

A Serialization Framework

for XQuery

by

Roxana Zapata Gomez

in partial fulfillment of the requirements for the degree of

Master of Applied Computer Sciences

Supervisors: Submitted to:

Dipl.-Inf. Sebastian Bächle Department of Computer Science

M. Sc. Caetano Sauer University of Kaiserslautern

Prof. Dr.-Ing. Dr.h.c. Theo Härder

August 31, 2012

2

3

Abstract

This thesis addresses the problem of management of large intermediate results in the

context of XQuery, a language for processing XML data. This work proposes an

XQuery serialization framework for enabling the management of large data during

the execution of a query. Based on this framework, we present two applications.

BufferedSequence manages large sequences which result from the evaluation of

XQuery expressions. TupleSort is an implementation of an external sorting algorithm

for large tuple streams.

Zuzammenfassung

Diese Masterarbeit beschäftigt sich mit dem Problem des Managements großer

Zwischenresultate die bei XQuery, einer XML-Verarbeitungssprache, anfallen. In

dieser Arbeit wird ein Framework für die Serialisierung von XQuery Resultaten

vorgestellt, um die Verarbeitung großer Datenmengen bei der Ausführungung einer

Anfrage zu ermöglichen. Aufbauend auf diesem Framework werden zwei

Anwendungen vorgestellt: BufferedSequence verwaltet lange Sequenzen, die bei der

Ausführung von XQuery-Ausdrücken enstehen. TupleSort ist die Implementierung

eines externen Sortier-Operators, der lange Tupelströme unterstützt.

4

Ich versichere hiermit, dass ich die vorliegende Masterarbeit mit dem Thema „A

Serialization Framework for XQuery“ selbständig verfasst und keine anderen als die

angegebenen Hilfsmittel benutzt habe. Die Stellen, die anderen Werken dem

Wortlaut oder Sinn nach entnommen wurden, habe ich durch die Angabe der Quelle,

auch der benutzten Sekundärliteratur, als Entlehnung kenntlich gemacht.

Kaiserslautern, den 31.08.2012 Roxana Zapata Gomez

5

For my parents

6

7

Acknowledgements

I would like to thank Professor Theo Härder for giving me the opportunity of being

part in his research group and for funding my master studies. I would like also to

express my sincerest gratitude to Sebastian Bächle for his support and guidance

during my research on Full Text Indexing in XML documents and on my master

thesis. Furthermore, I would like to thank Caetano Sauer for supporting me and

helping me in every detail of this work.

Most importantly, I would like to thank to my parents for their support and

encouragement. I wish to thank my entire extended family for providing a loving

environment for me. Finally, I would like to thank all friends who gave me an

excellent time in Kaiserslautern and made me feel right at home.

8

9

Contents

1 Introduction ... 11

1.1 Motivation ... 11

1.2 Contribution ... 12

2 XQuery Process Architecture .. 15

2.1 XQuery .. 15

2.1.1 Data Model .. 16

2.1.2 Expressions .. 18

2.2 XQuery Processor Architecture ... 22

2.2.1 Compilation Process .. 22

2.2.2 FLWOR Pipeline ... 23

3 XQuery Serialization Framework ... 25

3.1 Motivation ... 25

3.2 Item Encoding ... 26

3.3 Sequence Encoding ... 27

3.4 Tuple Encoding ... 28

3.5 Implementation .. 30

4 BufferedSequence ... 31

4.1 Management of large sequences .. 31

4.2 Implementation .. 33

5 External Sorting .. 37

5.1 Contextualization ... 37

5.2 Order by clause .. 38

5.3 Implementation .. 40

5.3.1 Internal sorting ... 42

5.3.2 External sorting .. 43

10

5.4 Optimization sorting techniques .. 48

6 Experiments ... 51

6.1 XSF .. 51

6.1.1 Sequence size vs. Encoded sequence size .. 51

6.1.2 Encoding time vs. Decoding Time ... 52

6.2 Buffered Sequence ... 54

6.2.1 Execution Time .. 54

6.3 External Sorting ... 56

6.3.1 Execution Time .. 56

7 Conclusion ... 59

Bibliography ... 61

11

1 Introduction

Chapter 1

Introduction

1.1 Motivation

Effective and efficient management of large data volumes is necessary in all

computer applications, from business data processing to library information retrieval

systems, multimedia applications, computer-aided design and manufacturing, real

time process control, and scientific computation. In the context of data management,

“large” means that it cannot fit into main memory. Thus, it must reside on external

storage and be brought into main memory selectively for processing. The

management of large documents in XQuery–the query language for XML data–is

more complex than in relational databases. Firstly, XQuery supports a nested data

model which causes more difficulties for storing and retrieving it from external disk.

Secondly, XQuery supports the processing of data from different sources such as

database systems or documents in a file system, which requires a generic processing

engine.

The Extensible Markup Language (XML) is by now the de facto standard

format for exporting and exchanging data across systems, departments and network

boundaries, due to its flexibility. First, it dissociates schema from data. In this way,

data can exist without a schema, and data from legacy applications or archived can

be processed. Secondly, it is able to represent a large spectrum of data, from totally

unstructured, semi-structured, to totally structured data. As increasing amounts of

information are stored, exchanged, and presented using XML, it becomes

increasingly important to effectively and efficiently query XML data sources.

12

XQuery is a query language designed by the W3C [2] to address these needs.

XQuery natively speaks XML, and it has convenient primitives to formulate queries

using a syntax similar to SQL, in addition to support for XML-specific operations

such as path navigation. Furthermore, it has been extended by a number of additional

features which go beyond message transformation and XML query processing, for

which XQuery was initially designed. XQuery Update Facility [11] and XQuery

FullText [12] have been devised and have reached recommendation status by the

W3C. Under development are still the XQuery Scripting Facilities [13]. With all

these extensions, XQuery is much more than merely a query language; it has become

an extremely powerful tool for developing almost any kind of data processing

application.

The performance of XQuery in terms of effectiveness and efficiency relies on

the XQuery processor architecture and the storage hierarchy context. The

architecture of a processor is up to implementation decisions of its designers. On the

other hand, the context of the storage hierarchy–a natural structure of computer

architecture, given the set of technologies such as main memory and hard disk; and

their access speed, capacity and cost characteristics–influences the management of

large XML documents. Firstly, main memory access is much faster than access to

data stored on disk. In fact, the relative difference in access time is at least 1000

times. Secondly, main memory capacities are much smaller than disk. Thus, the use

of external disk is necessary. Thirdly, main memory is expensive in terms of price

per megabytes, while disks are cheaper. Due to these differences, efficient algorithms

for accessing and manipulating large XML documents are required to store

intermediate results in external memory, while still providing acceptable

performance.

1.2 Contribution

We propose a Serialization Framework which is integrated into an existing main-

memory query processor, namely the Brackit Engine. The Serialization Framework

addresses the issue of management of large XML documents between main memory

and external disk in the XQuery context. Our framework is compact to make

efficient use of the storage space, fast so the overhead of reading and writing

megabytes of data is minimal, and extensible so we can transparently read and write

data using different encoding schemes besides the one we propose. Furthermore, the

framework is abstracted from the execution engine in which the implementation of

our approach does not modify the manner how the execution engine works.

We use our framework in two different applications. In one application, it

manages sequences that result from evaluating expressions, based on a component

called BufferedSequence. It adds sequences to a buffer until a threshold, which is the

maximum size assigned in main memory for holding sequences, is reached. Once it

13

is reached, the buffered set of sequences is written into a temporary file using the

Serialization Framework.

In the second application, our framework is used during the internal evaluation

of FLWOR expressions using the special sort operator that implements external

sorting. The sort operator has been extended to support external sorting using file-

based sort and merge techniques. In addition, we have implemented optimization

techniques to allow comparison operations directly on the encoded binary format.

The remainder of this thesis is organized as follows. Chapter 2 introduces the

XQuery language focusing on its data model. Moreover, we present the Brackit

XQuery Engine, which is used for the implementation of our approach. Chapter 3

presents the Serialization Framework. Chapter 4 presents our BufferedSequence

component. Chapter 5 presents the external sort operator. In chapter 6 we empirically

assess the efficiency of the framework with experiments. Finally, Chapter 7

concludes this thesis.

14

15

2 XQuery Process Architecture

Chapter 2rocess Architecture

XQuery Process Architecture

2.1 XQuery

XQuery is a query language for XML data sources and it is designed to meet the

requirements of the W3C XML Query Working Group [16] and the use cases in [17].

XQuery provides three kinds of flexibility. First, it operates on a broad spectrum of

XML information sources such as relational databases and documents. Second,

XQuery allows to process completely untyped data, which may be progressively

improved with schema information, in a “data first-schema later” (or as pay as you

go) approach. Thirdly, it is able to operate in a large spectrum of data–from totally

unstructured, semi-structured, to totally structured data.

Furthermore, XQuery has convenient primitives to formulate SQL-like queries,

allowing typical query operations on XML data sources, including: selecting

information based on specific criteria, filtering out unwanted information, searching

for information within a document or set of documents, joining data from multiple

documents or collections of documents, sorting, grouping and aggregating data, and

so on.

There are as many reasons to query XML as there are reasons to use XML.

XQuery language can be used for: extracting information from a relational database

for use in a web service, generating reports on data stored in a database for

presentation on the Web as XHTML, searching textual documents in a native XML

database and presenting the result, pulling data from databases and transforming it

for application integration and others.

16

The following subsections give an overview of the XQuery language main

constructs, focusing primarily on its data model, and FLWOR expressions. Rather

than a detailed explanation, we provide a sample query which illustrates the basic

features of XQuery. For a proper introduction, we refer to W3C XQuery standard

[2].

2.1.1 Data Model

XQuery is defined in terms of the XQuery and XPath Data Model [3], or shortly,

XDM. Every input and output of a query is an instance of the data model. These are

represented as an ordered sequence–an ordered list of zero, one or more items–and

there is no distinction between a sequence of length one and the individual item it

contains. This definition forbids nested sequences, i.e., sequences that contain

another sequence as one of its items, which means that some operations must

perform implicit unnesting. An item is a generic term that refers to either a node or

an atomic value. The types of node and atomic values are defined by XML Schema

[4], which is the standard that defines types in an XML documents.

Nodes are used to represent XML entities, and can be one of seven kinds:

document, element, attribute, text, namespace, processing instruction, or comment.

The first node in any document is the document node, which contains the entire

document and contains its root node as child. The element nodes, comment nodes,

and processing instructions nodes occur in the order in which they are found in the

document. Element nodes occur before their children, i.e., the elements nodes, text

nodes, comment nodes, and processing instructions they contain. Attributes are

considered children of an element, but they have a defined position in the document

order: they occur after the element in which they are found, before the children of the

element. Text nodes contain plain character data of an element.

Every node has a unique node identity that distinguishes it from other nodes,

even from other nodes that are otherwise identical. In addition to their identity, nodes

have two kinds of values: string and typed. All nodes have a string value. The string

value of an element is its character data content and all that of all its descendant

elements concatenated together. The string value of an attribute node is simply the

attribute value. Both element and attribute nodes have a typed value, too. They are

taken into account if there is any. An element or attribute might have a particular

type if it has been validated with a schema. If it is not declared in the schema, the

type of the value is represented by the special type xs:untypedAtomic[4].

Atomic values are single values, with no markup, and no association with any

particular element or attribute. An atomic value can have specific type, such as

xs:string or xs:integer, or it can be untyped. Atomic values don´t have

identity. It is not meaningful to ask whether 1 and 1 are the same integer or different

integers; we can only ask whether they are equal.

17

Figure 2-1 illustrates a basic XML document taken from the XML Query Use

Cases [5]. Its equivalent structure as an XDM instance is shown in Figure 2-2, where

each node shape in the tree corresponds to an XDM node kind. The document

represents bibliography data which contains a sequence of book elements.

<bib>

 <book year="1994">

 <title>TCP/IP Illustrated</title>

<author><last>Stevens</last><first>W.</first></author>

 <publisher>Addison-Wesley</publisher>

 <price>65.95</price>

 </book>

 <book year="1992">

 <title>Advanced Programming in the Unix

environment</title>

<author><last>Stevens</last><first>W.</first></author>

 <publisher>Addison-Wesley</publisher>

 <price>65.95</price>

 </book>

 <book year="2000">

 <title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>

<author><last>Buneman</last><first>Peter</first></author>

 <author><last>Suciu</last><first>Dan</first></author>

 <publisher>Morgan Kaufmann Publishers</publisher>

 <price>39.95</price>

 </book>

 <book year="1999">

 <title>The Economics of Technology and Content for

Digital

 TV</title>

 <editor>

 <last>Gerbarg</last><first>Darcy</first>

 <affiliation>CITI</affiliation>

 </editor>

 <publisher>Kluwer Academic Publishers</publisher>

 <price>129.95</price>

 </book>

</bib>

Figure 2-1: A sample XML document

18

2.1.2 Expressions

The expression is the basic unit of evaluation in the XQuery language. A query

contains expressions that can be made up of a number of sub-expressions, which may

themselves be composed from other sub-expressions. Every expression evaluates to a

sequence, which may be a single atomic value, a single node, the empty sequence, or

multiple atomic values and or/nodes. This section covers the most basic types of

expressions, with a greater focus on FLWOR expressions.

Figure 2-2: XDM instance for the sample document

2.1.2.1 FLWOR Expressions

FLWOR expressions are used to express data-intensive iterative computations, and

hence may generate large amount of data during its evaluation. Therefore, they

require great care for the data processing in main memory and external disk.

The acronym FLWOR stands for “for, let, where, order by,

return,” the clauses that are used in the expressions. The group by and count

clauses were added later in the version 3.0 of the XQuery standard. In the scope of

this work, only group by is considered. This kind of expression is often useful for

computing joins between two or more documents and for restructuring data. A

FLWOR expression starts with one or more for or let clauses in any order,

followed by optional where clauses, optional order by clauses, optional group

by clauses, and a required return clause. Figure 3-3 shows an example of

FLWOR expression, which we use as basis for the following discussions.

19

The semantics of FLWOR expressions is given by a sequential evaluation of the

clauses, where each clause consumes tuples of bound variables (which we refer to

simply as tuples) as a context and produce one or more tuples as a context for next

clause. Variables are denoted by the initial symbol $. At the beginning of the

evaluation of a FLWOR expression, there is no variable bound, thus, the tuple is

empty.

for $b in doc (‘sample.xml’)/bib/book

let $y := $b/@price

where $y > 50.00

group by $y

order by $y descending

return

 <result>

 <price>{$y}</price>

 <result>

Figure 2-3: Sample FLWOR expression

The for clause evaluates the expression given to its in parameter, where a

tuple is generated for each item in the resulting sequence. The resulting tuple is then

passed to the next clause and the process is repeated until all items in the sequence

are consumed. In the example of Figure 2-3, the variable $b is bound to each book of

the bibliography data, and the following clauses are evaluated once per each book.

The let clause binds a variable to the entire result of an expression. This

bound variable is attached to the tuple. Note that the let clause does not perform

any iteration. After the for and let clauses in the example of Figure 2-3 are

evaluated, we have the following tuple stream: Here b1, …, b4 represent the book

elements in the document as XDM instances.

[$b = b1, $y = “65.95”]

[$b = b2, $y = “65.95”]

[$b = b3, $y = “39.65”]

[$b = b4, $y = “129.95”]

The where clause filters out the tuples that are generated from the for and

let clauses if the evaluation of a given expression returns the boolean value False.

In our example, the following tuple stream remains after the where clause:

20

[$b = b1, $y = “65.95”]

[$b = b2, $y = “65.95”]

[$b = b4, $y = “129.95”]

The group by clause groups all tuples that have the same value in a given

variable, grouping the other variables in a sequence. Its argument must be a variable

reference. The group by clause also supports multiple variable references, which

causes groups to be formed according to distinct values on every given variable.

After the group by clause is evaluated, we have the following tuple stream:

[$b = (b1, b2), $y = “65.95”]

 [$b = b4, $y = “129.95”]

The order by clause reorders the tuple stream according to the expression

given, which must be an atomic value (also in group by). In our example, the two

remaining tuples in the stream are swapped, so that the tuple with price “129.25”

comes before the one with the price “65.95”.

Finally, the return clause finishes the evaluation of the FLWOR expression

and produces a final result by evaluating the given expressions for each tuple in the

stream. Because of the unnesting semantics of XQuery, if the expression results in

multiple-item sequences, these are concatenated to form a single sequence which is

the result of the whole FLWOR expression. In our example, the return clause is

given a constructor expression, which produces nodes as a result or creates nodes

which do not necessarily originate from existing ones. The result of our example is

shown in Figure 2-4.

 <result>

 <price>129.95</price>

 <result>

 <result>

 <price>65.95</price>

 <result>

Figure 2-4: Result of the sample query

Path expressions are used to navigate input documents to select nodes of

interest. According to the XQuery semantics, they are normalized into FLWOR

expressions. The return nodes of path expressions are in document order, defined in

[3]. A path expression is made up of one more steps that are separated by a slash (/)

or double slashes (//). A path expression is always evaluated to a particular context

21

item, which serves as the starting point for the relative path. When a context item is a

node, it is called the context node.

The context item change with each step. A step returns a sequence of zero, one

or more nodes that serves as the context items for evaluating the next step. For

example in doc(“sample.xml”)/bib/book/title, the

doc(“sample.xml”) step returns a document node that serves as the context

item when evaluating the bib step. The bib step is evaluated using the document

node as the current context node, returning a sequence of one bib element child of

the document node. This bib element then serves as the context node for evaluation

of the book step, which returns the sequence of book children of bib. The final

step, title, is evaluated in turn for each book child in this sequence.

Additionally, steps may contain predicates which filter the results to contain

only nodes that meet specific criteria. Using predicates, we can select only elements

that have a certain value for an attribute or child element, we can select only

elements that have a particular attribute child element, or elements that occur in

particular position within their parent. Figures 2-5 illustrates how a path expression

is normalized into a FLWOR expression.

doc(‘sample.xml’)/bib/book

for $b in doc(‘sample.xml’)

return

 (

 for $c in child ($b)

 return

 child($c)

)

Figure 2-5: Normalization of Path expression into FLWOR expression

In the scope of this thesis, we focus on FLWOR expressions that use the sort,

group by, or join operators. These operators are known as blocking operators,

meaning they consume the entire input before producing any output. As we

mentioned in the introduction, the limitations that main memory has with respect to

its capacity render that sorting, grouping or join must use external disk.

22

2.1.2.2 Other expressions

Primary expressions are the basic primitives of the language. They include literals,

variable references, context item expressions, constructors, and function calls. A

primary expression may also be created by enclosing any expression in parentheses,

which is sometimes helpful in controlling the precedence of operators. Arithmetic

expressions allow values to be added, subtracted, multiplied, and divided.

Comparison expressions allow two values to be compared. XQuery provides three

kinds of comparison expressions, called value comparisons, general comparisons,

and node comparisons. A logical expression is either an and-expression or an

or-expression. If a logical expression does not raise an error, its value is always

one of the boolean values true or false. Construct expressions creates XML

structures within a query. The ordered and unordered expressions set the ordering

mode in the static context to ordered or unordered for a certain region in a query. The

conditional expressions are based on the keywords if, then, and else. The

processing of these expressions can be found in [2].

2.2 XQuery Processor Architecture

Brackit [6] is an implementation of XQuery written in Java. It uses a hybrid

execution mechanism, as part of a database system (native XML database or XML-

relational hybrid) and as standalone interpreter for small XML files. This hybrid

solution provides efficiency comparable to the top performers in both usage

scenarios.

In the scope of the thesis, we integrate our Serialization Framework into the

main-memory query processor, the Brackit Engine. Our framework is abstracted

from the execution engine. The following subsections present the compilation

process and FLWOR pipelines in the Brackit Engine.

2.2.1 Compilation Process

Figures 2-6 gives an overview of the compilation process in Brackit. At the top, the

Parser module generates an Abstract Syntax Tree, short AST, which is used during

the compilation phases as a logical query representation. At the end of the

compilation, the AST is passed to the Translator module, which generates a tree of

executable physical operators. The Compiler module is constituted by the steps in

between the Parser and Translator modules.

The first phase of the Compiler module is Analysis. Its goal is to perform static

typing and annotate expressions with typing information, as well as to perform

simple rewrites such as constant folding and introduction of let bindings that simplify

optimization. The next phase is then Pipelining, which transform FLWOR

expressions into pipelines- the internal, data-flow-oriented representation of

23

FLWORs, which we discuss in Section 2.1.2.1 Pipelines are subject to several

optimization rules (such as push-downs, join recognition, unnesting, etc.), which are

applied to the Optimization phase.

Figure 2-6: Overview of compilation process

2.2.2 FLWOR Pipeline

FLWOR pipelines are generated from a FLWOR expression tree, during the

pipelining phase of the compilation process. The FLWOR expression tree is

represented by the AST node FlworExpr. This node contains children that

correspond to clauses that are present in the FLWOR expression. In the pipeline

view, these clauses are translated as operators, where the operators are arranged in a

top-down sequence. Figure 2-7 illustrates these two representations of the FLWOR

expression.

To explain how FLWOR pipelines works, we make use of the example in 2-7.

At the top, the PipeExpr, which represents the evaluation of the complete FLWOR

expression, triggers the execution of the pipeline under it and receive the result from

the last operator, which is always the End operator.

The execution of the pipeline starts with the Start operator, which creates an

empty tuple that is fed to the next rightmost child operator in the pipeline. The

following operators receive and produce tuples, in which the tuples are modified

given the expressions they evaluate. The End operator is the exception in this

process and represents the return clause. It does not produce tuples. It consumes

the input tuples and generates a sequence as a result.

24

The operators in between the Start and End operator are ForBind,

LetBind, Select, GroupBy and Sort operators which represent the for, let,

where, group by, and order by clauses respectively. These operators consume

and produce tuples as explained in Subsection 2.1.2.1. The pipeline representation

resembles the physical plan, which follows the open-next-close model [18].

Figure 2-7: Translation of FLWOR expression tree into a pipeline

25

3 XQuery Serialization Framework

Chapter 3rocess Architecture

XQuery Serialization Framework

3.1 Motivation

The processing of large data volumes requires writing intermediate results to external

memory. The process of moving data from main memory to disk is called

serialization, which transforms structured objects with pointers to memory addresses

into a contiguous binary representation. The reverse process is called deserialization.

The manipulation of XDM instances between main memory and external disk

for serialization and deserialization is supported by our XQuery Serialization

Framework, shortly XSF. In this thesis, the assumed characteristics of XDM

instances are as following. An item instance is associated with a type and a value.

Values can be encoded with fixed-length or variable-length. Sequence instances are

composed by zero or more items. The number of items that a sequence contains is

not known in the beginning, because the expressions in our processor are evaluated

in a lazy manner, computing individual items on demand. Tuples streams contain one

or more sequences which are transferred between operators for further computation.

The number of sequences that it contains is determined statically during the

compilation process.

In the following section, we describe our encoding schemes in detail. We

provide an encoding component for each structural level of XDM, namely Item,

Sequence, and Tuple. Note that the higher-level components reutilize the lower-level

ones to encode its nested values.

26

3.2 Item Encoding

The encoding schema for an item (see Figure 3-1) consists of a type identifier

followed by its item type encoding. The type is either atomic or node. To encode the

item´s value, we use AtomicEncoding when its item type belongs to atomic or

NodeEncoding when its item type belongs to node.

The encoding structure for an atomic value is made up of a length field and the

value payload. This encoding structure supports the storage of variable-length.

Figure 3-1: Item encoding schema

The string value of the atomic is encoded as an array of bytes. The size of the

byte array–i.e., atomic value length–is encoded in additive growth manner.

Algorithm 3-1 describes this encoding. If the size of the atomic value is less than 2
8
-

1 bytes, then the length field uses 1 byte (B0) for its encoding. Otherwise, it uses 2

more bytes (B1, B2). In case the length of the field minus 2
8
-1 is larger than 2

16
-1,

then we use four more bytes (B3, B4, B5, B6).

Algorithm 3-1 getAtomicLength of AtomicEncoding

1: function GETATOMICLENGTH (atomicValue)

2: length ← atomicValue.length()

3: if length < 255 then

4: return 1-byte

5: end if

6: if length – 255< 65535 then

7: 1-byte ← 255

8: 2-bytes| 3-bytes ← length – 255

9: return 1-byte| 2-bytes| 3-bytes

10: end if

27

11: if length – 25 – 65535>= 65535 then

12: 1-byte ← 255

13: 2-bytes| 3-bytes ← 65535

14: return 4-bytes| 5-bytes| 4-bytes| 5-bytes ← length – 255 – 65535

15: end if

16: end function

3.3 Sequence Encoding

The sequence encoding schema (see Figure 3-2) consists of a sequence type

identifier followed by its sequence value. The sequence type identifier distinguishes

a sequence of type BufferedSequence, a special sequence that we introduce in

Chapter 4.

Figure 3-2: Sequence encoding schema

If the sequence is not a type of BufferedSequence, then the sequence value

schema (see Figure 3-3) is encoded as following. It consists of one or more item

length and item encoding followed by one sequence end. The item length fields are

written as 1-byte, 3-bytes or 7-bytes integer(s), the setting of bytes follow the

algorithm showed in Algorithm 4-1, which represents the length of the item encoded

in bytes. The item fields follow the encoding structure explained in Section 3.2. The

sequence-end field is represented by “0” (zero) which is written as a 1-byte integer.

The purpose of having the sequence-end field is to determine the end of a sequence

between a set of sequences that belong to a tuple when it is deserialized, a process

explained in Section 3.4.

28

This encoding supports compact storage and flexibility. Compact storage space

is achieved using efficient number of bytes for each field of the structure using the

Algorithm 3-1. Flexibility is achieved as well because it allows the encoding of items

as they are evaluated in a lazy manner.

Figure 3-3: Sequence value encoding schema

If the sequence is a BufferedSequence instance, then it is encoded in a different

manner. A BufferedSequence in our approach is associated with a file. Its encoding

consists of the length of the file name followed by the file name. The length is

written as 1-byte Integer, and the file name as n-byte String. Figure 3-4 illustrates

this schema.

 Figure 3-4: BufferedSequence value encoding schema

3.4 Tuple Encoding

The role that tuples play for transferring information across operators is really

important, because tuple streams in blocking operators can become very large so that

the use of external memory is necessary. Therefore, we need to provide compact and

fast encoding of tuples. The tuple encoding schema (see Figure 3-5) consists of the

number of sequences followed by one or more sequence encodings. The sequence

encoding fields follow the encoding schema explained in Section 3.3.

29

Figure 3-5: Tuple encoding schema

Figure 3-6 gives an overview of the proposed encoding schema. The interface

Encoder has two functions called encode and decode. The encode function

produces a byte array, while the decode function an object which is an abstract

representation of the data. The interface explained above is implemented by the class

ItemEncoder. It uses two other classes, ItemTypeFactory and

ItemEncoderFactory. ItemTypeFactory maps an item type with an

integer value, while the ItemEncoderFactory maps an encoding scheme that

can be defined internally (our XEF) or externally to an integer value. When either

item type or encoding type need to be referenced in Brackit, we use their integer

value pair. AtomicEncoder and NodeEncoder are instantiated according to the

type of the item to be encoded.

Figures 3-6: Class Diagram of XEF

30

3.5 Implementation

As we mentioned in the introduction of this chapter, the XQuery Serialization

Framework forms the basis for serializing and deserializing data generated from

XQuery expression evaluations. The XSF is implemented using streams, which

transports data from one point (e.g., main memory) to some other point (e.g., external

memory). Java, the implementation language that we use to build XSF, has two

fundamental components in the java.io package: InputStream class and

OutputStream.

An InputStream is a reference to a source data sink (be it a file, network

connection, etc), that we want to process as follows:

 We want to read the data as raw bytes
1
 and write our own code encoding

with the bytes.

 We want to read the data in a sequential order, that is, to get to the nth byte of

data, we have to read all the preceding bytes first and we are not guaranteed

to be able to jump back again once we have read them.

In order to support an abstract deserialization of data, we have defined three

subclasses of the InputStream class: ItemInputStream,

SequenceInputStream and TupleInputStream. The

ItemInputStream class uses the item encoding schema for its deserialization.

SequenceInputStream uses the sequence encoding schema.

TupleInputStream uses the structure of the tuple encoding.

An OutputStream is a reference to a destination data sink (be it a file,

network connection, etc), that we want to process as follows:

 We want to write the data as raw bytes.

 We want to write the data in a sequential order, one data appended after

another data.

In order to support an abstract serialization of data as we did for the

deserialization process, we have defined three subclasses of OuputStream class:

ItemOutputStream, SequenceOutputStream and

TupleOutputStream. The ItemOutputStream class uses the item encoding

schema for its serialization. SequenceInputStream uses the sequence

encoding schema. TupleOutputStream uses the tuple encoding schema.

1
 Raw data is a term for data collected from a source. Raw data have not been subjected to processing or any

other manipulation, and are also referred to as primary data.

31

4 BufferedSequence

Chapter 4rocess Architecture

Buffered Sequence

4.1 Management of large sequences

An XQuery program is constituted of a tree of expressions, which delivers a

sequence when evaluated. The sequences can be constituted by zero or more items.

To illustrate the data-flow of sequences across an expression tree, consider Figure 4-

1(a). For the evaluation of the expression expr1, the arguments expr2 and expr3

must be evaluated. Expression expr3 requires as an argument the delivered

sequences from expression expr4. As showed in this example, in order to provide

the result of the evaluation of a whole tree of expressions, there are many

intermediate results that need to be managed by the XQuery processor.

There are two scenarios for these intermediate results. In the first one, the size

of each intermediate result is smaller than the available main memory. For instance,

the evaluation of the expression 1 + 1 is a single integer, which can be easily

managed in main memory. In the second scenario, the size of each intermediate

result is larger than the available main memory. Thus, we make use of our

serialization framework to store those results in external memory.

Due to the diverse size of the intermediate results during the evaluation of

expressions, we need an approach that is abstract from the whole evaluation of the

tree of expressions. Figure 4-1 (b) illustrates where the approach need to be placed

across the data-flow of sequences. In this scenario, when a parent expression calls the

evaluation of a child expression, it receives an abstract Sequence object, which is

iterated transparently.

32

Figure 4-1: Tree of expressions

There are two approaches for the management of intermediate results in external

memory. The first one is illustrated in Figure 4-2 (a). The expression expr4 delivers

items item1, item2, … , itemn when evaluated. These items are serialized

immediately into an external disk one per one as they are delivered by the

expression. When the expression expr3 requires as argument the intermediate

results from expression expr4, the intermediate result is obtained deserializing them

from the external disk. This approach has the advantage of keeping a low memory

footprint, but it has two severe problems. First, it generates too many small read

operations, which are significantly slower than fewer large reads in a magnetic disk.

Second, it underutilizes main memory by serializing even the smallest sequences,

resulting in a drastic penalty for simple expressions that could be completely

evaluated in main memory.

The second approach, which we propose, manages the intermediate results

minimizing the number of I/O operations. This is achieved using a buffer, which is a

temporary place in main memory which facilitates the exchange of data between

main memory and disk. In this buffer, a set of items is kept in main memory up to a

predefined cardinality threshold. Once it is reached, all items are written to disk in a

single I/O operation, overcoming the first problem of the previous approach. The

second problem is solved by using a predefining threshold in the buffer. If the

threshold of the buffer is never reached, there is no serialization of the intermediate

results. Therefore, there is no computation in main memory for encoding and

decoding of sequences and there is no I/O operation. However, our approach has a

disadvantage with respect to the advantage of the previous approach, it keeps larger

memory footprint, but it can be adjusted by setting smaller thresholds in the buffer.

Figure 4.2 (b) gives an overview of our approach.

33

Figure 4-2: Management of intermediate result

Note that our approach is a generalization of the first one when its buffer size is

set to zero. The buffer size can be defined as an array of bytes or as an array of items.

In the former case, once it is created, it has a fixed size in main memory. Therefore,

it is known how much of memory is allocated for the buffer. On the other hand, each

item added to the buffer needs to be encoded to binary, which is an extra cost when

the buffer does not need to be serialized. In contrast to this scenario, a buffer created

as an array of items defines the number of items contained in main memory

referenced by the buffer. However, there is no control of the memory overload. For

instance, just one item can cause an overload the main memory. In this thesis, we

have assumed that a single item always fit in main memory.

4.2 Implementation

The BufferedSequence component is the implementation of our approach. It is

an extension of the Sequence Object. The BufferedSequence component manages the

items delivered by any expression when evaluated. For each node in the expression

tree, an instance of BufferedSequence is created. The instance of the

BufferedSequence builds an initial empty buffer which is an array of items with a

predefined threshold.

When the evaluated expression produces an item, it is delivered to the

BufferedSequence instance. First, it is checked whether there is available space in the

buffer for an item reference. If yes, the item is added into the buffer. Note that the

items are added into the buffer in a sequential order as they are delivered by the

expression. If the threshold of the buffer is never reached, the items referenced by the

buffer are kept in main memory without need to use an external disk, avoiding IO

operations. Figures 4-3 (a) illustrates this first phase of buffering of items.

When there is no available space in the buffer, meaning that the threshold has

been reached, the BufferedSequence instance creates an empty temporary file. Then,

the items referenced by the buffer are serialized into that temporary file using our

serialization framework. The serialization of items referenced by the buffer consists

34

of three steps. First, we iterate over the buffer and get a reference of an item. Second,

we encode an item into a binary stream using the item encoding scheme proposed in

our serialization framework. Third, we serialize the item binary stream into the

temporary file. We repeat this process until there is no more item references in the

buffer. Once all items from the buffer are serialized, we clean the buffer. Figure 4-3

(b) illustrates the second phase of buffering of items, which in some cases is never

executed when the intermediate results are small.

If the BufferedSequence instance is fed with more items after the serialization

process, the items are treated as in the first phase of the buffering. If the threshold of

the buffer is reached again, the second phase of the buffering starts again, with the

exception that the item binary streams are now appended to the existing temporary

file created in the second phase of the buffering. This process represents the third

phase of buffering, Figure 4-3 (c) illustrates it.

If the BufferedSequence instance is fed with more items after the serialization

process and the threshold of the buffer is not reached, then the items referenced in

the buffer are kept in main memory. Thus, our component avoids I/O operations and

encoding computation cost for the last set of items referenced by the buffer.

In case, the buffered items must be serialized into the existing temporary file

due to sorting purpose–we explain it in the next chapter–then, they are forced to be

encoded as binary strings and they are appended to the existing temporary file.

Figure 4-3 (d) illustrates the fourth phase of buffering.

Using our approach, we manage the data-flow of both small and large sequences

across the tree of expressions. Moreover, the BufferedSequence component that

implements this approach is abstract during the execution of the tree of expressions

using the Brackit engine.

35

Figure 4-3: Management of intermediate results by BufferedSequence component

36

37

5 External Sorting

Chapter 5rocess Architecture

External Sorting

5.1 Contextualization

In Brackit, a FLWOR expression is translated into a logical plan consisting of a top-

down pipeline of operators, which follow the open-next-close model, where an

output is requested from the final operator, which requests an input from the previous

operator and so on.

In the case of the Sort operator, which is a blocking operator, when its output

is requested with the next procedure, the Sort operator invokes the next procedure

of its input operator repeatedly until all inputs are consumed. These inputs are sorted

given the expression in the order by clause, and then delivered one by one as

they are requested from the following operator. Figure 5-1 illustrates this process.

Figure 5-1: Execution of the Sort Operator

If the sort input is too large for an internal sort, then external sorting is needed.

In this context, we need an approach that manages the sort input and the sort output

38

following the open-next-close model as it is implemented in the operators. The

sorting algorithm applied–whether internal or external–must be abstracted from the

execution engine.

The approach proposed is similar to the previous approach in Chapter 4. In this

scenario, it manages a buffer, which is a set of tuples, and a set of runs, which are

temporary files that contain sorted tuples. If the whole input of the Sort operator is

smaller than the threshold–which is a predefined maximum number of sequences that

the buffer can contain–, the sort input is sorted internally in main memory.

Otherwise, the sorted buffered tuples are serialized into runs using our serialization

framework. Figure 5-2 illustrates our approach.

Figure 5-2: External sorting of stream of tuples.

The remainder of this chapter is organized as follows. In Section 5.2., we review

the syntax of the order by clause. In Section 5.3, we present the implementation

aspects of our approach. Finally, in Section 5.4, we introduce some optimization

techniques for sorting.

5.2 Order by clause

FLWOR expressions have a natural ordering, which is determined by the bindings of

the for variables (the order of the stream of tuples). However, the order by

clause may be used to apply an explicit order. It takes a list of expressions, called

sort keys.

39

The order by clause sorts the tuple stream according to each of the sort keys

in order. The sort keys do not have to be returned in the result. Figure 5-3 shows an

example of FLWOR expression using an order by clause, which we use as basis

for the following discussions.

for $a in (1,2,3)

for $b in (3,2,1)

order by $b ascending, $a descending

return $a + $b

Figure 5-3: Sample FLWOR expression using the order by clause

During the execution of the FLWOR pipeline for evaluating the expression of

the example in Figure 5-3, the Sort operator is fed with the following tuple stream:

[$a = 1, $b = 3]

[$a = 1, $b = 2]

[$a = 1, $b = 1]

[$a = 2, $b = 3]

[$a = 2, $b = 2]

[$a = 2, $b = 1]

[$a = 3, $b = 3]

[$a = 3, $b = 2]

[$a = 3, $b = 1]

Each sort key is first evaluated and atomized. A sort key must evaluate to the

same type for every tuple in the tuple stream, and the type must be totally ordered.

When the first sort key evaluated for two tuples results in a tie, then subsequent sort

keys are used to break the tie. If all the keys tie, then the order of the tied tuples is

implementation-defined unless the stable keyword is used in front of the order

by clause. In that case, the tied tuples retain their original ordering relative to each

other.

Each sort key expression may be followed by modifiers that control how that

key affects the sort order. The most common modifiers are ascending and descending

(ascending is the default) with the obvious effect. The other modifiers, empty

least and empty greatest, control how the empty sequence sorts relative to

all other values. In the scope of this work, only ascending and descending modifiers

are considered.

40

The following tuple stream is the output of the Sort operator after reordering

according to the given the given expression $b ascending, $a descending of

the example in Figure 5-3:

[$a = 3, $b = 1]

[$a = 2, $b = 1]

[$a = 1, $b = 1]

[$a = 3, $b = 2]

[$a = 2, $b = 2]

[$a = 1, $b = 2]

[$a = 3, $b = 3]

[$a = 2, $b = 3]

[$a = 1, $b = 3]

The result of the example in Figure 5-3 after the reordering of tuples is the

following sequence:

(4, 3, 2, 5, 4, 3, 6, 5, 4)

5.3 Implementation

Our approach is implemented by the TupleSort component. It is a combination of

main-memory and external-merge sort. The implementation is I/O robust w.r.t. pre-

sorted or small inputs.

The TupleSort component manages a buffer, which is an array of tuples, and

runs, which are files. The size of the buffer is predefined by the variable maxSize,

which is the maximum number of sequences that the buffer can contain. Once the

maxSize is reached, the serialization of the buffered tuples occurs.

Given the stream of tuples (st1, st2, st3) from Figure 5-4, and defining maxSize

= 3, the stream of tuples starts being serialized into runs at different positions of the

space of the stream. The stream st1 starts to serialize its buffered tuples at position 4,

the stream st2 at position 3, and stream st3 at position 2. Note that the stream st1

starts serializing its buffered tuples after its buffer has reached its maximum size.

This scenario occurs just when a tuple is a single item. Otherwise, the buffered tuples

are serialized when the buffer is not full.

1 [$a = 1] [$a = 1, $b = 2] [$a = 1, $b= (1,2)]

2 [$a = 2] [$a = 2, $b = 3] [$a = 2, $b= (2,3)]

3 [$a = 3] [$a = 3, $b = 4] [$a = 3, $b= (3,4)]

4 [$a = 4] [$a = 4, $b = 5] [$a = 4, $b= (4,5)]

 (st1) (st2) (st3)

Figure 5-4: Stream of tuples

41

It is important to note that maxSize defined in terms of sequences–instead of

tuples or items–manages the overloading of memory better than the two other

alternatives. For instance, if the maxSize were defined as maximum number of tuples

that a buffer can contain, the memory can be overloaded due to a single tuple being

too large composed of many sequences, and a sequence may be composed of many

items. On the other hand, if maxSize were defined as maximum number of items that

the buffer can contain, the overloading of the memory is precisely controlled by this

threshold. However, the serialization of buffered tuples could start when a sequence

in a tuple is being evaluated. Thus, we would require to keep in main memory the

current tuple being evaluated in order to not loose that information. For instance, if

the maxSize (maximum number of items) is 5, the stream st3 of the example in

Figure 5-4 would be serialized when the item 3 in sequence $b= (2,3) is being

evaluated in the tuple [$a = 2, $b= (2,3)].

The threshold maxSize defined in terms of sequences manages both memory

overloading and data movement. Using our previous approach BufferedSequence

which manages large sequences, a large sequence is an instance of BufferedSequence

which references the file where the sequence is serialized. When a tuple contains

sequences of instance BufferedSequence and the tuple needs to be serialized, the

BufferedSequence is serialized as file path name it references. In this approach, first

we reduces the size of the runs where the tuples are serialized just using the file path

name which its size is smaller than serializing the whole sequence. Second, the data

movement for external sorting is smaller due to the encoding schema for tuples

proposed in Chapter 3. Note that sort keys in the order by clause must be of type

atomic. Thus, a BufferedSequence sequence is never compared to another sequence

in other tuple in the Sort operator.

Figure 5-5 illustrates a stream of tuples as input for the Sort operator. Here

BS12,…, B32 refer to BufferedSequence instances. If maxSize is 6, then the

serialization of the buffered tuples starts when the second input of the Sort operator

is requested.

1 [$a = 1, $b= BS11, $c= BS12, $d= 2]

2 [$a = 2, $b= BS21, $c= BS22, $d= 3]

3 [$a = 4, $b= BS31, $c= BS32, $d= 4]

 Figure 5-5: Tuple stream composed by one BufferedSequence

Algorithm 5-1 describes how each input of the Sort operator is managed by the

TupleSort component. The variable size, which is the accumulated number of

sequences that the buffer contains, and the variable count, which serves as a pointer

42

in the buffer where the tuples is added, are initialized with zero. The maxSize

variable is the predefined threshold for serializing the buffered tuples. The getSize

function returns the number of sequences that the tuple contains.

Algorithm 5-1 add method

1: function ADD (Tuple item)

2: itemSize ← getSize(item);

3: if ((maxSize > 0) && (size + itemSize > maxSize)) then

4: writeRun();

5: end if

6: buffer[count++] ← item;

7: size += itemSize;

8: end function

5.3.1 Internal sorting

In the scenario that the input sort is smaller than maxSize, just the internal sorting is

needed. The internal sorting takes place after all tuples from input Sort operator are

consumed. Because the maxSize has not been reached, there is no generation of runs.

Thus, there is no I/O operation.

The internal sorting is implemented using the method

java.util.Arrays.Sort(buffer,0,count,comparator) provided by

the implementation platform Java. This method sorts the specified range of the

specified array of tuples–defined as a buffer–according to the order induced by the

specified comparator defined in the order by clause. The range to be sorted

extends from index 0, inclusive, to index count, exclusive (if count is zero, the

range to be sorted is empty). All tuples in the range must be mutually comparable by

the specified comparator. This sort is guaranteed to be stable, where equal tuples will

not be reordered as a result of the sort.

The sorting algorithm used in Array.sort() is a modified mergesort in

which the merge is omitted if the highest element in the low sublist is less than the

lowest element in the high sublist. This algorithm offers guaranteed O(nlog(n))

performance.

Figure 5-6 illustrates the three phases for internal sorting. First, the sort input is

added into the buffer using the algorithm 5-1. Once the whole sort input is added to

the buffer defined in the TupleSort component, then the sorting phase takes place

43

using the Array.sort() method. The sorted input–tuples in the buffer–is

transformed as a stream of Tuples. Finally, when the output of the Sort operator is

requested the stream is iterated delivering a tuple per request.

Figure 5-6: Sorting operator with internal sorting

5.3.2 External sorting

The external sorting uses the well-known merge-sort algorithm. The merge-sort

algorithm–in our approach for the management of large input sort–is implemented

using a buffer and runs which were previously introduced in Section 5.3.1. The

sorting procedure in external sorting is split in two phases: generation of runs and

then merging of runs. In the first one, a run is generated when the number of

sequences that the buffer contains is greater than maxSize threshold defined in the

TupleSort component, see Algorithm 5-1. The produced runs are then gradually

merged in a single file during the second phase.

44

Phase I: Generation of runs

Whenever the maxSize threshold is reached, the buffered tuples referenced by

the buffer are sorted using the internal sorting algorithm introduced in Section 5.3.1.

Then a temporary file is created. The sorted buffer is then serialized in the temporary

file, one tuple at a time, using our serialization framework. Once all tuples are

serialized into the run, its location is registered in the TupleSort component. Once the

run is written, the size and count global variables of the component are set to zero.

To exemplify the previous context, consider the example of Figure 5-3. If we

assume that maxSize is 4, then the number of tuples that can be hold in main memory

is 2, because each input tuple of the Sort operator contains two sequences. If the

first two tuples of the input sort are sorted given the sort keys ($b ascending, $a

descending) and then serialized in the run; the following run is generated:

Run0:

[$a = 1, $b = 2]

[$a = 1, $b = 3]

If the maxSize is over reached again, then a new run is created or it is appended

the sorted buffered tuples to the previous run. The first scenario occurs when the first

tuple of the current sorted buffer is ordered before than the last tuple in the run.

Using the previous example, the last tuple in a run is [$a = 1, $b = 3] and first

tuple of the current sorted buffer is [$a = 1, $b = 1]. As the first tuple of the

sorted buffer is ordered before than the last tuple in a run, the new run generated as

follows:

Run1:

[$a = 1, $b = 1]

[$a = 2, $b = 3]

Appending the current sorted buffer to the previous run will occur if the last

tuple in run is ordered before than the first tuple in the sorted buffer. Using the

previous example, this situation never occurs, therefore Run2 and Run3 are

generated.

Run2:

[$a = 2, $b = 1]

[$a = 2, $b = 2]

Run3:

[$a = 3, $b = 2]

[$a = 3, $b = 3]

45

In case the maxSize is never reached again, but the buffer contains tuples in it,

the tuples are kept in main memory. From the example in Figure 5-3, after all inputs

are consumed the buffer contains just one tuple in main memory:

Sorted Buffer:

[$a = 3, $b = 1]

The Algorithm 5-2 describes how the different scenarios for writing a run are

managed in our approach. Fisrt, the sortBuffer() function orders the tuples in the

buffer. Then, it checks whether the sorted buffer can be appended to a previous runs.

Note that appendding a buffer into a run renders two situations in the sorting phase.

First, we can have an unbalanced tree of runs, meaning that a run can contain

different number of tuples per run. For instance a run run1 can contains 10 times

the number of tuples in run run2. Second, the number of run-merges is smaller due

to the smaller number of generated runs when the append run condition is satisfied.

In case this condition is not satisfied, the current run is close. Then, it registers the

location of a file where the buffered tuples are serialized in it. Once the run is

written, size and count variables is set to zero for the next buffering of the sort input.

Algorithm 5-2 writeRun method

1: function WRITERUN ()

2: sortBuffer()

3: if ((lastInRun != null) && (lastInRun<=buffer[0])) then

4: appendToRun()

5: return

6: end if

7: if (currentRun !=null) then

8: currentRun.close()

9: end if

10: run ← createTempFile()

11: currentRun ←new BufferedOutputStream(new FileOutputStream(run));

12: for (int i = 0; i < count; i++) do

13: lastInRun = buffer[i];

14: writeItem(currentRun, lastInRun);

15: end for

16: runs[runCount++] ← run;

46

17: size ← 0;

18: count ← 0;

19: initialRuns++;

20: end function

Phase II: Merging

In this phase, the sorted runs created during the first phase are merged into larger

runs of sorted tuples. The merge continues until all tuples of the sort input are in one

large run. The output of the merge phase is the output of the Sort operator.

The merging phase consists of zero or more merge level(s) until one run is

delivered. Each merge level consumes runs and produces new runs. The number of

new runs is smaller than the consumed runs at each merge level. The size of each

new run is equal to the size of the consumed runs. Algorithm 5-3 describes a strategy

to merge the runs in pairs. The number of merges at each level is calculated dividing

the number of runs by 2. If the numbers of merges is not even, then the number of

new runs is the same as the number of merges. The merge pairs can be sorted

forward or backward. The first one is described in the algorithm. In case the number

of runs is even, the number of new runs is equal to the number of merges plus one,

where the single run is used as output for the next merge level.

Algorithm 5-3 mergeRuns method

1: function MERGERUNS (File[] runs)

2: newRuns ← null;

3: mergeLevel ← 0;

4: runCount ← runs.length();

5: while (runCount >1) then

6: merges ← runCount/2

7: singleRun ← runCount mod 2

8: newRunCount ← merges + singleRun

9: newRuns← new File[newRunCount]

10: pos ← 0;

11: if (singleRun) then

12: for (int i = newRunCount - 1; i > 0; i--) do

13: newRuns[pos++] ← merge(runs[2 * i - 1], runs[2 * i])

14: end for

47

15: newRuns[newRunCount - 1] ← runs[0]

16: else

17: for (int i = newRunCount - 1; i >= 0; i--) do

18: newRuns[pos++] ← merge(runs[2 * i], runs[2 * i + 1]

19: end for

20: end if

21: runs ← newRuns

22: mergeLevel ← mergeLevel +1

23: end while

24: end function

Using the example of Figure 5.3, the runs generated were Run0, Run1, Run2 and

Run3. If we merge them using the algorithm introduced previously, we obtain the

following merge level:

Run0: Run1: Run2: Run3:

[$a=1, $b=2] [$a=1, $b=1] [$a=2, $b=1] [$a=3, $b=2]

[$a=1, $b=3] [$a=2, $b=3] [$a=2, $b=2] [$a=3, $b=3]

Merge Level 0

 NewRun0: NewRun1:

[$a=1, $b=1] [$a=2, $b=1]

[$a=1, $b=2] [$a=3, $b=2]

[$a=2, $b=3] [$a=2, $b=2]

[$a=1, $b=3] [$a=3, $b=3]

 Merge Level 1

 Single merge

 NewRun0:

[$a=2, $b=1]

[$a=1, $b=1]

[$a=3, $b=2]

[$a=2, $b=2]

[$a=1, $b=2]

[$a=3, $b=3]

[$a=2, $b=3]

[$a=1, $b=3]

48

If there is no buffered tuple in main memory, the output of the sort operator is

iterated from the final run merge. It delivers one tuple at a time when the next()

procedure is requested of the following operator. If it is not the case, the sorted

buffer in main memory and the final run merge are iterated delivering each one a

tuple which are compared providing as an output the one ordered before. The other

tuple is kept in memory for comparison with the next tuple of final merge run or the

next tuple of the buffer. The tuples are compared in pair from different sources.

From the previous example, there is a buffer in main memory containing the

tuple [$a = 3, $b = 1] which is merged with the final run producing as a

output the following stream of tuples as they are requested:

SortedOutput:

[$a=3, $b=1]

[$a=2, $b=1]

[$a=1, $b=1]

[$a=3, $b=2]

[$a=2, $b=2]

[$a=1, $b=2]

[$a=3, $b=3]

[$a=2, $b=3]

[$a=1, $b=3]

During internal and external sorting, there is a significant cost of in-memory

computation. It is dominated by two operations: key comparison and data movement.

In order to provide good performance for sorting operations, we have implemented

some techniques to speed up key comparison. In the next section, we introduce the

techniques implemented in the Brackit engine.

5.4 Optimization sorting techniques

The cost of in-memory comparison is an issue that can be quite complex due to

multiple keys to be compared within each tuple, each with its own type, length, sort

direction (ascending or descending), and so on. Given that each tuple participates in

many comparisons, it seems worthwhile to reformat each tuple before and after

sorting if the alternative format speeds-up the multiple operations in between.

The format that is most advantageous for fast comparisons is a simple binary

string. Thus the entire complexity can be reduced to comparing binary strings, and

the sorted output tuples can be recovered from binary string. Since comparing two

binary strings takes only tens of instructions, it makes sense to use normalized keys

for sorting. Needless to say, hardware support is much easier to exploit if key

comparisons are reduced to comparisons of binary strings [18].

49

In the Brackit engine, we have implemented some techniques to speed up the

comparison of tuples as follows. Fist, the tuple is transformed by adding the key sorts

items defined in the order by operator at the beginning of the tuple. Second, we

encode the transformed tuple using our tuple encoding schema defined in Section

3.4. Then, they are serialized into runs. When the merging phase takes place between

runs, the tuples are compared as binary string. Then, when the merge phase has

finished and the tuples need to be delivered, the transformed tuple is restored to the

original format. Figure 5-5 illustrates this process.

Figure 5-5: External Sorting with optimization

The following run exemplifies how the tuples are written into a run with and

without transformation:

Run0:

 Tuple Tuple with transformation

[$a=1, $b=2] [$b=2, $a=1, $a=1, $b=2]

[$a=1, $b=3] [$b=3, $a=1, $a=1, $b=3]

Transformed tuples may be substantially larger than the original ones, thus

increasing the requirements for both memory and disk, space and bandwidth.

However, the proposed optimization technique is beneficial, as most comparison will

be decided by the first bytes alone. In the next Chapter, we assess the efficiency of

our implementation.

50

51

6 Experiments

Chapter 6rocess Architecture

Experiments

6.1 XSF

In this section we evaluate the encoding framework in terms of the size of the

encoded sequence w.r.t. size of the original sequences and time to encode and decode

sequences.

For this experiment, we have generated sequences of different sizes (1 KB,

1MB, 10MB) containing atomic items of different types (Integer, Float, Double,

String). The values of the atomic items are randomly generated.

6.1.1 Sequence size vs. Encoded sequence size

Figures 6-1 illustrates the relative size of the encoded sequence with respect to the

original size of the sequence. The encoded sequence sizes are up to 3.5 times larger

than the original sequence. For Integer atomic items, the encoded sequence size is in

average 3.5 times the original one. For Float atomic items, its encoded size is 3.2

times the original one. For Double atomic items, its encoded size is in average 2.8

times the original one. The size of String atomic items are encoded closely as its

original size, it is in average 1.1 times.

The encoding schema used for our XQuery Serialization Framework is not

compact w.r.t. the original XDM instances. This is because the encoded XDM

instance contains metadata like type and length fields which are used for

deserialization purpose. The proposed encoding schema can be extended with

compression techniques to reduce the size of the encoded data.

52

Figure 6-1: Relative encoded sequence size

6.1.2 Encoding time vs. Decoding Time

The time for encoding and decoding a sequence of 1KB, 1MB or 10 MB differs with

respect to its size and the atomic item type they contain (see Figure 6-2, Figure 6-3

and Figure 6-4).

When the sequence size is 1KB (see Figure 6-2), we obtain the following

measures. If the type is Integer, it takes 12 ms for encoding the sequence. If the type

is Float, it takes 36 ms for encoding the sequence. If the type is Double, it takes 20

ms for encoding the sequence. If the type is String, it takes 1 ms for encoding the

sequence. The time for decoding sequences is less than the maximum time for

encoding the different sequences.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Integer Float Double String Integer Float Double String Integer Float Double String

Sequence (1KB) Sequence (1MB) Sequence (10MB)

Encoded sequence size

Encoded Sequence Size

53

Figure 6-2: Encoding Time vs. Decoding Time (Sequence 1KB)

Figure 6-3: Encoding Time vs. Decoding Time (Sequence 1MB)

0

5

10

15

20

25

30

35

40

Integer Float Double String

Sequence (1KB)

Encoding Time vs. Decoding Time

 Encoding Time (ms) Decoding Time (ms)

0

200

400

600

800

1000

1200

Integer Float Double String

Sequence (1MB)

Encoding Time vs. Decoding Time

 Encoding Time (ms) Decoding Time (ms)

54

Figure 6-4: Encoding Time vs. Decoding Time (Sequence 10MB)

As you can see in Figure 6-2, Figure 6-3 and Figure 6.4, the encoding and

decoding times of a sequence composed by String atomic items are smaller than

other types of atomic items. This is because each character of the string is interpreted

as binary. Thus there is no need for encoding or decoding it. For a sequence of 10MB

size composed of string atomic items, it takes 138 ms and 97 ms for encoding and

decoding respectively.

The measures obtained in this section–encoding size, and execution time for

encoding and decoding of XDM instances–need to be considered when we run the

experiments for BufferedSequence and External Sorting.

6.2 Buffered Sequence

In this section we measure the execution time for evaluating a FLWOR expression

which processes large sequences. First, we measure their execution time without

using our BufferedSequence approach. Second, we measure it using our approach. In

this second scenario, we measure it using different buffer sizes.

6.2.1 Execution Time

Figure 6-5 shows the query used for this experiment. It is a FLWOR expression with

another nested FLWOR expression. The nested expression generates large

intermediate results, namely one million integers. These intermediate results are used

twice by other expressions in the query for generation aggregations.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Integer Float Double String

Sequence (10MB)

Encoding Time vs. Decoding Time

 Encoding Time (ms) Decoding Time (ms)

55

for $x in (1 to 10)

let $y:= (for $a in ($1 to 1000000)

 return $a)

let $f:= (sum($y)mod $x)

group by $f

return avg($y)

Figure 6-5: Nested FLOWR expression

When we integrate our approach BufferedSequence in the Brackit engine, the

evaluation of the query transforms the nested FLWOR expression into an instance of

BufferedSequence.

Figure 6-6 shows the execution time of the query under different scenarios. If

no BufferedSequence component is integrated to the Brackit engine, then the

execution of the query takes 7872 ms. If we integrate our component to the Brackit

engine, then the execution time of the query is larger than without using it.

If we use our BufferedSequence with a buffer size of 1000000–meaning that all

items in the sequence are added to the buffer and they are never written to disk–then

the execution of the query takes 13942 ms. This execution time is almost the double

of the execution time without using the BufferedSequence. It is expected to have the

double time because we iterate every sequence twice when creating the

BufferedSequence. The first iteration takes place when we add the items of the

sequence to the buffer. The second iteration takes places when iterate over the buffer

for evaluating the sequence.

If we use our BufferedSequence with buffer size of 1000–meaning that most of

its items will be serialized–then the execution of the query takes 270167ms. This

execution time is 34 times the execution time without using the BufferedSequence

and it is 19 times the execution time using the BufferedSequence with buffer size of

1000000. It is expected to have larger time because the BufferedSequence generates

many I/O operations.

56

Figure 6-6: Execution time of nested FLWOR expression

6.3 External Sorting

In this section we measure the execution time for evaluating a FLWOR expression

which processes large sorting operations using our external sorting algorithm

implemented for the Sort operator. First, we measure its execution time without

using binary comparison. Second, we measure it using binary comparison. In both

scenarios, we increase the size of the buffer to determine how the performance of the

query varies.

6.3.1 Execution Time

Figure 6-7 shows the query used for this experiment. It is a FLWOR expression

which requires the sorting of large stream of tuples, namely one hundred million

tuples generated by the two for clauses in the expression. The stream of tuples are

sorted according the sort key $b.

As you can see in Figure 6-8, the execution time of the query using tuple object

comparison takes more than time than when the tuples are compared by their binary

representation using the XSF for all different buffer sizes (1000, 10000, 100000,

1000000). Comparing tuples during external sorting by its binary representation

spare up to 33% of execution time. It is expected to have such a better performance

due to the binary representation does not require to be transformed as tuple in the

No

BufferedSequence

BufferedSequence

(Buffer size =

1000000)

BufferedSequence

(Buffer size =

1000)

Execution time (ms) 7872 13942 270167

1

10

100

1000

10000

100000

1000000

(m
s)

Execution time (ms)

57

implementation language, therefore we spare this time of encoding and decoding the

tuple.

for $x in (1 to 1000000)

for $b in (100 to 1)

order by $b

return ($a, $b)

Figure 6-7: FLWOR expression

Figure 6-8: Execution time of Sort Operations

1000 10000 100000 1000000

Buffer Size

Tuple Comparison 9406 9486 6563 6897

Binary String Comparison 6253 6836 6031 5424

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Execution Time of Sort Operations

58

59

7 Conclusion

Chapter 7rocess Architecture

Conclusion

We presented an XQuery serialization framework for enabling the management of

large intermediate results during query evaluation. We used our framework in two

different applications. The first one, the BufferedSequence component, manages

large sequences. The second one, the Sort operator, supports external sorting for

managing large tuple streams.

The XQuery Serialization Framework proposed in this work defines an

encoding schema for items, sequences and tuples. The encoding schema of each data

item includes its metadata like type information and value length, which is obtained

during the execution of the query. Thus, as it is showed in the experiment in Section

6.1, the size of the encoded data is larger than its original size because the metadata

is added for each item.

We could improve the compactness of our encoding schema by previously

analyzing the expression tree to determine type information, then adding this

information as schema of the file where the data is stored. This analysis, known as

static typing, could avoid us encoding metadata for each item. Thus, we could reduce

the size of the encoded data and reduce the execution time for encoding and

decoding.

Our BufferedSequence component enables the management of large sequences,

but the performance of a query evaluation using it decreases due to an eager loading

of items in the buffer when the sequence is constructed. Furthermore, the

BufferedSequence component is statically integrated into the PipeExpr of the

Brackit engine. This leads two problems: First, we use BufferedSequence for only

PipeExpr expressions. Thus, other expressions which may as well result in large

sequences are not supported. Second, we use BufferedSequence for every instance of

60

PipeExpr. In most expressions, the contents of a sequence are simply streamed,

which means that there is no need for buffering even very large sequences. This

situation could be improved by previously analyzing the expression tree to decide

whether to use a BufferedSequence or not.

The external sorting algorithm for the Sort operator enables the sorting of large

tuple streams using external sorting. Moreover, the formatting of the tuples as binary

string for comparisons paid off showing better performance in the experiments in

Section 6.3 than without using it. However, its performance could be improved if the

encoding and decoding of the tuples were smaller than the used one, because a binary

tuple is encoded by duplicating the sort keys of the order by clause in the

beginning. Instead of that, we could just move and not append the sort keys of a tuple

in the beginning without increasing the size of the tuple.

Besides the merge-sort strategy implemented for the external sorting, other

merging strategies could be implemented, and later on we could determine which

strategy performs better or worse than the current one. As we have implemented an

external algorithm for the Sort operator, we could implement external algorithms for

other blocking operators like join and group by.

In this thesis, the XQuery Serialization Framework, the BufferedSequence

component and the Sort operator are integrated into the execution engine of Brackit.

However, the performance of our approaches in terms of space consumption and

execution time could be improved if the compilation phase would be considered for

the analysis of metadata of XDM instances and estimation of the numbers delivered

results.

The use of our framework and the two proposed components enables the

execution of arbitrary XQuery over very large datasets, whose size is limited only by

the available external memory.

61

Bibliography

Bibliography

[1] Zhen Hua Liu and Ravi Murthy. A Decade of XML Data Management: An

Industrial Experience Report from Oracle. IEEE International Conference on

Data Engineering, 1351-1362, 2009.

[2] W3C. XQuery 3.0: An XML Query Language.

http://www.w3.org/TR/xquery-30/, 2011.

[3] W3C. XQuery and XPath Data Model 3.0

http://www.w3.org/TR/xpath-datamodel-30/, 2011.

[4] W3C. XML Schema Definition Language (SDL) 1.1 Part 1: Structures

http://www.w3.org/TR/xmlschema-11-1/, 2011.

XML Query Uses Case

[5] W3C. XML Query Uses Case

http://www.w3.org/TR/xquery-use-cases/, 2007

[6] Sebastian Bächle and Caetano Sauer. Unleashing XQuery for Data-

independent Programming. Submitted.

[7] Roger Bamford, Vinayak R. orkar, Mathias Brantner, Peter M. Fischer,

Daniela Florescu, David A. Graf, Donald Kossmann, Tim Kraska, Dan

Muresan, Soring Nasoi, and Markos Zacharioudaki. XQuery Reloaded.

PVLDB, 2 (2): 1342-1353, 2009.

[8] Hennessy, Jhon L.

Computer Architecture: a quantitative approach/ John L. Hennessy, David A.

Patterson; with contributions by Andrea C. Arpaci-Dusseau… [et al.]. – 4
th

ed.

[9] E. I. Cohen, G. M. King, and J. T. Brady. Storage Hierarchies. IBM Systems

Journal, Vol. 28. No 1: 62-76, 1989.

[10] Gray, Jim, 1944-

62

Transaction processing: concepts and techniques/ Jim Gray and Andreas

Reuter.

[11] W3C. XQuery Update Facility

 http://www.w3.org/TR/xquery-update-10/, 2011.

[12] W3C. XQuery and XPath Full Text

 http://www.w3.org/TR/xpath-full-text-10/, 2011.

[13] W3C. XQuery Scripting Extension

 http://www.w3.org/TR/xquery-sx-10/, 2010

[14] Caetano Sauer. XQuery Processing in the MapReduce Framework.

Master thesis, University of Kaiserslautern, Kaiserslautern, 2012.

[15] Introduction to Java Input Streams

http://www.javamex.com/tutorials/io/input_stream.shtml

[16] XQuery 3.0 Requirements

http://www.w3.org/TR/xquery-30-requirements/

[17] XQuery Query Use Cases

http://www.w3.org/TR/xquery-use-cases/

[18] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM

Comput. Surv., 25(2): 73-170, 1993

[19] Goetz Graefe. Implementing Sorting in Database Systems. ACM Comput.

Surv., 38(3): 1-37, 2006

