) and Figure 12.5(b) depict the empirical results for queries Q1–

Q10 and Q11–Q 20, respectively. We scaled the y-axis—which shows the

average execution time in milliseconds—logarithmically and annotated the

x-axis with the query identifiers. Again, solid bars show the actual execution

times, whereas hatched bars depict the estimated execution times according

to the cost model.

By comparing the estimated and actual times for C1, we observed that the

cost model slightly underestimated the actual execution times for all queries.

In contrast, by considering configurations C2 and C3, the gap between actual

and estimated execution times increases. Now, you might wonder about the

reason for this gap: Recall, our cost model mainly considers IO costs and

takes CPU costs only into account, if two alternatives do not have different IO
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costs4. In C1, accessing the document index is very expensive. Hence, almost

the whole execution time is spent for IO operations, leading only to tiny gaps

between actual and estimated execution times. As the share of IO operations

with respect to the total execution time decreases from C2 to C3 significantly,

the gap between the estimated costs increases accordingly.

In the inter-configuration analysis,we can see that the actual execution times

as well as the estimated execution times drop by up to more than two orders

of magnitude. For example, for queries Q6 and Q13, we observed speed-up

factors of ∼380 and ∼250, respectively. If we transit from configuration C2

to C3, we can still accelerate query processing by more than one order of

magnitude. For example, by exploiting a matching CAS index for Q1, the

optimizer can derive a QEP with speed-up factor ∼14. The reason why the

actual execution times improve only slightly is due to: (1) most QEPs involve

blocking operators, which cannot be removed (e. g., unnesting and merging),

that do not profit from IO reduction by path indexes or CAS indexes and (2)

most paths are not very selective. Hence, the overhead for evaluating a path

expression using a cascade of SJs is not extremely high.

If we juxtapose the actual execution times for C1 and C3, we can see that

QEPs derived in the latter configuration are, on average, by two orders of

magnitude faster than QEPs generated by the optimizer in the former one. By

considering the query with the lowest (Q 11) and highest (Q 1) speed-up, we

can see that speed-up factors range between ∼3 and ∼556, respectively.

As conclusion, a query optimizer, which can only dispose of a document

index, is not able to keep up with relational XQuery processors (e. g., Mon-

etDB/XQuery that was introduced in Section 2.3.2). In fact, scalable QEPs

can only be derived in configuration C3—which makes excessively use of the

element index and can additionally profit from tailored path indexes and CAS

indexes—as indicated by further experiments in Section 12.5.2.

12.5 Plan Generation

After looking at cardinality and cost estimation in Section 12.3 and Section

12.4, respectively, we will now focus on aspects of plan generation.

In Section 12.5.1, we analyze how often the various transformation rules are

used. Moreover, we will derive a minimal transformation rule set for the

XMark workload. Based on the empirical results gained so far, we perform

4Bymainly considering IO costs for cost estimation, we do not risk to omit an optimal plan during
query optimization. Most operators have only a single implementation, for example, grouping
and unnesting, and cannot be removed. Only for value-based join and SJ reordering, the CPU
costs are important and must be considered by the optimizer to prevent bad join orders.
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Figure 12.6: Application of transformation rules
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Figure 12.7: Transformation rules on XMark

a scalability test in Section 12.5.2. Next, we look at the runtime overhead

raised by query optimization in Section 12.5.3. In Section 12.5.4, we compare

the four plan generation strategies currently implemented in our framework

with respect to optimization time and QEP quality. Thereafter, Section 12.5.5

empirically analyzes and discusses the complexity of bottom-up plan gener-

ation. Finally, we rank and analyze the estimated costs and actual costs of the

top five plans in Section 12.5.6.

12.5.1 Minimal Set of Transformation Rules

In the initial plan generation experiment, we assess the usage of the imple-

mentation variation and structural variation rules. The goal of this analysis is

to identify a minimal set of transformation rules—a so-called essential set (see

Section 12.6)—that is absolutely necessary for effective query optimization,

that is, it contains only those rules that still allow to find an optimal plan.

For this experiment, we use an XMark document with scaling factor f = 1.0

and created all indexes specified in Appendix C.4.3 on page 230.

Analysis of XMark Workload

Now, wewill look at each query of the XMarkworkload and identify the rules

that strongly influence the size of the search space.

First, we will look at the implementation variation rules. Figure 12.6(a)

and Figure 12.6(b) show the results for queries Q1–Q 10 and Q 11–Q 20, re-

spectively. For every query, rule IS-ACCESS-2 (as defined in Section 6.2)
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S1 S2 S3

Implementation variation rules
IS-ACCESS-2 X X X

IS-SJ X X X

Structural variation rules
SJ-FUSION-* X

SJ-ASSOC-* X X

Table 12.2: Transformation rule sets

is applied5. Moreover, in almost all cases, rule IS-SJ (Section 6.2) is used

as well6. In Figure 12.7(a), we aggregated the application of implementation

variation rules for thewhole XMarkworkload. Rules IS-ACCESS-2 and IS-SJ
are obviously dominating; the remaining rules are rarely used—if at all.

Figures 12.6(c) and 12.6(d) illustrate the results for the transformation rules.

In contrast to implementation rules, where some rules have not been used at

all, all transformation rules are applied—at least for some queries. To improve

readability, we aggregated the results for TAP-1 and TAP-2 (see Section 6.3.3)

asTAP-DETECTION, the results for the various join associativity rules (Section

6.3.2) as SJ-ASSOC as well as the results for the join fusion rules SJ-FUSION-1
and SJ-FUSION-2 (compare Section 6.3.3) as JOIN-FUSION. These results are

dominating structural variation rule application. Figure 12.7(b) shows the

aggregated results for the XMark workload. For XMark, join fusion is the

most applied structural variation rule.

Towards a Minimal Set of Transformation Rules

Now, we identify which rules must be part of the essential set for XMark.

We already saw in Section 12.4.5—where we observed a dramatic perfor-

mance increase after switching from configuration C1 to C2—that rule IS-
ACCESS-2 must be in the essential set, otherwise element index scans are not

used by the optimizer. Moreover, rules TAP-1 and TAP-2 are also budding

candidates for the essential set, because we observed in Figure 12.5 further

performance increase if the optimizer was able to exploit TAPs, for example,

compare the results for configurations C2 and C3 for query Q20 in Figure

12.5(b).

For the remaining transformation rules—for which we are currently not

sure whether they have an impact on query optimization performance—, we

will evaluate whether we can switch them off without observing a dramatic

performance decrease for the workload. For the sake of simplicity, we do not

5Please recall, this rule tries to replace a document index scan by an element index scan.
6Note, this rule changes the implementation of an SJ.
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Figure 12.8: Comparison of optimization time and execution for S1 and S3

consider rule IS-SJ, but only apply rules J-ASSOC-*, SJ-FUSION-1, and SJ-
FUSION-2. For this experiment, we once again rely on an XMark document

with scaling factor f = 1.0. Furthermore, we only created an element index

as additional access path7 .

Table 12.2 on 194 depicts three transformation rule sets8 S1–S3. In S1, we did

not switch off any structural variation rule. In S2, we turned off SJ-FUSION-1
and SJ-FUSION-2. Finally, we also deactivated the join associativity rules

(SJ-ASSOC-*) in S3.

7In this situation, we do not consider TAP detection, because appropriate path or CAS indexes
would complicate the analysis.

8Rule IS-SJ is not switched on and off, because we observed in a previous experiment that this
rule has no influence on optimization time.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Impl. variation rules
IS-ACCESS-2 X X X X X X X X X X

IS-SJ X X X X X X X X X X

Struct. variation rules
SJ-FUSION-* X X (X) X (X) (X) X

SJ-ASSOC-* X X (X) X (X) (X) X

TAP-* X X X

Q11 Q 12 Q13 Q14 Q 15 Q16 Q17 Q18 Q19 Q20

Impl. variation rules
IS-ACCESS-2 X X X X X X X X X X

IS-SJ X X X X X X X X X X

Struct. variation rules
SJ-FUSION-* (X) (X) X X X X (X) (X)
SJ-ASSOC-* (X) (X) X X X X (X) (X)
TAP-* X

Table 12.3: Tailor-made minimal transformation rule sets for XMark queries
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After performing the experiments, we observed only minimal differences

between the results of S2 and S3, that is, in general, S2 shows the same

correlations between optimization time and execution time as observed for S3.

Therefore, we will only look at the differences between S1 and S3. In Figure

12.8, we depict the results for average optimization time and the average

query execution time on the y-axis. Figures 12.8(a) and 12.8(b) illustrate the

results for queries Q1–Q 10 and Q11–Q 20, respectively. The results depict

the relative increase or decrease for both properties with respect to the results

gained using set S1. For example, for query Q1, by preferring set S3 over S1,

we can decrease the optimization time by around 5% and will observe a more

or less equal share of performance decrease.

Let us assume that our optimization goal is less optimization time while

not observing a dramatic performance decrease. If we look at Figure 12.8, we

see that we will need J-FUSION-* and J-ASSOC-* for queries Q2, Q 6, Q 9,

Q 16, and Q18. Otherwise, optimization time may even increase.

We must use set S3, that is, turn off both structural variation rules, for

queries Q4, Q 10, Q 12, and Q15, because a dramatic decrease in optimization

time is observed while performance decreases only moderately. Finally, we

can use S3 for queries Q 5, Q 7, Q 8, Q 11, Q 13, Q 19, and Q20. But, by doing

so, we will not observe a remarkable decrease in optimization time.

Tailor-Made Minimal Transformation Rule Sets for XMark Queries

Apparently, there is no minimal set of transformation rules for the whole

XMark workload. Therefore, we will now aggregate the results found so far

and assemble a tailor-made set of transformation rules for each individual

XMark query. Table 12.3 shows the minimal set for each query. Whenever

we use symbol “X”, this rule must be turned on, otherwise the performance

decrease is much higher than the decrease in optimization time. On the other

hand, “(X)” indicates that this rule can be switched off.

As we have already found out in Section 12.4.5, even though TAPs are ex-

ploited for almost all XMark queries, their usage does not lead to a noticeable

performance increase compared to SAP-optimized plans. Therefore, we rec-

ommend to use TAP detection (TAP-*) only for queries Q1, Q 4, Q 7, and Q 20,

where their application positively affects query execution time.

12.5.2 Scalability

In this section, we test the scalability of the query optimizer on varying doc-

ument sizes and simple to complex XQuery expressions.
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Figure 12.9 shows the performance results of the QEPs produced by the query

optimizer for the 20 XMark benchmark queries9. We created an element index

on each document and used XTC’s index recommendation tool (Schmidt and

Härder, 2010) for creating additional path and CAS indexes. To get rid of the

index-creation overhead, all measurements were performed after all relevant

indexes were created.

For this experiment, we scaled the document size from 110KB to 1.1GB and

recorded the execution times of the optimal QEPs according to the cost model.

On the x-axis, youcansee thedifferentXMarkdocument sizes, for example, the

document with size 1.1GB was created using XMark scaling factor f = 10.0.

The y-axis shows the average execution times on a logarithmic scale. We do

not show all results in a single diagram, due to readability reasons. Instead,

we equally distributed the results on four illustrations. Each of them depicts

the results of five queries. To give you an impression how optimal linear

scale-up would look like, we draw dashed lines in each Figure 12.9(a)–12.9(d)

for comparison.

In Figure 12.9(a), we can see the results for the first five queries. On average,

we get a scale-up of ∼7, that is, by increasing the document size by an order

of magnitude, query execution on the larger document takes only ∼7 times

longer than on the smaller one.

For queriesQ6–Q 10, we observed an average scale-up of only 5.97. Though

this sounds promising, the extremely good scale-ups for 100KB and 1.1MB

documents are distorting the actual results. Nevertheless, even for the largest

two documents in the experiment, we get scaling factors of ∼9, respectively.

The third query set, whose results are illustrated in Figure 12.9(c), falls

victim of some irregularities. If we look at the results for queries Q 11 and

Q12, we notice linear scale-up only until a document size of 11MB. For larger

document sizes, scale-ups range in the twenties and seventies, respectively.

Now, you might expect an error of the query optimizer, for example, a plan

considered optimal that finally turned out to be worse. Luckily, the reason for

the bad scale-upof these queries is not an error of the query optimizer. Instead,

both queries inhabit value-based joins whose selectivities are rather high.

Moreover, the queries produce intermediate results that scale quadratically

with the document size10. Even though we cannot reach linear scalability for

these queries, the results show subquadratical scale-up. For the remaining

9The results reported in this section are based on the complete set of transformation rules. If
we would use the minimal sets defined in Section 12.5.1, we expect to see even slightly better
speed-up behavior.

10Compare also the results for MonetDB/XQuery: http:�monetdb.cwi.nl/XQuery/C
Benchmark/index.html.
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Figure 12.9: Scalability of QEPs on XMark benchmark
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Figure 12.10: Query evaluation overhead

queries Q13–Q 15, we once again get, on average, sublinear scale-up (factor

9.3).

Finally, Figure 12.9(d) depicts the experimental results for the last five

queries. Here, on average, the QEPs’ execution times sublinearly scale with

factor ∼7 with respect to the document size.

After analyzing the results, wemust state that the query optimizer is able to

produce scalableQEPs for the simple to complexXQuery expressions specified

by the XMark benchmark. In fact, we reach an average scale-up of 9.2 for all

queries on the considered document sizes. Note, these results can only be

reached if the query optimizer can use PAPs and TAPs. If there is only a

document index, linear scale-up is impossible for document sizes beyond

110MB.
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12.5.3 A Look at Query Optimization Overhead

Honestly, query optimization in general is a costly task, because different

plans must be derived and compared regarding their costs. Now, we can ask

about the price that we have to pay for scalable XQuery plans. To answer

this question, we look at the costs of every stage in XTC’s query evaluation

process (see Figure 3.11 on page 57). For deriving the costs, we used the

XMark benchmark workload and executed it on a document with scaling

factor f = 6.0.

Obviously, query execution takes the lion’s share of the overall query evalu-

ation time, that is, the time spent fromparsing the queryuntil finally retrieving

the query result. For the sake of readability, we omit the results for query ex-

ecution in Figures 12.10(a) and 12.10(b). On a logarithmically-scaled y-axis,

both figures illustrate the relative time share with respect to the overall query

evaluation time spent for each query evaluation stage—except for query ex-

ecution. Query optimization may exceed a margin of 10% (e. g., query Q1).

For queries Q11 and Q12, query execution is in such a manner costly that all

remaining stages call for less than 0.01% of the evaluation time. For the vast

majority of queries, query optimization spends not more than 1% of the over-

all query evaluation time (on average, it consumes only around 1.56% of the

overall query processing time for the complete workload). Hence, query opti-

mization results only in a minimal overhead. Even more important, it allows

for reducing query execution times by two orders of magnitude (compare

Section 12.4.5).

12.5.4 Bottom-Up versus Top-Down Plan Generation

In previous sections, we exclusively relied on the bottom-up algorithm (Sec-

tion 9.2.2) as default search strategy for plangeneration. Whenwe startedwith

the implementation of the query optimizer, we assumed that exhaustive plan

generation might be too costly for complex XQuery expressions. Fortunately,

as the scalability results in Section 12.5.2 and the minimal query optimization

overhead observed in Section 12.5.3 indicate, this guess turned out wrong.

In this section, we additionally look at the three probabilistic search

algorithms (Iterative Improvement, Simulated Annealing, and 2-Phase-

Optimization), whose parameters are specified in Appendix A.2, that we can

currently dispose of in our framework. We are highly interested in answering

the following questions:

1. Do the QEPs differ in terms of execution time?

2. How long does it take to derive the QEPs?
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3. How does probabilistic search compare to exhaustive search in terms of

optimization time and QEP performance?

For answering these questions, we used the PathMark-A queries11 and evalu-

ated them on an XMark document with scaling factor f = 5.0. We created an

element index and configured the plan generator with rule set S1 as defined

in Table 12.2. As probabilistic search strategies are not deterministic, we opti-

mized each query thrice and executed each QEP five times for calculating the

average optimization time and the average execution time, respectively.

In Figure 12.11(a) on page 203, we illustrate the results for the average

execution times in milliseconds (y-axis). For query A 1, bottom-up search

found a plan that was around four times faster than equivalent plans derived

by the three probabilistic search strategies. For queries A2 and A3, the results

of all strategies differ insignificantly. Again, for queries A4 and A6–A8,

bottom-up search is the clear winner. In contrast, for query A5, bottom-up

search derived the worst plan amongst all search strategies. Though, the

QEP derived using bottom-up plan generation is not dramatically worse than

its competitors (factor 1.57). For this query, top-down strategies decided to

create a bushy QEP, whereas bottom-up plan generation opted for a left-deep

QEP. The quality of QEPs derivedusing Iterative Improvement and Simulated

Annealing are more or less on the same level. In contrast, QEPs generated

using 2-Phase optimization turned out to be theworst plans inmost situations.

The average optimization times for queries A1–A8 are depicted in Figure

12.11(b). As the optimization times of bottom-up optimization and the three

probabilistic search algorithms showdramatic gaps,weuse a logarithmic scale

on the y-axis. Obviously, bottom-up optimization stands head and shoulders

above the rest. The optimization times do not exceed 23.25 milliseconds

(query A 8). While Iterative Improvement requires up to 8 times more time

for finding the optimal plan, Simulated Annealing and 2-Phase-Optimization

spend even more than two orders of magnitude of optimization time (e. g.,

query A 5) than bottom-up optimization.

Even though Simulated Annealing may find a slightly better QEP than

bottom-up optimization (e. g., query A 5), it recklessly wastes optimization

time. Moreover, it is not assured—due to the indeterministic nature of prob-

abilistic search—that this QEP is always found. In contrast, bottom-up plan

generation is reliable and frugally consumes optimization time.

11We consider these simpler queries appropriate for this test, because they easily allow for join
reordering where mistakes by the optimizer can be noticed effortlessly.
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Figure 12.11: Comparison of search strategies

12.5.5 On the Complexity of Plan Enumeration

In Section 9.1, we discussed the upper bounds for search space sizes. From

an engineering perspective, it is much more interesting to look at the SJ enu-

meration complexity from a practical point of view.

Ono and Lohman (1990) have shown that a plan enumerator that uses

dynamic programming and is able to generate bushy trees, must at least

inspect (n3−n)/6 so-called feasible joins, that is, valid join trees in each bottom-

up traversal step, for linear queries (in Section 9.1, we referred to them as chain

queries) with n relations.
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Figure 12.12: Complexity of structural join enumeration

XQuery path expressions can also be considered linear queries, where n is

equal to the total number of node tests involved. As our bottom-up plan

generator is able to produce bushy trees, we can use the theorem of Ono and

Lohman (1990) to estimate the SJ enumeration complexity of our bottom-up

plan generation algorithm.

We considered theXMark benchmark onadocumentwith scaling factor f =
1.0. For estimating the SJ enumeration complexity, we use the finding above

to estimate the enumeration complexity of each path expression specified by

the XMark queries. Most queries involve more than one path expression. For

them, we estimated the total number of feasible joins for each path expression

and aggregated the numbers for comparison with the experimental results.

In Figure 12.12, we depict the empirical results for the actual and estimated

complexity of SJ enumeration as O1 and O2, respectively. Moreover, we
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generalize the concept of feasible joins to feasible operators, that is, we count

the total number of valid plans generated in each bottom-up enumeration

step. For SJ enumeration and access path selection, we illustrate the total

number of feasible operators as O3. Additionally, O4 depicts the overhead

caused by considering valid plans derived by join fusion.

If we compare the results forO1 andO2, we see that we can use the theorem

of Ono and Lohman (1990) for approximating the total number of feasible SJs

for these queries. As the results indicate, the theorem does not provide an

exact lower bound for SJ reordering. This is due to two reasons: (1) some

join orders cannot be created because of semantic constraints (e. g., in queries

Q4 and Q10, there are left-outer joins that cannot be reordered, hence, the

actual number of feasible joins is lower than the estimated number) and (2)

the creation of bushy plans is prevented due to cost restrictions (e. g., query

Q15).

In Section 12.5.1, we learned that for the XMark benchmark, rules IS-
ACCESS-2 and SJ-FUSION are the hotspot implementation variation rule

and structural variation rule, respectively. Let us now look at the results for

O3 and O4: The total number of feasible operators increases by an average

factor of 3.42 and 3.51, respectively, if we relate the results to O1. By contrast-

ing O3 and O4, we observed that the number of feasible operators increases

onlymarginally, because join fusion can only be applied if there aremore than

two consecutive SJs at the “beginning” of an SJ tree. Moreover, in a situation

where join fusion is considered once as too costly for an SJ cascade, it is not

applied any further.

Now, what is the lesson that we learn from this experiment? Though the

size of the search space for path expressions can become very large, we did

not observe any performance bottlenecks during query optimization. As the

results presented in Figure 12.12 show, the search space is effectively pruned

by the cost model. In fact, in O1, not more than 168 plans (query Q 10) had

to be inspected to derive an efficient QEP. Hence, bottom-up enumeration is

our prefered strategy for XQuery expressions, because we can derive scalable

QEPs (Section 12.5.2) and, at the same time, we must only face a marginal

overhead for query optimization (Section 12.5.3)

12.5.6 Top 5 Plans

For our final experiment, we modified the bottom-up plan generation in such

a way that it retains in each optimization step not only the optimal plan, but

also collects the planswhose costs rank on positions two to five. We optimized

queries A 1–A8 (see Appendix C.2 for their definitions) using the modified
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Figure 12.13: Estimated and actual execution times of top five plans

plan generation algorithm. In addition to the element index, we also created

path indexes p1, p2, and p4 as defined in Appendix C.4.1. In our experiments,

the optimal plan is referred to as P0, whereas the plan on position 5 is referred

to as P4. In Figure 12.13(a), you can see the estimated execution costs for

the queries. In contrast, Figure 12.13(b) illustrates the actual execution costs

of the queries on an XMark document with scaling factor f = 10.0. On the

x-axis, we put the query identifiers, whereas the y-axis shows the estimated

costs or actual costs for Figure 12.13(a) or Figure 12.13(b), respectively. Let us

first look at Figure 12.13(a). For queries A 1, A 3, A5, A7, and A8, we noticed

only small differences between the estimated execution costs. Contrariwise,

for query A 2, plan P4 is dramatically more expensive (factor ∼30) compared

to the remaining four plans. For query A4, we can see that the first two plans

have almost the same estimated costs. For plans P2–P4, we also observed

remarkably higher costs. Finally, for query A 6, only plan P4 is expected to be
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more costly compared to the best four plans. Actually, the expected costs for

P4 are more than twice as high as for the best plan P0.

Now, we analyze the actual execution times of the top five plans for queries

A1–A 8. Figure 12.13(b) illustrates the results. If we compare the expected

costs and the actual costs for queries A 1–A4, we can see that the cost model

ranked the plans correctly. For example, for queryA 2, planP3was expected—

and turned out—to be very expensive compared to its competitors. If we look

at queries A 5, A 7, and A8, we can see that the optimizer preferred slightly

more expensive plans than the actually optimal plan. For query A 6 and plan

P4, the actual execution time did not turn out being as bad as expected.

Nevertheless, for all queries where there exist dramatic differences between

expected execution times and actual execution times of plans, the optimizer

selected the best plan correctly.

12.6 Related Work

Ono and Lohman (1990) have shown the benefits of adaptively increasing

or decreasing the search space by allowing or preventing the generation of

certain shapes of query trees (e. g., bushy trees or star shapes). In Section

12.5.1, we saw that switching off some transformation rules has a positive

effect on optimization time while the QEP performance is only marginally

decreased. Moreover, in Section 12.5.5, we observed that their theorem can

still be used—at least as a lower-bound approximation for the complexity of

bottom-up search using dynamic programming.

Chaudhuri et al. (2009) present an interesting approach for testing query

optimizers. As reliable cardinality estimation is crucial for effective cost-

based optimization and still remains a source of error, the authors supply

exact cardinalities to the optimizer for assessing how the system behaves if

correct numbers are provided. Currently, our system does not rely on this

testing framework. However, we plan to integrate it in the future, because we

expect that we can even increase the robustness of our system.

Chaudhuri et al. (2010) propose an approach for profilingquery transforma-

tion rules. Though their approach focuses on a relational database system, it

can be easily transferred to XDBMSs, too. Their analysis identifies a so-called

essential set of transformation rules, that is, a minimal set of transformation

rules for a query that are absolutely necessary for finding an optimal QEP in

the search space. The benefit for plan generation in terms of less optimization

time is obvious: Using an essential set of transformation rules, the optimal

plan is found while optimization overhead is reduced.
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12.7 Summary

This chapter presented a comprehensive empirical evaluation of our query

optimizer prototype. We have shown that the optimizer, even though it

sometimes makes slightly suboptimal decisions, follows the “golden rule” of

query optimization—omitting dramatically bad plans.

In Section 12.1, we introduced the hardware and software setupwe used for

the empirical evaluation. Section 12.2 demonstrated the effectiveness of text()

push-ups whose corresponding rewrite rules were introduced in Chapter

4. Chapter 7 specified a rule set for cardinality inference whose accuracy

and robustness was assessed in Section 12.3. Thereafter, Section 12.4 looked

at the correctness of the cost model for various query types—ranging from

simple XPath expressions to complex XQuery statements. Next, we looked at

different aspects of plan generation in Section 12.5. For example, we found a

minimal set of transformation rules for the XMark queries and showed that

the optimizer is able to derive scalable QEPs for them. Finally, Section 12.6

discussed related work.

In the final Chapter 13, we highlight the scientific contributions of this work

and point out the conclusions.
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13 Summary and Future Work

“Finally, in conclusion,
let me say just this.”

(Peter Sellers)

This chapter concludes this thesis with a short summary of the concepts and

techniques presented (Section 13.1). Next, we correlate the ideas developed

in this work to our previously published research papers in Section 13.2. In

Section 13.3, we will draw conclusions from the empirical results presented

in Chapter 12. Thereafter, we provide some design recommendations for

effective cost-based XQuery optimization in Section 13.4. Finally, we point

out future research directions in Section 13.5.

13.1 Summary

In this work, we introduced and discussed concepts and techniques for cost-

based XQuery optimization in native XMLdatabase systems. Thoughwe bor-

rowed many ideas from cost-based query optimization in relational database

systems, we had to adjust them to make most out of them in the context of

XML database systems.

For demonstrating the effectiveness of our concepts, we implemented and

integrated our cost-based XQuery optimizer in XTC—our prototype of a na-

tive XML database system—that also served as testbed for the empirical eval-

uation. Moreover, we are grateful that we were permitted to demonstrate our

system at ICDE 2010 (Weiner et al., 2010).

The main contribution of this thesis is covered by Parts II (optimization

framework) and III (implementation and empirical evaluation).

First, in Part II, we proposed fn:text() push-up as yet another query rewrite

rule that allows for retaining the costly evaluation of fn:text() as long as pos-

sible (Chapter 4). Thereafter, Chapter 5 introduced a neat abstraction from

XQGM instances (plans) that helped to describe the query optimization con-

cepts developed in the subsequent chapters. In Chapter 6, we defined nu-

merous transformation rules that enabled the query optimizer to perform

implementation variation (e. g., access path selection) and structural variation
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(e. g., SJ reordering). Using these rules, the plan generator was able to derive

a plethora of equivalent plans that significantly differed in execution times.

Cost-based query optimizers assign cost factors to plans that describe their

estimated IO and CPU costs. Based on this information, optimizers select

the plan with minimal cost for execution. In Chapter 7, we specified a set of

cardinality inference rules, which adapted the concepts of abstract domain iden-

tifiers (Teubner et al., 2008) to XQGM, that are absolutely necessary to perform

cost estimation in the subsequent step. Thereafter, Chapter 8 finally defined

the cost formulæ of our cost model, where we were able to process cardinal-

ity information provided by cardinality inference. Finally, Chapter 9 put all

pieces together and specified a bottom-up plan generation algorithm based

on dynamic programming and customized probabilistic search algorithms,

for example, Simulated Annealing, to our framework.

After all “ingredients” for cost-based XQuery optimization were provided

in Part II, Part III looked at the implementation and the empirical evalua-

tion of our system. In Chapter 10, we briefly discussed the implementation

of our flexible query optimization framework that is open for further exten-

sions. Next, Chapter 11 emphasized the features of our visual explain tool

(XTC Universal Client) that allows to explore the complete query evaluation

process from the beginning to its very end. Finally, Chapter 12 assessed our

implementation using numerous experiments. For example, we showed that

our plan generator is able to derive scalable QEPs for the XMark benchmark

queries and defined a minimal set of transformation rules for them.

13.2 Contributions

The results of this thesis are partially based on scientific papers that we have

published between 2008 and 2011. The following list shows a selection of the

most important publications and stresses their correlations to the chapters of

this work:

• Weiner et al. (2008b) proposed the basis for our query transformation

rules1. For example, this paper introduced the numerous SJ reordering

rules and join fusion that form most parts of our structural variation

rule set (Chapter 6).

1Originally, the idea of join fusion and SJ reordering—together with numerous now outdated
rewrite rules—was superfluously discussed as a case study in Weiner (2007). However, at that
time, we considered them query rewrite rules at the logical level of a very primitive predecessor
of XQGM that cannot be applied anymore to the XQGM specified in Mathis (2009).
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• Weiner and Härder (2009) empirically compared a prominent SJ oper-

ator (StackTree) and an HTJ operator (TwigOpt) with respect to their

performance in varying selectivity scenarios. Based on this analysis, we

were able to derive a decision criteria that permits the plan generator to

prefer SJs over HTJs and vice versa. This work was very important for

estimating the costs of SJs and HTJs in Chapter 8. Moreover, we learned

that the grand debate—SJs versus HTJs—will end in a draw, because

their performance, at least in realistic query processing scenarios, does

not differ significantly.

• Weiner et al. (2010) described our visual explain tool (Chapter 11) that

proved to be very useful during the implementation of our optimizer.

Even for the empirical evaluation, wewere able to easily reconfigure the

optimizer with different transformation rule sets and search strategies.

• Weiner and Härder (2010a) outlined the architecture of our query opti-

mization framework (Chapter 10) in a book on XML processing edited

by C. Li and T.W. Ling.

• Weiner andHärder (2010b) sketched the concert of transformation rules,

cost estimation, and plan generation. In this paper, we were able to pro-

vide the first empirical results based on the assessment of our optimizer

(Chapter 12).

• Finally, Weiner (2011) was entirely devoted to introducing XQuery car-

dinality estimation to our framework. Most parts of Chapter 7, which

grew in parallel, are based on this paper.

13.3 Conclusions

When we started with developing concepts for cost-based XQuery optimiza-

tion, we asked ourselves how far we can get with traditional relational opti-

mization techniques. It turned out that we can successfully reuse the basic

ideas of traditional cost-based relational query optimization such as trans-

formation rules, cost models, and plan generation algorithms. As we have

shown in this thesis, we can provide a complete framework for optimizing

the declarative parts of XQuery expressions. This is especially true for XPath

expressions for which we can derive numerous alternative plans using our

transformation rules, balance multiple access paths against each other, and

judge them based on our cost model. Nevertheless, XQuery is a Turing-

complete programming language and contains many constructs—being less
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relevant for database-centric processing—that cannot be optimized using the

principles discussed in this work. For example, for and let bindings dictate

a certain nesting and processing order that must be preserved. Such non-

declarative language constructs annihilate effective query optimization in the

traditional sense. As the success story of relational database systems is pri-

marily based on a simple data model and a completely declarative query

language, it is questionable whether XQuery can follow the footsteps of SQL.

If XQuery is supposed to do so, traditional database query optimization must

be accompanied by optimization techniques developed by the programming

language community.

Nevertheless, XQuery is probably the next-generation programming lan-

guage for the Web, as it has—compared to SQL—the important advantage

that an impedance mismatch does not exist anymore. Hence, querying data

sources and processing the queried data can be done using a common lan-

guage, which can consume, manipulate, and return XML. Consequently,

querying and programming can join hands and make application develop-

ment more effective.

Especially for database-centric applications, that is, queries, the language

features of XQuery are still open for improvements. In our opinion, the

XQuery language must be extended in such a way that it provides constructs

for defining twig query patterns in a declarative manner. We believe that this

way (1) twig join operators could be used more effectively for query evalua-

tion, as it would then be much easier to identify optimization opportunities

for them2 and (2) the complete query optimization process could be improved,

because of higher chances for algebraic as well as non-algebraic optimization.

13.4 Design Recommendations

We believe that our optimization framework provides a neat toolkit for “play-

ing around” with cost-based XQuery optimization in native XML database

systems. Based on our experience with XTC’s query optimizer, we assembled

six recommendations for effective XQuery optimization:

Always create an element index Aswe have seen in the empirical analysis,

efficient query evaluation in native XDBMSs is hardly possiblewithout having

an element index. In fact, the performance can be improved by up to two

orders of magnitude if the optimizer is allowed to use element index scans.

2Currently, twig discovery is a complex task that is far from being trivial (compare Mathis, 2009).
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Create TAPs whenever possible Our experiments in Chapter 12 indicated

that TAPs are very important access paths in native XDBMSs. Path indexes

can replace cascades of SJs and allow to reduce IO and CPU cost at the same

time. For value-based predicates, relying on CAS indexes is really frugal.

Path indexes only for multi-step paths Our experiments indicated that

single-step path indexes, for example, on�book, are only in rare cases superior

to an element index on book nodes. To reduce the number of indexes that must

be compared by the optimizer, we recommend only creating path indexes for

multi-step paths.

Left-deep SJ trees are enough Even though we have only seen a small

query optimization overhead in Chapter 12, we believe, that for most queries,

access path selection is the primary optimization task. Hence, considering

only left-deep SJ plans is a heuristics to reduce query optimization time.

The SJ versus HTJ debate is irrelevant Wehave arguedbefore that typical

XQuery expressionsuse several non-declarative language features that require

blocking operators like grouping or unnesting. For native XDBMSs that are

evaluating XQuery expressions, there is no clear winner of the SJ versus HTJ

debate, because the aforementioned blocking operators as well as for and let

bindings that cannot be removedby the optimizer slowdownquery execution.

Perhaps in the future, there will also be a generalized join operator for XML

nodes—similar to its recent relational counterpart (Graefe, 2011)—that will

make the join selection problem superfluous.

Bottom-up plan generation works fine Fortunately, we did not observe

any performance bottlenecks—even for more complex XQuery expressions

with multiple SJ operators—while using bottom-up plan generation. Hence,

it is not necessary to rely on probabilistic search algorithms, which are not

very robust and might miss the optimal plan.

13.5 Future Research Directions

This thesis introduced cost-based XQuery optimization to native XML

database systems. Fairly, we have provided a system prototype that can

be used for developing concepts that make query processing in such systems

even more effective.
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Query rewrite was only a minor concern in this thesis. Nevertheless, we be-

lieve thatwe can“improve”XQGMinstances using logical query optimization

even before cost-based optimization starts.

Currently, our optimizer can dispose of a plethora of physical algebra oper-

ators. Nevertheless, we believe that the query optimizer can benefit from an

additional set of alternative SJ and HTJ implementations. Moreover, external

sort operators are still missing in our prototype.

We specified a comprehensive set of query transformation rules. Currently,

our rules for SJ reordering cover only semi joins and full joins. By extending

them to outer joins, we are convinced thatwe can create additional alternatives

that might be more efficient than the plans that our plan generator can derive

at the moment. As a starting point, considering the approach of Neumann

and Moerkotte (2009) is promising.

The effectiveness of cardinality inference was shown in Chapter 12. Most

rules provide rather rough estimations. We assume that these rules can still

be refined to improve cardinality estimation quality.

As recent publications on query optimizer testing and profiling (e. g., com-

pareGiakoumakis andGalindo-Legaria, 2008; Chaudhuri et al., 2010) indicate,

even after 30 years of research on relational query optimizers, there is little

understanding how these complex systems behave in scenarios forwhich they

are not customized for. Most systems provide a plethora of transformation

rules that handle special cases induced by customers and might undermine

finding optimal plans even for trivial SPJ queries.
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A Optimizer Configuration File

A.1 Optimizer Parameter Values

Access path PageFetchCostIO [ms]
Document Index 0.78
Element Index 2.48
Path Index 2.45
CAS Index 1.85

Table A.1: Optimizer settings

A.2 Probabilistic Search Parameters

<optimizers>

...

<optimizer id="Q4" strategy="ITERATIVE_IMPROVEMENT"

transformer="RANDOM_TOP_DOWN">

...

<parameters>

<parameter key="iiNoGlobalOptimizations" value="5" />

<parameter key="iiNoLocalOptimizations" value="5" />

</parameters>

</optimizer>

<optimizer id="Q5" strategy="SIMULATED_ANNEALING"

transformer="RANDOM_TOP_DOWN">

...

<parameters>

<parameter key="saNoLocalOptimizations" value="5" />

<parameter key="saTemperatureReduction" value="0.01" />

<parameter key="saTemperatureInitializationFactor"
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value="2.0" />

<parameter key="saEquilibriumFactor" value="16.0" />

<parameter key="saFrozenCount" value="3" />

<parameter key="saFrozenTemperature" value="0.1" />

<parameter key="saProbabilityThreshold" value="0.8" />

</parameters>

</optimizer>

<optimizer id="Q6" strategy="TWO_PHASE_OPTIMIZATION"

transformer="LINEAR_TOP_DOWN">

...

<parameters>

<parameter key="iiNoGlobalOptimizations" value="5" />

<parameter key="iiNoLocalOptimizations" value="5" />

<parameter key="saNoLocalOptimizations" value="5" />

<parameter key="saTemperatureReduction" value="0.01" />

<parameter key="saTemperatureInitializationFactor"

value="2.0" />

<parameter key="saEquilibriumFactor" value="16.0" />

<parameter key="saFrozenCount" value="3" />

<parameter key="saFrozenTemperature" value="0.1" />

<parameter key="saProbabilityThreshold" value="0.8" />

</parameters>

</optimizer>

</optimizers>
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B A Glimpse at Structural Join Associativity

Rules

In this Section, we illustrate some join associativity rules (SJ-AS-DD-*) for two

structural joins that evaluate the descendant-or-self axis and one associativity

rule (SJ-AS-CC-C) for two structural joins that evaluate the child axis. The

complete set of 28 rules was already introduced and discussed in Weiner

(2007); Weiner et al. (2008a,b).
DDO[P: a]

Project[P: a]

⋉b desc−or−selfc

Project[P: a, b]

\a desc−or−selfb

A[P: a]
B[P: b]

C[P: c]
≡

D[P: a]

Project[P: a]

⋉a desc−or−selfb

A[P: a]
D[P: b]

Project[P: b]

⋉b desc−or−selfc

B[P: b] C[P: c]

(SJ-AS-DD-A)

D[P: b]

Project[P: b]

⋉b desc−or−selfc

D[P: b]

Project[P: b]

⋊a desc−or−selfb

A[P: a] B[P: b]

C[P: c]
≡

D[P: b]

Project[P: b]

⋊a desc−or−selfb

A[P: a] D[P: b]

Project[P: b]

⋉b desc−or−selfc

B[P: b]
C[P: c]

(SJ-AS-DD-B)
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B A Glimpse at Structural Join Associativity Rules

D[P: c]

Project[P: c]

⋊b desc−or−selfc

D[P: b]

Project[P: b]

⋊a desc−or−selfb

A[P: a] B[P: b]

C[P: c]

≡

DDO[P: c]

Project[P: c]

⋊a desc−or−selfb

A[P: a] Project[P: b, c]

\b desc−or−selfc

B[P: b] C[P: c]

(SJ-AS-DD-C)

Project[P: c]

⋊b child c

Project[P: b]

⋊a childb

A[P: a] B[P: b]

C[P: c]

≡

Project[P: c]

⋊a childb

A[P: a] Project[P: b, c]

\b child c

B[P: b] C[P: c]

(SJ-AS-CC-C)
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C Query Sets and Index Definitions

C.1 XMark Benchmark Queries

Q1

let $auction := doc("auction.xml") return

for $b in $auction/site/people/person

where $b/@id = "person0"

return $b/name/text()

Q2

let $auction := doc("auction.xml") return

for $b in $auction/site/open_auctions/open_auction

return <increase>{$b/bidder[1]/increase/text()}</increase>

Q3

let $auction := doc("auction.xml") return

for $b in $auction/site/open_auctions/open_auction

where zero-or-one($b/bidder[1]/increase/text()) * 2 <=

$b/bidder[last()]/increase/text()

return

<increase

first="{$b/bidder[1]/increase/text()}"

last="{$b/bidder[last()]/increase/text()}"/>

Q4

let $auction := doc("auction.xml") return

for $b in $auction/site/open_auctions/open_auction

where

some $pr1 in $b/bidder/personref[@person = "person20"],

$pr2 in $b/bidder/personref[@person = "person51"]

satisfies $pr1 << $pr2

return <history>{$b/reserve/text()}</history>
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Q5

let $auction := doc("auction.xml") return

count(

for $i in $auction/site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price)

Q6

let $auction := doc("auction.xml") return

for $b in $auction//site/regions return count($b//item)

Q7

let $auction := doc("auction.xml") return

for $p in $auction/site

return

count($p//description) + count($p//annotation) +

count($p//emailaddress)

Q8

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person

let $a :=

for $t in $auction/site/closed_auctions/closed_auction

where $t/buyer/@person = $p/@id

return $t

return <item person="{$p/name/text()}">{count($a)}</item>

Q9

let $auction := doc("auction.xml") return

let $ca := $auction/site/closed_auctions/closed_auction return

let

$ei := $auction/site/regions/europe/item

for $p in $auction/site/people/person

let $a :=

for $t in $ca

where $p/@id = $t/buyer/@person

return
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C.1 XMark Benchmark Queries

let $n := for $t2 in $ei where $t/itemref/@item =

$t2/@id return $t2

return <item>{$n/name/text()}</item>

return <person name="{$p/name/text()}">{$a}</person>

Q10

let $auction := doc("auction.xml") return

for $i in

distinct-values($auction/site/people/person/profile/

interest/@category)

let $p :=

for $t in $auction/site/people/person

where $t/profile/interest/@category = $i

return

<personne>

<statistiques>

<sexe>{$t/profile/gender/text()}</sexe>

<age>{$t/profile/age/text()}</age>

<education>{$t/profile/education/text()}</education>

<revenu>{fn:data($t/profile/@income)}</revenu>

</statistiques>

<coordonnees>

<nom>{$t/name/text()}</nom>

<rue>{$t/address/street/text()}</rue>

<ville>{$t/address/city/text()}</ville>

<pays>{$t/address/country/text()}</pays>

<reseau>

<courrier>{$t/emailaddress/text()}</courrier>

<pagePerso>{$t/homepage/text()}</pagePerso>

</reseau>

</coordonnees>

<cartePaiement>{$t/creditcard/text()}</cartePaiement>

</personne>

return <categorie>{<id>{$i}</id>, $p}</categorie>

Q11

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person
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let $l :=

for $i in $auction/site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly-one($i/text())

return $i

return <items name="{$p/name/text()}">{count($l)}</items>

Q12

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person

let $l :=

for $i in $auction/site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly-one($i/text())

return $i

where $p/profile/@income > 50000

return <items person="{$p/profile/@income}">{count($l)}</items>

Q13

let $auction := doc("auction.xml") return

for $i in $auction/site/regions/australia/item

return <item name="{$i/name/text()}">{$i/description}</item>

Q14

let $auction := doc("auction.xml") return

for $i in $auction/site//item

where contains(string(exactly-one($i/description)), "gold")

return $i/name/text()

Q15

let $auction := doc("auction.xml") return

for $a in

$auction/site/closed_auctions/closed_auction/annotation/

description/parlist/listitem/parlist/listitem/text/

emph/keyword/text()

return <text>{$a}</text>
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Q16

let $auction := doc("auction.xml") return

for $a in $auction/site/closed_auctions/closed_auction

where

not(

empty(

$a/annotation/description/parlist/listitem/

parlist/listitem/text/emph/

keyword/

text()))

return <person id="{$a/seller/@person}"/>

Q17

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person

where empty($p/homepage/text())

return <person name="{$p/name/text()}"/>

Q18 Please note, our implementation of XTC does currently not provide

support for user-defined functions. Hence, we inlined function local:convert,

which converts Dutch florins (DFL) to Euros.

let $auction := doc("auction.xml") return for $i in

$auction/site/open_auctions/open_auction return

zero-or-one($i/reserve) * 2.20371)

Q19

let $auction := doc("auction.xml") return

for $b in $auction/site/regions//item

let $k := $b/name/text()

order by zero-or-one($b/location) ascending empty greatest

return <item name="{$k}">{$b/location/text()}</item>

Q20

let $auction := doc("auction.xml") return

<result>

<preferred>

{count($auction/site/people/person/profile
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[@income >= 100000])}

</preferred>

<standard>

{

count(

$auction/site/people/person/

profile[@income < 100000 and @income >= 30000]

)

}

</standard>

<challenge>

{count($auction/site/people/person/profile

[@income < 30000])}

</challenge>

<na>

{

count(

for $p in $auction/site/people/person

where empty($p/profile/@income)

return $p

)

}

</na>

</result>

C.2 XPathMark-A Queries

A 1

doc("auction.xml")/site/closed_auctions/closed_auction/

annotation/description/text/keyword

A 2

doc("auction.xml")//closed_auction//keyword

A 3

doc("auction.xml")/site/closed_auctions/closed_auction//keyword

A 4

doc("auction.xml")/site/closed_auctions/closed_auction

[annotation/description/text/keyword]/date
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A5

doc("auction.xml")/site/closed_auctions/closed_auction

[descendant::keyword]/date

A6

doc("auction.xml")/site/people/person[profile/gender and

profile/age]/name

A7

doc("auction.xml")/site/people/person[phone or homepage]/name

A8

doc("auction.xml")/site/people/person[address and

(phone or homepage) and (creditcard or profile)]/name

C.3 XPath Queries with Value-Based Predicates

B1

doc(’auction.xml’)//asia/item[location=’Germany’]

B2

doc(’auction.xml’)//asia/item[location > ’C’

and location <= ’G’]

B3

doc(’auction.xml’)//text//*[keyword >= ’c’ and keyword <= ’d’]

B4

doc(’auction.xml’)//profile[@income > 40000][age <= 19]

C.4 Index Definitions

C.4.1 Indexes for Cost Estimation

• p1=create path index paths /site/closed auctions/C
closed auction

• p2=create path index paths /site/people/person

• p3=create cas index paths �@income of type double

• p4=create path index paths �keyword
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C.4.2 Indexes for Value-Based Predicates

• create cas index paths �asia/item/location

• create cas index paths �text�*/keyword

• create cas index paths �age of type integer

C.4.3 Indexes for Plan Generation on XMark

• create path index paths �keyword

• create path index paths /site/people/person/profile

• create path index paths /site/people/person

• create path index paths /site/open auctions/open auction

• create path index paths /site/closed auctions/C
closed auction

• create path index paths �site�regions

• create path index paths /site/regions/australia/item

• create cas index paths �@income of type double

• create cas index paths �@id

• create cas index paths �@person
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D Proof—Search Space Size for Hybrid Join

Plans

Let us assume a query plan consists of n > 2 Access plans and n − 1 Struc-
turalJoin plans. Furthermore, let us refer to the total number of different joins

orders by f (n). Using Join Fusion (Section 6.3.3), we can replace two or more

StructuralJoin plans by a single TwigJoin plan.

Basis If n = 3, we can create a plan that does not contain any StructuralJoin
plans anymore. Instead, it contains a single TwigJoin plan that receives inputs

from 3 Access operators.

For n = 4, we can additionally create hybrid plans, that is, plans that consist

of a StructuralJoinplan and a TwigJoin plan. For them, we can create f (2) join
orders. In total, we can create 1 + f (2) = 1 +

∑2
i=2 f (n − i) plans containing

TwigJoin plans.

Again, ifwe assume n = 5, we can create different join orders for two hybrid

plans: (1) a plan that contains two StructuralJoin plans and a TwigJoin plan

that receives inputs from three Access plans and (2) another plan plan that

contains only a singleStructuralJoinplanandasingleTwigJoinplan that is now

connected to four Access plans. For n = 5, we can create 1+ f (2) + f (3) =
1+
∑3

i=2 f (n − i) different hybrid plans.

Inductive step We assume that for n > 2, the following equation holds:

g(n) = 1+ f (2) + f (3) + . . .+ f (n− 2) = 1+
n−2∑

i=2

f (n − i) (D.1)
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D Proof—Search Space Size for Hybrid Join Plans

Proof Now, we have to show by induction over n that g(n+ 1) holds, too.
Using our hypothesis (D.1), we get:

g(n + 1) = 1+ f (2) + f (3) + . . .+ f (n− 2)
︸                                    ︷︷                                    ︸

D.1

+ f
(

(n+ 1) − 2
)

= 1+
n−2∑

i=2

f (n− i) + f
(

(n+ 1) − 2
)

= 1+
n−2∑

i=2

f (n− i) + f
(

(n+ 1) − 2
)

= 1+
n−2∑

i=2

f (n− i) + f (n− 1)

= 1+
n−2∑

i=1

f (n− i)

= 1+
n−2∑

i=1

f (n− 1+ 1− i)

= 1+
n−1∑

i=2

f (n+ 1− i)

= 1+

(n+1)−2
∑

i=2

f
(

(n+ 1) − i
)

�
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