
Updating Typical XML Views

Jixue Liu1, Chengfei Liu2, Theo Haerder3, and Jeffery Xu Yu4

1 School of CIS, University of South Australia
jixue.liu@unisa.edu.au

2 Faculty of ICT, Swinburne University of Technology
cliu@swin.edu.au

3 Dept. of CS, Technical University of Kaiserslautern
haerder@informatik.uni-kl.de

4 Dept. of Sys. Eng. and Eng. Management, Chinese University of HK
yu@se.cuhk.edu.hk

Abstract. View update is the problem of translating an update to a
view to some updates to the source data of the view. In this paper, we
formally define the problem, show the factors determining XML view up-
date translation, and propose a translation solution for two specific but
typical settings of the view update problem. We prove that the trans-
lated source updates are precise and they generalize the solutions to the
problem with similar settings in the relational database.

Keywords: XML data, view update, update translation, virtual views.

1 Introduction

A (virtual) view is defined with a query over some source data of a database.
The query is called the view definition which determines what data appears in
the view. The data of the view, called a view instance, is often not stored
in the database but is derived from the source data on the fly using the view
definition every time when the view is selected.

In database applications, many users do not have privileges to access all the
data of a database. They are often given a view of the database so that they can
retrieve only the data in the view. In data integration applications, user’s access
to the source data becomes even more impractical because of security. When
these users need to update the data of the database, they put their updates
against the view, not against the source data, and expect that the view instance
is changed when it is accessed next time. This type of updates is called a view
update. Because of its important use, view update has a long research history
[1,9,11,12,6,4,13]. The work in [5] discusses detailed semantics of view updates
in many scenarios.

Unfortunately, view updates cannot be directly applied to the view instance
as it is not stored physically and is derived on the fly when required (virtual
view). Even in the cases where the view instance is stored (materialized view),
which is not the main focus of this paper, applying updates to the instance may

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 126–140, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Updating Typical XML Views 127

cause inconsistencies between the source data and the instance. To apply a view
update to a virtual view, a translation process is required to translate the view
update to some source updates. When the source data is changed, the data in
the view will be changed next time when the view is selected. To the user of the
view, it seems that the view update has been successfully applied to the view
instance.

Let V be a view definition, V i the view instance, Si the source data of the view,
V (Si) the evaluation of V against Si. Then V i = V (Si). Assume that the user
wants to apply a view update δV to V i as δV (V i). View update translation is to
find a process that takes V and δV as input and produces a source update δS to
Si such that next time when the user accesses the view, the view instance appears
changed and is as expected by the user. That is, for any Si and V i = V (Si),

V (δS(Si)) = δV (V i) (1)

Two typical anomalies, view side-effect and source document over-update, are
easily introduced by the translation process although they are update policy de-
pendent [9]. View side-effect [13] occurs if the translated source update causes
more-than-necessarychange to the source datawhich leads tomore-than-expected
change to the view instance. View side-effect makes Equation (1) violated.

Over-updates may also happen to a source document. An over-update to a
source document causes the source data irrelevant to the view to be changed,
but keeps the equation satisfied. A source document over-update is incorrect as
it changes information that the user did not expect to change.

A precise translation of a view update should produce source updates that
(1) result in necessary (as the user expects) change to the view instance, (2)
do not cause view side-effect, and (3) do not cause over-updates to the source
documents.

In the relational database, much work has been done on view update and the
problem has been well understood [1,9,11]. In case of updating XML views over
relational databases, updates to XML views need to be translated to updates to
the base relational tables. The works in [4,13] propose two different approaches
to the problem. The work in [4] translates an XML view to some relational
views and an update to the XML view to updates to the relational views. It
then uses the relational approach to derive updates to the base tables. The work
in [13] derives a schema for the XML view and annotates the schema based
on keys of relational tables and multiplicities. An algorithm is proposed to use
the annotation to determine if a translation is possible and how the translation
works. Both works assume keys, foreign keys and the join operator based on
these two types of constraints. Another work, technical report [6], proposes brief
work on updating hypertext views defined on relational databases. In the case
of updating pure XML views, the views where the views and their source data
are all modelled in XML, no direct work has been done. To the best of our
knowledge, the only work relating to XML view update is [8] which proposes
a middle language and a transformation system to derive view instance from
source data, and to derive source data from a materialized view instance, and

128 J. Liu et al.

assumes XQuery as the view definition language. We argue that with the view
update problem, only view updates are available but not the view instance (not
materialized). Consequently view update techniques are still necessary. The work
in [3] is on the exact topic as this paper, but it restricts its views only to node
relabeling and selection; no restructuring is allowed in the view definitions.

In this paper, we look into the view update problem in pure XML context. This
means that both source data and the view are in XML format. We assume that
base XML documents have no schema and no constraints information available.
Assuming no constraints makes the solutions developed more general.

The view update problem in the relational database is difficult as not all view
updates are translatable. For example, if a view V is defined by a Cartesian
product of two tables R and S, an update inserting a new tuple to the view
instance is not translatable because there is no unique way to determine the
change(s) to R and S. The view update problem in XML becomes much harder.
The main reason is that the source data and view instances are modeled in trees
and trees can nest in arbitrary levels. This fundamental difference makes the
methods of translating view updates in the relational database not applicable to
translating XML view updates. A typical example is that the selection and the
projection operations in the relational database do not have proper counterparts
in XML. The view update problem in XML has many distinct cases that do not
exist in the view update problem in the relational database (see Sections 3 and
4 for details). To the best of our knowledge, our work is the first proposing a
solution to the view update problem in XML.

We notice that the view update problem is different from the view mainte-
nance problem. The former aims to translate a view update to a virtual view
to a source update while the latter aims to translate a source update to a view
update to a materialized view. The methods for one do not work for the other.

We make the following contributions in this paper. Based on the view defi-
nition and the update language presented later, we present a formal definition
of the view update problem and identify the factors determining the view up-
date problem. Secondly, we propose a translation solution to translate ‘typical’
view updates. We prove that the translated source update from the algorithm is
precise in the typical settings. Furthermore, we show that the solution we pro-
pose generalizes the solution to the problem in the relational database in similar
settings.

The paper is organized as follows. Section 2 shows the view definition lan-
guage, the update language, and the preciseness of view update translation. In
Section 3, we propose an algorithm and show that the translation obtained by
the algorithm is a precise translation. In Section 4, we identify a ‘join’ case where
a translated update is precise. Section 5 concludes the paper.

2 Preliminaries

In this section, we define basic notation, introduce the languages for view defi-
nitions and updates, and define the XML view update problem.

Updating Typical XML Views 129

Definition 1 (tree). An XML document can be represented as an ordered tree.
Each node of the tree has a unique identifier vi, an element name ele also called a
label, and either a text string txt or a sequence of child trees Tj1 , · · · , Tjn . That
is, a node is either (vi : ele : txt) or (vi : ele : Tj1 , · · · , Tjn). When the context is
clear, some or all of the node identifiers of a tree may not present explicitly in this
paper. A tree without all node identifiers is called a value tree. Two trees T1 and
T2 are (value) equal, denoted by T1 = T2, if they have identical value trees. If a
tree T1 is a subtree in T2, T1 is said in T2 and denoted by T1 ∈ T2. �

For example, the document <root><A>1<A>2</root>
is represented by T = (vr :root : (v0 :A :(v1 :B :1)), (v2 :A :(v3 :B :2))). The value
tree of T is (root: (A:(B :1)), (A:(B :2))).

Definition 2. A path p is a sequence of element names e1/e2/ · · · /en where all
names are distinct. The function L(p) returns the last element name en.

Given a path p and a sequence of nodes v1, · · · , vn in a tree, if for every node
vi ∈ [v2, · · · , vn], vi is labeled by ei and is a child of vi−1, then v1/ · · · /vn is a
doc path conforming to p and the tree rooted at vn is denoted by T p

vn . �

2.1 View Definition Language

We assume that a view is defined in a dialect of the for-where-return clauses
of XQuery [2].

Definition 3 (V). A view is defined by

<v>{ for x1 in p1, · · · , xn in pn
where cdn(x1, · · · , xn)
return rtn(x1, · · · , xn) }</v>

where p1, · · · , pn are paths (Definition 2) proceeded by doc() or xi;
cdn(x1, · · · , xn) ::= xi/Ei = xj/Ej and · · · and xk/Ek = strV al and · · · ;
rtn(x1, · · · , xn) ::= <e> {xu/γu} · · · {xv/γv} </e>;
γ, E are paths, and the last elements of all xu/γu, · · · , xv/γv are distinct. �

We note that the paths in the return clause are denoted by xi/γs because these
expressions are specially important in view update translation. We purposely
leave out the $ sign proceeding a variable in the XQuery language.

Definition 4 (context-based production). By the formal semantics of XQuery
[7], the semantics of the language is

for x1 in p1 return

for x2 in p2 return

...

for xn in pn return

if cdn(x1, ..., xn)=true

return rtn(x1, ..., xn)

130 J. Liu et al.

The for-statement produces tuples <x1, ..., xn>, denoted by fortup(V), where
the variable xi represents a binding to one of the sub trees located by pi within
the context defined by x1, · · · , xi−1. This process is called context-based
production. �

For each tuple satisfying the condition cdn(x1, ..., xn), the function
rtn(x1, · · · , xn) produces a tree, called an e-tree, under the root node of the
view. That is, V maps a tuple to an e-tree. The children of the e-tree are the
γ-trees selected by all the expressions xi/γis (for all i) from the tuple. A tuple
is mapped to one and only one e-tree and an e-tree is for one and only one tuple.
A γ-tree of a tuple is uniquely mapped to a child of the e-tree of the tuple and
a child of an e-tree is for one and only one γ-tree of its tuple. This is illustrated
in Figure 1(a) where xc and xt are two variables, T xt/γt and T xc/γc are γ-trees,
and the γ-trees appear as children of the e node. We note that the one-to-one
mapping is between a tree in the tuple (not the source document) and a tree
under an e node in the view.

x1

...
TTx1/ t x1/ c

... ...
TTx1/ t/ t x1/ c/ c

e

...TTLt Lc

... ...
TTLt/ t Lc/ c

<x1, >
xt

...
TTxt/ t xc/ c

... ...
TTxt/ t/ t xc/ c/ c

<xt,xc, >
xc

...

(a) (b)

e

...TTLt Lc

... ...
TTLt/ t Lc/ c

Lt = xt/ t
xc/ cLc =

v
...

Lt = x1/ t
x1/ cLc =

v
...

Fig. 1. Each of tuples is mapped to an e-tree

The path of a node s in the view has the following format:

v/e/Li/θi (2)

where
Li = L(xi/γi) (3)

returns the last element name Li of xi/γi, an expression in rtn(x1, ..., xn), and
θi is a path following Li in the view. When Li/θi is not empty, the path in the
source document corresponding to v/e/Li/θi is

xi/γi/θi (4)

The view definition has some properties important to view update translation.
Firstly because of context-based production, a binding of variable xi may be

copied into x
(1)
i , · · · , x(m)

i to appear in multiple tuples:

< · · · , x(1)
i , · · · , xj[1], · · ·>

· · ·
< · · · , x(m)

i , · · · , xj[mj], · · ·>

Updating Typical XML Views 131

where xj[1], · · · , xj[mj] are different bindings of xj . Each tuple satisfying the
condition cdn(x1, · · · , xn) is used to build an e-tree. As a result of xi being
copied, the subtrees of xi will be copied accordingly to appear in multiple e-
trees in the view.

Secondly, a tree may have zero or many sub trees located by a given path p.
That is, given a tree bound to xi, the path expression xi/p may locate zero or

many sub trees T
xi/p
1 , · · · , T xi/p

np in xi. This is true both in the source documents
and in the view.

Thirdly, two path expressions xi/γi and xj/γj generally may have the same
last element name, i.e., L(xi/γi) = L(xj/γj). For example, if xi represents an em-
ployee while xj represents a department, then xi/name and xj/name will present
two types of names in the same e-tree. This make the semantics of the view data
not clear. This is the reason why we assume that all L(xi/γi)s are distinct.

Example 1. Consider the view definition below and the source document shown
in Figure 2(a). The view instance is shown in Figure 2(b).

<v>{for x in doc("r")/r/A, y in x/C, z in x/H

where y/D=z and z="1"

return <e>{x/B}{x/C}{y/F/G}{z}</e>
}</v>

C

r

B C H
1

FD
2

G
1

FD
1

AA

G
1

C

FD
1

G
2

H
2

v

C G
1

FD
1

v1:e

G
1

C

FD
1

G
2

C

FD
2

G
1

A

H
3

C G
2

FD
1

v2:e

v3:G
1

C

FD
1

G
2

(a) (b)

H
1

H
1

F

E
3

F

E
3

F

E
3

Fig. 2. Source document r and view v

From the view definition, γ1 = B, γ2 = C, γ3 = F/G, and γ4 = φ. L(x/γ1) =
L1 = B, L(x/γ2) = L2 = C, L(y/γ3) = L3 = G, and L(z/γ4) = L4 = H .

Formula (2) is exemplified as the following. The node v3 in the view has the
path v/e/C/F/G where C is L2 = L(x/γ2) and F/G is θ. The node v2 is an e
node and its path is v/e where Li/θi is φ.

The example shows the following.
� The expression x/B (=x/γ1) of the return clause has no tree in the two
e-trees.

� The path expression x/C (=x/γ2) has multiple trees in each e-tree.

132 J. Liu et al.

� The trees of x/C are duplicated in the view and so are their sub trees.
� Each of some x/C trees has more than one x/C/F (=x/γ2/θ) sub trees.

2.2 The Update Language

The update language we use follows the proposal [10] extended from XQuery.

Definition 5 (δV). A view update statement has the format of

for x̄1 in p̄1, · · ·, x̄u in p̄u
where x̄c/p̄c = strV alu
update x̄t/p̄t (delete T | insert T)

where x̄c, x̄t ∈ [x̄1, · · · , x̄u], p̄1, · · · , p̄u are paths (Definition 2) proceeded by v
or x̄i; p̄c, p̄t are paths; all element names in the paths are elements names in the
view. x̄c/p̄c and x̄t/p̄t are called the (update) condition path and (update)
target path respectively. �

The next procedure maps a path in the update statement to a path in the source
document.

Procedure 1 (mapping).
(i). Replace the variables in x̄c/p̄c and x̄t/p̄t by their paths
in the for-clause until the first element name becomes v.
Thus the full paths of x̄c/p̄c and x̄t/p̄t in the view are built
and will have the format of v/e/Lc/θc and v/e/Lt/θt as shown
in Formula (2).
(ii). Search in the return clause of V using Lc and Lt to
identify the expressions xc/γc and xt/γt. Append θt and θc to
them respectively as xc/γc/θc and xt/γt/θt. Thus, xc/γc/θc and
xt/γt/θt are the source paths of v/e/Lc/θc and v/e/Lt/θt. �

With this mapping, the update statement δV can be represented by the following
abstract form:

(p̄s; v/e/Lc/θc = strV alu; v/e/Lt/θt; del(T)|ins(T)) (5)

where
� v/e/Lc/θc is the full update condition path (int the view) for x̄c/p̄c,
v/e/Lt/θt the full target path for x̄t/p̄t;

� p̄s is the maximal common front part of v/e/Lc/θc and v/e/Lt/θt.
The semantics of an update statement is that under a context node identified
by p̄s, if a sub tree identified by v/e/Lc/θc satisfies the update condition, all the
sub trees identified by v/e/Lt/θt will be applied the update action (del(T) or
ins(T)). The sub tree T v/e/Lc/θc is called the condition tree of T v/e/Lt/θt . A
sub tree is updated only if it has a condition tree and the condition tree satisfies
the update condition. An update target and its condition trees are always within
a tuple when the view definition is evaluated and are in an e-tree in the view
after the evaluation.

Updating Typical XML Views 133

We note that because of the context-based production in the view definition,
the same update action may be applied to a target node for multiple times. For
example, if x is a binding and the context-based production produces two tuples
as < x(1), · · · > and < x(2), · · · >. If the update condition and target are all in
x, x will be updated twice with the same action, each action being fired for each
tuple. We assume that only the effect of the first application is taken and the
effect of all other applications is ignored.

Based on the structure of the target path tp = v/e/Lt/θt, updates may happen
to different types of nodes in the view.

� When Lt/θt �= φ, the update happens to the nodes within a γ-tree.
� When tp = v/e, the update will add or delete a γ-tree.
� When tp = v (in this case, p̄s = v), the update will add or delete an e-tree.

In this paper, we only deal with the first case and leave the solutions to the last
two cases to be future work.

2.3 The View Update Problem

Definition 6 (Precise Translation). Let V be a view definition and S be the
source of V . Let δV be an update statement to V . Let δS be the update statement
to S translated from δV . δS is a precise translation of δV if, for any instance Si

of S and V i = V (Si),
(1) δS is correct. That is, V (δS(Si)) == δV (V i) is true; and
(2) δS is minimal. That is, there does not exist another translation δS′ such
that (δS′ is correct, i.e., V (δS′(Si)) = V (δS(Si)) = δV (V i) and there exists
a tree T in Si and T is updated by δS but not δS′). �

We note that Condition (1) also means that the update δS will not cause view-
side-effect. Otherwise, V (δS(Si)) would contain more, less, or different updated
trees than those in δV (V i).

Definition 7 (the view update problem). Given a view V and a view update
δV , the problem of view update is to (1) develop a translation process P , and
show that the source update δS obtained from P is precise, or (2) prove that a
precise translation of δV does not exist. �

3 Update Translation When Lt/θt �= φ and xc = xt

In this section, we investigate update translation when the update is to change
a γ-tree of the view and the mappings of the update condition path and the
update target path refer to the same variable in the view definition. We present
Algorithm 1 and the statement δS as the solution for view update translation
in this case.

By the algorithm, the following source update is derived.

δS: for x1 in p1, · · · , xn in pn
where cdn(x1, · · · , xn) and xc/γc/θc = strV alu
update xt/γt/θt (insert T | delete T)

134 J. Liu et al.

Algorithm 1: A translation algorithm

Input: view definition V , view update δV
Output: translated source update δS

1 begin
2 make a copy of V and reference the copy by δS ;
3 remove rtn() from δS ;
4 from the view update δV , following Procedure 1, find mappings xc/γc/γc

and xt/γt/γt for the condition path x̄c/p̄c and the target path x̄t/p̄t ;
5 make a copy of δV and reference the copy by δVc ;
6 in δVc, replace x̄c/p̄c and x̄t/p̄t by xc/γc/γc and xt/γt/γt respectively ;
7 append the condition in the where clause of δVc to the end of the where

clause in δS using logic and ;
8 append the update clause of δVc after the where clause of δS

We now develop the preciseness of the translation. We recall the notation that
fortup(V) means the tuples of the context-based production (Definition 4) of V .
The symbols xc, xc[1] and xc[2] are three separate bindings of xc. The symbols

x
(1)
c and x

(2)
c are two copies of xc.

Lemma 1. Given a tuple t = <xt, xc, · · ·> ∈ fortup(V) and its e-tree e, (1) if
T xt/γt/θt (a tree for the path xt/γt/θt) in t is updated by δS, then all the trees
identified by xt/γt/θt in t are updated by δS, and all the trees identified by Lt/θt
in e are updated by δV . (2) if TLt/θt (a tree for the path Lt/θt) in e is updated
by δV , then all the trees identified by Lt/θt in e are updated by δV , and all the
trees identified by xt/γt/θt in t are updated by δS.

The lemma is correct because of the one-to-one correspondence between a tuple
and an e-tree and between t’s γ-trees and e’s children, and because all the trees
identified by xt/γt/θt in t share the same condition tree(s) identified by xc/γc/θc
in xc of t, and all the trees identified by Lt/θt in e share the same condition tree(s)
identified by Lc/θc in e.

Lemma 2. Assume a tuple t = <xt, xc, · · ·> ∈ fortup(V). After a tree T xt/γt/θt

in xt is updated by δS, t becomes t′ = <x′
t, xc, · · ·>. If xt/γt/θt is not a prefix of

any of the paths in the where clause of δS and if t satisfies cdn() of V , t′ also
satisfies cdn() of V .

The lemma is correct because the subtrees in the tuple used to test cdn() are
not changed by δS when the condition of the lemma is met.

Lemma 3. Assume a tuple t = <xt, xc, · · ·> ∈ fortup(V) and its e-tree e.
If T xc/γc/θc in t satisfies xc/γc/θc = strV alu, TLc/θc in e satisfies Lc/θc =
strV alu and vice versa.

The correctness of the lemma is guaranteed by the one-to-one correspondence
between t’s γ-trees and e’s children.

Updating Typical XML Views 135

Lemma 4. Assume a tuple t = <xt, xc, · · ·> ∈ fortup(V), its e-tree e, T xt/γt/θt

in xt, and T ′Lt/θt in e. Obviously T = T ′. As δS and δV have the same update
action, if xc satisfies the update condition, δS(T) = δV (T ′).

Theorem 1. Given view V and the view update δV where Lt/θt �= φ and
xc = xt, the update δS is a precise translation of the view update δV if and only
if xt/γt/θt does not proceed any path in the where clause of δS.

Proof. We show only the ‘if’ proof. The proof of ‘only if’ can be done in a similar
way. We follow Definition 6 to show that if the condition is true, the translation
is precise. Without losing generality, we assume that xt = xc = x1. Figure 1(b)
illustrates the relationship between a variable binding x1 in the tuple < x1, · · · >
and the e-tree built from the tuple. T x1/γt/θt and T x1/γc/θcare an update target
tree and a condition tree respectively. T x1/γt/θt ’s children will be deleted or a
new child will be inserted.

(1) Correctness: V (δS(Si)) = δV (V (Si))
We firstly show that duplicated γ-trees are updated consistently in the view

and then show that each side of the equation is contained in the other side. The
reason why consistency is important here is that if the update changes one copy
of a duplicated γ-tree without updating the others, the translation will have side
effect.

Consistency: Consider two tuples t1 =< x
(1)
1 , · · · > and t2 =< x

(2)
1 , · · · > in

fortup(δS) where x
(1)
1 and x

(2)
1 are copies of x1. Let e1 and e2 be two e-trees

constructed from t1 and t2 respectively by V . Then, because of xt = xc = x1,
either both e1 and e2 are updated by δV or none is updated.

⊇: Let TLt/θt be a tree in an e-tree e of V (Si) updated to T̄Lt/θt by δV (e
becomes e′ after the update). We show that T̄Lt/θt is in e′ of V (δS(Si)). In
fact, that TLt/θt is in V (Si) means that there exists one and only one tuple
t = <x1, · · ·> in fortup(V) satisfying cdn(), that in the tuple, x1/γt/θ identifies
the source tree T x1/γt/θt of TLt/θt . TLt/θt being updated by δV means that there
exists a condition tree TLc/θc in e and the condition tree satisfies v/e/Lc/θc =
strV alu.

On the other side, because V and δS have the same for clause, t is in
fortup(δS). Because TLc/θc makes v/e/Lc/θc = strV alu true, so T x1/γc/θc

makes x1/γc/θc = strV al true (Lemma 3). This means T x1/γt/θt is updated by
δS and becomes T̂ x1/γt/θt . Thus t becomes t′ =< x̄1, · · · >. Because of Lemma
4, T̄ x1/γt/θt=T̂ x1/γt/θt . Because of the condition of the theorem and Lemma 2,
t′ satisfies cdn() and generalizes e′ in the view. So T̄Lt/θt is in V (δS(Si)).

⊆: Let T
Lt/θt
1 and T

Lt/θt
2 be two trees in V (δS(Si)) and their source tree(s)

are updated by δS. We show that T
Lt/θt
1 and T

Lt/θt
2 are in δV (V (Si)). There

are three cases: (a) T
Lt/θt
1 and T

Lt/θt
2 share the same source tree T x1/γt/θt (they

must appear in different e-trees in the view), and (b) T
Lt/θt
1 and T

Lt/θt
2 have

different source trees T
x1/γt/θt
1 and T

x1/γt/θt
2 . Case (b) has two sub cases: (b.1)

T
Lt/θt
1 and T

Lt/θt
2 appear in the same e-tree in the view, and (b.2) T

Lt/θt
1 and

T
Lt/θt
2 appear in different e-trees.

136 J. Liu et al.

Case (a): That T x1/γt/θt is updated by δS means that there exist two

tuples <x
(1)
1 , · · ·> and <x

(2)
1 , · · ·> in fortup(δS) such that x

(1)
1 = x

(2)
1 , both

tuples satisfy cdn(), and there exists condition tree T x1/γc/θc in each tuple sat-
isfying xc/γc/θc = strV alu, T x1/γt/θt is updated to T̄ x1/γt/θt by δS (two up-
date attempts with the same action for the two tuples, only the effect of the

first attempt is taken). After the update, the tuples become t′1 = <x̄
(1)
1 , · · ·>

and t′2 = <x̄
(2)
1 , · · ·>. By Lemma 2, t′1 and t′2 satisfy cdn of V and produce

e1, e2 ∈ V (δS(Si)) and T̄
Lt/θt
1 ∈ e1 and T̄

Lt/θt
2 ∈ e2.

On the other side, when V is evaluated against Si, x1 is copied to two tuples

t1 = <x
(1)
1 , · · ·> and t2 = <x

(2)
1 , · · ·> in fortup(V) and each of the tuples satisfies

cdn(). They produce e-trees e′1 and e′2. Because each tuple has a condition tree
T x1/γc/θc satisfying xc/γc/θc = strV alu, by Lemma 3, each of e′1 and e′2 has

TLc/θc satisfying Lc/θc = strV alu and each has a TLt/θt . Thus T
Lt/θt
1 ∈ e′1 and

T
Lt/θt
2 ∈ e′2 will be updated to T̄

Lt/θt
1 and T̄

Lt/θt
2 by δV . e′1 and e′2 become e1

and e2 in δV (V (Si)).

Case (b.1): That T
x1/γt/θt
1 and T

x1/γt/θt
2 are updated by δS and that they

appear in different e-trees mean that there are two tuples <x1[1], · · ·> and

<x1[2], · · ·> where x1[1] and x1[2] are different bindings of x1, T
x1/γt/θt
1 ∈ x1[1],

T
x1/γt/θt
2 ∈ xc[2], and each of tuples satisfies cdn() and xc/γc/θc = strV alu.

T
x1/γt/θt
1 and T

x1/γt/θt
2 become T̄

x1/γt/θt
1 and T̄

x1/γt/θt
2 after the update and

mapped to T̄
Lt/θt
1 and T̄

Lt/θt
2 in two different e-trees of V (δS(Si)). Following

the same argument of Case (a), T̄
Lt/θt
1 and T̄

Lt/θt
2 are in δV (V (Si)).

Case (b.2): That T
x1/γt/θt
1 and T

x1/γt/θt
2 are updated by δS and that they ap-

pear in a single e-tree mean that there is one and only one tuple <x1, · · ·> where

T
x1/γt/θt
1 , T

x1/γt/θt
2 ∈ x1. The tuple satisfies cdn() and there is a tree T x1/γc/θc

in the tuple satisfying x1/γc/θc = strV alu. T
x1/γt/θt
1 and T

x1/γt/θt
2 become

T̄
x1/γt/θt
1 and T̄

x1/γt/θt
2 after the update and mapped to T̄

Lt/θt
1 and T̄

Lt/θt
2 in

a single e-tree of V (δS(Si)). On the other side, as T
x1/γt/θt
1 and T

x1/γt/θt
2 are

mapped to a single e-tree e and share the same condition tree T x1/γc/θc , T
Lt/θt
1

and T
Lt/θt
2 share the same condition tree TLc/θc in e and will be updated by

δV . So T̄
Lt/θt
1 and T̄

Lt/θt
2 are in the e-tree of δV (V (Si)).

(2) δS is minimal
We prove by contrapositive. Let TLt/θt be a tree in the view updated by δV .

Then from above proofs, T x1/γt/θt is updated by δS and there exists a tuple
<x1, · · ·> such that T x1/γt/θt is in x1 and x1 has a condition tree T x1/γc/θc

satisfying “cdn() and x1/γc/θc = strV alu”.
If T x1/γt/θt is not updated by δS′, either (a) x1 is not a variable in the for-

clause of δS′, i.e., x1 is not in any tuple and neither is T x1/γt/θt , or (b) x1 is in
the tuple <x1, · · ·> but T x1/γt/θt is not in x1, or (c) x1 is in the tuple <x1, · · ·>
and T x1/γt/θt is in x1 but one of “cdn()” and “xc/γc/θc = strV alu” is not
in δS′.

Updating Typical XML Views 137

In Case (a), because x1 is not a variable in δS′, so T x1/γt/θt will not be
updated by δS′ (this does not prevent T x1/γt/θt from appearing in the view). This
means that the TLt/θt in V (δS′(Si)) is different from the TLt/θt in δV (V (Si))
because the assumption assumes that the TLt/θt in δV (V (Si)) is updated. This
contradicts the correctness of δS′.

In Case (b), because T x1/γt/θt is not in x1, so T x1/γt/θt is not in V (Si). This
contradicts the assumption that TLt/θt is in the view.

In Case (c), if cdn() is violated, the tuple of T x1/γt/θt will not be selected by
V , so T x1/γt/θt is not in V (Si) which contradicts the assumption. If x1/γc/θc =
strV alu is violated, T x1/γt/θt will not be updated by δV . This contradicts the
assumption that TLt/θt is updated by δV .

This concludes that δS is a precise translation. �

The View Update Problem Here Generalizes the View Update Prob-
lem of the Relational Database in a Similar Setting. Suppose that
there are three relations Student(sid, name, tel), Course(cid, name, credit),
and Enrolment(sid, cid, year,mark), a view defined by Vr = Student ��
Enrolment �� Course, and an update statement update Vr set tel="22345"

where name="John". The update condition attribute name and the update tar-
get attribute tel are from the same ‘variable’ Student, and the update does not
change the values of the join condition attributes sid and cid. Consequently
the theorem applies. It says that this update is translatable and the translated
source update is update Student set tel="22345" where name in (select

name from Student join Enrolment join Course) and name="John". This
source update is obviously precise because, if two students having the same name
‘John’ and different telephone numbers ‘21344’ and ‘21345’, and if the telephone
numbers are all changed to ‘22345’ in the view, they are also all changed in the
source relation. Next time when the view is derived, the telephone numbers will
appear changed and the same.

4 Update Translation When Lt/θt �= φ and xc �= xt

We look into the translation problem when the mappings of the update condition
and the update target are from different variables. The results of this section
generalize the view update problem in the relational views when they are defined
with the join operator.

In general, view updates are not translatable in the case of xc �= xt.

Consider two tuples where the binding xt is copied to x
(1)
t and x

(2)
t to combine

with two bindings xc[1] and xc[2] of xc by the context-based production as

< · · · , x(1)
t , · · · , xc[1], · · ·>

< · · · , x(2)
t , · · · , xc[2], · · ·>

Assume that in the view, the update condition xc/γc/θc is satisfied in xc[1] but
violated in xc[2]. Then, the copy of xt for the first tuple will be updated but the

138 J. Liu et al.

one for the second will not. In the source, if xt is updated, not only the first copy
of xt changes, but also the second copy. In other words, the translated source
update has view side-effect. However, if xt in the source is not updated, all its
copies in the view will not be changed.

Although generally view updates, when xc �= xt, are not translatable, for the
following view and the view update, a precise translation exists.

V : <v>{ for x1 in p1, · · ·, xn in pn
where · · · and xc/γc/θc = xc+1/γc+1/θc+1 and · · ·
return rtn(x1, · · · , xn) }</v>

where xc/γc is in rtn(x1, · · · , xn).

δV : (p̄s, v/e/Lc/θc = strV alu, v/e/Lt/θt, del(T)|ins(T))
where xt is either xc or xc+1.

The conditions of the setting require that the condition path xc/γc/θc must be
a join path in the view definition and the γ-expression xc/γc must be a prefix of
this join path. At the same time, the variable of the target path must be xc or
xc+1, the variable of the path joined to the update condition path.

Theorem 2. Given view V and view update δV defined above where Lt/θt �= φ,
update δS (in Section 3) is a precise translation of the view update δV if and
only if xc/γt/θt does not proceed any path in the where clause of δS.

Proof. The notation of this proof follows that of the proof for Theorem 1 and

Figure 1(a). Consider two tuples t1 = <x
(1)
t , xc[1], · · ·> and t2 = <x

(2)
t , xc[2], · · ·>

in fortup(δS(S)) where x
(1)
t and x

(2)
t are copies of xt and xc[1] and xc[2] can

be the same. If one is updated by δS, the other is updated too. The reason is

that for T
xt/γt/θt
1 ∈ x

(1)
t and T

xt/γt/θt
2 ∈ x

(2)
t , because of the join condition in

the view definition V : xc/γc/θc = xc+1/γc+1/θc+1 and because xc+1 = xt and

x
(1)
t = x

(2)
t , a condition tree T

xc/γc/θc
1 exists for T

xt/γt/θt
1 and T

xc/γc/θc
2 exists

for T
xt/γt/θt
2 and T

xc/γc/θc
1 = T

xc/γc/θc
2 . Consequently if T

xc/γc/θc
1 satisfies the

update condition, so does T
xc/γc/θc
2 . So either both T

xt/γt/θt
1 and T

xt/γt/θt
2 are

updated or none is updated. Following Lemma 4, if e1 and e2 are mapped from

T
xt/γt/θt
1 and T

xt/γt/θt
2 respectively, if one is updated, the other is updated too.

The remaining proof can be completed by following the argument of the proof
of Theorem 1. �

Example 2. Consider the view definition in Example 1 and the view instance
in Figure 2(b). If the view update is

δV : for s in v/e
where s/H = 1
update s/C (insert (K 5))

By the theorem, this update is translatable because the full update condition
path is v/e/H and its source mapping, z, is a join path. The update target path

Updating Typical XML Views 139

is /v/e/C and its source path, y, is the other end of the join condition y/D = z
in the view. Thus, the translated source update is below.

δS: for x in doc("r")/r/A, y in x/C, z in x/H

where y/D=z and z="1"

update y (insert (K 5))

It is easy to check that the translated update works correctly. That is, V (δS(S) =
δV (V (S)).

The View Update Problem Here Also Generalizes the Following
View Update Problem of the Relational Database. Suppose that
there are three relations Student(sid, name, tel), Course(cid, name, credit),
and Enrolment(stud, crs, year, semester,mark), a view defined by
V r = Student ��sid=stud Enrolment ��crs=cid Course, and an update
statement update Vr set mark="90" where sid="s01". The update condi-
tion attribute sid and the target attribute mark are from different ‘variables’
Student and Enrolment and they are bound to equal by the join condition, and
the update does not change the values of the join condition attributes sid, stud,
cid and crs. Consequently the theorem says that this update is translatable
and the translated source update is update Enrolment set mark="90" where

stud in (select stud from Student join Enrolment on sid=stud join

Course on crs=cid) and sid="s01". This source update is precise as if a
student has two courses with the marks of ‘60’ and ‘70’, if they are changed to
‘90’ in the view, they are also all changed to ‘90’ in the source relation. Next
time when the view is derived, the marks of the student will be ‘90’ in the view.

5 Conclusion

In this paper, we invested two cases of the view update problem when the update
target path is longer than the roots of e-trees. In the first case where the update
target and the update condition are from the same variable, a solution is pro-
posed and the translation obtained from the algorithm is proved to be precise.
In the second case where the update target and the update condition are from
the different variables, although in general view updates are not translatable, we
discovered a specific type of view and a specific type of updates and derived a
precise translation for the case. There are a few more cases that have not been
investigated in the paper. These will be our future work.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. TODS 6(4),
557–575 (1981)

2. Boag, S., Chamberlin, D., Fernndez, M.F., Florescu, D., Robie, J., Simon, J.:
Xquery 1.0: An xml query language (2007), http://www.w3.org/TR/xquery/

http://www.w3.org/TR/xquery/

140 J. Liu et al.

3. Boneva, I., Groz, B., Tison, S., Caron, A.-C., Roos, Y., Stawork, S.: View update
translation for xml. In: ICDT, pp. 42–53 (2011)

4. Braganholo, V.P., Davidson, S.B., Heuser, C.A.: From xml view updates to rela-
tional view updates: old solutions to a new problem. In: VLDB Conference, pp.
276–287 (2004)

5. Cong, G.: Query and Update through XML Views. In: Bhalla, S. (ed.) DNIS 2007.
LNCS, vol. 4777, pp. 81–95. Springer, Heidelberg (2007)

6. Falquet, G., Nerima, L., Park, S.: Hypertext view update problem. Technical Re-
port, University of Geneva (2000), www.cui.unige.ch/isi/reports/hvu.ps

7. Fankhauser, P.: Xquery formal semantics state and challenges. SIGMOD
Record 30(3), 14–19 (2001)

8. Liu, D., Hu, Z., Takeichi, M.: Bidirectional interpretation of xquery. In: PEPM,
pp. 21–30 (2007)

9. Llasunaga, Y.: A relational database view update translation mechanism. In:
VLDB Conference, pp. 309–320 (1984)

10. Tatarinov, I., Ives, Z.G., Halevy, A.Y., Weld, D.S.: Updating xml. In: SIGMOD
Conference, pp. 413–424 (2001)

11. Tomasic, A.: View Update Translation Via Deduction and Annotation. In: Gyssens,
M., Van Gucht, D., Paredaens, J. (eds.) ICDT 1988. LNCS, vol. 326, pp. 338–352.
Springer, Heidelberg (1988)

12. Tomasic, A.: Determining correct view update translations via query containment.
In: Workshop on Deductive Databases and Logic Programming, pp. 75–83 (1994)

13. Wang, L., Rundensteiner, E.A., Mani, M.: Updating xml views published over
relational databases: towards the existence of a correct update mapping. DKE 58,
263–298 (2006)

www.cui.unige.ch/isi/reports/hvu.ps

	Updating Typical XML Views
	Introduction
	Preliminaries
	View Definition Language
	The Update Language
	The View Update Problem

	Update Translation When Lt/t = and xc=xt
	Update Translation When Lt/t = and xc=xt
	Conclusion

