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Abstract. The growing energy consumption of data centers has become
an area of research interest lately. For this reason, the research focus has
broadened from a solely performance-oriented system evaluation to an
exploration where energy efficiency is considered as well. The Transac-
tion Processing Performance Council (TPC) has also reflected this shift
by introducing the TPC-Energy benchmark. In this paper, we recom-
mend extensions, refinements, and variations for such benchmarks. For
this purpose, we present performance measurements of real-world DB
servers and show that their mean utilization is far from peak and, thus,
benchmarking results, even in conjunction with TPC-Energy, lead to in-
adequate assessment decisions, e.g., when a database server has to be
purchased. Therefore, we propose a new kind of benchmarking paradigm
that includes more realistic power measures. Our proposal will enable ap-
praisals of database servers based on broader requirement profiles instead
of focusing on sole performance. Furthermore, our energy-centric bench-
marks will encourage the design and development of energy-proportional
hardware and the evolution of energy-aware DBMSs.

1 Introduction

The TPC-* benchmarking suites are widely used to assess the performance of
database servers. To consider a sufficiently wide spectrum of practical demands,
various benchmarks were developed for simulating different kinds of applica-
tions scenarios. To illustrate the application and hardware dimensions of these
benchmarks, a short overview is given.

TPC-C is an on-line transaction processing (OLTP) benchmark that mea-
sures transaction throughput of order processing on a single database instance.
Typical systems under test (SUT) consist of multiple database nodes, each hav-
ing several multi-core CPUs with plenty of DRAM attached (up to 512 GB per
node). Additionally, a huge storage array of several thousand disks (or, recently,
SSDs) is used.3

3 For detailed TPC-C results, see http://www.tpc.org/tpcc/results/tpcc perf results.asp



TPC-E is another OLTP benchmark – simulating the workload of a bro-
kerage firm – with similar hardware requirements as TCP-C. At the time this
paper was written, the fastest SUT consisted of a single server with 8 processors
(80 cores) and 2 TB DRAM. For storage, 16 SAS controllers and more than 800
disk drives were used.

TPC-H is an ad-hoc decision support benchmark processing a set of OLAP
queries. Although the query types are different compared to OLTP, the hardware
requirements are equally demanding. For example, the fastest server running this
benchmark (for the 30 TB benchmark configuration) consists of a single node,
equipped with 64 processors, 1 TB of DRAM, and more than 3,000 hard disk
drives.

Obviously, the huge amount of hardware is consuming a lot of power – for
all three benchmarks. As an example, the top TPC-E system mentioned earlier
is consuming up to 4,500 watts at peak performance. Despite such substantial
energy needs, power consumption was ignored by TPC in the past. However, the
newly created benchmark TPC-Energy is approaching the emerging demand
for energy-related measures. While TPC-[C,E and H] are reporting performance
only, TPC-Energy is introducing measures for the energy consumption during
query processing. TPC-Energy additionally regulates how power measurements
must be performed, e.g., what measurement devices should be used and what
measurement precision must be maintained. The metrics defined by TPC-Energy
is Energy Consumption over Work done expressed in Joule per transactions,
which translates to Power Consumption over Work delivered expressed in Watts
per tps.

Although TPC-Energy made a first step towards energy-related measures
compared to the former performance-centric TCP benchmarks, we advocate ap-
propriate measures which are still missing to get meaningful insights into the
servers’ energy consumption behavior, e.g., power usage over system utilization.
For this reason, we propose a new benchmarking paradigm which extends the
already existing TPC-Energy.

This paper is structured as follows: In Section 2, we introduce some defini-
tions regarding power consumption and energy and pinpoint the influence of the
server load to the power consumption. In Section 3, we will briefly review re-
lated energy-centric benchmarks, whereas we will revisit TPC-Energy and point
out its limitations by showing measurements of real-world servers in Section 4.
We will argue that servers are usually not running at peak load and discuss the
implications on the power consumption. Based on our findings in the preceding
sections, we propose a new kind of benchmarking paradigm in Section 5. Our
proposal will overcome the limitations we identified earlier. Finally, in Section
6, we conclude our contribution and give an outlook, how a new benchmarking
paradigm can change both the way systems are built and the customers’ view
on new systems.



2 Energy Efficiency and Other Measures

Energy consumption of data centers is steadily growing due to the ascending
number of server installations and due to the increasing power consumption
of each server. At the same time, energy costs are rising continuously. For an
average utilization period (∼5 years), energy costs have now drawn level with
the server’s acquisition cost [3]. The total cost of ownership is therefore heavily
influenced by the energy footprint of the devices. Further costs, over and above
the plain energy cost of powering the servers, come to play, i.e., cooling cost,
additional batteries, and amply dimensioned power switches.

In recent years, a lot of efforts have been made to limit the spendings on
energy. Some of these efforts include the building of data centers in regions,
where power can be cheaply acquired, or the augmented utilization of servers
by virtualization techniques [7]. Nevertheless, the best approach is reducing the
power consumption of the hardware in the first place. As the power consumption
of a server does not scale linearly with its utilization, overdimensioned hardware
has a huge impact on its overall energy consumption. Figure 1 charts the power
consumption at various compute loads. As the load level drops, the power con-
sumption does not scale well. Even at idle, the system uses about 50 % of its
peak power.

Fig. 1. Power by component at different activity levels, from [6]

Due to the growing influence of the energy consumption on buyers’ decisions,
it is crucial to provide sound energy measurement results besides the performance
data for servers. It is especially necessary to provide energy measurements that
cover the whole operating area of a database server. Hence, not only the peak
performance and respective power consumption are important to buyers. The
average energy consumption expected for a certain machine has much more
influence on the anticipated spendings during the next years and are therefore
equally relevant. Because the power consumption of servers is not linear to the
delivered performance, it is important to know the load curve and the resulting
energy consumption of a system. The relation between consumed power and
delivered work relative to their peak is called Energy Proportionality and will be
explained in the following definitions.



2.1 Definitions

In this paper, we will use the term power (or power consumption) to denote
the current consumption of electricity; hence, the unit of power is Watt. The
power consumption of a server/component over time is called energy (or energy
consumption). Energy consumption is expressed in Joule:

energy =

∫
power dt

1 Joule = 1 Watt · 1 second

To quantify the amount of computational work done on a server, different
hardware-related measures can be employed, e.g. MIPS, FLOPS, IOPS, or
more complex, often application-related measures. In the database community,
and for the TPC-* benchmarks as well, the number of transactions – defined as
specific units of work in the application environments addressed by the TPC-*
workloads – has prevailed as an application-related measure for the quantity of
computations. We are using the same (generic) measure referring to transactions
per time unit, in particular, transactions per second (tps) here:

1 tps =
1 transaction

1 second

Because of the transactions’ dependency on the specific application scenario, only
results from the same benchmark, hence, with the same dataset and the same
set of queries, are comparable. Hence, such performance figures must always be
qualified by the respective benchmark (such as tpmC or tpsE ). In this paper,
performance measures are expressed in tps, but other qualifiers can be used
exchangeablely.

To express how efficiently a certain set of queries can be processed using a
given amount of energy, we use the term energy efficiency :

energy efficiency =
# of transactions

energy consumption

which can be transformed to the amount of work done per time unit when a
certain amount of power is given:

energy efficiency =
tps

Watt

The higher the energy efficiency, the better a given system transforms electricity
into “work”. Note, this is the inverse of the formula used in TPC-Energy which
applies Watt

tps as its metrics. The rationale of the TPC for choosing the inverse
was the desire to be similar to the traditional TPC metrics price over throughput
and, furthermore, to allow a secondary metrics for each of the subsystems. To
conform with already established practices, we will use Watt

tps as well.



In addition to that absolute measure, we are using the term energy propor-
tionality, coined by [1], when we want to reference the power consumption of a
server (at a given level of system utilization) relative to its peak consumption.
Ideally, the power consumption of a system should be determined by its utiliza-
tion [2]. Hence, energy proportionality describes the ability of a system to scale
its power consumption linearly with the utilization.

Therefore, energy proportionality can not be expressed using a scalar value.
Instead, a function or graph is needed to display the characteristics of a system.
For each level x, 0 ≤ x ≤ 1, of system utilization4, we can measure the power
used and denote this value as the actual power consumption at load level x .
To facilitate comparison, we use relative figures and normalize the actual power
consumption at peak load (x = 1) to 1, i.e., PCact(x = 1) = 1. Using this
notation, we can characterize a system whose power consumption is constant
and independent of the actual load by PCact(x) = 1.

Note, we obtain by definition true energy proportionality at peak load, i.e.,
PCideal(x = 1) = 1. In turn, a truly energy-proportional system would consume
no energy when it is idle (zero energy needs), i.e., PCideal(x = 0) = 0. Due to the
linear relationship of energy proportionality to the level of system utilization,
we can express the ideal power consumption at load level x by PCideal(x) = x.

With these definitions, we can express the energy proportionality EP (x) of
a system as a function of the load level x:

EP (x) =
PCideal(x)

PCact(x)
=

x

PCact(x)
(1)

This formula delivers EP values ranging from 0 to 1. Note, for x < 1 in a
real system, PCact(x) > x. According to our definition, each system is perfectly
energy proportional at x = 1. If a system reaches EP (x) = 1, it is perfectly
energy proportional for all load levels x. In turn, the more EP (x) deviates from
1, the more it loses its ideal characteristics.

Using the results of Figure 1 as an example, we yield EP (x = 0.5) = 0.55,
EP (x = 0.3) = 0.35, and EP (x = 0.01) = 0.02. Special care must be taken
for defining EP (x = 0) to avoid having a zero value in the numerator of the
formula. In this paper, we have agreed to define EP (x = 0) := EP (x = 0.01).
Therefore, this value should be taken with care. Nevertheless, the worst EP
figure is provided by a constant-energy-consuming system in idle mode: EP (x =
0) = 0.

Obviously, assessing energy proportionality is a lot more expressive than mere
energy consumption. While the latter only captures a single point of the system’s
energy characteristics, the former reveals the ability of the system to adapt the
power consumption to the current load.

4 By multiplying x by 100%, the percentage of system utilization can be obtained



3 Related Benchmarks

In this section, we will give a short overview of existing benchmarks and their
relation to energy measurements. Poess et al. provide a more detailed summary
in [4].

As the first observation, the TPC-[C, E, H] benchmarks are not considering
energy consumption at all. These benchmarks are purely performance-centric.
The TPC-Energy benchmark – an extension to any of the three benchmarks – is
defining measurements for energy consumption. It gives advice how to measure
the power consumption while the benchmark is running and provides additional
guidelines how to measure the power consumption of the idle system.

SPEC (the Standard Performance Evaluation Corporation) has introduced
the SPECpower ssj2008 benchmark for measuring the performance and energy
consumption of a system running Java-based workloads. In contrast to TPC-
Energy, the SPEC benchmark does measure power consumption at 11 load levels
(from 0% load to 100% load) and aggregates the measurements by the geometric
mean to form a single result. Additionally, newer releases of the SPEC benchmark
like SPECweb 2009 and SPECvirt sc2010 incorporate the power measurement
methodologies from SPECpower.

Apart from benchmarks specified by benchmark-centric organizations, the
database community itself moved forward to propose an energy-related bench-
mark to evaluate the energy efficiency of computer systems. The JouleSort [5]
benchmark is a sort benchmark, whose idea is to account the energy consumed
for sorting a given input size. Instead of benchmarking sorted records per $,
JouleSort is reporting sorted records per Joule. Thus, this benchmark reveals
the energy efficiency of a computer system close to 100% load, but the scenario
(just focusing on sorting) is rather narrow and differing from real-world database
workloads.

In addition, the SPC (Storage Performance Council), whose benchmarks are
targeted on evaluating storage components, defined energy-related extensions for
their benchmarks. These extensions do not track the power consumed at peak
load, but measure it at 80% (denoted as heavy) and 50% (denoted as moderate)
of the peak performance as well as in idle mode. Furthermore, they introduce
the weighted average power consumption based on three different usage patterns
(low, medium, and high).

4 Server Load Profiles

In contrast to the assumptions made for existing benchmarks, i.e., testing a
system at peak performance, real-world applications do not utilize servers that
way. Typically, the hardware of database servers is designed to handle peak
load; hence, it is overprovisioned for the average daily work. In the rare events
of peak load, the servers reach their processing limits, but most of the time, their
hardware is heavily underutilized. In the following, we will outline two studies
that analyzed the energy consumption and load of servers.
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Fig. 2. Average CPU utilization of Google’s servers, from [1]

4.1 Google Study

In 2007, Louiz Barroso and Urs Hölzle published a study that revealed perfor-
mance data of Google’s MapReduce server cluster [1]. According to this study,
the servers are typically operating at 10% to 50% of their maximum perfor-
mance. That way, servers are barely idle but, as well, barely fully utilized. Figure
2 charts the aggregate histogram for the CPU utilization of 5,000 servers hosted
at Google.

4.2 SQL- and BI-Server Data

SPH AG monitored the performance of some of the database and analysis servers
of its customers – data we use to visualize typical utilization and workload
behavior of SQL and Business Intelligence (BI) applications. SPH AG is a mid-
sized ERP-developing company that specializes in the branches mail order and
direct marketing. Its ERP products are based on IBM System i5 or (in the
considered case) on Microsoft Dynamics AX. For some of its customers, SPH
AG is hosting the ERP servers in-house, including SQL servers and BI servers.
The SQL servers are used to store the ERP data, such as customer, sales order,
and invoice information. For the ERP system, 24/7 availability is also needed,
because on-line shops are connected to the ERP systems. The BI servers are
used to process data of the SQL servers for the preparation of reports for the
company management. This data is updated by a nightly job. On all servers, a
thorough performance and load monitoring is installed.

Every customer gets its own SQL and BI server to isolate the user data of
different customers at hardware level. Figure 3 shows a sketch of the systems’
layout. The OLTP server on the left-hand side is processing transactional work-
loads issued by an upstream ERP system. The BI server at the right-hand side
is pulling all tables of interest in a nightly job from the OLTP server. After the
new data has arrived, the BI server starts building indexes and running OLAP
queries. The results are stored on the BI server and can be accessed by the man-
agement. Both servers consist of two Intel Xeon E5620 2.4 GHz with 8 cores
per CPU and 32 GB DRAM in total. They have two hard disk drives attached,
one for the database files which has 800 GB, and the second one for the log files
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Fig. 3. SQL and BI server

(300 GB). The servers are interconnected via Ethernet. One may argue that this
hardware configuration is not very powerful for servers typically benchmarked
with TPC-*, but it delivers sufficient power for these tasks. As we will see, even
this configuration is overprovisioned for the average daily load.

We analyzed the performance-monitoring log files from SPH and charted the
servers’ CPU and disk utilization for some customer. The overall disk and pro-
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Fig. 5. Disk utilization histograms
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cessor utilization histograms of the servers are depicted in figures 4(a), 4(b), 5(a),
and 5(b). For an arbitrary day in the data set, the graphs show the probability
distribution of the CPU utilization sorted from 100% to 0% (idle) and the disks’
utilization by accesses/second, respectively. As the graphs indicate, the servers
spend most of their time idle.

A weekly breakdown of the servers CPU load is depicted in figures 6(a) and
6(b). At night, the BI starts its update cycle and gathers daily transaction data
from the SQL server. During some rush hours, the SQL server is processing most
of the transactional workload, while customers and employees are accessing the
ERP system. During the rest of the day, the servers are heavily underutilized.

Overall, it gets obvious that the claims made by Barroso and Hölzle apply to
these servers as well. As the figures 6(a) and 6(b) show, the servers are utilized
about 25% of the time and very rarely at peak.

5 Proposal

Based on the observations in the previous section, it is easy to see that current
server installations do not behave like the systems measured in traditional bench-
marks. While benchmarks usually measure peak performance, typical servers op-
erate far away from that point during most of the time. Nevertheless, benchmark
results are comparable and meaningful when it comes to performance only. As
long as attention is not turned to energy consumption, the mismatch between
benchmarking and real usage of servers does not carry weight. Performance
measurements under peak utilization can be easily broken down to lower load
situations. Hence, a system, able to process x tps per second at peak, can also
process 0.5x tps per second.

In contrast, energy-related measurements obtained at some point of utiliza-
tion are not transferable to other load situations because of the non-linear scaling
of energy consumption of todays computer hardware. Therefore, the whole span
of different load situations should be measured separately to obtain meaningful
energy data for customers.
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Fig. 7. Comparing benchmark paradigms

As an analogy from a well-known field, automobiles are benchmarked sim-
ilarly with additional “energy-related” measures. Hence, the power of a car is
estimated by its horse power and its top speed, like database servers are classi-
fied by their hardware and their peak tpmC / QphH / tpsE. On the other hand,
the gas consumption of a car, estimated at top speed, is meaningless for the
average driver, because the measurement does not reveal the gas consumption
for average usages. Therefore, a car’s mileage is measured by driving the car
through a set of standardized usage profiles which reflect the typical use of the
vehicle. The same paradigm should be applied to database benchmarks as well,
where energy consumption measured at peak utilization is no indicator for the
average use case.

Figure 7(a) depicts the point that all TPC-* benchmarks measure compared
to the typical working region of a server. Note the mismatch in energy efficiency
between both regions. To cope with the limitations we have outlined previously
and to keep the TPC benchmarking suite up to date, we propose a new paradigm
in benchmarking.

5.1 Static Weighted Energy Proportionality

Nowadays, the measurement paradigm for the TPC benchmarks strictly focuses
on performance results, i.e., to get the most (in terms of units of work) out of
the SUT. Hence, this methodology collides with the desire to get a meaningful
energy-efficiency metrics for the system. Therefore, we propose a sequence of
small benchmarks that utilize the SUT at different load levels, instead of a
single run at peak load. Figure 7(b) depicts a feasible set of benchmark runs at
different utilization ratios. First, a traditional TPC-* run will be performed, i.e.,
at full utilization. That run is used as a baseline to get the maximum possible
performance the SUT can handle (see equation 2). Next, based on the results
from the first run, the number of queries per second issued for the other runs is
calculated using equation 3, where x denotes the system utilization between 0
and 1.



baseline :=
transactions

second
@100% (2)

transactions

second
@x := baseline · x (3)

Of course, depending on the type of benchmark, the characteristics and knobs for
throttling can differ, e.g., for TPC-C increasing the think time seems reasonable
while for TPC-H a reduction of concurrent streams is the only possibility. We
call this a static weighted energy-proportionality benchmark, because the work-
load does not change in between and, therefore, the system does not have to
adapt to new load situations. To allow the system adapting to the current work-
load, a preparation phase of a certain timespan is preceding each run. During the
preparation time, the SUT can identify the workload and adapt its configuration
accordingly. It is up to the system whether and how to adapt to the workload,
e.g., the system can power down unused CPU cores or consolidate the work-
load on fewer nodes in order to save energy. After the preparation phase, the
overall energy consumption during the run is measured. In other words, instead
of measuring the performance of the SUT, we are now measuring the power
consumption for a certain system usage.

At each load level, the system’s energy proportionality (according to equation
1) is calculated. By multiplying each result with the relative amount of time
the system is running at that load level, we can estimate the overall energy
proportionality under realistic workloads.

Formula Let EPi be the energy proportionality at load level i, and let Ti be
the relative time, the system operates at that level. Then, the static weighted
energy proportionality of the system ( = SWEP ) can be calculated as:

SWEP =

1.0∫
i=0.0

EPi · Ti di (4)

We can estimate the power consumption ( = PC) of the SUT during the mea-
sured interval by multiplying the (absolute) power consumption of each interval
(PCi) with the relative time, the system operates in that load interval:

PC =

1.0∫
i=0.0

PCi · Ti di [Watts] (5)

Furthermore, by adding the system’s performance to the formula (denoted
as tps in the following), we can estimate the overall energy efficiency.

EE =

1.0∫
i=0.0

PCi

tpsi
· Ti di

[
Watts

tps

]
(6)



Table 1. Example calculation of the SWEP

real system energy-proportional system

load rel. time rel. PC EP EP · time rel. rel. PC EP EP · time rel.

idle 0.11 0.47 0.00 0.00 0.0 1.0 0.11

0.1 0.08 0.7 0.14 0.01 0.1 1.0 0.08

0.2 0.19 0.78 0.26 0.05 0.2 1.0 0.19

0.3 0.23 0.84 0.36 0.08 0.3 1.0 0.23

0.4 0.18 0.88 0.45 0.08 0.4 1.0 0.18

0.5 0.10 0.91 0.55 0.05 0.5 1.0 0.10

0.6 0.05 0.93 0.65 0.03 0.6 1.0 0.05

0.7 0.02 0.94 0.74 0.01 0.7 1.0 0.02

0.8 0.01 0.98 0.82 0.01 0.8 1.0 0.01

0.9 0.01 0.99 0.91 0.01 0.9 1.0 0.01

1.0 0.02 1.00 1.00 0.02 1.0 1.0 0.02

SWEP ( =
∑

) 0.37 1.00

In a practical application, the integrals in the formulas 4, 5, and 6 are approx-
imated by the sum of load situations measured, e.g., by eleven measurements of
loads from 0% to 100% using a 10% increment.

Example To clarify the calculation of the weighted average, we will give an ex-
ample using the load and energy measurements provided by Google (see Figures
1 and 2). Table 1 shows the (relative) average power consumption and time frac-
tions of a hypothetical server for 11 utilization levels. The data is derived from
the two studies done by Google. For comparison, the relative energy footprint
of a theoretical, perfectly energy-proportional system is shown.

This static approach has certain drawbacks: First, the measurements are
rather coarse grained in reality, i.e., “reasonable” static measurements will be
employed at 0, 10, 20, . . . , 100% load, but not in greater detail. And second, this
calculation does not take transition times from one load/power level to another
into account.

5.2 Dynamic Weighted Energy Efficiency

To design an energy-related benchmark that overcomes the drawbacks of the
static approach, we are proposing a refinement of the previous benchmark, called
dynamic weighted energy-efficiency benchmark (DWEE). In order to simulate an
even more realistic workload on the SUT, the static measurements at various load
levels of the SWEP benchmark are replaced by continuous sequences of different
length and different load situations (so called Scenes), followed by each other
without interruption or preparation times. In contrast to the static approach,
all scenes run consecutively, thus transition times are measured as well in this
benchmark. That enables us to test the systems ability to dynamically adapt (if
possible) while running.
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Every scene will run for a defined timespan T , as sketched in Figure 8. A
timespan is always a cardinal multiple of a constant time slice t, thus, all scenes
run for a multiple of that time slice.

The dynamic energy-efficiency benchmark should simulate a typical workload
pattern, hence, the sequence of load levels should reflect the intended usage
pattern of the SUT.

Influence of the length of the time slice t By adjusting the cardinal time
slice t to smaller values, all benchmarking scenes will be shorter, hence, the sys-
tem must react faster to changing loads. Such a course of action enables testing
the SUTs ability to quickly react to changes. Of course, when benchmarking
different systems, the results for a specific benchmark can only be compared by
choosing the same time slice t and the same sequence of scenes.

The minimum length of the time slice should not go below 10 minutes, be-
cause real-world utilization usually does not change faster than that.

Formula Calculating the result of the DWEE benchmark is simpler than calcu-
lating the SWEP results, because the weighting of the utilization is determined
by the selection of scenes. Because we are measuring the overall throughput
and energy consumption, we do not have to aggregate several measurements. To
obtain comparable results, benchmark runs will be characterized by Watt/tps.
Hence, the overall result of the dynamic weighted energy-efficiency benchmark,
short DWEE, is:

DWEE =
overall Energy Consumption

overall # of Transactions

[
Joule

transactions
=

Watt

tps

]



Hence, by employing the same sequence of scenes and the same length of t,
the energy efficiency of different systems can be compared to each other. Because
the benchmark closely simulates a daily workload, the energy consumption to
be anticipated by the system under test can be estimated for its prospective use.

6 Conclusion and Future Work

In times of high energy cost and rising environmental concerns, it is crucial to
shift the focus from a purely performance-centric view to a more comprehensive
look. For this reason, we have proposed two additional measures to the widely
used TPC-* benchmarks. The results from the benchmark runs can be used to
estimate the average power consumption for given usage profiles. By comparing
the overall performance and the load-specific energy efficiency, systems can be
compared for arbitrary utilization profiles. Of course, customers need to be aware
of the specific usage profile of their servers to get meaningful results from the
benchmarks.

We have explained, why high throughput as sole optimization criterion and
$/tps (or $/tpmC, $/tpsE, etc.) as the solitary driver for purchase decisions
are no longer up to date. Therefore, we proposed a paradigm shift for the TPC
benchmarks: the same shift that has already moved SPEC and SPC to energy-
related benchmarks. This paper introduced more sophisticated energy measures
to allow a more detailed view of the systems’ energy efficiency. By comparing the
static weighted energy proprtionality of two servers, one can easily derive, which
server is the more energy proportional one. Additionally, if the usage pattern
of the server is known, the servers real energy consumption can be estimated.
Finally, for getting more realistic, energy-related results, the DWEE benchmark
can be run with workloads, that reflect the estimated usage for a customer.
These workloads could stem from historical performance data provided by the
customer to enable tailor-made comparisons of different systems. Alternatively,
a workload specified by the TPC would enable standardized benchmarking as
usual, with respect to energy.

Since customers are slowly becoming energy-aware also as far as their com-
puter equipment is concerned, measures revealing energy-related characteristics
of servers are gaining increasing attention. Our benchmark proposal will help
comparing the energy profile of different systems.

Our approach focuses on the overall power consumption of the SUT. We
do not make restrictions regarding the power consumption of individual com-
ponents. Therefore, it is up to the system designers how to improve the en-
ergy footprint of their systems. Some of the possibilities include powering down
redundant, but underutilized components, e.g., disks in a storage array, CPU
cores, or networking adapters. Other approaches could focus on the hardware
level, i.e., choosing more energy-efficient components while building the sys-
tem. Typical servers can widely vary in power consumption, depending on the



DRAM sizes and modules used. Finally, the software driving the hardware can
have a great impact on the behavior of the system. Todays database systems
do not consider energy consumption as a first-class optimization goal, e.g., the
use of energy-efficient algorithms. Nevertheless, we expect future generations of
database servers to show an increasing awareness of energy-related character-
istics. Energy-aware operating systems and database management software can
leverage energy efficiency of the plain hardware significantly.

For the future, we encourage researchers and benchmarking enthusiasts to
focus on energy as well as performance. This proposal exposes a first concept
how a comprehensive energy benchmark should look like. As the details have to
be worked out yet, we expect our contribution to influence the design of future
benchmarks.
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