
Self-Tuning Storage and Indexing
for Native XML DBMSs

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von
Diplom-Informatiker Karsten Schmidt

Dekan des Fachbereichs Informatik:
Prof. Dr. Arnd Poetzsch-Heffter

Promotionskommission:
Vorsitzender: Prof. Dr. Jens Schmitt
Berichterstatter: Prof. Dr. Dr. Theo Härder

Prof. Dr. Kai-Uwe Sattler

Datum der wissenschaftlichen Aussprache:
30. September 2011

D 386

For Claudia & Vincent
The center of my life.

Acknowledgements

A project like this thesis would not have been possible without the support of many people,
and it is my pleasure to thank them.

First, and foremost, I would like to express my sincerest gratitude towards my advisor,
Prof. Dr. Dr. Theo Härder. His broad knowledge and his continuous support have been of
great value for me. His understanding, encouraging and personal guidance have provided an
excellent basis for the present thesis. I would like to thank Prof. Dr. Kai-Uwe Sattler for his
detailed review, constructive criticism and excellent advice during the preparation of this thesis
and for accepting the role of the second examiner. I thank Prof. Dr. Jens Schmitt for taking the
role of committee chair and providing a pleasant atmosphere during my defense.

Many students supported my research during the last years and I want to take the chance to
thank them for their hard work and the fun we had. I want to mention Sebastian Potthoff, Felix
Kling, Muhammad Mainul Hossain, Caetano Sauer, Martin Corrini and Ludger Overbeck.

Further, I would like to thank all the colleagues who gave me an excellent time in Kaiser-
slautern and made me feel right at home. Dr. Christian Mathis, for introducing me to the
XTC project and for his continuous and invaluable support for my own research. Dr. Philipp
Dopichaj, Volker Höfner, Daniel Schall and Dr. Andreas Weiner for their friendship and for
proofreading parts of this thesis. In particular, I’m grateful to Dr. Jürgen Göres for his incred-
ible level of proofreading and for the many fruitful discussions in the morning. I also want to
thank all the other Teeecke members, Thomas Jörg, Joachim Klein, Nikolas Nehmer, Dr. Boris
Stumm, Andreas Bühmann and Yi Ou that also contributed to making my stay in Kaiserslautern
such a great time. Very special thanks go to my colleague and close friend, Sebastian Bächle,
for our daily discussions on research and non-research topics, for sharing his programming
wisdom and for enriching my ideas.

Most importantly, none of this would have been possible without the love and patience
of my family. I am very grateful to my parents, Klaus and Annelie, for their support and
encouragement. I wish to thank my entire extended family for providing a loving environment
for me. My brother, grandparents and uncles were particularly supportive.

Last but not least, I owe my deepest gratitude to my wife Claudia, who means everything
to me. She has been with me through all the happy and tough times, and this thesis wouldn’t
have been possible without her invaluable companionship. She always showed patience with
me and full understanding, even when I was working late or weekends to meet the next paper
deadline. Finally, I want to thank my son Vincent who kept me laughing when the laughs were
running low and who reminds me that, all the evidence to the contrary, there is a life outside of
computer science and academia.

Karsten Schmidt

Alzey, October 2011

v

vi

Abstract

Today, database management systems (DBMSs) are ubiquitous and they often build the back-
bone of highly complex IT systems. Their flexibility, scalability, and configurability make
them useful for a wide range of applications. From handheld devices to worldwide online sys-
tems, DBMSs operate reliably and are available 24/7. However, changing conditions such as
(periodic) workload shifts, growing data volumes, increasing load, or the deployment of new
applications may cause performance bottlenecks. To meet given performance goals such as
transaction throughput or response time, configuration changes become inevitable.

A DBMS provides many tuning knobs that, even for human experts, it is challenging to
quickly find a better, let alone the best, configuration. Here, self-tuning is capable of per-
forming the necessary tasks just in time. A typical approach for self-tuning is to employ a
cycle of system monitoring, performance analysis, and configuration adjustments. Moreover,
simulation-based approaches are used to estimate the effects of configuration changes.

So far, research focused on self-tuning techniques for relational DBMSs and missed to face
the emerging challenges imposed by the increasing demand of processing XML data natively
with DBMSs. In this work, we investigate self-tuning techniques for native XML DBMSs
(XDBMSs) in the context of our prototype “XTC – XML Transaction Coordinator”.

In the course of this work, we present and benchmark our self-tuning concepts for XML
storage, indexing, and processing. Therefore, we developed a full-fledged monitoring frame-
work embedded into XTC. The typical, layered architecture of a DBMS guided our way of
exploring tailored self-tuning techniques.

We developed algorithmic extensions for database buffer self-tuning that provide nearly
accurate performance forecasts. Based on our hotset simulation, we improved the decision
support for buffer pool resizing. Other techniques to optimize the IO load are related to XML
storage. We present our novel, space-efficient, and high-performance elementless storage map-
ping for XML data. Our associated path synopsis structure is a concise structural summary
that plays a central role in storage and query processing throughout this work. Structural and
content compression techniques as well as similarity measures for XML are exploited to (self-)
tune the storage configuration. Based on our elementless storage concept, we built a unique
and flexible set of XML indexing options. Besides XML “standard” indexing, we provide
tailoring for content and structural aspects as well as clustering, compression, and document
coverage. On top of our storage and index layers, we developed a query-driven Autonomous
Indexing (AI) framework. It is integrated into XTC and exploits so-called virtual indexes and
the query optimizer. Indexes are automatically created, maintained, and dropped, while all
self-tuning decisions are supported by proper statistics about queries and their optimization
potential. Comprehensive experiments and analyses regarding performance, overhead, and
interplay of self-tuning techniques are performed based on real-world and artificial datasets.

vii

viii

Contents

1 Introduction 1
1.1 Tuning Principles . 3
1.2 Motivation . 4

1.2.1 Objectives . 5
1.2.2 Overview . 6

2 Fundamentals 7
2.1 From Custom Coding to DBMS Tuning . 7
2.2 Customary DBMS Architecture . 8
2.3 DBMS Cost Models . 10

2.3.1 Resources . 10
2.3.2 Cost-based Optimization . 11

2.4 Native XML DBMS . 12
2.4.1 Query Languages . 15
2.4.2 Query Processing . 17
2.4.3 Special Operators . 18

2.5 XTC Prototype . 20
2.6 Alternative XDBMS Systems . 25

3 Self-Tuning – Challenges and Goals 27
3.1 From Tuning to Self-Tuning . 27

3.1.1 Offline vs. Online Tuning . 28
3.1.2 Problem Classes . 28

3.2 Self-Tuning . 29
3.2.1 A Brief History of Autonomous Computing 30
3.2.2 Feedback Control Loop – MAPE-K 31
3.2.3 Rule- or Policy-based Management 33
3.2.4 Multi-Agents . 34
3.2.5 Economical Models . 35
3.2.6 Genetic Algorithms and Multi-criteria Optimization 35
3.2.7 Languages . 37
3.2.8 Summary of Existing Approaches . 37

3.3 Dependencies . 38
3.3.1 Component Dependencies . 39

3.4 Online Self-Tuning Challenges . 40
3.4.1 Search Space . 40

ix

Contents

3.4.2 Prediction Quality . 41
3.4.3 Delay Effects . 42

3.5 Self-Tuning in DBMSs . 42
3.5.1 IBM DB2 . 43
3.5.2 Oracle Database . 43
3.5.3 Microsoft SQL Server . 44
3.5.4 Academia . 44

3.6 Self-Tuning Framework in XTC . 44
3.6.1 Monitoring in XTC . 45
3.6.2 Analysis in XTC . 47
3.6.3 Plan and Execute in XTC . 47
3.6.4 Implementation Aspects for MAPE 48
3.6.5 Logging and Reporting in XTC . 49

3.7 Challenges and Opportunities . 51

4 Buffer Tuning 53
4.1 Buffer Management . 53

4.1.1 Working Principle . 54
4.1.2 Replacement Algorithms . 54
4.1.3 Buffer Pool Configuration . 56

4.2 Self-Tuning Buffer Management Approaches 57
4.2.1 Goal-oriented Buffer Tuning . 58
4.2.2 Simulation-based Buffer Tuning . 59
4.2.3 Forecast Issues . 61

4.3 Lightweight Performance Forecasts . 64
4.3.1 Algorithmic Extensions . 65

4.4 Dynamic Buffer Pool Management . 69
4.4.1 Cost Model . 69
4.4.2 Decision Model . 70
4.4.3 Integrating Short-term Memory Consumers 72
4.4.4 Read-ahead . 73
4.4.5 Sequential Writes (Buffer Flushes) . 74
4.4.6 Implementation Aspects . 75

4.5 Evaluation . 76
4.5.1 Workload . 78
4.5.2 Forecast Accuracy . 80
4.5.3 Workload Shifts . 84
4.5.4 Buffer Balance . 85
4.5.5 Overhead . 85
4.5.6 Integrating Short-term Memory Consumers 87
4.5.7 Read-ahead and Grouped Flush . 88

4.6 Conclusions . 89

x

Contents

5 Storage Self-Tuning for XDBMSs 91
5.1 Native XML Storage . 92
5.2 Node Labeling . 94

5.2.1 Range-based Labeling . 95
5.2.2 Prefix-based Labeling . 95
5.2.3 Conclusion . 96

5.3 Node Labeling in XTC . 96
5.4 Full Storage Mapping . 97
5.5 Path Synopsis . 100
5.6 Elementless Storage Mapping . 101
5.7 Document Collections . 102
5.8 Self-Tuning for XML Storage Configurations 103

5.8.1 Compression . 104
5.8.2 Document Statistics . 104
5.8.3 Classification of Documents . 106
5.8.4 Analysis Options . 109
5.8.5 Workload-Dependency . 113
5.8.6 Autonomous Collection Building . 113
5.8.7 Data Placement . 114
5.8.8 Shifting Load to the Client-side . 115

5.9 Realization in XTC . 115
5.9.1 Statistics . 115
5.9.2 Statistics Gathering by Sampling . 117
5.9.3 Compression . 118
5.9.4 Structural Classification of Documents 121
5.9.5 Storage Decision Process – Document Processing 124

5.10 Evaluation . 125
5.10.1 Datasets . 125
5.10.2 Access Performance . 126
5.10.3 Space Consumption . 129
5.10.4 Structural Similarity . 130
5.10.5 Content Compression . 131
5.10.6 Sampling . 133
5.10.7 Usage-driven Storage Structures . 135
5.10.8 Load Balancing . 139
5.10.9 Statistics . 140

5.11 Conclusions . 141

6 Index Options and Query Processing in XTC 143
6.1 Related Work . 143
6.2 Indexing in XTC . 144

6.2.1 Element Index . 144
6.2.2 Content Index . 145

xi

Contents

6.2.3 Path Index . 146
6.2.4 CAS Index . 146

6.3 Query Processing in XTC . 148
6.3.1 XQGM and Query Plan Operators . 148
6.3.2 Optimization . 150
6.3.3 Construction of Index Access Alternatives 151

6.4 Index Use . 153
6.5 Index Selection Problem . 155
6.6 Summary . 156

7 Index Self-Tuning for XDBMSs 157
7.1 Related Work . 157
7.2 Autonomous Indexing Framework . 158

7.2.1 Virtual Indexes . 159
7.2.2 Index Configuration Self-Tuning . 160
7.2.3 Update Issues . 160
7.2.4 Local Optimization Issue . 161

7.3 AI in XTC . 161
7.3.1 Index Management . 162
7.3.2 Candidate Generation . 163
7.3.3 Candidate Size Estimation . 165
7.3.4 Cost Benefit Calculation . 167
7.3.5 Index Selection . 168
7.3.6 Optimizations . 169

7.4 Evaluation . 171
7.4.1 Index Estimation Accuracy . 171
7.4.2 Index Candidate Generation Aspects 172
7.4.3 Self-Tuning Quality . 172
7.4.4 Workload Shifts . 174
7.4.5 AI Overhead . 175

7.5 Conclusions . 177

8 Interplay of Self-Tuning Components 179
8.1 Workload and Environment . 179
8.2 Interplay of Buffer and Index Self-Tuning . 180
8.3 Varying Combinations of (Self-)Tuning Features 182
8.4 Analysis of Self-Tuning Effects . 185
8.5 Conclusions . 185

9 Conclusions and Outlook 187
9.1 Conclusions . 187
9.2 Outlook . 189

9.2.1 Determine Simulation Parameters . 189
9.2.2 Index Self-Tuning . 190

xii

Contents

9.2.3 Modern Hardware . 191
9.2.4 Next Generation of Tuning Goals . 191
9.2.5 Evaluation of Self-tuning . 191
9.2.6 Towards a System Model . 192

A Architectures of Native XDBMSs 193

B Storage 199
B.1 Storage Gains for Elementless . 199
B.2 Storage Self-Tuning Similarity Findings . 199
B.3 Similarity Matching Performance . 202
B.4 Storage Compression Gains . 202
B.5 Alternative XML Text Compressors . 203
B.6 Index Definitions for Sample Query Evaluation Plans 205

C Indexing 207
C.1 Excerpt of AI Metadata in XTC . 207
C.2 Query Graph Traversal Rules . 208

C.2.1 Access Operator . 208
C.2.2 Join Operator . 208
C.2.3 Join Operator with Sort . 209

C.3 AI Optimization Rules . 209
C.4 TPoX Update Query Integration . 210

Bibliography 213

xiii

Contents

xiv

List of Figures

1.1 The spectrum of self-tuning [CW05] . 4

2.1 5-layer DBMS architecture reference model [HR83a] 9
2.2 Hardware resource development and relationships. 11
2.3 All 13 XPath axes according to [BBC+07]. 15
2.4 Query processing pipeline . 18
2.5 Structural join decomposition . 19
2.6 XTC architecture and basic performance parameters 21

3.1 System view of a DBMS . 29
3.2 Feedback-based self-tuning schemes (extension of Figure 3.1) 32
3.3 Autonomic Tuning Expert (ATE) infrastructure [WRRA08] 33
3.4 Classification of component dependencies . 39
3.5 Self-management system architecture [KM07] 40

4.1 Buffer speed-up trend for different access patterns 61
4.2 Short-term memory consumers cause suboptimal self-tuning decisions 63
4.3 LRU-based hotset simulation with overflow extension 65
4.4 From single-page flush (left) to grouped flush (right) 74
4.5 Buffer scalability for various workloads and replacement algorithms 79
4.6 Evaluation of hotset and oversize estimation accuracy 81
4.7 Simulation error analysis explaining hit ratio drift 82
4.8 Workload characteristics used for the analysis of simulation ranges 82
4.9 Simulation error for various simulation sizes (reference size 40%) 83
4.10 Shifting workload analysis (buffer calls x 100.000 on x-axis) 84
4.11 Buffer balancing exemplified by GClock optimized and 2Q 86
4.12 Balancing of four buffers under different workloads 86
4.13 Integrating short-term memory consumers . 88
4.14 Read-ahead and grouped flush speed-ups . 89

5.1 XML data shredding into relational tables . 92
5.2 Hybrid XML storage . 93
5.3 Comparison of different node labeling approaches. 95
5.4 Overflow mechanisms for dynamic labeling using DeweyIDs 96
5.5 Prefix compression gain of DeweyIDs in XTC 97
5.6 Physical record format (full storage mapping). 98

xv

List of Figures

5.7 Database metadata structures. 99
5.8 XML document mapping (nodes-to-page serialization). 100
5.9 Path synopsis for sample XML document . 100
5.10 Elementless node mapping . 102
5.11 Collection mapping in XTC . 103
5.12 XML sample document for statistics . 105
5.13 Path synopsis for sample document . 106
5.14 Structure and content statistics for sample document 106
5.15 Document storage process including compression choices 119
5.16 Storage and reconstruction for HW 1 . 127
5.17 SAX performance . 127
5.18 Navigation performance . 128
5.19 Scalability of node access . 129
5.20 Storage space analysis for storage mappings 130
5.21 Similarity measurements and cost analysis for moderate parameter selection . . 131
5.22 Relative document size of Huffman and wordbook compressors compared to

external document sizes (plain) . 132
5.23 Relative compression time (configuration 1) 133
5.24 Relative compression time (configuration 2) 133
5.25 Relative estimation error of sampling . 134
5.26 Workload vs. storage model benefits for selected documents 137
5.27 Performance gains for autonomic and theoretically optimal configurations com-

pared to standard . 139
5.28 Storage performance for client-side loading vs. server-side encoding (powerful

client) . 140
5.29 Storage performance for client-side loading vs. server-side encoding (weak

client) . 141
5.30 On-the-fly statistics maintenance: overhead analysis 142

6.1 Sample element index . 145
6.2 Sample content index . 145
6.3 Sample path index . 146
6.4 Sample CAS index . 146
6.5 Sample query represented by XQGMs . 149
6.6 QEPs for sample query . 150
6.7 XQGM operator to physical index operator mapping sample 152
6.8 Index-driven QEP alternatives . 154
6.9 Index-type decision tree . 156

7.1 Autonomous indexing framework . 159
7.2 Query processing pipeline and AI extension 162
7.3 Index lifecycles in XTC (without and with AI) 163
7.4 Estimating index characteristics: error margins 172

xvi

List of Figures

7.5 Self-tuning index performance . 173
7.6 AI performance under workload shifts with varying space restrictions 174
7.7 AI overhead . 175
7.8 Impact of parallel index building . 176
7.9 Varying aggressiveness of index building . 177

8.1 Self-tuning effects for 12MB XMark databases and shifting workloads 181
8.2 Self-tuning effects for 112MB XMark databases and shifting workloads 183
8.3 Comparison of self-tuning application (12MB XMark databases) 184

A.1 Lore architecture overview [MAG+97] . 194
A.2 Tamino architecture overview (source: www.softwareag.com) 194
A.3 TIMBER architecture overview [JAKC+02] 195
A.4 Natix architecture overview [FHK+02] . 196
A.5 Architecture of Galax [FSC+03] . 197
A.6 OrientX architecture [XXM+06] . 198

B.1 Storage and reconstruction for HW 2 . 200
B.2 Similarity measurements and cost analysis for increased attribute costs 200
B.3 Similarity measurements and cost analysis for strict parameter selection 201
B.4 Similarity measurements and cost analysis for relaxed parameter selection . . . 201
B.5 Similarity matching performance . 202
B.6 Full storage mapping . 203
B.7 Elementless storage mapping . 203
B.8 Hardware configuration 1 . 204
B.9 Hardware configuration 2 . 204

xvii

www.softwareag.com

List of Figures

xviii

List of Tables

3.1 Self-tuning areas and goal contribution capabilities 38

4.1 Workload characteristics . 80
4.2 Overhead Analysis hit-dominated workload 87
4.3 Overhead Analysis miss-dominated workload 87

5.1 Example Huffman code for DeweyID encoding (Li fields). 96
5.2 Node and path statistics for exemplary XML documents 101
5.3 Document analysis options compared . 110
5.4 Comparing sample wordbook vectors for j = 0.5 and k = 0.7 122
5.5 Extended documents statistics . 126
5.6 Scalability of modifications . 129
5.7 Statistics space consumption figures for selected documents 141

6.1 Index feature comparison . 147
6.2 Index configurations for sample query evaluation plans 155

7.1 Comparison of index candidate generation approaches 173

B.1 Alternative parameter configurations for structural similarity 199

xix

List of Tables

xx

Listings

3.1 Reportable event interface . 50
3.2 Report provider interface (Poll Mode) . 50
3.3 Self-tuning reporter interface . 50
3.4 Reporting client interface (Push Mode) . 51
4.1 Modified page fix algorithm for upsize simulation 60
4.2 Modified page fix algorithm for downsize simulation 64
4.3 LRU-K hotset victim selection . 66
4.4 GCLOCK hotset victim selection . 66
4.5 2Q hotset victim selection . 67
4.6 ARC page fix . 68
4.7 ARC simulation functions . 68
4.8 Balance algorithm . 71
4.9 Buffer metadata for self-tuning . 76
4.10 Resize functionality for buffer self-tuning . 77
5.1 Path Synopsis node data structure . 116
5.2 Path Synopsis statistic update sample (PathSynopsisStatisticsListener) 117
5.3 Text compressor interface . 118
5.4 Huffman Node . 120
7.1 Data structure to capture path expressions . 164
7.2 AI path element data structure . 165
7.3 Combine paths algorithm . 166
7.4 Estimate index size . 166
7.5 Index selection observing space restrictions 168
C.1 Update query 3 in XQuery (TPoX) . 210
C.2 Update query 3 in XTC . 211

xxi

Listings

xxii

Chapter 1

Introduction

Database tuning has always been a fundamental aspect of database research and development:
Many reasons may require changing a (database) system configuration. Either the workload
(e.g., type of queries), the data (e.g., volume, schema, value distribution), or the system load
(e.g., number of – possibly concurrent – users, hardware resource utilization) change. If the
DBMS with its current hardware equipment and configuration is not able to silently cope with
these changes, they will inevitably begin to (negatively) impact application performance, i.e.,
response times, and ultimately the throughput will degrade.

A common solution is the “KIWI” (Kill It With Iron) approach, i.e., to simply invest in more
powerful hardware without actually addressing a specific component. However, while KIWI
might appear straightforward and relatively cheap at first, given today’s hardware prices, it has
its limits. It totally ignores the (cheaper) option to reconfigure the system. Smarter alternatives
try to identify the system bottleneck first, before undertaking tailored actions that are feasible
using the current hardware, i.e., reconfigure a system.

Due to the diversity of database applications, DBMS vendors no longer change program
code for individual customers (i.e., applications), but provide a wide array of configuration
options to allow the customization of their product to the specific requirements of the database
application during deployment. At the same time, the responsibility for application-dependent
configurations was shifted from the developer to the customer (i.e., DB administrator). Current
commercial DBMSs provide several hundreds of parameters, where finding a suitable (let alone
the optimal) setup can occupy even experienced DB administrators for days [KLS+03].

Nowadays, IT systems need to be available 24/7 while providing fast reaction and response
times. Although there are various kinds of IT systems ranging from in-house to worldwide
connected online systems, they have something fundamental in common – the backbone of
most IT systems are database management systems that are capable of reliably handling up to
thousands of concurrent transactions at the same time. This also means that new applications
are deployed into an existing IT landscape while the remaining infrastructure, database, and
applications need to stay online. To prevent any downtimes or performance bottlenecks of
already running systems, configuration adjustments need to be performed immediately when
changes happen, i.e., the deployment of additional database applications. Obviously, a manual
tweaking of the system by an administrator will take too long to prevent such situations. Con-
sequently, only autonomous tuning mechanisms, built directly into the DBMS itself or close to
it, can timely react to suddenly changing loads or requirements.

Automated tuning has been extensively studied by various communities, especially for com-
puter and software systems; however, given the huge amount of parameters and their often

1

Chapter 1 Introduction

unpredictable interactions, the spectrum of automation is fairly wide. Often, it is quite diffi-
cult in practice to find a good balance between expected (positive) effects and limited loss in
terms of uncontrolled or unwanted behavior. Also, the overhead of automation, both for system
observation and reconfiguration, has to be taken into account. In complex environments and
under varying (or unpredictable) workloads, pre-defined rules or more sophisticated knowl-
edge bases and cost models are necessary to alleviate the search for a better or even optimal
configuration.

Besides hardware and software changes, the data model and, thereby, the workload may
change, too. Today’s databases do not only deal with relational data anymore, as they did for
more than 40 years. The most prominent data model evolution of recent years is probably
XML – the Extensible Markup Language. Apart from the XML data and processing model,
also query language(s) and, for instance, indexing are totally different from a conceptional
point of view [FMM+07]. Still, this does not mean that DBMS developers need to discard
everything they have learned – actually the opposite is true, it is wise to reuse existing and well-
studied and understood techniques and concepts as far as possible. For instance, traditional
DBMS development established the layered architecture – a hierarchical layout with isolated
functionalities in each layer that are connected via well-defined interfaces – which has proven
to be efficient for many reasons. For the purpose of self-tuning, the separation of concerns,
supported by this architecture, forms “natural” groups of functionality that are the basis for
identifying so-called self-tuning features. Many of the existing self-tuning techniques focus on
a single component, i.e., layer or functionality in a DBMS. Such a local (i.e., component-wise)
optimization is often possible by applying self-tuning, whereas a holistic (e.g., model-driven)
optimization approach for a DBMS is still challenging.

Tuning a system can be done either online while the system is serving requests or offline
during (scheduled) downtimes. In both scenarios, the evaluation of tuning measures is a crucial
aspect. That means, tuning steps have to be evaluated to allow for comparing different tuning
alternatives, learning the best reaction to different situations, predicting the outcome of tuning
measures, and the validation of a tuning approach and its result. Adequate abstractions for
resources and workloads as well as processing are required to attribute costs and benefits to
certain configurations. To allow for evaluation, a cost model is essential. Certain issues like
deferred impact or changing conditions while tuning make a sound evaluation difficult or even
impossible. Moreover, they might reduce the significance of the results. In any case, self-tuning
actions should ensure that system performance is not impaired, which is a tough demand.

The vision of self-tuning is simple: The user (or administrator) does not notice that tuning is
taking place and ultimately might not even be aware of the internal tuning knobs anymore that
are used by the system [WMHZ02]. Instead, the user can use more (abstract) high-level goals
such as costs (i.e., dollars), energy consumption (i.e., Green IT), response times, throughput
rates, or hardware and time budgets. Moreover, the system can recommend changes it is not
able to perform by itself such as “add hardware” or “replace malfunction hardware” to fulfill
those goals. Because the fundamental concept of self-tuning, as the prefix “self” indicates, is
recursively applicable, the tuning components may control themselves in the future, i.e., self-
tune the self-tuner. But this is still a vision. Eventually, those open research topics for self-
tuning (database) systems may guide the way to gradually develop all the necessary techniques.

2

1.1 Tuning Principles

1.1 Tuning Principles

Left untouched, a DBMS’s out-of-the-box configuration will rarely allow it to perform at its
optimal performance. Consequently, in general, adjustments are necessary to adapt the system
to specific workloads.

To guide these adjustments, initial system conditions have to be gathered and analyzed be-
fore tuning takes place to get a clear picture of current performance issues. This task is either
done by requesting state information from the outside or by pushing monitoring information to
the outside. On the one hand, actively requesting information may cause unnecessary interrup-
tions and yield zero information when changes did not take place. On the other hand, pushing
monitoring information to a client application may cause significant runtime overhead that can
even skew the results. Therefore, monitoring has also to be tuned to strike a balance between
obtaining monitoring data with a sufficient level of detail to draw the proper conclusions and
avoiding a detrimental impact on the system when obtaining this data.

Knowing the state of a system allows analyzing it component-wise for individual parameters
or with so-called metrics indicating certain performance characteristics, but not necessarily for
an individual component. Different methods are common to analyze this information, as we
will see in Section 3.2. Again, a human expert may perform the analysis or the system itself.

Adjusting the system configuration needs confidence that the changes’ impact will result in
a performance gain. Therefore, some preparation is necessary such as simulating the changes
or estimating the impact. A similar approach to estimating is predicting the effects of a tuning
measure. Knowing the overhead caused by the efforts for the state transition (i.e., reconfigura-
tion) beforehand ensures that the expected gain is justifying the overhead. A new monitoring
cycle may bring the evidence that the adjustments meet the expectations. However, the effects
of a tuning measure may not be visible immediately, making their observation cumbersome.

Performing multiple tuning measures simultaneously complicates the identification and cor-
rect attribution of their effects, because they overlap or outweigh each other. A system model
or knowledge base of tuning measures can be used to address those problems as we will see
throughout this chapter.

Deciding about the optimal timing when the reconfiguration should take place is another
tuning issue. On the one hand, the situation that motivated the tuning measure will require the
change to be performed as soon as possible, as any delay will cause the current performance
bottleneck to persist and decisions about the tuning measure to become outdated. On the other
hand, a verification of the tuning measure, e.g., by simulating its effects beforehand to not
jeopardize a production/mission critical system, might be advisable. If regular maintenance
windows or times of low system load exist, enacting the tuning measure could also be deferred
to affect the system’s operation as little as possible. Similar to the question whether to do it
immediately or during a maintenance period, is the problem of applying changes online or
offline. Bringing a system down and doing all the necessary reconfigurations offline seems to
be save, but causes comparatively long outages that are often not acceptable for production
systems, where 24/7 availability is required. Doing it online, however, often requires more
preparation, a cautious approach, and increases the chance of being faced with unforeseen
problems. Online reconfiguration is further complicated by the fact that not all parameters

3

Chapter 1 Introduction

External feedback loop

System-managed triggering

Self-tuning algorithm

physical DB

Longer term Near-real-timeOccasional

Integration into DBS

Real-time

Time horizon
automated

memory

caching, pre-

decision recomputation decisions decisions

design statistics
maintenance manager

fetching

Figure 1.1: The spectrum of self-tuning [CW05]

or tuning knobs of a typical DBMS can be changed while the system is running, limiting the
scope of possible changes for online tuning.

Environments, workloads, and requirements can change over time, which makes system
configurations outdated and advocates tuning measures. Therefore, the cycle of monitoring,
analyzing, and acting has to be done throughout the entire lifetime of a system.

1.2 Motivation

Nowadays, the deployment of database systems is ubiquitous. Embedded into or linked with
complex systems, they are faced with varying application areas and workloads. A fundamen-
tal requirement to continuously provide high-performance data processing is adaptivity and
scalability of a DBMS. But the manifold tuning options are manually unmanageable, which
advocates automated support in form of self-tuning.

Because systems tend to be extremely complex, an holistic approach for self-tuning is still
impracticable. For this reason, self-tuning targets at self-contained components, which how-
ever, may be connected to each other. Hence, the goal is to adjust each of them towards the
optimal configuration, which is often not feasible in a reasonable time or at justifiable costs.
To make self-tuning viable, it is enough to at least converge to the optimum.

For each component, a self-tuning technique has to be chosen, which may further dictate
its level of DBMS integration and its decision’s impact in terms of durability. For a selection
of potential (self-)tuning areas, Figure 1.1 shows a possible classification for self-tuning. The
authors of [CW05] argue that the more tightly coupled a (self-)tuning technique is employed,
the more frequently the tuning decision can be refined. Considering the impact of certain tuning
decisions, it would be desirable to always increase the integration, e.g., “move the physical DB
design down”, and to increase the recomputation frequency, i.e., move everything to the right.

Other important classifications comprise the online capabilities of a tuning measure, the
potential of self-learning, or the field of application.

Self-tuning a DBMS component, as shown in the figure, implies tailored techniques and
decision models. The majority of existing techniques is tailored to the domain of relational
data management. The growing need to natively process XML data leads to new challenges
and motivates our work to develop new techniques for XML-specific self-tuning. Of course,
the lessons learned should be retained, such as data model independent tuning or well-known

4

1.2 Motivation

tuning procedures. The research question is, whether or not a native XDBMS can be improved
by a similar set of self-tuning features as relational systems.

Some of the most successful self-tuning techniques are based on the concept of combining
Monitoring, Decision, and Action, which will be presented in more detail in Chapter 3. Ba-
sically, system performance is monitored, according to a tuning goal configuration changes
are planned, and finally executed. This procedure is repeated while the system is running.
Other successful techniques exploit simulations (often called “what-if” analysis) to identify
alternative configurations providing better performance.

In this work, we apply those techniques for various components of a native XDBMS and
integrate them allowing self-tuning decisions to be made online while avoiding administrative
overhead and providing fast reactions to changing workloads and requirements.

1.2.1 Objectives

Tuning of database management systems (DBMSs) is a complex task that requires expertise
in several computer science disciplines: One needs to have a thorough understanding of the
hardware (e.g., IO or memory bandwidth) and system software (e.g., operating system) and
their architectural implications. A deep understanding of the working principles of a DBMS is
required, you (i.e., the administrators) have to know the (side-)effects when changing param-
eters. Furthermore, based on monitoring information and observations, one must be able to
draw conclusions regarding the actual cause of the currently visible performance. A successful
self-tuning mechanism for (X)DMBSs should mimic this approach.

The goal of this thesis is now to transfer these basic principles underlying (any kind of) man-
ual DBMS tuning to autonomous self-tuning mechanisms tailored for native XML DBMSs.
However, given the complexity and scope of this challenge even when targeting a specific data
model, a single thesis cannot cover all aspects. Guided by a typically layered architecture of
DBMSs, we therefore focus on the most essential aspects:

• Analyze existing self-tuning techniques. The range of possible self-tuning approaches is
from theoretically formalized to brute-force trial and error. Depending on the DBMS it-
self, the tuning target, and access to DBMS internals, only certain tuning approaches are
beneficial for performance-oriented self-tuning. Especially for the domain of feedback-
control-loop techniques for online self-tuning, we require sophisticated monitoring and
analyzing capabilities, as well as effective tuning knobs to adjust a DBMS.

• Improve existing self-tuning approaches for buffer management. Simulation and predic-
tion are typically used to optimize buffer configurations, but often deliver bad accuracy
in buffer performance forecasting. We develop lightweight algorithmic extensions to
provide high-accurate performance forecasts for buffer configurations.

• Develop XML-specific tuning options for XML storage and indexing. XML query pro-
cessing relies on fast and space-efficient XML document access. Therefore, we develop
novel techniques to efficiently store/retrieve XML data and flexible index mechanisms

5

Chapter 1 Introduction

that are built on the same concepts. Due to possible storage space restrictions and main-
tenance overhead, the selection of document storage parameters is as crucial as the se-
lection of indexes.

• Integrate self-tuning techniques into a native XDBMS. Fortunately, our system XTC al-
lows to evaluate all ideas developed in this work. This requires a system-wide monitor-
ing and event processing concepts, while the self-tuning logic is subject to the individual
components for XML-specific storage and indexing as well as buffer management.

• Show the effectiveness of tuning knobs, XML-aware storage and indexing techniques,
and self-tuning effects. For all techniques developed in this work, we assess their effec-
tiveness by individual benchmarks using typical workloads. Especially, performance,
space consumption, and the overhead of our tuning management are measured.

The domain of self-tuning comprises a variety of aspects such as system optimization, health,
protection, and configuration. In this work, we consider the aspect of performance self-tuning,
which incorporates the DBMS configuration and its optimization.

1.2.2 Overview

This dissertation is structured into three parts. The first part consists of two chapters: Chapter 1,
which you are currently reading, contains the introduction and motivation for XML-specific
DBMS self-tuning, and Chapter 2 presents fundamental concepts necessary for all following
chapters. Especially, the aspects of native XDBMSs are emphasized in Section 2.4 and our
prototype XTC is introduced in Section 2.5.

The second part of this work starts with Chapter 3, which first presents self-tuning ap-
proaches, followed by related work and our own XTC-specific self-tuning framework in Sec-
tion 3.6. The layout of the main chapters in the second part is aligned to the layered architecture
of a DBMS. In Chapter 4, non-XML-specific buffer self-tuning techniques are presented and
evaluated. Based on that, Chapter 5 highlights and evaluates all the XML-specific storage self-
tuning approaches, we implemented into XTC. Chapter 6 relies on those storage concepts and
covers XML indexing options in Section 6.2 as well as query processing in Section 6.3. The
second part concludes with Chapter 7, which presents and evaluates our autonomous indexing
framework. Related work is always discussed within the chapters.

The last part consists of two chapters. In Chapter 8, a comprehensive self-tuning sample
illustrates the interplay of major self-tuning techniques in case of changing workloads. Fi-
nally, the dissertation concludes with a summary and a discussion of future research aspects in
Chapter 9.

6

Chapter 2

Fundamentals

This chapter introduces the fundamental aspects of DBMSs in general and native XML DBMSs
in particular, partially exemplified with the help of our own prototype DBMS – XTC. We
will start with a brief historical digest of major developments in DBMS research that led to
the current requirements for DBMS tuning. We will then give an architectural overview on
DBMSs and discuss the properties that distinguish a native XML DBMS. These properties
help to understand the different requirements when it comes to optimization and self-tuning of
such a system.

2.1 From Custom Coding to DBMS Tuning

When the first DBMS systems were introduced in the mid-1960s (e.g., IDS [Bac09] and IMS1),
the target application dictated the data model and data processing algorithms that had been
immutably tailored to the available resources. This approach was adequate for the current
quasi-static usage scenarios, where data structures and workloads would remain comparatively
stable. These systems where never confronted with dynamic load situations, changing numbers
of users, massively increasing database sizes, data model evolutions, and other unexpected
usages or changes. Here, a performance analysis of such a static system would always deliver
accurate and reliable predictions.

Obviously, in the long run, this custom-made approach is too costly, not only regarding the
initial development costs, but also with respect to operational costs for system maintenance,
hardware and software crash recovery, schema extensions, i.e., schema evolution, requiring
new application code, hardware end-of-life requiring hardware or platform changes, and the
potential of using data integration to support new applications is rigorously limited. To remedy
these problems, to reduce time-to-market and consolidate development efforts that had so far
been distributed across these individual solutions, the first generic DBMSs emerged that left
the old “hand-built” systems in the dust.

Those versatile DBMSs, available today, contain, even off-the-shelf, a rich set of tuning
knobs to customize their configurations. Because nowadays, applications mostly require tai-
lored functionality provided by a standardized (and thus well-tested) product to ease its integra-
tion and to enable its exchangeability, a flexible and configurable system is preferred. Even if
not all requirements are correctly anticipated during the development and rollout of a DBMS-
enabled application, later changes in data volume, load shifts, or new application areas can
easily be captured by reconfiguring the underlying DBMS.

1http://www-01.ibm.com/software/data/ims/ims/

7

http://www-01.ibm.com/software/data/ims/ims/

Chapter 2 Fundamentals

Current requirements of production DBMSs call, in addition to the given ACID2 properties,
for availability, economical operation, and flexibility. Flexibility is needed when the DBMS is
adjusted to new application areas such as Web, grid, or virtual environments and cloud-based
computing, to new data models, and to new workloads. The second requirement – economical
operation – depends on the input resource definition and accounts to the total cost of owner-
ship. For instance, memory allocation, disk usage, CPU cycles, network load, or energy costs
as well as staff costs may be appropriate to account for the operational costs. In contrast, the
throughput or response time, peak load handling, and constant query performance are the mea-
surable metrics for an application. However, the operational goal may be pursuing an efficient
resource allocation or application performance, which are not stringently opposite goals.

High-availability, i.e., 24/7 operation with minimal downtime for maintenance, reconfigura-
tion or optimization, is another common requirement for DBMSs. Specific techniques such as
replication are used to ensure zero downtimes, which would however, induce algorithmic and
management overhead.

We summarize any activities that aim at optimizing the DBMS, for one or several of these
criteria, as DBMS tuning. Because, even in low-availability scenarios, taking a system of-
fline for tuning measures is usually not an option, which is why most of the them have to be
performed online, i.e., while the system is providing full service.

2.2 Customary DBMS Architecture

Almost all commercial and non-commercial DBMS architectures follow the five-layer refer-
ence design proposed by [HR83a], which is shown in Figure 2.1. To some degree, the realiza-
tion of a DBMS is subject to non-functional requirements such as performance, data indepen-
dence, and reliability, the layered architecture delivers an ideal concept to reduce its complexity
by systematic abstraction. This concept comprises abilities to encapsulate logic and complex-
ity within a certain layer, which can then be developed, improved, and verified in isolation.
Each layer provides an interface to its upper layer while realizing certain functionality.

In the following, we will give a brief introduction into the goals of each layer (L1 to L5) and
common design principles used to implement them. We will highlight various aspects that will
later become options for effective (online) tuning.

The bottom layer L1 gives access to (external) physical storage devices such as hard disks or
solid-state disks and encapsulates their physical details. File or partition handling, space allo-
cation, and free space management are the essential tasks of this layer. Through its abstraction
from physical devices (e.g., track and cylinder addressing), it provides equal-sized blocks as
the unit of data to the upper layer L2. Here, block size is an important parameter for DBMSs.

In layer L2, a caching mechanism is employed to service requests from the higher layers
using relatively fast main memory and to avoid as many (external) IO operations as possible,
i.e., read/write operations to the external devices, which are usually several orders of magni-
tude slower. The typical units of data are segments or pages that most often have the same
size as the underlying blocks of layer L1. A replacement algorithm is used to decide which

2The ACID paradigm was established by [HR83b] in 1983 and postulates Atomicity, Consistency, Isolation, and
Durability for DBMSs.

8

2.2 Customary DBMS Architecture

File servicefiles, blocks

database

device interface

file interface

Propagation controlsegments, pages

Logical accesrecords, sets

Record accessphysical records access paths

Data servicestables, views, tuples

L1

L2

L3

L4

L5

DB buffer interface

internal record interface

record-oriented interface

set-oriented interface
ObjectsLayer Interface Service

Figure 2.1: 5-layer DBMS architecture reference model [HR83a]

page remains in the cache or is removed from it, because typically, the number of cache slots
is significantly smaller than the number of (external) data pages. Thus, the selection of an ap-
propriate replacement algorithm and the number of pages available in the cache are the critical
performance drivers in this layer.

Physical mapping of data to records and storage structures is realized in layer L3. Further-
more, it provides an internal interface to the internal records. Efficient mapping techniques
may reduce space consumption and number of page accesses and, consequently, also the num-
ber of physical IO operations. Additional data structures such as B-trees or hash maps, can
dramatically speed up selective data access.

Because the internal records of layer L3 still expose the details of how data is physically
represented in pages, layer L4 now abstracts from this. It offers a logical view on data as exter-
nal records. Furthermore, it operates on record sequences and employs additional access paths
such as secondary indexes. Important aspects are the layout of various index types supporting
certain access patterns.

Logical data structures are processed by layer L5, typically, as tables (relations), views, and
tuples. The interface to this layer is almost equal to the API used for accessing and modifying
data. That means, declarative queries are translated into imperative code, i.e., query plans
containing operators. Those queries are optimized, inter alia based on statistical information
about data and value distribution to efficiently process the query. This includes attempts to
reduce the number of intermediate results, avoid sequential scanning of the records by making
use of available indexes. In case of updates, those indexes need to be maintained as well,
which can result in costly IO operations. Depending on the ratio of read and write accesses of
the applications, index maintenance during data updates can offset the benefits obtained when
reading data. Consequently, the index configuration is another performance-critical aspect
suited for self-tuning.

Although most of the performance-critical parameters directly affect a certain layer, their
trigger or impact is often visible throughout several layers due to dependencies between pa-
rameters and layers. Therefore, when optimization, i.e., parameter tuning, takes place, it is

9

Chapter 2 Fundamentals

wise to observe its impact on the entire system. Moreover, when tuning several parameters at
a time, their correlations and dependencies are important to know.

However, for a specific workload, adjusting the tuning knobs is difficult because of the
parameter dependencies and the sheer number of alternatives, let alone the identification of
the right one to start with. However, most of the architectural issues and their tuning knobs
share the same goal – reducing resource consumption such as IO, memory consumption, or
CPU usage. In the following, we present the basic concepts that are necessary to identify
bottlenecks and performance drivers based on the available resources and their interplay.

2.3 DBMS Cost Models

Evaluating tuning measures that are targeted at the reduction of processing time in a DBMS re-
quires a mechanism that makes their impact visible and comparable. Nowadays, most DBMSs
employ a so-called cost model.

Here, all operations performed during query processing, like disk IO, CPU cycles needed
for query planning or processing are assigned with costs in a virtual cost unit, i.e., a ”currency“
for the usage of system resources. This virtual cost unit typically reflects the time ratios be-
tween certain hardware resource usages. For instance, how long does it take to fetch a single
page from external storage, i.e., read access compared to the time it takes to calculate a join
predicate, i.e., CPU usage. Moreover, DBMS operators such as scan, index access, join, sort,
etc. cause certain resource consumptions. Obviously, the actual cost value assigned to each
such operation is not fixed, but depends on the hardware available in the system, the system
configuration3 and the load situation, i.e., how many of the resources are free and can actually
be assigned. In the following, we will give an overview of essential resources, a DBMS relies
on, together with their interplay and their role in optimization.

2.3.1 Resources

Important resources for a DBMS comprise external storage, main memory, and CPU(s). Fig-
ure 2.2(a) shows the common hierarchy of memory and storage found in today’s computer
systems together with their performance and size characteristics. In general, the higher up
in the hierarchy a certain kind of memory is found, the faster is its access time and also its
throughput increases while, in contrast, its typical size decreases. That means, processing and
optimization have to deal with the fact that the more memory is used or required, the slower
access times and transfer rates will become. However, external storage such as hard disk drives
(HDDs) or solid-state drives (SSDs) are today’s method of choice for persistent storage. Al-
though more and more storage systems are connected via networks, i.e., NAS, SAN, or online
storage, basically they employ the same kind of storage media, namely disks. There are sev-
eral technologies under development such as MRAM, PRAM, and FRAM that may become
the next generation of non-volatile high-speed memory devices.

3The performance of a DBMS is, besides its own configuration, very sensitive to operating system parameters.

10

2.3 DBMS Cost Models

CPU(s)
L1 cache
L2 cache
L3 cache

main
memory

DRAM

FRAM, PRAM, MRAM*

storage
HDD

SSD

tape network

ac
ce

ss
 ti

m
e

(s
ec

on
ds

)

typical size (bytes)

10-9

10-6

10-3

103

100 intern

extern

106

1015

109

1012

107

(a) Memory hierarchy

DRAM

CPU single core

CPU multi core

SSD
HDD

Moore's Law?

1970 1980 1990 2000 2010

faster

ha
rd

w
ar

e
sp

ee
d

(b) Hardware development

Figure 2.2: Hardware resource development and relationships.

The different levels of CPU caches, shown as L1, L2, and L3 in Figure 2.2(a) are tiny
memory areas that provide extremely fast access. Optimized algorithms try to exploit the so-
called cache line by aligning data portions according to cache sizes.

Important for the DBMS cost model are the relationships between memory components in
terms of size and access speed. Although all of the resources can be extended to a certain
degree, it may impose management overhead or is economically unviable. Thus, optimization
has to figure out what is the best-possible resource distribution with the resources available to
reduce bottlenecks. Later in this work, in Chapter 3, we will address the bottleneck issue in
more detail.

Just like the memory, the number, speed, architecture, and features of CPUs can vary sig-
nificantly. With the introduction of multi-core CPUs and technologies like hyper threading4,
capabilities for true parallel processing are becoming increasingly common. Exploiting these
capabilities allows to improve DBMS performance. Thus, the more highly clocked CPU cores
are available the more parallel tasks can be processed. However, data control flow depen-
dencies, communication overhead, and locking of shared resources, put limits on the possible
degree of parallelization.

2.3.2 Cost-based Optimization

Once all resources and their relationships in a DBMS have been identified, it is possible to
specify a cost model for our system. Such a model allows us to base tuning measures not
purely on heuristics and best-practices, but perform cost-based optimization, i.e., compare the
cost of different alternatives to perform query processing and pick the ”cheapest“ one.

Flexible cost-based optimization is necessary, because hardware characteristics vary and
change through evolution, see Figure 2.2(b). Unfortunately, Moore’s Law does not hold all
the time, making a forecast for performance developments impossible. But even the hardware
equipment of a system may change, too, thereby making a flexible cost model necessary.

4Commonly known as simultaneous multithreading (SMT), this technology enables each CPU core to run multiple
threads in parallel.

11

Chapter 2 Fundamentals

Basic metrics for optimization count the number of (expensive) IO operations that can fur-
ther be distinguished in writes, reads, and sequential or random access. Another important
metric accounts the memory consumed, which can be measured in detail for each layer of the
memory hierarchy. The third metric we are going to address in this work measures the number
of CPU cycles spent for a certain task. Throughout the remainder of this work, we use the
terms IO cost, memory cost, and CPU cost, respectively, to refer to these metrics.

Optimization does not only aim at improving OS or DBMS configurations, but also happens
during runtime. Especially query execution heavily depends on runtime optimizations, which
means the DBMS spends some time to find an optimal way of processing. Therefore, statistics
about data are required as well as cost metrics for alternative ways of processing. The problem
of query optimization will be presented in more detail in Section 2.4.2 and Section 6.3.

While query optimization happens whenever a query is executed, most configuration param-
eters can be changed online but, due to their overhead, not that frequently. Here, cost-based
decisions have to confirm the (costly) adjustment to make its outcome improving the overall
system performance.

The layered model, presented in Section 2.2 is perfectly suited to do cost-based optimization
for each individual layer as we will see in the remainder of this work.

2.4 Native XML DBMS

With the increasing demand for XML-based data processing, relational DBMSs [STZ+99] and
their object-relational successors were enhanced with features to better handle XML data. For
instance, new data types and operators were added. The entire query processing kernel was
extended5 to deal with XML data that was often not stored in its parsed, tree-like form, but
simply stored verbatim as text or as large object (CLOB or BLOB).

An early approach to remedy the problems of providing XML storage as add-on to existing
systems was LORE [QWG+96, MAG+97], which started as a Lightweight Object REposi-
tory for semistructured data, i.e., today’s XML. The LORE team realized that not only a tai-
lored storage (i.e., object repository) is necessary but also a new kind of query language for
semistructured data [AQM+97].

Just after LORE and other early prototypes had broken new ground in XML storage and pro-
cessing, the W3C6 began introducing standards for XML processing such as XPath [BBC+07]
and XQuery [BCF+07] that combined and refined the ideas of these pioneers. New APIs like
DOM [DOM05] and SAX [SAX04] were recommended as well to provide unified ways for
applications to access and handle XML data.

In this chapter, we want to show why it is advisable to develop native XDBMSs instead of
extending (object-)relational DBMSs. Furthermore, we want to sketch the differences of both
worlds and the commons. Based on our own prototype XTC, we show how specific techniques
for native XML processing can be integrated into a real XDBMS.

5In the beginning, these extensions were realized by UDFs instead of changing the DBMS kernel itself.
6www.w3c.org

12

www.w3c.org

2.4 Native XML DBMS

Data Model Considerations

While XML is often perceived by its well-known textual representation using XML tags and
attributes, the actual XML data model XDM [FMM+07] is independent of any specific kind
of presentation. The introduction of XDM became necessary because Codd’s relational model
[Cod70] used so far was not suitable anymore. On the one hand, we have relations contain-
ing unordered tuples. On the other hand, we have a hierarchical (i.e., tree-oriented) structure
containing (sequences of) nodes. The basic XDM node types are element, attribute, and text.
Note, special node types such as processing instructions and comments are rarely used, and,
for simplicity, we omit them in the following. Data typing is also different. Relational data
types are typically string-based or numeric together with their typical operations7. In contrast,
an XDBMS has data types for document (nodes), elements, attributes, character data and so
on.

In the relational world, the only way how relationships between data can be modeled is
value-based with so-called foreign keys. XML, on the other hand, has several alternative ways
to model such relationships. Either the implicit nesting of elements and subtrees lead to an
existence-dependent relationship or the explicit ID/IDREF datatypes, KEY/KEYREF identi-
fiers, or XLink and XPointer mechanisms can be used to model (document-crossing) references
and data dependencies.

Another important difference between XML and the relational world is the significance of
the ordering: A relation is per definition an unordered set of tuples. Consequently, the se-
quence of tuples as they are returned by a query has no meaning, unless a specific ordering was
imposed on the final query result by using an order by to specify which column should be used
to define the result order. In XML, however, most kinds of nodes have a well-defined order
among their siblings, which is completely independent from any actual data values of these
nodes. That means, when processing XML data, an implicit ordering of nodes in document
order is always present, if not stated otherwise by an explicit order requirement.

As these glaring differences between the XML data model and the relational data model
show, the XML data model requires tailored techniques to be (efficiently) processed. This
leads to the need for native XML storage layouts, operators, query languages, and APIs8.

Native XML Data Processing

When processing XML data, various paradigms to store, query, translate, transform, evalu-
ate, and create XML emerged. Depending on the actual usage scenarios, they have different
advantages and disadvantages.

1. Node-oriented processing: The most fine-granular XML processing is based on direct
navigation over the nodes of the XML document. The prominent example for such a nav-
igational API is DOM [DOM05]. Using operations like getFirstChild(), called on a valid
XML document node, delivers the logical first-child node if present, other navigational

7Conceptionally, a relation is a special data type, too, having customized operations such as creation, deletion, or selec-
tion [Gra02].

8Note, we do not explicitly look at XSD (XML Schema Definition), namespaces, and XSLT processing.

13

Chapter 2 Fundamentals

operations are getParent(), getNextSibling(), getValue(), setValue(), insertElement(), etc.
The behavior of most operations depends on the node type they are applied to or are only
available for some of the node types. Furthermore, DOM processing requires the entire
document being available in memory and it is neither declarative nor stable in case of
document structure modifications.

2. Tree-oriented processing: Because XML is hierarchically organized, a native way to
process XML is to operate on entire documents or subtrees of a document. An API that
follows such a paradigm may contain methods to store documents, retrieve documents,
or add subtrees, remove subtrees, and update subtrees. Those abstractions are logically
closely related to the relational world which is based on tuples. However, identifying
and addressing subtrees instead of individual nodes may reduce labeling overhead (see
Section 5.2), speed up XML processing, or simplify application use (e.g., serialization,
deserialization, persistence APIs). Prominent APIs were developed such as TAX - Tree
Algebra for XML [JLST02], GTP - Generalized Tree Pattern [CC03], TLC - Tree Logical
Classes [PWLJ04] or an order-preserving Pattern Tree Algebra [PJ05].

3. Stream-oriented processing: Several techniques were developed to process XML doc-
uments as streams, i.e., nodes and subtrees are consecutively visible for the XML pro-
cessor and only forward steps are allowed and possible. These approaches can further be
separated in push- and pull-based variants. In a push-based API, like SAX (Simple API
for XML), which was originally developed for Java [SAX04], events are emitted to reg-
istered listeners. For instance, startElement(), endElement(), or startDocument() events
are delegated to all listeners, while the parser keeps control. An often used combination
for stream-based XML processing is the so-called binary XML representation of XML
[BGJM04]. The main objective is to limit the data volume and speed up processing
by using a more efficient binary encoding instead of the rather verbose XML text. A
conceptual disadvantage of push-based streaming APIs is that they do not provide any
means for modifying XML data.

In a pull-based approach, the application is in control of the parsing process, such as
StAX (Streaming API for XML) [Fry03] following JSR 173. Furthermore, it allows for
efficient XML access (especially using cursor API) and for writing entire XML streams,
i.e., output XML data. However, no fine-grained manipulation functionality or update
semantics are available.

4. Declarative processing: By the help of declarative languages like XQuery [BCF+07],
its subset XPath [BBC+07], and its extension XQuery Update [AYBB+08], XML data
processing achieves the full power and flexibility that is necessary to do DBMS-enabled
processing for querying and manipulating XML data. In Section 2.4.2, we will introduce
in more detail the concepts that are required for this work.

Native XDBMSs are often built from scratch following the general principles of a layered
architecture that we presented in Section 2.2. Before we present the most promising and most
effective methods for tailoring the storage layer, buffer management, indexing layer, and query
interface, we outline XML-specific languages and query processing concepts.

14

2.4 Native XML DBMS

following

following
sibling

XPath axes not shown

 self

child

descendant
-or-self

parent

ancestor

descendant

preceding

preceding
sibling

ancestor-or-self
attribute
namespace

Figure 2.3: All 13 XPath axes according to [BBC+07].

2.4.1 Query Languages

Let us briefly introduce important query language aspects that we will need throughout this
work. Because the XML data model is hierarchical, navigation along this tree structure plays
an important role for querying XML. Therefore, XPath was developed to allow path-oriented9

addressing and filtering of XML document structure and content, and became one of the corner-
stones for the most successful languages. These languages include XSLT, XPointer, XQuery,
and its update extension XQuery Update.

XPath

XPath is used to navigate through the hierarchical structure of XML documents and to eval-
uate node matches for given predicates. Therefore, XPath distinguishes between 7 different
node types, which are root, element, text, attribute, namespace, processing instruction, and
comment.

Different kind of XPath expressions exist, with the location path being the most important
one. A location path consists of location steps assembled via ”/“. A location step itself consists
of three parts:

• axis - Determines the direction of navigation. The 13 different axes specified by XPath
[BBC+07] are shown in Figure 2.3.

• node test - Specifies node type and name of the nodes selected by the location step.

• optional predicate -XPath expressions can be used to further restrict the nodes selected
by the surrounding location step. These expressions can be simple boolean expressions,
filters, or nested location paths.

A typical location step starting at the context node has the following syntax:

axisName :: nodeTest[predicate]

9In the 70s, the PDP-11 file systems used paths to organize files in a hierarchy, which has been adopted since that by
many other systems, too.

15

Chapter 2 Fundamentals

For instance, an XPath query selecting all “employee” nodes of a company.xml document that
contain the text value “John Doe” can be written like this: doc(”company.xml”)/descendant ::
employee[text() = ”JohnDoe”]. The doc() function delivers the entire document as a sequence
of nodes, which are embedded into a logical document node. The following location step
descendant filters all descendant nodes that match the nodeTest, which is in this case a so-
called nameTest for “employee”. Apart from that, a nodeTest may check for a certain node
type or processing instruction. The bracket-enclosed predicate contains an additional filter
expression. Here, the text() function returns the string value of the “employee” node, which
is a serialization of the entire subtree’s text content except attribute values. If the text value is
equal to “John Doe”, the employee node is added to the result sequence.

Compared to SQL’s WHERE clauses, the predicates and nodeTest features of XPath are
fairly similar10.

XQuery

XQuery can be used to overcome the limitations of XPath. For instance, results can be altered,
as well as variable bindings and iterations are possible. In this work, we do not exploit the
full functionality of XQuery as it is a Turing-complete programming language [Kep04] and,
therefore, we do not explain all aspects in detail, the interested reader may have a look at the
specification [BCF+07]. However, the basic construct that is often used for simple XQuery
expressions is FLWOR – for, let, where, order by, return.

• for: The for-clause allows to iterate over the elements of an input sequence to a vari-
able. Multiple for-clauses are allowed that bind one or more variables to input se-
quences. These input sequences may be node sequences resulting from other XQuery
expressions, which are typically XPath expressions or atomic values created by literals
or constructor functions.

• let: The let-clause is similar to the for-clause, except that the variable binding is only
valid for a specific iteration (within the “outer” for-loop). The let-binding is used to
bind an entire sequence to a single variable.

• where: Within a where-clause, filter predicates are specified that are applied to the
current values of bound variables within an iteration.

• order by: The order by-clause is used to order the result set (i.e., a sequence of
items) of the current iteration.

• return: The return-expression defines the sequence of constructed elements that con-
stitute the result of the entire expression.

Referring to the XPath example, a similar result using an XQuery FLWOR expression is
achieved by the following query:

10Location steps are often evaluated using so-called structural joins, which are similar to the joins found in the relational
world.

16

2.4 Native XML DBMS

for $i in doc("company.xml")

let $employee := $i/descendant::employee

where $employee/text() = "John Doe"

order by $employee/age

return <emp>$employee</emp>

Note, an expression is the basic element of an XQuery statement. Common expressions are
FLWOR expressions, path expressions (i.e., including XPath), element construction (e.g., in
the sample query within the return-clause), conditional expressions, and function calls.

Later in this work, we will see how those XQuery statements are internally represented,
translated, and analyzed.

XQuery Update

Although XQuery allows creating new node instances, it does not allow to modify existing
ones. Therefore, the XQuery Update Facility was introduced. It extends XQuery by allowing
update expressions to modify the state of existing nodes preserving their identity and to create
modified copies of existing nodes with new identities.

The five update expressions insert, delete, update replace, update rename, and
transform are recommended by the W3C [AYBB+08]. They can be used to insert or modify
individual nodes or subtrees. Basically, a query part selects the target nodes that is followed by
the modification step.

Because XQuery and its extension XQuery Update are based on XPath expressions, we will
henceforth refer to them interchangeably.

2.4.2 Query Processing

As mentioned at the beginning of this chapter, native XDBMS processing incorporates its own
APIs, operators, and processing model. Still, the approach to process declarative queries (given
in, e.g., XPath or XQuery) is fairly similar to that of pure relational query processors, using
the common three stages of translating the query, optimizing, and finally executing it. The
entire process is sketched in Figure 2.4. The essential differences are usually limited to the
internal representations of queries between the three steps. In the translation phase, the exter-
nal query string is parsed and an AST (abstract syntax tree) is produced, which contains the
syntax elements of the query. Throughout the sub-steps of normalization, static typing, and
simplification, this syntax is checked and reduced to a canonical AST (i.e., a normalized core
representation), which is finally translated into a logical plan containing logical operations ac-
cording to a certain algebra. Such a plan may be described in XQGM, i.e., an XML extension
of the classical query graph model (QGM) [HFLP89]. The logical plan serves as input to the
optimizer, which reorganizes or replaces the algebraic operations with the goal of improving
query performance and/or reduce resource utilization. Besides reducing the number of opera-
tions and the intermediate result size, it also identifies join options and generates alternatives
for logically equivalent XQGMs. The plan identified as “the” optimal (i.e., cheapest) one is

17

Chapter 2 Fundamentals

XQuery

Parser

Abstract Syntax Tree (AST)

Normalization

Static typing

Simplification

QGM translation

XML Query Graph Model (XQGM)

Algebraic rewriting

Plan generation

Query Execution Plan (QEP)

Execution

Materialization

Result

Translator

Optimizer

Executor

Figure 2.4: Query processing pipeline

then converted into a physical plan, i.e., algebraic operations are replaced by physical opera-
tions on data storage objects. This physical plan, referred to as QEP (query execution plan), is
processed by the query engine and delivers a sequence of XML nodes. Eventually, these nodes
are materialized to a given result format, such as string or XML node sequence.

2.4.3 Special Operators

Tree pattern matching is the most important aspect in XML query processing [MW99, Abi97].
Those query patterns define a certain structural relationship of named and unnamed nodes,
which have to be found within the given XML document(s). Typically, these relationships are
evaluated using joins on multiple node input streams, instead of costly per-node navigations.
Therefore, optimizing XML queries requires efficient join operators – the so-called binary
structural join and n-ary (holistic) twig join.

Structural Join

A structural join is used to find all occurrences of a structural relationship between two XDM
sequences. The sample in Figure 2.5 shows the decomposition of a complex query into its
five basic binary structural relationships. The individual binary relationships are evaluated and
their results are joined. There are a plenty of tailored join algorithms for XML. Even relational
systems employed special join algorithms, whose different characteristics are exploited by re-
lational optimization techniques [STZ+99, FRK99, CS01]. Thus, native XDBMSs require cus-

18

2.4 Native XML DBMS

dblp

book

first@year

2010 John

dblp

book

book

@year

@year

2010

first

John

book

first

query tree pattern basic binary structural relationships

decomposition

Figure 2.5: Structural join decomposition for query
dbl p/book[@year = ”2010”]// f irst[text() = ”John”]

tomized implementations [MW99]. For instance, the multi-predicate merge join (MPMGJN)
[ZND+01] is based on the inverted-list indexes from [MAG+97] and simply follows a tra-
ditional merge join algorithm. Alternatives try to exploit additional indexes, such as the XISS
index approach in [LM01] providing the EE-Join and EA-Join. However, both approaches may
perform unnecessary IO for matching structural relationships, because they scan the document
or the same indexes multiple times.

Specialized join algorithms focus on a subset of structural relationships. For instance, a
tree-merge join and a stack-tree join for ancestor and descendant evaluation only is proposed
in [AKJK+02]. Other approaches try to exploit different kinds of indexes such as in [CVZ+02],
where a B+-tree index and an R-tree index are used for structural join processing or the so-
called XR-tree in [JLW03].

A practical way of processing structural joins is to exploit a prefix-based node labeling
scheme and corresponding tailored indexes. A node labeling such as DeweyIDs can be used to
evaluate the structural relationship for any two nodes. We will introduce DeweyIDs and XML
node labeling in Section 5.2. The two input sequences to be joined may be filled by indexes.
Customized XML indexes such as the path, element, or content indexes will be introduced in
Section 6.2. Without appropriate indexes, all input sequences may also be generated by full
document scans, as a fallback, typically requiring a lot more IO operations.

In our sample in Figure 2.5, the input sequences for “book” nodes and for “first” nodes
include their node labels, which make it easy to evaluate their descendant qualification. As a
general prerequisite for most forms of (structural) join processing, the input sequences need
to be sorted in document order, which fortunately is the natural order when obtaining an input
sequence via a document scan, and which is also ensured by appropriate indexes.

Twig Join

Besides simple, i.e., binary structural joins, so-called branching queries are common XML
query expressions. The query on the left-hand side in Figure 2.5 is such a branching query. The
idea of twig joins is to avoid the costly decomposition into multiple binary join cascades, and
operating on multiple input sequences in parallel. A bunch of so-called twig join algorithms
were developed that address the diversity of these query constructs in a holistic way. Nearly
all of the algorithms rely on specialized index structures that avoid unnecessary IO. One of the

19

Chapter 2 Fundamentals

first algorithms, the TwigStack [BKS02] uses an XB-tree index. Further algorithms focusing
on tiny differences emerged throughout the recent years, for instance FiST [KRML05], TJFast
[LCL05], or Twig2Stack [CLT+06] based on GTP (Generalized Tree Pattern) [CC03].

However, the most important aspect of all twig algorithms is to support the evaluation of
complex tree patterns using indexes [CLL05]. Furthermore, intermediate results are minimized
or even avoided if not part of the final result. Some approaches optimize the evaluation of
wildcard steps in XPath expressions, specific ordering, or certain axis evaluations.

2.5 XTC Prototype

This thesis and most of the concepts presented in it were mainly developed by extending the
native XDBMS XTC - XML Transaction Coordinator [HH07], which was originally devel-
oped by our research group to evaluate XML locking protocols. Through the contributions
of many researches, this initial prototype matured and evolved into a full-fledged XDBMS. In
this section, we want to highlight the most important architectural aspects, in particular, those
relevant for the addition of self-tuning mechanisms as they are subject of this thesis. First, the
overall architecture of XTC is presented. It follows the original five layer design approach of
[HR83a]. The essential elements of the architecture are sketched in Figure 2.6 including basic
performance-critical parameters for the respective parts. Later in this work, we will give a
detailed introduction to XTC’s storage mapping concepts addressing XML verbosity (cf. Sec-
tion 5.1), XTC’s node labeling scheme using DeweyIDs (cf. Section 5.2), XTC indexing (cf
Section 6.2), and its query processing pipeline (cf. Section 6.3).

L1 - File Services

The bottom layer of an (X)DBMS contains IO managers that typically operate on files or disk
partitions (jointly referred to as “container” in the following) using a block-oriented interface
for reading, writing, allocating and releasing equal-sized disk blocks. Obviously, the block
size is the most important parameter as it specifies the maximum address space and is the basic
unit of IO. It has to be specified when registering new data containers. Consistency-related
parameters, for instance the usage of before image while writing (new) information can be
controlled in this layer, too. An aspect with a significant impact on performance is the extent
size of a container – as long as the container and the underlying file system allow dynamic
file growth. Because extending a container file may require a lot of blocking IO operations to
prepare physical device blocks and update metadata information such as the new container size
and free space figures. However, sparse files may speed up this process by not allocating the
physical blocks immediately but assigning them11. In this case, the runtime performance for
writing these extents for the first time may degrade, because it includes the actual allocation of
physical blocks. In XTC, we do not address container growth explicitly and instead rely on the
underlying file system implementation; we simply assume that any IO for a certain container
file is suspended, when the file size is increased.

11Sparse files allow to assign storage space, i.e., free space information is updated, without actually allocating the physical
space immediately. On demand, physical space is claimed when (new) data needs to be stored in the file.

20

2.5 XTC Prototype

S
to

ra
ge

File system

temporary filescontainer fileslog files

File servicesIO ManagerIO ManagerIO manager
▫ block size
▫ before image
▫ extent size

Propagation controlBuffer ManagerBuffer ManagerBuffer manager
▫ page size
▫ buffer size
▫ algorithm

Node services
Node API Parser services

Access servicesIndex services

Blob service

Record manager

Page service

▫ compression
▫ B+-tree fill grade
▫ encoding (DeweyID)

Lock manager

Transaction manager

Deadlock detector

Transaction log

Transaction services

Scheduler

▫ # threads
▫ deadlock waittime
▫ # transactions
▫ # locks (escalation)
▫ log version, capacity
▫ log size
▫ scheduler timing

XML servicesXQuery processor

Document services

Metadata manager ▫ cost model
▫ optimizer flags
▫ operator buffers

Interface services
HTTPFTP RMI APIDOMSAX JCR

▫ # connections / clients
X

T
C

 S
er

ve
r

K
er

n
el

L1

L2

L3

L4

L5

Figure 2.6: XTC architecture and basic performance parameters

L2 - Propagation Control

The propagation control layer L2 is responsible for buffer management. For each IO manager
in L1, a corresponding buffer manager is instantiated and a specific memory pool is assigned,
i.e., buffer pool. The buffer manager or, for short, buffer is operating on a page-oriented in-
terface. As described in Section 2.2, the buffer fixes, unfixes, allocates, releases, reads, and
writes (or flushes) pages. The most important parameters affecting system performance are the
page size that has to be equal to the assigned IO manager’s block size and the buffer size itself.
The buffer size can be specified as an absolute amount of memory as long as it is a multiple of
the page size or can be given as the number of pages. To control (when and) which pages are
currently removed from the buffer (and written back to disk if they have been modified since
they were loaded into the buffer) to make room for other pages, in the case of page faults12,
XTC’s propagation control layer provides a selection of page replacement algorithms. In ad-
dition to well-known algorithms like LRU, LRU-k, GCLOCK, 2Q, which were designed for
magnetic disks, the system also provides algorithms tailored to better address the properties of
flash disks such as CFDC [OHJ10].

L3 - Access Services

The access services layer L3 is responsible for the management of database records. A record
typically reflects a data item such as an XML node from the XDM info set. Nodes are identified

12If a component on a higher layer tries to access a certain page that is not currently in the buffer, we call this a page fault.

21

Chapter 2 Fundamentals

by DeweyIDs (cf. Section 5.2). As we will see, DeweyIDs of consecutive nodes have common
prefixes, XTC makes use of this property by applying a prefix compression scheme on them.
Special logic to transform between logical XDM node instances into physical byte arrays is
located in that layer. Besides methods for individual record encoding and decoding, various
page types are supported (i.e., key/value, slots) and separate BLOB (binary large objects) logic
is available in XTC.

Additionally, the third layer implements access structures such as B+-trees and lists working
on records13.

Performance can be influenced by adjusting the compression configuration for records and/or
node labels, and by controlling parameters of the index structures, for instance, a B+-tree’s fill-
ing degree.

L4 - Node Services

For a reader familiar with DBMS architectures, our description of the layers L1 to L3 so far
probably sounded not too different from the well-known standard architecture according to
[HR83a]. Obviously, because these layers are not tied to a specific data model. With the node
services layer L4, the distinguishing features of a native XDBMS over conventional relational
systems will become much more apparent, because the node services solely operate on XML
nodes and related APIs such as DOM and SAX. The DOM interface is node-oriented, i.e., all
the navigation and manipulation is performed by calling corresponding methods on the DOM
nodes. This interface consequently hides the internal details of node representation, index
structures, and document references – “a node knows everything”. However, nodes do not
necessarily have physical counterparts, i.e., the system distinguishes between physical nodes
(carrying valid node labels) and in-memory nodes (carrying no node labels).

The second essential task performed in this layer is the parser service that allows event-based
and stream-oriented operations such as SAX and StAX processing. This interface is also used
during index materialization, where simply an (index) listener is attached to a SAX scan on
the document’s root node. Furthermore, document storage, retrieval and subtree processing is
using this interface because of its sequential scan semantics, it is clearly faster and easier to
use compared to the navigation-oriented alternative provided by the node manager.

L5 - XML Services

The XML services layer L5 is responsible for the processing of the different XML query lan-
guages supported by our system, i.e., XPath and XQuery. Our XQuery processor follows the
principles introduced in Section 2.4.2. In addition, XTC controls the application of optimiza-
tion rules through configuration flags, and thereby limits the search space for alternative query
plans. Moreover, the cost model is defined and implemented in that layer, which is responsible
for estimating plan costs for IO, CPU usage, and main-memory consumption. Furthermore, the
runtime behavior of many operators can be controlled, for example, by adjusting the amount
of (temporary) memory available for intermediate results of sort and join operators. Besides

13B+-trees are the fundamental storage structure in XTC, for documents, indexes, and metadata.

22

2.5 XTC Prototype

the given complexity of query processing, performance-critical aspects in layer L5 include the
configuration of the various phases – optimization, planning, and execution.

In XTC, documents are organized in a virtual file system structure, offering users a familiar
paradigm to handle their XML data. In addition to query optimization and processing, L5 is
also responsible for providing the so-called document services, i.e., functionality to register (or
store), import, rename, move, and remove documents, group them into document collections,
and perform manipulations of the virtual directory structure itself.

All the metadata for a single XTC instance is managed in L5 by the metadata manager. This
includes document and index information, storage and compression parameters, user manage-
ment, and statistics. The entire metadata management is performed on a single XML document
called “ master.xml”. Users are not allowed to modify it directly. The logic to manipulate this
document is mostly performed by internal XQuery calls and partially by hand-coded methods
based on DOM due to performance aspects.

Transaction Services

Most of the ACID properties are ensured by the transaction services, which are operating in
parallel to the aforementioned layers L1 - L5. The lock manager is responsible for translating
lock requests, for instance, by the node manager, into different types of locks on the nodes
forming a document. Due to XTC’s history as a research testbed for concurrent transaction
processing on XML documents, it does not offer a single, hardwired lock protocol, but instead
offers a well-defined interface that allows different protocols to be implemented as pluggable
components. Each lock protocol can define its own set of lock modes. Currently, XTC supports
12 lock protocols, such as the entire taDOM family [HHL06], but also a number of competing
XML locking approaches. A performance-critical parameter in databases is the number of
concurrently held locks, as each of them consumes main memory. Having more locks in the
system will require an increasing amount of processing time for lock lookup, matching locks,
protocol evaluation, and the creation of new lock objects. To keep the number of locks low,
the well-known mechanism of lock escalation can be used: Once a certain threshold of fine-
grained locks has been reached, they are replaced with fewer, more coarse-grained locks this
way reducing the overhead for lock management, but also reducing the number of lock conflicts
and thus the amount of concurrency in the system. The lock escalation thresholds are an
essential tuning parameter of the transaction services component and can be used to balance
the overhead of locking (memory, CPU) and its gain (concurrent XML document access and
manipulation).

The second component is the transaction manager, which is demarcating the concurrent
transactions within the system. The basic protocol allows applications to demarcate transac-
tions with the common begin, commit, and abort operations, while the transaction manager
itself takes care of doing appropriate redo and undo actions in case of abort or crash recov-
ery. To fine-tune the transaction manager, the number of parallel running transactions and to a
certain degree the number of parallel threads can be specified.

Parallelism in DBMSs is a crucial aspect controlled by lock protocols – so XTC does, too.
In general, lock protocols may allow transactions to crosswise acquire locks which can make

23

Chapter 2 Fundamentals

them end up in a deadlock. Therefore, XTC employs a wait-for graph for transaction depen-
dencies which is periodically analyzed. This deadlock detection may slow down transaction
processing because it has to preserve some kind of “snapshot” of the wait-for graph while ana-
lyzing it, i.e., for a short time, transaction dependencies cannot be modified. While deadlocks
are typically rare events, they become very costly when rolling back a loser transaction that
already manipulated a lot of data. Therefore, the so-called waiting time between deadlock
detection cycles can be adjusted in XTC.

In order to provide full ACID conformance, XTC employs a transaction log. This log keeps
track of (un-)committed changes and is written to disk before the actual data is manipulated
(write-ahead lock, WAL). The log files are located in separate containers and, therefore, al-
low for separate tuning. XTC supports different log types, e.g., based on DB objects or data
blocks. Only the total size of the log container needs to be specified, preferably in accordance
with the underlying device’s free space. In case of block-oriented logging, the block size has
to be specified analogously to the block size parameter for file services. As log files are written
sequentially and synchronously, it is in general advisable to place them on a dedicated phys-
ical device, because otherwise, the log writes can interfere with the randomly-distributed IO
operations for the transaction themselves.

Although XTC does not provide a full workload management system, it supports certain
scheduling features for parallel running tasks and jobs14, as they are called in XTC. Coordi-
nated by the scheduler, user and system transactions are assigned individual priorities15 and
worker threads process the different kind of jobs and are created, activated, suspended, and
canceled by the scheduler. Besides the number of worker threads, the scheduler timings can
also be adjusted. For instance, the polling frequency for the job queue can be aligned to the
expected transaction income rate.

Interfaces

The XTC system provides several interfaces to work with XML or the DBMS itself. Without
any additional driver, a user or application can interact with XTC via FTP or HTTP using an
FTP client or browser, respectively. However, these interfaces are not that comprehensive and
are in general only useful for a glimpse at XTC.

Using the XTC driver for Java, stream-based access is possible via the SAX interface and
navigational access via the DOM interface. XML document manipulations are possible via
the corresponding methods of the DOM interface, e.g., setValue(), addX(), removeX(), etc.
These methods can be called at the client side and are automatically translated to corresponding
manipulations of the server-side objects, i.e., DOM nodes.

The probably most powerful interface is the native RMI API, which provides XQuery inter-
action, internal method access, extendable procedure access, and a lot more utility functions.

14A job is created internally, either by a user transaction or a system transaction, which, however, may contain further
sub-transactions. Tasks are more abstract and do not necessarily require a transactional context.

15During the development of a priority concept, we made the experience that Java’s thread scheduling is heavily platform-
dependent and JVM-dependent. Therefore, we extended the XTC job model with some control mechanisms to allow a
coarse-grained priority-based scheduling. While the results were promising on Windows platforms, success on Linux
platforms was limited.

24

2.6 Alternative XDBMS Systems

A typical database application only requires the XTC driver containing these interfaces. Its
use is fairly simple, because similar to JDBC connections, a connection object is returned af-
ter providing proper login and host information. Using this connection, new transactions and
(X)queries can be sent to the server. Applications can decide whether they want to access the
query results as serialized string representation, in DOM-style, or as node sequence. The re-
sult may further be extended with internal statistics such as query plans or query processing
timings. Besides pure query-oriented features, the RMI API also supports analysis features to
dig into data structures for debugging purposes. Moreover, many system parameters can be
controlled via that interface, too.

XTC also includes an interface compliant to the Java Content Repository (JCR) specifica-
tion, a standard for storing and interacting with content repositories [Nue06, Pre08]. It allows
applications dealing with hierarchical content data to benefit from the strengths of a native
XML DBMS.

2.6 Alternative XDBMS Systems

Systems for XML data management and (X)query evaluation can be classified in two major
categories – (object-)relational and native. Due to their significantly different nature and the
focus of our work, we highlight here the most important or successful native XDBMS sys-
tems that may be comparable to the XTC approach or yield further starting points for similar
optimization approaches16.

Because DBMS tuning heavily depends on the DBMS architecture, we provide an overview
for the most successful native XDBMSs in Appendix A. Many of the systems presented there
share some architectural design decisions. In nearly all cases, the storage subsystem is sepa-
rated from the query processing part, which again advocates the development of customized
tuning for each individual component. As we pointed out, not all systems fully support fun-
damental DBMS properties such as transaction management, indexing, buffer management, or
full-fledged query processing, but their component-based or layered architectures offer similar
starting points as XTC does for exploring self-tuning mechanisms in a native XDBMS.

Many other systems, such as BaseX [GHS07], eXist [Mei09], or Sedna [FGK06] have
also a comparable architecture, as have the many relational systems with XML support, like
DB2’s pureXML [NvdL05], Oracle [BKKM00], SQL Server [PCS+05], MonetDB/XQuery
[BGvK+06], or legoDB [BFH+02], which build their query processing and XML mapping on
top of a relational storage and processing kernel. Thus, most of the (self-)tuning techniques
developed in this work in the context of the XTC system are also applicable to a wide range of
native XDBMSs.

16In [Mat09], comprehensive comparisons of XML processing capabilities and data model handling for a large set of
DBMSs can be found.

25

Chapter 2 Fundamentals

26

Chapter 3

Self-Tuning – Challenges and Goals

This chapter gives an introduction to Self-Tuning and an overview of available online-tuning
techniques for DBMSs. In this chapter, we will use the (X)DBMS architecture presented in
Chapter 2 to identify certain tuning areas and explore suitable runtime tuning techniques. Al-
though some of the concepts presented in this work are not restricted to the native XDBMS
domain, in fact, neither implementation-specific aspects nor XML-specifics will impair the
tuning measures, realization and evaluation is always based on our prototype XTC [HH07] to
demonstrate the practical applicability of some ideas.

Implementing and evaluating self-tuning capabilities requires a platform that allows for ex-
tensions to monitor, control, and adjust the system at runtime. We therefore show the exten-
sions we made to the XTC system – a framework that allows to integrate arbitrary self-tuning
capabilities.

This chapter concludes with a comprehensive analysis of the architectural aspects of an
(X)DBMS addressing optimization and self-tuning opportunities, which serve as detailed roadmap
for the remaining thesis.

3.1 From Tuning to Self-Tuning

The major objective of tuning is to identify performance bottlenecks or unfavorable config-
uration settings to change the system configuration resulting in a performance boost. Today,
performance analysis and the resulting tuning and reconfiguration measures are done by human
administrators. However, this traditional tuning approach naturally has its limitations: With to-
day’s frequently changing usage scenarios or the fact that more and more systems are exposed
to public users, a human administrator may simply not be able to react timely enough to sudden
changes in system load or usage patterns. Further, such a scenario tends to put considerable
stress on an administrator, increasing the likelihood of errors that further degrade performance
or, in the worst case, topple the entire system. Finally, with the “exponentially” increasing
number of information systems, the costs of such intensive 24/7 supervision by human experts
will rapidly become economically infeasible.

Further, the whole process is highly depending on the individual knowledge and experience
of few employees. In an industry known for its high employee churn rate, it can therefore be
difficult to keep this expertise. So-called best-practice rules may offer a first point of help but,
nowadays, complexity of system configurations and landscapes are hardly captured that way.

A system providing self-tuning capabilities1 should support or, on the long run, substitute
1Especially software systems use auto-tuning to refer to the same concept as self-tuning.

27

Chapter 3 Self-Tuning – Challenges and Goals

the human expert. As a starting point, it is beneficial to “feed” the expert’s knowledge into
the system and create initial defaults out of it. Because a self-tuning system typically fulfills a
certain optimization goal, it is straightforward to let it behave like a human pursuing this goal,
i.e., monitoring, analyzing, and continuously optimizing its actions. By using what-if analy-
ses or simulations, the system may be capable of doing performance forecasts for alternative
configurations as well.

Eventually, a self-tuning system should provide the same or better tuning measures than a
human, while operating faster, cheaper, and more reliable.

3.1.1 Offline vs. Online Tuning

Important for tuning and self-tuning is the question when is the right time to tune. You want
to remedy a performance problem as soon as possible, but at the same time, you also want to
avoid unnecessary interruptions on a production system or an outage at all. Tuning a running
system may cause unforeseen and unwanted side effects that can incur additional performance
penalties. Due to the inherent dangers of online tuning on a production system, it is common
practice to test the new configuration settings on a dedicated test system or perhaps defer them
according to a maintenance schedule.

Dependent on the DBMS workload and configuration, one has to weigh up the aforemen-
tioned risks of doing changes online with the potential benefits of reacting more quickly to
a changing workload that currently negatively impacts system performance. For example, if
the quality of service delivered by the system is reduced, but still within tolerable limits, it
might be advisable to defer changing the configuration. If, however, users are already strongly
affected by the current performance problems, waiting might not be an option.

Another issue that need to be taken into account is the unavoidable overhead caused by any
form of online tuning facility, which is incurred not only when actually performing changes,
but permanently during system runtime for monitoring and evaluating the current system status.
Thus, this overhead has to pay off, i.e., the benefit of (online) tuning must exceed its costs.

In this work, our goal is to perform self-tuning measures online as often as possible, i.e., the
DBMS – in our case, XTC – has to adjust the system while it is servicing user requests.

3.1.2 Problem Classes

Computer science theorists have intensely studied the problem space of DBMS tuning for sev-
eral DBMS areas such as physical design tuning [PDA07, BC08], optimizer tuning [CN01,
SLMK01], or memory tuning [SGAL+06, BS11]. In almost all cases, the number of alterna-
tive configurations grows exponentially with each additional parameter2, leading to extremely
large search spaces. Due to this combinatorial explosion, finding the optimal configuration –
or at least one that comes reasonably close to it – quickly becomes computationally intractable.
For many of these problems, it was shown that they are NP-complete or at least NP-hard. In
[Com78, PS83], the authors show that the optimal index selection (short ISP - Index Selection
Problem), i.e., the decision which indexes to create for a given schema and for a DBMS is

2Additional parameters are constantly added, typically through product updates, which increases the search space, too.

28

3.2 Self-Tuning

System (DBMS)
workload

configuration
OutputInput

constraints
resources

result

Figure 3.1: System view of a DBMS

NP-complete. Fortunately, in practice many constraints typically reduce the search space: For
example, the resource budget, i.e., the amount of memory or CPU power available, is lim-
ited and therefore any configuration alternative violating this budget can be dropped without
further inspection. At the same time, in addition to such external constraints, certain DBMS
constraints, like restrictions in the value ranges or parameter dependencies, constitute another
problem class, so-called constraint satisfaction problems (CSP) often identified as combina-
torial optimization problems [BR03]. The aforementioned space restrictions are typical opti-
mization criteria for the class of bin packing and knapsack problems [GGU72, CGJ97]. All
these problems are well-known examples of NP-complete problems.

When optimization time is critical, it may further be important to limit the maximum search
time. Important for time pruning is that the search continuously improves the current solution,
i.e., the more time spent for search the better the output.

Brute-force solutions such as probing a lot of possible configurations [DTB09] are not de-
sirable due to their non-polynomial runtime for explorative search.

Although most of the tuning problems cannot be solved in polynomial time, fast reductions
are always possible at least when not attempting to find the optimal solution, but restricting
oneself to finding one that is reasonably close enough to the optimum, or just sticking to solu-
tions that are “good enough” for the current problem situation.

3.2 Self-Tuning

Self-tuning, as already indicated in this chapter, is about tuning measures conducted by a sys-
tem itself. Research in this area; particularly in the context of DBMSs, has a long history, which
we will briefly sketch in the following, before we present various approaches and concepts to
accomplish self-tuning.

But let us clarify some terminology first. The goal is to optimize a system that may be re-
garded as a black box getting some input and producing an output. This simplified view of a
system, in our case the DBMS, is depicted in Figure 3.1. The input consists of the actual work-
load, constraints, available resources, and the current configuration. On the other hand, the
output interesting for self-tuning is the new system configuration. First, it is important to know
the workload or at least its essential characteristics that define its impact on the system perfor-
mance. User interaction (i.e., query processing), the data itself, and DB tool execution typically
form the workload of a DBMS. As already motivated, this workload can change rapidly and
unexpectedly within very short time frames. Second, constraints have to be met such as max-
imum connections, operating system capabilities, or prioritizations for certain requests. An

29

Chapter 3 Self-Tuning – Challenges and Goals

often fixed parameter is the availability of hardware resources, which are statically assigned3

and therefore make the life for self-tuning easier. The third essential input parameter is the
currently active DBMS configuration. The direct link between input and output is constituted
by the DBMS configuration and forms a kind of cycle.

All techniques presented in the next section(s) are dealing with the problems to identify
reasonable changes in the configuration and how to apply them.

3.2.1 A Brief History of Autonomous Computing

Research on autonomous computing systems dates back almost a quarter of a century and
was never focused specifically on the context of DBMSs. An example of an early form of
self-managing appeared in the context of communication networks: As part of the ARPANET
approach, the predecessor of today’s ubiquitous internet technology, [RP86] developed a kind
of self-managing network where routing decisions could be performed ad-hoc based on the
current state of the different alternative routes.

Today’s common notion for this area of research was coined during a speech of Paul Horn
from IBM. Inspired by the principles of the human autonomic nervous system, he compared
its hierarchical nature to that of computing systems [Hor01].

Projects such as DASDA2 from DARPA focused on optimizing the architecture of large
distributed software systems to meet dependability and adaptability requirements based on
monitoring [COWL02]. Furthermore, preventing attacks, vulnerabilities, and provide rock-
solid high-available software that automatically adjusts itself and scales by self-reconfiguration
is the common goal of many research projects up to now [Gar02, Geo05].

When IBM introduced the concept of autonomic computing, they identified four major prop-
erties of a self-managing system: self-configuration, self-optimization, self-healing, and self-
protecting [KC03]. Over the course of the next sections, we will shed a light on the meaning
of these terms.

The database community quickly adapted the ideas of self-management and self-tuning
[WMHZ02, CN07]. Despite good initial progress in this area, a truly holistic tuning per-
spective, which takes all aspects that control the performance of a DBMS into consideration,
has not been achieved so far. Most of the techniques do an isolated optimization of certain
resources or components of a DBMS.

In the remainder of this section, we will discuss the basics for self-* properties, namely
monitoring, analyzing, and adjusting.

Self-* Properties

According to [KC03], self-* properties of self-management are distinguished as follows:

• Self-Configuration: Self-configuration aims at setting up hardware and software to
work properly in their designated environment without human intervention. Installation

3New processing concepts operating in virtual environments such as cloud computing or pay-as-you-go can dynamically
add or remove certain resources. For instance, CPU(s) can be activated on demand (e.g., Capacity on Demand) or re-
assignments of main memory for a virtual machine are immediately effective.

30

3.2 Self-Tuning

of network and computing equipment is followed by software configurations. Already
during the initial setup of a (software) system, autonomic computing provides means
to specify high-level objectives for its operation purpose, but not how they are actually
accomplished, i.e., the tasks necessary to fulfill a certain objective. For instance, fault-
tolerance and scalability can be achieved by automatically exploit and identify (added
or failed) computing resources.

• Self-Optimization or Self-Tuning: As already introduced in Section 3.1, self-tuning
targets at the adjustment of the large number of tuning knobs of a running system. Com-
monly focusing on performance goals, the system tries to automatically fulfill this goal
through parameter changes. A system may learn from its own actions as well as act
proactively to avoid predictable bottlenecks.

• Self-Healing: Software bugs and hardware failures are unavoidable, and a self-managing
system has to cope with them. Self-healing techniques provide mechanisms to detect and
trace those problems to keep the system in a consistent state or at least to support the
problem solving by diagnostic information or probabilistic evaluations.

• Self-Protection: Either attacks from the outside or failed attempts of self-healing may
require the system to protect itself from their effects. This includes actively blocking
attacks after they have been discovered or avoid further damage by protecting affected
system parts.

In this thesis, we will primarily address the tuning and configuration aspects of autonomic
computing. However, most of the concepts and facilities that we establish over the course of
this work, in particular the monitoring and dependency analysis, can also serve as a foundation
for other self-properties such as protection and healing. For the remainder of this work, we
will use the terms management, tuning, and optimization interchangeably.

Next, because various approaches exist to address self-tuning of systems, we will highlight
the most prominent ones that have emerged in literature.

3.2.2 Feedback Control Loop – MAPE-K

The basic idea of a feedback control loop as shown in Figure 3.2(a) is to control the target
system by continuously taking its output into account. Classic system theory uses the term
sensor for monitoring and requires a controlled process variable. In this case, the regulation is
focusing on minimizing the deviation for the given target variable(s).

Adopting the feedback control loop from system theory, IBM’s approach named MAPE
[KC03] distinguishes between four phases, namely Monitoring, Analyze, Plan, and Execute
(MAPE) as shown in Figure 3.2(b). Operating in parallel to the normal DBMS processing, the
MAPE approach acts as a feedback controller to improve system performance.

Now let’s briefly have a look into the four (different) phases of the MAPE approach:

• Monitoring: Hardware, software, and network components are monitored, where the
frequency of measurements and the number of monitored system parameters must be

31

Chapter 3 Self-Tuning – Challenges and Goals

System output

desired output
deviation

Controller
action

Sensorfeedback

input

(a) Feedback control loop

System (DBMS)

configuration
outputinput

Monitor

Analyze Plan

ExecuteKnowledge

Autonomic Management

(b) MAPE-K cycle for Autonomic Computing [KC03]

Figure 3.2: Feedback-based self-tuning schemes (extension of Figure 3.1)

chosen carefully to achieve the necessary level of detail and precision while keeping
overhead minimal.

• Analyze: In the first step of the control part, monitoring data can be filtered, transformed,
and aggregated to improve its analysis. Based on desirable target values or thresholds
for the monitored parameters, the analysis may find violations or correlations, which are
then subject to a more detailed inspection.

• Plan: The second step of the control part may exploit knowledge about the system
behavior combined with the already analyzed monitoring data to decide what actions
are necessary to improve the performance, i.e., a goal fulfillment.

• Execute: Eventually, the planned actions have to be executed by changing the system
parameters. Depending on the type of changes, the effects may be immediately visible in
the next monitoring round or they show up only with – sometimes considerable – delay.

Note, as indicated in the figure, the different phases may be tightly coupled with the actual
system, i.e., at least monitoring and execution require access to the system’s internals.

To support the analyze and plan phases, the MAPE cycle can optionally be extended by
a knowledge component (MAPE-K) [IBM04], which reflects expert knowledge, experience
(e.g., gained through learning), conditions, or further system-relevant limitations.

A similar feedback control loop approach is implemented in OceanStore’s “Cycle of Intro-
spection” [KBC+00] that refers to the elements of its control cycle as observation, optimiza-
tion, and computation. Taking historical records of system behavior by collecting events and
current activity monitoring into account, periodical pattern extraction guides the optimization
module.

32

3.2 Self-Tuning

Adapter

Tuning plan executor (E)

Workload classifier
IBM DB2 Intelligent Miner

DB2 Performance
Expert

delta & derive

Event collector (M)

Adapter

user exit Genric log
adapter

Event collector (M)

rule set

ATE

IBM Tivoli
Active

Correlation
Technology

common base events

Tuning plan selector (P)

Tuning plan repository

monitored database

adapt thresholds

send workload shift event
correlated event

Figure 3.3: Autonomic Tuning Expert (ATE) infrastructure [WRRA08]

3.2.3 Rule- or Policy-based Management

Tuning a system by rule application is a straightforward approach, aside from developing a
suitable mechanism or language to define such rules or policies for a certain scenario. So-
called high-level goals (cf. Chapter 1) may guide the rule definition and search [KM07]. Rules
can also be defined based on SLAs (service level agreements) or business demands, as well as
experience.

One of the first approaches that can retroactively be understood as a restricted form of self-
tuning is query optimization, although aspects commonly understood as essential, in particular
feedback loops or reoptimization during (query) runtime adaptation were usually missing. The
current state of the art in query optimization heavily relies on rules explicitly specifying how
to restructure certain query patterns [HFLP89, PHH92] 4.

Similar approaches emerged for physical design tuning, workload management, and memory
management [RS91].

A major drawback of fixed rules is their non-existing adaptation capabilities to different
environments or changing environments. Although parameters, e.g., cost models, may be ad-
justed, the underlying rule will always perform the same adaption. While this lack of flexibility
can be problematic, the decisive advantage is that rule-based approaches have proven to deliver
reliable configurations even in unstable system situations [QSF+07].

Capturing best-practice and expert knowledge as a set of rules applicable to DBMS tuning
knobs may be used to turn any system into a self-tuning system as long as a suitable infrastruc-
ture for rule application exists, i.e., a set of utilities or DBMS commands.

Fully integrated autonomic tuning, using guidance gathered through collecting expert knowl-
edge and formalizing it, is presented in [WRRA08]. This approach builds on DB2 Performance

4Only the search for the best plan can be regarded as ’self’-tuning, but, nevertheless, it still relies on up-to-date statistics
and cost models which partially became self-tunable throughout the years.

33

Chapter 3 Self-Tuning – Challenges and Goals

Expert5 and proposes the architecture of an Autonomic Tuning Expert (ATE). Figure 3.3 shows
the entire infrastructure of ATE. Similar to the feedback control loop presented in Section 3.2.2,
ATE monitors events resulting from log analysis or online event capturing. The control com-
ponent tries to find correlations and exploits the expert knowledge that is modeled separately.

In addition to the generic, system-independent expert knowledge, individual workload anal-
ysis and query analysis are used to extract information about the system’s specific performance
characteristics. This information is stored in the knowledge base and considered for future
adaptations, that way providing a means to continuously extend and update the knowledge
base.

3.2.4 Multi-Agents

Traditional computer systems are centralized, whereas today’s large-scale computing systems
are distributed across a, possibly very large, number of nodes. These nodes are often hetere-
ogeneous and often have some degree of autonomy. To be able to handle the considerably
increased complexity of optimizing and tuning such systems, it is common to handle measures
relevant for the individual nodes locally, while only aspects relevant for the system as a whole
are handled globally.

Local optimization covers aspects like data storage, buffering, and memory management,
whereas global optimization attends to query routing, data distribution, security and safety
issues, and workload balancing. The tuning components on the individual nodes are often
referred to as agents; they operate autonomously and are proactive and goal-oriented to solve
a common problem.

In [TCW+04], a prototype of a tuning approach for distributed systems called Unity is
proposed that realizes autonomic system behavior by having goal-driven self-assembly, self-
healing, and real-time self-optimization capabilities. Each autonomic element has its own
high-level goals, e.g., response time or throughput rates, which need to be “mapped” to re-
source utilization. Therefore, utility functions are used to express a specific level of goal ful-
fillment (e.g., response time) reached by a given resource assignment. A so-called arbiter tries
to cooperatively assign tasks, i.e., resources.

Another multi-agent system is OceanStore by [KBC+00]. Its goal is to provide reliable, scal-
able, secure data storage and access using a non-secure, non-reliable “ocean” of computers6.
Although its primary design goals are not autonomic computing, it employs many mechanisms
from the autonomic computing world to achieve its goals. Each site (i.e., server) is an agent
in this ocean, the autonomy of agents allows them to fail anytime, which makes global op-
timizations fairly difficult. To improve performance and reliability, OceanStore continuously
monitors usage patterns, regional outages, and denial of service attacks and reacts to them by
proactively moving data.

Most multi-agent systems assume that all agents are peers with identical capabilities. Tak-
ing this concept to a single system by considering components as specialized agent, enables
reusing multi-agent optimization techniques within a non-distributed system. For instance,

5http://www.redbooks.ibm.com
6This notion of a flexible computing system is known as cloud computing today.

34

3.2 Self-Tuning

each individual self-tuning feature is an individual agent. The obviously challenging part is to
make them cooperate by defining common APIs, metrics, and goals.

3.2.5 Economical Models

In contrast to agent-based systems discussed in the previous section, where cooperation is
necessary and assumed, in economics, the participants appear as competitors. A market is
used to “sell” and “buy” desired goods, i.e., computing resources or computing tasks. The
pricing is either guided by supply and demand via a brokering or auction processing.

So-called service providers announce their offers on a central market or broker. Service
requesters can supply computing tasks and additional constraints such as processing time or
costs. The broker (or market) is responsible for finding a suitable match, i.e., a member ful-
fills the task under the prescribed conditions. In computing environments, quality of service
requirements play an important role [LNPM98]. Another goal is achieving an optimal resource
allocation, i.e., economic operations, as [KS89] showed for file allocations.

In [WHH+92], a Xerox research system called Spawn uses costly simulation tasks to har-
ness idle computing resources in a distributed network of heterogeneous computer worksta-
tions. Task priority requirements are used for payment and fairness of resource distribution
was examined. The economical aspect deals with priorities and resource utilization to fulfill
the tasks.

Communication costs and computation-site awareness play a central role in Berkeley’s Mari-
posa project [SAL+96]. In those days, wide-area network (WAN) configurations had to ob-
serve data transfer volumes in the KB range. Other important aspects are site-specific load
situations and processing capabilities. The autonomic members of the systems cannot be con-
trolled by a system-wide cost-based query optimizer, instead only local query optimizers are
embedded. Typical for a market-driven model, tasks can be put up for auction, so each site
can bid for them and a central broker is assigning tasks to the winners. The task initiators (i.e.,
users) specify a cost budget in form of a curve, i.e., the more time is spend for processing, the
less the initiator is willing to pay for it. Besides query processing and network impact analysis,
Mariposa employs a storage management similar to [KS89] that trades so-called fragments of
data. By observing historical access, future access patterns are anticipated and the fragment
trading is a proactive optimization for improving locality.

Although the underlying market model of these approaches is fairly similar, its application
is different due to divergent high-level goals.

3.2.6 Genetic Algorithms and Multi-criteria Optimization

From a more theoretical perspective, the problem of DBMS optimization can be modeled as a
so-called multi-criteria optimization problem. Multiple criteria such as low memory consump-
tion, high IO rates, and response time limits have to be fulfilled at the same time. However,
some of them are contrary to each other, i.e., improving the fulfillment of one criterion reduces
the degree of fulfillment for others.

Multi-criteria optimization problems are often solved or at least approached with genetic
algorithms (GA). In a GA, tuning knobs and configuration parameters can be described by a

35

Chapter 3 Self-Tuning – Challenges and Goals

vector ~x = [x1,x2, . . . ,xn]. For each criterion ci, its fulfillment is represented by an objective
function f j that receives the parameter vector as input f j(~x) and can be used to minimize,
maximize, or evaluate a certain ~x. Usually, there exist several near-optimal solutions of ~x
fulfilling the criteria to a similar degree, i.e., they do not dominate each other, which is also
called pareto optimum [Coe00, BC08].

Applying weights to different criteria can facilitate the configuration search by reducing the
number of pareto solutions.7 The (weighted) goal value for each criterion c j is specified by
G j . Now, each deviation of the objective function f from the given goal G j can be calculated
and leads to the following minimization problem:

min
n

∑
i=0
| fi(~x)−G j|

The really challenging parts here are the specification of a feasible G for each goal and the
specification of weights for each goal fitting the actual system and user demands.

Probably one of the most difficult problems in multi-objective optimization is determining
how to measure the quality of a solution and to compare several solutions. For instance, ranking
may help to order them according to their goal fulfillment. The overhead necessary to establish
the solution is often omitted.

Game Theory

The foundation of game theory dates back to [Neu28]. Game theory typically analyzes two-
player games, either in a cooperative or a non-cooperative manner. A game has several vari-
ables assigned to the individual players, whereas each player aims to fulfill its objective func-
tion, i.e., maximum or minimum goal. A player is only capable of altering its variable while
taking the other player’s decisions, i.e., variables as fixed values into account.

In game theory, most often non-cooperative games are analyzed where multiple players
try to optimize their objective functions in a turn-based schedule [Neu28]. Many algorithms
try to find a stable equilibrium condition, i.e., according to their objectives, players can not
improve their fulfillment as long as the others stay unchanged – this principle is called Nash
equilibrium. Although cooperative game theory exists [Rao87], its application is similar to
multi-agent approaches and when generating multiple equilibria, it easily turns into a multi-
criteria optimization problem.

Eventually, game theory is partially similar to traditional ways of modeling self-management
but has various strengths in employing player roles, analyzing reachability, and dealing with
non-cooperative games. In our DBMS-oriented scope of self-tuning and self-management,
these paradigms do not fit that naturally, for which reason we do not consider game theory in
more detail.

7Skyline queries are a mechanism to find those pareto situation when faced with multiple objectives.

36

3.2 Self-Tuning

3.2.7 Languages

As we have mentioned in the previous sections, specifying constraints and goals is not always
an easy task, however, some language support may improve this situation. Such a language
can be used to describe and define a system, express constraints, service agreements, and even
goals [KC03].

There exist a lot of architecture description languages (ADLs) and notations that support
dynamic architectures. Some of them even support formal architecture-based analysis and
reasoning. However, most of these languages emerged in the software architecture domain
such as [MRT99]. Ponder [DDLS01], which has its origin in the area of networking, is a
language that defines pre-specified actions (so-called plans) triggered by (complex) events (i.e.,
state changes of the underlying system). These simple event-action handlers can also be found
in OceanStore’s [KBC+00] event handler mechanism written in a domain-specific language.

A separate language domain is formed by so-called requirements description languages
(RDLs). [GKW04] presents a combination of the ADL and RDL approaches into what they
call an architectural prescription language (APL) and suggest its use as a reconfiguration lan-
guage for systems. More sophisticated approaches extend ADL with feedback and change
mechanisms to build self-adaptive (software) systems [BMM+04]. System components are
modeled by behaviors (e.g., collaboratively and hierarchically) and employ a communication
mechanism (send, receive).

Besides software architecture languages presented so far, tailored DBMS-optimization lan-
guages exist, too. For instance, in [BC08], a constraint language is introduced to express
physical design tuning constraints with Assertions. Its usage is similar to SQL, because it in-
cludes similar constructs like aggregations, filters, generators (for binding), and nesting. Using
a formal model, an SQL-based language to describe view and index configurations is presented
in [BC07]. It includes special transformation operators such as merge and reduce, and it allows
to derive minimum as well as closure properties of a configuration.

3.2.8 Summary of Existing Approaches

While few proposals dedicated to the field of self-tuning in DBMSs exist, our survey of the
literature yielded many concepts that could be applied to this area, too, i.e., which component
or what kind of tool to use.

Table 3.1 lists the most promising techniques and summarizes their essential properties for
use in the self-tuning of DBMSs. For each approach, we specify whether or not it is suitable
for online tuning, can be made multiuser-aware8, the DBMS components it can be applied to,
and the operational goals it can optimize. Although many of the techniques are promising,
some can be ruled out due to their inapplicability for multiuser scenarios – the typical use case
for a DBMS.

Another challenge is that most techniques address only individual components of a DBMS.
To successfully combine them, their dependencies have to be known to exploit their individual
strengths and avoid their weaknesses and prevent them from interfering with each other. In

8Unfortunately, multiuser capabilities are often neglected or not tested, when self-tuning techniques are proposed.

37

Chapter 3 Self-Tuning – Challenges and Goals

Table 3.1: Self-tuning areas and goal contribution capabilities

Technique Online Multiuser- Components Operation
(related work) aware goals**
Design advisor − − workload, storage response time
[SGS03, ZRL+04, ZZL+04, PDA07, BC08]

Workload models / − workload, throughput
[MEW06, HR07, SH08, EM09] scheduler

Self-tuning memory + / memory pools throughput,
[SGAL+06] resource usage

Buffer tuning + + buffer pools throughput,
[THTT08, BS11] memory usage

Statistic management + / query optimizer response time
[CN01, SLMK01, AHK+04]

Index selection −* − index response time
configuration

[CN97, VZZ+00, LSSS07, EAZ+08b, SH10]

What if analysis − − physical design throughput,
[CN98, DTB09] response time

− not available + available / unknown but possible

*) online recommendation available, but no online management (decision, creation, deletion)

**) none of the techniques directly addresses costs or energy consumption, but most of them can be extended for that

the next section, we will present some insight into DBMS components and their self-tuning
dependencies.

3.3 Dependencies

Typically, a (database) system is a composition of several components interacting with each
other, i.e., calling functions, sending and receiving data. A self-tuning feature in a DBMS
can now be considered as yet another component. However, while the other components are
isolated from each other as much as possible, e.g., by following a design like the common
5-layer architecture (cf. Section 2.2), a system-wide self-tuning component must inevitable
know about the implementation details of the other components. However, this poses new
problems such as error propagation or interlaced dependencies, which may also lead to cyclic
dependencies. Therefore, we believe that self-tuning enabled components should be linked
based on the existing cost model concept, i.e., resource consumption and timings may be fed
as additional inputs to any component, which allows to integrate this information into self-
tuning decisions.

Of course, dependencies exist between components, either direct or indirect. Those depen-
dencies may constraint resource usages or block processing (e.g., due to synchronous waits),
influence parallelism, etc. Further, while the common components interact with each other
more or less top-down along the layers triggered by a user request, self-tuning actions oper-
ate independent of the system’s normal operation or other self-tuning actions. Therefore, we

38

3.3 Dependencies

static

dynamic

visible

hidden

known
unknown

Component
known
unknown

can be modeled

need to be learned

dependencies

Figure 3.4: Classification of component dependencies

distinguish between (software system) component dependencies and the self-tuning dependen-
cies.

3.3.1 Component Dependencies

Component dependencies usually arise by moving data or by invoking functionality across
component borders. Our classification in Figure 3.4 shows the different kinds of dependencies.
At the top level, we distinguish between static and dynamic dependencies.

Static Dependencies

Initial modeling must comprise all the statically visible component relationships, such as mem-
ory allocation for data structures where the size is known or CPU overhead for deterministic
algorithms, whenever functionality of one component calls another one (i.e., a new client ses-
sion initiates buffer allocations, or the query processor’s operator requires CPU cycles for
sorting and disk access is necessary).

But there are also hidden correlations that can be revealed by doing experiments or by rea-
soning (transitive dependencies). Those dependencies are hard to model because they are often
conditional, i.e., their existence may vary. For instance, additional indexes are used to speed up
query processing, however, contention and locking may be increased when indirectly accessing
data values first via an index. Here, lock escalation interferes with query planning assumptions.

Dynamic Dependencies

Dependencies that are not always present must be modeled differently. For instance, when
a (self-tuning) feature can be turned on or off, or an alternative implementation for a com-
ponent/algorithm is selected (e.g., different lock granularities, swap-enabled algorithms vs.
non-swapping algorithms, non-blocking eager strategies vs. blocking strategies), the depen-
dency can vary from non-existent to strong. Still, if such a dependency is known, it can be
modeled as optional. In cases where such a dependency is not known in advance, inference at
runtime is the only way to capture them in the model. Dynamic dependencies may also occur
for a short time through misinterpretation of external factors. They can cause the entire model
to fail, e.g., if high system loads caused by external programs or administrative intervention
are misleadingly dedicated to a prior parameter adjustment.

39

Chapter 3 Self-Tuning – Challenges and Goals

change plans

P1 P1 change actions

Goal management

Change management

Component control

plan request

status
C1 C2

G

G' G''

Figure 3.5: Self-management system architecture [KM07]

Architecture for Dependency Modeling

A coarse-grained view on a complete system and its components for self-tuning, based on ab-
straction and generalization, is given in Figure 3.5. Although the approach [KM07] targets at
the feedback-control flow in a goal-oriented self-tuning architecture, it already indicates that
components are correlated with each other. In order to analyze and thereby consider depen-
dencies, a model of interacting components is required, which is out of scope for this work.

3.4 Online Self-Tuning Challenges

Enabling self-tuning mechanisms within a DBMS is not necessarily beneficial in all cases.
The additional overhead, wrong assumptions or estimations made may even downgrade system
performance. In the following, we present some challenges and how we limit their negative
impact.

3.4.1 Search Space

Self-tuning is trying to explore the search space of feasible system configurations to find one
that better suits the current system use. As motivated in Section 3.1.2, the search space is fairly
large in nowadays DBMSs.

One way to reduce the search space is to quickly prune impossible or bad “search areas”.
As a first measure, impossible configurations (i.e., configurations that exceed parameter ranges,
have contradicting or incompatible setting etc.) can be removed from the search space. Another
measure is to skip the analysis of entire configurations and variations if the already fixed part for
those would already result in a performance degradation. Therefore, the expected performance
figures can be mapped to a cost metric making configurations directly comparable. In [BC05],
a relaxation-based approach is proposed to incrementally improve a configuration by taking
certain constraints into account. Using this technique, redundant analyses are limited and,
thereby, the search effort is reduced but not necessarily the search space.

Most offline tools for physical DB design tuning limit the maximum search time for a con-
figuration. Here, two things have to be considered: first, search should permanently find equal

40

3.4 Online Self-Tuning Challenges

or better configurations. Second, one has to determine when to stop the search, for instance,
by declaring a quality measure to control this decision9.

Bringing the search time-based pruning to the online self-tuning world, puts additional em-
phasis on the search effort itself. The overhead of self-tuning (i.e., monitoring, analysis, ac-
tions) has to be compensated by its benefits. Especially, analysis, i.e., the question how often
to do a re-evaluation and adaptation of the system configuration and how long this is allowed
to take, has a significant impact. Later, we will show that the frequency of analysis steps can
also be adjusted to the probability of successful improvements.

3.4.2 Prediction Quality

Probably all self-tuning mechanisms intend to increase the performance of future processing.
Based on historical information, which is often weighted in a step-wise manner, i.e., the more
recent history is weighted higher, assumptions about the future are made. But not all input
parameters – see Section 3.2.2 – remain stable and unforeseen inputs may reduce the expected
performance increase. Thus, it is important to not only consider the configuration with the
maximum performance possible but also evaluate its likelihood. Moreover, a lower bound
estimation for worst-case situations may limit the risk of negative configurations at all.

Two areas are relevant for predictions: workload model and cost model. Workload models
are used to deal with repeating workloads or certain patterns in the workload [MEW06]. These
models distinguish between certain types of workload, e.g., OLTP and OLAP, and relate them
to a timeline. Some approaches also model dependencies between initial workloads, (inter-
nal system) consequences, and future workloads, e.g., using Markov chains as in [HR07]. A
very common example that is used to motivate workload shifts, which can be predicted, is to
distinguish between working hours (having a lot of OLTP load) and night hours when only
batch jobs process large volumes of data (OLAP-like). A very simple approach is presented
in [EM09], where the authors assume repeating workload patterns as a mandatory requirement
for any reasonable form of predicting tuning measures.

Cost model predictions deal with internal system costs for certain tasks. Here, the workload
is taken for granted and processing costs and behavior are predicted. A lot of different ap-
proaches exist that use either histograms, neural networks, or more unusual techniques for cost
modeling [HLS05]. But in principle, all of them rely on simple cost accounting, data volume
statistics, and weights for the cost producers that can be adjusted dynamically.

Similar to Section 3.4.1, frequency, duration, and history span inspected are crucial parame-
ters to the prediction itself. Most important is, as indicated earlier, that the recent history may
be more significant and thereby more suitable for predictions. The challenge is now to identify
the optimal time spans used for prediction and the proper weighting of more current against
more recent data.

Evaluating the prediction quality is necessary to improve it by adapting the tuning model,
i.e., workload model and cost model.

9For instance, within 5 minutes find a better configuration, but each 30 seconds the prior configuration has to be surpassed
by 10%.

41

Chapter 3 Self-Tuning – Challenges and Goals

Eventually, predictions are a crucial part of self-tuning when faced with dynamic environ-
ments and changing workloads. However, prediction quality, overhead, and chance of even
degraded system performance have to be considered all the time.

3.4.3 Delay Effects

Tracking the effects of self-tuning actions is important to obtain “feedback” regarding pre-
diction quality and actual degree of performance change. As mentioned above, a particular
difficulty is to correctly attribute the observed changes in system performance and behavior to
the different configuration changes that were made. However, the effects of a specific tuning
measure are not visible immediately. Consequently, tuning guides for databases recommend
to only change one parameter at a time, wait for the change to show its effects, assess them,
and either correct the setting or proceed with the next parameter, until optimal performance
is obtained. However, for many situations, e.g., with variable system load, such an approach
is not always feasible. System performance demands for immediate action that often involves
changing many different configuration parameters. The challenges now are to identify tuning
tasks that can safely be performed in parallel and to correctly observe their individual impact.

Identifying parallel tuning actions may be alleviated by knowing dependencies between
tuning knobs. What a human expert knows by experience can be provided to a self-tuning
mechanism by a system model. Thus, self-tuning may explore variations of tuning measures
or complete configurations [DTB09] and reason about them.

The second challenge, delay effects of tuning actions consists of two aspects. A change with
an overall positive impact may momentarily degrade system performance, or its effects may not
appear immediately but only after a considerable amount of time. Therefore, changes should
not be discarded as inappropriate too quickly, solely based on the first observations. Adding
further to the problem, unanticipated workload shifts or parallel tuning actions by a human
expert may additionally distort the identification and attributation of performance changes,
making self-tuning evaluation a considerable challenge.

3.5 Self-Tuning in DBMSs

All major DBMS vendors have integrated self-tuning features into their recent product re-
leases. Most of these products evolved over several decades, which led to the inclusion of
literally thousands of configuration parameters. This enormous degree of customizability al-
lows them to be fine-tuned to specific environments. More and more of these parameters are
made accessible to online (self-)tuning to improve system performance and to make the life of
DB administrators easier. In this section, we will survey the self-tuning capabilities of existing
commercial systems and research projects in academia. Besides their online tuning capabili-
ties, we examine which tuning areas are addressed.

42

3.5 Self-Tuning in DBMSs

3.5.1 IBM DB2

DB2 supports physical design decisions by the DB2 Design Advisor [ZRL+04, ZZL+04], a
component that exploits the query optimizer to evaluate multiple alternative configurations.
This tool operates offline and requires weighted sample queries and constraints fed into it. In
the end, it produces recommendations for indexes, MQTs, clustering, and partitioning.

Essential for query optimization are statistics, which can be gathered autonomously and val-
idated using LEO (Learning Optimizer) of DB2 for LUW (Linux Unix Windows) [SLMK01,
AHK+04]. Cost-model-based assumptions of query processing timings are compared to actual
runtimes and, in case of deviations, the basic cost model or cardinality estimation feature of
the query optimizer are adjusted.

Many other often isolated tools are developed by the SMART (Self Monitoring And Re-
source Tuning) project [LL02], which is the database part of IBM’s autonomic initiative [Hor01].
Although the project goal is to develop system-wide self-* capabilities, so far, the different
tools emerging from SMART are not integrated with each other and are thus operating inde-
pendently.

The probably most important online self-tuning feature of DB2 is the STMM (Self-Tuning
Memory Manager) [SGAL+06]. Dynamic memory pools in DB2 can be put under the control
of STMM, for instance, buffer pools and query caches. Based on control theory, in partic-
ular, multi-input multi-output (MIMO) controller and oscillation dampening (OD) controller,
STMM tries to estimate time savings if additional memory is made available to different buffer
pools and caches. Iteratively approaching to an optimal memory distribution, STMM trans-
fers memory portions based on a cost-benefit decision supported by a control model. Thereby,
STMM achieves fast convergence times, a rapid adaptation to changing environments, and
stable response in case of noise. STMM can be used to operate beyond database instance
boundaries.

3.5.2 Oracle Database

Similar to IBM’s Design Advisor, Oracle Database delivers the SQL Access Advisor for phys-
ical design tuning. The only difference to IBM’s tool is that Oracle allows to integrate the SQL
Tuning Advisor. This advisor can analyze query plans and statistics to recommend DB index
structures, statistic changes, or SQL changes and creates so-called SQL profiles for reuse.

Oracle also includes Automatic Shared Memory Management (ASMM). However, ASMM
capabilities are less profound than STMM’s, because ASMM operates with fixed maximum
boundaries and requires instance restarts for changes taking effect. Further, sort pools are not
covered at all.

Performance monitoring is a strong point of Oracle’s DB because the Automatic Work-
load Repository (AWR) gathers performance statistics and the Automatic Database Diagnostic
Monitor (ADDM) is a DB-wide performance diagnosis tool [DRS+05]. It builds a classifi-
cation tree of various DB timings (accumulated in the tree) using a wait model and a time
model.

43

Chapter 3 Self-Tuning – Challenges and Goals

3.5.3 Microsoft SQL Server

Microsoft research is putting an emphasis on physical design tuning [CN97, BC05, BC08] and
ships its Database Tuning Advisor. Compared to DB2 and Oracle, it allows for more space
and time constraints while analyzing the configuration offline. It employs so-called “what-if”
indexes. Tuning Advisor recommendations can be automatically implemented.

The entire AutoAdmin project is based on the “what-if” approach [CN98] and paved the way
for further self-tuning research by Microsoft. For instance, autonomic statistic gathering and
management was developed [CN01].

In its current incarnation, the memory management is fairly basic. For several memory pools
such as buffers, connection contexts, logs, procedures, etc., the minimum and maximum mem-
ory sizes can be changed, which are respected whenever memory is (de)allocated on demand.

Similar to DB2’s and Oracle’s monitoring capabilities, SQL Server also contains a Physical
Design Alerter indicating performance bottlenecks.

For all commercial DBMSs presented, those performance alerts can automatically be pro-
cessed and even some actions can be triggered; at least notifications are send out to a DBA.

3.5.4 Academia

The academic research in self-tuning is often confined to a subset of a DBMS and most often
is limited to explore their ideas on their own prototypes or existing open source systems, with
PostgreSQL10 being the most wide-spread. A lot of research is done in the area of data place-
ment [MD97, LKO+00, YAA07] and index self-tuning [SGS03, RPBP04, HKL05, SAMP06,
LSSS07], i.e., physical design [PDA07]. Another well-studied area is buffer management
self-tuning [NTA05, THTT08, BS11], which however is only a part of the whole memory
management that is addressed by commercial self-tuning mechanisms.

Many different approaches exist for modeling and predicting workloads and their changes
[ACN06, MEW06, HR07, EM09]. However, most of them are limited to predict user input
happening next (i.e., load, query “size”, and type) or classifying workload types but fail to give
viable tuning hints.

Eventually, a kind of brute-force approach for configuring DBMS parameters, as in [DTB09],
seems to be the only project that is able to address the tuning of all aspects of a DBMS at a
time.

3.6 Self-Tuning Framework in XTC

In this section, we show the steps and extensions that are necessary to enable our XDBMS XTC
for MAPE-like self-tuning features. To lay the foundations for developing, implementing, and
evaluating them, we have to extend XTC’s basic functionality with suitable monitoring and
analysis functionality.

In this process, the already existing “traditional” database monitoring and configuration
management has to be expanded to cover the complete DB software system. Additionally,

10www.postgresql.org

44

www.postgresql.org

3.6 Self-Tuning Framework in XTC

a cost model is required that addresses each component of the system and make their resource
use and runtime behavior comparable to establish a foundation for reconfiguration decisions,
i.e., planning. In the following sections, we introduce our approach to provide such a system-
wide monitoring facility for XTC and further aspects for a Java-based DBMS like XTC. We
show how we exploit existing technologies and how we deal with their inherent flaws.

Based on the monitoring facility, we then present our analysis framework for cost-based
tuning decisions and how to realize it in a native XDBMS. The remaining aspects of our MAPE
approach for XTC are partially addressed in this section and intensely covered in the following
chapters.

3.6.1 Monitoring in XTC

Usually, there are two reasons for monitoring a database system. First of all, performance
aspects and runtime behavior observations reveal information about the system’s inner state
and allow to identify potential bottlenecks. As a second aspect, constant monitoring of the
system is necessary to ensure security, safety, and integrity demands. However, this work only
considers performance-critical issues.

Monitoring has to be lightweight, i.e., avoid unnecessary overhead, which is usually directly
related to the amount and type of data being collected as well as the frequency of monitoring.

Starting with simple change detection or threshold and counter parameters, each component
of the system is enabled to send events to a specific monitoring component where they are dis-
patched to be collected or processed immediately. The event receivers not necessarily reside
on the same machine as the DBMS backend. As a result, the increased communication over-
head and network latency have to be taken into account. One way to reduce this overhead is to
employ a UDP-like send process, i.e., events are sent asynchronously, without their reception
being acknowledged by the receiver. While this allows events to be lost, such an approach
is favorable for non-blocking event emissions as long as enough information is received. In
contrast, synchronous event processing is costly but guarantees to capture all events.

All the monitoring spots can be enabled or disabled during runtime. Events can be classified
according to two orthogonal dimensions, the component the event pertains to, and the type of
information conveyed by it. Thus, we have the following event classes:

• Parameter Change: Based on thresholds or value change, an event encapsulating the
old and new value of a parameter is emitted.

• Statistic: Statistic events are sent periodically or when requested by an event receiver.
For instance, the current fill level of a specific memory pool is frequently communicated.

• Message: Internal processing situation or actions, which can be important to notice.
Different from the event types before, messages need not carry any concrete payload
other than their actual type. For instance, a client connection is established or a rollback
was initiated are typical messages.

and the following component identifiers:

45

Chapter 3 Self-Tuning – Challenges and Goals

• INFO: This is not really a component identifier, it is more a kind of debug level identifier
having informational character.

• MEMORY: Because a lot of different memory areas are employed in XTC, their current
states (i.e., load) and sizes, often in relation to the total memory available, are denoted
by this identifier.

• BUFFER: Although buffer pools are memory areas, too, their characteristics are special
in a way that it is beneficial to have a distinct identifier for them. For instance, hit and
miss ratios or replacement algorithm counters are different for simple memory pools
such as for sort memory, connection contexts, or lock area.

• AI: This abbreviation stands for Auto Indexing, which identifies all events related to the
autonomous indexing framework of XTC, presented in Chapter 7.

• SERVER: All events that cannot be assigned to a specific component are covered by
this system-wide identifier.

This classification may be refined in the future and presents only our current state in XTC’s
event modeling. Each event also carries a unique eventID that is necessary for automated event
handling, i.e., dispatching, grouping, filtering, etc.

As soon as an event is created, a timestamp is automatically attached to this event, depending
on the dispatcher or receiver.

Synchronous event processing is only allowed for internal receivers, i.e., DB system com-
ponents or tuning components due to its blocking character. In contrast, all events send via
network are processed by a simple FIFO buffer queue, which may drop events if the registered
receivers are inactive.

Clients and components can register for certain events by specifying a filter (e.g., class,
component, eventID) and listen for incoming events.

There is no specific distinction between internal and external events, however, most often
configuration-based events (e.g., workload, storage layout) are processed internally, whereas
alert-style events (e.g., index creation, buffer threshold) are often monitored from the outside.

Component Model

Every component in our database system carries specific properties. These properties may
describe the state of a value (e.g., high/low watermark or current IO and memory usage statis-
tics), indicate a change (e.g., the start or end of a function), or count a value (e.g., time period
such as execution time or event frequencies such as query incoming ratio).

Monitoring values are preprocessed by a component, before an event is send to the central
monitoring or dispatching service. Besides this pushing mechanism, every component can
return its memory statistics and CPU timings on request.

46

3.6 Self-Tuning Framework in XTC

3.6.2 Analysis in XTC

With the monitoring data collected from the individual system components, it is now possible
to perform a detailed analysis of the overall system state. However, the typically huge amount
of collected data requires aggregation or filtering to further limit the number of events that can
be kept for analysis. Simple predefined rules can automatically trigger actions to reconfigure
the system.

Cost Model

The internal cost model works on a component base and aims at predicting the cost to recon-
figure the system, i.e., component(s), compared to the estimated benefits. System resources
covered by the cost model are memory consumption, IO cost, and CPU cost.

Although the computational overhead for the cost model is usually low or negligible, due
to the pruning step of the state space reduction, it has to be considered when building the cost
model. Moreover, the effort and cost for the monitoring itself have to be taken into account,
too. Obviously, the total cost for monitoring, analysis, and cost model calculation must be kept
below the benefits expected from the self-tuning facility.

As Java does not directly provide comparable CPU usage statistics in the manner of a UNIX-
style process accounting, we have to transform the given CPU times. As input we use the
detailed information about runtime and blocking time the JVM provides for each thread. In
addition, threads may be blocked due to scheduling displacement or while waiting for IO op-
erations. However, measurements for these aspects are not provided directly by the JVM, but
are an important input for our cost model and must therefore be acquired differently:

Based on the recorded CPU runtimes, we can compute the proportional CPU time of every
single thread by taking snapshots periodically for all active and passive threads. Combined with
the number of processors and elapsed system time, a per-thread CPU-usage can be calculated.

Besides CPU usage, heap loads of various threads are also collected when taking snap-
shots. Together with our event-based IO start or stop notification, a complete cost model for
all database components is achievable.

Before a new system configuration is put into effect, the cost model must also provide an
estimate about the cost for the reconfiguration. For instance, the redistribution of memory be-
tween components produces costs that need to be accounted for the reconfiguration decision.
Furthermore, to avoid a thrashing of the reconfiguration process, i.e., a permanent reconfigu-
ration of the system, it is advisable to set a certain threshold which the expected benefits of
the reconfiguration have to surpass before a reconfiguration is actually applied. Naturally, this
threshold should be at least as high as or higher than the cost for the configuration change.

3.6.3 Plan and Execute in XTC

XTC’s self-tuning features (i.e., controllers) will be presented throughout the following chap-
ters, which implement the Plan and Execute parts of MAPE. The controllers decide which
action(s) should take place to reconfigure the system. The entire loop remains active for the
complete time a self-tuning feature is activated. Note, there is no explicit central knowledge

47

Chapter 3 Self-Tuning – Challenges and Goals

repository defined as the MAPE-K model recommends, because each tuning component keeps
its own (history-based) knowledge base, if necessary.

3.6.4 Implementation Aspects for MAPE

First, we sketch some basic considerations for Java-based monitoring options.
A common method to obtain CPU usage and IO waiting times is to use a profiler or debugger

tool. However, these tools are strictly meant for use during development, as they incur a
significant performance overhead, are not flexible enough during runtime, may prevent internal
Java tuning (e.g., JIT), and may also interfere with parallel thread processing.

Obtaining detailed monitoring information is further complicated since the JVM on top of
modern operating systems such as Windows and Unix-like systems does not directly expose
the kernel scheduler nor does it provide ways to obtain accurate per-thread CPU times.

To implement monitoring in XTC, we naturally aimed to use the existing Java APIs as far as
possible. However, for some challenges, existing APIs did not provide the required function-
ality or had other significant drawbacks.

JVMTI and JMX

Application developers rely on those tools to analyze algorithms for errors and potential bot-
tlenecks. Complex systems, such as DBMSs, require sophisticated tools to analyze their com-
ponents and effects on each other. Thus, the JVM Tooling Interface (JVMTI) is useful for
lightweight profiling of several components. One of the new features in the context of JVMTI
is the byte code instrumentation (BCI). With some limitations, it allows to change compiled
code during runtime or to pre-execute commands before class (un)loading. The most severe
restriction, however, is that to gain useful results, a deep understanding and knowledge of
the internals is needed. One needs to know where to instrument your binary code and this is
obviously not always wanted or possible.

To overcome the drawbacks of JVMTI and to provide high-level monitoring interfaces, the
second API – JMX (Java Management Extension) – was developed. Basically, Web systems
and distributed applications should benefit from JMX, due to its external instrumentation. To
allow an application to be monitored and managed via JMX, the application developer has
to provide so-called MBeans11 or MXBeans for complex data structures. These application-
provided MBeans can now be registered by an MBean server. This server handles all in-
coming requests for monitoring or instrumentation from external monitoring or management
clients and calls the pre-specified MBean methods. Standardized tools can explore a complete
M(X)Bean interface and dynamically invoke their methods or adjust their values.

The JMX architecture is based on a poll mechanism, which means that the monitoring client
has to periodically query the state and changes. The polling paradigm is augmented by a
simple notification extension enabling the M(X)Bean component to send messages to clients.
However, the client still has to poll the message queue, which can reside on another machine.
The benefit of this approach is that it avoids blocking the production system.

11MBeans are Java Beans used for monitoring purposes but also for control.

48

3.6 Self-Tuning Framework in XTC

JMX aims to be used as the management interface of any Java-based software system. The
main features target the code instrumentation from outside. That means, with code substitu-
tions at the level of JVM byte code or with pre- and post-method calls, the behavior of the
running software could be influenced. But the MBean is not comparable to a manager of a
database system. Usually, an MBean is a setter/getter Object with public methods. When
calling these methods from the outside (i.e., management client), the caller is not aware of
mandatory conditions (transactions). Therefore, we will restrain the usage of MBeans to the
read-only part of an external monitoring component12.

Thread Monitoring

As modern computer hardware increasingly obtains its performance gain from increasing the
number of CPU cores available, instead of increasing the speed of the individual core, multi-
threaded software is becoming a necessity to benefit from these improvements. Consequently,
a monitoring solution must be able to cope with a massively multi-threaded environment.

In Java, thread monitoring comprises of the recorded CPU times (active runtime) and the
thread states provided by the JVM. Here, we can exploit JMX’s platform MBean to query
thread-based CPU times and states. With a simple method call, the accurate CPU time (given
in nanoseconds) each thread has used can be obtained.

In contrast, memory consumption is stated for the whole VM and not per thread. Still differ-
ent JVM memory pools can be evaluated individually. To obtain memory usage statistics per
thread, some additional efforts are necessary. We therefore monitor instances and sizes of data
structures when they were created in form of new objects. Arrays, as they are commonly used
either directly or indirectly, encapsulated within another data structure, are easily accounted.
For more complex structures, some kind of low-overhead heuristics is needed to determine
their space consumption. With this approach, we are able to obtain fairly accurate memory
usage data per individual thread, in addition to the CPU usage provided directly by the JVM.
Note, thread-based monitoring does not directly provide component-based resource statistics
necessary for self-tuning of individual components.

3.6.5 Logging and Reporting in XTC

The overhead implied by JMX and the polling-based usage of the MBean API prevents its ap-
plication within the XTC system. There we need thread-based 13 cost information. Moreover,
JMX/JVMTI does not provide any information about IO blocking time that is mandatory for a
complete cost model.

12This monitoring component is a visual aid for database administrators or users to visualize internal load states. Due to
the loose coupling of this client, we prevent interaction with the backend.

13In the XTC system, so-called jobs (single tasks) were enclosed into a thread. Thus, multiuser access is mapped to a
multi-threaded application.

49

Chapter 3 Self-Tuning – Challenges and Goals

Reporting API

In XTC, we have a system-wide event reporting that allows pushing events to registered event
listeners, typically clients or tuning components. A major design goal was to specify simple
and clean interfaces that allow us to easily integrate new monitoring options, i.e., a new type
of system events.

The basic interface encapsulating events is depicted in Listing 3.1. Event type and originator,
(i.e., component) together with a unique name or eventID must be specified when generating
new events.

Listing 3.1: Reportable event interface
1 interface Reportable <T> extends Serializable {

2 enum ReportComponent {AI, BUFFER , MEMORY , INFO , SERVER };

3 enum ReportType {Parameter , Statistic , Event};

4 String getName (); // unique name of metric to report

5 ReportComponent getComponent ();

6 ReportType getType ();

7 T getEvent ();

8 }

Components or internal XTC tools may implement the ReportProvider interface, shown in
Listing 3.2. This interface is required when you want to query possible events, similar to the
MBean approach of JMX, which can be used for event polling.

Listing 3.2: Report provider interface (Poll Mode)
1 interface ReportProvider {

2 List <Reportable > getReportables ();

3 Reportable getReportable(String name);

4 }

The XTC kernel has to instantiate at least one event broker, which is called STReporter –
Self Tuning Reporter. Its interface is shown in Listing 3.3. Any internal or external client
may register at this broker and can optionally provide an event filter. Global event control (i.e.,
for all connected clients) is possible via the enable() and disable() methods, which switch on
and off the event emission for entire components or certain event groups. The STReporter
employs an event buffer, does the dispatching, timestamping, and filtering for all event sources
and destinations using this central hub.

Listing 3.3: Self-tuning reporter interface
1 interface STReporter {

2 void addEvent(Reportable <?> event);

3 String start(String clientURL , EventFilter filter);

4 void stop();

5 String getStatus ();

6 boolean enable(String featureName);

7 boolean disable(String featureName);

8 }

For the client side, a simple interface, consisting of two methods, needs to be implemented to
receive XTC events and arbitrary string messages. The two methods are shown in Listing 3.4.

50

3.7 Challenges and Opportunities

Listing 3.4: Reporting client interface (Push Mode)
1 interface ReportClient extends java.rmi.Remote {

2 void sendString(String event) throws RemoteException;

3 void sendEvent(Reportable <?> event , long timestamp) throws RemoteException;

4 }

From everywhere in XTC, a static reference to STReporterImpl that implements the STRe-
porter interface can be used to generate a new event. For instance, the following line of code
is sufficient to send multiple query timing information at once:

STReporterImpl.getInstance ().addEvent(new ReportEvent <long[]>(ReportComponent.

INFO ,"MetaDataMgr.queryTiming", queryTimings));

Observe how the use of Java Generics allows us to provide events with virtually arbitrary
data types as payload. The only requirement is that the data type must be serializable (i.e.,
implement the java.io.Serializable interface).

Logging API

XTC uses the established log4j14 API for logging services. Property files are required to con-
figure designated logging spots within XTC. For instance, the following example will create
a log entry for query cost statistics, if an adequate log appender matching the package pattern
and log level is enabled:

if (log.isInfoEnabled ()) log.info(" query costs: "+(int)(qCost)+" time:"+qTime);

While log4j cannot be used directly for our monitoring extensions based on STReporter
and events, it is straightforward to implement an event listener to do the actual logging. An
event listener, i.e., client, can easily filter events using regular expressions or named event
classes/components to dump them to a given log file. A sample client is provided together with
XTC, called STReportClientConsole, which furthermore allows to remotely connect to XTC
(i.e., register event listeners) and generates user-defined log file formats.

3.7 Challenges and Opportunities

This work is targeting the challenges imposed by self-tuning a native XML DBMS. There-
fore, we demarcate the important and interesting areas, which are promising in terms of self-
tunability for XML data processing. According to the layered DBMS model (shown in Fig-
ure 2.6 on page 21) and our prototype XTC, we will describe our approaches between layer
L2 and L5 step by step. We restrict ourselves to these layers as the operating system and file
management (layer L1) as well as user interfaces (above L5) build the “natural” barrier for
our tuning considerations. However, the characteristics of these layers, e.g., the available IO
performance, or the kind of user queries and the actual workload the system is subjected to,
will be discussed where they have implications for our own work.

14The Jakarta log4j project. http://jakarta.apache.org/log4j/

51

http://jakarta.apache.org/log4j/

Chapter 3 Self-Tuning – Challenges and Goals

Buffer

The first and bottom layer that lends itself to self-tuning is the DB buffer. Because here XML
data structures are not visible, the techniques presented for buffer tuning are also applicable
to relational and other systems employing multiple buffer pools. In Chapter 4, we will show
the fundamental concepts for page-oriented buffer management, before introducing several
(standard) replacement algorithms. Based on these algorithms, we will extend them to im-
prove buffer resize options and decisions. The impact of optimal buffer configurations will
be demonstrated with performance measurements for various IO patterns, buffer sizes, and re-
placement algorithms. Autonomous memory balancing for buffer pools requires cost metrics
and a decision model, which will be presented as well.

Storage

Storage options for XML data will be the focus of our work pertaining to layer L3. Beginning
with XML document mappings issues, Chapter 5 presents our approaches for efficient XML
node labeling and encoding. Furthermore, compression techniques for XML structure and
content play an essential role in reducing space consumption and thereby IO. Because some of
these features can be (self-)tuned, we explore possibilities for the XML domain, which we also
have realized in XTC.

Secondary access paths are important for (X)DBMSs. We have implemented standard in-
dex options and developed our own additional index features to improve the secondary access
path selection. Customization of different index types helps to reduce space consumption and
maintenance costs while improving query support by orders of magnitude. In Chapter 6, XTC’s
index options are presented and benchmarked as well as fundamentals for XTC’s cost-based
query processing.

Query-driven Index-Tuning

The most advanced self-tuning feature in XTC is our autonomous index management, pre-
sented in Chapter 7. It is operating on top of the storage layer and all index options we have
in XTC. This feature heavily exploits XTC’s query optimizer for cost-based index decisions.
Thus, index maintenance costs and query benefits are evaluated while keeping an eye on space
constraints. The impact and gain of query-driven index-tuning will be proved with experiments
running industry-standard XML benchmarks.

Interplay of Self-Tuning Features

Bringing individual techniques and evaluations presented throughout this thesis into a single
scenario is the aim of Chapter 8. For a series of workload shifts, the effects and the interplay
of our indexes self-tuning and buffer self-tuning are analyzed. With the help of this analysis,
we will discuss the next steps of XDBMS self-tuning and towards an integrated system model
supporting cooperative (X)DBMS-wide self-tuning in our outlook, in Chapter 9.

52

Chapter 4

Buffer Tuning

One of the most important and critical aspects of the storage subsystem in a layered DBMS is
the buffer management layer controlling the buffer pool configuration. Being the IO interface
to external devices, this layer needs not only to be tailored to the available resources but also
to the (expected) workloads, data, and data volumes. In Section 2.2 and 2.5, we have shown
that typically multiple buffer pools are assigned to multiple storage containers. Thus, the dis-
tribution of the available main memory is extremely important for the entire IO performance.
Changing workloads or requirements to the IO subsystem, different device characteristics, and
new data objects or increasing data volumes may frequently degrade the buffer performance
where only online reconfigurations may relief those penalties.

Self-tuning the buffer configuration can be approached from two perspectives. On a fine-
grained basis, the replacement algorithm itself may adjust its configuration, which aims at
optimizing a single buffer pool. Whereas buffer pool sizing requires a sophisticated approach
to control the memory distribution for all pools.

In this chapter, we present basics of database buffer management, show important aspects
for self-tuning capabilities, and present our approach for performance forecast and for dynamic
management [BS11, SB11] in Section 4.3 and Section 4.4, respectively. The chapter concludes
with an evaluation, demonstrating that simulation-based self-tuning of buffer configurations is
beneficial for various workload scenarios.

4.1 Buffer Management

Efficient XML data processing using an XDBMS requires the same smart buffer management
as relational systems do. Although query processing and the data model are totally different,
the fundamental interfaces – buffer frames and disk pages – are identical. Only streaming sys-
tems such as [PC03, YLL+07] may benefit from XML-tailored buffer mechanisms1. There-
fore, our buffer techniques are not restricted to the XML data model. We describe essential
characteristics and parameters necessary for (self-)tuning options, which are presented in the
remainder of this chapter and in Chapter 5.

1XML (sub)trees of varying sizes may require to be completely buffered to allow analyses, which is typically not the
case for relational data operating on a (fixed-size) tuple base.

53

Chapter 4 Buffer Tuning

4.1.1 Working Principle

Basically, a buffer reduces the number of IO operations by caching external pages in its as-
signed portion of main memory. The major goal is to minimize external page fetches by ex-
ploiting the principle of locality [EH84]. Whenever a (logical) database page is requested, the
buffer searches through its cached frames (i.e., pages) for it. In case of a hit (i.e., page found),
a transaction may “lock” the page with a fix until the page is not needed anymore and release it
by invoking an unfix. If a new page needs to be allocated or a request fails (i.e., miss), an empty
frame is required to load the external page. If there is no empty frame available, a page needs
to be flushed in case of modifications (i.e., dirty pages); otherwise, unmodified and non-fixed
pages (i.e., clean pages) can simply be dropped to free up buffer space again. Note, the min-
imization of page fetches comes along with the goal of minimizing page flushes, both reduce
the number of physical IOs compared to logical IOs.

4.1.2 Replacement Algorithms

The replacement algorithm is responsible to choose a so-called victim page that needs to be
dropped or flushed to free up a buffer frame. This is typically triggered when a logical page
request causes a miss and no empty frame is available to directly load the page into the buffer.

The major objective of replacement algorithms is to minimize the buffer misses for a given
number of buffer frames (i.e., buffer size) and sequences of requests to the buffer. In case of
a miss, the page with the lowest probability to be referenced again is replaced, i.e., flushed or
dropped and updated with the requested page.

A replacement algorithm is not only based on the principle of locality but also on the as-
sumption that the recent past of buffer requests is an indicator for the near future. Therefore,
the age of a buffered page and the number of references (i.e., fixes) to it are accounted to sup-
port victim selection. Another important requirement is that an increase of buffer frames will
definitely not degrade the miss rate of a buffer [GST70].

Now, we will briefly introduce frequently used (classes of) replacement algorithms found in
most DBMSs.

LRU-based

The Least Recently Used (LRU) strategy takes the last time a page was referenced into account
when selecting victims. It can simply be implemented with a stack of page pointers, having
the pointer of the most recently referenced page on top. Page pointers at the end of the stack
typically refer to the victims, while pointers that are already contained in the stack may be
moved to the top in case of a new reference. However, having sequential access patterns (i.e.,
scans), cyclic references, or multiple references, the drawbacks of LRU become visible by not
taking this additional information into account.

Therefore, slight variants exploit a small history by accounting the k least recently references
or k least recently unfixes [DT90, OOW93]. For instance, the LRU-K algorithm [OOW93]
remembers the last k references and timestamps of a page to be more “scan resistant”. The
history of already evicted pages is remembered for a certain period called retained information

54

4.1 Buffer Management

period (RIP) to allow its reuse in case of a re-reference. Victim search in LRU-K is confined to
pages that are buffered for at least a predefined correlated reference period (CIP), because this
avoids that pages are immediately evicted after their first reference. A victim page is chosen
based on its maximum backward k-distance, i.e., the earliest reference remembered within a
page’s history. The configuration k = 1 causes LRU-K to behave as the simple LRU algorithm.

LRD-based

The Least Reference Density (LRD) strategy accounts the number of page references within
a given interval [EH84]. This reference counter is used to calculate the reference density by
dividing it by the total number of references within the same interval. Reference densities
are simply ranked to select the lowest one as victim. The problem of blocking pages, i.e.,
pages that have frequently been used a long time ago, is solved by regularly decrementing the
reference counters.

CLOCK-based

Based on a FIFO (First In First Out) queue, clock algorithms iterate through the list of page
references and use a bit or a counter (e.g., Generalized CLOCK [NDD92]) indicating the fre-
quency of references. The bit is switched or the counter is decremented as long as the bit is set
or the counter larger than zero, respectively.2 GCLOCK algorithms are easy to implement and
provide results comparable to LRU-based algorithms.

2Q

The 2Q algorithm [JS94] is a combination of a FIFO queue and an LRU chain. 2Q imitates
LRU-2 and delivers similar performance, but avoids the algorithmic complexity of LRU-2.
Upon the first reference, pages are added to the FIFO queue (denoted a1). In case of a re-
reference, a page is moved to the head of the LRU chain (denoted am). The rationale behind
2Q is that only pages that are referenced several times either stay in the LRU chain or are
promoted to it. In contrast, pages referenced only once within the recent history, are dropped
earlier by the FIFO queue. A history extension for 2Q splits the FIFO queue to keep track of
already evicted page references [JS94]. However, this raises similar queue sizing problems as
for LRU-K.

ARC and CAR

The ARC algorithm (Adaptive Replacement Algorithm) [MM03] is based on a two-stage
model similar to 2Q. An improved version based on CLOCK-like techniques is CAR (Clock
with Adaptive Replacement) [BM04] that provides the same hit/miss performance as ARC, but
has the advantage that it also “removes the cache hit serialization problem of LRU in ARC”

2You may also consider a clock-like cycle where page references are residing at the clock’s numbers. Whenever the
clock hand points to the next reference either its counter is decremented or the page is flushed/dropped.

55

Chapter 4 Buffer Tuning

[BM04]. We will focus on ARC, because the advantage of CAR is especially important for
main-memory caches, which is not in the center of interest for this work.

ARC employs two LRU chains L1 to filter out scans and L2 to retain hot pages for re-
reference. A parameter p, which is adapted at runtime, controls the chain sizes. Both chains
are divided into top T1, T2 and bottom B1, B2, respectively. Only the top lists contain pages,
which are actually cached while the bottom lists only remember page identifiers of evicted
pages. The lists are allowed to permanently grow and shrink as long as their total size does not
exceed the buffer capacity. The parameter p is used to control the target size of T1, which has
the same target size as B2 and vice versa. If a page selected as victim originates from one of the
top lists, its reference is promoted to the respective bottom list (i.e., remembered as history).
As long as |T1| ≥ p, victims are selected from the tail of T1, otherwise from the tail of T2. Page
hits in list B1 advocate to increase p, because a larger T1 is recommended to give chance for a
second reference to the same page. In contrast, a hit in B2 leads to a decrease of p.

Conclusion

Selecting the best replacement algorithm strongly depends on the current or expected workload
and its own overhead induced by its complexity. However, for standard database applications
and use cases, the presented classes of algorithms successfully dominate most of the default
installations. A lot of very special algorithms or variations of existing ones emerged, too, for
instance LFU (Least Frequently Used), MRU, or flash memory-oriented versions of CFLRU
[PJK+06]. However, the replacement strategy is only half of the truth for buffer performance,
its configuration is important, too [LWF77], and will be therefore discussed next.

4.1.3 Buffer Pool Configuration

Nowadays, DBMSs allow for many fine-grained buffer-related configuration options. Not only
that external data containers3 (i.e., files or disk partitions) may have multiple buffers assigned
but also operators such as sort, (hash) join, query plans, or lock tables have their individual
buffers assigned leading to the so-called Buffer Pool Configuration Problem [XMP02]. The
size of a page-oriented buffer is simply the product of page size and the number of buffer
frames. Therefore, the only constraint is that buffer frames must provide enough space to
cache at least one external page of the assigned data container.

Object mapping is an important aspect w.r.t. buffer impact on query performance, especially
when you think of different (external) storage devices providing different IO characteristics,
sizes, or prices. Often used indexes and large volumes of user data may be buffered in different
buffers, because they also reside in different containers. Moreover, a kind of stripping known
from RAID configurations can be realized by spreading data across multiple buffer pools, too.

Distributing the available memory along all buffers may become challenging when the work-
load for the buffers varies. That means, some buffers may provide more benefit than others and
their combined performance gain would improve if they have different sizes. This problem –

3DBMSs typically distinguish between user data, indexes, log entries, or long fields and therefore advocate the usage of
multiple data containers at the same time.

56

4.2 Self-Tuning Buffer Management Approaches

optimal memory partitioning – is NP-complete and strongly depends on the current workload
situation, which however, may rapidly change [MLZ+00].

The replacement algorithms of different buffers are not necessarily the same. When certain
buffers are assigned for special purposes, they may require or benefit from tailored strategies.
Even the underlying devices may also have impact on the selection of the replacement algo-
rithm, for instance, for solid-state disks [PJK+06].

Eventually, many of the various tuning knobs for buffer pools can be changed online, i.e., dy-
namic buffer management without downtime is possible. But the ideal configuration is hard to
achieve due to changing workloads and, if at all, difficult to predict [DYC93, BS11], especially
in ad-hoc scenarios.

4.2 Self-Tuning Buffer Management Approaches

The importance of optimal buffer management in databases has clearly been emphasized for
more than 20 years. In [EH84], many aspects were analyzed such as the underlying disk
model, search strategies within a buffer, different propagation algorithms, page layout impact,
and concurrency issues. Hence, the complexity of buffer management makes it impossible to
find an optimal configuration that works for all kinds of workloads and system environments.

To self-tune a buffer configuration, [JCL90] used so-called priority hints. Depending on
the access type (e.g., scan or index), buffered pages were differently handled for replacement.
Thus, the dominating field of LRU-based propagation algorithms could be outplayed. How-
ever, those techniques do not reflect self-tuning behavior and they only address a single issue
of dynamic buffer management – victim selection.

Another class of self-tuning techniques observes load situations in the DBMS and the buffer
allocation strategy itself to predict future performances. In [NFS95], the authors give a theo-
retical base for combining the buffer allocation problem and the impact of access patterns.

Continuing the idea of combining multiple configuration areas, in [SGAL+06] a system-
wide memory management was presented. Major DBMS components that can allocate variable-
sized portions of the main memory are controlled by a feedback-control mechanism. Thus,
memory assignments can be conveyed between different components, for instance, between
the sort heap and a buffer pool. However, such a controller-based approach slowly adapts itself
to rapidly changing situations due to stability demands avoiding configuration thrashing.

Current self-tuning research concentrates on fine-grained analytics. For instance, an an-
alytically derived equation that relates miss probability to buffer allocation is presented in
[THTT08]. Although those equations support the reconfiguration decision, they do not address
the entire buffer or memory management. Moreover, their scope is often too narrow and self-
tuning may get stuck in a local optimum. Real-world workloads contain peak situations or
changing characteristics (e.g., access patterns, data volume). Here again, the requirement for a
stable system is contrary to fast reaction times necessary when (short) peak situations occur.

In [DTB09], a kind of brute-force approach determines the optimal configuration for an
entire DBMS by testing the configuration space step by step. This can hardly be done online
due to the overhead and this approach is incapable of reacting to (short) rapid changes.

57

Chapter 4 Buffer Tuning

Most of the existing buffer tuning techniques can be classified either into goal-oriented
techniques or simulation-based techniques. In the following, we will briefly introduce the
main concepts of both approaches, before we identify actual issues for buffer performance
forecasts.

4.2.1 Goal-oriented Buffer Tuning

For goal-oriented buffer tuning, so-called performance goals have to be defined. Typical goals
that can be defined are the average response time, a maximum workload specific latency, or
the maximum miss rate. Such a goal usually holds for a single buffer pool, but may also apply
for all buffer pools. At runtime, the goal fulfillment is observed and, if necessary, memory is
reallocated to increase the goal fulfillment.

The Fragment Fencing approach [BCL93] observes the reference frequency of certain work-
load classes and a special working storage region used for sort and join operations. This idea,
however, was improved by the Class Fencing approach that is “more responsive, more ro-
bust, and simpler to implement” [BCL96]. It introduced the Hit Rate Concavity concept and
extended the notion of workload classes for buffer pools by also allowing the assignment of
multiple workload classes to the same data.

Based on the random access response times (RT), the so-called Goal Satisfaction algorithm
[yCFW+95, Ten95] uses simple performance indexes (PI) for each buffer pool. By specifying
a performance goal (GOAL), the index is obtained as follows: PI = RT

GOAL . The algorithm
requires hit statistics (HIT) for various buffer sizes (SIZE) and the average time needed in case
of a buffer miss (delay) to define the following formula:

RT (SIZE)≈ (1−HIT (SIZE))×delay+HIT (SIZE)×0

Because those hit statistics typically are not available, they are approximated by the following
equation based on [Bel66]4: HIT (SIZE) = 1− a× SIZEb. After each tuning interval, the
values for delay, a, and b are adjusted based on observations. To tune the buffer configuration,
the buffer pools (BP) are ordered by their expected PI when being resized by a fixed 4 size.
As long as the worst and best ranked buffer pool are not the same, they are pairwise resized as
follows (for the full documentation we refer to [yCFW+95]):

1. 4= a constant number of buffer frames

2. PIi(sizei) denotes the buffer pool BPi’s performance index with pool size sizei

3. minBP = BPj|PI j(size j−4) is minimum

4. maxBP = BPi|PIi(sizei +4) is maximum

5. If (maxBP 6= minBP) and
(PI j(size j−4) < PIi(sizei +4)) or
max(PI j(size j),PIi(sizei)) > max(PI j(size j−4),PIi(sizei +4))) then

4Characteristics are extrapolated based on (at least) two reference points using two parameters a and b.

58

4.2 Self-Tuning Buffer Management Approaches

sizei = sizei +4 and
size j = size j−4.

The algorithm ensures to only change memory allocations if the expected result yields im-
proved performance indexes. Experiments by the authors have shown that their dynamic as-
signment is better than the static default configuration. Unfortunately, they used the same goal
of 0.15 (i.e., 85% hit probability) in all cases.

The Dynamic Reconfiguration Algorithm (DRF) [MLZ+00] targets at performance goals for
transaction classes, i.e., transactions (T) operating on the same database objects and having the
same performance goal are grouped into a class. Similar to the previous algorithm, the DRF
uses an achievement index (AI) to express the goal fulfillment for a buffer i:

AIi =
goal average response time for Ti

actual average response time for Ti

If AI is between 0 and 1 the transaction class does not fulfill its performance goal. After a tuning
period, the algorithm identifies pairwise buffers with the largest expected performance gain
when being increased and with the lowest negative impact in case of downsize. To calculate the
expected cost increase and decrease for a certain transaction class, the following cost estimation
equation for its buffers (B) is defined:

Ci =
b

∑
j=1

Li(B j)× costLR j(m)

The formula takes the number of logical reads (L) and their costs (LR) for a given buffer size
(m) into account. A detailed description how to derive costLR based on read/write numbers and
probabilities, page reference counters, and CPU use can be found in [MLZ+00]. Although this
approach takes dirty pages and asynchronous IO into account and delivers promising results,
the authors also mention that the success strongly depends on the specified performance goal.

The major problem of all goal-oriented approaches is that the user is required to set ap-
propriate performance goals for certain sets of queries (or transactions), which is comparably
difficult as manual database buffer tuning [SGAL+06].

4.2.2 Simulation-based Buffer Tuning

Simulation-based techniques try to avoid wrong assumptions or estimations of buffer hit rates.
Because incorrect estimations easily lead to suboptimal tuning, buffer simulations are em-
ployed to run through alternative buffer configuration(s). Capturing buffer traces or having
adequate simulation data available is the most challenging aspect [THTT08], especially when
doing online buffer tuning. Either a familiar workload is running that makes data collec-
tion obsolete, incrementally changing the buffer allocation leads to an increasing accuracy
for access figures [SGAL+06], or the buffer manager simulates (another) replacement policy
[DRS+05, NTA05, SGAL+06], which allows a replay of the trace against alternative buffer
configurations. Even the approach in [THTT08], which is capable of predicting hit and miss

59

Chapter 4 Buffer Tuning

rates for various replacement policies by simply changing a couple of parameters, requires
adequate buffer request traces.

One of the most cited simulation approaches can be found in [SGAL+06]. The authors
propose a simulated buffer pool extension (SBPX) to estimate the cumulative save time for
buffer upsizing. This extension is simply an overflow buffer for the page identifiers of the
most recently evicted pages. The overflow buffer must, of course, have its own strategy for
victim selection. The authors of SBPX recommend here a strategy “similar to that of the actual
buffer pool” [SGAL+06]. Inspired by this idea, we implemented an improved version into
XTC [BS11, SB11], which is briefly described in the following.

When a page miss in the actual buffer occurs, the extension checks if the page identifier
is found in the overflow buffer, i.e., whether the page would have been present in a larger
buffer. In this case, we can account a “saving” potential for upsizing. Further, we must now
maintain the overflow buffer. The page identifier of the actual evicted page is promoted to
the overflow buffer that in general requires to evict another page identifier from the overflow
buffer. This replacement is not exactly the same as a real miss in the simulated larger buffer.
The identifier of the requested page causing the miss could have been present in the larger
buffer. In the course of continuous requests, however, also a larger buffer must evict pages.
Thus, a replacement in the overflow buffer can be regarded as a “delayed” replacement effect.
In the case of a page hit in the actual buffer, no further bookkeeping is required, because the
locality principle suggests that the replacement strategy in a larger buffer holds a superset of
the pages present in a smaller one. Listing 4.1 shows a sketch of the modified page fix routine.

Listing 4.1: Modified page fix algorithm for upsize simulation
1 Frame fix(long pageNo) {

2 Frame f = mapping.lookup(pageNo);

3 if (f != null) {

4 strategy.refer(f); // update replacement strategy and statistics

5 } else {

6 Frame of = overflowMapping.lookup(pageNo);

7 if (of != null) {

8 overflowMapping.remove(of.pageNo); // update overflow hit statistics

9 } else {

10 of = overflowStrategy.victim ();

11 overflowBuffer.remove(of.pageNo); // update overflow miss statistics

12 }

13
14 Frame v = strategy.chooseVictim ();

15 strategy.copyStateTo(overflowStrategy);

16 v.copyStateTo(of); // transfer page identifier to overflow

17 overflowMapping.put(of.pageNo , of);

18 mapping.remove(v.pageNo); ... // replace page in frame v

19 strategy.referAsNew(v); // update replacement strategy and statistics

20 mapping.put(pageNo , v);

21 }

22 return f;

23 }

The problem of this approach is that replacement decisions for two separate buffers in com-
bination compared to a single large buffer are not necessarily the same. Thus, the forecast
quality of upsizing simulations depends on one aspect: When a page is evicted from the ac-
tual buffer and promoted to the overflow area, we must be able to transfer “state” information

60

4.2 Self-Tuning Buffer Management Approaches

buffer size

pe
rf

or
m

an
ce

x y

multiple jumps
single jump

Figure 4.1: Buffer speed-up trend for different access patterns

(e.g., hit counters, chain positions, etc.) from the actual replacement strategy into the overflow
strategy (lines 14 and 16). Otherwise, the overflow strategy behaves different.

The most difficult aspect of simulation-based buffer tuning is the fact that actual IO timings
and request sequences strongly depend on processing times and page fetch/flush times. For
instance, devices where the pages need to be fetched from or written to can be idle or under
load, which is not covered at all by only simulating hit and miss rates. In the next section, we
show further issues related to simulation-based buffer tuning.

4.2.3 Forecast Issues

Forecasting the buffer behavior for alternative buffer sizes is still a challenging task and we
identified several weak points in the existing approaches [BS11, SB11].

• The first weakness is that buffers do not scale linearly with their pool size. Existing
approaches simulate or estimate the performance gain for buffer upsizing, but not for
buffer downsizing. The extrapolation of downsize behavior may be totally wrong lead-
ing to bad tuning decisions. The most obvious example is a repeating scan of x pages
occurring at a buffer of size y. As long as x > y, the buffer delivers a weak perfor-
mance. In contrast, as soon as x ≤ y, i.e., all the requested pages fit into the buffer, the
second scan is fully buffered resulting in perfect buffer performance. Such a “jump” or
non-uniform behavior is sketched in Figure 4.1.

• Hit/miss ratios are the standard quality metrics for buffers, because they are cheap to
assess and express the actual goal of buffer use: IO reduction. Unfortunately, they are
useless for performance forecasts, i.e., they even do not allow to make simple extrap-
olations for growing or shrinking buffer sizes. To illustrate this fact, let us assume the
following scenario for a given buffer size of 5 and LRU-based replacement. At the end
of a monitoring period, we observed 5 hits and 10 misses. At least two different access
patterns may have led to these statistics:

Scenario 1: 1,2,3,4,5,1,1,1,1,1,6,7,8,9,10, ...

Scenario 2: 1,2,3,4,5,1,2,3,4,5,6,1,2,3,4, ...

In the first scenario, 5 hits are attributed to repeated accesses of page 1, whereas, in
the second scenario, the hits are attributed to 5 different pages (1, 2, 3, 4, 5). For the

61

Chapter 4 Buffer Tuning

same scenarios and a buffer of size 2, we get completely different hit (h) and miss (m)
statistics:

Scenario 1: m,m,m,m,m,m,h,h,h,h,m,m,m,m,m, ...

Scenario 2: m,m,m,m,m,m,m,m,m,m,m,m,m,m,m, ...

Obviously, scenario 1 obtains a better hit rate with 4 hits to 11 misses than scenario 2
without any hit. If we increase the buffer to 6 pages, the picture turns again:

Scenario 1: m,m,m,m,m,h,h,h,h,h,m,m,m,m,m, ...

Scenario 2: m,m,m,m,m,h,h,h,h,h,m,h,h,h,h, ...

Now, we observe 5 hits to 10 misses for scenario 1 and 9 hits to 6 misses for scenario
2. This example shows that hit/miss numbers or page/benefit metrics do not allow for
correct extrapolations, because the order of page requests and the hit frequency distribu-
tion are important. Thus, self-tuning relies on monitoring and sampling of data where
current buffer use is taken as an indicator for the future. Information relevant for resiz-
ing forecasts such as reuse frequencies, working set sizes, or noise generated by scans
cannot be expressed in single numbers.

• As we already indicated, simulating separate buffer pools bear certain problems. The
first problem results from buffer operations (i.e., fetch, flush, fix, unfix, etc.) typically
having different runtimes. In a simulation scenario, alternative hit/miss numbers gained
through simulation do not necessarily last for the same duration as the actual tuning
period. That means, either more or less buffer operations could be processed. Moreover,
the impact of a different buffer IO is not accounted in terms of the interplay of transaction
dependencies and device loads.

Modeling only the additional buffer size for upsize forecasts in a separate buffer easily
leads to wrong results. Sophisticated replacement algorithms are sensitive to the ac-
tual buffer size. Simply adding the performance figures of two distinct buffers (e.g.,
[SGAL+06]) is therefore unwise.

• An important issue that is often excluded from self-tuning mechanisms are short-term
memory consumers such as sorting or joins. Although a lot of research was done to
improve sort and join algorithms for DBMSs, their system impact in terms of memory
thrashing is often neglected. The only parameter that can be tuned online is the main
memory area reserved for sorting or join buffers (e.g., hash tables). Most systems allo-
cate fixed-size portions of main memory for those operations after an optimized query
was translated into a final execution plan. However, estimation errors or long running
queries may overly bind memory capacities. Even in systems where sort operations are
“sourced out” to a distinct buffer pool, saturation effects may turn the pool into a per-
manently assigned memory area of constant size. If those pools were integrated into
a self-tuning mechanism, weak reaction times due to system monitoring demands may
cause the system to miss or exceed ideal configurations (see Figure 4.2). But sort opera-
tions are typically one-shot operations, which means, as soon as the sorting is performed,

62

4.2 Self-Tuning Buffer Management Approaches

time

size ideal sort
buffer size

self-tuning
sort buffer size

DB default
value

self-tuning action

exceed miss

sort event

Figure 4.2: Short-term memory consumers cause suboptimal self-tuning decisions

the data is read only once by the caller (i.e., a transaction). Although intermediate runs
of external sorts may cause IO for the same data multiple times, the sort result is ac-
cessed only once by a single client, often in a sequential manner, and, as a consequence,
the resulting access pattern is deterministically ordered. In contrast, buffer replacement
algorithms typically try to avoid read misses and buffers allow shared access as well as
multiple modifications of the same buffer frame – which is not required for short-term
memory consumers [OS11].

The sample scenario fort sort buffer adjustments in Figure 4.2 illustrates the problem,
caused by self-tuning when sort events (vertical bars) of different sizes occur. Three
different effects may happen: (1) The sort buffer size exceeds the required space due to
over-(re)acting, or (2) sort buffer size is below the optimum due to eager adjustments,
and (3) (not shown) a conservative strategy may retain constant sort buffer sizes over
long periods which is similar to static buffer management.

Despite the forecast issues we identified, the basic assumption is that buffer increase should
never result in a performance decrease. This justifies most of the existing approaches for buffer
upsize forecasts. Even if their predicted performance gain holds off, it should not decrease at
all.

Downsize forecasts are more critical, because they may lead to unwanted performance penal-
ties. The ideal starting point for buffer forecasts is the replacement algorithm used for a buffer.
Its statistics incorporate a lot more information about these relevant aspects than any other
performance marker. Today, substantial research has already been done to develop adaptive re-
placement algorithms, hence, it is safe to assume that such algorithms are operating “optimally”
for the available memory. The question is how to leverage this implicit knowledge for perfor-
mance forecasts. As we will demonstrate in the next section, it is difficult, but not impossible,
to get reliable estimates for buffer downsizing. In combination with already known simulation
methods for the estimation of buffer upsizing, we can then build a lightweight framework for
dynamic buffer management.

63

Chapter 4 Buffer Tuning

4.3 Lightweight Performance Forecasts

The goal of buffer replacement algorithms is the optimized utilization of data access locality,
i.e., to keep the set of the currently hottest pages that fits into memory. Accordingly, a smaller
buffer is assumed to keep an “even hotter subset” of the pages that would be present in the
actual buffer. Based on this assumption, we denote a subset of pages in a buffer of size n as
hotsetk, if it would be kept in a smaller buffer of size k. The key idea of our approach is to keep
track of this hotset during normal processing. When a page is found in the buffer and belongs
to the hotset, it would have been a hit in the smaller buffer, too. However, if a requested page is
in the current buffer but not in the hotset, the smaller buffer would need to evict another page,
which must be, of course, part of the current hotset and load the requested page from disk.
Here, we only have to maintain the hotset. The page that would have been evicted from the
smaller buffer is removed from the hotset and the requested page is added to it. Each swap is
accounted as a page miss for the simulated smaller buffer.

Listing 4.2: Modified page fix algorithm for downsize simulation
1 Frame fix(long pageNo) {

2 Frame f = mapping.lookup(pageNo);

3 if (f != null) {

4 if (!f.hotSet) {

5 Frame v = strategy.chooseHotSetVictim ();

6 f.hotset = true; // swap frame to hotset

7 v.hotset = false;

8 strategy.swapHotset(f, v); // update simulated statistics

9 }

10 strategy.refer(f); // update replacement strategy and statistics

11 } else {

12 Frame v = strategy.chooseVictim ();

13 mapping.remove(v.pageNo); // replace page in frame v

14 if (!v.hotset) {

15 Frame hv = strategy.chooseHotSetVictim ();

16 hv.hotSet = false; // swap frame to hotset

17 v.hotSet = true;

18 strategy.swapHotset(f, v);

19 }

20 strategy.referAsNew(v); // update replacement strategy and statistics

21 mapping.put(pageNo , v);

22 }

23 return f;

24 }

Of course, a page miss in the current buffer would also be a page miss in a smaller buffer.
Accordingly, we have to select a replacement victim for both the current buffer and the (sim-
ulated) smaller buffer. The real victim page is now replaced with the new page and swapped
with the virtual victim of the smaller buffer into the hotset. The modified page fix algorithm is
shown in Listing 4.2.

Note that a real replacement victim is generally not expected to be part of the current hotset,
because this would imply that the replacement strategy evicts a page more recently accessed. In
some algorithms, however, such counter-intuitive decisions might be desired, e.g., to explicitly
rule out buffer sweeps through large scans. Then, we must not maintain the hotset at all.

Obviously, the overhead of this approach is very small. We only need a single bit per buffer
frame to flag the hotset membership and must determine a swap partner, when a new page

64

4.3 Lightweight Performance Forecasts

real buffer size oversize

real buffer page

virtual buffer page

LRU chain

undersize 1

undersize 2

page/pointer movements

undersize hit/miss
counters

MRU LRU

Figure 4.3: LRU-based hotset simulation with overflow extension

enters the hotset5. Furthermore, the simulation does not influence the quality of the current
buffer, i.e., the strength of the replacement strategy is fully preserved. As said, the choice of
the hotset victim is dependent on the used replacement strategy to reflect the behavior of the
strategy in a smaller buffer correctly. In the following, we will look at hotset victim determina-
tion for our families of replacement algorithms. In particular, we want to know if it is possible
to predict replacement decisions for a smaller buffer based on the implicit knowledge present.

4.3.1 Algorithmic Extensions

To demonstrate the effectiveness of our approach, we integrated the hotset simulation into
several replacement algorithms. In the following, we sketch the most important aspects.

• LRU Typically, LRU is implemented as a doubly-linked list as shown in Figure 4.3.
On request, a page is simply put to the head, i.e., MRU position of the chain. Thus,
LRU finds its replacement candidate always at the tail, i.e., LRU position. Accordingly,
the first k pages of the LRU chain in a larger buffer of size n are identical with the k
pages in the simulated smaller buffer of size k and the hotset victim page is found at the
k-th position of the head. The overhead of pointer dereferencing to position k can be
avoided with a marker pointer (called hotset LRU) that can be maintained at low cost.
Hence, the hotset victim is guaranteed to be identical to the victim as in the smaller
buffer and the simulation is precise. Evidently, the simplicity of LRU even allows to
easily simulate at the same time the effects when the current buffer would be reduced to
different smaller sizes, which is especially useful for precise step-wise tuning decisions.
Here, it is sufficient to place a marker at each desired position.

• LRU-K The victim page in LRU-K is determined by the maximum backward K-distance,
i.e., the page with the earliest reference in the history vector. Thus, although imple-
mented differently, LRU-K behaves for K = 1 as LRU. The hotset victim is chosen
accordingly as shown in Listing 4.3. Note that implementations of LRU-K usually
maintain a search tree for that. For simplicity, we present here the modification of the
unoptimized variant as in the original paper.

Due to the history update algorithm described in [OOW93], more than one victim can-
didate can exist. This could become a problem for our simulation, because a real buffer
might choose a different victim than simulated. Therefore, we simply evict the candidate

5We applied the bit flag idea also to the SBPX buffer, which reduced the number of hash map lookups.

65

Chapter 4 Buffer Tuning

with the least recent reference (line 12). As the timestamp of the last access is unique,
our simulation will be accurate here. Instead, the choice of RIP turns out to become a
problem. If the garbage collection for history entries is not aligned, pages that re-enter
the smaller buffer will be initialized differently than in simulation, which may affect
future replacement decisions.

Listing 4.3: LRU-K hotset victim selection
1 Frame chooseHotSetVictim () {

2 long min = t;

3 long minLast = Long.MAX_VALUE;

4 Frame v = null;

5 for (int i = 0; i < pages.length; i++) {

6 Frame p = pages[i];

7 History h = p.history;

8 if ((p.hotSet) && (t - last > CIP)) {

9 long last = h.last;

10 long dist = h.vector[k - 1];

11 if ((dist < min)

12 || ((dist == min) && (last < minLast))) {

13 victim = p;

14 min = hist.vector[k -1];

15 }

16 }

17 }

18 return v;

19 }

• GCLOCK The determination of a hotset victim for GCLOCK is straightforward: We
simply have to iterate over the frames and look for the first hotset page whose reference
counter would drop below zero. Obviously, this occurs in the page with the minimum
reference counter. The algorithm is sketched in Listing 4.4.

Listing 4.4: GCLOCK hotset victim selection
1 Frame chooseHotSetVictim () {

2 Frame v = null;

3 int h = clockHand;

4 for (int i = 0; i < size; i++) {

5 Page p = circle [(++h % size)];

6 if (p.hotSet) {

7 if (p.count == 0) {

8 return v;

9 } else if ((v == null) || (p.count < v.count)) {

10 v = p;

11 }

12 }

13 }

14 return v;

15 }

Again, this only approximates the behavior of a smaller buffer with GCLOCK for two
reasons: First, the angular velocity of the clock hand in a smaller buffer is higher because
there are fewer frames. Second, the circular arrangement of buffer frames makes the
algorithm inherently dependent on the initial order. Thus, victim selection is not only a
matter of the page utilization, but also a matter of clock-hand position and neighborship
of frames. Using a second clock hand (i.e., pointer) walking solely over the hotset frames

66

4.3 Lightweight Performance Forecasts

is necessary to address differing round trips. However, swapping of frame positions
when the hotset is maintained would influence the behavior of GCLOCK in the actual
buffer – a circumstance, we want to avoid. To improve forecast quality, we implemented
the smaller circle, i.e., the hotset, with forward pointers for hotset pages that point to
the logical next one. In case of swapping (see lines 8 and 21 in Listing 4.2), only the
forward pointer and a hotset counter for that page need to be maintained. Later, we will
show that these minor efforts can lead to almost perfect estimations.

• 2Q Due to the sizing problems for the FIFO queue and the LRU chain in the standard
algorithm, we used a simplified variation of 2Q where all buffer frames are assigned to
the LRU chain and the FIFO queue only stores references to the pages in the LRU chain.
Consequently, it serves like an index for the LRU chain to identify pages referenced
only once so far. Victims are primarily selected from the FIFO queue to replace those
pages earlier. A subtlety of 2Q is here that the FIFO queue must not be drained to give
new pages a chance for re-reference and promotion to the LRU chain. The minimum fill
degree of the FIFO queue is a configurable threshold. For simulation, we must therefore
count the number of hotset entries in the queue, to be able to decide when a smaller
buffer would pick a victim from the FIFO queue and not from the LRU chain. Also, the
threshold must be the same for both sizes. Although this results in uniform retention
times in the FIFO queue for differing LRU chain sizes, it is acceptable to some degree,
because the threshold models the granted window for references of new pages. The
hotset victim selection is sketched in Listing 4.5. Depending on the number of hotset
entries in the a1 list (line 4), the victim is chosen either from the a1 list (lines 4–15)
or from the am list (lines 17–22). Note that both LRU hotset pointers may refer to the
same buffer page, which requires maintenance (i.e., moving the pointer) also for the
unaffected queue (lines 5,6 and lines 18,19, respectively).

Listing 4.5: 2Q hotset victim selection
1 Frame chooseHotSetVictim () {

2 Frame v;

3 if ((a1.numberOfHotsetEntries () > threshold)) {

4 v = a1.hotsetLRU (); // victim from FIFO

5 if (v == am.hotsetLRU ()) {

6 am.hotsetLRU () = am.hotsetLRU (). amNext;

7 // if both list ’s hotset LRU pointers are equal move the am’s, too

8 }

9 a1.hotsetLRU () = a1.hotsetLRU (). a1Next;

10 while (!a1.hotsetLRU (). hotSet) {

11 a1.hotsetLRU () = a1.hotsetLRU (). a1Next;

12 // skip non -hotset page to reposition a1’s hotset LRU pointer

13 }

14 } else { // inverse logic for LRU list:

15 v = am.hotsetLRU (); // victim from LRU

16 if (v == a1.hotsetLRU ())

17 a1.hotsetLRU () = a1.hotsetLRU (). a1Next;

18 am.hotsetLRU () = am.hotsetLRU (). amNext;

19 while (!am.hotsetLRU (). hotSet)

20 am.hotsetLRU () = am.hotsetLRU (). amNext;

21 }

22 return v;

67

Chapter 4 Buffer Tuning

• ARC The overhead for a separate SBPX-based oversize simulation can be avoided, when
the history LRU chains B1 and B2 are taken into account. Therefore, the page fix routine
is slightly adapted towards ARC-awareness. In Listing 4.6, the fix() algorithm is aware
that pages found in the buffer (lines 2–3) are either from a history LRU chain (lines 4–13)
or a T∗ chain (lines 14–20). We also added overflow and hotset counters for simulated
misses and hits to illustrate the simple adaptation. Note, the refer() and victim() routines
in line 21 and 23 are equal to the algorithms presented in [MM03].

Listing 4.6: ARC page fix
1 Frame fix(long pageNo () {

2 Page p = buffer.get(pageNo);

3 if (p != null) {

4 if (p.getList () == B1) {

5 if (!p.overflow ())

6 overflowMissCnt ++;

7 else

8 overflowHitCnt ++;

9 } else if (p.getList () == B2) {

10 if (!p.overflow ())

11 overflowMissCnt ++;

12 else

13 overflowHitCnt ++;

14 } else {

15 overflowHitCnt ++;

16 if (!p.hotSet ())

17 hotsetMissCnt ++;

18 else

19 hotsetHitCnt ++;

20 }

21 p.refer ();

22 } else {

23 p = strategy.victim(buffer);

24 buffer.remove(p.pageNo);

25 ... // load page

26 buffer.put(pageNo , p);

27 overflowMissCnt ++;

28 hotsetMissCnt ++;

29 }

30 return p;

31 }

Listing 4.7: ARC simulation functions
1 boolean hotSet () {

2 int steps = t1.length;

3 if (list == T2) steps = t2.length;

4 steps -= steps * underSize / size;

5 int i = 0;

6 Page y = this;

7 while (i < steps && y.next != null) {

8 i++;

9 y = y.next;

10 }

11 return (i >= steps);

12 }
13
14 // same as hotSet () but for B* lists

15 boolean overflow () {

16 int steps = b1.length;

17 if (list == B2) steps = b2.length;

18 steps = steps * overSize / size;

19 int i = 0;

20 Page y = this;

21 while (i < steps && y.prev != null) {

22 i++;

23 y = y.prev;

24 }

25 return (i >= steps);

26 }

Simulation of different buffer sizes in ARC does not use flags to indicate hotset or over-
flow membership of a page. Instead, two functions calculate these properties on demand
as shown in Listing 4.7. For hotset membership, we first estimate a valid hotset size de-
pending on the current sizes of T1 and T2 (lines 2–4), which determines the upper bound
of page links to follow (called steps, lines 7–10) towards the end of the T∗ list. If the end
can be reached within this bound, a page is not within the hotset range, otherwise it is.

The estimation of overflow membership is similar. Only the chain traverse order is
different, because the steps calculated to find the beginning of a B∗ list set the upper
bound. Usually, the hotset size is close to the actual size as well as the SBPX size.
Therefore, following next and previous pointers into the direction of the real buffer size
is favorable. Note, this way of simulation works for SBPX sizes smaller than the history
chains B1 +B2, i.e., SPBX size has to be less or equal to the cache size, which allows to
forecast extensions of up to 100% of the current size.

68

4.4 Dynamic Buffer Pool Management

4.4 Dynamic Buffer Pool Management

Even experienced database administrators with a deep knowledge of the workload and the
database buffers, rely on the assistance of sophisticated monitoring tools to prevent negative ef-
fects of their tuning decisions. Often, they also run several observe-analyze-adjust cycles with
reference workloads on dedicated test systems beforehand. Of course, this is time-consuming
and expensive. Built-in self-monitoring and tuning components can ease this dilemma and
reduce the risk of wrong decisions through rather small but continuous and incremental adjust-
ments. In dynamic environments, however, those mechanisms may react too slowly to keep
up with the rate of workload shifts or short-term resource allocation for higher-level tuning
decisions like auto-indexing. Therefore, we aim towards a reformulation of the central ques-
tion of automatic tuning from “Which adjustment certainly will give the greatest performance
benefit?” to “Which adjustment most likely will give a performance benefit, but will certainly
not result in a performance penalty?”. In other words, when we know that our reconfigurations
will not harm, we get the freedom to react quicker and may apply more aggressive tuning.

In general, the total amount of buffer memory is limited and, therefore, the decision to assign
more memory to a certain buffer is directly coupled with the decision of taking this memory
from one or several others. Fortunately, the performance optimization heuristics for IO-saving
buffers (e.g. data pages, sorting) is straightforward: The more main memory can be used the
better. Even an oversized buffer, i.e., a buffer larger than the actual data to be buffered, is
less likely to become a performance bottleneck due to bookkeeping overhead; it is just a waste
of main memory. Downsizing a buffer, however, comes along with severe risks: the buffer’s
locality may drastically decrease and even turn into thrashing causing excessive IO, which also
influences the throughput of other buffers. Accordingly, we concentrate on the forecast of
negative effects of memory reallocations and base our tuning decisions not only, as common,
on the estimated benefits, but also on vindicable forecasts of additional costs.

4.4.1 Cost Model

Automatic tuning needs to derive costs from the current system state or from system behav-
ior to quantify the quality of the current configuration. Additionally, it needs to estimate the
costs of alternative configurations to allow for comparison. Ideally, these costs comprise all
performance-relevant aspects including complex dependencies between system components
and future workload demands in a single number to allow for perfect decisions. Clearly, such
a perfect cost model does not exist in practice. Instead, costs are typically derived from a mix-
ture of cheaply accounted runtime indicators and heuristics-based or experience-based weight
factors. The goal is to reflect at least the correct relationship between alternative setups w.r.t.
performance. The more precise this much weaker requirement can be met, the easier we can
identify hazardous tuning decisions before they boomerang on the system.

In contrast to computational costs of a specific algorithm, costs expressing the quality of a
buffer are inherently dependent on the current workload. Buffering 5% of the underlying data,
for example, can be an optimal use of main memory at one moment, but become completely
useless a few moments later. Therefore, each cost value is a snapshot over a window at a certain

69

Chapter 4 Buffer Tuning

point in time with limited expressiveness for at most few periods in the future. We define the
general goal function for our tuning component as follows:

At a given point in time t with a configuration c, find a configuration c′ that has less accu-
mulated IO costs over the next n periods.

The optimal window size and the number of forecast periods again depend on the actual
workload; slowly changing workloads enable more precise cost estimations for longer periods,
while rapidly changing workloads also decrease accuracy of future costs.

For simplicity, our cost model only considers buffer service time, i.e., the time needed to
handle a page fix request. Of course, costs assigned to a specific buffer are primarily deter-
mined by the number of IOs performed. On a buffer miss (denoted m), a victim page has to be
selected for replacement and flushed, if necessary, before the requested page is fetched from
disk. Accordingly, a buffer miss causes at least one read operation, but may also cause sev-
eral writes for flushing the log and the victim page. The ratio between reads and synchronous
writes is reflected by a weight factor fdirty that may vary over time and from buffer to buffer.

Depending on the characteristics of the underlying devices or blocking times under concur-
rent access, IO times can also vary between buffers. Hence, the costs of all buffers must be
normalized to a common base to become comparable. We use here a second weight factor
wbuffer for each buffer. As the time needed for a single IO operation is easy to measure, these
factors can be derived and adjusted at runtime causing low overhead. Finally, the cost of a
buffer at the end of time period t is expressed as:

cbuffer(t) = wbuffer(t)·(1+ fdirty(t))·m(t)

Note, we assume that CPU costs can be safely ignored, either because they are independent of
whether an operation can be performed on buffered data or requires additional IO, or because
additional CPU cycles for search routines in larger buffers are negligible compared to an IO
operation. In the remainder of this chapter, we assume that read and write operations have
symmetric costs and a low variance. However, it should be evident that the presented model
can be easily extended to take asymmetric read/write costs (e.g. for solid-state drives), different
costs for random and sequential IO, and also the apportionment of preparatory, asynchronous
flushes of dirty pages into account.

4.4.2 Decision Model

Our approach of buffer balancing is using the cost model presented in Section 4.4.1. In regular
intervals, a buffer configuration is analyzed and optimized if reallocations of main memory
promise lower IO costs for the entire system. In Listing 4.8, the main algorithm responsible
for buffer balancing is shown.

At the end of a monitoring period, we calculate a save and a rise ranking for all buffer pools
based on their cost estimations. The higher a buffer pool is ranked in the save list, the more
costs can be saved (i.e., it provides a higher benefit) when its size is increased according to the
simulated oversize. Similarly, the rise list ranks buffers by the cost estimations for undersize
figures, where the minimum cost increase is ranked top (cf. Listing 4.8, lines 2–30).

70

4.4 Dynamic Buffer Pool Management

Listing 4.8: Balance algorithm
1 void balance () {

2 RankList <Buffer > save = new RankList <Buffer >()

3 RankList <Buffer > rise = new RankList <Buffer >()

4 for (Buffer b : buffers) {

5 int saveIO = b.missCnt - b.overflowMissCnt;

6 int riseIO = b.hotsetMissCnt - b.missCnt;

7 boolean added = false;

8 for (Buffer sb : save) {

9 int cmp = sb.missCnt - sb.overflowMissCnt;

10 if (!added && saveIO > cmp) {

11 // insert into rank at current position:

12 sb.insertIntoRank(b);

13 added=true;

14 }

15 }

16 if (!added)

17 save.add(b); // buffer is added at the end

18
19 added = false;

20 for (Buffer rb : save) {

21 int cmp = rb.hotsetMissCnt - rb.missCnt;

22 if (!added && riseIO < cmp) {

23 // insert into rank at current position:

24 rb.insertIntoRank(b);

25 added = true;

26 }

27 }

28 if (!added)

29 rise.add(b); // buffer is added at the end

30 }

31
32 Buffer i = null; // buffer to (i)ncrease

33 Buffer d = null; // buffer to (d)ecrease

34 while (true) {

35 i = null; d = null;

36 for (Buffer b : save) {

37 for (Buffer b2 : rise) {

38 if (d == null && b != b2) {

39 i = buf; d = buf2;

40 if ((d.hotsetMissCnt - d.missCnt) >

41 (i.missCnt () - i.overflowMissCnt))

42 red = null;

43 }

44 }

45 }

46 if (d == null)

47 break;

48
49 // amount depends on i’s and d’s simulation ranges

50 i.increase(amount);

51 d.decrease(amount);

52 save.remove(i); rise.remove(i);

53 save.remove(d); rise.remove(d);

54 }

55 }

71

Chapter 4 Buffer Tuning

With a Greedy algorithm, buffer pool pairs are now picked from the top of both lists as long
as the cost reduction on the save list is higher than the increase on the rise list (lines 32–45).
A buffer may end up in both lists indicating a critical “jump” size that is easily recognized
this way (line 38). A resize mechanism performs then the actual memory “shift”: The selected
buffer from the save list is allowed to keep more page frames and references in the cache (line
50), while the buffer from the rise list is shrunk (line 51). For this, we repeatedly choose a
victim page, flush it to disk, if necessary, and deallocate the page frame. Finally, the resized
buffers are removed from both ranking lists (lines 52–53) to avoid thrashing. Note, we could
compute an optimal solution for the resizing, but the Greedy pairwise resizing is much cheaper
and delivers good results.

Of course, the simulated undersize and oversize areas of a buffer have to be adjusted as well.
This is similar to a “regular” buffer resize. For instance, the number of hotset pages is reduced
by selecting victims out of this subset and by switching their flags. Obviously, oversize areas
can be kept or resized as desired. As oversize and undersize simulations for several buffer
pools do not necessarily have the same size in bytes, gradual reallocations may be become
necessary. For that, we must extrapolate the buffer scaling behavior between the real size and
the simulated sizes.

Obviously, buffer resizing is a potentially expensive operation, because it may require a
forced flush of dirty pages when one buffer is shrunk in favor of another one. However, the
expected benefits justify this temporal overhead in general. If desired, the resize penalty for
dirty pages could also be included in the cost model to fully avoid this temporal negative effect
[BS11, SB11].

Important for buffer resizing is its time horizon, e.g., [CW05] recommend to manage the
system memory in “near real-time”, that enables quick reaction to workload shifts. Only the
costs for buffer decrease, as explained before, have to be justified. An increase usually comes at
almost zero costs. Thus, we can expand our approach to handle major workload shifts affecting
all buffer pools as well as to deal with short-term peak loads, as the following section will show.

4.4.3 Integrating Short-term Memory Consumers

Depending on the assigned memory, the algorithmic effort for short-term memory consumers
like (merge) sort or join operators can be determined [OS11]. For certain memory sizes, an
accurate cost estimation of IO operations based on common database statistics is possible. By
estimating IO costs for feasible memory sizes, characteristics of such operations are disclosed
showing their scalability in terms of main memory resources.

To integrate short-term memory consumers in buffer tuning, we need to extend our analysis
of buffer statistics. Because sorts may last multiple tuning periods (or less than one), their
costs have to be adapted to enable data buffer pool comparisons. By collecting IO statistics,
we roughly know how many (weighted) reads and writes can be performed by the system in
one tuning period. There are rather active buffers serving a lot of IO requests and, in turn, less
active ones. Of course, a sort buffer behaves like a very active one. That means, if the system
performs x IOs in a time interval (under load) and the most active buffer served y requests,
the number of IOs the sort can achieve during a tuning period is approximated by y

x+y ·x. This

72

4.4 Dynamic Buffer Pool Management

temporarily adds a separate buffer to the cost model (i.e., the memory assigned for a short-term
memory consumer is considered as a buffer), which can be balanced to the remaining data
buffers and the existing mechanism.

When short-term memory consumers are finished, the decision, which data buffer gets how
much of the freed memory, has to be made. There are various alternatives possible: (1) The
memory is returned to the original buffer it was taken from, which ignores current benefit sim-
ulations. (2) The memory is distributed according to the current (upsize) benefit estimations,
which may result in an oversized buffer, because the simulation size is usually different. (3)
A step-by-step approach, reassigning only memory portions according to current simulation
sizes for individual buffers in each period, observes benefit estimations but may take consider-
ably more time (i.e., spanning several periods). (4) Distributing the freed memory to multiple
buffers promising a performance gain is another option. We simply trigger the buffer balance
logic and artificially “down-rank” the sort buffer to have negative benefit in case of upsizing
and positive benefit in case of downsizing.

4.4.4 Read-ahead

Read-ahead mechanisms, also called prefetching, were introduced by the operating system
community [Smi78]. Various cache replacement algorithms and their interplay with prefetch-
ing led to different prefetch classes. The distinction between on-demand fetching and prefetch-
ing was made, but also the downside of prefetching, i.e., the overhead, if unused data is brought
into the cache, was studied. In [Sto81], a first step towards DBMS-aware prefetching was pre-
sented by reusing operating system concepts. However, access patterns in a DBMS are logi-
cally ordered (e.g., sequential access of data pages in a B-tree) and not necessarily physically
clustered. Thus, a DBMS needs to specify its own read-ahead logic on top of the operat-
ing system’s cache mechanism [EH84, Sto81]. Later, hints were added to perform cost-benefit
analyses for future IO [TPG97]. IO forecasts may help to adjust the prefetch size online [PZ91].

There are many challenges when applying read-ahead in DBMSs. In [VL00], many of
them were addressed. The most important issues are (1) a timely, useful, and little overhead
causing implementation, (2) secondary effects such as cache pollution and increased memory
requirements must be taken into consideration, and (3) improvement of runtime by overlapping
computation with memory accesses. The authors also identify the problems that occur when
adaptive prefetching is done such as lower miss ratios may be partially annihilated by the
associated overhead of increased memory traffic and contention.

We want to exploit the benefits of read-ahead in our buffer, too. The read-ahead should be
independent of the replacement algorithm and work together with other self-tuning measures.
Similar to common techniques in replacement algorithms, the access history is a good indi-
cator for future accesses. As long as mechanical hard drives dominantly appear as external
storage equipment, sequential access patterns seem to be the most favorable ones to be iden-
tified. Note, we concentrate on spatial locality on disk and not necessarily on logical data
structures. Because operating system’s prefetching does similar optimizations in detecting se-
quential accesses, we need to exploit them instead of ignoring them. The sheer call stack when
reading data, from the user query down to the bits and bytes through certain DMBS layers (Sec-

73

Chapter 4 Buffer Tuning

buffer miss + victim flush

bu
ff

er
 p

oo
l s

iz
e

flush (write)
read

bu
ff

er
 p

oo
l s

iz
e

∈ {commit, victim}ie1 2 3e e e

flushes (writes)

Figure 4.4: From single-page flush (left) to grouped flush (right)

tion 2.2), causes a lot of overhead, context switches, etc. However, physical IO is decoupled
from logical one via the buffer, e.g., multiple transactions (sequentially) access data located
at different areas in parallel. Due to scheduling effects, here, the raw IO may result in a see-
saw hindering the identification of sequential access patterns. Therefore, the transaction-aware
interplay of buffer accesses and external IO calls is important.

Our read-ahead implementation in XTC is straightforward. The x most recent page requests
that led to a physical read are remembered and y pages can be prefetched, i.e., sequential pages
to be read ahead. Both sizes x and y are adjusted online. Each page request leading to a miss
is compared to the x history of requests. If the distance between at least one of these history
pages is below two, a read-ahead is initiated. The read-ahead loads y consecutive pages. At the
moment, XTC does not support prefetching for different sequential reads per buffer pool at the
same time, i.e., all y pages are ordered consecutively. At least y/2 physical reads are necessary
to switch to another “scan”, i.e., a different physical page sequence. If read-ahead is beneficial
and followed by more sequential access for this “scan”, y can be increased if buffer size and
free capacity allow that. Accordingly, y is decremented as soon as read-ahead is unfavorable.
Although x can be changed online, our tests have not shown any noticeable benefit.

4.4.5 Sequential Writes (Buffer Flushes)

According to Section 4.4.4, nowadays, sequential access leads to higher throughput rates com-
pared to random access. When a buffer page needs to be flushed because it is chosen by the
replacement policy, a single (page) write to external disk occurs. Furthermore, depending on
the log strategy, a kind of before-image or pointer switch needs to be performed synchronously
(i.e., blocking IO). With the advent of log-structured file systems [RO92], single page modifi-
cations are solely kept in the sequential log. But those pages may belong to different database
objects and moreover have been modified by different transactions. Hence, the physical order
gets shuffled.

To overcome the single page-at-a-time flush (see Figure 4.4, left) causing a lot of random IO,
because the replacement page (i.e., newly fetched) may be located somewhere else, grouped
and sequential flushes are beneficial (see Figure 4.4, right). This is achieved by collecting
sequences of pages from the same transaction without waiting for an explicit commit or by
flushing any set of pages at-a-time. This set can contain a logical sequence of pages or the
top-k pages to be flushed. Optionally the set of pages can be sorted before being flushed.

74

4.4 Dynamic Buffer Pool Management

Although, multiple page flushes reduce the number of context switches, they do not guarantee
to operate the buffer permanently at its capacity. In Figure 4.4, the impact on the buffer pool
usage is visible. Another drawback exists when data is flushed too early, i.e., the assumption
that eagerly flushing a (modified) page that will not be used again turned out to be wrong.

When using read-ahead (cf. Section 4.4.4) and grouped flushes, the underutilization of a
buffer is compensated by the additional pages read and, thus, fast sequential reads easily fill
the buffer again that was (partially) flushed before. Both techniques are based on the concept
of sequential IO and their interplay is exploited.

4.4.6 Implementation Aspects

The entire buffer self-tuning is implemented within the propagation layer of XTC. Only some
external interfaces are available to provide monitoring for performance evaluation and high-
level control facilities.

Basic buffer monitoring is extended to collect additional statistics. That requires to account
three hit/miss counters for the hotset, overflow, and real buffer size. Other metrics are calcu-
lated on demand or acquired by sampling. For instance, the average response time, which is
used for goal-oriented tuning, is fairly costly to determine and usually does not change, for
which reason sampling is used.

Each buffer page contains the following metadata:

Page implements Frame {

byte[] data; // size depends on page size

int containerNo; // physical data container

PageID pageID; // logical page identifier (8 Byte)

Latch latch; // lightweight lock

boolean safe; // transactional property

AtomicReference <Object > cache; // cache for decompression

}

For the simulated overflow and history areas (e.g., B∗ lists in ARC), a reduced page type is
used that only contains the pageID. Pages are managed in several ways. Each buffer contains
a hash map for fast pageID-based lookups and the internal data structures (e.g., LRU chains)
of each replacement algorithm reference the same pages or their reduced type.

To integrate self-tuning capabilities for a buffer, basically the following interface Resizable-
Buffer needs to be implemented.

interface ResizableBuffer extends Buffer {

increaseSize(int noFrames);

decreaseSize(int noFrames , boolean immediateFlush);

getMinSize ();

int getMaxRemovablePages ();

double getAverageResponseTime (); // goal -based tuning

double getGoalResponseTime (); // goal -based tuning

setGoalResponseTime(double goalResponeTime); // goal -based tuning

resetResponseTimeCounters (); // goal -based tuning

long getSBPXSavedTime (); // simulation -based tuning

setSBPXsize(int size); // simulation -based tuning

resetSBPX (); // simulation -based tuning

}

Therefore, a buffer carries some metadata, as shown in Listing 4.9.

75

Chapter 4 Buffer Tuning

Listing 4.9: Buffer metadata for self-tuning
1 Buffer implements ResizableBuffer {

2 // general buffer properties

3 HashMap <PageID , Frame > pageNoToFrame; // mapping page ID to buffer position

4 int bufferSize; // number of maintained buffer positions

5 int pageSize; // size of a buffer page in bytes

6 Policy policy; // replacement policy for the buffer

7
8 // self -tuning properties :

9 boolean groupedFlush;

10 boolean groupedFlushSort;

11 HashMap <PageID , Frame > framesToFlush;

12 int minSize; // minimum size of this buffer

13 int costPR; // cost for physical read

14 int costPW; // cost for physical write

15
16 // goal -oriented

17 int noSW; // synchronous writes counter

18 int noPR; // physical reads counter

19 int noLR; // logical reads counter

20 double goalResponseTime; // goal response time

21
22 // simulation -based

23 HashMap <PageID , ReducedFrame > sbpx; // SBPX mapping

24 Policy policySPBX; // replacement policy for the overflow area

25 ...

26 }

The most obvious differences exist for the various self-tuning approaches. For instance, the
goal-oriented tuning relies on simple counters, but is hard to control, i.e., to define a proper goal
response time. In contrast, SBPX-based tuning requires an additional hash map and a separate
instance of a replacement policy. In both cases, the hotset simulation is optional because it is
integrated into the replacement policy that is present anyway.

For both, replacement algorithm and buffer, appropriate resize functionality is required.
However, as Listing 4.10 shows, they are fairly simple and straightforward to implement.

The increased functionality first calls the replacement policy to add new buffer slots (line 3),
before memory is allocated for them in the buffer (line 5).

Decreasing the size of a buffer has to ensure that no concurrent access interferes with the
potential “mass” flush that requires to retrieve the list of victims synchronized (lines 13–27).
After some sanity checks (lines 14–16), the replacement policy selects a set of victim pages
(line 18), before those pages are either removed immediately or delayed (lines 21–25). In case
of a delayed flush, the synchronized requirement is released, which allows concurrent buffer
access, but may temporarily cause too much memory being assigned for buffers until all frames
are flushed (lines 33–36).

As presented in Section 3.6.5, a simple STR call creates appropriate monitoring events (lines
8 and 29).

4.5 Evaluation

We assess the performance of our buffer extensions and optimizations with a generated set of
benchmark workloads. A brief introduction of workload generation is followed by a descrip-
tion of our workloads we used to imitate various (common) access patterns including random

76

4.5 Evaluation

Listing 4.10: Resize functionality for buffer self-tuning
1 increaseSize(int noFrames) {

2 synchronized {

3 List <Frame > newFrames = policy.increaseSize(noFrames); // call policy

4 for (Frame frame : newFrames)

5 frame.setPage(new byte[pageSize]); // allocate memory

6 bufferSize += noFrames; // increase size

7 // monitoring and reporting:

8 STR.addEvent(new ReportEvent <int[]>(ReportComponent.BUFFER ,"INCSIZE",stats));

9 }

10 }
11
12 decreaseSize(int noFrames , boolean immediateFlush) {

13 synchronized {

14 if ((bufferSize <= noFrames) || (bufferSize - minSize < noFrames) ||

15 (getMaxRemovablePages () < noFrames)) // see next method

16 return InvalidOperation;

17
18 List <Frame > victims = policy.decreaseSize(noFrames); // policy selects victims

19 for (Frame frame : victims) {

20 if (!frame.isDeleted ()) {

21 pageNoToFrame.remove(frame.getPageID ()); // remove from buffer mapping

22 if (immediateFlush) // variant 1: immediateFlush

23 flush(frame);

24 else // variant 2: flush pages later

25 framesToFlush.put(frame.getPageID(), frame);

26 }

27 }

28 this.bufferSize -= noFrames; // decrease size

29 STR.addEvent(new ReportEvent <int[]>(ReportComponent.BUFFER ,"DECSIZE",stats));

30 }

31 // not synchronized anymore:

32 if (! immediateFlush) { // variant 2 cont ’d

33 for (Frame frame : framesToFlush;

34 {

35 flush(frame);

36 framesToFlush.remove(frame);

37 }

38 }

39 }
40
41 int getMaxRemovablePages () { // retrieve number of non -fixed pages

42 int currentfixCnt = 0;

43 for (Frame frame: pageNoToFrame)

44 if (frame.isFixed ()) // cannot be flushed

45 currentfixCnt ++;

46 int maxRemovablePages = bufferSize - currentfixCnt;

47 if (minSize - currentfixCnt > 0) // observe minimum buffer size requirement

48 maxRemovablePages -= (minSize - currentfixCnt);

49 return maxRemovablePages;

50 }

77

Chapter 4 Buffer Tuning

and sequential accesses of varying sizes. Thereafter, we evaluate the accuracy of our forecast
mechanisms, which will be applied for buffer balance and workload analyses. Important as-
pects like overhead, integration of short-term memory consumers, and IO optimizations will
conclude this evaluation part.

4.5.1 Workload

Buffer mechanisms have to deliver a reliable performance under various and sometimes excep-
tional access patterns. We built a workload generator that allows imitating realistic, artificial,
and unusual access behavior. This allows us to analyze our optimizations in a structured way,
i.e., varying different characteristics of the workload, and reliefs the pain of searching for ade-
quate high-level workloads such as XQuery statements and suitable documents. Nevertheless,
we also used the latter one to verify some of the results, but this is far from a structured “full”
validation.

Generator

The basic unit of our generator is simply delivering a buffer request on each call, for instance,
a page fix request parameterized by its logical page number. A basic unit is initialized to either
generate the requests on demand or to use an already generated file containing the sequence of
requests6. Multiple parameters are possible for initialization, such as page ranges and access
type (e.g., sequential, random, or Zipf). By combining multiple of these basic units, we can
easily assemble a specific workload scenario. Each generator is weighted within the workload
to address varying shares of certain access types and ranges.

Buffer Characteristics

In our benchmark, we evaluate the buffer performance for different sizes and algorithms. A
sample was already shown in Figure 4.1 on page 61. Typically, for each workload and each
replacement strategy, the characteristics of buffer performance vary. Based on these charac-
teristics, we choose interesting buffer sizes for further inspection, e.g., jump points, plateaus,
and linear trends. We will see that different replacement strategies perform totally different
for identical buffer sizes, but that does not necessarily hold for the whole range of possible
buffer sizes. To justify our extensions and optimizations, we compare their effects for multiple
algorithms.

Workloads

In Figures 4.5(a)–4.5(d), we analyze the critical buffer size ranges for various access patterns
whose characteristics are summarized in Table 4.1. Note, the total number of database pages
in a scenario is equal to the object size in the first column of the table. The only uniformly
scaling buffer is measured for workloads dominated by random IO, see Figure 4.5(a), where

6These files can be used to repeat evaluations or to avoid costly live computations such as for generating a Zipf distribu-
tion. Simple scans and random access patterns are always generated on demand.

78

4.5 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

h
it

 r
a
ti

o
 i

n
 %

buffer size in %

hotset

real

overflow

GCLOCK
LRU

LRU-2
2Q

ARC

(a) pure random IO

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30

h
it

 r
a
ti

o
 i

n
 %

buffer size in %

GCLOCK
LRU

LRU-2
2Q

ARC

(b) scan-dominated IO

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

h
it

 r
a
ti

o
 i

n
 %

buffer size in %

GCLOCK
LRU

LRU-2
2Q

ARC

(c) multiple scans

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

h
it

 r
a
ti

o
 i

n
 %

buffer size in %

GCLOCK
LRU

LRU-2
2Q

ARC

(d) real workload

Figure 4.5: Buffer scalability for various workloads and replacement algorithms

the overall hit ratio is – as expected – quite low. In this case, resizing extrapolations will
work properly, but such an access behavior is unusual in databases. Dominating scans mixed
with random accesses are modeled and measured in Figure 4.5(b). Although some of the
replacement algorithms are scan resistant, a dominant sequential access pattern easily provokes
a “jump” in the buffer performance. In such cases, the buffer hit rate dramatically increases
as soon as a frequent scan fits entirely into the buffer. Such “jumps” remain undetected if
monitoring happens only on the opposite side. The third workload shown in Figure 4.5(c) is a
mixture of multiple scans and random accesses in a single buffer. This scenario may represent
a more typical buffer usage pattern that exhibits a realistic buffer scaling. In Figure 4.5(c),
several areas can be identified having different slopes, where each area boundary may cause
uncertainty for extrapolations. In the last sample workload, shown in Figure 4.5(d), we have
a mixture of high-locality scans and some noise generated by random accesses. This typical
workload scenario causes several (small) jumps resulting in a stair-case pattern. In this case,

79

Chapter 4 Buffer Tuning

Table 4.1: Workload characteristics
Workload Figure 4.5(a) (random) Figure 4.5(b) (scan) Figure 4.5(c) (jumps)
Request share in % 50 50 25 75 10 65 25
∑object size (pages) 150k 22k 150k 7k 150k 7k 13k
Access type rnd rnd rnd seq rnd seq seq

Workload Figure 4.5(d) (real)
Request share in % 10 10 10 20 10 20 10 10
∑object size (pages) 250k 5k 10k 10k 500 500 1k 2k
Access type rnd rnd seq seq seq seq seq seq

fine-grained extrapolations necessary for buffer tuning may quickly fail, although the slope in
the average is quite similar.

In the following sections, we investigate whether or not our algorithms are capable of iden-
tifying and handling all of these (more or less) typical workload scenarios.

4.5.2 Forecast Accuracy

The quality of buffer self-tuning is based on the estimation accuracy of our extended buffer
algorithms. Therefore, we need to evaluate it for the differing workloads. For the following
experiments, the gray-shaded areas in Figures 4.5(a)–4.5(d) specify the simulated ranges cen-
tered around the actual buffer sizes indicated by the black lines (i.e., “real”). We choose a
typical buffer tuning range of ±2 % of the total DB size for upsizing and downsizing simu-
lations. For each workload, we measure the accumulated “hotset” and “oversize” estimation
accuracy. Each of the Figures 4.6(a)–4.6(d) contains the results of the six extended algorithms
using the same workload and up to 1.2 Mio buffer calls. The lines marked with an asterisk (*)
illustrate the simulation-based hit ratios and, to enable comparison, the others show those of
real buffers having the same sizes.

In each figure the first graph shows the standard LRU behavior that is always delivering per-
fect estimation accuracy; however, its hit ratio performance is not superior. But its lightweight
simulation is definitely a plus. In contrast, the LRU-K results (second graphs) constantly in-
dicate top hit ratios but show weaknesses w.r.t. forecast quality. Especially the downsize
simulation of the scan workload fails with a dramatic overestimation.

The results for GCLOCK in Figures 4.6(b) and 4.6(d) (third graphs) reveal its sensitivity
to page order and clock-hand position for hotset simulations. By adding a second clock hand
and forward pointers to simulate a separate clock for the hotset pages, we achieve considerably
better accuracy (fourth graphs), but its performance is always behind all other strategies.

Forecast quality provided by the simplified 2Q algorithms is revealed, too (fifth graphs).
In all scenarios, 2Q delivers excellent buffer results while only requiring low maintenance
overhead. However, forecast quality is disappointing in some scenarios. Similar to LRU-K, it
fails for workload scan, but in the opposite direction with underestimation. Further, we observe
a suddenly degrading forecast quality for the workloads jumps and real. Moreover, oversize
estimations and undersize estimations are negatively affected. Even the use of a separate policy
for the oversize buffer does not lead to better results, which, in turn discloses the weaknesses

80

4.5 Evaluation

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

LRU

h
it

 r
at

io
 i

n
 %

real *
hotset *

overflow *
real

hotset
overflow

 0 2 4 6 8 10

LRU-K

 0 2 4 6 8 10

GCLOCK simple

 0 2 4 6 8 10

GCLOCK improved

 0 2 4 6 8 10

2Q

 0 2 4 6 8 10

ARC

(a) Estimation accuracy for workload random (buffer calls ×100.000 on x-axis)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10

LRU

h
it

 r
at

io
 i

n
 % real *

hotset *
overflow *

real
hotset

overflow

 0 2 4 6 8 10

LRU-K

 0 2 4 6 8 10

GCLOCK simple

 0 2 4 6 8 10

GCLOCK improved

 0 2 4 6 8 10

2Q

 0 2 4 6 8 10

ARC

(b) Estimation accuracy for workload scan (buffer calls ×100.000 on x-axis)

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10

LRU

h
it

 r
at

io
 i

n
 %

real *
hotset *

overflow *
real

hotset
overflow

 0 2 4 6 8 10

LRU-K

 0 2 4 6 8 10

GCLOCK simple

 0 2 4 6 8 10

GCLOCK improved

 0 2 4 6 8 10

2Q

 0 2 4 6 8 10

ARC

(c) Estimation accuracy for workload jumps (buffer calls ×100.000 on x-axis)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10

LRU

h
it

 r
at

io
 i

n
 %

 0 2 4 6 8 10

LRU-K

real *
hotset *

overflow *
real

hotset
overflow

 0 2 4 6 8 10

GCLOCK simple

 0 2 4 6 8 10

GCLOCK improved

 0 2 4 6 8 10

2Q

 0 2 4 6 8 10

ARC

(d) Estimation accuracy for workload real (buffer calls ×100,000 on x-axis)

Figure 4.6: Evaluation of hotset and oversize estimation accuracy

81

Chapter 4 Buffer Tuning

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10 12

e
rr

o
r

in
 %

buffer calls x 100.000

random workload (overflow)
real workload (hotset)

Figure 4.7: Simulation error analysis explaining
hit ratio drift

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

h
it

 r
a
ti

o
 i

n
 %

buffer size in %

hotset reference overflow

GCLOCK
LRU

LRU-2
2Q

ARC

Figure 4.8: Workload characteristics used
for the analysis of simulation ranges

of the SBPX approach.

The performance of ARC and its forecast accuracy is shown on the right-hand side. Besides
always good hit ratios, ARC’s forecast for downsizing underestimates the actual performance
except for random workloads. Although the visual distance between estimation and actual hit
ratio seems to be huge sometimes (i.e., < 10%), this forecast error solely evolves from the
algorithm’s warm up. In the following paragraph Drift, we show that the permanent error is
quite low, as the trend of the cumulative hit ratio forecast already indicates.

The experiments reveal that our simulations based on the locality principle lead to trustwor-
thy estimations in many cases. On one side, simple algorithms like LRU and GCLOCK fit well
into our framework. On the other side, more advanced algorithms such as LRU-K, ARC, and
2Q also allow lightweight estimations, but suffer from unpredictable estimation errors in some
scenarios. The reasons are built-in mechanisms to achieve scan resistance, which are hard to
simulate. Further, these algorithms do not allow logical composition of individual buffers.

Drift

Some of the results shown in Section 4.5.2 reveal severe drifts leading to an apparent bad
estimation quality. The simulations of ARC, for example, show dramatic drifts for oversize
and hotset estimation in Figure 4.6(a) and Figure 4.6(d), respectively. Note, the results show
cumulated hit ratios, where even small but constant estimation errors sum up. Therefore, we
analyzed the estimation error for the hit ratios of simulated buffer sizes for both extreme drift
situations in Figure 4.7. After a short warmup period, the error ratio settles between 5% for the
overflow estimation of workload random and 10% for the hotset estimation of workload real.

Obviously, a good choice for the simulation interval helps to reduce the estimation error rate.
However, this is another tuning parameter which may also be adjusted during runtime.

82

4.5 Evaluation

-30

-20

-10

 0

 10

 20

 30

e
rr

o
r

in
 %

+10% (overflow)
+20% (overflow)
+30% (overflow)

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10

buffer calls x 100.000

e
rr

o
r

in
 %

-10% (hotset)
-20% (hotset)
-30% (hotset)

(a) GClock optimized

-30

-20

-10

 0

 10

 20

 30

e
rr

o
r

in
 %

+10% (overflow)
+20% (overflow)
+30% (overflow)

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10

buffer calls x 100.000

e
rr

o
r

in
 %

-10% (hotset)
-20% (hotset)
-30% (hotset)

(b) 2Q

-30

-20

-10

 0

 10

 20

 30

e
rr

o
r

in
 %

+10% (overflow)
+20% (overflow)
+30% (overflow)

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10

buffer calls x 100.000

e
rr

o
r

in
 %

-10% (hotset)
-20% (hotset)
-30% (hotset)

(c) ARC

Figure 4.9: Simulation error for various simulation sizes (reference size 40%)

Simulation Range

The size of the simulation range is an important parameter. In this test, we want to examine
whether the forecast accuracy decreases if the simulation range is increased. Therefore, we
step-wise increased the overflow area and decreased the hotset size. For the corresponding
workload, depicted in Figure 4.8, we “stretched” the real workload from Figure 4.6(d), i.e., the
gradient is spanning a wider buffer size range before saturation effects arise. This enables us,
for a reference size of 40% (black line), to analyze hotset sizes and overflow sizes of ±10%,
±20%, and ±30% (dotted lines).

The results are illustrated in Figure 4.9 for three interesting replacement algorithms, namely
our optimized GClock in 4.9(a), 2Q in 4.9(b), and ARC in 4.9(c). Results for LRU-K and LRU
are omitted because the former delivered similar results as we got for 2Q and the latter always
delivered accurate simulations without any error.

As we expected, the GClock-based simulations are fairly accurate for any simulation size
and the error always is below 10% but in most cases even below 2%. The 2Q simulations
disclose an interesting effect: Larger simulation sizes (i.e., ±30%) deliver nearly perfect ac-
curacy with errors below 1%, while closer to the reference size (i.e., real buffer size) the error
increases. In those cases, the accuracy of overflow simulation (i.e., SBPX) seems to improve
during the course down to an error below 5%, while the simulation error for hotset marginally
increases and settles at 10%. The results for ARC show a mixed situation. In the beginning,
the error of all simulation ranges is oscillating. Except for the 30% overflow simulation, the

83

Chapter 4 Buffer Tuning

-40
-20

 0
 20
 40
 60
 80

 0 5 10 15 20 25 30

es
ti

m
at

io
n

 e
rr

o
r

in
 %

LRU-K

overflow error
hotset error

 0

 10

 20

 30

 40

 50

 60

 70

 80

h
it

 r
at

io
 i

n
 %

overflow *
overflow

hotset *
hotset

0 5 10 15 20 25 30

GCLOCK optimized

0 5 10 15 20 25 30

2Q

0 5 10 15 20 25 30

ARC

Figure 4.10: Shifting workload analysis (buffer calls x 100.000 on x-axis)

errors are always close to 10% in average. We believe that those little error margins, even for
those large simulation sizes, still justify the applicability of our extensions.

4.5.3 Workload Shifts

Based on our accuracy and drift analysis, we examined workload shifts. To guarantee that we
hit “interesting” buffer (simulation) sizes for these shifts, we extended our predefined work-
loads from Section 4.5.1. Each result in Figure 4.10 shows for 5 workload shifts the cumulative
hit ratios for hotset and overflow simulations as well as their estimation errors. The vertical
lines in the upper illustrations indicate the workload shifts, which (as expected) come along
with kinks in the graphs. We omitted LRU simulations here because they always deliver fully
accurate results.

On the one hand, we have the results for LRU-K and 2Q, which disclose serious problems for
certain workloads, while hit ratio estimations for others are nearly perfect. For example, scan-
dominated corner cases such as the third and fifth workload shift cause hotset errors of up to
25% and 40% until the next shift. On the other hand, estimations for GCLOCK optimized and
ARC seem to be more reliable. Some workload shifts cause short peaks, where the simulation
needs to adapt itself. However, most of the time, only marginal estimation errors below 2% are
observably.

The workload shift analysis shows that for many cases, estimation errors are quite low.
Certain corner cases, i.e., extreme workloads causing a kind of thrashing for the simulation
ranges, are hard to estimate and may lead to weak estimations. Because those corner cases are
rather exceptional, we believe that they do not affect the benefit of our algorithmic extensions
for resize simulations in general.

84

4.5 Evaluation

4.5.4 Buffer Balance

For the balance benchmark, we let the self-tuning mechanism presented in Section 4.4.2 au-
tomatically tune two buffers. The results in Figure 4.11 show the hit ratio characteristics and
the according buffer size changes for two buffers in each diagram. In the left scenarios, buffer
0 was fed with random workload from Figure 4.5(a) and buffer 1 with scans shown in Fig-
ure 4.5(b). In our second setup on the right, we again use two buffers, one that is fed from
the workload jumps and the other from the workload real as shown in Figure 4.5(c) and Fig-
ure 4.5(d). Buffer sizes (i.e., simulation and real) are chosen as described in Section 4.5.2.

GCLOCK optimized and 2Q were chosen for this benchmark because they represent a mix-
ture of the results we got for all five algorithms. For comparison, we used a fixed memory shift
granularity of 2% of the database size. Triggered by the cost model, tuning and memory shifts
were preceded by a warm-up period of 1.2 Mio buffer calls.

In Figure 4.11(a) (left), the random workload buffer was shrunken according to its hotset
simulation, whereas buffer 1 was increased. Although the hit ratio of buffer 0 slightly descends,
the overall IO performance improves, because the hit ratio of buffer 1 increases considerably.
Comparing this result to 2Q’s forecast and balance, as shown below in Figure 4.11(b) (left), its
confirmed that the penalty for the random workload buffer is quite low but the increase for the
other one is at a similar range (∼+20%). Although, in both cases, the buffer sizes were equal,
the apparently different results are due to the elementary performance of 2Q, which is better.

In both settings of our second scenario on the right, SBPX fails, because it does not recognize
that the size of buffer 0 is close to a “jump” boundary. However, as indicated by Figures 4.11(a)
(right) and 4.11(b), our hotset simulation detects the pitfall and prevents buffer performance
penalties. For both algorithms, a slight performance improvement is gained through balancing.

As explained above, resizing two buffers is fairly simple. Therefore, we combine both exper-
iments in a single setup shown in Figure 4.12. The cut-out shows two memory shifts leading
to minor descends of the hit ratio on the one side but clear improvements on the other side
resulting in a steadily improved buffer performance.

In summary, we could experimentally prove that buffer balancing can be achieved at low
cost, but it heavily depends on accurate and lightweight forecasts for both directions – upsize
and downsize.

4.5.5 Overhead

Enabling our self-tuning mechanisms when operating on “normal” workload, i.e., database
load causing physical IO, led to slight performance variations which could be attributed to
measuring inaccuracies but not directly to the algorithmic overhead. Therefore, we extracted
the algorithms and fed them directly with our generated workload to only measure the pure
runtime overhead caused by hotset and SBPX simulations.

The algorithmic extensions are sensitive to the simulation size and the workload. The former
defines the lookup size for “what-if” matches, whereas the latter determines the frequency how
often the extensions are actually called. For both parameters, we measured the overhead for
different configurations. On the one hand, we scaled the simulation size from 2%−15%. On

85

Chapter 4 Buffer Tuning

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20
 0

 5000

 10000

 15000

 20000

buffer calls (x 100.000)

hit ratio in % buffer size

hit ratio buffer 0
hit ratio buffer 1

size buffer 0
size buffer 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20
 0

 5000

 10000

 15000

 20000

 25000

buffer calls (x 100.000)

hit ratio in % buffer size

hit ratio buffer 0
hit ratio buffer 1

size buffer 0
size buffer 1

(a) Buffer balancing using GClock optimized (random and scan left; jump and real right)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16 18 20
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

buffer calls (x 100.000)

hit ratio in % buffer size

hit ratio buffer 0
hit ratio buffer 1

size buffer 0
size buffer 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20
 0

 5000

 10000

 15000

 20000

 25000

buffer calls (x 100.000)

hit ratio in % buffer size

hit ratio buffer 0
hit ratio buffer 1

size buffer 0
size buffer 1

(b) Buffer balancing using 2Q (random and scan left; jump and real right)

Figure 4.11: Buffer balancing exemplified by GClock optimized and 2Q

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25
 0

 5000

 10000

 15000

 20000

 25000

h
it

 r
a
ti

o
 i

n
 %

b
u

ff
e
r

si
z
e

buffer calls (x 100.000)

hit ratio buffer 0

hit ratio buffer 1

hit ratio buffer 2

hit ratio buffer 3

size buffer 0

size buffer 1

size buffer 2

size buffer 3

Figure 4.12: Balancing of four buffers under different workloads

86

4.5 Evaluation

Table 4.2: Overhead Analysis hit-dominated workload
Simulation size LRU LRU-K GCLOCK 2Q ARC
2% 0% 6.6% 0% 0% 68% (0.6%)*
5% 0.23% 28.3% 0.1% 1.8% - - (2.4%)*
10% 4.33% 49.1% 2.68% 6.26% - - (15.1%)*
15% 4.6% 58.8% 1.52% 6.9% - - (16.0%)*
ARC simulation performance degraded too much (- -), instead a pointer-based
version (*), delivered results comparable to 2Q.

Table 4.3: Overhead Analysis miss-dominated workload
Simulation size LRU LRU-K GCLOCK 2Q ARC
2% 22% 14.4% 8.5% 19.9% 10x (23.8%)*
5% 26% 35.6% 13.7% 24.9% - - (31.5%)*
10% 27.7% 56.8% 11% 27.4% - - (33.8%)*
15% 29.5% 67.4% 13.9% 28.6% - - (33.9%)*
ARC simulation performance degraded too much (- -), instead a pointer-based
version (*), delivered results comparable to 2Q.

the other hand, we evaluated a hit-dominated workload, more frequently calling the hotset sim-
ulation, and a miss-dominated workload, which more frequently calls the oversize simulation.

The results in Table 4.2 for the hit-dominated workload show that the algorithmic overhead
is often negligible for small simulation sizes, but also relatively small for growing sizes. The
pointer-based extensions, such as for LRU, GCLOCK, and 2Q, scale quite well and even cause
only little overhead for large simulation sizes. In contrast, the original extensions for ARC and
LRU-K require more efforts to (linearly) search in the history. Especially, ARC’s overhead
exceeded a reasonable limit of 200%7 beginning from 5% simulation size. Therefore, we
integrated the pointer-based approach into ARC, too, which delivered overhead figures that
perform clearly better.

Although the results for the miss-dominated workload in Table 4.3 show that upsize simu-
lations are more expensive than downsize simulations, in most cases, the overhead still pays
off. Again, the original ARC approach can be substituted by a clearly cheaper pointer-based
alternative.

In all cases, scalability solely depends on the algorithm and the more pointers or flags have
to be maintained the more overhead is caused. But combining the hit/miss performance with
pure algorithmic runtime figures and forecast quality, all algorithms except LRU-K have their
specific advantages and show convincing results.

4.5.6 Integrating Short-term Memory Consumers

The effectiveness of on-demand buffer resizing to handle short-term memory consumers is
demonstrated by the following test case.

7An overhead less than 200% is considered to be better than having 3 independent algorithms for the real, hotset, and
SBPX size.

87

Chapter 4 Buffer Tuning

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 20 40 60 80 100
 0

 1000

 2000

 3000

 4000

 5000

 6000

tuning periods

IO/period

data buffer
short-term buffer

IO

si
ze

 i
n

 K
B

(a) Changing sizes and IO throughput

 0

 10000

 20000

 30000

 40000

 50000

0.5 1 2 3 4 flexible

sort buffer size in MB

buffer misses sort IO

c
u
m

u
la

ti
v
e
 I

O
 c

o
s
ts

(b) Cumulative IO costs for static and dynamic buffer
sizing

Figure 4.13: Integrating short-term memory consumers

There is one data buffer pool, on which multiple scans are repeatedly run causing an average
miss ratio of 30%. Additionally, three sort operations are repeatedly performed at the same
time. They have sizes of 2 MB, 3 MB, and 4 MB. The overall size of all buffer pools is 18 MB.

Due to the same mechanisms as for data buffer pool resizing, the on-demand integration of
short-term memory consumers works as expected. The temporary increase of sort buffer sizes
is illustrated in Figure 4.13(a). At the same time, we tracked the number of IO operations in
a tuning period. The little oscillation is solely due to the duration of different buffer requests,
e.g., misses imply costly page fetches. However, cumulative numbers of IO operations should
be a valid indicator for the opportunities provided by our flexible adaptation. In Fig. 4.13(b), a
similar workload containing two parallel clients and independent sort operations (third client)
was executed while we used again a fixed upper limit of 18 MB for all buffers. This amount
was either statically partitioned between sort buffer pools and data buffer pools or dynamically.
The cumulative number of IO operations (i.e., buffer misses and additional sort IO8) necessary
to process the same query and sort workload is shown. While an increased sort size also
increases the buffer miss rate, i.e., buffer IO, it dramatically reduces the sort IO. On the right
side, dynamic memory allocation avoided most of the sort IO while keeping the buffer miss
rate at a very low level.

4.5.7 Read-ahead and Grouped Flush

Eventually, we measured the speed-up gained through our read-ahead and grouped (sequential)
flush mechanisms. Results for both benchmarks are illustrated in Figure 4.14. For writing
various workloads, i.e., storing XML documents in XTC, we got for the two different storage
modes, elementless and full, speed-ups between 2% and 28%. This definitely results from
grouped flushes exploiting sequential writing. For read-only workloads (i.e., a SAX scan), we
got speed-ups between 4% and 35%. Here, the read-ahead mechanism takes effect, because

8The first read of sort items is attributed to the data buffer. Following merge runs are attributed to the additional sort IO.

88

4.6 Conclusions

 1

 10

 100

12M 112M nasa lineitem treebank dblp psd7003 uniprot

sp
ee

d
-u

p
 i

n
 %

workload data (XML documents)

write, elementless
read, elementless

write, full
read, full

Figure 4.14: Read-ahead and grouped flush speed-ups

scans read all pages of a database object in consecutive order.

4.6 Conclusions

Buffer self-tuning is a critical aspect that incorporates multiple tuning techniques and areas.
We have shown that individual replacement algorithms are extendable to not only optimize the
current hit ratio, but also to estimate hit ratios for alternative buffer pool sizes. The accounting
(i.e., monitoring) is permanently running, while the buffer performance analysis takes place in
regular intervals. We have further shown how to improve the buffer configuration (i.e., execute)
by changing the memory distribution and that the overhead for self-tuning pays off. As a buffer
operates independently of a data model, our concepts are universal for all kind of DBMSs.

89

Chapter 4 Buffer Tuning

90

Chapter 5

Storage Self-Tuning for XDBMSs

The large variety of XML data and XML processing possibilities makes it almost impossible to
find a superior storage configuration for all of them. The workload (i.e., XML documents) may
consist of up to millions of small configuration files, log messages, and (internet) application
data (e.g., Web Services’ WSDL, SOAP, XHTML) or large files such as protein databases
[LDB+04], publication databases [Ley02], or text collections [DDD+09]. Their structure (i.e.,
depth, fan-out, and recursion) and amount of content (i.e., text length and share of text) may be
totally different and thus needs to be considered when choosing an appropriate storage layout.

XML storage constitutes the foundation for DBMS-based XML processing. Although the
storage layout often requires immutable design decisions such as XML mapping, data place-
ment, or structure and content compression, knowledge gained through analysis or sampling
of XML data or learning the effects of prior design decisions may allow for an autonomous
configuration of those parameters.

In the world of XML processing (see: Section 2.4), different APIs and, therefore, different
kinds of accesses to the XML store can occur. Here again, adjusted storage configurations may
improve the performance for certain access patterns while downgrading the performance of
others. Thus, design decisions need apriori knowledge about future usage. The most promi-
nent categories of access patterns are data-centric and document-centric XML processing that
are similar to their counterparts in the relational world, namely OLTP and DSS. Having a cate-
gorization for XML documents may help to guess their dominating usage pattern.

To reduce XML’s redundancy and thereby processing costs, techniques to share common
data structures such as the Path Synopsis or data indexes for multiple documents are avail-
able. However, the potential of savings has to be ensured before defining and building shared
structures.

In this chapter, we will show how we can exploit XML compression techniques and work-
load analysis to tune the often static parameter selection for XML storage. Furthermore, we
will analyze storage options for various kinds of XML processing and evaluate their perfor-
mance. First, we introduce key concepts for native XML data mapping such as node label-
ing and different document mapping approaches, before we analyze optimization options and
self-tuning abilities. Eventually, we evaluate the benefit of storage optimizations that can be
achieved using a native XDBMS such as XTC. Note, due to the assumption that buffer tuning
concepts, presented in Chapter 4, are working encapsulated within their layer and theoretically
provide optimal IO performance for the underlying device equipment, this chapter only covers
critical storage issues for XML data mapping on top of the buffer layer.

91

Chapter 5 Storage Self-Tuning for XDBMSs

Database / Tabledblp

dblp

book book

title@id @year

bk3 1980 SQL Perf. Tuning

1

2

3 4 5

7

7

6

4

5

21

6 3

pre
1
2
3
4
5
6
7

post
7
5
1
2
4
3
6

kind
element
element
attribute
attribute
element
text
element

tag
dblp
book
id
year
title
--
book

text
--
--
bk3
1980
--
SQL Perf. Tuning
--

a) Schema-oblivious shredding

pk_book (int) att_id (string)
0
1

att_year (string)

b) Schema-aware shredding

Databasedblp

Tablebook

pk_title (int) text (string)fk_book
Tabletitle

bk3
...

1980
...

0
...

0
...

SQL Perf. Tuning
...

...

Figure 5.1: XML data shredding into relational tables

5.1 Native XML Storage

The physical representation of data is extremely important for the overall (X)DBMS perfor-
mance, therefore dealing with XML data requires tailored storage mappings in the third layer
(compare with Section 2.2, access layer). Not only space consumption is a critical aspect, but
also read access and update performance. Therefore, a compact layout for the verbose XML
structures is necessary, albeit tailored access operators need node-oriented and scan-oriented
interfaces at the same time.

In [Mat09], an overview of different XML storage approaches can be found. In the follow-
ing, we highlight the most important steps leading to state-of-the-art XML storage layouts.

In the beginning, so-called shredding solutions, i.e., mapping XML data to relational struc-
tures, emerged [STZ+99, CS01, TDCZ02]. Those approaches often require structural infor-
mation in advance to instantiate an appropriate table structure and all the necessary referential
constraints. To represent the data types for XML nodes, a different representation is required,
e.g., mapping them to a numeric value. Quite a number of systems are based on shredding,
either exploiting schema information such as [BFH+02, STZ+99] or without using schema
information such as [YASU01, BGvK+06]. Figure 5.1 exemplarily depicts the shredding of
XML data into schema-oblivious or schema-aware relations. This example shows that shred-
ding may lead to a single table covering the entire XML document (e.g., Figure 5.1a) or to
multiple tables (e.g., Figure 5.1b). However, case (a) requires a static pre/post numbering to
address and identify XML entities. This prohibits efficient insertions of new nodes or subtrees,
because the pre-/post-order numbers have to be updated as well, i.e., updating the entire table.
In case (b), updates can be tracked easily, whereas preserving document order and handling
schema changes require additional efforts1.

While shredding is still a viable way to store XML, hybrid systems such as DB2 [NvdL05],
Oracle 8i [BKKM00], and System RX [BCJ+05] allow to store XML data separately, i.e.,
using different containers for relational data and for XML data. Due to relational processing
capabilities of the DBMS kernel, XML data and XML-aware operators need to be wrapped
into relational counterparts. In Figure 5.2, the scheme of a hybrid DBMS engine (depicted as
“Hybrid Compiler”) is shown. Although the kernel needs to be extended for handling XML

1omitted here for simplicity

92

5.1 Native XML Storage

clients /
applications

XQuery

SQL/XML
SQL/XML
parser

XQuery
parser

Hybrid
compiler

XML

relational

DBMS kernel interfaces store

Figure 5.2: Hybrid XML storage

data, essential parts can be reused such as query optimization. Typically, tiny XML documents
are inlined within a relational record as (C)LOBS to speed up processing. Because those
systems anchor the XML data in a relation containing a column of type XML, the external
XML storage lookup may not scale down for small XML documents. Thus, the classification
of hybrid storage is once more eligible.

Another way of storing XML data exploits the tree structure of XML. In [FHK+02, BCJ+05],
XML documents are divided and grouped by structurally similar subtrees. Because XML pro-
cessing often requires path pattern matching, similar path targets (i.e., subtrees or nodes) are
stored within the same container and thereby provide a high locality and better access perfor-
mance. This deliberately chosen fragmentation alters document order and makes document
reconstruction difficult. Moreover, navigational access, updating, or addressing larger parts of
a document within a query requires access amongst several distributed containers (leading to
random IO).

As mentioned already, native XDBMSs employ tailored techniques to natively store XML
data. However, the more systems emerged the more differing ways of physical XML represen-
tation appeared. Most of the native XDBMSs represent XML data in a node-oriented manner
or at least as tree structures such as Timber [JAKC+02], Sedna [FGK06], OrientX [XXM+06],
eXist [Mei09], and our own prototype XTC [HH07]. Native storage systems provide native
access methods (APIs) and operators. Furthermore, because data mapping is XML-aware, as-
pects such as page and index layout, log entries, lock protocols, etc. can be perfectly optimized
for XML.

Eventually, a storage system for native XML data processing needs to provide the following
properties:

• Flexible operator support. Streaming operators (SAX API) and navigational access op-
erators (DOM API) are required at the same time. Moreover, declarative languages such
as XQuery require both kinds of access options.

• Efficiency. Optional compression features and scalable data structures for XML map-
pings are required when storing and reconstructing XML documents. In particular,
document-based systems such as messaging, logging, or archiving benefit from com-
pression, because IO reductions lead to shorter runtimes and reduced logging overhead.

• Modifiability. Besides IUD for entire XML documents, fine-grained support for mod-

93

Chapter 5 Storage Self-Tuning for XDBMSs

ifying individual nodes, the structure, and whole subtrees is required, especially for
transactional multiuser environments.

• Secondary access paths. The storage subsystem must support indexes to allow tailored
document access and processing.

• Round-trip. A storage system must define its level of round-trip guarantees it provides.
Either by guaranteeing identity at the byte level when comparing the input document
and output document, or by guaranteeing data consistency ignoring structural formatting
issues (e.g., line breaks between element nodes2).

5.2 Node Labeling

Recent research [HHMW07] has shown that the node labeling mechanism plays an essential
role for storage space consumption and efficient support of navigational and declarative query
processing. Therefore, appropriate node labeling is not only needful to realize the aforemen-
tioned storage properties of Section 5.1, but also to enable flexibility and performance of the
entire internal system behavior.

Various kinds of labeling schemes emerged throughout the research community, where dif-
ferent design goals led to totally different concepts. The only thing they have in common is the
unique identification of XML nodes within a document. In Figure 5.3(a), ascending numbers
are assigned to document nodes while traversing the XML tree in pre-order3. Thus, each node
can be uniquely identified and addressed.

Based on the uniqueness of document nodes, additional properties are desirable by a node
labeling. A very important aspect for XML processing is the determination of axis relation-
ships for two nodes [DOM05]. Because XML is an ordered tree data structure, a label needs to
identify the node’s level and locate it within the document, thus preserving the document order.
According to the flexibility and dynamics of XML (and XML schema definitions), a label is
typically a value of variable length. Furthermore, concurrent document access requires trans-
actional protection by acquiring locks on an XML document. The more fine-grained the lock
protocol is defined the more parallelism is possible. Eventually, smart encoding and decoding
for a compact physical representation is mandatory for storage interaction.

A lot of node labeling schemes can be found in the literature that address most of these
issues [CKM02, CPST03, YLML05, HHMW07]. Almost all of them can be classified into
range-based node labeling schemes and prefix-based ones. Throughout the entire work, we
will often rely on the properties of node labeling, thus, we briefly introduce the two categories
and show why a native XDBMS should be based on a prefix-based scheme.

2Byte-level identity requirements may expose unwanted behavior to the user because the DBMS system has to automat-
ically process certain formattings. For instance, inserting a subtree between two sibling nodes, when 3 whitespace
characters exist between them. The system has to keep them, but where – in front, post, fragmented?

3Attribute nodes comprise of the node name and value, text nodes such as title are split into an element node and a
content node leading to individual node labels.

94

5.2 Node Labeling

dblp

book book

title@id @year

1

2

3 4 5

7

6

...

pre-order

bk3 1980 SQL Perf. Tuning

(a) Pre-order labeling

dblp

book book

title@id @year

bk3 1980

[1,14],0

[2,11],1

[3,4],2 [5,6],2 [7,10],2

12,13,1

[8,9],3

...

[left,right],lvl

bk3 1980 SQL Perf. Tuning

(b) Range-based labeling

dblp

book book

title@id @year

bk3 1980 SQL Perf. Tuning

1

1.3

1.3.1.3 1.3.1.5 1.3.5

1.5

1.3.5.3

...

prefix-based

(c) Prefix-based labeling

Figure 5.3: Comparison of different node labeling approaches.

5.2.1 Range-based Labeling

Assigning range-based node labels requires to traverse the XML tree in pre-order. Besides
a pre-order number for each node, a second post-order number is assigned. For example, in
Figure 5.3(b) the first book node is visited as second (in pre-order). After subtree traversal,
the post-order visit leads to the range of [2,11]. The two values span a numbering range
containing all node labels of its subtree. Based on given range values, the descendant and
ancestor relationship of two nodes can easily be decided by checking for containment. Even
the following and preceding relationship can easily be decided, but for child, parent, and sibling
relationships a third component of the label – characterizing the node’s level in the XML tree
– is necessary.

But range-based labeling has still some drawbacks when it comes to insertions. Even by
leaving gaps while assigning the ascending numbers, insertions may exhaust them and cause
expensive relabeling. Furthermore, relabeling would violate the consistency of secondary stor-
age structures or other node references held by transactions i.e., locks.

5.2.2 Prefix-based Labeling

We recommend the use of prefix-based labeling schemes as sketched in the sample document
in Figure 5.3(c). As its most prominent property, this labeling class annotates each node la-
bel with its parent node label as prefix. So far, a number of roughly equivalent prefix-based
schemes are proposed in the literature. They do not only support all XPath axis operations and
hierarchical locking schemes (because all nodes in the ancestor path can be easily derived from
a node label), but also dynamic insertions without relabeling. Figure 5.4 exemplifies the inser-
tion of a new node between existing and densely numbered nodes. Because only odd division
numbers contribute to the level count, even numbers can be used to indicate overflows while
preserving a correct logical order. Using DeweyIDs [Dew], as labeling mechanism, enables
specialized attribute node mappings and – with a dist parameter used to increment division
values and to leave gaps in the numbering space between consecutive labels – a kind of adjust-
ment to expected update frequencies. Any prefix-based scheme such as OrdPaths [OOP+04],
DeweyIDs [Dew], or DLNs [BR04] fulfills the desired properties mentioned in Section 5.1.

95

Chapter 5 Storage Self-Tuning for XDBMSs

Table 5.1: Example Huffman code for DeweyID encoding (Li fields).
Code Li Value range of Oi

0 7 1–127
10 14 128–16,511

110 21 16,512–2,113,663
1110 28 2,113,664–270,549,119
1111 36 270,549,120– 237

1

1.3

1.3.5 1.3.7

1.3.5.3
1.3.5.5

...

......

...

1

1.3

1.3.5 1.3.7

1.3.5.3
1.3.5.5

...

......

...

1.3.5.4.3

1

1.3

1.3.5 1.3.7

1.3.5.3
1.3.5.5

...

......

...

1.3.5.4.3 1.3.5.4.5

1

1.3

1.3.5 1.3.7

1.3.5.3
1.3.5.5

...

......

...

1.3.5.4.3 1.3.5.4.5
1.3.5.4.4.3

Figure 5.4: Overflow mechanisms for dynamic labeling using DeweyIDs

5.2.3 Conclusion

Based on the analysis of possible labeling alternatives, we will only use DeweyIDs throughout
this work because of their advantages. They provide powerful mechanisms for query process-
ing that are far beyond common row identifiers known from relational systems.

5.3 Node Labeling in XTC

As already mentioned in Section 5.2, prefix-based node labeling schemes provide the highest
flexibility and stability and provide opportunities for compression. Therefore, XTC is using
DeweyIDs for node labeling [HHMW07].

Due to the large variance of XML documents in number of levels and, even more, number of
elements per level, we cannot design a (big enough) fixed-length storage scheme of DeweyIDs.
For the sake of space economy and flexibility, the storage scheme must be dynamic, variable,
and effective to capture tall/flat trees with varying fan-outs per node. At the same time, it must
be efficient in storage usage, encoding/decoding, and value comparison at the bit/byte level.

Because DeweyIDs can become fairly long (i.e., a lot of (overflow) divisions) and the “nat-
ural” representation of dot-separated numbers is unhandy when processed automatically, we
encode them in byte arrays using Huffman codes to compress them at the same time. Huffman
codes are a general mechanism to serve byte-oriented compression and comparison require-
ments. For example, the i-th division value can be represented as a pair Ci | Oi where Ci is a
prefix-free code used to assign a length value to Oi via a mapping table (or an equivalent Huff-
man tree). Table 5.1 illustrates a particular mapping of variable-length division values where,
in addition, byte alignment is observed for each individual division. Because the codes can be
freely chosen – regarding the definition of a Huffman tree and a order-preserving comparability
– and the assignment of length values in column Li is independent from them, tailored map-
pings can be derived for a document. Even in the encoded form, comparison of two DeweyIDs

96

5.4 Full Storage Mapping

 0

 20

 40

 60

 80

 100 %

text values
plain DeweyIDs
prefix-compressed DeweyIDs
XML structure

lineitem uniprot dblp psd7003 nasa treebank swissprot ebay orders uwm sigmod

Figure 5.5: Prefix compression gain of DeweyIDs in XTC

or prefixes of them works at a level basis (and decides according to the document order). There-
fore, we could refine our encoding mechanism and even choose Huffman encodings per level
which could be adjusted to the node distribution of these levels. While such an optimization
may save some space at the low percentage range, but may contribute to the implementation
complexity, some heuristic encoding rules may be more effective. Frequently, large sets of
nodes only occur at levels close to the document root, whereas the fan-out deeper in the tree is
typically limited to a few and often to a single node.

For instance, our example code in Table 5.1 is applied down to a certain level, while at deeper
levels an even more compact form of encoding is chosen, e.g., using code 0 and Li = 3 allows
the representation of values 1 – 7 with 4 bits, which is, however, not byte-aligned anymore.

Despite the claims in [LLH08], so-called quaternary codes or, more generally, use of separa-
tors [HHMW07] cannot provide fast bit-level comparisons and fail to support direct byte-level
comparisons of encoded DeweyIDs.

When implementing Huffman-based prefix compression in XTC, the overhead of DeweyIDs
is dramatically shrinked down to a reasonable size. In Figure 5.5, we compared the space
consumption of DeweyIDs for a common set of XML documents [Mik], which was analyzed in
detail in [SH07]. The share of text values and XML structure is always the same, independently
of prefix compression. However, compression of DeweyIDs saves substantial storage space
and can compete with relational RIDs typically having 4 bytes. Thus, the relational storage
approaches, presented in Section 5.1, may consume the same or more amount of storage for
node identification.

5.4 Full Storage Mapping

As already introduced in Section 5.1, documents are represented in XTC in a native way.
That means, all XTC storage modes support declarative and navigational processing of XML
documents as basic primitives. XML documents are stored in containers (i.e., files) that are

97

Chapter 5 Storage Self-Tuning for XDBMSs

node type (3 bit)

binary record format

prefix compression
(1 - 3 bytes)

cut-off
diff-length

document index node mapping

DeweyID XML node

key value

optional
cut-off

optional
diff-length

diff value

DeweyID

descriptor
(1 byte)

vocID
length tag/attribute name

vocID

0 - 4 bytes

text value /
ext. pointer

Figure 5.6: Physical record format (full storage mapping).

subdivided into equal-length units – logical pages. Page sizes typically vary from 4K to 64K
bytes. XTC allows the assignment of several page types to enable the allocation of pages for
documents, indexes, blobs, overflow records, etc. in the same container.

The full storage mapping is a fine-granular DOM-tree representation that easily preserves the
so-called round-trip property when storing and reconstructing the document4. The full storage
mapping is flexible enough to accommodate arbitrary insertions and deletions of nodes and
subtrees, where the document storage structure is dynamically balanced. Storage-based node
navigations to parent/child/sibling nodes are directly possible due to the DeweyID labeling.

We use a B∗-tree as the fundamental storage structure. Because these trees easily maintain
the document nodes and provide logarithmic access costs (based on B-trees [BM70, BM72]).
Even node updates such as changing a tag name or value as well as node and subtree insertions
or deletions are perfectly supported by the combination of DeweyIDs and B∗-trees.

Node Mapping

Individual XML nodes are mapped to variable-length byte arrays, as shown in Figure 5.6.
Because we use B∗-trees, we require key/value pairs for index entries. Therefore, a node is
split into its key part – the node label (DeweyID) – and its value part, which is type-dependent.
As already introduced, DeweyIDs are perfectly suited for prefix compression, shown by the
cut-off and diff-length fields. Using the Huffman encoding, DeweyIDs are easily transformed
into byte-aligned byte arrays preserving their logical order at the byte level, too. Thus, two
consecutively stored nodes carrying “neighbor” labels only need to store their differing parts.
That means, the first cut-off bytes are equal and need not to be repeated while the differing part
– diff-length – is stored in the diff-value. Usually, 4 bits are enough to encode the two length
fields, but in case of overflows (i.e., both bits are set to 1), an additional byte can be used to
encode the length values.

The value part of an index entry is encoded as follows: For XML tag names, a vocabulary
is maintained, as shown in Figure 5.7, to translate strings into simple (short) integer values.

4Round-trip property means that the identical document must be delivered back to the client which was stored before.
However, performance considerations weaken this requirement a little bit, while document structure and content are
preserved, formatting features may be stripped.

98

5.4 Full Storage Mapping

0 document
1 element
2 text
3 attribute
4 comment
5 proc_instruction

node types
vocID tag/attribute name
 0 dblp
 1 book
 2 year
 3 first
 4 ...

vocabulary

. . .

master document
documents

sample.xml

collection.xml

system container

...

...

page 1 page 2 page 3

page 12

page 59

. . .

Figure 5.7: Database metadata structures.

Moreover, the figure shows our node type encoding requiring 3 bits only. In a descriptor byte –
shown in Figure 5.6 – vocabulary ID length and node type are encoded. In case of an attribute
or element node type, the following bytes are used to encode the vocabulary ID itself. The byte
array carries content as payload (i.e., texts, comments, or instructions).

Document Mapping

A central role in storage mapping plays the master document (internally called “ master.xml”).
It is stored in a separate system container, depicted in Figure 5.7, together with the mapping
tables for node type encoding and vocabulary encoding. Because the master document itself is
a normal XML document in the database, it uses the same mechanisms for storing, retrieval,
querying, and manipulation.

The master document takes care of referencing database objects such as XML documents
(including itself), collections, indexes, statistics, and blobs. Only the entry point of XTC, in
form of a page number has to be specified from the outside to get the system started.

Each document or collection in XTC is employing its individual document index, shown in
Figure 5.8. Typically, user documents reside in so-called data containers. An XML document
is serialized into a sequence of nodes that are consecutively stored in a B∗-tree structure.

The document index is separated into two logical parts. Key/pointer pairs (DeweyID, page
pointers) are used in the first part (shown as triangle) for indexing the first node in each page
of the data container. The second part consists of a set of double-chained pages carrying the
actual document nodes. For convenience, nodes of the sample document in Figure 5.8 are
depicted in the data pages in a simplified form.

The value part of an index entry (i.e., node value) is materialized (stored inline) up to a
parameter max-val-size together with the node’s metadata. When the content size exceeds
max-val-size, it is stored in referenced mode (i.e., ext. pointer in Figure 5.6).

Document Access

According to the requirements presented in Section 5.1, documents stored in XTC can be
processed at the storage level in various ways. The most common access primitives comprise
scans and navigation. Full document scans are fairly easy to perform because the entry point to

99

Chapter 5 Storage Self-Tuning for XDBMSs

document

element

element
attribute

dblp

book

first@year

2010 John

1

1.3

1.3.1.3 1.3.3

1.3.3.3 text

element

document index
B*-tree

1.9.11.7

1.3.3 1.11.3

data container

...

... . . .
. . .

. . .

page 1page 2 page 3

double-chained
data pages

XML document (excerpt)

1. 0 0 1 1
3 2"2010"

DeweyID type vocID "value"

1.3
1.3.1.3

1.3.3 1 3
2 "John"

1.3.3.3

record format

Figure 5.8: XML document mapping (nodes-to-page serialization).

1

book

authortitleid year

first last

dblp

2

3 4 5 6

7 8

PCR
article

authortitle

9

10 11

Path Synopsis

Figure 5.9: Path synopsis for sample XML document

the double-chained node sequence is referenced in the master document, i.e., the page number
containing the document root node. Various access operators are based on that scan, which
may automatically apply simple filtering and complex predicate evaluation.

Scanning a document without any filtering can be used to reconstruct the original XML
document for retrieval or external use.

On the other hand, navigational primitives based on DOM are possible by exploiting the
node labels; in our case, DeweyIDs. They allow to easily traverse the document store or jump
through the document index’ B∗-tree part exploiting the concept of divisions and levels.5

Any kind of document manipulations can directly be performed at the storage level. Besides
primitives for node IUD operations, XTC provides means to operate on subtree instances for
insertion, deletion, or replacement. Here, the variable-length record format, prefix compres-
sion, and B-tree-based storage structure permit high-performance document changes.

5.5 Path Synopsis

While optimizing native XML storage structures for XTC, we developed a new storage concept
that will be presented in the following section [SH07]. The cornerstone of this storage concept
is our so-called path synopsis (or short PS) that is also exploited for several other optimizations
in the field of storage, indexing, querying, and self-tuning throughout this work. Therefore, we
want to emphasize its importance for many of the presented concepts.

XML documents usually have a high degree of redundancy in their structural part, i.e., they
contain many paths having identical sequences of element/attribute names. Such identical path

5A cache mechanism can be used to keep the nodes of a decoded page in an object-oriented format, thereby allowing
binary search within a page.

100

5.6 Elementless Storage Mapping

Table 5.2: Node and path statistics for exemplary XML documents

Document Decription Size Nodes Pathselem attr content
lineitem TPC-H data 32 MB 1 Mio 8 1 Mio 17
uniprot Universal protein resource 1.8 GB 36 Mio 46 Mio 53 Mio 121

dblp Computer science index 330 MB 7.5 Mio 1.5 Mio 8 Mio 153
treebank Wall street journal records 86 MB 2.4 Mio 1 1.4 Mio 220k
psd7003 DB of protein sequences 716 MB 21.3 Mio 1.3 Mio 17.2 Mio 76

nasa astronomic data 25.8 MB 476.646 56.317 371.593 73
XMark Artificial 12 MB 167.864 38266 156.407 439

auction data 112 MB 1.68 Mio 381.870 1.5 Mio 451
account TPoX benchmark doc- ∼ 6 KB ∼ 130 ∼ 20 ∼ 100 ∼ 100
order uments for accounts, ∼ 2 KB ∼ 10 ∼ 80 ∼ 80 ∼ 83

security orders, and securities ∼ 6 KB ∼ 50 ∼ 5 ∼ 35 ∼ 53

instances are represented uniquely as a path class in our PS. This kind of path summary can be
captured in a small main-memory data structure; the basic idea is similar to that of a DataGuide
which, however, is used as a structure overview for the user, for storing statistical document
information, and, thus, enabling query optimization [GW97]. In addition to that, our primary
use of a path synopsis is for structure virtualization, hierarchical locking, and empowering
indexing and query processing [HH07]. For all these usages, we have equipped every node
in the path synopsis with a path class reference (PCR) number, as illustrated for the sample
document in Figure 5.9. In our system, a path synopsis obtains its full expressiveness by the
interplay of PCRs and DeweyIDs: a DeweyID delivers all DeweyIDs of its ancestors while
a PCR connected to a DeweyID identifies the path class a DeweyID-identified node belongs
to. For example, starting from an arbitrary content, attribute, or element node – whose unique
position in the document is identified by its DeweyID – that is associated with a reference to
its path class, it is easy to reconstruct the specific instance of the path class it belongs to. This
usage of the path synopsis indicates its central role in all structural references and operations.
To increase its flexibility, we provide indexed access via PCRs and hash access using leaf
node names. Additional links between vocabulary IDs (vocIDs) and their occurrences in the
path synopsis offer direct entry points for further navigational steps and matching/searching
operations starting at non-leaf nodes.

The path synopsis has to ensure that (1) each path in the document is represented and (2) that
each path of the synopsis actually exists in the document. However, the second requirement
may be softened while not violating consistency requirements for XML processing, as we will
see later in this work. Several individual documents or a collection of documents may also
share a single path synopsis. Document updates that introduce new paths have to ensure that
they also update the path synopsis structure.

5.6 Elementless Storage Mapping

Structural redundancy of XML is one of the main issues in database-oriented XML document
storage. Therefore, a novel technique of structure virtualization was described and evaluated in

101

Chapter 5 Storage Self-Tuning for XDBMSs

node type (3 bit)

XML node

descriptor
(1 byte)

PCR
length

PCR

0 - 4 bytes

text value /
ext. pointer

document index
B*-tree

1.9.11.7
1.3.3 1.11.3

. . .

. . .
. . .

double-chained
data pages

3 4 "2010"1.3.1.3 1.3.3.3 2 7 "John"

DeweyID type PCR "value" record format

Figure 5.10: Elementless node mapping

[SH07, HMS07]. The so-called elementless document storage mapping does not contain any
structure node (element nodes) in its physical representation, i.e., the document container only
stores the content (leaf) nodes, each equipped with a DeweyID and a PCR. For our sample
documents from [Mik, NKS07], we summarized important figures such as node instances and
path instances in Table 5.2. Moreover, Figure 5.10 shows the physical record format for the
value part as well as the layout of document index entries. Note that the remaining storage
structures are equal to that of the full storage mapping, presented in Section 5.4.

Document Access

As we have already shown in Section 5.5, it is easy to reconstruct all paths and nodes on
demand, e.g., when referenced during the evaluation of an XPath/XQuery expression, and
it is even possible to perform navigation on this virtualized structure. Thus working with a
document or collection stored in elementless fashion guarantees fast and cheap main-memory
access to the path synopsis.

All kinds of document manipulations, which are possible in full storage mode are appli-
cable in the elementless mode, too. However, some peculiarities may occur. For instance,
the term “elementless” has to be refined when storing an empty element node (e.g., the docu-
ment or subtree: <xml></xml>) without any attributes or child nodes. In that case, we use a
placeholder for the element node carrying no content. Another important difference to the full
storage mode may occur when a node is renamed. Because the node’s PCR value changes, to
an already existing one or a new one, all PCRs of descendant nodes have to be updated as well,
which may cause a lot of updates and IO.

5.7 Document Collections

Multiple XML documents may be stored in a collection, a logical compound that makes doc-
uments, typically originating from the same domain, available under a common address. Col-
lections have two major objectives, namely joint query processing and joint storage structures.
In XTC, an artificial root node, to which all documents are attached, serves as proxy for col-
lection processing. In contrast to the order-preserving requirement of the XML specification,
in a collection, each individual document is only a subtree of the artificial root node – without

102

5.8 Self-Tuning for XML Storage Configurations

collection index

B*-tree

...

...

data
pagesdocument

artificial root node

... ...1.3 1.5 1.9

...

document document

Figure 5.11: Collection mapping in XTC

a specific order.
Although a collection is independent of the used storage mapping, we favor elementless stor-

age in XTC. As path synopses in a collection are shared between the documents, the benefits
for joint query processing, statistics management, and indexing are essential. Moreover, stor-
age savings for (tiny) documents may become a determining aspect for collections due to the
shared data structures, i.e., B*-tree indexes. Figure 5.11 shows the logical view of a collection
store and its documents. Each document subtree (depicted as triangles) is stored consecutively
in the data pages of the B*-tree.

Access to document collections is gained through the same mechanism that is used for single
documents. Especially scan-based access operators exploit the notion of node sequences, ac-
cording to the XDM. Therefore, XTC only needs to provide all document root nodes in a single
sequence. The other way around, a single document in XTC that is not part of a collection, is
accessed through its root node wrapped in a node sequence, making document and collection
access uniform for all kinds of processing.

5.8 Self-Tuning for XML Storage Configurations

Not only XML itself provides flexibility but also the native storage concepts shown in the last
sections. Besides a storage management purely tailored to reduce space consumption, which
seems to favor the elementless storage mapping all the time, we require usage-dependent opti-
mizations for XML processing, too. Available parameters have to be adjusted to the expected
workload. If applied, computational overhead for structural and content compression or build-
ing document collections has to pay off. APIs such as SAX and DOM behave differently
and favor different configurations. Thus, together with the underlying buffer, the storage lay-
out and configuration are the most important IO performance drivers. Because many storage
parameters are immutable (for a distinct document or collection), they need to be chosen in
advance. Knowledge about future processing is typically not available, but similar database
objects may already exist. Efficient identification of those similar objects and comparison may
help to at least guess future usage and thereby adjust the configuration accordingly. However,
large documents may slow down database processing if being analyzed in advance. Sampling
techniques or offloading may reduce these efforts. To enable an effective workload-dependent
storage management, i.e., configuration, the database may exploit a monitoring, analysis, de-
cision framework covering the usage and performance of existing objects.

103

Chapter 5 Storage Self-Tuning for XDBMSs

In this section, we show several techniques for content compression, which are orthogonal
to the structural compression presented in Section 5.6. Furthermore, we show how to gather
meaningful statistics supporting document classification and providing decision support for
storage options.

5.8.1 Compression

Many XML-specific tuning options are directly related to the verbosity of XML. Therefore,
many existing compression techniques have been adapted to the XML data model (i.e., dis-
tinction between structure and content) or new compressors have been tailored to certain data
types, XML domains, or XSD-awareness.

Although almost all of these techniques address the same issue – verbosity – not all of
them are applicable in a DBMS environment. We distinguish between three different kinds of
compression techniques for XML.

1. Document-oriented compression
Those compressors “squeeze” the entire XML document into a binary format that does
not allow for further data model-aware processing, i.e., only decompressing the entire
document at once. Thus, document modifications result in full decompression and com-
pression cycles. The handling is comparable to zip-style compression tools.

2. Block-oriented compression
The original XML document is split into chunks for further processing. However, in
favor for a high compression rate, the chunks are typically too coarse and, thus, the
overhead for decompression and compression is unacceptable for database processing.
Furthermore, the chance of skipping a compressed block to avoid further inspection
during document processing heavily depends on data distribution (e.g., selectivity, clus-
tering) and detailed knowledge of the block’s content may be necessary, which is often
impossible due to compression.

3. Node-oriented compression
Individual nodes are compressed one at a time. Especially for database-centric XML
processing, preserving the logic of XML nodes and content seems to be inevitable to
allow for declarative query processing based on XML node sequences as in XQuery/X-
Update. However, the node-wise compression overhead needs to be considered.

There are more properties to characterize a compression technique such as compression ratio,
overhead for compression or decompression, and IO and CPU impact in a multiuser environ-
ment, which will be addressed during the evaluation in Section 5.10.5. An overview of existing
XML compression approaches and reasons why they are not applicable in an XDBMS can be
found in Appendix B.5.

5.8.2 Document Statistics

Detailed knowledge about the structure and content of XML documents can help to fine-tune
storage parameters. According to the flexible storage concepts presented in Section 5.4 and

104

5.8 Self-Tuning for XML Storage Configurations

dblp

book book

@id @year author author authortitle

first last

authorauthortitle@id @year

first last first lastfirst last first last

article

authortitle
bk3 1980 SQL Performance

Tuning

Peter Gulutzan Trudy Pelzer

bk8 1987 Concurrency
Control and
Recovery in
Database
Systems Phil Bernstein

Vassos Hadzilacos Nathan Goddman

A Transaction
Model

Jim Gray

level 0

1

3

2

Figure 5.12: XML sample document for statistics

Section 5.6, various document statistics can be exploited when storing new XML data [SH07].
Here, we will give an overview of all the document statistics that are meaningful for the fol-
lowing sections.

Statistics can be distinguished between structure-relevant and content-relevant. Hence, we
explore both kinds of statistics for our sample document given in Figure 5.12.

Structure Statistics

The structure of an XML document is (often) used to model application data. Thus, the storage
and processing of XML is also influenced by the model and, therefore, by the structure of the
document.

Beginning at the “external” side, i.e., XML files, file size is an important parameter. How-
ever, in Section 5.1, we have shown that (X)DBMSs typically avoid the verbosity of XML and,
thus, the file size is actually an indicator for the expected storage size and time6.

Basic XML statistics cover the number of (element, attribute, text, *) nodes, maximum depth
of a document (see level in Figure 5.12), the average depth of a node, number of distinct paths
(max(PCR) in Figure 5.13), and number of distinct element/attribute names (vocabulary size).
Note, for simplicity we do not care about other node types such as processing instructions
or comments because they do not occur very often and, therefore, are negligible for the “big
picture”.

More sophisticated statistics include instance counters for path classes, average and max-
imum fan-out numbers of element nodes as well as information about mixed content occur-
rences and subpath recursions.

Content Statistics

In our work, content is related to text nodes and attribute values, where each sibling text node
in a mixed content children set of nodes is considered independently. Basic statistics cover the
total amount of text (typically in bytes) and the average length of a text value.

More sophisticated statistics include level-wise content information (i.e., vertical content
distribution), horizontal content distribution, and q-gram or word-based counters of distinct

6Note, in really unusual cases this limit may be exceeded, too, and we do not consider dynamic imports such as refer-
enced XSD or DTD files.

105

Chapter 5 Storage Self-Tuning for XDBMSs

1

book

authortitleid year

first last

dblp

2

3 4 5 6

7 8

PCR
article

authortitle

9

10 11

Figure 5.13: Path synopsis for sample
document

file size [MB]
elements
attributes
text nodes
max/average depth

structure
distinct paths
vocabulary size
path class instances

amount of text [bytes]
average length of text value
wordbook

content

1.2
23
4

18
3/2.18

11
9

pcr
#

1
1

2
2

3
2

4
2

5
2

6
5

7
5

8
5

9
1

10
1

11
1

78
78/18 = 4.3

'1980', '1987', 'A', 'bk3', 'bk8', ...

Figure 5.14: Structure and content statistics for
sample document

values. We do not consider datatypes in this work, although it may slightly improve compres-
sion capabilities, but at the same time, increase its recognition and calculation overhead.

According to [SH07], Figure 5.14 sums up the most meaningful statistics exemplified for our
sample document from Figure 5.12.

In the following sections, we will explore different possibilities to gain good (enough) statis-
tics and see how to exploit them for an ASM - Adaptive Storage Manager [SH07].

5.8.3 Classification of Documents

When working with XML documents in a (X)DBMS environment, it is beneficial to know
before what kind of XML data is processed and what kind of operations can be expected.
This may allow sharing common metadata and secondary data structures (e.g., compression
indexes) between several XML documents. Note, research proposed to use XML-defining
documents but, if at all, limited itself to DTD-based classifiers or similarity metrics [NJ02,
KSH02]. Although XSDs offer more flexibility and should be the preferred method to define
XML data, our approach does not require the presence of any DTD or XSD. Thereby, we can
classify all kinds of XML data in the same way7, which is also supported by [MBV03], where
the authors conclude that 52% of the XML documents in the Web are schemaless.

For native XML storage two classification categories are meaningful:

1. Document-centric or data-centric XML processing

2. Similarity of XML documents (compared to existing database objects)

In the following, we look at both classification approaches.

Document-centric or Data-centric XML

Besides traditional workload analysis (offline and online), the initial process of storing an XML
document needs to “guess” the prospective usage or requires some help by the user. There are

7A schema may improve the classification, but it is only declaring possible document shapes instead of the actual one.
Furthermore, schema evolution and dynamic schemas make it more impractical.

106

5.8 Self-Tuning for XML Storage Configurations

several metrics how to differentiate usages. For instance, by evaluating the share of read and
write operations, where secondary structures (e.g., indexes) need to be maintained as well. Fur-
thermore, access patterns may serve as distinguishing feature such as access frequency, value
range, and processed data volume. Thus, in the first place, we start to classify the workloads
present in native XML databases. In doing that, we identify two major kinds of usage patterns
for XML documents – collections of small (tiny) documents often processed in a document-
centric way and single big (huge) documents usually processed in a data-centric way.

• Document-centric usage
XML database access for document-centric processing primarily retrieves and stores a
document as a whole. This is often the case for tiny documents with storage sizes less
than a database disk page or for documents having only a small structure part which
often results from automatic data transformations into the XML representation, e.g, “bi-
nary” data, articles, or books. Although support by structural indexing is possible, the
additional IO of secondary indexes often does not pay off. Text collections and sys-
tems exchanging XML documents (Web services, messages) benefit from downloading
or retrieving entire documents to process them at the client side. Even if documents are
evaluated or modified at the server side, e.g., using XPath or XQuery, tiny documents
(with a size less than a (few) disk page(s)) benefit from being processed as a whole. As
a result, they fit into a single (or a few) buffer page(s) and only require marginal main-
memory space. Furthermore, content-related queries requiring (keyword) search often
dominate the workload for these kinds of XML documents, where an additional full-text
index is usually oversized or too expensive.

• Data-centric usage
For example, benchmarks like TPoX [NKS07], XML stream processing, and (semi-
) structured data sets embedded into XML documents (e.g., relational data) use query
languages that rely on index support to optimize selective data access [BBON06]. Often,
tiny document fractions, aggregated data, or a few element nodes constitute the final
query result. In such cases, exploiting indexes to minimize disk IO is essential for huge
documents.

The concepts developed in this thesis are applicable for both kinds of XML usage, however,
some fine-tuning measures only target at data-centric domains, where highly selective access
to huge amounts of data is essential. This kind of data access and manipulation is comparable
to OLTP (Online Transactional Processing).

Similarity of XML Documents as Database Objects

When storing XML documents, similarity identification helps to avoid redundant work. For
instance, wordbooks, path synopses, metadata catalogs, which exist for stored documents, do
not need to be recreated for new documents if their similarity is high enough and thereby a
joint use is reasonable. Moreover, the evaluation of a storage configuration is often restricted
to a point in time when further adjustments are impossible. Thus, a knowledge base for the

107

Chapter 5 Storage Self-Tuning for XDBMSs

gains of prior document configurations and a similarity measure for new documents may be
useful to increase the quality of storage parameter selection.

There exist a lot of different similarity measures for the XML domain, albeit the majority
is based on structural properties using a variation of the so-called tree edit distance [ZSS92].
Those measures calculate the distance between two XML documents by counting the number
of insert, delete, or update operations necessary to transform one tree into the other one [Bil05].
The shorter the distance, the more similar are two documents. Several algorithms emerged
to speed up similarity detection, but do not take the content into account [FMM+05, Hel07,
ABG10]. This issue is better addressed by the IR (information retrieval) community [DG07],
where structure and content is analyzed to categorize and cluster XML documents. Inspired
by XML’s structural power, semantic clustering [TG10] is also possible and tailored similarity
operations (e.g., joins) for XML [ABG10] are developed.

Because categorization and clustering will be done during the storage process, we restrict
the analysis to storage-relevant similarity measures and pay attention to their overhead.

As several comparison features are possible, we will briefly introduce the most important
approaches:

1. Counters
Based on file size, number of elements, attributes, text nodes, amount of text, and average
text value length, sketched in Figure 5.14, similarities and differences at a high abstrac-
tion level are visible. For instance, it is fairly uncommon that GB-sized documents will
be processed (and therefore stored) the same way as KB-sized ones, or that documents
having no text nodes are from the same domain as documents that are dominated by text
(nodes).

2. Structure
Exploiting again the path synopsis from Section 5.5, sets of path classes can be directly
compared. A completely calculated tree edit distance is not meaningful, because we
do not want to transform a document. Moreover, it is not meaningful to operate on
an abstract summary (e.g., path synopsis) where, for instance, ordering is negligible.
For storage purposes, it is enough to know the number of common path classes and
different path classes which would have to be added (i.e., merged into the existing path
synopsis). However, instance counters for path classes allow weighting the importance
of path classes and, thus, further supporting structural similarity measures.

3. Wordbook
It is very typical that similar documents employ similar wordbooks (i.e., XML tag and
attribute names, or documents from the same domain or based on the same XSD/DTD).
Comparing two wordbooks is simple but (often) provides sound criteria for similarity
evaluation8.

4. Content
Independent of structural similarity, the content of XML documents can be compared

8In case of an XSD or DTD description available, the wordbook comparison may be done based on them without losing
to much accuracy.

108

5.8 Self-Tuning for XML Storage Configurations

as well. Many approaches in this field originate from the information retrieval com-
munity, where edit distances (e.g., Levenshtein), subword matching (e.g., n-gram split-
ting), or exact (unordered) word matches are used to compute the degree of similarity9.
However, the simple technique, exact word matches, is sufficient for us. In contrast to
structural comparisons, frequencies will not be so important here. Later, we will see
how this approach is extended to character-based comparisons (e.g., documents of the
same language have character-wise similar frequency values, which will be exploited for
compression options).

5.8.4 Analysis Options

Analyzing documents before they are actually stored in the database is necessary to setup
immutable storage parameters. Those parameters can only be changed if the document(s) is
removed and stored again, which however is often not reasonable because of running trans-
actions, secondary data structures (i.e., indexes), and last but not least the overhead (i.e., IO
costs). Details about storage costs can be found in Section 5.10.2.

The goal of an analysis step is to get detailed knowledge about the XML structure and
content (Sections 5.8.2 and 5.8.3). The incoming document can be matched with existing
documents and the best-matching collection or document can be identified10. In case of a
collection, an insertion of the incoming document into the collection can be examined, too.
When a document was found to be a “close enough” match, its storage parameters can be
applied to new ones. Note, although used before, these storage parameters are not necessarily
advantageous. Therefore, feedback about the benefit of former storage decisions is required.

During an analysis step, certain storage options can be tested (i.e., trial and error). As long
as their overhead is low enough, such a search may be beneficial. For instance, a subset of
the document can be transformed into a database’s internal representation and different text
compressors may be applied. However, a good knowledge base containing information about
former storage decisions seems to be a (more) viable solution.

Document analysis can be done in two ways, either by analyzing the entire document before
it is actually processed again for storage or by sampling on a representative subset of the
document:

Pre-Analysis

If the entire XML document is present, so-called “block-mode” arrival, a full scan of them is
possible to derive exact statistics. While performing a SAX scan, a vocabulary and the path
synopsis can be dynamically constructed and kept in main memory as well as depth information
and text content characteristics can be captured. In addition, this information can be reused for
the second parse. Although the full XML document(s) has to be parsed before it is actually

9Information retrieval is extremely mature in calculating fine-grained similarity because of ranking possibilities. More-
over, a certain degree of uncertainty is tolerated. As we do not need any ranking in the first place and typically avoid
any uncertainty, we can restrict our content comparison to simple, coarse, and fast calculations.

10Such an evaluation is actually similar to the ranking of information retrieval, although we do not require and use ranking
of documents elsewhere.

109

Chapter 5 Storage Self-Tuning for XDBMSs

Table 5.3: Document analysis options compared
Property Pre-Analysis Sampling
scan range full document (100%) head of document (� 100%)
precision 100% � 100%
runtime (very) long short (upper bound)

buffer effects good best
block mode yes yes
stream mode (no)11 yes

validation (XSD) yes no
reusing structures yes (no)12

stored in the database, the overhead is (often) quite low. Due to buffer effects, the second parse
is reading the document(s) faster. Furthermore, an optional validation may take place and in
case of violations the actual storage process can be stopped. Needless to say that this is an
exceptional but quite common case in the world of XML. Thus, the actual storage process (i.e.,
preparing disk pages, synchronously writing data to disk, etc.) is dominating the entire process.
Moreover, such an analysis is typically done only once for each document, while it is (later)
queried multiple times.

Sampling

While being expensive, a full document analysis always delivers accurate statistics and thereby
an optimal parameter selection for the storage configuration. But for large document(s) or
collection(s), sampling may be appropriate to conceivably reduce the analysis efforts.

Sampling only allows to approximate important auxiliary structures and statistics such as vo-
cabulary, path synopsis, content size per node, fan-out (in upper levels), and document depth.
Certainly, a good reason for sampling are so-called stream-mode documents, that is, the docu-
ment enters the database as a stream of nodes without any information about its size or stream
length.

When sampling on block-mode or stream-mode documents, only initial fragments may be
exploited for reasonable estimations. Sampling inner parts would require to “jump” into the
middle of the document thereby losing location awareness and context information for de-
termining levels, paths, and other structure information. Despite auxiliary knowledge about
document size and structure for block-mode documents available, sampling proceeds the same
way in both cases.

Neither sampling nor pre-analysis is superior for all kinds of applications. In Table 5.3, the
main issues are compared. Note, the precision of the analysis depends on the sampling buffer
size and directly correlates to the (unknown) document size. However, typically sampling, as
the name indicates, does not cover the full document and thus a lower precision is expected. On
the other hand, runtime is definitely the strong side of sampling because it will never exceed a
certain limit (i.e., an upper bound for overhead estimations is available). Comparing the buffer
effects reveals an ambiguous situation. As long as the document(s) fit into the (free) buffer, the
disadvantage of a full pre-analysis is fairly low. However, sampling may use the same buffer as
the storage engine itself and nothing needs to be reloaded from (external) disks. Accordingly,

110

5.8 Self-Tuning for XML Storage Configurations

another property – stream-mode analysis – is clearly better supported by sampling. However,
an optional validation cannot be advanced to the analysis step. Eventually, reusing data struc-
tures collected during the analysis is easier when doing pre-analysis, because the structures are
complete and can be optimized (e.g., encoding or compression).

Statistical Inference

A document analysis may back up configuration decisions, because they can be tailored to the
characteristics of a single document or collection. However, most of the possible options are
already presented in Section 2.5, but so far have to be configured with default values or chosen
by the user (or administrator). For a self-tuning approach, the following observations can be
exploited:

• Node labels: Pre-analysis or sampling deliver statistics about fan-out and density char-
acteristics of a document. This information can be used to backup dist parameter de-
cisions, even for individual levels of the document. When taking similar documents’
statistics (of the same collection) or the new document’s statistics into account, it helps to
leave tailored gaps that may limit the overhead of division overflows in case of document
updates. Moreover, customized Huffman codes can be applied for different divisions of
a DeweyID adjusted to the expected average number of siblings. These fine-tuning mea-
sures become necessary as soon as space consumption becomes a critical issue.

• Encoding: Similar to the node label encoding, a document’s individual vocabulary or
path synopsis (in case of elementless storage) encoding may exploit statistics gathered
by pre-analysis or sampling. For instance, a vocabulary may use a flexible encoding
for a variable range of values or a fixed-length encoding13 which requires a frequency
distribution of tag names. The total number of different names as well as the expected
extent rate can be used to safely choose the best, i.e., most compact form of encoding.

Path synopsis encoding, especially for PCRs, is similar to that of a vocabulary. Be-
sides the decision between fixed-length and variable-length encoding, the order of codes
for PCR numbers may exploit instance statistics of paths. Thereby, frequent PCRs get
smaller code words compared to rare PCRs, e.g., the root node exists only once and may
get a large PCR or no code word assigned. Special considerations are required when
thinking about the physical node instances because the elementless document store only
contains leaf nodes, where the size of intermediate (e.g., element node) PCR codes does
not matter. But secondary indexes may contain these “large” PCR code words, which is
typically unknown while storing new documents, except when storing into a collection
that already contains indexes.

11By temporarily storing the stream, it is possible but considerably more expensive.
12Accepting additional work, the reuse of structures gained through sampling may be possible.
13An example – a vocabulary comprising 200 different tag names is encoded as follows: (1) fixed-length means an upper

bound of possible entries (i.e., 1 byte - max 255 entries) (2) variable-length means to employ “overflow” encoding
reducing the number of possible values (i.e., the first byte encodes up to 128 different entries and uses a bit to indicate
that a second byte is needed.

111

Chapter 5 Storage Self-Tuning for XDBMSs

• Structural compression: This basically means to decide whether to store in full stor-
age mode or elementless mode. Having only tiny document(s), each fitting into a few
pages may better make use of the full storage mode. Because then, document access
only requires to process (e.g., scan) these (often consecutively stored) pages. Also flat
documents, i.e., less depth and nearly all nodes are leaf nodes may better make use of
the full storage mode. Because the main advantage of the elementless mode is to avoid
the physical representation of pure structural information, which is very low in such flat
documents. On the other hand, space savings through elementless storage can easily
add up to a huge amount. As long as the number of distinct paths (i.e., size of the path
synopsis) is below a reasonable threshold and the path synopsis can therefore be kept
in main memory, the additional functionalities (i.e., index types, query processing sup-
port) advocate the usage of elementless storage in most cases. Moreover, statistics about
distinct paths, instance counters, average content sizes, depth, and leaf information are
exploited.

• Content compression: Compressing text values does not always pays off, because the
size reduction is too small or the algorithmic overhead harms the actual processing.
Therefore, analyzing or sampling the document content is not necessarily limited to the
text value length. It can also estimate the compression gains. For instance, character-
wise encodings such as Huffman may simply account the frequency for (some or all) dif-
ferent characters. Together with the average content length, the compression gains can be
estimated. Even for wordbook-based compressors an estimation of compression gains is
possible. Therefore, typically a subset of (long) content values is compressed on-the-fly.
Whether to analyze the full document’s content or only a subset is a performance-critical
issue, which is independent from the possibilities of statistical inference examined here.
Often, long content values stemming from a certain domain (e.g., language, numbers,
research area) heavily benefit from wordbook-based compressors.

• Page size: The concept of pages requires that records are aligned to the page size, i.e.,
records have to fit completely into a page or they are divided into multiple pages and are
referenced. Moreover, the page concept leads to cutting losses as soon as the remaining
free space is not enough for a new (or enlarged) record in that page. Regarding total
space consumption of a document, it is important to keep the free space below a certain
limit. Either by controlling the max-value-size of records or by exploiting statistics
about frequent node value lengths are viable options. Thus, document-centric XML
may require larger page sizes than data-centric XML.

Together with structure compression, it may be beneficial to choose the page size ac-
cording to the (estimated and/or expected) total document size.14

14We do not consider the concept of subpages in this work, which may solve some of the problems introduced by tiny
documents or additional (tiny) data structures such as path synopsis or vocabularies.

112

5.8 Self-Tuning for XML Storage Configurations

5.8.5 Workload-Dependency

Classification of documents, as shown in Section 5.8.3, is used to distinguish document types
and for tailoring the storage configuration accordingly. However, when more usage information
is available, such as typical access patterns or access frequencies, value ranges, data volumes,
and query types, configuration refinements are possible and may even be necessary.

There are other metrics to differentiate potential usages. For instance, the share of read and
write operations, whereby secondary structures (e.g., indexes) need to be maintained as well.

First of all, we classify document operations in the following three categories:

• document-based – storing and reconstructing complete documents (SAX API), obvi-
ously favoring document-centric XML data.

• index-based – point and range queries often benefit from indexes (query optimization),
however, the penalty of index creation (which implies a document scan) has to be amor-
tized by frequent search operations; for data-centric XML, indexes are essential.

• fragment-based – the most complex and varying operations refer to node/subtree lookups,
modifications, and deletions; both, document-centric and data-centric documents may be
accessed in this way.

Furthermore, large documents typically require selective access when XPath/XQuery pred-
icates are evaluated or subtrees are inserted or modified. In contrast, usually small documents
are units of processing, i.e., they are entirely fetched, processed in memory, and, when mod-
ified, completely restored to disk. Anticipated operations are specified by a mix of simple
queries for searching and modifying data [NKS07]. In contrast, large XML documents vastly
benefit from additional indexes when processed as DB objects.

Our second distinguishing metric is the share of read/write operations. Even in a transac-
tional environment, read-only workloads may not only benefit from adjusted lock protocols
but also from a tailored storage layout. For instance, the size of disk pages is changeable,
which affects the transfer unit from disk to buffer. Redundant data structures such as element
indexes or space-consuming content indexes are supportive because no contention and updates
are expected. The storage container selection favors a read-optimized solution such as flash
devices or certain RAID types. In contrast, a write-dominated workload (e.g., log files, backup
side) is more sensitive to updates on secondary data structures or the write performance of
buffer and the underlying physical device. Anyway, real scenarios contain mixed workloads
of read and write operations. This causes the real challenge for workload-dependent storage
configurations, because the oppositional optimizations for read and write loads have to be ac-
commodated for each document or collection.

5.8.6 Autonomous Collection Building

Document collections share data structures such as path synopses and may further increase
the filling degree for data pages (compare Section 5.7). For self-tuning storage management,

113

Chapter 5 Storage Self-Tuning for XDBMSs

the collection building can be done autonomously, too. Using the document similarity analy-
sis from Section 5.8.3, the overhead that accounts the costs for joining a new document with
an existing collection is computable. Depending on document and collection size (e.g., num-
ber of documents and storage occupation), it is fairly easy to evaluate the merge. In case of
minor adjustments due to similar structure, wordbook, and (single document) size, a join is
recommended. However, a single document may be regarded as a collection and, therefore,
a merge of two documents can create a new collection in the database. Note, this decision
is independent from indexing and query workload, which may disapprove the join. Thus, the
join decision driven by storage space savings and structure optimization has to be supported by
something like a domain similarity factor. That means, anticipated usage (see Section 5.8.5) is
equally important. Fortunately, in real world scenarios, similar documents often belong to the
same domain and, therefore, reveal the same characteristics in storing and querying.

Besides autonomously joining documents to collections, another requirement for a flexible
self-tuning storage system is to separate documents from a collection when necessary. Because
XQuery handles documents in a collection anonymously (i.e., they have no name, ID, or order),
the anonymization has to be hidden somehow.

5.8.7 Data Placement

The issue of data placement contains two major aspects. On the one hand, the increase of
physical storage alternatives offered different IO performances for different-sized media and
prices. On the other hand, data values can be distributed and duplicated to parallelize IO.

In [MD97], disk impact was studied to analyze the benefit of parallel or sequential data ac-
cess using a simulator. Furthermore, the skew in query and join predicates was considered, just
like relation size and index effects. Even IO scheduler alternatives have been studied to im-
prove the processing of various workload compositions. Here, the effects of data clustering and
disk physics (e.g., spin-up time, rotation speed) are important. More sophisticated scenarios
consider different RAID configurations or SSD devices as in [CMB+09], where object-wise
read/write statistics were used to move objects from disk to (the faster but smaller) SSD. In
such a mixed disk environment, the knapsack problem (cf. Section 3.1.2) needs to be solved.

Even newer technologies such as MicroElectroMechanical Systems (MEMS) [YAA07] are
used instead of disks to allow for column-wise and row-wise data retrieval. Therefore, a new
page layout (FRM – flexible retrieval mode) was developed because the well-known PAX,
DSM, and NSM did not sufficiently match all requirements. Besides the page layout, even
data structures can be adjusted for data placement such as the adaptive B+-tree in [LKO+00]
focusing on data migration.

Although most of the approaches are for the relational data model, to some extend, they
can be adjusted to the XML data model, because the separation of data and indexes or log
files is fairly the same. When considering XML documents as entire DB objects, similar to a
relation, the object-wise placement may work, too. However, access patterns are different and,
therefore, viable options have to be investigated.

114

5.9 Realization in XTC

5.8.8 Shifting Load to the Client-side

In today’s computing environments, the classical “client/server” principle is often mitigated be-
cause peer-to-peer computing, cloud computing, or GRID, and commodity-class server farms
are ubiquitous. Even in centralized environments, often oversized and underutilized client ma-
chines are available awaiting response from an overloaded server.

In order to scale with (peak) workloads, the server-side is upgraded with more hardware
– KIWI (kill it with iron). We propose an approach to balance the loads by exploiting the
processing capabilities of the client engines, too. Certain isolated (i.e., only visible for the
client) computation-intensive processing loads may be sourced out to the client. For instance,
the analysis step (Section 5.8.4) or compression (Section 5.8.1) can be done at the client-side
before data is actually transferred to the server.

However, client and server resource capabilities and load situations have to recommend
such a processing shift. Furthermore, the problems of code shipping, trustworthiness, and
transactional protection have to be addressed as well.

Especially the initial data loading may benefit from preprocessing (i.e., compression and
validation) XML data at the client-side. Furthermore, document retrieval may exploit a similar
technique. Due to the network bottleneck, a compressed stream of document information may
reconstruct the document at the client-side.

5.9 Realization in XTC

In this section, we highlight the most important algorithms and data structures we implemented
in XTC to realize and demonstrate storage-related self-tuning concepts.

5.9.1 Statistics

There are three kinds of document or index statistics available in XTC. Either global con-
figuration flags or online parameter settings that control the actual statistics gathering while
documents are stored, manipulated, or indexes materialized. Let us have a look at them:

1. Basic B-tree statistics cover the height, cardinality, size in bytes, number of pages, and
pointers as well as the number of leaf pages. These statistics can individually be gathered
for each document index as well as for all secondary indexes during materialization.
Note, we do not guarantee consistency for these kinds of statistics, i.e., either an explicit
statistics run is required to update them or document updates causing changes of the
underlying B-tree structure may not be reflected.

2. Structural or so-called Path Synopsis statistics are only available in elementless storage
mode, because they are developed as an extension to the path synopsis. They cover
statistics about the number of path class instances, the average content length, and a
modification count.

115

Chapter 5 Storage Self-Tuning for XDBMSs

3. Fine-granular structural statistics can optionally be created to indicate DOM relation-
ships for elements and attributes. The fundamental concept is based on the EXsum
approach [AMFH08] for XML statistics.

Because B-tree statistics can be easily gathered by traversing an index and, for instance, count-
ing the various page types, we do not discuss them in more detail. However, the path synopsis
statistics are more important for self-tuning, especially, when we discuss the index tuning in
Chapter 7. Therefore, we will have a closer look on how to create and maintain them. Be-
cause the gain in XTC of using EXsum statistics is similar to the gain of using the cheaper
path synopsis statistics, we confine ourselves to a size and performance comparison during the
evaluation in Section 5.10.9.

Path Synopsis Extension

As already mentioned, the elementless storage mapping can easily be extended with some basic
and cheap statistic values. Listing 5.1 shows the local variables a path synopsis node carries,
where lines 17–19 represent the (added) statistic counters XTC is aware of. Compared to the
remaining metadata, shown in lines 3–10 and 13–14, it has a rather small footprint.

Listing 5.1: Path Synopsis node data structure
1 class PathSynopsisNode implements PsNode {

2 /* consistent metadata */

3 final byte nodeType;

4 final int pcr;

5 final int vocId; // vocabulary ID

6 final String name;

7 final PathSynopsisNode parent; // parent pointer

8 final PathSynopsis ps; // path synopsis pointer

9 PathSynopsisNode [] children; // children pointer

10 boolean stored , visible = false; // transactional properties

11
12 /* lazy evaluated metadata , for path synopsis processing */

13 final int level;

14 Path <String > vocIdPath;

15
16 /* statistics */

17 int count = 0; // instance counter

18 int updateCount = 0; // IUD counter

19 double avgCntLength = 0; // average content length

20 }

Statistics Gathering

Path synopsis statistics are gathered while a document is initially stored or via an explicit
statistics run. Therefore, XTC provides a listener pattern for scan-oriented document process-
ing. Its interface is close to the SAX specification (e.g., startElement(), endElement(), text(),
attribute(), etc.). For B-tree statistics and path synopsis statistics, corresponding listeners are
implemented and attached to the initial document store method. Each time an XML entity is
parsed, the statistic callback is executed. Besides cheap counter maintenance, which is always
incremented, the average content length (i.e., avgCntLength) can be computed in two ways:

116

5.9 Realization in XTC

(1) for each callback re-compute the average content length based on its old value and the new
(increased by one) count value or (2) sum up the content length values and, in case of an end-
Document() or endSubtree() call, divide it by the current count value. The overhead caused by
path synopsis statistic gathering will be analyzed in the evaluation of Section 5.10.9.

Statistics Maintenance

Although we do not enforce path synopsis statistics to be fully consistent, we can enable au-
tomatic maintenance for them to keep them up to date. That is, each committed document
modification is reflected by the count, updateCount and, if necessary, the avgCntLength val-
ues. Note, intermediate states, i.e., concurrent transactions modifying and reading the same
statistical information, may not be isolated according to their actual transactional contexts –
this type of weak isolation is only valid for statistic values.

The modification accounting is fairly similar to the initial statistics gathering. The same
listener can be used, but its mode options are not limited to inserts anymore, because update and
deletes are allowed, too. For simplicity, XTC implements document updates based on a delete
followed by an insert, which reduces the complexity of path synopsis statistic maintenance.
For instance, Listing 5.2 shows the “SAX-styled” attribute callback method, which switches
between INSERT and DELETE mode to update statistical values on an individual path synopsis
node identified by its PCR.

Listing 5.2: Path Synopsis statistic update sample (PathSynopsisStatisticsListener)
1 void attribute(TX transaction , ElNode node) throws DocumentException {

2 int pcr = node.getPCR ();

3 String value = node.getValue(transaction);

4 if (mode == ListenMode.INSERT)

5 pathSynopsis.increaseCounter(transaction , pcr , 1, value.length ());

6 else if (mode == ListenMode.DELETE) {

7 pathSynopsis.increaseCounter(transaction , pcr , -1, value.length ());

8 pathSynopsis.increaseUpdateCounter(transaction , pcr , 1);

9 }

10 }

5.9.2 Statistics Gathering by Sampling

Because sampling the statistics is a kind of subset of statistics gathering presented in Sec-
tion 5.9.1, we only show their differences. Again, we use a document listener following the
SAX API by extending the DefaultHandler. Note, sampling analyzes the head of an XML
document (or stream) to extrapolate its statistics based on its raw document size. That means,
the file or stream size should be known in advance, otherwise, certain statistics are hard to esti-
mate. The sample size is specified by a predefined amount of bytes (absolute or in percentage
of the document size) or by the number of XML entities that need at least to be processed. As
soon as one of these conditions or the endDocument() callback is reached, sampling stops.

Sampling can be done in three different ways:

1. Server-side sampling before the document is actually stored. This process is inherited
from the pre-analysis step of XTC’s document storage process. Therefore, the document

117

Chapter 5 Storage Self-Tuning for XDBMSs

is fully available at the server side, i.e., in a temporary storage. While the actual storing
takes place, the overhead of statistics gathering can be avoided.

2. Client-side sampling can be used to source out the entire sampling efforts and statistics
gathering. The client’s document stream may be extended by the sampling results to
make them available in the server. Note, such a sampling step is exclusive, which means
no transactional properties have to be preserved.

3. Server-side buffered sampling avoids the re-read of the document “head”. Therefore,
the desired sampling size has to ensure that the sampling buffer is large enough to keep
the document data in the buffer. After sampling finishes, the SAX parser is reset to run
without statistics gathering, i.e., first the buffered data is consumed before the input is
transparently switched to the remaining (external) document data.

During the evaluation in Section 5.10.6, overhead and accuracy results of sampling are exam-
ined.

5.9.3 Compression

To support text (i.e., content values) compression in XTC, we implemented various techniques
that achieve a content-wise encoding. That means, each content value (i.e., XML node value)
is encoded and decoded separately. We developed a set of character-based compression modes
using Huffman codes and a wordbook-based compression mode, which is similar to common
database compression approaches.

The interface each text compressor has to implement is partially shown in Listing 5.3.

Listing 5.3: Text compressor interface
1 interface TextCompressor {

2 PageID getCompressionID (); // for persistent storage

3 void learnText(String value); // learning phase

4 void createCompression (); // calculates mapping

5 String decode(byte[] encodedValue);

6 byte[] encode(String value);

7 void setCharset(String newcharset); // character encoding support

8 String getCharset ();

9 /* iterator methods for materialization */

10 boolean next();

11 byte[] getKey ();

12 byte[] getValue ();

13 }

Our integration of the compression steps, while (new) XML documents or collections are
stored, is illustrated in Figure 5.15. The flow chart shows the effects of certain decisions
that can be made regarding text compression. For instance, an existing compressor (called
domain compressor) can be chosen or a new one is created by learning the content values
(learnText(String value) method). Buffer support by exploiting the sampling buffer idea avoids
multiple SAX parser runs of the same input document(s). Subsequently, the compression map-
ping is created and stored via an iterator interface (next(), getKey(), getValue()) into a B-tree
index.

118

5.9 Realization in XTC

database
XML text

compression
XML

storage configuration

statistics

no

yes

collectionsdata placement
classification

store

XML XML

new
compressor

no

yes

take domain
compressor

buffered

no

yes

learn

XML XML

learn

XML

XML

create compression

store new
compression

XML document input (SAX parser)
control flow
data flow
sampling buffer

Figure 5.15: Document storage process including compression choices

The double-framed box – storage configuration – represents all configuration decisions that
can be made during document storage in XTC. Later, we are going to explore some of them in
more detail. But before, we present XTC’s compression alternatives.

Character-based Compression Modes

Depending on the character distribution and frequencies, which may lead to varying compres-
sion gains, XTC employs the following alternatives based on Huffman encoding.

• Fixed Huffman (M1): During a pre-analysis run, the character frequencies were collected
on a document basis, for which a Huffman tree is then constructed. To adjust the code
for later document modifications, encoding was provided for all 256 possible characters.

• Flexible Choice (M2): Depending on the characteristics of a content node, it is either
encoded by a document-wide Fixed Huffman or a tailor-made node-specific Huffman.
Therefore, each content value is analyzed and, if favorable, a tailored encoding is de-
rived solely on the frequency distribution of existing characters. If chosen, the tailored
Huffman tree (typically < 40 nodes) is stored together with the encoded node’s content.

• Selective Encoding (M3): This method optimizes the runtime of M2 by calculating and
applying tailored Huffmans only to longer text/attribute values; smaller text values are
encoded by the Fixed Huffman of the document.

• Domain Encoding (M4): Especially applicable to small documents, an overall encoding
constructed from a domain-related character distribution base is used to reduce space
requirements and to speed up compression time.

Let us have a look at some internals for Huffman encoding in XTC. Each entry in the Huff-
man tree (or table) has the lightweight structure shown in Listing 5.4, including its frequency,
its value, and up to two child pointers.

119

Chapter 5 Storage Self-Tuning for XDBMSs

Listing 5.4: Huffman Node
1 class HuffmanNode {

2 HuffmanNode one , zero; // symbolic for left/right

3 double frequency;

4 int value;

5 HuffmanNode(int initialValue) {

6 value = initialValue;

7 }

8 HuffmanNode(HuffmanNode child1 , HuffmanNode child2) {

9 one = child1;

10 zero = child2;

11 frequency = child1.frequency + child2.frequency;

12 }

13 ...
14 }

Depending on the encoding scheme (M1 – M4), up to one descriptor byte is reserved per entry,
but often only one or two bits. Note, the encoding cannot be changed after a document is
stored, i.e., document (or collection) updates must use the same encoding scheme. The only
way to change an encoding scheme is to re-store the entire document or collection.

Keep in mind that character-wise compression of content seems to be favorable for data-
oriented XML, but not for document-oriented XML, for which the second option – wordbook-
based compression – was added to XTC.

Wordbook-based Compression Mode

As a common interface for all compressors is used in XTC, any compressor can be substituted
with anyone of the others. Thus, the API for wordbook compression is equal to the character-
based one presented before.

Hence, we only present some high-level parameters, which are (up to now) cannot be self-
tuned. Each wordbook meets the following limits:

• MAX BOOKSIZE: Limits the maximum size in bytes a wordbook can use on disk, the
default value in XTC is 10 MB.

• BIT LENGTH: This value defines the maximum number of bits a single word in the
wordbook is encoded with. The default value of 19 bits leads to 524,288 words being
possible.

• MAX ENTRIES: Depending on the bit length, the maximum number of wordbook en-
tries is calculated as follows:

MAX ENTRIES = (int)Math.pow(2,WordBook.BIT LENGTH)

• MIN OCCURRENCE: So that a word occurs in the wordbook, it has at least to appear
MIN OCCURRENCE times in the learning phase. XTC’s default value is set to two.

• MIN WORD LENGTH: Each word’s original string representation has to reach this
minimum length in byte to be considered for the wordbook. It prevents codes that are
longer than the actual (tiny) word.

120

5.9 Realization in XTC

Storage space consumption is further reduced by frequency-dependent code words. After a
wordbook was created, new words can be added (or rejected automatically), which, however,
implies a slightly different adherence to MIN OCCURRENCE, which can be violated now.

Main data structures to create and use a wordbook are fairly simple, as shown next:
HashMap <String , Integer > words

HashMap <String , Integer > code

ArrayList <String > reverseCode

In the words hash map, frequency statistics are collected during the initial creation; it can
be dropped as soon as the wordbook is materialized. The code hash map ensures quick code
lookup for encoding, while the reverseCode array list is used for fast decoding using the code
word itself as array position number. Storing wordbooks is done by implementing the same
iterator interface as for the character-based compressors. Moreover, wordbooks can also easily
be shared for multiple documents or collection.

Eventually, the compression support in XTC allows for several alternatives, where only
some of the parameters are chosen automatically. Additionally, we implemented a faster and
customized bit set class to speed up our space-efficient encoding of text values and decoding
of byte arrays, respectively.

5.9.4 Structural Classification of Documents

Document statistics, introduced in Section 5.8.2, are used to classify (new) documents and
their similarity to existing documents. Note, we do not explicitly refer to collections because
we do not distinguish between a single document and a collection throughout the following,
except when especially mentioned. Two important metrics are used to analyze similarity: (1) a
wordbook comparison (weak similarity) and (2) structural comparison (strong similarity).

Wordbook Analysis

Basically two wordbooks are compared, namely the existing wordbook We and the new one
Wn. Each entry w ∈Wn is searched in We. A naive approach based on the unordered word-
books in XTC15, produces O(|We| · |Wn|) costs. However, active wordbooks, i.e., cached in
main memory, provide hash-based access causing O(1) lookup costs for each w∈Wn. In order
to ensure that most entries of both wordbooks are conforming and, thereby, synergy effects can
be exploited, the following two conditions need to be fulfilled:

1. Overlap: Wn has to overlap for k% of its entries with We, i.e., at least d|Wn| · ke words
of Wn already exist in We.

2. Growth: The wordbook We is limited to grow by factor j.

Having chosen meaningful values for j and k, they can be used to specify upper boundaries to
speed up wordbook comparisons. To avoid unnecessary comparisons at all, the new wordbook
is only analyzed if:

|Wn| ≤ (j · |We|+ |We|)
15Wordbooks in XTC are unordered because their position number is used as unique identifier, which is not allowed to

be changed in case of wordbook insertions.

121

Chapter 5 Storage Self-Tuning for XDBMSs

Table 5.4: Comparing sample wordbook vectors for j = 0.5 and k = 0.7

Vn Ve1 Ve2
A 0 5 4
B 6 1 3
C 5 4 4

∑ 11 10 11
new words 6 4

condition 1 (overlap) no, 6 � b(1−0.7) ·11c= 3 no, 6 � b0.5 ·10c= 5
condition 2 (growth) no, 4 � b(1−0.7) ·11c= 3 yes, 4≤ b0.5 ·11c= 5

The growth factor j is used to define an upper boundary Cg = b j · |We|c. Similarly, k is used to
specify the upper limit of not matching words by defining the boundary Co as follows:

Co = b(1− k) · |Wn|c , because 0≤ k ≤ 1

Premature termination of comparisons is possible as soon as Cmin non-matches occurred;
Cmin = min{Cg,Co}. Another optimization can transform inactive wordbooks (i.e., not cached
already in main memory), which are unordered, into an ordered sequence allowing binary
search or map them into a hash map for cheaper lookups.

Because complete wordbook comparisons may become expensive, a kind of compressed
pre-filtering was developed, too. Here, a wordbook is represented by an (optionally run-length
encoded) vector indicating if a valid XML entity character is the first character of at least one
entity. Having these vectors of stored documents, i.e., existing wordbooks, makes it easy to
avoid unnecessary comparisons. Let us look at the example in Table 5.4. A new document
wordbook vector Vn is compared with two existing vectors Ve1 and Ve2. For simplicity, the
vectors to be compared consist of three entity groups, namely A, B, and C. We can easily
calculate the minimal number of new words, and if one of the conditions is definitely violated.
That means, false positives are still possible and a detailed comparison of words instead of
grouped vectors is necessary.

Structural Analysis

Structural classification of XML documents aims for exploiting collection storage. Because
XTC relies on the path synopsis to evaluate similarities, only the elementless storage is sup-
ported. According to the wordbook analysis, path-synopsis-based comparisons have to follow
the same conditions. For a new path synopsis Pn and an existing path synopsis Pe, we specify:

1. Overlap: Pn has to overlap for k% of its path classes with Pe, i.e., at least d|Pn| · ke path
classes of Pn exist already in Pe.

2. Growth: The target path synopsis Pe is limited to grow by factor j.

Basically, we can use the tree edit distance measure to evaluate similarity. Note, we only
require to simulate inserts, because we want to extend the existing path synopsis with “missing”

122

5.9 Realization in XTC

path classes, i.e., no deletion or renaming of existing path classes is allowed16. Therefore, all
paths p are extracted that hold for:

p ∈ Pn∧ p /∈ Pe , for all p ∈ Pn

Because modifications close to the root node may yield significantly more impact compared
to leaf node modifications, [ZCZ03] introduced a cost metric taking node levels into account:

cost(v) =
1

(1+ level(v))k

The relevance factor k ≥ 1 is not explained in detail. However, we extended this vertical cost
metric with a horizontal weight taking the bushiness of the insertion place into account. That
led to the following cost formula, when inserting a new node v:

cost(v) =
1

max{r,q}+(1+ level(v))
+

n

∑
i=1

cost(ci)

Our horizontal relevance factor is given by r and q that represent the number of nodes in the
insertion level and parent level. Thereby, huge fanouts or deep levels do not attribute high costs
to insertions. The second sum aggregates the costs for all the child nodes c of the inserted node
v.

Using the cost formula, we can define a cost limit for an existing path synopsis Pe as follows:

costlimit(Pe) = j ·
levelmax

∑
i=1

ri ·
1

max{ri,ri−1}+(1+ i)

The formula simply reuses the cost formula introduced before to account for the “extend” of
the existing path synopsis. With r, the number of nodes in a level is considered and j is used
to weight the limit, according to the conditions.

Reducing the efforts of comparing path synopses is possible by checking root node names
first. That means, path synopses having different root tags (i.e, XML element names) will not
be compared at all. Although XTC allows to have multiple root nodes (and thereby multiple
path synopses) in a collection, it is not exploited by the classification process. Another con-
dition, which is easily checked, targets at the total number of new paths. Thus, path synopses
violating this condition are rejected: |Pn|> j · |Pe|+ |Pe|.

The actual comparison performs several steps. First, the cost limit for Pe is calculated.
Second, starting in level one, each node of Pn is looked up in Pe, i.e., same (tag) name and node
type is required. Third, all nodes not found in Pe are put on a stack called newNodes, their costs
are calculated and added up, and their descendants are ignored for further lookups because they
are already accounted by the costs. The entire comparison is aborted as soon as the cost limit
is exceeded. Otherwise, the overlap and growth conditions are checked afterwards.

16Only in a special maintenance mode, path synopses are cleaned from unused paths, i.e., paths having no instances.

123

Chapter 5 Storage Self-Tuning for XDBMSs

5.9.5 Storage Decision Process – Document Processing

In XTC, many storage options that are available can be chosen by the user on demand, i.e.,
individually for each new document or collection. However, we extended XTC to support the
user in making meaningful storage design decisions. Depending on certain conditions such
as workload, statistics, and classification, XTC tries to adjust as many as possible storage
parameters automatically. Because some storage decisions have implications for the remaining
parameters, the decision process follows a specific procedure.

1. Load balancing: Depending on the computational capacity of the client and current
server load, the server can recommend that a client prepares documents before transmit-
ting them to the server. A client should observe this, but is not enforced to do so.

2. Document analysis: During the document analysis phase, XTC is analyzing the gath-
ered statistics, i.e., data volume, structural complexity, and content characteristics. These
statistics may result from a pre-scan (even at the client-side) or sampling. A so-called
document descriptor is assembled that describes all storage-relevant aspects.

3. Classification: In this phase, the incoming document is classified. Here, XTC sim-
ply takes processing knowledge of existing documents into account. For instance, the
share of content compared to the structural complexity (i.e., document-centric and data-
centric) is an indicator for its future usage, like the type of XQueries, index requirements,
or statistic maintenance. Note, the recommendations are solely based on the experience,
gained by monitoring the usage of existing documents and collections, or based on user
instructions such as default values. Especially the kind of expected workload, i.e., scan-
based or node-based, is a classification metric.

4. Collection building: Each new document’s descriptor can be used to measure its simi-
larity to existing collections. Therefore, path synopsis matching is optionally followed
by dictionary comparison to calculate the similarity. Either the first match (i.e., a pre-
defined threshold is met) is taken for merging the new document or, after all existing
documents and collections are compared and ranked, the best match is chosen.

5. Data placement: Before physical data structures are assigned, the target container is
selected. Here, the favored cluster size of the workload class is an important aspect. We
do not yet consider the load on certain containers (or devices), which may further im-
prove the data placement decision. But we can automatically assign different containers
for data and support structures such as path synopses, compression dictionaries, and sec-
ondary indexes. However, this is, at least at the moment, a system-wide configuration.

The document (stream) is then materialized into a physical representation, i.e., B∗-tree. Data
structures like path synopses or compression dictionaries are stored afterwards. The new doc-
ument is also registered in the metadata (“ master.xml”) and optionally in the collection index.

We do not automatically match compression dictionaries or code tables, which is not nec-
essary in case of collection storage, because collections do not support a mixture of content-
compressed and uncompressed documents. Only a single compressor is allowed for the whole
collection, which makes collection processing easier and faster.

124

5.10 Evaluation

5.10 Evaluation

So far, this chapter presented the fundamentals of XTC’s XML storage together with many self-
tuning approaches. Before we can evaluate their benefits and characteristics, we will present
our benchmark setup containing several real-world datasets and some artificial datasets, as well
as the hardware configuration.

Hardware Configurations

We have chosen three different hardware configurations for benchmarking, because this allows
us to determine the impact of them in terms of CPU power, CPU cores, main memory size and
speed, and disk configurations. All hosts ran Ubuntu Linux and Oracle Java 1.6.0 17.

• Configuration 1: Pentium IV, 3.2GHz HT, 1GB Ram, 2x 80GB SATA drive 7200rpm
3.5” (kernel: 2.6.24-16-server)

• Configuration 2: Xeon Quad Core 2.66GHz, 4GB Ram, 2x 500GB SATA drive 7200rpm
3.5” (kernel: 2.6.24-16-server)

• Configuration 3: Core 2 Duo 2.53GHz, 3GB Ram, 250GB SATA drive 5400rpm 2.5”
(kernel: 2.6.27-14-generic)

5.10.1 Datasets

Benchmarking storage options requires a rich set of XML data providing manifold character-
istics. Therefore, we evaluate our (self-)tuning techniques on a set of real-world datasets and
a set of artificial datasets, which will be described in the following. In Table 5.5, an extended
view of Table 5.2 is showing interesting document characteristics such as average and maxi-
mum depth, the vocabulary size (i.e., number of distinct XML tag and attribute names) as well
as the average content length (i.e., text node’s content and attribute node’s content).

Real-world Datasets

Most of our real-word datasets are derived from the repository that can be found under [Mik].
Sometimes, we use a more recent or different version of a document than provided there.

The range of document characteristics is quite diverse, especially for document depths and
vocabulary sizes.

Artificial Datasets

Artificial datasets, mostly generated by benchmark tools, help to investigate certain storage
aspects. For instance, scalability issues can easily be assessed by generating various document
sizes.

For document generation, we exploit two of the most popular XML benchmark projects,
namely XMark [SWK+02] and TPoX [NKS07]. XMark provides artificial auction data in a

125

Chapter 5 Storage Self-Tuning for XDBMSs

Table 5.5: Extended documents statistics
Document Depth Vocabulary Average content

max avg size length
Real-word datasets

dblp 6 3.4 41 17.0
unirot 6 4.5 89 24.0
psd7003 8 5.68 70 17.0
treebank 37 8.44 251 33.4
nasa 9 6.08 70 20.9

Artificial datasets
XMark (any size) 13 5.5 77 52.78
lineitem (TPC-H) 4 3.0 19 6.5
account (TPoX) 8 4.7 < 88 10.6
order (TPoX) 5 2.6 < 139 8.1 (attributes)
security (TPoX) 6 3.5 < 64 92.2

single, but scalable document ranging from the KB-level up to the GB-level. TPoX is a more
recent proposal from IBM that can be used to evaluate transactional processing over XML
(TPoX). Note, TPoX is referring to a real-world XML schema (FixML) and defines three
types of documents having rather small sizes (≤ 26 KB). The dataset size can be scaled from
several GB to one PB. Our third artificial dataset is an XML representation of a relation from
the frequently used TPC-H benchmark.

Our mix of artificial datasets provides a wide range of content lengths, vocabulary sizes, and
node type occurrences. Moreover, the structural part of these documents is quite different com-
pared to our real-word documents in terms of clustered subtree types (e.g., XMark documents)
or fully regular structures (e.g., TPC-H table lineitem). The huge number of tiny documents
in TPoX is another challenge for storage optimization, which is not covered by our real-word
examples.

5.10.2 Access Performance

For a native XML database, it is important that the storage system is not only XML-aware but
also delivers high document throughput and fast access to individual nodes. In the following
series of benchmarks, we evaluate the benefits of our methods to optimize the storage and
reconstruction of entire documents as well as the performance of fine-grained accesses like
DOM operations.

Storage and Reconstruction

A first indicator for efficient processing is the overhead for an incoming document in its exter-
nal format (“plain”) to transform and save it and, in turn, to reconstruct it again. For our set of
benchmark documents, we have measured the storage and reconstruction times and show the
results for configuration 1 in Figure 5.16(a) (Figure B.1(a) in the appendix for configuration
2, respectively). Obviously, processing times are more or less linearly dependent on the doc-
ument size. Because the size of our documents differ almost by two orders of magnitude, we

126

5.10 Evaluation

 1

 10

 100

 1000

 10000

12M 112M nasa lineitem treebank dblp psd7003 uniprot

full store
full reconstruct

elementless store
elementless reconstruct

time in s

(a) Storage and reconstruction times

-10

 0

 10

 20

 30

 40

12M 112M nasa lineitem treebank dblp psd7003 uniprot

store gain elementless vs. full
reconstruct gain elementless vs. full

gain in %

(b) Gain elementless vs. full

Figure 5.16: Storage and reconstruction figures comparing full and elementless storage map-
ping (hardware configuration 1)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

12M 112M nasa lineitem treebank dblp psd7003 uniprot

g
ai

n
 i

n
 %

SAX scan, config 1
SAX scan, config 2

Figure 5.17: Scan-based access gain for elementless vs. full storage mapping

also refer to normalized gains defined as gain = (timefull− timeelementless ∗100%). These gains
are illustrated in Figure 5.16(b) for configuration 1 (Figure B.1(a) for configuration 2, respec-
tively). Except for the treebank document, all storage and reconstruction processes run faster
by ∼ 10%–20% using the elementless storage. The relative speed-up marginally depends on
the hardware. For instance, configuration 1 seems to benefit more from the elementless storage
when compared to configuration 2.

Scan-based Access Performance

In this test, we evaluated the scan-based access performance of our storage models. We com-
pared the duration of a full SAX scan for elementless and full storage. In Figure 5.17, the
speed-ups gained through elementless storage for our benchmark documents are shown. For

127

Chapter 5 Storage Self-Tuning for XDBMSs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

12M 112M nasa lineitem treebank dblp psd7003 uniprot

g
ai

n
 i

n
 %

pre-order, config 1
post-order, config 1
pre-order, config 2

post-order, config 2

Figure 5.18: DOM traversal gain for elementless vs. full storage mapping

both configurations 1 and 2, the SAX performance on all documents is clearly improved, mak-
ing use of the elementless storage mapping.

Another typical use case for XML processing concerns simple XPath evaluations, where the
elementless mapping exploits the path synopsis by pre-filtering a set of valid PCRs, before
comparing leaf nodes via PCR matching. This technique dramatically reduces processing time
for large documents. In contrast, for small documents the secondary path synopsis structure
needs to be loaded and, thus, disproportionally increases the number of algorithmic steps.

Navigation

Again, we sketch the relative performance gain of the elementless mapping w.r.t. the full map-
ping. Because navigation is context-dependent and the execution time of single navigational
operations is not very expressive, we have designed a benchmark consisting of a pre-order
traversal and a post-order traversal of our benchmark documents. These traversals start from
the root node and apply the operations first child() / next sibling() respectively last child() /
previous sibling() along the document structure. In case of elementless, the root node and the
entire inner structure is computed on demand while the traversal is proceeding. The results
in Figure 5.18 demonstrate that elementless processing is faster for all kinds of documents or
configurations. In fact, in all cases we achieved improvements of 12%–34% due to less IO for
the more compact elementless documents.

To decide which model outperforms the other one, we started with simple node lookups and
XPath evaluations. Figure 5.19 reveals, independent of the buffer state (cold or hot), one-time
lookups are usually faster using full storage mapping. Due to increased caching effects for
growing repetitions, the performance of the elementless storage mapping is positively affected.
That means, having a high share of locality in the access patterns, computational costs for
on-demand reconstruction of elementless are negligible.

128

5.10 Evaluation

 10

 100

 1000

 10000

 100000

 10 100 1000 10000

ti
m

e
in

 m
s

number of repetitions

full hot
el hot

full cold
el cold

Figure 5.19: Scalability of node access

Table 5.6: Scalability of modifications

Ordering Selectivity Time (ms)
full elementless

ordered 1% 22843 25431
ordered 0.1% 1638 1659
random 1% 30935 29600
random 0.1% 3533 3476

Update

Another group of experiments examined content node updates, which embody, besides read-
only queries, typical operations on large documents. Here, we focus on ordered and random-
ized distributions of the modified nodes, as this seems to be realistic for single- and multi-user
accesses. Table 5.6 shows that, on average, updating content nodes is dominated by transac-
tional costs and, therefore, both major models perform similar. However, modifying nodes in
document order seems to favor the use of the full storage mapping.

5.10.3 Space Consumption

The results of our space consumption benchmarks can be found in Figure 5.20. All results are
compared to the gross format (100%), i.e., the plain XML document as received by the user.
Because XTC encodes all nodes as variable-length records containing vocabulary information
(vocID) and PCR numbers, some overhead (encoding overhead) is caused. This also includes
overhead for byte alignment. The naive scheme represents the uncompressed storage of XML
documents, i.e., node labels are not prefix compressed. The remaining two, full and element-
less, are the storage mappings we normally use in XTC. In this test, we focus on the relative
saving regarding the structure part only, because content compression is orthogonal and will
be evaluated separately in this section. An interesting aspect is that the naive approach does
not always achieve a storage space reduction (e.g., for XMark documents and psd7003). Here
the saving from vocID usage is compensated by the need for node labels. In general, space
saving of naive seems to be less than ∼ 35% compared to gross. However, storage gain from
naive to full and naive to elementless is substantial. The lion’s share of this saving is due to
prefix compression of the DeweyIDs (black-colored fractions) which reduces the storage space
needed for node labels in all cases to less than 25% of its original size17. For all documents,
the structural compression of full ranges from ∼ 40% to ∼ 50% and from ∼ 70% to ∼ 80%

17Despite the “obvious length” of DeweyIDs, range-based or sequential labeling schemes would consume more storage,
because they do not lend themselves to compression

129

Chapter 5 Storage Self-Tuning for XDBMSs

 0

 20

 40

 60

 80

 100 %

content
full names
DeweyID

compressed DeweyID
encoding overhead

12MB 112MB nasa lineitem treebank dblp psd7003 uniprot
gross

naive

full
elem

entless

Figure 5.20: Storage space analysis for storage mappings

for elementless, respectively. In terms of space consumption, the combination of elementless
storage and prefix-compressed DeweyIDs delivers competitive savings.

5.10.4 Structural Similarity

Based on the elementless storage mapping, structural similarity is evaluated with the help of
path synopses and document wordbooks. According to our document classification scheme
presented in Section 5.9.4, we choose the following overlap and growth parameters for our
evaluations:

• wordbook overlap k = 0.7, growth j = 0.5

• path synopsis overlap k = 0.7, growth j = 0.5

Manipulation costs for attribute insertion amount to half of the costs accounted for element
insertions.

Fortunately, the TPoX benchmark already provides three document classes with varying
characteristics. For our evaluation, we draw a random selection of documents out of these
classes. The results presented in Figure 5.21, are gained by comparing all documents with each
other (i.e., like a cross product). In each case, the x-axis and y-axis represent the documents,
grouped by their actual class membership. For instance, in Figure 5.21(a), documents between
1–10 are randomly chosen from the custacc class, while 11–20 are randomly chosen from
the order class, and 21–30 from the security class, respectively. The z value is split into two
areas. Everything below the value 2 is indicating the costs, i.e., path synopsis operations and
wordbook extensions that are necessary to put the documents into the same class. The costs
are normalized to range between 0, i.e., a perfect match or same documents, and 2. In contrast,
non-matches are simply raised to a z value of 3, which makes them clearly distinguishable.

130

5.10 Evaluation

 0 5 10 15 20 25 30
TPoX (10,10,10) 0

 5
 10

 15
 20

 25
 30

(10,10,10)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

(a) TPoX documents (10x custacc/order/security) (b) TPoX documents (100x custacc/order/security)

Figure 5.21: Similarity measurements and cost analysis for moderate parameter selection

As we can see, the moderate parameter selection yields almost perfect results. Mostly doc-
ument comparisons from different classes result in z values of 3, whereas the others cavort at
the bottom of the cost scale. Increasing the number of randomly selected documents per class
to 100 confirms these findings, as shown in Figure 5.21(b). Sometimes the comparison of se-
curity class documents seems to result in “wrong” conclusions. But because their number of
attributes is varying strongly, which may account to path synopsis extensions by nearly 100%,
this result is correct, too. In the Appendix B.2, more evaluations are shown to shed light on the
impact of varying parameters and to justify our similarity-based classification framework.

5.10.5 Content Compression

Content compression is solely focusing on storage space savings, but its computational over-
head for compression and decompression has to be justified. First, we analyze the space re-
duction gained by our proposed compression techniques. After this, we look at the processing
overhead (i.e., additional CPU costs and runtime) caused by compression for our hardware
configurations. This includes a costly pre-analysis of the documents before the actual storage
process takes place. Therefore, the last benchmark assesses the performance for compression
sharing, i.e., a collection or documents of the same domain share a common compression dic-
tionary or code table. Note, sometimes, we provide supplementary results in the appendix.

Space Reduction

Figure 5.22 reveals the potential space reduction due to content compression. As expected,
the combination of elementless storage mapping and wordbook compressors is nearly always
the best performing configuration, see black bars in Figure 5.22(b). Space reductions of up to

131

Chapter 5 Storage Self-Tuning for XDBMSs

 0

 20

 40

 60

 80

 100

12M 112M nasa lineitem treebank dblp psd7003 uniprot

no compression
huffman

wordbook

xmark

% of plain XML document

(a) Compression gain with full storage mapping

 0

 20

 40

 60

 80

 100

12M 112M nasa lineitem treebank dblp psd7003 uniprot

no compression
huffman

wordbook

xmark

% of plain XML document

(b) Compression gain with elementless storage mapping

Figure 5.22: Relative document size of Huffman and wordbook compressors compared to
external document sizes (plain)

60% are achieved. Only the “exotic” treebank document is best compressed using a Huffman
compressor.

The results further indicate that content compression for document-centric XML yields more
space reduction compared to variants that do not perform content compression. For instance,
the XMark documents profit more from content compression than the data-centric lineitem
document, independent of the chosen storage mode.

More results, especially for our variations of Huffman and wordbook compressors, can be
found in the Appendix B.4.

Processing Overhead

The computational overhead of our compression techniques is measured using the following
benchmarks. We compared the document storage times for the most effective Huffman and
wordbook variants with the uncompressed version. In Figure 5.23, the results are shown for
configuration 1 that comprise an evaluation for full storage (a) and one for elementless storage
(b). Each diagram shows the relative time to store an uncompressed document (white bars)
compared to the time to store a compressed version of the same document. Compression
times are further distinguished between times to create the compression data structure (i.e.,
create Huffman and create wordbook) and times to actually store the compressed document
(i.e., store Huffman encoded and store wordbook encoded). Note, the second time portion
is equal to the time necessary to store a document using an existing compression dictionary.
This means for our benchmark results that in most cases, the computational overhead for on-
the-fly compression is negligible, because their storage time is only slightly higher and even
sometimes better (e.g., lineitem or psd7003 in Figure 5.23(a) and 5.23(b)).

These findings are approved by the results we gained for configuration 2. Accordingly,
results for elementless-based and full-based compression figures are shown in Figure 5.24.
Eventually, content compression, that preserves the full fine-grained processing capabilities, is
effective in terms of space consumption and time overhead. Because documents are typically

132

5.10 Evaluation

 0

 20

 40

 60

 80

 100
% relative processing costs

xmark
12MB 112MB nasa lineitem treebank dblp psd7003 uniprot

no content compression
store Huffman encoded
create Huffman

store wordbook encoded
create wordbook

(a) Compression time with full storage mapping

 0

 20

 40

 60

 80

 100
% relative processing costs

xmark
12MB 112MB nasa lineitem treebank dblp psd7003 uniprot

no content compression
store Huffman encoded
create Huffman

store wordbook encoded
create wordbook

(b) Compression time with elementless storage mapping

Figure 5.23: Relative compression time (configuration 1)

 0

 20

 40

 60

 80

 100
% relative processing costs

xmark
12MB 112MB nasa lineitem treebank dblp psd7003 uniprot

no content compression
store Huffman encoded
create Huffman

store wordbook encoded
create wordbook

(a) Compression time with full storage mapping

 0

 20

 40

 60

 80

 100
% relative processing costs

xmark
12MB 112MB nasa lineitem treebank dblp psd7003 uniprot

no content compression
store Huffman encoded
create Huffman

store wordbook encoded
create wordbook

(b) Compression time with elementless storage mapping

Figure 5.24: Relative compression time (configuration 2)

stored only once and processed repetitively, the initial overhead definitely pays off.
Although the wordbook-based compression method allows certain parameter variations,

such as wordbook size and minimum occurrences, their computational overhead for initial cre-
ation is always higher compared to the “simple” Huffman encoding. But their space reduction
is significantly better for common XML documents.

5.10.6 Sampling

Sampling experiments were run for a subset of our benchmark documents. We have determined
– for storage-critical document parameters – the ranges of expected estimation errors. In Fig-
ure 5.25(a), the graphical symbols depict the average estimation error per document, where the
max/min of the error range correspond to estimations computed when a sampling buffer was
filled with 1 and 50 MB, respectively. These results highlight one of the most fundamental

133

Chapter 5 Storage Self-Tuning for XDBMSs

 0

 20

 40

 60

 80

 100

lineitem uniprot dblp psd7003 nasa treebank

es
ti

m
at

io
n
 e

rr
o
r

in
 %

max depth
text length

voc size
path classes

(a) Ranges of sampling errors on XML documents

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

es
ti

m
at

io
n
 e

rr
o
r

in
 %

% of total document sampled

lineitem
uniprot

dblp
psd7003

nasa
treebank

(b) Extrapolated sampling errors when doc size is known

Figure 5.25: Relative estimation error of sampling

problems in sampling small pieces of documents with heterogeneous or skewed structures. As
indicated for dblp and treebank in Figure 5.25(a), parameters such as vocabulary size and num-
ber of path classes may cause the selection of an unfit representation model. When we start
building the document with such “wrong guesses”, we may get suboptimal structures or may be
enforced to revise our design decision. In general, however, the parameters for max/avg depth,
average text size, and fan-out are accurate and stable, even for tiny fractions of 1 MB samples.
Hence, we can use stable parameters for decisions concerning DeweyID encoding and page
size tuning. Of course, a Huffman code table can be derived by sampling, too. Because charac-
ter distribution and their frequencies typically are domain dependent, nearly optimal encodings
can be expected.

When sampling on block-mode or stream-mode documents, outliers for specific parame-
ter values or a skewed document structure may lead for both arrival modes to wrong deci-
sions, only reloading or dynamic reconfiguration may guarantee optimal configurations. Hav-
ing complete documents and precise analysis available, the mismatch is most likely even
lower. Stream-mode documents necessarily enforce our adaptive storage management to con-
figure storage structures with less than perfect parameter knowledge, as characterized in Fig-
ure 5.25(a). Because file size information is available for block-mode documents, extrapolation
of some parameters using the size of the entire document is applicable. To show the precision
of a sampling step instead of a full scan for size information (number of attribute/element/text
nodes), Figure 5.25(b) exhibits the relative estimation errors for various sample sizes. Surpris-
ingly, our results reveal that, even with only a sample of 1%, an error of not more than ∼ 10%
may be expected. Of course, larger sample sizes improve this error margin. Figure 5.25(b) also
shows that there exist “simply structured” documents where sampling delivers perfect knowl-
edge of size parameters even for very small samples. In summary, sampling often delivers
accurate-enough parameters to plan the physical configuration of an XML document.

134

5.10 Evaluation

5.10.7 Usage-driven Storage Structures

Using the following benchmarks, we show the potential of customized storage configurations,
especially the different kinds of workloads identified in Section 5.8.5 (i.e., document-based,
index-based, and fragment-based).

Exploiting document characteristics, either gathered through sampling or full analysis, we
show for our storage models how suitable parameters can be estimated, what storage and pro-
cessing gain can be achieved as compared to the standard representation and how various
operations scale on theses models.

As it is our aim to enable XTC to handle any kind of XML document arriving at the DBMS,
the storage manager applies a basic set of storage parameters (including page size, DeweyID
compression, content compression, and storage model), which normally cannot be changed af-
terwards. While future access behavior is not considered, all kinds of documents can be stored
using the following set of standard parameters, enabling a maximum degree of flexibility:

• 16 KB page size: allows to store large documents, because the addressable storage space
is bounded to the maximum page number.

• No DeweyID compression: avoids overhead of compression encoding and offers direct
DeweyID access (no need to compute predecessors).

• No content compression: avoids encoding maintenance; neither undue compression
overhead is paid for small documents nor IO savings are gained for large documents.

• Full-storage model: does not require an additional path synopsis for structure virtual-
ization, which may blow up memory consumption when dealing with too many path
classes; no path encoding is required (PCRs).

The substantial complexity of all measures reducing storage consumption or query process-
ing does not allow simple design decisions. An important optimization is the use of DeweyID
schemes and encodings adjusted to the document characteristics, which was applied in all ex-
periments.

Configurating Single Documents

To illustrate the various storage configurations, we assembled a set of predefined configura-
tions. Note, we confine them to the most promising aspects and combinations, i.e., parameters
and configuration combinations not presented here may also improve (some) of the conducted
test cases, but their benefit is too small to be evaluated and to be presented in detail.

• Standard Storage Configuration (default)

• Full Storage, DeweyID compression, 4/8/16/32/64 KB pages, optional content compres-
sion, shared/distinct vocabulary encoding

• Elementless Storage, DeweyID compression, 4/8/16/32/64 KB pages, fixed or adjusted
PCR encoding, optional content compression, shared or distinct vocabulary encoding

135

Chapter 5 Storage Self-Tuning for XDBMSs

Workload Scenarios

To represent different document usages, we defined the following specific workload scenarios:

• Storage space consumption – indirectly matters when processing takes place

– size: space consumption of documents (including path synopsis when stored in
elementless mode)

• SAX-based – for document-based access; read/write of the entire XML document (SAX
API)

– put: storing the XML document once
– get 1: reading the entire XML document once
– get 5: reading the entire XML document multiple times (5 times)

• IB – index building costs (only evaluated for a simple index that contains all element
nodes)

• Index-based or fragment-based

– ReadWorkload: read-only access; a mixture of XPath expressions and/or DOM
navigational steps

– MixedWorkload: a mix of read/write and navigational operations: XPath, simple
XQuery, DOM-based units of work, updates, and deletions

– WriteWorkload: write-only workload; inserts, updates, and deletes on nodes and/or
subtrees

Parameter Space Analysis

In the first part, we evaluate what kind of storage model in combination with varying page sizes
leverages specific workload types for certain document types. In Figure 5.26, we assembled
five representative diagrams for a selection of artificial and real-world documents. The vertical
axis scales the page size used and the other axis identifies the workloads analyzed. The storage
models compared (elementless and full storage) are illustrated by dots and rectangles, respec-
tively. A filled symbol means that this storage mode is the best one for the given workload
(e.g., Figure 5.26(a) shows that the fastest storing of the nasa document is done in elementless
mode using 16KB pages), whereas an unfilled symbol means that this storage mode is inferior
but, when enforced, would suit that page size at best (e.g., Figure 5.26(a) shows that storing
the nasa document in full-storage mode is worse than in elementless mode, but would be best
using 16KB pages).

We can further see that disk utilization (labeled size) directly depends on document size and
structural complexity. Hence, simply-structured and uniform documents (e.g., lineitem, dblp,
and xmark) do prefer larger page sizes, whereas complex-structured documents (e.g., nasa) or
tiny documents (e.g., TPoX) better utilize small pages of 4 KB.

136

5.10 Evaluation

size
ReadW

L

4k

get 1
get 5

IB M
ixedW

L

W
riteW

L

64k

32k

16k

8k

SAX
INDEX /
FRAGMENT

put

(a) nasa.xml

size
ReadW

L

4k

get 1
get 5

IB M
ixedW

L

W
riteW

L

64k

32k

16k

8k

SAX
INDEX /
FRAGMENT

put

(b) lineitem.xml

size
ReadW

L

4k

get 1
get 5

IB M
ixedW

L

W
riteW

L

64k

32k

16k

8k

SAX
INDEX /
FRAGMENT

put

(c) dblp.xml

size
ReadW

L

4k

get 1
get 5

IB M
ixedW

L

W
riteW

L

64k

32k

16k

8k

SAX
INDEX /
FRAGMENT

put

(d) TPoX samples

size
ReadW

L

4k

get 1
get 5

IB M
ixedW

L

W
riteW

L

64k

32k

16k

8k

SAX
INDEX /
FRAGMENT

put

(e) xmark.xml

elementless

full

Figure 5.26: Workload vs. storage model benefits for selected documents

137

Chapter 5 Storage Self-Tuning for XDBMSs

The middle part of each diagram depicts so-called SAX-based workloads for storing and
reconstructing XML documents. Document storage (labeled put) performs best on medium-
sized pages and in elementless mode for large documents, whereas tiny documents prefer the
full storage and the smallest page size covering the entire document. For SAX-based recon-
struction, small and medium-sized (e.g., nasa) documents and very simply-structured docu-
ments (e.g., lineitem) benefit from the full-storage mode. This benefit becomes a drawback,
when a document needs to be reconstructed (labeled get 5) repeatedly. Here, all kinds of docu-
ments favor the elementless storage, even though the storage model is almost irrelevant for tiny
documents. Index-building costs (labeled IB) are a mixture of a SAX scan on an already stored
document and the actual index creation. The benchmark results show that simply-structured
and small documents favor the full-storage mode, whereas all kinds of documents prefer small
page sizes.

The right part shows node-based and subtree-based workload scenarios. The read-only
workload (labeled ReadWorkload) reads tiny fractions of a document and, therefore, all kinds
of documents favor small page sizes. Because every query of such a workload needs to repeat-
edly access the path synopsis, elementless document storage is preferable in all cases. This ob-
servation also holds for mixed workload scenarios applying read and write operations on XML
documents. But for write-only scenarios (labeled WriteWorkload), sometimes (e.g., nasa and
lineitem) the full-storage model is preferable, because the additional path synopsis structure
required for the elementless mode needs to be maintained when subtree/node insertions refer
to new path classes.

Automatic Storage Management

This benchmark compares the standard storage performance with an autonomic configuration
chosen by the storage manager – based on our heuristics and experimentally evaluated rules
– and a theoretically optimal setup. In Figure 5.27, we have assembled three benchmark re-
sults reflecting three different workload patterns. We further weighted the workload as shown
in Table 5.27(d) to distinguish between typical usage patterns. The workload scenarios, we
used before (sketched in Figure 5.26), were combined and weighted. In each diagram, the
standard configuration is used as reference (y-axis gain is exactly 1). The solid bar shows the
performance gains of the autonomously chosen setup.

The second bar is the theoretical limit if each workload in a pattern is executed using an op-
timal configuration on its own. Unfortunately, such a proceeding is impractical, because most
storage parameters cannot be changed easily during runtime. In Figure 5.27(a), we can see
that a workload dominated by SAX-based operations does not benefit much from an optimized
storage configuration. But especially for the Read-operation-dominated workload, depicted in
Figure 5.27(b), an autonomously chosen setup is competitive and nearly as good as the the-
oretical optimum. Even the Write-dominated workload, depicted in Figure 5.27(c), can be
improved by a respectable margin.

138

5.10 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

nasa lineitem xmark TPoX dblp psd7003

(a) SAX workload optimized

 0

 0.2

 0.4

 0.6

 0.8

 1

nasa lineitem xmark TPoX dblp psd7003

 Database
Optimal

(b) Read workload optimized

 0

 0.2

 0.4

 0.6

 0.8

 1

nasa lineitem xmark TPoX dblp psd7003

(c) Write workload optimized

Workload SAX Read Write
put 3 1 1

get 1 3 1 1
get 5 3 0 0
read 1 7 2

mixed 0 1 3
write 0 0 0

(d) Workload weights

Figure 5.27: Performance gains for autonomic and theoretically optimal configurations com-
pared to standard

5.10.8 Load Balancing

Especially when new XML data is stored, the transfer of the (raw and verbose XML) docu-
ments from the client to the server and the server-side encoding of physical records causes long
running transactions and server-side load. Using the following benchmark, we evaluate the po-
tential of our load balancing mechanisms (cf. Section 5.8.8) by reducing transaction times for
document storage through client-side preprocessing.

For this benchmark, we used the hardware configuration 2 for the server and the client,
which are connected via high-speed LAN (1 Gb), as well as XMark documents of varying
sizes between 12 MB and 500 MB. In Figure 5.28, the results show the storage times necessary
to put a document on the server and to load a document to the server. Loading figures are
separated into client-side loading time, i.e., analysis, compression, and transfer, and server-
side loading time, i.e., persisting the prepared document stream. Results on the left-hand side
are gained while advanced buffer mechanisms were disabled. In contrast, the results on the
right-hand side are gained while read ahead and sequential write were enabled.

139

Chapter 5 Storage Self-Tuning for XDBMSs

 0

 20

 40

 60

 80

 100

 120

 140

 160

12 112 300 500

ti
m

e
in

 m
s

a) No read ahead / no sequential write enforced

put
client load
server load

12 112 300 500

b) Read ahead / sequential write

xmark in MB

put
client load
server load

Figure 5.28: Storage performance for client-side loading vs. server-side encoding (powerful
client)

In both scenarios, the reduced processing time for loading, compared to putting is clearly
visible. But not only is the overall loading process faster, even more, the processing time
at the server-side is reduced once again due to the client-side document preparation. This
optimization is only possible, when the client is powerful enough or in case of weak network
bandwidth or speed. The impact of our advanced buffer mechanisms is negligible, because
document storage does not benefit from read ahead and, usually, the pages are already allocated
in sequential order making sequential writes happen anyway.

Client-side preprocessing is heavily dependent on the client’s power, i.e., CPU and IO ca-
pabilities. Therefore, we made a second run using configuration 1 as client (i.e., weak) and
configuration 2 as server (powerful), which may reflect more commonly client/server scenar-
ios. In Figure 5.29, the results indicate that the weak client needs to do more compared to the
powerful client. For instance, the times for load and put are fairly the same at the client-side.
But in case of loading, the efforts at the server side are still less, which advocates the usage of
client-side preprocessing. Note, increasing the XML data volume results in an increase of the
gain our load mechanism provides.

5.10.9 Statistics

The document and index statistics, we introduced in Section 5.8.2 and Section 5.9.1, are an
integral part for many (self-)tuning features and decisions.

Therefore, the typical overhead of collecting statistics is important. For this reason, we
stored our artificial and real-world benchmark documents and measured the additional time
for storing and processing. Table 5.7 contains storage consumption figures for a representa-
tive document collection, their path synopses size(s), and, for the sake of comparison, stor-
age figures needed by the full-fledged XML statistics framework EXsum [AMFH08]. These
figures confirm a fairly small footprint of the path synopsis extension (< 1% of the actual
document(s)).

140

5.11 Conclusions

 0

 20

 40

 60

 80

 100

 120

 140

12 112 300 500

ti
m

e
in

 m
s

a) No read ahead / no sequential write enforced

put
client load
server load

12 112 300 500

b) Read ahead / sequential write

xmark in MB

put
client load
server load

Figure 5.29: Storage performance for client-side loading vs. server-side encoding (weak client)

Table 5.7: Statistics space consumption figures for selected documents
Document(s) Document Path Ext. path EXSum

/ storage synopsis synopsis
XMark 12M / 9.5M 4K 11.2K 14.2K

112M / 95M 4.1K 11.6K 14.4K
nasa 25M / 13M 0.8K 2.2K 10.5K

lineitem 32M / 13M 0.1K 0.4K 1.6K
treebank 90M / 46M 2.9M 7.3M 63K

dblp 330M / 233M 1.1K 3.3K 6.7K
TPoX collection (scale factor XXS)

security 126M / 107M 0.7K 2K 11.4K
custacc 58M / 26M 0.7K 2.2K 14K
order 73M / 54M 1K 3.1K 4.6K

Figure 5.30 reveals the processing time overhead in percent. The first column indicates the
amount of extra processing time consumed to gather the statistical values for the extended
path synopsis. The second column adds the additional overhead for collecting the B-tree index
statistics. Fortunately, in almost all cases, the maximum of both is below ∼ 5−6% and, note,
this overhead occurs only once for each document while mapping it to the DB storage repre-
sentation. Thus, the overhead caused by the path synopsis extension is negligible compared
to the potential future gain. In contrast, the overhead of EXsum [AMFH08] is much higher
(column 3) and often would not pay off.

5.11 Conclusions

In this chapter, we presented concepts for tailoring and self-tuning the XML storage subsystem
of a native XDBMS. Especially, optional compression techniques addressing structural redun-
dancy and text content have demonstrated to be often beneficial in terms of space reduction
and processing costs, i.e., IO operations. The many different XML APIs and varying work-

141

Chapter 5 Storage Self-Tuning for XDBMSs

 0

 5

 10

 15

 20

 25

 30

 35

12M 112M lineitem nasa treebank dblp security custacc order

st
o
ra

g
e

ti
m

e
o
v
er

h
ea

d
 i

n
 %

extended path synopsis statistics
extended path synopsis + b-tree statistics

extended path synopsis + b-tree + EXSum statistics

Figure 5.30: On-the-fly statistics maintenance: overhead analysis

loads underlined the importance of tailored XML storage configurations. Therefore, we also
investigated different ways of XML analysis to get statistics causing low-overhead and to au-
tomatically decide storage options based on similarity measures and experience. Furthermore,
client-side preprocessing and XML classifications helped to improve the performance of the
entire storage subsystem.

142

Chapter 6

Index Options and Query Processing in XTC

Native XML databases require secondary access paths – so-called indexes – for the same rea-
sons, relational systems do. Query processing typically exploits those indexes to avoid costly
(document) scans. The larger the XML documents become, the longer it takes to scan them,
especially when the query semantics dictate multiple scans of the same document while pro-
cessing a single query1. Indexes not only reduce the amount of nodes that need to be processed
or even temporarily stored for intermediate results but also the number of locks acquired in a
concurrent user scenario. That is, fine-grained locking mechanisms (i.e., node-based or axis-
based) can avoid document-wide locks and thereby increase the number of concurrent trans-
actions operating on the same document. Furthermore, selective read access caused by query
predicates (i.e., where-clauses, XPath predicates) may exploit indexes if the index’ scope cov-
ers the queried document parts and thus less physical reads are necessary compared to a full
document scan. Another benefit of secondary indexes is that they support uniqueness prop-
erties as well as a certain clustering or order (i.e., index key order) of its indexed elements.
Hence, queries that include an order by specification may get the (often required) node order
for free if an appropriate index can be used.

Besides all the benefits indexing provides, some severe negative aspects exist, too. Because
indexing always duplicates data, the consistency requirement for database systems enforces
their transactional maintenance during IUD operations. Those index maintenance tasks heavily
produce random IO and may also slow down system performance. Moreover, having a rich set
of indexes available, each of them needs to be checked in case of updates whether it is affected,
which also produces computational overhead.

In this chapter, we present current index approaches tailored to the XML domain, before we
present our flexible index options developed in the context of XTC. To demonstrate the usage
of indexes, we give a brief introduction into the basics of XTC’s query processor as well as the
integration of index usage into it.

6.1 Related Work

Current DBMSs offer two major types of XML index support, (1) pure text-oriented indexes,
so called content indexes, and (2) structure-oriented indexes, so-called path indexes [MS99]. A
third group of hybrid indexes, which is only available for the XML world, combines structural
and content predicates to address the indexed parts.

1Available main-memory sizes limit the size of documents that can be processed in main memory only based on a single
scan, and thus scan-based processing easily requires multiple scans.

143

Chapter 6 Index Options and Query Processing in XTC

In recent years, research has proposed many different index structures that are especially tai-
lored to the XML data model. There are simple element indexes [LM01, JAKC+02], structure-
aware indexes, i.e., path indexes [MS99, WJW+05], dynamic indexes such as [CMS02], and
hybrid indexes [CSF+01], but most of the proposals do not address the update problem and
its costs and, moreover, do not show how they can be integrated into an XDBMS. In particu-
lar, the flexibility and variability of XML index structures is the strength for an optimal query
support but, at the same time, it is the weakness concerning the Index Selection Problem (ISP)
[PS83, Com78].

6.2 Indexing in XTC

Index support in XTC focuses on two critical issues, namely query support and storage inte-
gration.

A query optimizer typically relies on the availability of eligible indexes to avoid document
scans. Furthermore, the complexity and flexibility of XML requires an adequate set of indexes
to avoid heavy uncertainty, if no statistics are available. Based on the classification given in the
literature, we propose to have at least four major index types as follows: (1) element index, (2)
content index, (3) path index, and (4) CAS index, which means Content And Structure.

Integrating index features into XTC follows certain design guidelines. Inter alia, indexing
has to provide the following properties: optional use, expressiveness, selectivity, updates, ap-
plicability, and result computation; a detailed description can be found in [MHS09]. To support
all these properties for all kinds of indexes, we have to establish indexing in XTC based on el-
ementless storage. As we will see, the powerful PCR concept, DeweyIDs, and B-trees are the
cornerstones for optimizing index options. Most of our index types provide various kinds of
clustering and allow for efficient prefix-based key compression. In the following, we present
our four index types.

6.2.1 Element Index

The logical structure of an element is comparable to a 1-index [MS99], where each distinct
XML name tag is associated with a list of node labels carrying this tag. Figure 6.1 gives an
example for an element index covering three different tag names (i.e., vocabulary entries) and
thereby indexing multiple path classes automatically. Furthermore, the elementless storage
allows for two different clusterings of the element index, namely, DeweyID-based clustering
and PCR-based clustering. These clusterings influence access costs and are determined by the
index covering.

• DeweyID clustering The index key is composed by concatenating the DeweyID, a sep-
arator, and the PCR. All index entries are stored in document order and false-positive
filtering is needed if a subset of indexed path classes is requested.

• PCR clustering The index key is composed by concatenating the PCR, a separator, and
the DeweyID. To build this index, the entries have to be grouped by their PCR and,

144

6.2 Indexing in XTC

B-tree

last

B*-tree

1.3.5 6

author title

B*-tree

1.3.5.5 8

B*-tree

1.3.3 5

name
directory

node-reference
indexes
DeweyID PCR

Name IdxNo

Figure 6.1: Sample element index

John

DBMS

Chris

XTC

Pure

1.3.5.7
1.3.15.3
1.217.5.3

1.13.7
1.13.11
1.79.5.3

...

...

...

Content DeweyID

key value

PCR

Figure 6.2: Sample content index

within each path class, they retain their document order. Index access may need to scan
scattered areas of the index if non-consecutive-stored PCRs are requested.

Definition 1 An element index IE(V,clust) preserves document order and covers a set of vocab-
ulary entries V whereby V 6= /0 and V = {v|v ∈ Vocabulary} and clust = {DeweyID|PCR}. V
is the set of index keys and the values are defined as follows:

value(IE) =

{
DeweyID+PCR if clust is DeweyID (default),
PCR+DeweyID if clust is PCR.

.

Element index access: Typically, named element streams are delivered by an element index.
If path filtering is required, only the elementless storage provides such built-in information. But
storing those path information within the element index leads to additional storage costs.

6.2.2 Content Index

Content indexes, as shown in Figure 6.2, typically index the whole content of an XML docu-
ment, where they distinguish between text and attribute nodes and optionally operate on typed
values (e.g., integer, double, string, etc.).

Definition 2 A content index IC(vType,nType) only preserves document order for content nodes
having the same value and covers all content nodes of the given value type vType and node
type nType. vType can be undefined or a valid data type for content nodes (e.g., integer, string,
etc.).

nType =


/0 attribute + element (default),
attribute only attribute nodes,
element only element nodes.

.

Content index access: Value predicates are typically evaluated using content indexes. Only
using elementless storage, the content index includes path information, i.e., PCRs, which in-
creases the index size, but may avoid document accesses.

145

Chapter 6 Index Options and Query Processing in XTC

path: /bib//title PCRs: 5,11,33

PCR DeweyID

11 1.3.5.3

11 1.3.9.5

33 1.9.11.7

33 1.33.7.5
...

5 1.105

5 1.89

5 1.33
...

11 1.3.9.3

5 1.193

key "no" value

Figure 6.3: Sample path index

path: /bib//title PCRs: 5,11,33

Content DeweyID

Key Value

PCR

Content PCR

Key Value

DeweyID

clustering Load 1.3.5.3
...

Pool 1.3.1.5

Book 1.193

5

5

11

Pool 1.3.1.7 5

Yum 1.9.13 11

...

Bor 1.11.3 8

Dor 1.5.13 11

Yum 1.9.15 5

Figure 6.4: Sample CAS index

6.2.3 Path Index

This index type is only available for the elementless storage mode and typically used for the
evaluation of complex path expressions within an XQuery. A path index is specified by one or
more XPath-like expressions2. All nodes addressed by such an expression are indexed inde-
pendently if they are attribute or element nodes. A sample path index, defined by /bib//title
is shown in Figure 6.3. By exploiting the path synopsis, it is very easy to map an XPath ex-
pression to a set of PCRs. Here again, elementless storage allows for two different clusterings
of the path index, DeweyID-based and PCR-based, and key composition is equal as for the
element index. An attribute index is a special path index having an attribute step in its path
definition.

Definition 3 A path index IP(E) preserves the document order and covers a set of XPath ex-
pressions E where E 6= /0 and E = {e1 ∨ e2 ∨ ...∨ en}. Each ei evaluates to a set of PCRs Pi
and the index covers the union of all Pi in P where P =

⋃
1<i<n P(ei).

Path index access: Given a set of PCRs, a path index either delivers the whole set of refer-
enced nodes, a subset, or none of them. That means, a query expression, i.e., path expression,
is evaluated using the index definition. In case of requesting multiple path classes, it depends
on the clustering whether false-positives have to be filtered or distributed index entries need to
be accessed. A path index may imitate an element index when being defined as //∗3.

6.2.4 CAS Index

A content and structure index (CAS) is a combination of XPath expressions and value-based
indexing to support complex XQuery evaluation. A sample for the /bib//title expression is
shown in Figure 6.4. Together with elementless storage, the following options are allowed:
clustering, typing, and uniqueness.

2We do only accept forward axis steps, name tests, wildcards, and their disjunction
3Nevertheless, an element index is always primarily clustered by its name directory, which only happens by chance for

a path index.

146

6.2 Indexing in XTC

Table 6.1: Index feature comparison

Index Query-support features PCR- Coverageclustering typed axis unique based

element yes - - - optional ≤ 100% of element nodes
content no optional -/attribute - no ≤ 100% of text nodes

path yes - yes - yes ≤ 100% of path instances
CAS yes optional yes yes yes ≤ 100% content

document fixed - - (DeweyID) optional 100%

Definition 4 A CAS index ICAS(E,clust,type,unique) is limited to preserve document order only for
very certain cases. The index covers a set of content nodes for the given XPath expressions E
where E 6= /0 and E = {e1 ∨ e2 ∨ ...∨ en} and clust = {DeweyID|PCR}. Each ei evaluates to
a set of PCRs Pi and the index covers the union of all content nodes belonging to these Pi in P
where P =

⋃
1<i<n P(ei). The type attribute is equal to that of the IC index in Definition 2. Op-

tional uniqueness can be enforced by setting unique = {true| f alse}. Content of the matching
nodes forms the set of index keys and the values are defined as follows:

value(ICAS) =

{
DeweyID+PCR if clust is DeweyID (default),
PCR+DeweyID if clust is PCR.

.

CAS index access: Due to the content-based clustering, CAS index usage is primarily tar-
geting at queries containing a content predicate. Otherwise, filtering and (often) ordering would
dramatically increase the access costs. Additional path filtering based on PCR sets makes this
index one of the most powerful and flexible index options. A CAS index defined for the whole
content, i.e., //∗ is identical to a content index.

Index Type Overview

We summarized the feature list of our indexes in Table 6.1. It shows that all of them have
different characteristics in terms of query support or XML entities being indexed. The simple
index types – element and content – are available for both, elementless and full storage modes.
In contrast, the advanced index types – path and CAS – are strictly based on the elementless
storage features such as PCRs.

Another type of indexes, so-called attribute indexes, is represented by a path index in XTC
containing the attribute XPath axis in its specification. This makes a separate index type obso-
lete. Although XTC allows to define attribute indexes, which are simply mapped into appro-
priate path indexes, and, if attribute content has to be indexed by CAS indexes, respectively,
we rarely make use of this distinction.

This overview indicates that the flexibility of index types and configurations is definitely a
strength of XTC to provide tailored query support.

147

Chapter 6 Index Options and Query Processing in XTC

6.3 Query Processing in XTC

We want to give a brief introduction into XTC’s query processing, which is necessary to en-
able the reader to interpret query plans and to understand the cost-based optimizer decisions.
Because the internal representation is based on the QGM (cf. Sections 2.4.2 and 2.5), we in-
troduce its basics and core operators. Some aspects of query optimization will be presented,
before we show how to integrate available indexes into the query planning process.

6.3.1 XQGM and Query Plan Operators

Note, this introduction is only addressing the optimizer part (cf. Figure 2.4), which selects the
“optimal” query execution plan (QEP), i.e., the plan found in a reasonable time that seems to
be the most efficient one based on the current cost model for IO and CPU processing.

1. Algebraic rewriting So-called transformation rules are applied to transform the initial
query graph into semantically equivalent plans, which have different logical plan op-
erators or a differing operator combination and order. These rules are applied in the
specified order based on their priority, i.e., cycles of rule application are avoided and
rule dependencies observed.

2. Plan generation For each alternative plan that was generated before, costs for IO and
CPU are estimated taking all plan operators and selectivities as well as intermediate
result sizes into account. Eventually, the plans are ranked by their expected costs and
the cheapest one is translated into a physical plan to be executed (QEP), i.e., logical
operators are translated into their physical counterparts.

XQGM

XTC applies an extended version of the query graph model (QGM) introduced by [HFLP89]
for relational query processing. The requirement for an extension was driven by [Mit95] and
realized by XQGM in [MWHH08, Mat09].

An XQGM is an operator graph representing the query in a procedural way based on logical
operators (boxes) and their data flow (arrows). Each operator typically produces a sequence of
output tuples (according to the XDM) based on its input tuple sequence. For instance, a simple
XQuery (similar to XMark query 1 [SWK+02]):

doc(”xmark.xml”)//person[@id = ”person0”]

returning all person subtrees having an id attribute with the value person0, is internally rep-
resented by the XQGM shown in Figure 6.5(a). This plan contains several select and access
operators. Operator inputs are operating on so-called tuple variables (L and F circles), which
control the data flow. Furthermore, an operator may house predicates for certain conditions,
filtering, or order expressions. Usually, a projection is specified to define the operator output.
A tuple variable can be let-quantified (L) or for-quantified (F). A F-quantified input is oper-
ating on a single tuple at-a-time, evaluates assigned predicates, and in parallel, may provide

148

6.3 Query Processing in XTC

ACCESS (3)

SELECT (2)

PROJ_SPEC

ACCESS (5)

ACCESS (7)ACCESS (8)

SELECT (6)

PROJ_SPEC

PREDICATE

SELECT (4)

PROJ_SPEC

SELECT (1)

PROJ_SPEC

0

0

out

xmark.xml

document

node()

axis:desc-o-s

person

axis:child

id

axis:attribute

F:2L:3

fn:data person0

=

F:1L:4

ddo;

F:0 L:5

ddo;

(a) Initial XQGM for sample query

ACCESS (8)

PREDICATE

ACCESS (7) ACCESS (3)

SELECT (2)

PROJ_SPEC

STRUCTURAL JOIN (10)

PROJ_SPEC

PREDICATE

STRUCTURAL JOIN (9)

PROJ_SPECPREDICATE

01

00 1

out

node

xtc:atomize person0

=

id

attrSequence

person

sequence

xmark.xml

document

F:9 F:10

descendantF:7 F:8

ddo;attribute

(b) Algebraic rewritten “final” XQGM

Figure 6.5: XQGMs for sample query: doc(”xmark.xml”)//person[@id = ”person0”]

the evaluation context for a nested subexpression (dotted lines), too. In contrast, L-quantified
inputs do not iterate over the input tuples, but instead operate on the complete tuple sequence.

The first optimization step Algebraic rewriting of our initial XQGM for our sample query re-
sults in the final XQGM shown in Figure 6.5(b). The descendant-or-self filtering of the access
operator 5 in the initial graph is transformed into a structural join (10 in the final XQGM). Also
the attribute navigation is transformed into the structural join 9. Because predicate pushdown
is also available for XQGMs, the equal predicate (i.e., “person0” comparison) is pushed down
into the access operator 8.

Operators

For this work, the following logical operators of XTC’s XQGM are important:

• ACCESS: Three access types are available: document access delivering the root node(s)
of a document (or collection), node access providing access to one or more nodes, and
sequence access providing multiple accesses to a single node.

149

Chapter 6 Index Options and Query Processing in XTC

#Input: 1

#Input: 2550 #Dependent: 1

#Input: 2550

#Right: 2550#Left: 1

#Input: 2550

Project (11)

Expressions {0} = {in[1]}

Nav Tree (8)

Axis: attribute

Mode: left semi join

Est card: 603

Project (7)

Expressions {0} = {in[0]}

StackTree (6)

Axis: descendant

Mode: right semi join

Est card: 2550

Document Scan (4)

NodeTest: 'person'

Document: xmark.xml

Document Access (5)

Document: 'xmark.xml'

Select (10)

Expression: xtc:atomize() eq person0

AttributeNavigationalOperator (9)

NodeTest: id

Context item from: 8

(a) QEP without secondary indexes

Parent Resolution (2)

CAS Idx Scan (1)

Document: xmark.xml

Path: //person/@id

Clustering: deweyID

Key: person0

CAS index for //person/@id is available

(b) QEP with secondary indexes

Figure 6.6: Query execution plans for sample query

• SELECT: A select operator is a primitive operator, initially generated for predicate
evaluation, projections, or to join input sequences, which makes the naming appearing a
little bit awkward. Many rewriting rules are based on this operator.

• GROUP BY: Standard grouping and aggregation functionality based on a given predi-
cate.

• UNION, INTERSECT, EXCEPT: These operators operate on sets of ordered tuple
sequences. Their semantics are similar to their relational counterparts.

• SORT: Sorting and duplicate elimination.

• JOIN: Basically n-way structural join operators are evaluated in XTC. Therefore, this
core operator is constructed during the algebraic rewriting and includes a join predi-
cate as well as a projection specification. Note, a special twig operator [Mat09] was
implemented as well.

6.3.2 Optimization

Many concepts within XTC’s current query optimizer are tailored to the features of the ele-
mentless storage, especially to the extended (i.e., statistics-carrying) path synopsis. Neverthe-
less, the basic concepts are independent of the storage model, but additional efforts may be
required to achieve the same quality in optimization.

150

6.3 Query Processing in XTC

Physical operators in XTC implement the ONC protocol (open, next, close). Besides a basic
set of navigational, scan, and structural join operators, many set-oriented and node-oriented
operators exist for special purposes such as sorting, unnesting, or value-based joining.

Possible QEPs for our sample query are depicted in Figure 6.6. If no indexes are available,
the final (and hence the cheapest) QEP, shown in Figure 6.6(a), includes a scan (operator 4),
two structural joins (stack tree operator 6 and navigation tree operator 8), and an attribute
navigation (operator 9). In contrast, having tailored CAS index support for that query may
result in the QEP shown in Figure 6.6(b), which is obviously smaller and solely consists of a
single index scan and a so-called parent resolution operator that evaluates parent nodes, which
comes at no charge for our elementless storage (cf. Section 5.6).

Furthermore, the left QEP is annotated with cost estimations for the structural join operators
(called estimated cardinality) and with the actual runtime statistics attached to the data flow
arrows. Cost estimations are based on the extended path synopsis and XTC’s cost weights for
IO and CPU [Wei11].

Special Operators

We extended XTC with two additional types of physical scan operators that are tightly coupled
with XTC’s internals.

• PCR scan: This operator is using a PCR filter, which is first evaluated against the path
synopsis, to scan a document or collection for matching nodes. Its high throughput is
achieved by avoiding the full decoding of physical records and directly filtering the node
stream at the B-tree level.

• Shared scan: Because the integration of this operator is only experimental, we do not
yet include it into our cost-based optimization framework. The shared scan only works
for read-only transactions that require document scans on the same document. A kind
of window, which behaves like a buffer, is cycling through the document as long as
listeners, i.e., scan operators, are connected.

Another optimization is addressing operator matching and query rewriting. We allow to
promote predicates, which are embedded in a path expression to be separated into WHERE
expressions and vice versa. This semantic-preserving query reformulation enables XTC to find
tailored operators and to evaluate the predicate(s) more efficiently.

6.3.3 Construction of Index Access Alternatives

Before the optimizer actually selects an index to be used, all possible indexes have to be iden-
tified for the given query. During the query translation phase of an XQGM, all document and
collection references are collected. Only the index descriptions for these references are made
available to the optimizer. The optimizer basically has two mechanisms to search for indexes
and to “branch” the query plan for those operators that may be evaluated by alternative in-
dex use. In Figure 6.7, a sample path query’s XQGM (a) and two possible QEPs (b and c)
are shown. The first mechanism, called access operator alternatives, creates query (sub)plan

151

Chapter 6 Index Options and Query Processing in XTC

#I
np

ut
: 6

18
2 #R

ig
ht

: 6
18

2
#L

ef
t:

12
00

Pr
oj

ec
t

(4
)

E
xp

re
ss

io
ns

 {
0}

 =
{i

n[
0]

}

St
ac

kT
re

e
(3

)

A
xi

s:
ch

ild

M
od

e:
ri

gh
t s

em
i j

oi
n

E
st

 c
ar

d:
61

82

D
oc

um
en

t S
ca

n
(1

)

N
od

eT
es

t:
'b

id
de

r'

D
oc

um
en

t:
xm

ar
k.

xm
l

Pa
th

 I
dx

 S
ca

n
(2

)

D
oc

um
en

t:
xm

ar
k.

xm
l

Pa
th

:
/s

ite
/o

pe
n_

au
ct

io
ns

/o
pe

n_
au

ct
io

n

C
lu

st
er

in
g:

de
w

ey
ID

A
C

C
E

S
S

 (
11

)

A
C

C
E

S
S

 (
10

)

A
C

C
E

S
S

 (
8)

A
C

C
E

S
S

 (
6)

A
C

C
E

S
S

 (
4)

S
E

L
E

C
T

 (
3)

P
R

O
J_

S
P

E
C

S
T

R
U

C
T

U
R

A
L

 J
O

IN
 (

15
)

P
R

O
J_

S
P

E
C

P
R

E
D

IC
A

T
E

S
T

R
U

C
T

U
R

A
L

 J
O

IN
 (

14
)

P
R

O
J_

S
P

E
C

P
R

E
D

IC
A

T
E

S
T

R
U

C
T

U
R

A
L

 J
O

IN
 (

13
)

P
R

O
J_

S
P

E
C

P
R

E
D

IC
A

T
E

S
T

R
U

C
T

U
R

A
L

 J
O

IN
 (

12
)

P
R

O
J_

S
P

E
C

P
R

E
D

IC
A

T
E

0
1

0
1

0
1

0
0

1

ou
t

bi
dd

er

se
qu

en
ce

op
en

_a
uc

tio
n

se
qu

en
ce

op
en

_a
uc

tio
ns

se
qu

en
ce

si
te

se
qu

en
ce

xm
ar

k.
xm

l

do
cu

m
en

t

F
:1

6
F

:1
7

ch
ild

F
:1

4
F

:1
5

ch
ild

F
:1

2
F

:1
3

ch
ild

F
:1

0
F

:1
1

dd
o;

ch
ild

q
u
er
y:

 /s
it

e/
op

en
_a

uc
ti

on
s/

op
en

_a
uc

tio
n/

bi
dd

er

a)
 X

Q
G

M

b
)

Q
E

P
ac

ce
ss

 o
pe

ra
to

r
to

el
em

en
t i

nd
ex

m

at
ch

in
g

c)
 Q

E
P

jo
in

 f
us

io
n

en
ab

le
s

pa
th

 in
d

ex
 m

at
ch

in
g

#I
np

ut
:

61
82

#R
ig

ht
:

61
82

#L
ef

t:
 1

20
0

#I
np

ut
:

12
00

#R
ig

ht
:

12
00

#L
ef

t:
 1

#I
np

ut
:

1

#R
ig

ht
:

1
#L

ef
t:

 1

#I
np

ut
:

1 #R
ig

ht
:

1
#L

ef
t:

 1

S
ta

ck
T

re
e

(1
2)

A
xi

s:
ch

il
d

M
od

e:
ri

gh
t

se
m

i
jo

in
E

st
 c

ar
d:

61
82

E
le

m
en

t
In

de
x

S
ca

n
(1

)
E

le
m

en
t:

'b
id

de
r'

D
oc

um
en

t:
xm

ar
k.

xm
l

S
ta

ck
T

re
e

(1
0)

A
xi

s:
ch

il
d

M
od

e:
ri

gh
t

se
m

i
jo

in
E

st
 c

ar
d:

12
00

E
le

m
en

t
In

de
x

S
ca

n
(2

)
E

le
m

en
t:

'o
pe

n_
au

ct
io

n'
D

oc
um

en
t:

xm
ar

k.
xm

l

P
ro

je
ct

(9

)
E

xp
re

ss
io

ns
 {

0}
 =

{i
n[

0]
}

S
ta

ck
T

re
e

(8
)

A
xi

s:
ch

il
d

M
od

e:
ri

gh
t

se
m

i
jo

in
E

st
 c

ar
d:

1

E
le

m
en

t
In

de
x

S
ca

n
(3

)
E

le
m

en
t:

'o
pe

n_
au

ct
io

ns
'

D
oc

um
en

t:
xm

ar
k.

xm
l

S
ta

ck
T

re
e

(6
)

A
xi

s:
ch

il
d

M
od

e:
ri

gh
t

se
m

i
jo

in
E

st
 c

ar
d:

1 E
le

m
en

t
In

de
x

S
ca

n
(4

)
E

le
m

en
t:

's
it

e'
D

oc
um

en
t:

xm
ar

k.
xm

l

D
oc

um
en

t
A

cc
es

s
(5

)
D

oc
um

en
t:'

xm
ar

k.
xm

l'

P
ro

je
ct

(7

)
E

xp
re

ss
io

ns
 {

0}
 =

{i
n[

0]
}

P
ro

je
ct

(1

1)
E

xp
re

ss
io

ns
 {

0}
 =

{i
n[

0]
}P
ro

je
ct

(1

3)
E

xp
re

ss
io

ns
 {

0}
 =

{i
n[

0]
}

Figure 6.7: XQGM operator to physical index operator mapping sample

152

6.4 Index Use

alternatives containing element index or path index operators. On the left, the sample QEP
indicates that all logical access operators are translated into physical element accesses. The
second mechanism is trying to fuse path steps, i.e., structural joins in the XQGM, in order to
apply path or CAS indexes for these paths. The sample on the right reduces the join cascade
by substituting three joins by one path index access. Even (value) predicate expressions are
observed by the index search. However, the combination variety of paths increases exponen-
tially with each new path step, i.e., structural join, whereas the complexity is often reduced if
predicates are present, because they can make certain index types inapplicable.

During the plan cost evaluation phase, index operator costs are estimated based on current
document and index statistics as well as their clustering and order-preserving properties.

6.4 Index Use

All index types introduced in Section 6.2, serve certain XML query specifics. For instance,
depending on the availability of such an index variety, XMark query 01 [SWK+02]

let $auction := doc("auction.xml") return
for $b in $auction/site/people/person[@id = "person0"]
return $b/name/text()

can be processed with increasing sophistication:

• Without secondary index: Query evaluation plan (QEP) in Figure 6.8a) indicates that sev-
eral scans (Document Scan) over the entire document index are necessary to join (Struc-
tural Join) the XPath steps. Expensive navigations (Attribute Navigation) are needed to
retrieve all “@id” attribute values.

• +Content Index: This option may replace the navigation operator by a Content Index
Scan to reduce document index access (see Figure 6.8b)).

• +Element index: In Figure 6.8c), the QEP can replace three document scans by an Ele-
ment Index Scans. Note, the resulting node streams may contain nodes originating from
different paths to be filtered out.

• +Path index: The QEP in Figure 6.8d) illustrates the use of a Path Index Scan that covers,
at least, the path /site/people/person. Exploiting this path index allows to remove the
left QEP part, avoiding two element index scans and an access to the document root
node.

• +CAS index: Such indexes have higher selectivity compared to generic content indexes.
Hence, an additional CAS Index Scan (in Figure 6.8e)) can be used to substitute the
content index scan. The CAS index result needs to be sorted by their labels (document
order).

Even this simple query example impressively illustrates the variability of XML index sup-
port. Apparently, it is fairly difficult for a DB administrator to define suitable indexes beyond

153

Chapter 6 Index Options and Query Processing in XTC

Document Scan
NodeTest: 'people'

Twig Join

Document Root 'site'

Structural Join
Axis: child

Document Scan
NodeTest: 'person'

Nav Tree
Axis: attribute

Attribute Navigation
NodeTest: id

Structural Join
Axis: child

Document Scan
NodeTest: 'name'

Project
Expressions fn:text(in)

Content Idx Scan
NodeTest: 'id'

Key: person0

Structural Join
Axis: attribute

Element Index Scan
Element: 'people'

Element Index Scan
Element: 'person'

Element Index Scan
Element: 'name'

Path Idx Scan
Path: /site/people/person

Tuple Sort

CAS Idx Scan
Path: //@id
Key: person0

Document Scan
NodeTest: 'people'

Twig Join

Document Root 'site'

Structural Join
Axis: child

Document Scan
NodeTest: 'person'

Structural Join
Axis: child

Document Scan
NodeTest: 'name'

Project
Expressions fn:text(in)

Content Idx Scan
NodeTest: 'id'
Key: person0

Structural Join
Axis: attribute

Twig Join

Document Root 'site'

Structural Join
Axis: child

Structural Join
Axis: child

Project
Expressions fn:text(in)

Element Index Scan
Element: 'name'

Content Idx Scan
NodeTest: 'id'
Key: person0

Structural Join
Axis: attribute

Structural Join
Axis: child

Project
Expressions fn:text(in)

Path Idx Scan
Path: /site/people/person

Element Index Scan
Element: 'name'

Structural Join
Axis: attribute

Structural Join
Axis: child

Project
Expressions fn:text(in)

a) no secondary indexes b) content index c) content & element index

d) content, element,
 and path index

e) content, element,
 path, and CAS index

Figure 6.8: XMark query 01: Index-driven alternatives in query evaluation plans, visualized
using a simplified version of XTCcmp [MWHH08].

the simple element or content index. Moreover, the variety and flexibility of XML structures
and, in turn, query predicates (e.g., wildcards (*), descendant axis (//)) make it impossible to
specify static index configurations facing ad-hoc queries.

Index Size

Even for our simple sample query, slight index variations lead to varying index sizes. Table 6.2
gives an overview what to expect from these different setups in terms of additional space re-
quirements in relation to index coverage. We compared minimal and standard index definitions
for each scenario. The standard definitions are easy to specify and offer a wider scope of query
support, but require considerably more space. In contrast, the minimal definitions are perfectly
tailored to the scenarios and require minimal additional space. All definitions from (1) to (9)
can be found in Appendix B.6. Note, content indexes are automatically translated into appro-
priate CAS indexes because elementless storage was used. This usage of elementless storage,
furthermore, implicates that, especially in standard definitions, the coverage may excess 100%,
because virtualized inner element nodes need to be indexed explicitly.

154

6.5 Index Selection Problem

Table 6.2: Index configurations for sample query evaluation plans
Index use Index Index minimal Index standard
scenario type space in % coverage in % def space in % coverage in % def

a) document 100 100 - 100 100 -

b) content +8 24.35 (1) +42.97 99.19 (2)
c) content +8 24.35 (1) +42.97 99.19 (2)

element +0.86 4.7 (3) +20.21 106.25 (4)
d) content +8 24.35 (1) +42.97 99.19 (2)

element +0.58 3.08 (5) +20.21 106.25 (4)
path +0.27 1.63 (6) +0.27 1.63 (7)

e) content +8 24.35 (1) +42.97 99.19 (2)
element +0.58 3.08 (5) +20.21 106.25 (4)

cas +1.23 3.84 (8) +34.96 74.84 (9)

6.5 Index Selection Problem

Besides the flexibility of XML, another major challenge comes up when space restrictions
are to be met and/or insert, update, and delete (IUD) operations are present. Thus, the well-
known index selection problem (from the relational world) is substantially more complex for
XML indexing. The evaluation of a path expression containing multiple path steps may exploit
various index types in various combinations (to avoid unwanted document scans). As a typical
example, Figure 6.9 reveals considerable complexity to only search for a proper index type – a
base task of a query optimizer. Although the listed queries are fairly similar, a heuristics-based
query optimizer would identify the query properties and usually look for indexes in differing
orders given in the illustration. Because a full set of indexes can never be maintained, index
selection typically favors those serving different queries. Furthermore, this simplified decision
tree hides the necessity that a cost-based selection usually accounts for size (height) and cluster
properties of an index. Moreover, a combination of different indexes and types is possible as
well, thus considerably increasing the search space.

Containment Problem

Digging a little deeper in the search space of alternatives reveals the containment problem for
XML indexes. Related to the introductory example of Section 6.4, it is difficult to strictly
distinguish index uses as long as they are overlapping, contained in each other, or identical.
For the user or DB administrator, containment may not be visible during index definition. For
instance, an element index specified for “person” nodes may have the identical scope as a
path index defined on “//people/person∨ //show/person”. Therefore, an index configura-
tion may contain redundancy to be maintained during updates, too. In contrast, the system
may prefer one of these index alternatives due to cost effectiveness resulting from a different
clustering or compression overhead. Due to the expressiveness of XPath, it is easy to define
indexes containing a subset or being a superset of an existing one. For instance, the set of
nodes addressed by the path /a/b/c/d are ⊆ compared to the path /a//d. Adding wildcard
steps and different index types amplifies the containment problem.

155

Chapter 6 Index Options and Query Processing in XTC

Figure 6.9: Index-type decision tree

Generalized Indexes

XML indexing allows for tailor-made index definitions favoring specific queries, e.g., a full
path containing only child axes. To support as many queries as reasonable, specialized indexes
should be combined to more general indexes to share physical structures and, at the same
time, improve buffer usage. On the other hand, such a shared usage would provoke increased
contention produced by parallel IUD queries, which, in turn, would again advocate the use
of more specific indexes. Apparently, this flexibility for indexing and storing XML has to be
identified and exploited when selecting a set of query-supporting XML indexes.

6.6 Summary

In this chapter, we presented XTC’s set of secondary index options, their properties, and flexi-
bility. Although some index options are based on the elementless storage mapping and, there-
fore, rely on the path synopsis concept, their general application is not impaired.

Challenging for query processing is the integration of secondary access paths. We pre-
sented some insight how the cost-based query processor of XTC actually selects indexes. We
identified the problem of accurate statistics (monitoring) and cost metrics (decision/model) to
generate valid QEPs. Although the query optimizer itself is a kind of self-tuner for access
path selection, it heavily relies on statistics and indexes to choose from, which leads to fur-
ther problems. Besides the prominent index selection problem (ISP), XML indexing causes
additional problems such as the containment problem, type flexibility, and generalization op-
tions. Thus, the resulting huge search space of alternatives needs to be analyzed and evaluated
automatically, which is the goal of our next chapter.

156

Chapter 7

Index Self-Tuning for XDBMSs

The previous chapter disclosed the opportunities provided by sophisticated indexing options
within an XDBMS and the challenges that arise out of that. Finding an optimal index config-
uration is an NP-complete problem due to the large number of possible combinations [PS83].
Therefore, indexing decisions must be workload-driven to find a suitable setup, i.e., queries
need to be analyzed by administrators and indexes must be created by hand. The workload
dependency becomes especially critical when query patterns change and the current index con-
figuration is outdated. Simply creating new indexes can easily degrade system performance,
because they may require maintenance and their materialization causes additional IO and con-
tention. Hence, changing an index configuration is a sensitive task and a cost estimation is
required to support such a decision on-the-fly. In this chapter, we propose an integrated and
autonomous indexing framework for a native XDBMS. This cost-based index configuration
management is utilizing various index types and the XQuery compiler. We will discuss related
work, before we describe the framework, its integration into XTC, and its performance gains.

7.1 Related Work

Numerous approaches for index tuning have been proposed in the relational world. Almost all
commercial systems are equipped with some sort of Index Advisor, which basically analyzes
workloads, i.e., queries, data, and query frequencies to estimate query processing costs for hy-
pothetical index configurations. The Index Tuning Wizard by Microsoft and their AutoAdmin
project use “what-if” index recommendations [CN97, CN98]. Oracle ships an Index Tuning
Wizard [DRS+05], too. In the SMART project [LL02] of IBM, the query optimizer is exploited
for index recommendations [VZZ+00, ZZL+04]. Those kinds of tuning tools operate offline
and do not change the index configuration at all. They only inform the DB administrator about
alternative index configurations.

Recommending tailored XML indexes is still an open research topic. However, the inte-
gration into (X)DBMSs is mostly substituted by relational realizations. Only some offline
approaches, such as XIST [RPBP04] and KeyX [HKL05], are capable of identifying XML
paths and recommending simple path indexes. But they are not fully integrated into the cost-
based query optimizer. In the context of DB2, a “tight optimizer coupling” for XML index
recommendations was investigated [EAZ+08b, EAZ+08a]. Thus, the cost-based decision and
selection of indexes through the query optimizer itself leads to index recommendations that are
guaranteed to be used by the system. Unfortunately, the authors do not indicate at which state
index candidates are generated and how they are evaluated.

157

Chapter 7 Index Self-Tuning for XDBMSs

The next steps towards autonomous index management are solely developed in research
projects. As a kind of add-on, the external tool QUIET [SGS03] monitors and analyzes index
candidates before instructing the DBMS to change its index configuration, i.e., materialize or
remove individual indexes. This approach requires a query proxy for external query inspection,
which is not necessarily compliant with the DBMS kernel. An integration into PostgreSQL was
done within the COLT approach [SAMP06]. The strength of COLT is to adjust the overhead
for index analysis to the current load and to change the index configuration online in case
of workload shifts. Each index candidate is profiled and its potential benefit for the current
workload is evaluated. During a reorganization phase, indexes are materialized and removed.
However, the authors do not disclose how they actually identify index candidates. Another
PostgreSQL integration is using soft indexes to evaluate “what-if” index candidates [LSSS07].
Moreover, indexes can be built while a table scan is taking place and a SwitchPlan operator
is used to switch a scan operator into an index access operator on-the-fly. Although these
approaches are only available for relational data and indexes, they served as model for our
XML indexing framework in XTC.

Instead of reconfiguring the set of indexes, certain approaches try to adjust a single XML
index according to the query workload. Inspired by DataGuides and similarity-based path
matching, APEX [CMS02] was introduced to be workload-aware. Compared to our path index,
it basically adjusts its definitions, i.e., set of PCRs, which enables us to fully imitate APEX as
well. Another approach, named D(k)-Index [CLO03], is based on the A(k)-Index [KSBG02]
and 1-Index [MS99]. Again, index-defining path expressions are refined according to frequent
query patterns, which are identified using a similarity measure. The minimum distance of paths
is denoted by “k”, of which A(k)-Index uses a fixed value for k, and D(k)-Index uses a dynamic
one. Both approaches are solely isolated indexing approaches, i.e., without the integration into
a DBMS. The authors only touch the topics index update and query support. Moreover, the
indexes seem to operate fully autonomous and provide no central mechanism for a DBA to
control them or a DBMS to coordinate multiple indexes.

7.2 Autonomous Indexing Framework

An architectural overview of our autonomous indexing (AI) framework is sketched in Fig-
ure 7.1. The AI framework is hooked into the existing database server. The metadata manage-
ment is extended to handle new index attributes such as virtual or managed. The framework
itself follows the monitoring, decision, action approach to autonomously manage the index
configuration of a database.

Monitoring To propose effective index definitions for a dynamic workload, an incoming
query is monitored and index candidates are derived for that specific query. Furthermore,
index usage statistics are collected to account for costs and benefits.

Decision Supported by a cost model for index access, update, creation, and deletion, the
index manager regularly triggers the index advisor to calculate the optimal index set and to
update system-wide index usage statistics. During this optimization step, the ISP is addressed.

Action Depending on the AI mode (i.e., lazy, eager, deferred), new indexes may be materi-
alized or existing indexes may be removed.

158

7.2 Autonomous Indexing Framework

Figure 7.1: Autonomous indexing framework

The AI management is working aside the user-defined index set. That means, user-defined
indexes have a higher priority and should not be touched but observed when usage calculation
takes place. As long as an index is virtual, the executer does not know this index but the query
planner can be injected to include both virtual and materialized indexes. Therefore, the AI has
to estimate index access costs to support query planning for all kinds of indexes in a “what-if”
query processing style.

The different AI modes may schedule index materialization, wait for beneficial load situa-
tions, or exploit an autonomous index in the same query the candidate is derived from. There-
fore, we propose the following AI modes:

Eager Each query may generate index candidates which can be materialized before or during
query evaluation to directly exploit this index. This mode focuses on local optimization.

Lazy Index candidates are materialized after query execution but may observe a global cost-
benefit calculation beforehand. This mode focuses on query runtime which should not be
penalized by index materialization overhead.

Scheduled The most comprehensive approach is to defer index materialization according
to a certain schedule or to a certain point in time when the system is operating at a low load.
The main focus for that mode is to globally optimize index candidates for multiple queries.
Although this approach may miss an intermediate optimal index configuration, it reduces man-
agement overhead and temporary beneficial index candidates.

7.2.1 Virtual Indexes

The concept of virtual indexes [LSSS07, SH10] is necessary to exploit the DBMS query opti-
mization capabilities. If a prospective index candidate is identified, a virtual index is created. It
consists only of a definition and is not materialized, i.e., it requires zero disk space but cannot

159

Chapter 7 Index Self-Tuning for XDBMSs

yet support query processing, nor causes maintenance overhead. However, instrumented opti-
mizers can take them into account for query planning, i.e., search for alternative query plans.
Furthermore, statistics are generated and optionally collected for virtual index use, which con-
stitute the starting point for self decisions of the AI system. First, candidates have to be derived
or generated and, second, these candidates have to be evaluated. We will sketch both steps in
the following.

Candidate generation During query planning, either the internal query structure is analyzed
[SH10] or optimizer calls, searching for appropriate indexes, are collected [EAZ+08b].

Candidate evaluation The optimizer-based process of index candidate evaluation is quite
simple (in Section 7.3.4, we will present more details):

1. Execute queries Q using all materialized indexes Im and track cost estimations cost(Q)
and real costs for their QEPs.

2. Optionally replan (selected) queries Qe, Qe ⊆ Q with several index configurations, con-
taining virtual indexes Iv and materialized indexes Im. Analyze the QEPs – actually
without execution – and collect the cost estimations cost(Qe).

3. Calculate the expected bene f it, while observing maintenance costs mc for indexes1:

bene f it = cost(Qe)− cost(Q)− (mc(Iv)+mc(Im))

7.2.2 Index Configuration Self-Tuning

Our framework uses a cost-benefit model that addresses costs for index creation and updates
as well as benefits for query processing (i.e., XQuery). To observe space restrictions, dynamic
programming or Greedy search is used to select the (new) index configuration. Based on the
notation from Section 7.2.1, a new configuration is achieved by dropping indexes Idrop with
Idrop ⊆ Im and materializing indexes Icreate with Icreate ⊆ Iv.

An existing index configuration permanently has to keep track of its usage figures, i.e., cost-
benefit numbers for each virtual and each materialized index. Frequent analysis of the current
configuration is necessary, because workload shifts may quickly degrade an index configura-
tion and cause unnecessary penalties for query processing. Yet, the overhead for maintaining
and analyzing virtual indexes is not negligible. Besides transactional properties and space
consumption, algorithmic overhead has to be taken into account, too.

7.2.3 Update Issues

Autonomous indexing typically relies on the identification of access paths for each kind of
query, i.e., XQuery statements (read-only) and XQuery Update (modifications) [AYBB+08].
Thus, the mapping between (candidate) indexes and query parts is easily achieved and cor-
responding cost-benefit statistics are updated, too. That means, a query optimizer integrates

1Although we do not address the benefit distribution problem in this work, we will show how we can approach this issue
using statistics-based cost/benefit estimations.

160

7.3 AI in XTC

all the index information into a query plan (QEP) that are necessary to maintain their con-
sistency. But analyzing a workload containing modification statements, i.e., XQuery Update
expressions, may lead to severe problems. For instance, insert, update, and rename queries can
introduce new paths or on-demand assembled paths, which are covered by an index definition
but are unknown during query planning. The costs for those unforeseen index maintenance
operations depend on selectivities and optional elements, making their estimation even harder.

A simple solution is to ignore the (possible small fraction of) unidentifiable virtual indexes
to keep the overhead low. But retaining full consistency for virtual indexes requires to attach
index listeners for them in case of XQuery Update statements. This, however, requires having
a reasonable small set of virtual indexes at hand.

7.2.4 Local Optimization Issue

A workload consists of several queries that occurred during a monitoring period. For that
period, the set of indexes is incrementally analyzed. That means, as soon as a query enters the
system, appropriate candidates are generated for it (i.e., locally). Henceforth, costs are tracked
for candidates that turned into virtual indexes. However, former queries of the same monitoring
period could have caused costs, too, that are not accounted and lead to low accuracy.

Usually, only the candidate indexes selected by the optimizer to build the cheapest plan are
considered for virtual indexes. Such a behavior may impede globally better configurations. Let
us give an example comprising only two queries: Query one is favoring index a and query two
is favoring index b. For both queries, an index c is used in the second best plan, instead of
a or b. Thus, the costs for a and b could be larger than for c alone (materialization), making
this a suboptimal solution. Moreover, the given size budget for indexes is violated by a+b but
not by c, which would result in only having a or b, and leaving one query unoptimized at all.
Therefore, it is important to have a lightweight and query-crossing candidate generation and
evaluation.

7.3 AI in XTC

The tight integration of AI into XTC primarily affects the query processing pipeline (cf. Sec-
tion 2.4.2). For your convenience, we sketch the pipeline again in Figure 7.2, with an emphasis
on the AI components. Basically, the AI evaluation (called AI step 1 and 2) is optionally added
to normal query processing. After a query was processed (normal pipeline) and before the
result is actually returned to the client, virtual indexes are generated within AI step 1. The
XTC optimizer is now exploited to optimize the initial XQGM again for virtual, candidate,
and existing indexes. Its result is analyzed in AI step 2, for cost and time accounting, before
the actual query result is delivered to the client. The optional AI techniques will be addressed
throughout the following paragraphs.

161

Chapter 7 Index Self-Tuning for XDBMSs

Figure 7.2: Query processing pipeline and AI extension

7.3.1 Index Management

The lifecycle of an index is sketched in Figure 7.3. Without AI enabled, XTC requires the user
to specify indexes and also to drop them (a). In contrast, having AI enabled allows the user
and the system to specify indexes cooperatively, although a fully autonomous management
without user interaction is possible, too (b). This leads to the three index states – candidate,
virtual, and materialized. Virtual and automatically materialized indexes are collectively called
auto indexes. The necessary metadata to manage indexes autonomously is quite small. A state
attribute and some counters for IUD, queries answered, tuples returned, cost, benefit figures,
and AI statistics are sufficient. This usually amounts to less than 100 bytes of extra statistics
for each AI-controlled index.

Fortunately, XTC manages its metadata in an XML document (i.e., master.xml). Therefore,
it is easy to adjust the metadata scheme without violating existing structures. In Appendix C.1,
a sample containing new index attributes and AI structures is shown.

The issue of update accounting is addressed in XTC by the extended path synopsis carry-
ing IUD statistics for each node, i.e., PCR-identified path classes. This optional feature (cf.
Figure 7.2 optional feature 2) does a precise accounting and, therefore, allows to accurately
calculate index maintenance costs.

Another issue for XML databases is index matching [LNF09]. The identification of suitable
indexes (i.e., its definition to the current query) is again done via PCR matching. We only need
to match an (ordered) PCR set derived from the query pattern with possible indexes. Each index
remembers the document’s largest PCR that existed when it was last evaluated against the path

162

7.3 AI in XTC

Figure 7.3: Index lifecycles in XTC (without and with AI)

synopsis. This ensures that, in case of new path classes, indexes that need to be reevaluated are
easy to detect.

7.3.2 Candidate Generation

In our framework, we allow different ways of generating index candidates. In Figure 7.2 they
are embedded in AI step 1. A lightweight query string analysis is fast but error-prone, whereas
the query graph analysis is complex but delivers highly accurate candidates. A third approach,
similar to [EAZ+08b], exploits optimizer calls to identify candidates.

Query String Analysis

Based on the input string (XQuery), regular expressions are used to extract document/collec-
tion names, path expressions, predicate expressions, let and for clauses, and element or attribute
expressions. Heuristics help to “assemble” identified expressions and form meaningful index
candidates. For instance, predicates (identified by enclosing brackets) hint at CAS index candi-
dates. For and let clauses are used to generate additional paths by combining their surrounding
path expressions. However, those concatenations may lead to meaningless candidates impos-
ing additional overhead to the candidate evaluation phase. All element or attribute names,
identified by their enclosing path step expressions, are collected into element index and path
index candidates. Although this approach is fairly simple and fast, its quality is either impaired
by multiple document references, awkward XQuery notations, or the generation of too many
meaningless candidates and unnormalized query strings.

163

Chapter 7 Index Self-Tuning for XDBMSs

Query Graph Traversal

By traversing the query graph bottom-up, path information, join predicates, and value predi-
cates are collected [SH10]. Our rule set to identify candidates can be found in Appendix C.2.
Note, the identification logic is similar to the optimizer logic for index application. That means,
even complex predicates can be analyzed and path information suitable for index candidates
are extracted. Moreover, predicate types, iterations, multiple occurrences in the same query,
and join participation are considered to improve the index candidate generation. Because this
also requires a lot of analysis effort, we implemented a second, simplified method that reduces
the set of predicate identification rules. This improved the search speed, made the approach
more general, and kept the quality of candidates almost identical.

Injecting Query Optimizer

Recent work in [EAZ+08b], based on the idea of [VZZ+00], exploits the optimizer’s index
matching to generate candidates. We adopted this idea and collect the index lookup calls
from the optimizer. The necessary DBMS extension is quite simple and delivers good results.
In contrast to the query graph traversal, we could not infer quality aspects from the search
order, neither could we identify how an index was planned to be used, e.g., point access, range
scan, predicate evaluation, etc. Although this approach has still some limitations, it will never
recommend unusable candidates2.

Note, this approach should be embedded in the first query run (cf. Figure 7.2 optional
technique 1), otherwise a third optimizer invocation would become necessary. Of course, this
always causes a little bit overhead to the actual query processing, even if the AI extensions are
processed by a separate thread.

Listing 7.1: Data structure to capture path expressions
1 enum Axes {CHILD , PARENT , DESCENDANT , ANCESTOR , ATTRIBUTE , DESC_ATTRIBUTE ,

2 DOCUMENT , FOLLOWIMG_SIBLING , FOLLOWING , PRECEDING , PRECEDING_SIBLING };

3 Step {

4 Axes axis;

5 String value; // tag or attribute name or wildcard

6 }

7
8 Path {

9 List <Step > steps;

10 ...

11 }

Extending the Candidate Set

Before we show how to extend the set of candidate indexes, we introduce two basic data
structures required for candidate index handling, namely Path sketched in Listing 7.1 and

2Other approaches have to verify the index candidate definition, which can easily be done exploiting the path synopsis
and PCR set evaluation.

164

7.3 AI in XTC

AIpathElement in Listing 7.2, respectively.

Listing 7.2: AI path element data structure
1 // Capture paths and indicate if they are "stoppers" i.e., end on attribute or

2 // text () functions => CAS candidates

3 AIpathElement {

4 Path path;

5 boolean attribute , CAS; // indicate the axis/predicate type

6 boolean alternative; // indicates if a prior identified CAS index was transformed

into a path index

7 // because at least a non -leaf PCR is included

8 int count; // how often was this path found in the query

9 boolean combination; // is true if this path expression is part of at least a single

concatenation

10 private Set <Integer > pcrs;

11
12 AIpathElement(Path path , boolean attrib , boolean cas) {

13 ...

14 // fix: remove final step of cas index path e.g., /homepage /* <CAS > -> /homepage <

CAS >

15 if (cas && path.getLastStep ().getElementName ().equals("*"))

16 ... // remove last step

17 }

18 }

19 AIpath {

20 ...

21 List <AIpathElement > paths;

22 boolean lastStepIsCAS;

23 boolean lastStepIsAttribute;

24 }

More index candidates are generated by combining (simple) path expressions. For instance,
the query Q1 = //library/author[address/state =′ T X ′] may result in two identified path ex-
pressions //library/author and address/state, which are internally represented as AIpathEle-
ments. By keeping the text predicate for the second path in mind (i.e., set lastStepIsCAS to
true), the algorithm in Listing 7.3 tries to concatenate meaningful paths and predicates to ex-
tend the candidate set by adding more specific index candidates. While candidates are gener-
ated, their definition is matched against the path synopsis and “search paths” are stopped in
case of non-matching definitions. Moreover, the data types of predicates are checked to tailor
the index definition by specifying numeric or string typing.

7.3.3 Candidate Size Estimation

The evaluation of index candidates heavily depends on the simulated statistics, which are re-
quired by the query optimizer. Fortunately, the extended path synopsis statistics, presented
in Section 5.9.1, are sufficient to accurately estimate B-tree statistics for all kinds of virtual
indexes.

For each index candidate generated, an index size (IdxStats) estimation is calculated as
shown in Listing 7.4:

Because this estimation needs to be done for all index candidates, the matching in line 4
exploits a path cache to speed up the generation of PSNode lists. Structural changes of the path

165

Chapter 7 Index Self-Tuning for XDBMSs

Listing 7.3: Combine paths algorithm
1 combinePaths(AIpath p, List <AIpath > exist) {

2 if (p.firstAxis () == CHILD) tryDescendant = true;

3 Set <Integer > pcrs = pathSynopsis.getPCRs(p); // get PCRs for path p

4 if (pcrs.isEmpty () && tryDescendant) {

5 ... // set first axis of p to descedant

6 pcrs = pathSynopsis.getPCRs(p); // get PCRs for changed path p

7 }

8 if (!pcrs.isEmpty ()) {

9 AIpath test = p.getCopy ();

10 for (AIpath e : exist) {

11 test.append(e); // concatenates two AI path elements

12 if (test is CAS) {

13 if (pathSynopsis.includeNonLeafPCR(pcrs)) {

14 test.CAS = false; // only leaf PCRs are allowed

15 test.alternative = true; // remember this type switch

16 }

17 }

18 }

19 if (tryDescendant) {

20 exist.add(test.getCopy ());

21 // switch axis in p back to child]

22 ... // restore original properties

23 }

24 else

25 exist.add(test.setPCRs(pcrs)); // add combined path and set PCRs

26 }

27 else

28 // invalid path , do not try to combine nor add to existing paths

29 }

synopsis, i.e., creation of new paths, or bulk updates and deletions in the document, empty
the look-up cache to improve estimation accuracy. The calcIndexStructure method in line 11
uses heuristics, gained through experiments, to approximate the index size. The heuristics
themselves take cluster-dependent key compression ratios, average descriptor overhead, and
typical B-tree occupancy into account. The resulting IdxStats object contains all metrics the
query optimizer might be interested in.

Listing 7.4: Estimate index size
1 IdxStats estimateSize(IndexDef ic, PathSynopsis ps) {

2 // generate path class -based set of synopsis nodes

3 IdxStats stats = new IdxStats(ic);

4 List <PSNode > nodes = match(ic, ps);

5 int size = 0; count = 0, updCnt = 0;

6 for (PSNode node : nodes) {

7 size += node.getInstances () * node.getAvgLength ();

8 count += count; updCnt += node.getUpdateCnt ();

9 }

10 // estimate index -type -dependent height and #leaves

11 calcIndexStructure(size , stats , count , updCount);

12 return stats;

13 }

A further optimization to reduce IdxStats estimation efforts is possible by incrementally

166

7.3 AI in XTC

estimating index candidates, i.e., during bottom-up traversal of the query graph, where each
step creates new and often more selective index candidates. Moreover, for each materialized
index, accurate statistics are gathered during its creation, which are used to adjust the heuristics,
especially for conten and CAS indexes.

7.3.4 Cost Benefit Calculation

Similar to [LSSS07], index candidates are frequently ranked by their cost-benefit ratio gained
through the accounting of QEP benefit and index maintenance cost. Because this process
may become too costly, the ranking frequency is adjusted each time to the recent success of
index tuning and overhead. A Greedy algorithm observing space restrictions marks indexes
according to their rank for the new configuration. Finally, indexes marked for deletion are
removed and virtual indexes marked for materialization enqueued to be built asynchronously
to normal query processing.

Index Usage Tracking

During query processing, potential index application is tracked as follows:

1. Determine what-if index set for each analyzed query. This set consists of all kind of
indexes (i.e., candidates, virtual, and automatically materialized) that were used in the
what-if QEP but not in the executed QEP. Note, different usage numbers of the same
index may occur, which is accounted as well.

2. Estimated cost difference of both QEPs is equally attributed to indexes of the index set.

3. Query count statistics of the indexes are updated.

Cost Metrics for Index Ranking

Two metrics for index ranking are possible. One is based on pure gain figures, and the other
one on gain/size figures. To rank all auto indexes Ix, we calculate their gain as follows:

gain(Ix) = bene f it(Ix)−maintenance(Ix)− γ× cost(Ix)

Complementarily, maintenance costs are approximated by:

maintenance(Ix) = (deletes(Ix)+updates(Ix)+ inserts(Ix))× IOcost ×2

All the necessary counters are contained in the index statistics, which makes maintenance
cost estimation fairly easy. Materialization cost estimation is based on the number of index
pages and the number of document pages that need to be filled and scanned, respectively.
Furthermore, optional sorting increases the cost estimation, which are calculated as follows:

cost(Ix) = (Docpages + Ipages×2)×PageIOcost +(Ituples +Doctuples)×PredEvalcost

if (PCR clustering) cost = cost + Ituples×SORTcost

167

Chapter 7 Index Self-Tuning for XDBMSs

if (ELEMENT index) cost = cost + Ituples×SORTcost ×2

Note, materialization costs are weighted by a parameter γ , which controls the degree of
required amortization; typically γ is chosen between 0.5 and 1. We do not yet adjust this value
online, which is, however, straightforward and emphasizes the self-tuning characteristics.

7.3.5 Index Selection

Based on index ranking, the most promising virtual indexes are selected for materialization.
To meet space restrictions, the system can reclaim index space by removing enough indexes
having a negative gain or considered less beneficial than the new one(s).

The algorithm in Listing 7.5 shows the space-dependent and gain-dependent selection of
new indexes. Several space constraints must be observed to correctly plan index material-
izations. For instance, when multiple candidates are planned at once, their (estimated) space
consumptions have to be considered all the time, which is accounted by cleared. Moreover,
space requirements for already scheduled index materialization jobs have to be tracked, too,
e.g., AI.ScheduledCreationJobsSpace (line 13). The current space occupation by auto indexes
is reflected by used (line 12). All these counters are used to determine the minimum space (i.e.,
required line 19) that is required for the new candidate. Note, in case of (additional) space re-
strictions that depend on the database size (lines 21–30), required is calculated by querying the
total size of XML documents and collections from the metadata (lines 23–24).

If space needs to be reclaimed (lines 33–41), materialized auto indexes are ranked by their
current gain and a simple Greedy search is used to find a minimum set of “bad” indexes that can
be dropped in favor of the new one (lines 46–53). If enough space can be reclaimed (line 55),
the indexes are dropped (line 59) and the statistics are updated (line 56) as well as a monitoring
event is emitted (line 60).

Listing 7.5: Index selection observing space restrictions
1 indexSelection () {

2 List candidates; // candidates that are selected for materialization

3 long cleared = 0; // required in case of space restrictions

4 for (RankingEntry e : ranking) {

5 if (spaceCleared(e, cleared)) {

6 candidates.add(e);

7 cleared +=e.IdxSize;

8 }

9 }

10 }

11 boolean spaceCleared(RankingEntry entry , long cleared) {

12 long candidateSize = entry.IdxSize;

13 long used = AI.CurrentSpaceOccupation;

14 long reserved = AI.ScheduledCreationJobsSpace;

15 long required = 0; // min space required to create index

16
17 // first , check if enough space is available

18 if (AI.indexSpace > 0) { // absolute space restrictions for AI

19 if ((used+candidateSize+cleared+reserved) > AI.indexSpace)

20 required = used+candidateSize+cleared+reserved -AI.indexSpace;

21 }

22 double dbSize = 0;

23 if (AI.indexSpacePercent > 0) { // relative space restrictions

24 String sizeQuery = "fn:sum(doc(\" _master.xml\")//doc/statistics/@size)";

25 Result result = executeXQuery(sizeQuery , ResultType.STRING);

168

7.3 AI in XTC

26 dbSize = Double.valueOf(result.getStringResult ());

27 double required2 = dbSize * AI.indexSpacePercent / 100;

28 if (required2 < (used+candidateSize+cleared+reserved))

29 required2 = (used+candidateSize+cleared+reserved) - required2;

30 required = max(required , required2); // more restrictive condition

31 }

32
33 // try to remove existing indexes having a bad gain

34 if (required > 0) {

35 Ranking existing;

36 for (Index idx : getExisting ()) {

37 AIStats stats = idx.AIStats;

38 double maintenanceCost = (stats.DeleteCnt+stats.UpdateCnt+stats.InsertCnt)*

INDEX_PAGE_COST *2; // fetch & store

39 double gain = stats.Benefit - maintenanceCost;

40 // optional: gain = gain/size

41 existing.rank(idx , gain);

42 } }

43 long reclaimed = 0; // what is actually reclaimed by removing these indexes

44 long gainReduced = 0; // can be negative

45 RankingEntry toBeRemoved = existing.pollLast;

46 List removeMe; // remember auto indexes to be removed

47 while (toBeRemoved != null) {

48 if (reclaimed < required || toBeRemoved.gain < 0) {

49 if (entry.gain > toBeRemoved.gain) { // at least the gain of this index should

not be larger than the gain for the new one

50 reclaimed += toBeRemoved.IdxSize; // add potential space savings

51 removeMe.add(toBeRemoved);

52 }

53 }

54 toBeRemoved = ranking.pollLast ();

55 }

56 if (reclaimed >= required) {

57 // remove indexes & update space occupation statistic

58 for (RankingEntry rm : removeMe) {

59 AI.free(rm.IdxSize);

60 dropIndex(rm);

61 STReporterImpl.getInstance ().addEvent(new ReportEvent <long[]>(ReportComponent.AI

,"GenerateTop.DropIndex" ,...));

62 }

63 }

64 else

65 return false;

66 return true;

67 }

7.3.6 Optimizations

The set of indexes, the AI management, and the search for better configurations offer several
starting points for improvement, mostly related to the overhead, i.e., processing costs. We
implemented a set of optimization rules to shrink and optimize the set of candidate indexes,
which can be found in Appendix C.3. Furthermore, in the following, we want to sketch a few
quality and performance improvements we added to our AI framework.

Statistics Aging

In the course of time, statistics of index use may outdate and, thus, “block” better performing
index configurations. Hence, it becomes beneficial to replace indexes due to their disadvan-
tageous recent use in favor of new indexes that provide immediate gain. Therefore, we allow

169

Chapter 7 Index Self-Tuning for XDBMSs

certain statistics to age. During each analysis cycle, path synopsis statistics for updates and
queries are reset to enable current candidate index estimations. Except for initial materializa-
tion costs, all prior statistic numbers are simply decreased to achieve aging. In contrast, index
statistics could be kept with differential numbers giving a better indicator for recent usages,
i.e., during the last tuning period.

Identification of Frequent Query Types

Reducing the number of queries to be analyzed by the AI framework is a strong demand. Typ-
ically, certain query types occur frequently due to prepared statements. We want to exploit
this fact, but XTC does not (yet) support prepared statements. Therefore, we identify similar
queries to save the costs of benefit estimations. The analysis is based on the raw query string.
For each query, whitespaces are minimized (i.e., sequences of whitespaces are condensed to
one), literals are removed, and a hash value for that string is calculated. The cost benefit statis-
tics for individual virtual indexes are remembered and stored together with the hash signature.
Using a query cache containing these hash values, it is simple to identify similar queries and
to reapply the same cost benefit numbers again.

Pruning

To avoid the investigation of inferior alternatives, our AI framework contains several pruning
steps; most of them are integrated as optional features (cf. Figure 7.2 optional feature 3).

The number of queries to be investigated is controlled through a query runtime threshold and
an operator threshold. If processing time for a query is below a certain threshold, AI analysis
is skipped. This threshold is increased, if no document scan operators are present. Note, query
processing times, AI overhead, and AI cost-benefit statistics of each query are used to perma-
nently adjust these thresholds. We use a (default) confidence tolerance of 10% to analyze some
of the fast queries and, if necessary, to adjust the threshold. Queries without scan operators
may increase this threshold only by (default) 25%, because the potential savings through a dif-
ferent index configuration (i.e., AI analysis is triggered) is usually smaller compared to scans
replacing indexes.

Another pruning step is integrated into the search for alternative index candidates. The op-
tional CAS to path index cast (and vice versa) can dramatically reduce the number of index
alternatives without losing expressiveness. Index candidates, not picked by the optimizer, but
frequently identified using XQGM, may also be transformed into virtual indexes if they oc-
curred n times. Here, n is another pruning threshold. Index type preferences and index key
type preferences can be used to prefer more general indexes, which may automatically support
unseen (future) queries instead of tailored indexes currently present. Our top-n plan inspection
threshold allows to analyze multiple plans of a query – enabling global cross-query optimiza-
tion – and, thereby, the quality of AI is improved.

170

7.4 Evaluation

Index Space

Usually, the storage space for secondary indexes is limited to a fixed size. In our AI framework,
we also allow a limit that depends on the actual data volume. For instance, the user may allow
that up to 30% of additional space can be occupied by secondary indexes, optionally including
the ones specified by users. This specification is always aligned to the actual data volume.

Parallel Index Materialization

Index materialization has a huge impact on DBMS performance. Besides transactional issues,
exclusive resource consumption can cause additional penalties for query processing. For in-
stance, index building often requires costly sort operations. Therefore, our framework keeps
control of the number of parallel jobs building indexes.

7.4 Evaluation

Our benchmarks were performed on a Pentium IV computer (2x 3.2 GHz, 1 GB of main mem-
ory, 160 GB of external memory, Java Sun JDK 1.6), the same setup as configuration 1 in
Section 5.10. The benchmark data originates from the benchmarks XMark [SWK+02] and
TPoX [NKS07], and the XML repository [Mik].

Because XTC does not support XQuery Update natively, we implemented the TPoX update
queries through the procedure concept of XTC. In Appendix C.4, a description of the TPoX
implementation can be found. Basically, these queries are split into a read-only XQuery part
using XTC’s query processor and an update part using the DOM and SAX interfaces.

7.4.1 Index Estimation Accuracy

As mentioned before, index tuning heavily depends on cost estimation accuracy. Accordingly,
the available statistics need to be used properly to estimate index access costs. In Figure 7.4,
we show the estimation error of all materialized indexes generated for a subset of 10 different
XMark queries in a workload. The total error Et is the weighted sum of the cardinality error Ec,
page number error Ep, height error Eh, and size error Es (using the ratios of estimated

real values):

Et = α ∗Ec +β ∗Ep + γ ∗Eh +δ ∗Es,
δ

∑
α

= 1

To augment cost-based query optimization, the weights are adjusted to their expected cost.
The cardinality error α and the height error γ are weighted by 0.3 each, because the query
optimizer’s cost estimation heavily depends on them. The remaining weight of 0.4 is equally
distributed to β and δ .

The results in Figure 7.4 reveal that index estimation is fairly accurate in almost all cases
(black dots equal Et ≤ 12%). The minimum and maximum estimation error is shown via
the error bars; clearly, the larger the workload (document size), the lower the min, max, and
weighted error. Although this experiment did no lead to content indexes, for comparison, we

171

Chapter 7 Index Self-Tuning for XDBMSs

Figure 7.4: Estimating index characteristics: error margins

show their estimation error on the right-hand side. Apparently, the tiny overhead caused for
statistics gathering is easily amortized by the value of accurate index estimations.

7.4.2 Index Candidate Generation Aspects

The different approaches for index candidate generation are subject to the next experiment.
We assembled three query workloads, two containing each a subset of XMark queries and one
containing the TPoX queries. We did not limit the index space. The results in Table 7.1 show
that for simple queries, i.e., a single document reference and simple predicates, even the query
string analysis results in almost perfect index recommendations. Only the complexity of TPoX
queries is hard to capture on a string base.

In terms of query speed-up, both QGM-based approaches deliver almost similar results.
However, the simpler version is noticeably faster, even with the combine path algorithm, which
also led to results requiring less index space. Interesting is the difference for the TPoX work-
load, because the complex version recommends space-consuming path indexes of different
clusterings instead of a cheaper and combined element index as the simple version does. The
difference in query speed-up is negligible. In the following evaluations, we used therefore al-
ways the simple QGM+ generation approach, because it constantly delivered a high quality in
terms of indexes and space consumption.

Note, the table only lists indexes that were actually used and therefore materialized. The
number of “useless” candidates is not included, because it is hard to distinguish between
slightly worse and effectively useless candidates. In addition to that, the path-synopsis-based
validation early removes impossible candidates.

7.4.3 Self-Tuning Quality

The quality of index self-tuning is a crucial aspect. Therefore, we designed four scenarios
reflecting possible applications of index (self-)tuning.

• Unmanaged: No indexes were predefined or automatically created.

172

7.4 Evaluation

Table 7.1: Comparison of index candidate generation approaches
Candidate Search XMark set 1 XMark set 2 TPoX
XQuery string 16* 15 10**
QGM (complex) 15 16 31***
QGM (simple)+ 17 15 22
+ the algorithm combine path to extend the candidate set was applied, too
* only a CAS index was “missing”
** problems in determining descendant axes and multiple collections
*** path indexes instead of combined element index (similar coverage)

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500

%

sec

additional index space

self-tuning
manual + self-tuning

manual

 0

 10

 20

 30

 40

 50

 60
sec

average worklaod processing times

unmanaged

self-tuning

manual + self-tuning
manual

(a) XMark query set 1

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

%

sec

additional index space

self-tuning
manual + self-tuning

manual

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

sec
average worklaod processing times

unmanaged

self-tuning

manual + self-tuning
manual

(b) XMark query set 2

Figure 7.5: Workload processing times, index materialization (horizontal bars), and index
space

• Manual: Only a content index and an element index covering the whole document
are created, because they are straightforward to define. Furthermore, this setup usually
delivers an acceptable performance and serves as baseline.

• Manual + Self-tuning: Based on manual consisting of an element and a content index,
AI begins to tune the index configuration automatically.

• Self-tuning: No predefined indexes are present, solely AI is responsible for the index
configuration.

The results in Figure 7.5 show the average workload performance (upper graph) and the
index space consumption (lower graph), for two different XMark query sets. Additionally, the

173

Chapter 7 Index Self-Tuning for XDBMSs

0

s

m

-

0 100 200 300 400 500 600

in
d

ex
 s

p
ac

e no limit

0

1

2

3

4

5

av
g

 q
u

er
y

 t
im

es
 i

n
 s

ec

0 100 200 300 400 500 600

moderate limit

0 100 200 300 400 500 600 700 800 900 sec

strict limit

Figure 7.6: AI performance under workload shifts with varying space restrictions

horizontal bars, in the upper graphs, indicate index materializations in the self-tuning scenarios
(i.e., scenarios 3 and 4). These bars correlate to the increased index space consumption in the
lower graphs.

Although the scales of Figure 7.5(a) and Figure 7.5(b) are different, their findings are similar.
The workload performance in the manual scenarios is satisfactory, but they require a lot of
index space. Yet, the combined scenarios increase index space overhead while providing only
marginal performance improvements. In the self-tuning scenarios, it takes some time until the
first indexes become materialized. But AI continuously improves the performance down to the
level (or even ∼ 10% better) of the manual versions, yet consuming clearly less index space.
In sum, these results prove the effectiveness of the cost-based index tuning.

7.4.4 Workload Shifts

Changing workloads easily degrade query performance and may require adjustments of the
index configuration. Therefore, we analyzed the reaction of our AI framework in case of
workload shifts and varying space restrictions. The upper part of Figure 7.6 shows the average
query performances as well as index deletions (vertical lines). The vertical gray and white
bars show the runtimes of workload runs – achieved through the changing set of indexes. The
results below show index space consumption and materialization (horizontal bars). We varied
space restrictions from unlimited (-) to moderate (m) and strict (s). The workload consists of
four major shifts that are best depicted by the results for the moderate space restriction (middle)
– wide workload runs and performance peaks indicate the shifts.

The unlimited variant is the fastest one, but requires the largest amount of index space.
Each workload shift is quickly adapted by creating additional indexes – no indexes need to be
removed.

In our second variant moderate, AI automatically removes weak indexes in case of workload

174

7.4 Evaluation

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

90

80

70

60

50

40

30

20

10

0

ti
m

e
in

 s
ec

A
I

o
v

er
h

ea
d

 i
n

 %

sec

avg workload time AI overhead

(a) XMark 12MB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000

90

80

70

60

50

40

30

20

10

0

ti
m

e
in

 s
ec

A
I

o
v

er
h

ea
d

 i
n

 %

sec

avg workload time AI overhead

(b) XMark 112MB

Figure 7.7: Workload processing times, index materialization (horizontal bars), and AI over-
head

shifts to stay beyond the given space limit. Although less space is consumed due to the cost-
based index selection, the query performance decreases only by a small margin for a very short
time. This is illustrated by the higher peaks compared to the unlimited variant.

A strict space limit clearly causes a declined workload performance due to index thrashing
(i.e., frequent materializations and deletions of indexes).

Eventually, space restrictions have a huge impact on the possible benefit through AI. How-
ever, workload shifts are quickly handled by the AI framework due to statistics aging.

7.4.5 AI Overhead

Self-tuning overhead is always a critical issue that requires justification. After we have shown
the pure performance speed-up of self-tuning indexes, we evaluate the overhead caused by the
AI framework. Therefore, we used the XMark workload for a small 12MB document and a
larger 112MB document – results are shown in Figure 7.7(a) and Figure 7.7(b), respectively.
As before, we focus on workload performance and index materialization. Additionly, the y-
scale on the right-hand side is used to plot the overhead. For your convenience, the scale is in
reverse direction, meaning zero overhead on the top of the graph.

The results show several findings. The overhead is always fairly low, mostly less than one
percent but never higher than 15 percent. Actually, the outliers, i.e., high overhead values,
mostly correlate with parallel index materialization jobs. That means, we observed interference
of index metadata access and index materialization, instead of real AI overhead. Thus, the pure
and permanent overhead of query analyses, i.e., even in situations when no self-tuning actions
take place, is negligible. Because the self-tuning frequency adjusts itself, too, the overhead
almost disappears.

175

Chapter 7 Index Self-Tuning for XDBMSs

 0

 1

 2

 3

 4

 5

 6

0 20 40 60 80 100 120 140

sec

average query performance

sec

single indexing
parallel indexing

0

2

4

6

8

10

0 20 40 60 80 100 120 140

%

inex space

parallel materializations

single materializations

sec

single indexing
parallel indexing

Figure 7.8: Impact of parallel index building

Virtual Index Listener and Update Accounting

To improve the accuracy of all index statistics, virtual indexes listen for updates, too. So-called
virtual index listeners track IUD operations that would have caused index maintenance costs.
Due to the fast PCR-based index matching, these in-memory counters are maintained without
noticeable costs. We used a TPoX collection of∼500 MB and created the same virtual indexes
multiple times. Because the TPoX IUD queries contain a separate update logic, we could
avoid to present all of these redundant indexes to the read-only query part. Thereby, only the
overhead for the virtual index updates are accounted. Even when adding a hundred times more
virtual indexes than real indexes – all of them matching the TPoX-based IUD operations –,
the accounting overhead was less than one percent of the query processing time. Note, in real
scenarios, only the set of matching index listeners are attached to the IUD transaction, which
is typically a small subset of all available auto indexes.

Parallelism

The impact of parallel indexing, that is creating multiple indexes concurrently on the same col-
lection, is analyzed for some XMark-based benchmarks. In Figure 7.8, the workload runtimes
(left) and index characteristics (right) for different degrees of parallelization are shown. In a
single indexing setup, indexes are materialized sequentially, one at a time. For comparison, we
increased the parallelism, for which the results parallel indexing are shown, too.

The margins between the workload runtimes (left figure) are fairly small, but, nevertheless,
they also indicate that parallel indexing may have a positive influence on workload runtimes.
As expected, the total growth of the index space (right figure) is independent of the degree of
parallelism. Eventually, at least for our tested single-user scenarios, parallel indexing does not
have any negative impact at all.

176

7.5 Conclusions

 0

 10

 20

 30

 40

 50

 60

 70

 80
sec

average workload runtime

5

10

15

500 1000 1500 2000 2500 3000

%

additional index space

aggressive level 1 2 3 5 10

Figure 7.9: Varying aggressiveness of index building

Aggressiveness of Index Building

Important for the index tuning quality and its reaction time is the cost-benefit amortization.
We explored various levels of “aggressiveness”. Figure 7.9 shows declining workload run-
times (top) and the corresponding index space consumptions (bottom) for various thresholds
controlling index materialization aggressiveness. Especially, the index containment problem
is automatically addressed by analyzing several queries/workloads to exploit synergy effects
of index candidates. This is clearly visible for aggressive levels > 3. In terms of space over-
head, moderate policies are the most efficient ones. However, nearly all setups increase their
throughput in the same order. Thus, it is possible to adjust the threshold to specify whether fast
adaptation to changing workloads or conservative space occupation is preferred.

7.5 Conclusions

This chapter presented our AI framework that is based on the cycle of monitoring, decision, and
action. Our framework employs several ways of generating index candidates and is based on a
lightweight statistics accounting. These statistics are required for the concept of virtual indexes
and for using the query optimizer for index selection. Emphasis was put on AI overhead, index
space restrictions as well as changing workloads and updates.

Our results proof that index self-tuning is a complex task that – supported by our AI frame-
work – easily exceeds manual tuning efforts. Note, manually tuning the index configuration
typically requires more time to react and the user is confronted with a huge and confusing
number of index options.

177

Chapter 7 Index Self-Tuning for XDBMSs

Although the framework is tightly coupled with XTC, the general approach can easily be
adopted to other XDBMSs, as long as comparable index types, statistics, and a cost-based
query processor are available.

178

Chapter 8

Interplay of Self-Tuning Components

In the course of this thesis, we have shown that our (self-)tuning mechanisms are effective
and improve the performance of XML processing. So far, the self-tuning approaches were
presented component by component. The evaluation of individual components and self-tuning
techniques is crucial to systematically draw meaningful conclusions from their effects [SBH09],
but for real-world scenarios, their interplay is important as well. Due to component dependen-
cies and contradictory tuning goals, self-tuning techniques may interfere with each other. But
also static tuning options can interfere with self-tuning techniques, when they target the same
resources or tuning goals. Such effects are hard to track and, in the worst case, may lead to
configuration thrashing, i.e., the tuning mechanisms alternately change the configuration ac-
cording to their individual goal.

This chapter looks at the impact on query processing and DB configuration when major
tuning mechanisms are enabled at the same time. Therefore, we analyze the interplay of au-
tonomous buffer and index tuning in case of changing workloads. Based on this analysis, we
explore the interplay of various combinations of (self-)tuning techniques including optional
content compression. Thereby, we concentrate on query processing performance and resource
usage.

8.1 Workload and Environment

For this benchmark series, we use again hardware configuration 3 from Section 5.10 and the
XMark dataset to populate multiple databases of 12MB size and 112MB size. The workload
consists of complex XMark queries, a set of newly created update queries tailored to the XMark
documents, and SAX scans evaluating simple XPath expressions. Except for the SAX scans,
all queries may be supported with various indexes. Each container file consists of one DB
instance and is assigned to an individual buffer. The total size limit of all buffers is aligned
to the size of a DB instance. That means, the data volume that can be kept in main memory
is slightly higher than that of a single DB instance. There exist no predefined indexes, if not
stated otherwise.

The kernel cache is bypassed using direct IO to emphasize the self-tuning effects and to
avoid that caching techniques of the operating system might mislead the result interpretation.
For workloads on larger DB instances, which exceed main memory capacities, we would not
require this restriction.

179

Chapter 8 Interplay of Self-Tuning Components

8.2 Interplay of Buffer and Index Self-Tuning

The results of the benchmarks are shown in Figure 8.1 for the databases of 12MB size and in
Figure 8.2 for the databases of 112MB size, respectively. For each benchmark, the query work-
load, shown in the upper part, is identical. There are different kinds of workload patterns, SAX
scans (dark gray bars), XMark queries (light gray bars), and update queries (black bars). The
bars also indicate which of the three databases are utilized. Below the workload markers, white
boxes indicate index use, distinguished by read and write access, where write access means in-
dex building or index maintenance. For your convenience, we divided the workload into 13
sections reflecting workload shifts and also marked their boundaries in the measurements of
average query time, index space, and buffer size. This alignment enables us to interpret the
results regarding buffer and index self-tuning. For instance, during the processing of section 3
(SAX load in Figure 8.1), the average query processing times drop from ∼1.3 seconds to ∼0.3
seconds, because the buffer configuration changes. The size of buffer 1 decreased and the size
of buffer 2 is increased. During this workload period, no indexes were accessed and the index
configuration is not changed.

In the following, we look at the individual workloads and shifts presented in Figure 8.1.
For your convenience, we do not explicitly distinguish between a database instance and its
corresponding buffer:

1. The initial buffer configuration is quickly adjusted to the SAX load on database 1. As
soon as the entire database fits into the buffer, the query times drop considerably.

2. The shift towards an XQuery workload leads to an increase in query processing times.
This increase is immediately compensated by index materializations. The buffer config-
uration does not need to be changed.

3. The target database changes and queries are processed using buffer 2. The SAX load
causes a buffer reconfiguration in favor of buffer 2. Subsequently, the query times
drop again. Note, although this workload is similar to workload 1, but using a different
database, the buffer size changes are even more drastically.

4. The set of XMark queries on database 2 is comparable to workload 2, except for the
target database. Here, no initial peak of query times is observed, because the size of
buffer 2 is still large enough and necessary indexes are materialized in container 0. Due
to the following heavy use of indexes, the size of buffer 0 is slightly increased. Because
document scans are not necessary anymore, the corresponding downsize of buffer 2 has
no negative impact.

5. The SAX load from workload 3 is applied again. Due to the former index use during
workload 4 and the downsize of buffer 2, optimal speed-up is impeded. It takes some
time to reverse the most recent tuning decision and to bring back the prior buffer con-
figuration. Note, this behavior is accepted in favor of non-thrashing configurations. The
following query speed-up meets the expectations.

180

8.2 Interplay of Buffer and Index Self-Tuning

0.1

0.2

1

2

3

4

0

4

8

12

0 50 100 200 250 350 time in sec

0

0

sec

MB index space

MB buffer size

buffer 0 buffer 1 buffer 2

average query time

0
1
2

index read
index write

1 2 3 4 5 6 7 8 9 10 11 12 13workload

da
ta

ba
se

SAX load XMark queries update load index use

150 300

Figure 8.1: Self-tuning effects for 12MB XMark databases and shifting workloads

6.–8. Again, sections of XMark queries and SAX loads alternate on database 2. But now,
query times do not increase, because the buffer configuration is settled to serve index
requests with a small buffer 0 and scan requests by the large buffer 2. Note, no addi-
tional indexes are created, which means that the index configuration already achieved its
optimum during the very first XMark workload.

9. The workload now consists of update queries on databases 1 and 2, which affects the
buffer configuration and the index setup. Some indexes are dropped due to their mainte-
nance costs and some new indexes are created to support the query part of the XQuery
Update procedures. After the index configuration is changed and the buffers 1 and 2 are
resized, query times drop drastically. Note, in the middle of the reconfiguration phase,
queries on database 2 are processed faster compared to database 1. Due to the initial
conditions for this workload shift, i.e., the large buffer 2 and the existing indexes on
database 2, different query speed-ups can be observed. Finally, query processing on
both databases is almost only performed by using indexes. The following buffer resiz-

181

Chapter 8 Interplay of Self-Tuning Components

ings show no further effect, but are aligned to the buffer’s current load.

10. A mix of XMark queries on database 2 requires new indexes to achieve the expected
query speed-up. The query performance slightly improves again after buffer 0 (contain-
ing the indexes) is increased again and the underutilized buffer 1 is decreased. Note,
again there is no immediate increase of the size of buffer 2 observable, because this
would cause configuration thrashing. The parallel index adjustments make those changes
needless anyway.

11. The XMark query load is evenly spread to databases 1 and 2. Because database 1 has
no appropriate indexes, document scans are required until new indexes are created. This
also requires that its buffer size grows larger than the buffer size of database 2.

12. A major workload shift towards update queries on database 0 happens. It has no index
support yet, but new indexes are created and the size of buffer 0 is increased immediately,
too. The final query performance settles at the expected level.

13. The update load moves to database 2 causing high maintenance costs for existing in-
dexes. The index configuration and the buffer configuration are adjusted to significantly
improve the query performance.

To show that the behavior of our self-tuning techniques is independent of the database size,
we processed the same sequence of workloads for a setup with ten-times larger databases and
a ten-times larger buffer limit. The results are shown in Figure 8.2. Except for workload 9,
only marginal differences are observed. During the update queries on two large databases in
workload 9, the buffer tuning seems to overreact twice before it is settled. Because index
materializations take now more time compared to the small database scenario, buffer tuning
actions take place while indexes are built. In this phase, index builders on database 1 cause
document scans, which drive the rapid buffer increase. Later, the indexes on database 2 were
dropped followed by new index creations, now causing on buffer 2 a high scan load. However,
the ideal buffer configuration adjustment is also recognized as thrashing, which is why it takes
a short time to increase the size of buffer 2 again. Finally, the index configuration is stabilized
and the buffer configuration is settled, too.

In both scenarios, the interplay of index tuning and buffer tuning works very well to improve
the query processing performance. Index tuning is purely query-driven and buffer tuning fol-
lows the IO load, even for short-term index use or creation. The remaining question is, how
does further IO-related tuning, like content compression, affects this interplay. Inter alia, this
will be answered by our next benchmark series.

8.3 Varying Combinations of (Self-)Tuning Features

The last benchmarks have proven that buffer self-tuning and auto indexing play well together.
However, to prove that they really benefit from each other, we need to evaluate their individual
application for the same benchmark series. Moreover, additional tuning features may be added,
while the performance is expected to increase again. Such an additional feature like content

182

8.3 Varying Combinations of (Self-)Tuning Features

0
40
80

120

0 200 400 600 800 1000 time in sec

0

1

2
0

2

4

6

8

10

12

14
sec

MB index space

MB buffer size

buffer 0 buffer 1 buffer 2

average query time

0
1
2

index read
index write

1 2 3 4 5 6 7 8 9 10 11 12 13workload

da
ta

ba
se

SAX load XMark queries update load index use

Figure 8.2: Self-tuning effects for 112MB XMark databases and shifting workloads

compression focuses on the same tuning goal (i.e., IO reduction) as buffer tuning. In contrast,
auto indexing increased the storage space consumption, while content compression focuses on
its reduction, making scan-based access more attractive again, which, in turn, affects buffer
tuning. The results in Figure 8.3 compare different (step-wise) applications of our self-tuning
features. Obviously, the more features are applied the faster is the entire benchmark processed.

For comparison, we added results for a run without self-tuning. However, this run, denoted
as index baseline, includes a user-defined element index. Otherwise, the processing times
would be out of scale. The individual usage of buffer self-tuning and auto indexing are denoted
as AI and index baseline + buffer, respectively. Because buffer self-tuning without indexes
results in extremely long runtimes, we added the element index as baseline, too. The reference
results are identical to the results of our last section. Moreover, we have two runs where content
compression was enabled, denoted as AI + buffer + compression and AI + buffer + compression
(lazy), respectively. Figure 8.3(a) shows the absolute runtimes for the benchmark runs using
12MB databases, whereas Figure 8.3(b) shows buffer characteristics for the last three runs.

183

Chapter 8 Interplay of Self-Tuning Components

 350

 400

 450

 500

 550

 600

 650

Self-tuning application

w
o

rk
lo

ad
 p

ro
ce

ss
in

g
 t

im
e

in
 s

ec

AI
index baseline
index baseline + AI
index baseline + buffer
AI + buffer (reference)
AI + buffer + compression
AI + buffer + compression (lazy)

(a) Self-tuning combinations

0

4

8

12

 0 50 100 150 200 250 300 350 400 sec

MB AI + buffer

buffer 0 buffer 1 buffer 2

0

4

8

12

 0 50 100 150 200 250 300 350 400 sec

MB AI + buffer + compression

0

4

8

12

 0 50 100 150 200 250 300 350 sec

MB AI + buffer + compression (lazy)

(b) Buffer tuning with/without content compression

Figure 8.3: Comparison of self-tuning application (12MB XMark databases)

Simply adding content compression (i.e., run AI + buffer + compression), for such a mixed
benchmark of SAX, XQuery, and updates workload, only leads to a marginal speed-up of
approximately 1%, compared to the reference result. Because the overhead for encoding and
decoding almost outweigh the storage space savings, we enabled our lightweight PCR filter
technique1. SAX workload noticeably benefits from the “lazy” decoding of content values, but
even XQuery processing is improved, which leads to the clear performance speed-up.

The buffer tuning results, in Figure 8.3(b), reveal the effects due to content compression.
For your convenience, the reference result from the last section is depicted together with the
results using content compression. As expected, the amplitude of buffer sizes is smaller when
content compression is enabled. The steps of buffer resizing are mostly larger and often only
a single tuning interval is required to adjust the buffer configuration. This is possible, because
the buffer tuning simulation fully covers important buffer characteristics and precisely predicts
its performance.

As index characteristics are almost the same for runs having AI enabled, we do not present
additional charts for them. Note, baseline runs require clearly more storage space compared
to pure AI runs. As baseline, we chose the element index, because most update queries affect
content values, which minimizes maintenance costs for the baseline, while delivering almost
equal query support, compared to tailored CAS indexes.

The results show that individual self-tuning application is worse compared to their combined
use. Although all techniques focus on the same goal, namely IO reduction, their measurements
and resource usages are different. Even resource sharing (i.e., CPU and main memory) does
not impede (self-)tuning.

1Instead of fully decoding binary stored content and attribute nodes during their first access, the PCR filter is applied
first to avoid unnecessary decoding of compressed content values. In case of value access, for instance to evaluate a
comparison predicate, the value is lazily decoded.

184

8.4 Analysis of Self-Tuning Effects

8.4 Analysis of Self-Tuning Effects

In our complex workload scenarios, certain effects can be observed. As the classification
from [CW05] in Section 1.2 already indicated, cache and memory tuning may happen in near-
real time, whereas physical design tuning happens less frequently. This can be observed in
our scenarios, too. The buffer tuning is fairly cheap and happens frequently, but the costly
index tuning is less aggressive. Moreover, index deletions are rare events, which need a clear
justification first.

Another interesting effect is that a sequence of index uses leads to the following: For XQuery
statements containing value predicates, CAS indexes are build. The subsequent update state-
ments cause high maintenance costs and lead to the deletion of these CAS indexes, although
the query parts of the update statements exploit them, too. As a reaction, the system automat-
ically creates the second best index instead, a path index that supports the query part but does
not require maintenance for the update part. Although we do not consider update queries as a
single query instance, tuning does this automatically due to our implementation as a procedure.
This is only possible, because the n best plans are considered for index self-tuning.

Due to data placement decisions, buffer tuning needs to quickly switch between buffers for
index use or document use. This happens whenever queries on database 1 or 2 use indexes from
container 0 or cause their creation in container 0. Buffer tuning then increases the buffer for
container 0 to improve the performance of index building and use. Finally, as soon as index-
only query processing becomes possible, buffer tuning adjusts the sizes of all buffers again to
accommodate all index IO in the buffers. When document scans or frequent document access
are still required, buffer tuning reduces the size of buffer 0 once the indexes are built.

Resource usage is another interesting aspect. Our second benchmark series using content
compression saved storage space (and IO), but the CPU load was slightly higher compared
to the runs without content compression. However, having more concurrent transactions may
change this pattern. The reduced buffer size demands (for a single data container) allowed
larger index sorts to be performed in memory, i.e., in our scenario short-term memory con-
sumers do indirectly benefit from content compression. As index sorts are rare events, the
memory limit for buffer pools may be lowered while other critical areas (e.g., lock space, con-
nection pool) are increased. Note, indexes are not carrying compressed content values, because
usually the content value is the key and needs to be ordered and comparable. Thus, space sav-
ings only originate from the database files. The specification for an index space limit for AI
needs to observe this, especially when this limit depends on the database size.

8.5 Conclusions

To get a more complete picture of database self-tuning, the effects of multiple tuning decisions,
made at the same time, have shown that index tuning and buffer tuning play well together and
do not lead to configuration thrashing. We have also shown that the tuning capabilities are in-
dependent of the database size, even in the case of several workload shifts. Furthermore, only
a couple of queries and tuning periods are required to quickly achieve a noticeable speed-up of
query processing. Adding more (self-)tuning such as content compression or lazy evaluation

185

Chapter 8 Interplay of Self-Tuning Components

led to improved query processing times. Although the usage of resources and tuning decisions
are different, the performance was always improved. These results give evidence that individ-
ual tuning decisions of distinct tuning components can be beneficial for each other, although
no explicit link between them exists.

The obvious next step for self-tuning, we derived out of our experiments, is to make these
links explicit and exploit them. In the outlook chapter, we will discuss some ideas how to
achieve this.

186

Chapter 9

Conclusions and Outlook

This chapter concludes our work by giving a short summary of the problems addressed and
the techniques we developed to solve them. Finally, we give some insight into potential future
research directions that were either untouched by this work or arose out of it.

9.1 Conclusions

This work presented self-tuning concepts for native XDBMSs. We introduced the research
challenges in the area of database self-tuning, presented current achievements for self-tuning in
the relational world, and took the next step towards tailored self-tuning concepts for XDBMSs.

Various existing concepts for self-tuning have been considered when we created our novel
approaches for XML-related self-tuning. Specifics of native XDBMSs such as the query lan-
guages, the storage model, and the APIs have been considered, when we developed tailored
(self-)tuning mechanisms for the entire XDBMS stack. Fortunately, having our own proto-
type XTC, it was possible to implement and evaluate all of the techniques, developed in the
course of this thesis, into a full-fledged XDBMS, while taking the MAPE paradigm for online
self-tuning as template.

By following the layered architecture of a DBMS, from the bottom layers of XML storage
and buffer management to the top layer of query processing, we identified bottlenecks and
(self-)tuning options in almost all layers.

First, we examined the buffer management, which is actually not XML-specific, but requires
efficient fine-tuning to cope with (frequently) changing load. We have shown that state-of-
the-art techniques to predict buffer performance are not sufficient to correctly decide buffer
resizing. Our hotset simulation is a lightweight extension, applicable for many existing re-
placement algorithms, that considerably improves the forecast accuracy, especially in case of
discontinuous buffer scaling. Together with the dynamic management of buffer pools, fast and
cheap adjustments of the buffer configuration become possible. Our benchmarks have proven
that the overhead for buffer self-tuning always pays off. However, complex replacement algo-
rithms such as LRU-k are unfavorable for the hotset simulation, although the achieved forecast
accuracy is very good. Furthermore, our results have shown that the combination of multiple
buffer pools, with individual replacement decisions such as the existing SBPX approach, may
result in low forecast accuracy for buffer upsizing.

When it comes to XML storage there are several performance-critical aspects like data trans-
fer to the server, data transformation into an internal representation, and access primitives. We

187

Chapter 9 Conclusions and Outlook

developed specific XML storage concepts that make use of structural and content compres-
sion techniques. Based on our path synopsis, we designed a novel XML mapping approach
– elementless storage. The path synopsis is also used to apply XML similarity measures dur-
ing data placement decisions as well as to support indexing, statistics management, and query
processing. Eventually, we have demonstrated that our native XML storage concepts perfectly
serve for fast navigational access and scan-based access. The use of B-tree, vocabulary, and
path synopsis makes XML storage very efficient in terms of space consumption and concur-
rent access. Furthermore, we have shown that the efficiency of content compression depends
on the compressor and the XML data. Indeed, we developed character-based and wordbook-
based compressors, because existing XML content compressors do not support query process-
ing through fine-grained access and manipulations. Hence, content compression is regarded
as an optional storage feature. Although not all configuration parameters of a native XDBMS
store can be tuned autonomously, we have shown that, at least for some of them, self-tuning
delivers convincing results.

Query processing performance is obviously as critical as storage in XDBMSs. Typically,
a cost-based query optimizer is used to find the cheapest QEP. Especially, document access
can drastically be sped up by having adequate indexes instead. To deliver versatile query
processing support, we developed a unique setup of index options for XDBMSs. Most of the
index flexibility is achieved through the use of our elementless storage model. However, this
variety of index use also increases the already-hard-to-solve ISP.

Indexing has to observe many aspects. Besides query support, indexes require maintenance
in case of modifications causing additional overhead to query processing. Often, a system has
space limitations, which may prohibit simply creating all useful indexes. The cost and benefit
of indexes need to be permanently tracked. Our so-called AI framework is a fully server-
integrated index tuning approach for native XDBMSs. We have shown how to exploit query
plans and the query optimizer to account usage, benefit, and cost statistics for index candi-
dates as well as existing indexes. Using a lightweight “what-if” mode of query processing,
we generated and used virtual indexes during the search for the best QEP. The AI framework
observes space restrictions and manages the index configuration by creating and dropping in-
dexes automatically. Further XML-specific aspects such as index containment, overlapping,
and substitution have been addressed in our work. Consequently, the increased complexity of
XML index tuning can only be handled by autonomous tool support such as our AI framework.

The effectiveness of individual self-tuning techniques is successfully demonstrated with
benchmarks and tailored workloads. However, important for their usability within a DBMS
is their interplay. In a special scenario, we analyzed the effects of applying our index and
buffer self-tuning techniques as well as additional content compression at the same time. The
results have successfully proven that both of them – improvement of query performance and
fast convergence of a stable configuration – were achieved. The self-tuning mechanisms also
coped with multiple workload shifts and varying database sizes.

With the help of extensive experiments, we have shown that self-tuning of an XDBMS is
possible, but often requires XML-specific consideration. The focus of self-tuning techniques
is to deliver fast and cheap mechanisms that are capable to autonomously improve DBMS
performance. That means, the DB administrator is relieved of the burden doing configuration

188

9.2 Outlook

changes online for a confusing large number of options. It is still questionable, whether even
a skilled administrator is capable of performing similar tuning results with the same reaction
time and quality.

The research of self-tuning databases is still an active and important topic. Of course, this
thesis could not cover all aspects of self-tuning, let alone XDBMS self-tuning. Therefore, we
provide the following ideas for future research in this field.

9.2 Outlook

In this work, we examined certain DBMS areas related to native XML processing. We identi-
fied self-tuning options and presented solutions for them. But there is always room for further
research. Aside from the specific open problems mentioned in the individual chapters, we
briefly describe those ideas we identified as good candidates for future research.

9.2.1 Determine Simulation Parameters

For now, some simulation parameters of our self-tuning algorithms are pre-specified. For in-
stance, the AI framework uses a fixed number of query plans to inspect or buffer tuning needs
initial sizes for upsize and downsize simulations. Some thresholds of our simulation-based
algorithms are given by the user through a configuration file.

To achieve sophisticated self-tuning, it is necessary to avoid as many pre-specified parame-
ters as possible. The open questions are: (1) How to learn them faster? (2) How to determine
good starting values for them? and (3) Can those parameters be removed?

Taking a step back and reconsidering the simulation approach leads to the following idea.
Actually, the “iterative” style of comparing simulated configurations with the current one does
not only require multiple simulation rounds, but may also end up in a local optimum. This,
however, depends on the simulation parameters. The research challenge is to find the ideal
configuration with the minimal search effort, i.e., number of simulations. Let us give some
more detailed examples:

Ideal Buffer Pool Configuration

An ideal memory distribution for buffer pools may be possible after a single simulation or anal-
ysis interval. Even the performance of unknown (i.e., not yet simulated) buffer sizes may be
evaluated (i.e., estimated or calculated), which is useful to determine a fine-grained buffer scal-
ing function. Having such a function for each buffer pool requires the solution of an (optional
linearized) system of equations to calculate the ideal memory distribution.

Ideal Parameters for Index Self-Tuning

For many parameters (or thresholds) used by the AI framework, the question is whether changes
of them improve quality or decrease overhead. Usually, both goals are contradictory. An ideal
“balance” of those parameters is desirable, which can be regarded as pareto optimum (cf. Sec-
tion 3.2.6). For instance, the number of query plans that should be investigated for a single

189

Chapter 9 Conclusions and Outlook

query can be raised, but, at the same time, the number of index candidates may be unneces-
sarily increased. Moreover, we do not exploit plan differences in terms of cost estimation and
index use. It may be beneficial to specify the number of plans to be inspected dependent on
their differences. Parameters controlling the aggressiveness of AI such as the cost-benefit ratio
of virtual indexes or the query runtime threshold should be aligned to each other.

Ideal Cost Parameters

Our current approach of cost parameter adaptation is straightforward. We take the difference of
expected costs and measured costs to adapt the cost models. The next step is to take workload
shifts, peak loads, and concurrency into account. This may help to prevent that outliers (e.g.,
peak situation) lead to disproportional parameter adjustments. The query planning cost model,
index cost model for index use, maintenance, and materialization, as well as the buffer IO cost
model may deliver better estimation quality when tuned for stability – at least in the average
case.

9.2.2 Index Self-Tuning

The field of index self-tuning still offers a lot of challenges, especially in the world of XML
indexing. In contrast, our approach of benefit/usage accounting may be brought to the relational
world, too. The following two aspects are interesting research challenges.

Index Dependencies

There is some work for relational index tuning that takes index dependencies into account. The
question is whether dependencies in XML indexing are different due to XML index character-
istics such as overlapping, containment, and typing. In the relational world, the choice between
index application and table scan is often “boolean”. We have shown that XML indexing often
provides various indexing alternatives for the same query, which makes dependency modeling
even harder. A first step we made to tackle this problem is the option to inspect multiple query
plans instead of only the cheapest one.

Incremental Indexing

Today, research on incremental indexing, often called database cracking or adaptive merg-
ing [IMKG11], incrementally refines indexes. That is, only database partitions addressed by
queries were actually indexed. Furthermore, indexing performance may benefit from delayed
sorting and merging of those partitions. Anyway, the XML world already has similar ap-
proaches for structural indexes such as APEX or D(k)-Index. The open issues are to investigate
content carrying indexes and to analyze if partitioning of XML documents is possible. Note,
our approach to optimize candidate and virtual indexes is doing a kind of incremental indexing
based on PCR sets.

190

9.2 Outlook

9.2.3 Modern Hardware

To take full advantage of new hardware developments, self-tuning has not only to consider
the “size” (i.e., number of CPUs, size of main memory and storage), but also the structure
of the hardware architecture. For instance, communication is an important aspect, even be-
tween certain CPU cores and caches. Tailored algorithms for computational tasks become
more and more available. Thus, self-tuning may select and deploy algorithms dependent on
the load and available hardware. The trend for new volatile and non-volatile storage technolo-
gies should be exploited by self-tuning. On the one side, the bandwidth and IO rates within
the memory hierarchy are permanently changing. On the other side, affordable capacities,
volatility aspects, and unbalanced IO costs increase the complexity finding a suitable memory
setup. Especially flash memory is a promising technology for database use, as we have shown
in [SHKR08, SOH09, HSOB09]. But also multi-(core/node), cloud-based, and main-memory
architectures are hot hardware trends that need to be covered by the self-tuning community. Be-
sides individual query or workload tuning, management of those environments benefits from
self-tuning, too.

9.2.4 Next Generation of Tuning Goals

Database tuning mainly focuses on transaction throughput and query response times. Driven by
another major trend – green computing –, energy consumption is becoming a hot topic. From
hardware selection (e.g., solid-state drives instead of hard disks) to algorithmic adjustments,
self-tuning may become energy-aware. This may require to extend the query optimizer and
its cost model to estimate energy consumption for a certain QEP. Through the use of energy-
efficient hardware components and algorithms, the DBMS performance may slow down, but, in
any case the overall efficiency (i.e., transactions per joule) may increase. Eventually, usability
is important so that the user should only prioritize certain tuning goals and verifying their
fulfillment.

9.2.5 Evaluation of Self-tuning

Several aspects of performance evaluation are challenging, especially, when self-tuning tech-
niques depend on varying conditions such as load or cost functions. But also different evalua-
tion platforms (i.e., DBMSs) prevent direct comparisons. Often the exact repeatability of ex-
periments is hard and slight variations have to be accepted. For instance, asynchronous tuning
jobs such as index tuning have a considerable impact on parallel running transactions. How-
ever, the research community mostly confines performance evaluations to single-user scenar-
ios. This ensures to get repeatable and explainable results. Yet, DBMSs are typically deployed
to multiuser environments containing concurrent transactions. Here, self-tuning techniques
increase the problem of performance analysis due to the problematic repeatability.

To find a suitable way of evaluating self-tuning techniques, a kind of self-tuning benchmark,
explicitly modeling workload shifts and changing resource capacities, is an interesting mission.
Such a benchmark may allow to compare the performance of different self-tuning techniques,

191

Chapter 9 Conclusions and Outlook

even if they are developed for different DBMSs. Interesting aspects of such a benchmark may
be how tuning goals are defined or stability requirements are fulfilled.

9.2.6 Towards a System Model

As soon as all tunable components of a DBMS have been made self-tunable, a holistic self-
tuning approach may become viable. Such an approach should be based on a system model
describing physical resources, monitoring spots and tuning knobs, component dependencies,
and their correlations. The model is used to estimate (or simulate) state changes, parameter
changes, and tuning impact.

In [WMHZ02], the authors recommend a model based on economic principles to allocate
resources in DBMSs. We adapted this idea and recommend to form functional groups [Sch09].
Functional groups help to create a hierarchical system model, where well-known tuning tech-
niques can be locally applied within a functional group, before their individual state (using
common metrics) is propagated to the system-wide and coarser component model. The result-
ing component model should also serve as visualization model, indicating data hot spots, data
flow, bottlenecks, and resource usage.

As our experiments in Chapter 8 advocate, making the links of self-tuning techniques ex-
plicit may lead to a transparent system model, which allows for a better estimation and eval-
uation of self-tuning. For instance, resource usage should be comparable between self-tuning
components. Thereby, expected gain-cost ratios (measured in time and resource use) are com-
parable, too. Because resources are limited, self-tuning may concentrate on the most promising
areas, i.e., delivering the best gain-cost ratios.

Finally, the consolidation of individual self-tuning components may result in a “100 % view”
of DBMS self-tuning enabling the application of the same self-tuning techniques on a DBMS-
wide level – self-tune the self-tuner.

192

Appendix A

Architectures of Native XDBMSs

Here, we give a brief overview of existing XDBMSs and their architectures. We want to show
that our tuning techniques are applicable to a wide range of systems, because almost all of
them use a similar layered or component architecture as our XTC system. Therefore, the basic
self-tuning components developed in this work can be integrated in these systems, too.

Lore

One of the first and perhaps the most influential work regarding native XDBMSs research is
Lore, the Lightweight Object REpository [MAG+97, QWG+96].

Lore’s architecture distinguishes between two major layers, namely the data engine for stor-
age and physical operators and query processing within the query compilation pipeline, as
shown in Figure A.1. The object manager is an OEM store1 for practical all kind of (Web)
objects. It is also responsible for caching. Lore’s IndexMgr supports various kinds of indexing
mechanisms for content and structure. Besides value indexes (Vindex), path indexes, and link
indexes (Lindex for parent pointers), it supports the probably most cited index structure for
XML – the DataGuide [GW97].

Query processing in Lore is similar to the compilation pipeline in XTC. Lore was the first
XDBMS applying basic optimization rules for query plans, although its language support is
restricted to Lorel – its own query language. However, updates to objects have been possible
from the beginning. Internal XML node labeling is simply based on integer values.

Tamino

One of the first commercial systems available was Tamino – Transaction Architecture for the
Management of Internet Objects [Sch01]. In Figure A.2, its most current architecture is shown.

The highlights of Tamino are its high-performance XML parser, native XML data store,
server extensions (X-Tension) for custom functionality, indexing, and a schema repository (data
map). Tamino supports many communication features, for instance, to map data to RDBMSs
and to call Web services or business level services. The central component X-Machine is re-
sponsible for XML parsing, XML object processing, query interpretation, and object composi-
tion, i.e., XML document storage, retrieval, and querying. Web server integration is employed
via X-Port and application programmers can use the X-Tension feature, essentially Tamino’s

1OEM - Object Exchange Model is designed for semi-structured data representing a labeled directed graph. No fixed
schema is required making the data (structure) self-describing based on its edges.

193

Appendix A Architectures of Native XDBMSs

Physical
storage

Object
manager

Data engine

Query
operators

Utilities
- DataGuide mgr
- Loader
- Index mgr

External data
manager

Parsing

Query compilation

Preprocessing
(Lorel to OQL)

Query
optimizer

Query plan
generator

queries

textual
interface

HTML GUI applications

API
Lore
system

results

non-query requests

Figure A.1: Lore architecture overview [MAG+97]

Data map

Internet (HTTP, WebDAV, SOAP)

Administration services Tamino manager

Core services

XQuery, XPath
cl

ie
n

ts
 (

b
ac

k
 o

ff
ic

e)
Query / Text
Retrieval service

XML parser +
query interpreter

Obj. processor
& Obj.
composer

X-Tension
service

XML Schema service

Native XML
data store

data/metadata/non-XML

XML, WML

Enabling services

Interactive
services

Application
programming

Integration
services

Schema
services

more...

Enterprise ed.
services

Web Services

External DB
services

XML business integration solutions + customer solutions

cl
ie

n
ts

 (
fr

o
n

t
o

ff
ic

e)

Figure A.2: Tamino architecture overview (source: www.softwareag.com)

variant of a stored-procedure language, to implement application functionality within the server
by working directly on its internal data model.

Metadata, DTDs, and XML transformation guidelines are stored within the data map, i.e.,
Tamino’s catalog. For query processing, structural and value indexes can be defined on ele-
ments and attributes.

194

www.softwareag.com

data

XML data

Data storage manager

L1

Query parser

Retrieval data flow

Loading data flow
Data manager

Index managerMetadata manager

Data parserQuery evaluatorQuery optimizer
physical plan

logical plan

XML query

Query output API

result

Shore

Figure A.3: TIMBER architecture overview [JAKC+02]

TIMBER

Developed at the University of Michigan, Timber was influenced by the Niagara system [JAKC+02]
and employs the TAX algebra [JLST02] to process bulks of hierarchical data in a set-at-a-time
manner. It furthermore has a node-oriented storage and makes extensive use of structural joins
for pattern matching. For simplicity, Timber physically represents attribute nodes and text
nodes as child nodes of their parent element instead of considering their different semantics.

Storage is based on Shore2 [CDF+94], which is responsible for disk management, caching,
and concurrency control. In Figure A.3, Timber’s architecture and data flow during query pro-
cessing is shown. All managers for XML data (Data Manager), index data (Index Manager),
and metadata (Metadata Manager) are build on Shore. As query languages, Timber supports
XQuery and Xupdate3. A notable feature of Timber is its labeling scheme using double values
to encode a node’s pre-order number, post-order number, and level, i.e., so-called (start, end,
level) labels. To reduce costly relabeling, Timber leaves gaps in the labeling scheme.

Natix

The layered architecture of Natix [FHK+02], shown in Figure A.4, is similar to that of XTC.
The storage layer contains a buffer manager that handles pages, which are grouped in segments.
These segments are then stored on disk. A new aspect in Natix is the representation of XML in

2SHORE – Scalable Heterogeneous Object REpository – is a persistent object system under development at the Univer-
sity of Wisconsin

3http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html (working draft since 2000)

195

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

Appendix A Architectures of Native XDBMSs

Figure A.4: Natix architecture overview [FHK+02]

so-called segments. Here, entire subtrees are stored together according to a given split matrix.
The split matrix is used to express application or user preferences regarding the clustering of
nodes. It specifies whether a node (type) is stored standalone, clustered, or within the same
record as its parent. So-called proxy nodes are used to reconnect the subtrees forming the full
document again.

Natix includes full-text index support and a new index structure called eXtended Access
Support Relation (XASR), which preserves some XPath relationships. Natix uses a depth-first
traversal to label XML nodes. Similar to the approach used by Timber, gaps are introduced to
better cope with updates.

Galax

The Galax system has its focus on query processing and does not provide index support or
any transactional features – it is more an XQuery compiler and processor than a full-fledged
XDBMS [FSC+03]. In research projects, Galax is often used for comparative evaluation due
to its focus on query processing. As the architecture shown in Figure A.5 illustrates, the mak-
ers of Galax emphasize on the XML processing pipeline. Thus, they used Objective Caml
for implementing Galax, because “its algebraic types and higher-order functions simplify the
symbolic manipulation that is central to the query transformation, analysis, and optimization”.

Although Galax operates navigation-based on the input documents, it is capable of handling
and validating XML Schema. Similar to XTC, queries are parsed into an AST before being
normalized into XQuery Core expressions.

Due to Galax’ main-memory representations of documents, optimizations are necessary to
process GB-sized documents as well. Basically, large documents can be projected into smaller
ones, so that Galax evaluates query-relevant paths beforehand and assembles a (smaller) pro-

196

Figure A.5: Architecture of Galax [FSC+03]

jected document.
Typing rules, query transformation, and evaluation patterns are implemented literally mak-

ing their correlations from definition to implementation easier.

OrientX

The OrientX system uses and adapted many ideas from existing XDBMSs such as Timber,
Natix, and Lore [XXM+06]. Its strength is the efficient schema-based storage, either the Clus-
tering Element-Based (CEB) or the Clustering Subtree-Based mapping. However, schema-
independent storage is supported as well, either Lore-like (element-based) or Natix-like (subtree-
based). In Figure A.6, the architecture is shown, which is following the five-layer reference
design.

At the bottom, the File Manager operates on files of fixed sizes such as 8 MB. On top, the
Storage Manager maps the physical fixed-size pages of 8 KB to logical pages. Two buffer
managers are employed in OrientX, one for pages using LRU replacement and one for records
caching tree structures. A uniform access to data manager, schema manager, and index man-
ager is realized by the Access Manager hiding underlying details.

The strong schema-dependency of OrientX controls (or sometimes also restricts) not only
data and queries but also updates, indexing, type checking, and user access. Physical storage
uses variable-length records carrying a unique object id and pointers to its parent record or
sibling records. Index capabilities are provided by a schema-guided path index named SUPEX.
Moreover, a histogram-based query optimizer called HISTOPER is developed within OrientX.

197

Appendix A Architectures of Native XDBMSs

Figure A.6: OrientX architecture [XXM+06]

198

Appendix B

Storage

B.1 Storage Gains for Elementless

These results extend the evaluation of our storage mappings from Section 5.10.2. In Figure B.1,
we show the gains of elementless storage for a typical reference set of large and individual
XML documents. In almost all cases, storage and reconstruction of documents is faster using
the elementless storage mapping. Only exceptional cases, such as the highly complex structure
of the treebank document, favor the full storage mapping for large individual documents.

B.2 Storage Self-Tuning Similarity Findings

Here, we continue the analysis of our similarity-based classification of XML documents from
Section 5.10.4. The cost and weight parameter selection for similarity-based classifications
can be used to control the degree of congruency required for adding new documents to existing
classes or documents. Therefore, we provide, based on the TPoX benchmark, more results for
alternative parameter configurations shown in Table B.1.

The following parameters and plots are equivalent to the results presented in Section 5.10.4
(denoted as moderate configuration), we only changed the parameter weights to evaluate other
typical configurations. The first configuration attribute shows the impact for raising the at-
tribute cost weight to 0.9 compared to the cost for an element modification. The results are
shown in Figure B.2. Matching costs are increased for document classes such as order and
security, because they typically require the addition of new attributes.

Table B.1: Alternative parameter configurations for structural similarity

Parameter Configurations
moderate attribute strict relaxed

Wordbook overlapp 0.7 0.7 0.9 0.1
Wordbook growth 0.5 0.5 0.2 0.9
Path synopsis overlapp 0.7 0.7 0.9 0.1
Path synopis growth 0.5 0.5 0.2 0.9
Attribute weight 0.5 0.9 0.5 0.5
Figure 5.21 B.2 B.3 B.4

199

Appendix B Storage

 1

 10

 100

 1000

12M 112M nasa lineitem treebank dblp psd7003 uniprot

full store
full reconstruct

elementless store
elementless reconstruct

time in s

(a) Storage and reconstruction times

-5

 0

 5

 10

 15

 20

 25

12M 112M nasa lineitem treebank dblp psd7003 uniprot

store gain elementless vs. full
reconstruct gain elementless vs. full

gain in %

(b) Gain elementless vs. full

Figure B.1: Storage and reconstruction figures comparing full and elementless storage mapping
(hardware configuration 2)

 0 5 10 15 20 25 30
TPoX (10,10,10) 0

 5
 10

 15
 20

 25
 30

(10,10,10)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

(a) TPoX documents (10x custacc/order/security) (b) TPoX documents (100x custacc/order/security)

Figure B.2: Similarity measurements and cost analysis for increased attribute costs

200

B.2 Storage Self-Tuning Similarity Findings

 0 5 10 15 20 25 30
TPoX (10,10,10) 0

 5
 10

 15
 20

 25
 30

(10,10,10)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

(a) TPoX documents (10x custacc/order/security) (b) TPoX documents (100x custacc/order/security)

Figure B.3: Similarity measurements and cost analysis for strict parameter selection

 0 5 10 15 20 25 30
TPoX (10,10,10) 0

 5
 10

 15
 20

 25
 30

(10,10,10)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

(a) TPoX documents (10x custacc/order/security) (b) TPoX documents (100x custacc/order/security)

Figure B.4: Similarity measurements and cost analysis for relaxed parameter selection

In a strict configuration, shown in Figure B.3, minimal growth (i.e., 20%) of path synopsis
and wordbook structures are allowed while a huge share of structural overlapping (i.e., 90%)
is required to match documents. Because fewer documents can be joined, especially from
different classes, the average cost value (i.e., z-axis value) increases dramatically.

The counterpart, a relaxed configuration, is presented in Figure B.4. Because maximal
growth (i.e., 90%) is allowed and only marginal overlap (i.e., 10%) enforced, all documents of
the same class are matched – indicated by the empty squares at z value 3.

201

Appendix B Storage

 0.1

 1

 10

 100

 1000

 10000

configuration 1 configuration 2 configuration 3

p
ro

ce
ss

in
g
 t

im
e

in
 s

(10,10,10) documents
(100,100,100) documents
(500,500,500) documents

Figure B.5: Similarity matching performance

B.3 Similarity Matching Performance

Matching performance is a crucial point for the applicability of similarity-based classification.
We used the same sets of documents as in Sections 5.10.4 and B.2. We only scaled the number
of documents for each TPoX class from 10 to 500, which resulted in 30× 30, 300× 300,
and 1500× 1500 comparisons. The results are shown in Figure B.5. During each run, all
documents were analyzed and cross-wise matched. Note, in a real DBMS, already existing
classes of documents are represented and matched only once for each new document. However,
we wanted to measure the overhead of document matching, which seems to be fairly small and
nearly independent of the hardware configuration. The results show that – as expected – only
the CPU power influences the processing time.

B.4 Storage Compression Gains

According to Section 5.9.3, we compared all content compression techniques for our set of
XML benchmark documents. The results in Figure B.6 and Figure B.7 show the space savings
dependent on the storage mapping. In both cases, the optimized wordbook compressor delivers
the best results, except for the treebank document. In contrast, the Huffman-based compressors
M1 (fixed), M2 (flexible choice), and M3 (selective encoding) deliver almost equal compres-
sion ratios, although M1 is marginally better.

Besides compression ratio, we also evaluated the runtime for our content compressors. The
results for hardware configurations 1 and 2 are given in Figure B.8 and Figure B.9, respec-
tively. Note, the time scale (y-axis) is logarithmic. Nevertheless, the results show that the more
complex the algorithm the more CPU processing, i.e., runtime, is required. Thus, the simple
Huffman encoding M1 is the fastest compressor, except for the small 12MB XMark document.
Furthermore, the optimized wordbook compressor is slightly slower, especially on hardware
configuration 1.

202

B.5 Alternative XML Text Compressors

 0

 20

 40

 60

 80

 100

12M 112M nasa lineitem treebank dblp psd7003 uniprot

si
ze

 i
n
 %

 o
f

p
la

in
 d

o
cu

m
en

t
no compression

M1
M2
M3

WB simlpe
WB opt

Figure B.6: Full storage mapping

 0

 20

 40

 60

 80

 100

12M 112M nasa lineitem treebank dblp psd7003 uniprot

si
ze

 i
n
 %

 o
f

p
la

in
 d

o
cu

m
en

t

no compression
M1
M2
M3

WB simlpe
WB opt

Figure B.7: Elementless storage mapping

Eventually, there seems to be a correlation between compression complexity and its gains.
The simple algorithms do not necessarily deliver best compression ratios but deliver often the
best runtimes. The hardware impact is negligible when selecting a compressor, but document
size and domain are important factors.

B.5 Alternative XML Text Compressors

There exists a plethora of XML-related compression approaches. However, we want to show
for some of the best performing compressors to what extent they are applicable for a native
XDBMS, especially, with regard to XTC’s already built-in compression techniques.

The XML text compressor XMill [LS00] is one of the first and probably the most influential
one. Unfortunately, it does not provide query processing capabilities on compressed docu-
ments, because XMill physically separates structure and content to achieve maximum com-
pression ratios without retaining homomorphism. The whole document (or chunk by chunk if
split into smaller parts) needs to be decompressed for each query and re-compressed in case of

203

Appendix B Storage

 1

 10

 100

 1000

12M 112M nasa lineitem treebank_e dblp psd7003 uniprot

ti
m

e
in

 s
no compression

M1
M2
M3

WB simple
WB opt

Figure B.8: Hardware configuration 1

 1

 10

 100

 1000

12M 112M nasa lineitem treebank_e dblp psd7003 uniprot

ti
m

e
in

 s

no compression
M1
M2
M3

WB simple
WB opt

Figure B.9: Hardware configuration 2

modifications, making XMill unacceptable for native XDBMSs.
Another compressor XGRIND [TH02] supports certain query types but provides a lower

compression ratio than XMill. XGRIND strictly requires a DTD to enable data-type-dependent
compressions. This prohibits its usage in an XDBMS when document modifications cause
schema changes. The XPRESS [MPC03] compressor is not applicable within transactional
query processing, because it uses a fixed element-frequency-based encoding for paths (reverse
arithmetic encoding). In addition, XPRESS retains document homomorphism and uses a “type
inference engine” to adjust the compression method to the content. This kind of compression
is also fixed, which causes complete document re-compression cycles in case of document
modifications. Both compressors do not support set-based query evaluation as required for
structural joins and top-down query evaluation.

Many XML compressors, developed throughout the recent years, either require complete
decompressions at the document level or provide limited query support without updates at
all. Therefore, in the context of XTC, we developed our own content compression techniques
working on a node-oriented basis.

204

B.6 Index Definitions for Sample Query Evaluation Plans

B.6 Index Definitions for Sample Query Evaluation Plans

The following indexes are used in Section 6.4 (SPLID is a synonym for Stable Path Label
IDentifier, which corresponds to DeweyID in XTC):

(1) ON 112M CREATE CONTENT INDEX FOR ATTRIBUTE CONTENT is internally translated to:

ON 112M CREATE CAS INDEX PATHS //@* OF TYPE STRING WITH SPLID CLUSTERING

(2) ON 112M CREATE CONTENT INDEX is internally translated to:

ON 112M CREATE CAS INDEX PATHS //@*,//* OF TYPE STRING WITH SPLID CLUSTERING

(3) ON 112M CREATE ELEMENT INDEX (INCLUDING people,person,name) WITH SPLID CLUSTERING

(4) ON 112M CREATE ELEMENT INDEX WITH SPLID CLUSTERING

(5) ON 112M CREATE ELEMENT INDEX (INCLUDING name) WITH SPLID CLUSTERING

(6) ON 112M CREATE PATH INDEX PATHS /site/people/person WITH SPLID CLUSTERING

(7) ON 112M CREATE PATH INDEX PATHS //person WITH SPLID CLUSTERING

(8) ON 112M CREATE CAS INDEX PATHS //@id OF TYPE STRING WITH SPLID CLUSTERING

(9) ON 112M CREATE CAS INDEX PATHS //* OF TYPE STRING WITH SPLID CLUSTERING

A detailed description for the create index command can be found by using “help on” in the
command line processor of XTC.

205

Appendix B Storage

206

Appendix C

Indexing

C.1 Excerpt of AI Metadata in XTC

The following listing exemplifies the AI extensions (<aistats> element and the <ai> subtree)
of the metadata document “ master.xml”.

1<? xml v e r s i o n ="1.0" e n c o d i n g ="utf-8"?>
2<x t c>
3 <d i r name="/">
4 <doc i d ="2" name="_master.xml" c o l l e c t i o n ="false" p a t h S y n o p s i s ="3">
5 . . .
6 </ doc>
7 <doc i d ="16" name="/auction.xml" c o l l e c t i o n ="false" p a t h S y n o p s i s ="17">
8 <i n d e x e s>
9 <i n d e x t y p e ="ELEMENT" keyType="STRING" i d ="13340" c l u s t e r i n g ="SPLID" c o l l e c t i o n I D ="16"

>
10 <i n c l u d i n g> 70@SPLID, 7 1@SPLID, 3 @SPLID , . . . </ i n c l u d i n g>
11 <s t a t i s t i c s s i z e ="2416640" c a r d ="204733" h e i g h t ="3" l e a v e s ="295" . . . />
12 <a i s t a t s b e n e f i t ="11000086" a v g B e n e f i t ="95944" c o s t ="212395" s e q u e n c e ="false"

qgmusage="202" p a l u s a g e ="0" i n s e r t s ="0" u p d a t e s ="0" d e l e t e s ="0" s i z e c h a n g e ="0"
r e a d s ="1893268" q u e r i e s ="114" />

13 </ i n d e x>
14 <i n d e x t y p e ="CAS" keyType="STRING" i d ="13600" c l u s t e r i n g ="SPLID" c o l l e c t i o n I D ="16"

i s A t t r i b u t e I n d e x ="false">
15 <p a t h> / s i t e / c l o s e d a u c t i o n s / c l o s e d a u c t i o n / a n n o t a t i o n / d e s c r i p t i o n / p a r l i s t / l i s t i t e m /

p a r l i s t / l i s t i t e m / t e x t / emph / keyword </ p a t h>
16 <s t a t i s t i c s s i z e ="8192" c a r d . . . minKey="a..." maxKey="y..." />
17 <a i s t a t s b e n e f i t ="680298" a v g B e n e f i t ="340149" c o s t ="30521" s e q u e n c e ="false" qgmusage

="0" p a l u s a g e ="0" i n s e r t s ="20" u p d a t e s ="10" d e l e t e s ="10" s i z e c h a n g e ="424"
r e a d s ="6" q u e r i e s ="2" />

18 </ i n d e x>
19 <i n d e x t y p e ="PATH" keyType="STRING" i d ="13458" . . . >
20 <p a t h> / / a n n o t a t i o n </ p a t h>
21 <s t a t i s t i c s s i z e ="262144" c a r d ="21750" h e i g h t ="2" l e a v e s ="32" . . . />
22 <a i s t a t s b e n e f i t ="79950" a v g B e n e f i t ="19987" c o s t ="32357" s e q u e n c e ="false" qgmusage="

0" p a l u s a g e ="0" i n s e r t s ="0" u p d a t e s ="0" d e l e t e s ="0" s i z e c h a n g e ="0" r e a d s ="
21750" q u e r i e s ="3" />

23 </ i n d e x>
24 . . .
25 </ i n d e x e s>
26 <a i>
27 <i n d e x t y p e ="PATH" keyType="STRING" i d ="-1" c l u s t e r i n g ="SPLID">
28 <p a t h> / / i t em </ p a t h>
29 <s t a t i s t i c s s i z e ="238190" c a r d ="21750" h e i g h t ="2" l e a v e s ="29" . . . />
30 <a i s t a t s b e n e f i t ="147561" c o s t ="32357" s e q u e n c e ="false" qgmusage="0" p a l u s a g e ="0" />
31 <s t a t i s t i c s s i z e ="24576" c a r d ="2175" h e i g h t ="2" l e a v e s ="5" . . . />
32 <a i s t a t s b e n e f i t ="45" c o s t ="4" s e q u e n c e ="false" qgmusage="0" p a l u s a g e ="0" />
33 </ i n d e x>
34 <i n d e x t y p e ="PATH" keyType="STRING" i d ="-2" c l u s t e r i n g ="SPLID">
35 <p a t h> / / c l o s e d a u c t i o n s / c l o s e d a u c t i o n </ p a t h>
36 <s t a t i s t i c s s i z e ="106440" c a r d ="9750" h e i g h t ="2" l e a v e s ="13" . . . />
37 <a i s t a t s b e n e f i t ="10669" c o s t ="31179" s e q u e n c e ="true" qgmusage="42" p a l u s a g e ="0" />
38 </ i n d e x>

207

Appendix C Indexing

39 . . .
40 </ a i>
41 <d o c u m e n t S t a t i s t i c s summaryPage="1310" />
42 <s t a t i s t i c s s i z e ="101892096" c a r d ="1568362" h e i g h t ="3" l e a v e s ="12415" . . . />
43 </ doc>
44 </ d i r>
45</ x t c>

C.2 Query Graph Traversal Rules

Brief overview of query graph traversal (QGT) rules for index candidate generation in XTC:

C.2.1 Access Operator

This operator represents a physical XML node access including node name and node type
information. When no appropriate index is available, typically a document scan is necessary.
Furthermore, during query planning, this operator is configured to access a single node (one-
time) or a sequence of nodes (multiple times).

QGT Rule 1 Each QG node of type access leads to a direct candidate for element index or
attribute index. Depending on the access type (node or sequence), the usage counter is adjusted
accordingly.

QGT Rule 2 If a predicate exists that consists of a binary operator between the operator’s
value and an atomic value, index candidates for both CAS index and content index are gener-
ated. Additional schema information is used to infer the index type.

Further path steps on top of the access operator may be used to assemble entire paths for
structural indexes.

QGT Rule 3 Multiple axis steps are composed to generate a path index candidate for access
operators without predicates. For access operators with predicates, more specific CAS index
candidates are generated as well.

C.2.2 Join Operator

The join operator in the XQGM of XTC is used to represent a join, but also to represent a
simple projection or a merge operator. Thus, a join operator may have up to two inputs.

QGT Rule 4 If only one input is present, index candidates can be derived directly by exploit-
ing the operator’s step and/or predicate (e.g., a path, CAS, content, or element index).

QGT Rule 5 If two inputs are present of which one uses the context of the other one (i.e., a
correlation to a descendant path step), their paths can be combined.

208

C.3 AI Optimization Rules

QGT Rule 6 If two inputs are present and the join predicate is an axis test, a path index
candidate is generated by concatenation of the two input paths.

During the QGT, the output of a projection can be used for new index candidates only if the
projected value is still a valid path expression and not a scalar value.

C.2.3 Join Operator with Sort

The optional sort flag allows for duplicate elimination and sorting of at least one operator input.

QGT Rule 7 If at least one input is set to be sorted, QGT Rule 5 is not applicable.

C.3 AI Optimization Rules

Optimization Rule 1 The path expression of a candidate index is validated using the path
synopsis. A non-existing path causes the candidate to be dropped.

Optimization Rule 2 Remove candidates that overlap with existing user-defined indexes.

Because user-defined indexes have a higher priority, equivalent candidate indexes are dropped.
Only an element index candidate is reduced by removing element identifiers that are covered
by existing (user-defined) element indexes.

Optimization Rule 3 Merge candidates with existing virtual indexes or auto indexes.

Virtual indexes can be merged, i.e., new path expressions or PCRs can be added, although this
is only done for element and content indexes. An already materialized index that is controlled
by the AI framework may gets the statistics merged, at least for the overlapping parts.

Optimization Rule 4 Multiple index candidates of type element or content can be merged.

Optimization Rule 5 Remove candidates that are not chosen by the optimizer.

This rule ensures that only those index candidates are kept, the optimizer would select. The AI
framework allows to evaluate the top n plans for index selection and, therefore, index candi-
dates not occurring in the cheapest plan are kept, too. Furthermore, the use counter of candidate
indexes during optimization indicates their frequency of identification, which is used to let fre-
quent candidates survive, too.

Optimization Rule 6 Multiple path indexes sharing a common (ancestor) path prefix can be
generalized to a path index for that ancestor path.

For instance, the two path expressions //bib/book/title and //bib/book/author may be general-
ized to //bib/book. Regarding processing costs and storage space consumption, this generalized
index may be beneficial for answering both path expressions.

209

Appendix C Indexing

Optimization Rule 7 Virtual indexes are removed if they can be substituted by cheaper in-
dexes supporting the same use.

XML indexing allows to index the same XML nodes multiple times, even in indexes of dif-
ferent types. Therefore, we identify index-type-crossing overlaps and remove expensive index
candidates.

C.4 TPoX Update Query Integration

According to the TPoX1 benchmark specification, we implemented a workload driver for XTC.
Our implementation enables the TPoX benchmark suite to run on top of XTC. We provide sup-
port for multiple parallel connections and support all transaction templates. The only limitation
is the missing support for prepared statements, which, however, does not limit the application
of the benchmark. All performance metrics are collected by the benchmark suite. Because
queries are based on templates, we emulate prepared statements by our stored procedures.

Let us give an example. For the TPoX update query 3 “price change”, shown in Listing C.1,
the corresponding implementation in XTC is shown in Listing C.2

Listing C.1: Update query 3 in XQuery (TPoX)
1 -- The price of a security changes [simple value update]

2 -- For a given security symbol , replace the values of the following elements

3 -- in the corresponding security document: LastTrade , Ask , Bid.

4 UPDATE security

5 SET sdoc = XMLQUERY(’declare default element namespace "http ://tpox -

6 benchmark.com/security ";

7 transform

8 copy $secdoc := $doc

9 modify

10 let $price := $secdoc/Security/Price

11 let $newlasttrade := $price/PriceToday/Open *0.95

12 return (

13 do replace value of

14 $price/LastTrade with $newlasttrade ,

15 do replace value of

16 $price/Ask with $newlasttrade *1.01,

17 do replace value of

18 $price/Bid with $newlasttrade *0.99)

19 return $secdoc ’

20 PASSING sdoc AS "doc")

21 WHERE XMLEXISTS

22 (’declare default element namespace "http ://tpox -benchmark.com/security ";

23 $sdoc/Security[Symbol =" $symbol "]’ PASSING sdoc AS "sdoc"

24)

The XTC procedure first calculates the newLastTrade price (lines 2–3). Then the subtree to
be updated is resolved (lines 5–6) and iterated (lines 7–18). During the child iterations, DOM
operations are used to update the corresponding values.

1http://tpox.svn.sourceforge.net/viewvc/*checkout*/tpox/TPoX/documentation/TPoX_
BenchmarkProposal_v2.0.pdf

210

http://tpox.svn.sourceforge.net/viewvc/*checkout*/tpox/TPoX/documentation/TPoX_BenchmarkProposal_v2.0.pdf
http://tpox.svn.sourceforge.net/viewvc/*checkout*/tpox/TPoX/documentation/TPoX_BenchmarkProposal_v2.0.pdf

C.4 TPoX Update Query Integration

Listing C.2: Update query 3 in XTC
1 security(tpoxCollection tp , String symbol) {

2 String query = "doc (\"%s\")/Security[Symbol =\"%s\"]/ Price/PriceToday/Open *0.95";

3 XQueryResult result = executeXQuery(String.format(query , tp , symbol));

4 double newLastTrade = result.getDouble ();

5 query = "doc (\"%s\")/Security[Symbol =\"%s\"]/ Price";

6 result = executeXQuery(String.format(query , tp , symbol));

7 List <Node > nodes = result.getNodeList ();

8 for(Node node : nodes) {

9 Stream <Node > children = node.getChildren ();

10 while(children.hasNext ()) {

11 Node child = children.next();

12 if (child.getName ().equals("LastTrade"))

13 child.setValue(String.valueOf(newLastTrade));

14 else if (child.getName ().equals("Ask"))

15 child.setValue(String.valueOf(newLastTrade *1.01));

16 else if (child.getName ().equals("Bid"))

17 child.setValue(String.valueOf(newLastTrade *0.99));

18 }

19 children.close();

20 } }

Using a mixture of XQuery statements, node-oriented DOM operations, and subtree-oriented
operations (i.e., delete, insert, scan), all TPoX benchmark queries can be processed in XTC.

211

Appendix C Indexing

212

Bibliography

[ABG10] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. The pq-gram distance
between ordered labeled trees. ACM Trans. Database Syst., 35(1):1–36, 2010.

[Abi97] Serge Abiteboul. Querying Semi-Structured Data. In Proc. ICDT, pages 1–18,
1997.

[ACN06] Sanjay Agrawal, Eric Chu, and Vivek Narasayya. Automatic physical design
tuning: workload as a sequence. In Proc. SIGMOD, pages 683–694, 2006.

[AHK+04] A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone, G. Lohman, V. Markl, I. Popi-
vanov, and V. Raman. Automated statistics collection in DB2 UDB. In Proc.
VLDB, pages 1158–1169, 2004.

[AKJK+02] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M. Patel, Divesh Sri-
vastava, and Yuqing Wu. Structural Joins: A Primitive for Efficient XML Query
Pattern Matching. In Proc. ICDE, pages 141–152, 2002.

[AMFH08] José de Aguiar Moraes Filho and Theo Härder. EXsum: an XML summarization
framework. In Proc. IDEAS, pages 139–148, 2008.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason Mchugh, Jennifer Widom, and Janet
Wiener. The Lorel Query Language for Semistructured Data. International Jour-
nal on Digital Libraries, 1:68–88, 1997.

[AYBB+08] Sihem Amer-Yahia, Chavdar Botev, Stephen Buxton, Pat Case, Jochen Do-
erre, Mary Holstege, Jim Melton, and Microsoft Jayavel Shanmugasundaram
Michael Rys. XQuery Update Facility 1.0. W3C Candidate Recommendation.
http://www.w3.org/TR/xquery-update-10/, 2008.

[Bac09] Charles W. Bachman. The Origin of the Integrated Data Store (IDS): The First
Direct-Access DBMS. IEEE Ann. Hist. Comput., 31:42–54, October 2009.

[BBC+07] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez, M. Kay, J. Robie, and
J Simon. XML Path Language (XPath) 2.0. W3C Recommendation. http:
//www.w3.org/TR/xpath, 2007.

[BBON06] Andrey Balmin, Kevin S. Beyer, Fatma Özcan, and Matthias Nicola. On the path
to efficient XML queries. In Proc. VLDB, pages 1117–1128, 2006.

[BC05] Nicolas Bruno and Surajit Chaudhuri. Automatic physical database tuning: a
relaxation-based approach. In Proc. SIGMOD, pages 227–238, 2005.

[BC07] Nicolas Bruno and Surajit Chaudhuri. Physical design refinement: The merge-
reduce approach. ACM Trans. Database Syst., 32, November 2007.

[BC08] Nicolas Bruno and Surajit Chaudhuri. Constrained physical design tuning. Proc.
VLDB Endow., 1(1):4–15, 2008.

213

http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Bibliography

[BCF+07] S. Boag, D. Chamberlin, M. Fernanadez, D. Florescu, J. Robie, and J. Simon.
XQuery 1.0: An XML Query Language. W3C Recommendation. http://www.
w3.org/TR/xquery, 2007.

[BCJ+05] Kevin Beyer, Roberta J. Cochrane, Vanja Josifovski, Jim Kleewein, George
Lapis, Guy Lohman, Bob Lyle, Fatma Özcan, Hamid Pirahesh, Normen See-
mann, Tuong Truong, Bert Van der Linden, Brian Vickery, and Chun Zhang.
System RX: one part relational, one part XML. In Proc. SIGMOD, pages 347–
358, 2005.

[BCL93] Kurt P. Brown, Michael J. Carey, and Miron Livny. Managing Memory to Meet
Multiclass Workload Response Time Goals. In Proc. VLDB, pages 328–341,
1993.

[BCL96] Kurt P. Brown, Michael J. Carey, and Miron Livny. Goal-oriented buffer man-
agement revisited. In Proc. SIGMOD, pages 353–364, 1996.

[Bel66] L. A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Syst. J., 5:78–101, June 1966.

[BFH+02] Philip Bohannon, Juliana Freire, Jayant R. Haritsa, Prasan Roy, and Jérôme
Siméon. LegoDB: customizing relational storage for XML documents. In Proc.
VLDB, pages 1091–1094, 2002.

[BGJM04] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki. An evaluation of binary
XML encoding optimizations for fast stream based XML processing. In Proc.
WWW, pages 345–354, 2004.

[BGvK+06] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rittinger,
and Jens Teubner. MonetDB/XQuery: a fast XQuery processor powered by a
relational engine. In Proc. SIGMOD, pages 479–490, 2006.

[Bil05] Philip Bille. A survey on tree edit distance and related problems. Theor. Comput.
Sci., 337(1-3):217–239, 2005.

[BKKM00] Eepan Banerjee, Vishu Krishnamurthy, Muralidhar Krishnaprasad, and Ravi
Murthy. Oracle8i - The XML Enabled Data Management System. In Proc.
ICDE, pages 561–568, 2000.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal
XML pattern matching. In Proc. SIGMOD, pages 310–321, 2002.

[BM70] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of
Large Ordered Indexes. In SIGFIDET Workshop, pages 107–141, 1970.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of
Large Ordered Indices. Acta Informatica, (1):173–189, 1972.

[BM04] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with Adaptive Replace-
ment. In Proceedings of the 3rd USENIX Conference on File and Storage Tech-
nologies, pages 187–200, 2004.

214

http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery

Bibliography

[BMM+04] Dharini Balasubramaniam, Ron Morrison, Kath Mickan, Graham Kirby, Brian
Warboys, Ian Robertson, Bob Snowdon, R. Mark Greenwood, and Wykeen Seet.
Support for feedback and change in self-adaptive systems. In Proceedings of the
1st ACM SIGSOFT workshop on Self-managed systems (WOSS), pages 18–22,
2004.

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Comput. Surv., 35:268–308,
September 2003.

[BR04] Timo Böhme and Erhard Rahm. Supporting Efficient Streaming and Insertion of
XML Data in RDBMS. In DIWeb, pages 70–81, 2004.

[BS11] Sebastian Bächle and Karsten Schmidt. Lightweight Performance Forecasts for
Buffer Algorithms. In Proc. BTW, pages 147–166, 2011.

[CC03] Zhimin Chen and C Zhimin Chen. From Tree Patterns to Generalized Tree Pat-
terns: On Efficient Evaluation of XQuery. In Proc. VLDB, pages 237–248, 2003.

[CDF+94] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall, Mark L.
McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon, C. K.
Tan, Odysseas G. Tsatalos, Seth J. White, and Michael J. Zwilling. Shoring up
persistent applications. In Proc. SIGMOD, pages 383–394, 1994.

[CGJ97] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms
for bin packing: a survey, pages 46–93. PWS Publishing Co., Boston, MA, USA,
1997.

[CKM02] Edith Cohen, Haim Kaplan, and Tova Milo. Labeling dynamic XML trees. In
Proc. PODS, pages 271–281, 2002.

[CLL05] Ting Chen, Jiaheng Lu, and Tok Wang Ling. On boosting holism in XML twig
pattern matching using structural indexing techniques. In Proc. SIGMOD, pages
455–466, 2005.

[CLO03] Qun Chen, Andrew Lim, and Kian Win Ong. D(k)-index: an adaptive structural
summary for graph-structured data. In Proc. SIGMOD, pages 134–144, 2003.

[CLT+06] Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung, Divyakant
Agrawal, and K. Selçuk Candan. Twig2Stack: bottom-up processing of
generalized-tree-pattern queries over XML documents. In Proc. VLDB, pages
283–294, 2006.

[CMB+09] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A.
Ross, and Christian A. Lang. An object placement advisor for db2 using solid
state storage. Proc. VLDB Endow., 2(2):1318–1329, 2009.

[CMS02] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: an adaptive path
index for XML data. In Proc. SIGMOD, pages 121–132, 2002.

[CN97] Surajit Chaudhuri and Vivek R. Narasayya. An Efficient Cost-Driven Index Se-
lection Tool for Microsoft SQL Server. In Proc. VLDB, pages 146–155, 1997.

[CN98] Surajit Chaudhuri and Vivek R. Narasayya. AutoAdmin ’What-if’ Index Analy-
sis Utility. In Proc. SIGMOD, pages 367–378, 1998.

215

Bibliography

[CN01] Surajit Chaudhuri and Vivek Narasayya. Automating Statistics Management for
Query Optimizers. IEEE Trans. on Knowl. and Data Eng., 13(1):7–20, 2001.

[CN07] Surajit Chaudhuri and Vivek Narasayya. Self-tuning database systems: a decade
of progress. In Proc. VLDB, pages 3–14, 2007.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[Coe00] Carlos A. Coello. An updated survey of GA-based multiobjective optimization
techniques. ACM Comput. Surv., 32:109–143, June 2000.

[Com78] Douglas Comer. The Difficulty of Optimum Index Selection. ACM Trans.
Database Syst., 3(4):440–445, 1978.

[COWL02] Jamieson M. Cobleigh, Leon J. Osterweil, Alexander Wise, and Barbara Staudt
Lerner. Containment units: a hierarchically composable architecture for adaptive
systems. SIGSOFT Softw. Eng. Notes, 27:159–165, November 2002.

[CPST03] Vassilis Christophides, Dimitris Plexousakis, Michel Scholl, and Sotirios Tour-
tounis. On labeling schemes for the semantic web. In Proc. WWW, pages 544–
555, 2003.

[CS01] Surajit Chaudhuri and Kyuseok Shim. Storage and Retrieval of XML Data Using
Relational Databases. In Proc. VLDB, page 730, 2001.

[CSF+01] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and Moshe
Shadmon. A Fast Index for Semistructured Data. In Proc. VLDB, pages 341–350,
2001.

[CVZ+02] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and
Carlo Zaniolo. Efficient structural joins on indexed XML documents. In Proc.
VLDB, pages 263–274, 2002.

[CW05] Surajit Chaudhuri and Gerhard Weikum. Foundations of automated database
tuning. In Proc. SIGMOD, page Tutorial Slides, 2005.

[DDD+09] Gianluca Demartin, Ludovic Denoye, Antoine Douce, Khairun Nisa Fachry,
Patrick Gallinar, Shlomo Gev, Wei-Che Huang, Tereza Iofciu, Jaap Kamps,
Gabriella Kazai, Marijn Koolen, Monica Landoni, Ragnar Nordlie, Nils Pharo,
Ralf Schenkel, Martin Theobald, Andrew Trotman, Arjen P. de Vries, Alan
Woodley, and Jianhan Zhu. Report on INEX 2008. SIGIR Forum, 43:17–36,
June 2009.

[DDLS01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The
Ponder Policy Specification Language. In Proceedings of the International Work-
shop on Policies for Distributed Systems and Networks (POLICY), pages 18–38,
2001.

[Dew] M. Dewey. Dewey Decimal Classification System. http://frank.mtsu.edu/
~vvesper/dewey2.htm.

[DG07] Ludovic Denoyer and Patrick Gallinari. Report on the XML mining track at
INEX 2005 and INEX 2006: categorization and clustering of XML documents.
SIGIR Forum, 41(1):79–90, 2007.

216

http://frank.mtsu.edu/~vvesper/dewey2.htm
http://frank.mtsu.edu/~vvesper/dewey2.htm

Bibliography

[DOM05] W3C DOM. Document Object Model. http://www.w3.org/DOM/, 2005.

[DRS+05] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Gra-
ham Wood. Automatic Performance Diagnosis and Tuning in Oracle. In Proc.
CIDR, pages 84–94, 2005.

[DT90] Asit Dan and Don Towsley. An approximate analysis of the LRU and FIFO buffer
replacement schemes. SIGMETRICS Perform. Eval. Rev., 18(1):143–152, 1990.

[DTB09] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database con-
figuration parameters with iTuned. Proc. VLDB Endow., 2:1246–1257, August
2009.

[DYC93] Asit Dan, Philip S. Yu, and Jen-Yao Chung. Database Access Characterization
for Buffer Hit Prediction. In Proc. ICDE, pages 134–143, 1993.

[EAZ+08a] Iman Elghandour, Ashraf Aboulnaga, Daniel C. Zilio, Fei Chiang, Andrey
Balmin, Kevin S. Beyer, and Calisto Zuzarte. An XML index advisor for DB2.
In Proc. SIGMOD, pages 1267–1270, 2008.

[EAZ+08b] Iman Elghandour, Ashraf Aboulnaga, Daniel C. Zilio, Fei Chiang, Andrey
Balmin, Kevin S. Beyer, and Calisto Zuzarte. XML Index Recommendation
with Tight Optimizer Coupling. In Proc. ICDE, pages 833–842, 2008.

[EH84] Wolfgang Effelsberg and Theo Härder. Principles of database buffer manage-
ment. ACM Trans. Database Syst., 9(4):560–595, 1984.

[EM09] Said Elnaffar and Patrick Martin. The Psychic-Skeptic Prediction framework for
effective monitoring of DBMS workloads. Data Knowl. Eng., 68:393–414, April
2009.

[FGK06] Andrey Fomichev, Maxim Grinev, and Sergey Kuznetsov. Sedna: A Native XML
DBMS. In SOFSEM 2006: Theory and Practice of Computer Science, volume
3831 of LNCS, pages 272–281. 2006.

[FHK+02] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and
T. Westmann. Anatomy of a native XML base management system. VLDB
Journal, 11(4):292–314, 2002.

[FMM+05] Sergio Flesca, Giuseppe Manco, Elio Masciari, Luigi Pontieri, and Andrea
Pugliese. Fast Detection of XML Structural Similarity. IEEE Trans. on Knowl.
and Data Eng., 17(2):160–175, 2005.

[FMM+07] Mary Fernndez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Norman
Walsh. XQuery 1.0 and XPath 2.0 Data Model. W3C Recommendation. http:
//www.w3.org/TR/xpath-datamodel, 2007.

[FRK99] Daniela Florescu, Inria Roquencourt, and Donald Kossmann. Storing and query-
ing XML data using an RDMBS. IEEE Data Engineering Bulletin, 22:27–34,
1999.

[Fry03] C. Fry. Streaming API for XML. JSR 173. http://www.jcp.org/en/jsr/
detail?id=173, 2003.

217

http://www.w3.org/DOM/
http://www.w3.org/TR/xpath-datamodel
http://www.w3.org/TR/xpath-datamodel
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173

Bibliography

[FSC+03] Mary Fernández, Jérôme Siméon, Byron Choi, Amélie Marian, and Gargi Sur.
Implementing XQuery 1.0: the Galax experience. In Proc. VLDB, pages 1077–
1080, 2003.

[Gar02] David Garlan. Model-based Adaptation for Self-Healing Systems. In Proceed-
ings of the first workshop on Self-healing systems, pages 27–32, 2002.

[Geo05] John C. Georgas. Architectural runtime configuration management in support
of dependable self-adaptive software. In Workshop on Architecting Dependable
Systems, pages 1–6, 2005.

[GGU72] M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysis of memory
allocation algorithms. In Proceedings of the fourth annual ACM symposium on
Theory of computing (STOC), pages 143–150, 1972.

[GHS07] Christian Grün, Alexander Holupirek, and Marc H. Scholl. Visually Exploring
and Querying XML with BaseX. In Proc. BTW, pages 629–632, 2007.

[GKW04] David Garlan, Jeff Kramer, and Alexander Wolf, editors. Proceedings of the 1st
ACM SIGSOFT workshop on Self-managed systems. ACM, 2004.

[Gra02] Mark Graves. Designing XML Databases. Prentice Hall, Upper Saddle River,
NJ, USA, 2002.

[GST70] J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage hier-
archies. IBM Syst. J., 9(2):78–117, 1970.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. In Proc. VLDB, pages 436–445,
1997.

[Hel07] Sven Helmer. Measuring the structural similarity of semistructured documents
using entropy. In Proc. VLDB, pages 1022–1032, 2007.

[HFLP89] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query
processing in starburst. In Proc. SIGMOD, pages 377–388, 1989.

[HH07] Michael Peter Haustein and Theo Härder. An efficient infrastructure for native
transactional XML processing. Data Knowl. Eng., 61(3):500–523, 2007.

[HHL06] Michael P. Haustein, Theo Härder, and Konstantin Luttenberger. Contest of XML
Lock Protocols. In Proc. VLDB, pages 1069–1080, 2006.

[HHMW07] Theo Härder, Michael Peter Haustein, Christian Mathis, and Markus Wagner.
Node labeling schemes for dynamic XML documents reconsidered. Data Knowl.
Eng., 60(1):126–149, 2007.

[HKL05] Beda Christoph Hammerschmidt, Martin Kempa, and Volker Linnemann. Au-
tonomous Index Optimization in XML Databases. In ICDE Workshops, page
1217, 2005.

[HLS05] Zhen He, Byung Suk Lee, and Robert Snapp. Self-tuning cost modeling of user-
defined functions in an object-relational DBMS. ACM Trans. Database Syst.,
30:812–853, September 2005.

218

Bibliography

[HMS07] Theo Härder, Christian Mathis, and Karsten Schmidt. Comparison of Complete
and Elementless Native Storage of XML Documents. In Proc. IDEAS, pages
102–113, 2007.

[Hor01] Paul Horn. Autonomic computing: IBM’s perspective on the state of information
technology. IBM Research Project, 2001.

[HR83a] Theo Härder and Andreas Reuter. Concepts for implementing a centralized
database management system. In International Computing Symposium on Ap-
plication Systems Development, pages 28–59. B.G. Teubner, 1983.

[HR83b] Theo Härder and Andreas Reuter. Principles of transaction-oriented database
recovery. ACM Comput. Surv., 15:287–317, December 1983.

[HR07] Marc Holze and Norbert Ritter. Towards workload shift detection and prediction
for autonomic databases. In Proceedings of the ACM first Ph.D. workshop in
CIKM, pages 109–116, 2007.

[HSOB09] Theo Härder, Karsten Schmidt, Yi Ou, and Sebastian Bächle. Towards Flash
Disk Use in Databases - Keeping Performance While Saving Energy? In Proc.
BTW, pages 167–186, 2009.

[IBM04] IBM. An architectural blueprint for autonomic computing. Technical Report,
2003 (revised: 2004).

[IMKG11] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. Merging
what’s cracked, cracking what’s merged: Adaptive indexing in main-memory
column-stores. PVLDB, 4(9), 2011.

[JAKC+02] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman,
S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
TIMBER: A native XML database. VLDB Journal, 11(4):274–291, 2002.

[JCL90] R. Jauhari, M. J. Carey, and M. Livny. Priority-Hints: An Algorithm for Priority-
Based Buffer Management. In Proc. VLDB, pages 708–721, 1990.

[JLST02] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, and Keith Thomp-
son. TAX: A Tree Algebra for XML. In International Workshop on Database
Programming Languages, pages 149–164, 2002.

[JLW03] Haifeng Jiang, Hongjun Lu, and Wei Wang. XR-Tree: Indexing XML data for
efficient structural join. In Proc. ICDE, 2003.

[JS94] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm. In Proc. VLDB, pages 439–450,
1994.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Chris
Wells, and Ben Zhao. OceanStore: an architecture for global-scale persistent
storage. In Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems, ASPLOS-IX, pages
190–201, 2000.

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, 2003.

219

Bibliography

[Kep04] Stephan Kepser. A proof of the turing-completeness of XSLT and XQuery. In
Technical report SFB 441, Eberhard Karls Universität Tübingen, 2004.

[KLS+03] Eva Kwan, Sam Lightstone, K. Bernhard Schiefer, Adam J. Storm, and Leanne
Wu. Automatic Database Configuration for DB2 Universal Database: Compress-
ing Years of Performance Expertise into Seconds of Execution. In Proc. BTW,
pages 620–629, 2003.

[KM07] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge.
In Future of Software Engineering (FOSE), pages 259–268, 2007.

[KRML05] Joonho Kwon, Praveen Rao, Bongki Moon, and Sukho Lee. FiST: scalable XML
document filtering by sequencing twig patterns. In Proc. VLDB, pages 217–228,
2005.

[KS89] James F. Kurose and Rahul Simha. A Microeconomic Approach to Optimal
Resource Allocation in Distributed Computer Systems. IEEE Trans. Comput.,
38:705–717, May 1989.

[KSBG02] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, and Ehud Gudes. Exploit-
ing Local Similarity for Indexing Paths in Graph-Structured Data. In Proc. ICDE,
pages 129–140, 2002.

[KSH02] Meike Klettke, Lars Schneider, and Andreas Heuer. Metrics for XML Document
Collections. In EDBT Workshops, pages 15–28, 2002.

[LCL05] Jiaheng Lu, Ting Chen, and Tok Wang Ling. TJFast: effective processing of
XML twig pattern matching. In Special interest tracks and posters of the 14th
international conference on World Wide Web, pages 1118–1119, 2005.

[LDB+04] Rasko Leinonen, Federico Garcia Diez, David Binns, Wolfgang Fleischmann,
Rodrigo Lopez, and Rolf Apweiler. Uniprot archive. Bioinformatics, 20:3236–
3237, 2004.

[Ley02] Michael Ley. The DBLP Computer Science Bibliography: Evolution, Research
Issues, Perspectives. In Proceedings of the 9th International Symposium on
String Processing and Information Retrieval, pages 1–10, 2002.

[LKO+00] Mong Li Lee, Masaru Kitsuregawa, Beng Chin Ooi, Kian-Lee Tan, and Anirban
Mondal. Towards self-tuning data placement in parallel database systems. In
Proc. SIGMOD, pages 225–236, 2000.

[LL02] Guy M. Lohman and Sam S. Lightstone. SMART: making DB2 (more) auto-
nomic. In Proc. VLDB, pages 877–879, 2002.

[LLH08] Changqing Li, Tok Wang Ling, and Min Hu. Efficient updates in dynamic XML
data: from binary string to quaternary string. VLDB Journal, 17(3):573–601,
2008.

[LM01] Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for Regular
Path Expressions. In Proc. VLDB, pages 361–370, 2001.

[LNF09] Henrik Loeser, Matthias Nicola, and Jana Fitzgerald. Index Challenges in Native
XML Database Systems. In Proc. BTW, pages 508–525, 2009.

220

Bibliography

[LNPM98] Spyros Lalis, Christos Nikalaou, Dimitris Papadakis, and Manolis Marazakis.
Market-driven service allocation in a QoS-capable environment. In Proceedings
of the first international conference on Information and computation economies,
pages 92–100, 1998.

[LS00] Hartmut Liefke and Dan Suciu. XMill: an efficient compressor for XML data.
In Proc. SIGMOD, pages 153–164, 2000.

[LSSS07] Martin Lühring, Kai-Uwe Sattler, Karsten Schmidt, and Eike Schallehn. Au-
tonomous Management of Soft Indexes. In ICDE Workshops, pages 450–458,
2007.

[LWF77] Tomás Lang, Christopher Wood, and Eduardo B. Fernández. Database buffer
paging in virtual storage systems. ACM Trans. Database Syst., 2(4):339–351,
1977.

[MAG+97] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallas Quass, and Jennifer
Widom. Lore: a database management system for semistructured data. SIG-
MOD Rec., 26(3):54–66, 1997.

[Mat09] Christian Mathis. Storing, Indexing, and Querying XML Documents in Na-
tive Database Management Systems. PhD thesis, University of Kaiserslautern,
München, 7 2009.

[MBV03] Laurent Mignet, Denilson Barbosa, and Pierangelo Veltri. The XML web: a first
study. In Proc. WWW, pages 500–510, 2003.

[MD97] Manish Mehta and David J. DeWitt. Data placement in shared-nothing parallel
database systems. VLDB Journal, 6(1):53–72, 1997.

[Mei09] Wolfgang Meier. eXist: An Open Source Native XML Database. In Web, Web-
Services, and Database Systems, LNCS, pages 169–183. 2009.

[MEW06] Pat Martin, Said Elnaffar, and Ted Wasserman. Workload Models for Autonomic
Database Management Systems. In Proc. ICAS, page 10, 2006.

[MHS09] Christian Mathis, Theo Härder, and Karsten Schmidt. Storing and indexing XML
documents upside down. Computer Science - Research and Development, 24:51–
68, 2009.

[Mik] G. Miklau. XML Data Repository. www.cs.washington.edu/research/
xmldatasets.

[Mit95] Bernhard Mitschang. Anfrageverarbeitung in Datenbanksystemen - Entwurfs-
und Implementierungskonzepte. Vieweg, 1995.

[MLZ+00] Patrick Martin, Hoi-Ying Li, Min Zheng, Keri Romanufa, and Wendy Pow-
ley. Dynamic Reconfiguration Algorithm: Dynamically Tuning Multiple Buffer
Pools. In Proc. DEXA, pages 92–101, 2000.

[MM03] Nimrod Megiddo and Dharmendra S. Modha. ARC: A Self-Tuning, Low Over-
head Replacement Cache. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies, pages 115–130, 2003.

[MPC03] Jun-Ki Min, Myung-Jae Park, and Chin-Wan Chung. XPRESS: a queriable com-
pression for XML data. In Proc. SIGMOD, pages 122–133, 2003.

221

www.cs.washington.edu/research/xmldatasets
www.cs.washington.edu/research/xmldatasets

Bibliography

[MRT99] Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor. A language and
environment for architecture-based software development and evolution. In Pro-
ceedings of the 21st international conference on Software engineering (ICSE),
pages 44–53, 1999.

[MS99] Tova Milo and Dan Suciu. Index Structures for Path Expressions. In Proc. ICDT,
pages 277–295, 1999.

[MW99] Jason McHugh and Jennifer Widom. Query Optimization for XML. In Proc.
VLDB, pages 315–326, 1999.

[MWHH08] Christian Mathis, Andreas Weiner, Theo Härder, and Caesar Ralf Franz Hoppen.
XTCcmp: XQuery Compilation on XTC. In Proc. VLDB (Demo Track), 2008.

[NDD92] Victor F. Nicola, Asit Dan, and Daniel M. Dias. Analysis of the generalized
clock buffer replacement scheme for database transaction processing. In Proc.
SIGMETRICS, pages 35–46, 1992.

[Neu28] John Von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische An-
nalen, 100(1):295–320, 1928.

[NFS95] R. Ng, C. Faloutsos, and T. Sellis. Flexible and Adaptable Buffer Manage-
ment Techniques for Database Management Systems. IEEE Trans. Comput.,
44(4):546–560, 1995.

[NJ02] Andrew Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML
Documents. In WebDB Workshop, pages 61–66, 2002.

[NKS07] Matthias Nicola, Irina Kogan, and Berni Schiefer. An XML transaction process-
ing benchmark. In Proc. SIGMOD, pages 937–948, 2007.

[NTA05] Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. Continuous re-
source monitoring for self-predicting DBMS. In Proceedings of the 13th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pages 239–248, 2005.

[Nue06] David Nuescheler. JSR 170: Content Repository for Java technology API (Re-
lease version 1.0.1), Apr 2006.

[NvdL05] Matthias Nicola and Bert van der Linden. Native XML support in DB2 universal
database. In Proc. VLDB, pages 1164–1174, 2005.

[OHJ10] Yi Ou, Theo Härder, and Peiquan Jin. CFDC: a flash-aware buffer management
algorithm for database systems. In Proceedings of the 14th east European confer-
ence on Advances in databases and information systems, pages 435–449, 2010.

[OOP+04] Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. ORDPATHs: insert-friendly XML node labels. In Proc.
SIGMOD, pages 903–908, 2004.

[OOW93] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K page
replacement algorithm for database disk buffering. SIGMOD Rec., 22(2):297–
306, 1993.

[OS11] Ludger Overbeck and Karsten Schmidt. Self-Tuning for Short-Term Memory
Consumers. Datenbank-Spektrum, 11:37–41, 2011.

222

Bibliography

[PC03] Feng Peng and Sudarshan S. Chawathe. XPath queries on streaming data. In
Proc. SIGMOD, pages 431–442, 2003.

[PCS+05] Shankar Pal, Istvan Cseri, Oliver Seeliger, Michael Rys, Gideon Schaller, Wei
Yu, Dragan Tomic, Adrian Baras, Brandon Berg, Denis Churin, and Eugene Ko-
gan. Xquery implementation in a relational database system. In Proc. VLDB,
pages 1175–1186, 2005.

[PDA07] Stratos Papadomanolakis, Debabrata Dash, and Anastasia Ailamaki. Efficient
use of the query optimizer for automated physical design. In Proc. VLDB, pages
1093–1104, 2007.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In Proc. SIGMOD, pages 39–48,
1992.

[PJ05] Stelios Paparizos and H. V. Jagadish. Pattern tree algebras: sets or sequences?
In Proc. VLDB, pages 349–360, 2005.

[PJK+06] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon
Lee. CFLRU: a replacement algorithm for flash memory. In Proc. CASES, pages
234–241, 2006.

[Pre08] Sebastian Prehn. A Java Content Repository Backed by the Native XML
Database System XTC, 7 2008.

[PS83] Gregory Piatetsky-Shapiro. The Optimal Selection of Secondary Indices is NP-
Complete. SIGMOD Record, 13(2):72–75, 1983.

[PWLJ04] Stelios Paparizos, Yuqing Wu, Laks V. S. Lakshmanan, and H. V. Jagadish. Tree
logical classes for efficient evaluation of XQuery. In Proc. SIGMOD, pages 71–
82, 2004.

[PZ91] Mark Palmer and Stanley B. Zdonik. Fido: A cache that learns to fetch. Technical
report, 1991. Brown University.

[QSF+07] Lin Qiao, Basuki Soetarman, Gene Fuh, Adarsh Pannu, Baoqiu Cui, Thomas
Beavin, and William Kyu. A framework for enforcing application policies in
database systems. In Proc. SIGMOD, pages 981–992, 2007.

[QWG+96] Dallan Quass, Jennifer Widom, Roy Goldman, Kevin Haas, Qingshan Luo, Jason
McHugh, Svetlozar Nestorov, Anand Rajaraman, Hugo Rivero, Serge Abiteboul,
Jeff Ullman, and Janet Wiener. LORE: a Lightweight Object REpository for
semistructured data. In Proc. SIGMOD, page 549, 1996.

[Rao87] S.S. Rao. Game theory approach for multiobjective structural optimization. Com-
puters & Structures, 25(1):119 – 127, 1987.

[RO92] Mendel Rosenblum and John K. Ousterhout. The design and implementation of
a log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52, 1992.

[RP86] J. K. Reynolds and J. Postel. Official ARPA-Internet protocols, 1986.

[RPBP04] Kanda Runapongsa, Jignesh M. Patel, Rajesh Bordawekar, and Sriram Padman-
abhan. XIST: An XML Index Selection Tool. In Proc. XSym, pages 219–234,
2004.

223

Bibliography

[RS91] Steve Rozen and Dennis Shasha. A Framework for Automating Physical
Database Design. In Proc. VLDB, pages 401–411, 1991.

[SAL+96] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff
Sidell, Carl Staelin, and Andrew Yu. Mariposa: a wide-area distributed database
system. VLDB Journal, 5:048–063, 1996.

[SAMP06] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis. COLT:
continuous on-line tuning. In Proc. SIGMOD, pages 793–795. ACM, 2006.

[SAX04] Simple API for XML (SAX) 2.0.2. http://sax.sourceforge.net, 2004.

[SB11] Karsten Schmidt and Sebastian Bächle. Low-overhead decision support for dy-
namic buffer reallocation. Computer Science - Research and Development, pages
1–15, 2011.

[SBH09] Karsten Schmidt, Sebastian Bächle, and Theo Härder. Benchmarking
Performance-Critical Components in a Native XML Database System, pages 64–
78. Springer-Verlag, 2009.

[Sch01] Dr. Harald Schöning. Tamino - A DBMS Designed for XML. In Proc. ICDE,
pages 149–, 2001.

[Sch09] Karsten Schmidt. Goal-Driven Autonomous Database Tuning Supported by a
System Model. In SIGMOD Workshop ”Innovative Database Research (IDAR)”,
2009.

[SGAL+06] Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao, and
M. Surendra. Adaptive self-tuning memory in DB2. In Proc. VLDB, pages 1081–
1092, 2006.

[SGS03] Kai-Uwe Sattler, Ingolf Geist, and Eike Schallehn. QUIET: continuous query-
driven index tuning. In Proc. VLDB, pages 1129–1132, 2003.

[SH07] Karsten Schmidt and Theo Härder. An Adaptive Storage Manager for XML
Documents. In BTW Workshops, pages 317–328, 2007.

[SH08] Karsten Schmidt and Theo Härder. Usage-driven storage structures for native
XML databases. In Proc. IDEAS, pages 169–178, 2008.

[SH10] Karsten Schmidt and Theo Härder. On the Use of Query-driven XML Auto-
Indexing. In SMDB Workshop, pages 1–6, 2010.

[SHKR08] Karsten Schmidt, Theo Härder, Joachim Klein, and Steffen Reithermann. Green
Computing - A Case for Data Caching and Flash Disks? In Proc. ICEIS, pages
535–540, 6 2008.

[SLMK01] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO -
DB2’s LEarning Optimizer. In Proc. VLDB, pages 19–28, 2001.

[Smi78] Alan Jay Smith. Sequentiality and prefetching in database systems. ACM Trans.
Database Syst., 3(3):223–247, 1978.

[SOH09] Karsten Schmidt, Yi Ou, and Theo Härder. The Promise of Solid State Disks -
Increasing Efficiency and Reducing Cost of DBMS Processing. In C* Conference
on Computer Science & Software Engineering (C3S2E-09), pages 35–41, 5 2009.

224

http://sax.sourceforge.net

Bibliography

[Sto81] Michael Stonebraker. Operating system support for database management. Com-
mun. ACM, 24(7):412–418, 1981.

[STZ+99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. De-
Witt, and Jeffrey F. Naughton. Relational Databases for Querying XML Docu-
ments: Limitations and Opportunities. In Proc. VLDB, pages 302–314, 1999.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. XMark: a benchmark for XML data management.
In Proc. VLDB, pages 974–985, 2002.

[TCW+04] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal,
Ian Whalley, Jeffrey O. Kephart, and Steve R. White. A Multi-Agent Systems
Approach to Autonomic Computing. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems - Volume 1,
pages 464–471, 2004.

[TDCZ02] Feng Tian, David J. DeWitt, Jianjun Chen, and Chun Zhang. The design and
performance evaluation of alternative XML storage strategies. SIGMOD Rec.,
31(1):5–10, 2002.

[Ten95] J. Teng. Goal-oriented dynamic buffer pool management for data base systems.
In Proceedings of the 1st International Conference on Engineering of Complex
Computer Systems, pages 191–, 1995.

[TG10] Andrea Tagarelli and Sergio Greco. Semantic clustering of XML documents.
ACM Trans. Inf. Syst., 28(1):1–56, 2010.

[TH02] Pankaj M. Tolani and Jayant R. Haritsa. XGRIND: A Query-Friendly XML
Compressor. In Proc. ICDE, pages 225–234, 2002.

[THTT08] Dinh Nguyen Tran, Phung Chinh Huynh, Y. C. Tay, and Anthony K. H. Tung. A
new approach to dynamic self-tuning of database buffers. Trans. Storage, 4(1):1–
25, 2008.

[TPG97] Andrew Tomkins, R. Hugo Patterson, and Garth Gibson. Informed multi-process
prefetching and caching. In Proc. SIGMETRICS, pages 100–114, 1997.

[VL00] Steven P. Vanderwiel and David J. Lilja. Data prefetch mechanisms. ACM Com-
put. Surv., 32(2):174–199, 2000.

[VZZ+00] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan
Skelley. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own
Indexes. In Proc. ICDE, pages 101–110, 2000.

[Wei11] Andreas M. Weiner. Advanced Cardinality Estimation in the XML Query Graph
Model. In Proc. BTW, pages 207–226, 2011.

[WHH+92] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart, and
W. Scott Stornetta. Spawn: A Distributed Computational Economy. IEEE Trans.
Softw. Eng., 18:103–117, February 1992.

[WJW+05] Wei Wang, Haifeng Jiang, Hongzhi Wang, Xuemin Lin, Hongjun Lu, and
Jianzhong Li. Efficient processing of XML path queries using the disk-based
F&B Index. In Proc. VLDB, pages 145–156, 2005.

225

Bibliography

[WMHZ02] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zabback. Self-
tuning database technology and information services: from wishful thinking to
viable engineering. In Proc. VLDB, pages 20–31, 2002.

[WRRA08] David Wiese, Gennadi Rabinovitch, Michael Reichert, and Stephan Arenswald.
Autonomic tuning expert: a framework for best-practice oriented autonomic
database tuning. In Proceedings of the 2008 conference of the center for ad-
vanced studies on collaborative research: meeting of minds (CASCON), pages
3:27–3:41, 2008.

[XMP02] Xiaoyi Xu, Patrick Martin, and Wendy Powley. Configuring buffer pools in DB2
UDB. In Proc. CASCON, page 13, 2002.

[XXM+06] Meng Xiaofeng, Wang Xiaofeng, Xie Min, Zhang Xin, and Zhou Junfeng. Ori-
entX: An integrated, schema based native XML database system. Wuhan Uni-
versity Journal of Natural Sciences, 11:1192–1196, 2006.

[YAA07] Hailing Yu, Divyakant Agrawal, and Amr El Abbadi. Mems based storage archi-
tecture for relational databases. VLDB Journal, 16(2):251–268, 2007.

[YASU01] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shunsuke
Uemura. XRel: a path-based approach to storage and retrieval of XML docu-
ments using relational databases. ACM Trans. Internet Technol., 1(1):110–141,
2001.

[yCFW+95] Jen yao Chung, Donald Ferguson, George Wang, Christos Nikolaou, and Jim
Teng. Goal Oriented Dynamic Buffer Pool Management for Data Base Systems.
In IBM Research Report RC19807, pages 191–198, 1995.

[YLL+07] Chi Yang, Chengfei Liu, Jianxin Li, Jeffrey Xu Yu, and Junhu Wang. Semantics
based buffer reduction for queries over XML data streams. In Proceedings of the
nineteenth conference on Australasian database, pages 145–153, 2007.

[YLML05] Jeffrey Xu Yu, Daofeng Luo, Xiaofeng Meng, and Hongjun Lu. Dynamically
Updating XML Data: Numbering Scheme Revisited. World Wide Web, 8(1):5–
26, 2005.

[ZCZ03] Zhongping Zhang, Rong Li Shunliang Cao, and Yangyong Zhu. Similarity met-
ric for XML documents. In Proc. of Workshop on Knowledge and Experience
Management, 2003.

[ZND+01] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman.
On supporting containment queries in relational database management systems.
In Proc. SIGMOD, pages 425–436, 2001.

[ZRL+04] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Christian
Garcia-Arellano, and Scott Fadden. DB2 design advisor: integrated automatic
physical database design. In Proc. VLDB, pages 1087–1097, 2004.

[ZSS92] Kaizhong Zhang, Rick Statman, and Dennis Shasha. On the editing distance
between unordered labeled trees. Inf. Process. Lett., 42(3):133–139, 1992.

[ZZL+04] Daniel C. Zilio, Calisto Zuzarte, Guy M. Lohman, Hamid Pirahesh, Jarek Gryz,
Eric Alton, Dongming Liang, and Gary Valentin. Recommending Materialized
Views and Indexes with IBM DB2 Design Advisor. In Proc. ICAC, pages 180–
188, 2004.

226

curriculum vitae

Karsten Schmidt

Personal Information

Business address: Gottlieb-Daimler-Str. 47
67663 Kaiserslautern
Germany
Phone: +49 (0) 631 205 3277
E-mail: kschmidt@cs.uni-kl.de

Date of birth: July 26th 1979
Place of birth: Brandenburg/Havel, Germany
Marital status: Married
Nationality: German

Education

06/2006 – 09/2011 Doctoral candidate, Database and Information Systems Group
University of Kaiserslautern, Germany

10/1999 – 05/2006 Diploma in computer science (Dipl.-Inf.)
Ilmenau University of Technology, Germany

09/1990 – 07/1998 Secondary school: Herzog-Georg-Gymnasium Bad Liebenstein

Working Experience

06/2006 – 09/2011 Scientific staff member, Database and Information Systems Group
University of Kaiserslautern, Germany

10/1998 – 09/1999 Civilian service, county hospital, Bad Salzungen, Germany

	Introduction
	Tuning Principles
	Motivation
	Objectives
	Overview

	Fundamentals
	From Custom Coding to DBMS Tuning
	Customary DBMS Architecture
	DBMS Cost Models
	Resources
	Cost-based Optimization

	Native XML DBMS
	Query Languages
	Query Processing
	Special Operators

	XTC Prototype
	Alternative XDBMS Systems

	Self-Tuning -- Challenges and Goals
	From Tuning to Self-Tuning
	Offline vs. Online Tuning
	Problem Classes

	Self-Tuning
	A Brief History of Autonomous Computing
	Feedback Control Loop -- MAPE-K
	Rule- or Policy-based Management
	Multi-Agents
	Economical Models
	Genetic Algorithms and Multi-criteria Optimization
	Languages
	Summary of Existing Approaches

	Dependencies
	Component Dependencies

	Online Self-Tuning Challenges
	Search Space
	Prediction Quality
	Delay Effects

	Self-Tuning in DBMSs
	IBM DB2
	Oracle Database
	Microsoft SQL Server
	Academia

	Self-Tuning Framework in XTC
	Monitoring in XTC
	Analysis in XTC
	Plan and Execute in XTC
	Implementation Aspects for MAPE
	Logging and Reporting in XTC

	Challenges and Opportunities

	Buffer Tuning
	Buffer Management
	Working Principle
	Replacement Algorithms
	Buffer Pool Configuration

	Self-Tuning Buffer Management Approaches
	Goal-oriented Buffer Tuning
	Simulation-based Buffer Tuning
	Forecast Issues

	Lightweight Performance Forecasts
	Algorithmic Extensions

	Dynamic Buffer Pool Management
	Cost Model
	Decision Model
	Integrating Short-term Memory Consumers
	Read-ahead
	Sequential Writes (Buffer Flushes)
	Implementation Aspects

	Evaluation
	Workload
	Forecast Accuracy
	Workload Shifts
	Buffer Balance
	Overhead
	Integrating Short-term Memory Consumers
	Read-ahead and Grouped Flush

	Conclusions

	Storage Self-Tuning for XDBMSs
	Native XML Storage
	Node Labeling
	Range-based Labeling
	Prefix-based Labeling
	Conclusion

	Node Labeling in XTC
	Full Storage Mapping
	Path Synopsis
	Elementless Storage Mapping
	Document Collections
	Self-Tuning for XML Storage Configurations
	Compression
	Document Statistics
	Classification of Documents
	Analysis Options
	Workload-Dependency
	Autonomous Collection Building
	Data Placement
	Shifting Load to the Client-side

	Realization in XTC
	Statistics
	Statistics Gathering by Sampling
	Compression
	Structural Classification of Documents
	Storage Decision Process -- Document Processing

	Evaluation
	Datasets
	Access Performance
	Space Consumption
	Structural Similarity
	Content Compression
	Sampling
	Usage-driven Storage Structures
	Load Balancing
	Statistics

	Conclusions

	Index Options and Query Processing in XTC
	Related Work
	Indexing in XTC
	Element Index
	Content Index
	Path Index
	CAS Index

	Query Processing in XTC
	XQGM and Query Plan Operators
	Optimization
	Construction of Index Access Alternatives

	Index Use
	Index Selection Problem
	Summary

	Index Self-Tuning for XDBMSs
	Related Work
	Autonomous Indexing Framework
	Virtual Indexes
	Index Configuration Self-Tuning
	Update Issues
	Local Optimization Issue

	AI in XTC
	Index Management
	Candidate Generation
	Candidate Size Estimation
	Cost Benefit Calculation
	Index Selection
	Optimizations

	Evaluation
	Index Estimation Accuracy
	Index Candidate Generation Aspects
	Self-Tuning Quality
	Workload Shifts
	AI Overhead

	Conclusions

	Interplay of Self-Tuning Components
	Workload and Environment
	Interplay of Buffer and Index Self-Tuning
	Varying Combinations of (Self-)Tuning Features
	Analysis of Self-Tuning Effects
	Conclusions

	Conclusions and Outlook
	Conclusions
	Outlook
	Determine Simulation Parameters
	Index Self-Tuning
	Modern Hardware
	Next Generation of Tuning Goals
	Evaluation of Self-tuning
	Towards a System Model

	Architectures of Native XDBMSs
	Storage
	Storage Gains for Elementless
	Storage Self-Tuning Similarity Findings
	Similarity Matching Performance
	Storage Compression Gains
	Alternative XML Text Compressors
	Index Definitions for Sample Query Evaluation Plans

	Indexing
	Excerpt of AI Metadata in XTC
	Query Graph Traversal Rules
	Access Operator
	Join Operator
	Join Operator with Sort

	AI Optimization Rules
	TPoX Update Query Integration

	Bibliography

