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Abstract 
 

This thesis addresses the problem of management of large intermediate results in the 

context of XQuery, a language for processing XML data. This work proposes an 

XQuery serialization framework for enabling the management of large data during 

the execution of a query. Based on this framework, we present two applications. 

BufferedSequence manages large sequences which result from the evaluation of 

XQuery expressions. TupleSort is an implementation of an external sorting algorithm 

for large tuple streams. 

 

Zuzammenfassung 
 

Diese Masterarbeit beschäftigt sich mit dem Problem des Managements großer 

Zwischenresultate die bei XQuery, einer XML-Verarbeitungssprache, anfallen. In 

dieser Arbeit wird ein Framework für die Serialisierung von XQuery Resultaten 

vorgestellt, um die Verarbeitung großer Datenmengen bei der Ausführungung einer 

Anfrage zu ermöglichen. Aufbauend auf diesem Framework werden zwei 

Anwendungen vorgestellt: BufferedSequence verwaltet lange Sequenzen, die bei der 

Ausführung von XQuery-Ausdrücken enstehen. TupleSort ist die Implementierung 

eines externen Sortier-Operators, der lange Tupelströme unterstützt. 
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1 Introduction 

Chapter 1 

Introduction 

 

1.1 Motivation 

Effective and efficient management of large data volumes is necessary in all 

computer applications, from business data processing to library information retrieval 

systems, multimedia applications, computer-aided design and manufacturing, real 

time process control, and scientific computation. In the context of data management, 

“large” means that it cannot fit into main memory. Thus, it must reside on external 

storage and be brought into main memory selectively for processing. The 

management of large documents in XQuery–the query language for XML data–is 

more complex than in relational databases. Firstly, XQuery supports a nested data 

model which causes more difficulties for storing and retrieving it from external disk. 

Secondly, XQuery supports the processing of data from different sources such as 

database systems or documents in a file system, which requires a generic processing 

engine. 

The Extensible Markup Language (XML) is by now the de facto standard 

format for exporting and exchanging data across systems, departments and network 

boundaries, due to its flexibility. First, it dissociates schema from data. In this way, 

data can exist without a schema, and data from legacy applications or archived can 

be processed. Secondly, it is able to represent a large spectrum of data, from totally 

unstructured, semi-structured, to totally structured data. As increasing amounts of 

information are stored, exchanged, and presented using XML, it becomes 

increasingly important to effectively and efficiently query XML data sources. 
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XQuery is a query language designed by the W3C [2] to address these needs. 

XQuery natively speaks XML, and it has convenient primitives to formulate queries 

using a syntax similar to SQL, in addition to support for XML-specific operations 

such as path navigation. Furthermore, it has been extended by a number of additional 

features which go beyond message transformation and XML query processing, for 

which XQuery was initially designed.  XQuery Update Facility [11] and XQuery 

FullText [12] have been devised and have reached recommendation status by the 

W3C. Under development are still the XQuery Scripting Facilities [13]. With all 

these extensions, XQuery is much more than merely a query language; it has become 

an extremely powerful tool for developing almost any kind of data processing 

application. 

The performance of XQuery in terms of effectiveness and efficiency relies on 

the XQuery processor architecture and the storage hierarchy context. The 

architecture of a processor is up to implementation decisions of its designers. On the 

other hand, the context of the storage hierarchy–a natural structure of computer 

architecture, given the set of technologies such as main memory and hard disk; and 

their access speed, capacity and cost characteristics–influences the management of 

large XML documents. Firstly, main memory access is much faster than access to 

data stored on disk. In fact, the relative difference in access time is at least 1000 

times. Secondly, main memory capacities are much smaller than disk. Thus, the use 

of external disk is necessary. Thirdly, main memory is expensive in terms of price 

per megabytes, while disks are cheaper. Due to these differences, efficient algorithms 

for accessing and manipulating large XML documents are required to store 

intermediate results in external memory, while still providing acceptable 

performance.  

1.2 Contribution 

We propose a Serialization Framework which is integrated into an existing main-

memory query processor, namely the Brackit Engine. The Serialization Framework 

addresses the issue of management of large XML documents between main memory 

and external disk in the XQuery context. Our framework is compact to make 

efficient use of the storage space, fast so the overhead of reading and writing 

megabytes of data is minimal, and extensible so we can transparently read and write 

data using different encoding schemes besides the one we propose. Furthermore, the 

framework is abstracted from the execution engine in which the implementation of 

our approach does not modify the manner how the execution engine works.  

We use our framework in two different applications. In one application, it 

manages sequences that result from evaluating expressions, based on a component 

called BufferedSequence. It adds sequences to a buffer until a threshold, which is the 

maximum size assigned in main memory for holding sequences, is reached. Once it 
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is reached, the buffered set of sequences is written into a temporary file using the 

Serialization Framework. 

In the second application, our framework is used during the internal evaluation 

of FLWOR expressions using the special sort operator that implements external 

sorting. The sort operator has been extended to support external sorting using file-

based sort and merge techniques. In addition, we have implemented optimization 

techniques to allow comparison operations directly on the encoded binary format.  

The remainder of this thesis is organized as follows. Chapter 2 introduces the 

XQuery language focusing on its data model. Moreover, we present the Brackit 

XQuery Engine, which is used for the implementation of our approach. Chapter 3 

presents the Serialization Framework. Chapter 4 presents our BufferedSequence 

component. Chapter 5 presents the external sort operator. In chapter 6 we empirically 

assess the efficiency of the framework with experiments. Finally, Chapter 7 

concludes this thesis. 
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2 XQuery Process Architecture 

Chapter 2rocess Architecture 

XQuery Process Architecture 

 

2.1 XQuery 

XQuery is a query language for XML data sources and it is designed to meet the 

requirements of the W3C XML Query Working Group [16] and the use cases in [17]. 

XQuery provides three kinds of flexibility. First, it operates on a broad spectrum of 

XML information sources such as relational databases and documents. Second, 

XQuery allows to process completely untyped data, which may be progressively 

improved with schema information, in a “data first-schema later” (or as pay as you 

go) approach. Thirdly, it is able to operate in a large spectrum of data–from totally 

unstructured, semi-structured, to totally structured data.  

Furthermore, XQuery has convenient primitives to formulate SQL-like queries, 

allowing typical query operations on XML data sources, including: selecting 

information based on specific criteria, filtering out unwanted information, searching 

for information within a document or set of documents, joining data from multiple 

documents or collections of documents, sorting, grouping and aggregating data, and 

so on. 

There are as many reasons to query XML as there are reasons to use XML. 

XQuery language can be used for: extracting information from a relational database 

for use in a web service, generating reports on data stored in a database for 

presentation on the Web as XHTML, searching textual documents in a native XML 

database and presenting the result, pulling data from databases and transforming it 

for application integration and others. 
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The following subsections give an overview of the XQuery language main 

constructs, focusing primarily on its data model, and FLWOR expressions. Rather 

than a detailed explanation, we provide a sample query which illustrates the basic 

features of XQuery. For a proper introduction, we refer to W3C XQuery standard 

[2]. 

2.1.1 Data Model 

XQuery is defined in terms of the XQuery and XPath Data Model [3], or shortly, 

XDM. Every input and output of a query is an instance of the data model. These are 

represented as an ordered sequence–an ordered list of zero, one or more items–and 

there is no distinction between a sequence of length one and the individual item it 

contains. This definition forbids nested sequences, i.e., sequences that contain 

another sequence as one of its items, which means that some operations must 

perform implicit unnesting.  An item is a generic term that refers to either a node or 

an atomic value. The types of node and atomic values are defined by XML Schema 

[4], which is the standard that defines types in an XML documents. 

Nodes are used to represent XML entities, and can be one of seven kinds: 

document, element, attribute, text, namespace, processing instruction, or comment. 

The first node in any document is the document node, which contains the entire 

document and contains its root node as child. The element nodes, comment nodes, 

and processing instructions nodes occur in the order in which they are found in the 

document. Element nodes occur before their children, i.e., the elements nodes, text 

nodes, comment nodes, and processing instructions they contain. Attributes are 

considered children of an element, but they have a defined position in the document 

order: they occur after the element in which they are found, before the children of the 

element. Text nodes contain plain character data of an element. 

Every node has a unique node identity that distinguishes it from other nodes, 

even from other nodes that are otherwise identical. In addition to their identity, nodes 

have two kinds of values: string and typed. All nodes have a string value. The string 

value of an element is its character data content and all that of all its descendant 

elements concatenated together. The string value of an attribute node is simply the 

attribute value. Both element and attribute nodes have a typed value, too. They are 

taken into account if there is any. An element or attribute might have a particular 

type if it has been validated with a schema. If it is not declared in the schema, the 

type of the value is represented by the special type xs:untypedAtomic[4]. 

Atomic values are single values, with no markup, and no association with any 

particular element or attribute. An atomic value can have specific type, such as 

xs:string or xs:integer, or it can be untyped. Atomic values don´t have 

identity. It is not meaningful to ask whether 1 and 1 are the same integer or different 

integers; we can only ask whether they are equal. 
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Figure 2-1 illustrates a basic XML document taken from the XML Query Use 

Cases [5]. Its equivalent structure as an XDM instance is shown in Figure 2-2, where 

each node shape in the tree corresponds to an XDM node kind. The document 

represents bibliography data which contains a sequence of book elements. 

 

<bib> 

    <book year="1994"> 

       <title>TCP/IP Illustrated</title> 

       

<author><last>Stevens</last><first>W.</first></author> 

       <publisher>Addison-Wesley</publisher> 

       <price>65.95</price> 

    </book> 

    <book year="1992"> 

       <title>Advanced Programming in the Unix 

environment</title> 

       

<author><last>Stevens</last><first>W.</first></author> 

       <publisher>Addison-Wesley</publisher> 

       <price>65.95</price> 

    </book> 

    <book year="2000"> 

       <title>Data on the Web</title> 

       

<author><last>Abiteboul</last><first>Serge</first></author> 

       

<author><last>Buneman</last><first>Peter</first></author> 

       <author><last>Suciu</last><first>Dan</first></author> 

       <publisher>Morgan Kaufmann Publishers</publisher> 

       <price>39.95</price> 

    </book> 

    <book year="1999"> 

  <title>The Economics of Technology and Content for 

Digital     

         TV</title>  

       <editor> 

         <last>Gerbarg</last><first>Darcy</first> 

            <affiliation>CITI</affiliation> 

       </editor> 

       <publisher>Kluwer Academic Publishers</publisher> 

       <price>129.95</price> 

    </book> 

</bib> 

 

Figure 2-1: A sample XML document 
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2.1.2 Expressions 

The expression is the basic unit of evaluation in the XQuery language. A query 

contains expressions that can be made up of a number of sub-expressions, which may 

themselves be composed from other sub-expressions. Every expression evaluates to a 

sequence, which may be a single atomic value, a single node, the empty sequence, or 

multiple atomic values and or/nodes.  This section covers the most basic types of 

expressions, with a greater focus on FLWOR expressions. 

 

Figure 2-2: XDM instance for the sample document 

 

2.1.2.1 FLWOR Expressions 

FLWOR expressions are used to express data-intensive iterative computations, and 

hence may generate large amount of data during its evaluation. Therefore, they 

require great care for the data processing in main memory and external disk. 

The acronym FLWOR stands for “for, let, where, order by, 

return,” the clauses that are used in the expressions.  The group by and count 

clauses were added later in the version 3.0 of the XQuery standard. In the scope of 

this work, only group by is considered. This kind of expression is often useful for 

computing joins between two or more documents and for restructuring data. A 

FLWOR expression starts with one or more for or let clauses in any order, 

followed by optional where clauses, optional order by clauses, optional group 

by clauses, and a required return clause. Figure 3-3 shows an example of 

FLWOR expression, which we use as basis for the following discussions. 
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The semantics of FLWOR expressions is given by a sequential evaluation of the 

clauses, where each clause consumes tuples of bound variables (which we refer to 

simply as tuples) as a context and produce one or more tuples as a context for next 

clause. Variables are denoted by the initial symbol $. At the beginning of the 

evaluation of a FLWOR expression, there is no variable bound, thus, the tuple is 

empty. 

 

for $b in doc (‘sample.xml’)/bib/book 

let $y := $b/@price 

where $y > 50.00 

group by $y  

order by $y descending 

return 

 <result> 

  <price>{$y}</price> 

 <result> 

 

Figure 2-3: Sample FLWOR expression 

 

The for clause evaluates the expression given to its in parameter, where a 

tuple is generated for each item in the resulting sequence. The resulting tuple is then 

passed to the next clause and the process is repeated until all items in the sequence 

are consumed. In the example of Figure 2-3, the variable $b is bound to each book of 

the bibliography data, and the following clauses are evaluated once per each book. 

The let clause binds a variable to the entire result of an expression. This 

bound variable is attached to the tuple. Note that the let clause does not perform 

any iteration. After the for and let clauses in the example of Figure 2-3 are 

evaluated, we have the following tuple stream:  Here b1, …, b4 represent the book 

elements in the document as XDM instances.  

[$b = b1, $y =  “65.95”] 

[$b = b2, $y =  “65.95”] 

[$b = b3, $y =  “39.65”] 

[$b = b4, $y = “129.95”] 

 

The where clause filters out the tuples that are generated from the for and 

let clauses if the evaluation of a given expression returns the boolean value False. 

In our example, the following tuple stream remains after the where clause: 
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[$b = b1, $y =  “65.95”] 

[$b = b2, $y =  “65.95”] 

[$b = b4, $y = “129.95”] 

The group by clause groups all tuples that have the same value in a given 

variable, grouping the other variables in a sequence. Its argument must be a variable 

reference. The group by clause also supports multiple variable references, which 

causes groups to be formed according to distinct values on every given variable. 

After the group by clause is evaluated, we have the following tuple stream: 

[$b = (b1, b2), $y = “65.95”] 

   [$b = b4, $y = “129.95”] 

The order by clause reorders the tuple stream according to the expression 

given, which must be an atomic value (also in group by). In our example, the two 

remaining tuples in the stream are swapped, so that the tuple with price “129.25” 

comes before the one with the price “65.95”.  

Finally, the return clause finishes the evaluation of the FLWOR expression 

and produces a final result by evaluating the given expressions for each tuple in the 

stream. Because of the unnesting semantics of XQuery, if the expression results in 

multiple-item sequences, these are concatenated to form a single sequence which is 

the result of the whole FLWOR expression. In our example, the return clause is 

given a constructor expression, which produces nodes as a result or creates nodes 

which do not necessarily originate from existing ones. The result of our example is 

shown in Figure 2-4. 

 

    <result> 

  <price>129.95</price> 

 <result> 

 <result> 

  <price>65.95</price> 

 <result> 

Figure 2-4: Result of the sample query 

 

Path expressions are used to navigate input documents to select nodes of 

interest. According to the XQuery semantics, they are normalized into FLWOR 

expressions. The return nodes of path expressions are in document order, defined in 

[3]. A path expression is made up of one more steps that are separated by a slash (/) 

or double slashes (//). A path expression is always evaluated to a particular context 
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item, which serves as the starting point for the relative path. When a context item is a 

node, it is called the context node.   

The context item change with each step. A step returns a sequence of zero, one 

or more nodes that serves as the context items for evaluating the next step. For 

example in doc(“sample.xml”)/bib/book/title, the 

doc(“sample.xml”) step returns a document node that serves as the context 

item when evaluating the bib step. The bib step is evaluated using the document 

node as the current context node, returning a sequence of one bib element child of 

the document node. This bib element then serves as the context node for evaluation 

of the book step, which returns the sequence of book children of bib. The final 

step, title, is evaluated in turn for each book child in this sequence.  

Additionally, steps may contain predicates which filter the results to contain 

only nodes that meet specific criteria. Using predicates, we can select only elements 

that have a certain value for an attribute or child element, we can select only 

elements that have a particular attribute child element, or elements that occur in 

particular position within their parent. Figures 2-5  illustrates how a path expression 

is normalized into a FLWOR expression. 

 

doc(‘sample.xml’)/bib/book 

   

 

for $b in doc(‘sample.xml’) 

return 

 ( 

  for $c in child ($b) 

  return 

   child($c) 

  )  

 

Figure 2-5: Normalization of Path expression into FLWOR expression 

 

In the scope of this thesis, we focus on FLWOR expressions that use the sort, 

group by, or join operators. These operators are known as blocking operators, 

meaning they consume the entire input before producing any output. As we 

mentioned in the introduction, the limitations that main memory has with respect to 

its capacity render that sorting, grouping or join must use external disk. 
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2.1.2.2 Other expressions 

Primary expressions are the basic primitives of the language. They include literals, 

variable references, context item expressions, constructors, and function calls. A 

primary expression may also be created by enclosing any expression in parentheses, 

which is sometimes helpful in controlling the precedence of operators. Arithmetic 

expressions allow values to be added, subtracted, multiplied, and divided. 

Comparison expressions allow two values to be compared. XQuery provides three 

kinds of comparison expressions, called value comparisons, general comparisons, 

and node comparisons. A logical expression is either an and-expression or an 

or-expression. If a logical expression does not raise an error, its value is always 

one of the boolean values true or false. Construct expressions creates XML 

structures within a query. The ordered and unordered expressions set the ordering 

mode in the static context to ordered or unordered for a certain region in a query. The 

conditional expressions are based on the keywords if, then, and else. The 

processing of these expressions can be found in [2].   

2.2 XQuery Processor Architecture 

Brackit [6] is an implementation of XQuery written in Java. It uses a hybrid 

execution mechanism, as part of a database system (native XML database or XML-

relational hybrid) and as standalone interpreter for small XML files. This hybrid 

solution provides efficiency comparable to the top performers in both usage 

scenarios.  

In the scope of the thesis, we integrate our Serialization Framework into the 

main-memory query processor, the Brackit Engine. Our framework is abstracted 

from the execution engine. The following subsections present the compilation 

process and FLWOR pipelines in the Brackit Engine. 

2.2.1 Compilation Process 

Figures 2-6 gives an overview of the compilation process in Brackit. At the top, the 

Parser module generates an Abstract Syntax Tree, short AST, which is used during 

the compilation phases as a logical query representation. At the end of the 

compilation, the AST is passed to the Translator module, which generates a tree of 

executable physical operators. The Compiler module is constituted by the steps in 

between the Parser and Translator modules.  

The first phase of the Compiler module is Analysis. Its goal is to perform static 

typing and annotate expressions with typing information, as well as to perform 

simple rewrites such as constant folding and introduction of let bindings that simplify 

optimization. The next phase is then Pipelining, which transform FLWOR 

expressions into pipelines- the internal, data-flow-oriented representation of 
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FLWORs, which we discuss in Section 2.1.2.1 Pipelines are subject to several 

optimization rules (such as push-downs, join recognition, unnesting, etc.), which are 

applied to the Optimization phase. 

 

Figure 2-6: Overview of compilation process 

 

2.2.2 FLWOR Pipeline 

FLWOR pipelines are generated from a FLWOR expression tree, during the 

pipelining phase of the compilation process. The FLWOR expression tree is 

represented by the AST node FlworExpr. This node contains children that 

correspond to clauses that are present in the FLWOR expression.  In the pipeline 

view, these clauses are translated as operators, where the operators are arranged in a 

top-down sequence. Figure 2-7 illustrates these two representations of the FLWOR 

expression. 

To explain how FLWOR pipelines works, we make use of the example in 2-7. 

At the top, the PipeExpr, which represents the evaluation of the complete FLWOR 

expression, triggers the execution of the pipeline under it and receive the result from 

the last operator, which is always the End operator. 

The execution of the pipeline starts with the Start operator, which creates an 

empty tuple that is fed to the next rightmost child operator in the pipeline. The 

following operators receive and produce tuples, in which the tuples are modified 

given the expressions they evaluate. The End operator is the exception in this 

process and represents the return clause.  It does not produce tuples. It consumes 

the input tuples and generates a sequence as a result. 
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The operators in between the Start and End operator are ForBind, 

LetBind, Select, GroupBy and Sort operators which represent the for, let, 

where, group by, and order by clauses respectively. These operators consume 

and produce tuples as explained in Subsection 2.1.2.1. The pipeline representation 

resembles the physical plan, which follows the open-next-close model [18].  

 

 

Figure 2-7: Translation of FLWOR expression tree into a pipeline 
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3 XQuery Serialization Framework 

Chapter 3rocess Architecture 

XQuery Serialization Framework 

 

3.1  Motivation 

The processing of large data volumes requires writing intermediate results to external 

memory. The process of moving data from main memory to disk is called 

serialization, which transforms structured objects with pointers to memory addresses 

into a contiguous binary representation. The reverse process is called deserialization.  

The manipulation of XDM instances between main memory and external disk 

for serialization and deserialization is supported by our XQuery Serialization 

Framework, shortly XSF.  In this thesis, the assumed characteristics of XDM 

instances are as following. An item instance is associated with a type and a value. 

Values can be encoded with fixed-length or variable-length. Sequence instances are 

composed by zero or more items. The number of items that a sequence contains is 

not known in the beginning, because the expressions in our processor are evaluated 

in a lazy manner, computing individual items on demand. Tuples streams contain one 

or more sequences which are transferred between operators for further computation. 

The number of sequences that it contains is determined statically during the 

compilation process. 

In the following section, we describe our encoding schemes in detail. We 

provide an encoding component for each structural level of XDM, namely Item, 

Sequence, and Tuple. Note that the higher-level components reutilize the lower-level 

ones to encode its nested values. 
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3.2  Item Encoding  

The encoding schema for an item (see Figure 3-1) consists of a type identifier 

followed by its item type encoding. The type is either atomic or node. To encode the 

item´s value, we use AtomicEncoding when its item type belongs to atomic or 

NodeEncoding when its item type belongs to node.  

The encoding structure for an atomic value is made up of a length field and the 

value payload. This encoding structure supports the storage of variable-length.  

 

Figure 3-1: Item encoding schema 

The string value of the atomic is encoded as an array of bytes. The size of the 

byte array–i.e., atomic value length–is encoded in additive growth manner. 

Algorithm 3-1 describes this encoding. If the size of the atomic value is less than 2
8
-

1 bytes, then the length field uses 1 byte (B0) for its encoding. Otherwise, it uses 2 

more bytes (B1, B2). In case the length of the field minus 2
8
-1 is larger than 2

16
-1, 

then we use four more bytes (B3, B4, B5, B6). 

Algorithm 3-1 getAtomicLength of AtomicEncoding 

1: function GETATOMICLENGTH (atomicValue) 

2:  length ← atomicValue.length() 

3: if length < 255 then 

4:   return 1-byte 

5: end if 

6:  if length – 255< 65535 then 

7:  1-byte ← 255 

8:  2-bytes| 3-bytes ← length – 255 

9:  return 1-byte| 2-bytes| 3-bytes 

10: end if 



27 
 

11:  if length – 25 – 65535>= 65535 then 

12:  1-byte ← 255 

13:  2-bytes| 3-bytes ← 65535 

14:  return 4-bytes| 5-bytes| 4-bytes| 5-bytes ← length – 255 – 65535 

15: end if 

16: end function 

 

3.3 Sequence Encoding  

The sequence encoding schema (see Figure 3-2) consists of a sequence type 

identifier followed by its sequence value. The sequence type identifier distinguishes 

a sequence of type BufferedSequence, a special sequence that we introduce in 

Chapter 4. 

 

Figure 3-2: Sequence encoding schema 

 

If the sequence is not a type of BufferedSequence, then the sequence value 

schema (see Figure 3-3) is encoded as following. It consists of one or more item 

length and item encoding followed by one sequence end. The item length fields are 

written as 1-byte, 3-bytes or 7-bytes integer(s), the setting of bytes follow the 

algorithm showed in Algorithm 4-1, which represents the length of the item encoded 

in bytes.  The item fields follow the encoding structure explained in Section 3.2. The 

sequence-end field is represented by “0” (zero) which is written as a 1-byte integer. 

The purpose of having the sequence-end field is to determine the end of a sequence 

between a set of sequences that belong to a tuple when it is deserialized, a process 

explained in Section 3.4.  
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This encoding supports compact storage and flexibility. Compact storage space 

is achieved using efficient number of bytes for each field of the structure using the 

Algorithm 3-1. Flexibility is achieved as well because it allows the encoding of items 

as they are evaluated in a lazy manner.  

 

Figure 3-3: Sequence value encoding schema  

 

If the sequence is a BufferedSequence instance, then it is encoded in a different 

manner. A BufferedSequence in our approach is associated with a file. Its encoding 

consists of the length of the file name followed by the file name. The length is 

written as 1-byte Integer, and the file name as n-byte String. Figure 3-4 illustrates 

this schema. 

 

 Figure 3-4: BufferedSequence value encoding schema  

 

3.4 Tuple Encoding  

The role that tuples play for transferring information across operators is really 

important, because tuple streams in blocking operators can become very large so that 

the use of external memory is necessary. Therefore, we need to provide compact and 

fast encoding of tuples. The tuple encoding schema (see Figure 3-5) consists of the 

number of sequences followed by one or more sequence encodings. The sequence 

encoding fields follow the encoding schema explained in Section 3.3.  
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Figure 3-5: Tuple encoding schema 

 

Figure 3-6 gives an overview of the proposed encoding schema. The interface 

Encoder has two functions called encode and decode. The encode function 

produces a byte array, while the decode function an object which is an abstract 

representation of the data. The interface explained above is implemented by the class 

ItemEncoder. It uses two other classes, ItemTypeFactory and 

ItemEncoderFactory. ItemTypeFactory maps an item type with an 

integer value, while the ItemEncoderFactory maps an encoding scheme that 

can be defined internally (our XEF) or externally to an integer value. When either 

item type or encoding type need to be referenced in Brackit, we use their integer 

value pair. AtomicEncoder and NodeEncoder are instantiated according to the 

type of the item to be encoded. 

 

 

 

Figures 3-6: Class Diagram of XEF 
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3.5 Implementation 

As we mentioned in the introduction of this chapter, the XQuery Serialization 

Framework forms the basis for serializing and deserializing data generated from 

XQuery expression evaluations. The XSF is implemented using streams, which 

transports data from one point (e.g., main memory) to some other point (e.g., external 

memory). Java, the implementation language that we use to build XSF, has two 

fundamental components in the java.io package: InputStream class and 

OutputStream. 

An InputStream is a reference to a source data sink (be it a file, network 

connection, etc), that we want to process as follows: 

 We want to read the data as raw bytes 
1
 and write our own code encoding 

with the bytes. 

 We want to read the data in a sequential order, that is, to get to the nth byte of 

data, we have to read all the preceding bytes first and we are not guaranteed 

to be able to jump back again once we have read them.   

In order to support an abstract deserialization of data, we have defined three 

subclasses of the InputStream class: ItemInputStream, 

SequenceInputStream and TupleInputStream. The 

ItemInputStream class uses the item encoding schema for its deserialization. 

SequenceInputStream uses the sequence encoding schema. 

TupleInputStream uses the structure of the tuple encoding.  

An OutputStream is a reference to a destination data sink (be it a file, 

network connection, etc), that we want to process as follows: 

 We want to write the data as raw bytes. 

 We want to write the data in a sequential order, one data appended after 

another data.  

 

In order to support an abstract serialization of data as we did for the 

deserialization process, we have defined three subclasses of OuputStream class: 

ItemOutputStream, SequenceOutputStream and 

TupleOutputStream. The ItemOutputStream class uses the item encoding 

schema for its serialization. SequenceInputStream uses the sequence 

encoding schema. TupleOutputStream uses the tuple encoding schema. 

                                                           
1
 Raw data is a term for data collected from a source. Raw data have not been subjected to processing or any 

other manipulation, and are also referred to as primary data. 
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4 BufferedSequence 

Chapter 4rocess Architecture 

Buffered Sequence 

 

4.1   Management of large sequences 

An XQuery program is constituted of a tree of expressions, which delivers a 

sequence when evaluated. The sequences can be constituted by zero or more items. 

To illustrate the data-flow of sequences across an expression tree, consider  Figure 4-

1(a). For the evaluation of the expression expr1, the arguments expr2 and expr3 

must be evaluated. Expression expr3 requires as an argument the delivered 

sequences from expression expr4. As showed in this example, in order to provide 

the result of the evaluation of a whole tree of expressions, there are many 

intermediate results that need to be managed by the XQuery processor. 

There are two scenarios for these intermediate results. In the first one, the size 

of each intermediate result is smaller than the available main memory. For instance, 

the evaluation of the expression 1 + 1 is a single integer, which can be easily 

managed in main memory. In the second scenario, the size of each intermediate 

result is larger than the available main memory. Thus, we make use of our 

serialization framework to store those results in external memory. 

Due to the diverse size of the intermediate results during the evaluation of 

expressions, we need an approach that is abstract from the whole evaluation of the 

tree of expressions. Figure 4-1 (b) illustrates where the approach need to be placed 

across the data-flow of sequences. In this scenario, when a parent expression calls the 

evaluation of a child expression, it receives an abstract Sequence object, which is 

iterated transparently. 
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Figure 4-1: Tree of expressions 

 

There are two approaches for the management of intermediate results in external 

memory. The first one is illustrated in Figure 4-2 (a). The expression expr4 delivers 

items item1, item2, … , itemn when evaluated. These items are serialized 

immediately into an external disk one per one as they are delivered by the 

expression. When the expression expr3 requires as argument the intermediate 

results from expression expr4, the intermediate result is obtained deserializing them 

from the external disk. This approach has the advantage of keeping a low memory 

footprint, but it has two severe problems. First, it generates too many small read 

operations, which are significantly slower than fewer large reads in a magnetic disk. 

Second, it underutilizes main memory by serializing even the smallest sequences, 

resulting in a drastic penalty for simple expressions that could be completely 

evaluated in main memory. 

The second approach, which we propose, manages the intermediate results 

minimizing the number of I/O operations. This is achieved using a buffer, which is a 

temporary place in main memory which facilitates the exchange of data between 

main memory and disk. In this buffer, a set of items is kept in main memory up to a 

predefined cardinality threshold. Once it is reached, all items are written to disk in a 

single I/O operation, overcoming the first problem of the previous approach. The 

second problem is solved by using a predefining threshold in the buffer. If the 

threshold of the buffer is never reached, there is no serialization of the intermediate 

results. Therefore, there is no computation in main memory for encoding and 

decoding of sequences and there is no I/O operation. However, our approach has a 

disadvantage with respect to the advantage of the previous approach, it keeps larger 

memory footprint, but it can be adjusted by setting smaller thresholds in the buffer. 

Figure 4.2 (b) gives an overview of our approach. 
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Figure 4-2: Management of intermediate result 

 

Note that our approach is a generalization of the first one when its buffer size is 

set to zero. The buffer size can be defined as an array of bytes or as an array of items. 

In the former case, once it is created, it has a fixed size in main memory. Therefore, 

it is known how much of memory is allocated for the buffer. On the other hand, each 

item added to the buffer needs to be encoded to binary, which is an extra cost when 

the buffer does not need to be serialized. In contrast to this scenario, a buffer created 

as an array of items defines the number of items contained in main memory 

referenced by the buffer. However, there is no control of the memory overload. For 

instance, just one item can cause an overload the main memory. In this thesis, we 

have assumed that a single item always fit in main memory.  

4.2 Implementation 

The BufferedSequence component is the implementation of our approach. It is 

an extension of the Sequence Object. The BufferedSequence component manages the 

items delivered by any expression when evaluated. For each node in the expression 

tree, an instance of BufferedSequence is created. The instance of the 

BufferedSequence builds an initial empty buffer which is an array of items with a 

predefined threshold.  

When the evaluated expression produces an item, it is delivered to the 

BufferedSequence instance. First, it is checked whether there is available space in the 

buffer for an item reference. If yes, the item is added into the buffer. Note that the 

items are added into the buffer in a sequential order as they are delivered by the 

expression. If the threshold of the buffer is never reached, the items referenced by the 

buffer are kept in main memory without need to use an external disk, avoiding IO 

operations. Figures 4-3 (a) illustrates this first phase of buffering of items. 

When there is no available space in the buffer, meaning that the threshold has 

been reached, the BufferedSequence instance creates an empty temporary file. Then, 

the items referenced by the buffer are serialized into that temporary file using our 

serialization framework. The serialization of items referenced by the buffer consists 
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of three steps. First, we iterate over the buffer and get a reference of an item. Second, 

we encode an item into a binary stream using the item encoding scheme proposed in 

our serialization framework. Third, we serialize the item binary stream into the 

temporary file. We repeat this process until there is no more item references in the 

buffer. Once all items from the buffer are serialized, we clean the buffer. Figure 4-3 

(b) illustrates the second phase of buffering of items, which in some cases is never 

executed when the intermediate results are small. 

If the BufferedSequence instance is fed with more items after the serialization 

process, the items are treated as in the first phase of the buffering. If the threshold of 

the buffer is reached again, the second phase of the buffering starts again, with the 

exception that the item binary streams are now appended to the existing temporary 

file created in the second phase of the buffering. This process represents the third 

phase of buffering, Figure 4-3 (c) illustrates it. 

If the BufferedSequence instance is fed with more items after the serialization 

process and the threshold of the buffer is not reached, then the items referenced in 

the buffer are kept in main memory. Thus, our component avoids I/O operations and 

encoding computation cost for the last set of items referenced by the buffer.  

In case, the buffered items must be serialized into the existing temporary file 

due to sorting purpose–we explain it in the next chapter–then, they are forced to be 

encoded as binary strings and they are appended to the existing temporary file. 

Figure 4-3 (d) illustrates the fourth phase of buffering.   

Using our approach, we manage the data-flow of both small and large sequences 

across the tree of expressions. Moreover, the BufferedSequence component that 

implements this approach is abstract during the execution of the tree of expressions 

using the Brackit engine. 
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Figure 4-3: Management of intermediate results by BufferedSequence component 
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5 External Sorting 

Chapter 5rocess Architecture 

External Sorting 

 

5.1 Contextualization 

In Brackit, a FLWOR expression is translated into a logical plan consisting of a top-

down pipeline of operators, which follow the open-next-close model, where an 

output is requested from the final operator, which requests an input from the previous 

operator and so on. 

In the case of the Sort operator, which is a blocking operator, when its output 

is requested with the next procedure, the Sort operator invokes the next procedure 

of its input operator repeatedly until all inputs are consumed. These inputs are sorted 

given the expression in the order by clause, and then delivered one by one as 

they are requested from the following operator. Figure 5-1 illustrates this process. 

 

Figure 5-1: Execution of the Sort Operator  

 

If the sort input is too large for an internal sort, then external sorting is needed. 

In this context, we need an approach that manages the sort input and the sort output 
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following the open-next-close model as it is implemented in the operators. The 

sorting algorithm applied–whether internal or external–must be abstracted from the 

execution engine. 

The approach proposed is similar to the previous approach in Chapter 4. In this 

scenario, it manages a buffer, which is a set of tuples, and a set of runs, which are 

temporary files that contain sorted tuples. If the whole input of the Sort operator is 

smaller than the threshold–which is a predefined maximum number of sequences that 

the buffer can contain–, the sort input is sorted internally in main memory. 

Otherwise, the sorted buffered tuples are serialized into runs using our serialization 

framework. Figure 5-2 illustrates our approach. 

 

 

Figure 5-2: External sorting of stream of tuples. 

  

The remainder of this chapter is organized as follows. In Section 5.2., we review 

the syntax of the order by clause. In Section 5.3, we present the implementation 

aspects of our approach. Finally, in Section 5.4, we introduce some optimization 

techniques for sorting.  

5.2 Order by clause 

FLWOR expressions have a natural ordering, which is determined by the bindings of 

the for variables (the order of the stream of tuples). However, the order by 

clause may be used to apply an explicit order. It takes a list of expressions, called 

sort keys. 



39 
 

The order by clause sorts the tuple stream according to each of the sort keys 

in order. The sort keys do not have to be returned in the result. Figure 5-3 shows an 

example of FLWOR expression using an order by clause, which we use as basis 

for the following discussions. 

 

for $a in (1,2,3) 

for $b in (3,2,1) 

order by $b ascending, $a descending 

return $a + $b  

Figure 5-3: Sample FLWOR expression using the order by clause 

 

During the execution of the FLWOR pipeline for evaluating the expression of 

the example in Figure 5-3, the Sort operator is fed with the following tuple stream: 

[$a = 1, $b = 3] 

[$a = 1, $b = 2] 

[$a = 1, $b = 1] 

[$a = 2, $b = 3] 

[$a = 2, $b = 2] 

[$a = 2, $b = 1] 

[$a = 3, $b = 3] 

[$a = 3, $b = 2] 

[$a = 3, $b = 1] 

 

Each sort key is first evaluated and atomized. A sort key must evaluate to the 

same type for every tuple in the tuple stream, and the type must be totally ordered. 

When the first sort key evaluated for two tuples results in a tie, then subsequent sort 

keys are used to break the tie. If all the keys tie, then the order of the tied tuples is 

implementation-defined unless the stable keyword is used in front of the order 

by clause. In that case, the tied tuples retain their original ordering relative to each 

other.  

Each sort key expression may be followed by modifiers that control how that 

key affects the sort order. The most common modifiers are ascending and descending 

(ascending is the default) with the obvious effect. The other modifiers, empty 

least and empty greatest, control how the empty sequence sorts relative to 

all other values. In the scope of this work, only ascending and descending modifiers 

are considered. 
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The following tuple stream is the output of the Sort operator after reordering 

according to the given the given expression $b ascending, $a descending of 

the example in Figure 5-3: 

[$a = 3, $b = 1] 

[$a = 2, $b = 1] 

[$a = 1, $b = 1] 

[$a = 3, $b = 2] 

[$a = 2, $b = 2] 

[$a = 1, $b = 2] 

[$a = 3, $b = 3] 

[$a = 2, $b = 3] 

[$a = 1, $b = 3] 

 

The result of the example in Figure 5-3 after the reordering of tuples is the 

following sequence: 

(4, 3, 2, 5, 4, 3, 6, 5, 4) 

 

5.3 Implementation  

Our approach is implemented by the TupleSort component. It is a combination of 

main-memory and external-merge sort. The implementation is I/O robust w.r.t. pre-

sorted or small inputs. 

The TupleSort component manages a buffer, which is an array of tuples, and 

runs, which are files. The size of the buffer is predefined by the variable maxSize, 

which is the maximum number of sequences that the buffer can contain. Once the 

maxSize is reached, the serialization of the buffered tuples occurs. 

Given the stream of tuples (st1, st2, st3) from Figure 5-4, and defining maxSize 

= 3, the stream of tuples starts being serialized into runs at different positions of the 

space of the stream. The stream st1 starts to serialize its buffered tuples at position 4, 

the stream st2 at position 3, and stream st3 at position 2. Note that the stream st1 

starts serializing its buffered tuples after its buffer has reached its maximum size. 

This scenario occurs just when a tuple is a single item. Otherwise, the buffered tuples 

are serialized when the buffer is not full. 

1 [$a = 1] [$a = 1, $b = 2]  [$a = 1, $b= (1,2)] 

2 [$a = 2] [$a = 2, $b = 3]  [$a = 2, $b= (2,3)] 

3 [$a = 3] [$a = 3, $b = 4]  [$a = 3, $b= (3,4)] 

4 [$a = 4] [$a = 4, $b = 5]  [$a = 4, $b= (4,5)] 

 

       (st1)       (st2)        (st3)  

Figure 5-4: Stream of tuples 
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It is important to note that maxSize defined in terms of sequences–instead of 

tuples or items–manages the overloading of memory better than the two other 

alternatives. For instance, if the maxSize were defined as maximum number of tuples 

that a buffer can contain, the memory can be overloaded due to a single tuple being 

too large composed of many sequences, and a sequence may be composed of many 

items. On the other hand, if maxSize were defined as maximum number of items that 

the buffer can contain, the overloading of the memory is precisely controlled by this 

threshold. However, the serialization of buffered tuples could start when a sequence 

in a tuple is being evaluated. Thus, we would require to keep in main memory the 

current tuple being evaluated in order to not loose that information. For instance, if 

the maxSize (maximum number of items) is 5, the stream st3 of the example in 

Figure 5-4 would be serialized when the item 3 in sequence $b= (2,3) is being 

evaluated in the tuple [$a = 2, $b= (2,3)].  

The threshold maxSize defined in terms of sequences manages both memory 

overloading and data movement. Using our previous approach BufferedSequence 

which manages large sequences, a large sequence is an instance of BufferedSequence 

which references the file where the sequence is serialized. When a tuple contains 

sequences of instance BufferedSequence and the tuple needs to be serialized, the 

BufferedSequence is serialized as file path name it references. In this approach, first 

we reduces the size of the runs where the tuples are serialized just using the file path 

name which its size is smaller than serializing the whole sequence. Second, the data 

movement for external sorting is smaller due to the encoding schema for tuples 

proposed in Chapter 3. Note that sort keys in the order by clause must be of type 

atomic. Thus, a BufferedSequence sequence is never compared to another sequence 

in other tuple in the Sort operator. 

Figure 5-5 illustrates a stream of tuples as input for the Sort operator. Here 

BS12,…, B32 refer to BufferedSequence instances. If maxSize is 6, then the 

serialization of the buffered tuples starts when the second input of the Sort operator 

is requested.  

1 [$a = 1, $b= BS11, $c= BS12, $d= 2] 

2 [$a = 2, $b= BS21, $c= BS22, $d= 3] 

3 [$a = 4, $b= BS31, $c= BS32, $d= 4] 

 

 Figure 5-5: Tuple stream composed by one BufferedSequence 

 

Algorithm 5-1 describes how each input of the Sort operator is managed by the 

TupleSort component. The variable size, which is the accumulated number of 

sequences that the buffer contains, and the variable count, which serves as a pointer 
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in the buffer where the tuples is added, are initialized with zero. The maxSize 

variable is the predefined threshold for serializing the buffered tuples. The getSize 

function returns the number of sequences that the tuple contains.   

Algorithm 5-1 add method  

1: function ADD (Tuple item) 

2:  itemSize ← getSize(item);  

 

3: if ((maxSize > 0) && (size + itemSize > maxSize)) then 

4:   writeRun(); 

5: end if 

 

6: buffer[count++] ← item; 

7:  size += itemSize; 

 

8: end function 

 

5.3.1 Internal sorting 

In the scenario that the input sort is smaller than maxSize, just the internal sorting is 

needed. The internal sorting takes place after all tuples from input Sort operator are 

consumed. Because the maxSize has not been reached, there is no generation of runs. 

Thus, there is no I/O operation.   

The internal sorting is implemented using the method 

java.util.Arrays.Sort(buffer,0,count,comparator) provided by 

the implementation platform Java. This method sorts the specified range of the 

specified array of tuples–defined as a buffer–according to the order induced by the 

specified comparator defined in the order by clause.  The range to be sorted 

extends from index 0, inclusive, to index count, exclusive (if count is zero, the 

range to be sorted is empty). All tuples in the range must be mutually comparable by 

the specified comparator. This sort is guaranteed to be stable, where equal tuples will 

not be reordered as a result of the sort.  

The sorting algorithm used in Array.sort() is a modified mergesort in 

which the merge is omitted if the highest element in the low sublist is less than the 

lowest element in the high sublist. This algorithm offers guaranteed O(nlog(n)) 

performance. 

Figure 5-6 illustrates the three phases for internal sorting. First, the sort input is 

added into the buffer using the algorithm 5-1. Once the whole sort input is added to 

the buffer defined in the TupleSort component, then the sorting phase takes place 
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using the Array.sort() method. The sorted input–tuples in the buffer–is 

transformed as a stream of Tuples. Finally, when the output of the Sort operator is 

requested the stream is iterated delivering a tuple per request. 

 

Figure 5-6: Sorting operator with internal sorting 

 

5.3.2 External sorting 

The external sorting uses the well-known merge-sort algorithm. The merge-sort 

algorithm–in our approach for the management of large input sort–is implemented 

using a buffer and runs which were previously introduced in Section 5.3.1. The 

sorting procedure in external sorting is split in two phases: generation of runs and 

then merging of runs. In the first one, a run is generated when the number of 

sequences that the buffer contains is greater than maxSize threshold defined in the 

TupleSort component, see Algorithm 5-1. The produced runs are then gradually 

merged in a single file during the second phase.    
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Phase I: Generation of runs 

 

Whenever the maxSize threshold is reached, the buffered tuples referenced by 

the buffer are sorted using the internal sorting algorithm introduced in Section 5.3.1.  

Then a temporary file is created. The sorted buffer is then serialized in the temporary 

file, one tuple at a time, using our serialization framework. Once all tuples are 

serialized into the run, its location is registered in the TupleSort component. Once the 

run is written, the size and count global variables of the component are set to zero.  

 

To exemplify the previous context, consider the example of Figure 5-3. If we 

assume that maxSize is 4, then the number of tuples that can be hold in main memory 

is 2, because each input tuple of the Sort operator contains two sequences. If the 

first two tuples of the input sort are sorted given the sort keys ($b ascending, $a 

descending) and then serialized in the run; the following run is generated: 

 

Run0: 

[$a = 1, $b = 2] 

[$a = 1, $b = 3] 

 

If the maxSize is over reached again, then a new run is created or it is appended 

the sorted buffered tuples to the previous run. The first scenario occurs when the first 

tuple of the current sorted buffer is ordered before than the last tuple in the run. 

Using the previous example, the last tuple in a run is [$a = 1, $b = 3] and first 

tuple of the current sorted buffer is [$a = 1, $b = 1]. As the first tuple of the 

sorted buffer is ordered before than the last tuple in a run, the new run generated as 

follows: 

 

Run1: 

[$a = 1, $b = 1] 

[$a = 2, $b = 3] 

 

Appending the current sorted buffer to the previous run will occur if the last 

tuple in run is ordered before than the first tuple in the sorted buffer. Using the 

previous example, this situation never occurs, therefore Run2 and Run3 are 

generated. 

Run2: 

[$a = 2, $b = 1] 

[$a = 2, $b = 2] 

 

Run3: 

[$a = 3, $b = 2] 

[$a = 3, $b = 3] 
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In case the maxSize is never reached again, but the buffer contains tuples in it, 

the tuples are kept in main memory. From the example in Figure 5-3, after all inputs 

are consumed the buffer contains just one tuple in main memory: 

 

Sorted Buffer: 

[$a = 3, $b = 1] 

 

The Algorithm 5-2 describes how the different scenarios for writing a run are 

managed in our approach. Fisrt, the sortBuffer() function orders the tuples in the 

buffer. Then, it checks whether the sorted buffer can be appended to a previous runs. 

Note that appendding a buffer into a run renders two situations in the sorting phase. 

First, we can have an unbalanced tree of runs, meaning that a run can contain 

different number of tuples per run. For instance a run run1 can contains 10 times 

the number of tuples in run run2. Second, the number of run-merges is smaller due 

to the smaller number of generated runs when the append run condition is satisfied. 

In case this condition is not satisfied, the current run is close. Then, it registers the 

location of a file where the buffered tuples are serialized in it. Once the run is 

written, size and count variables is set to zero for the next buffering of the sort input. 

 

Algorithm 5-2 writeRun method  

1: function WRITERUN () 

2:  sortBuffer() 

 

3: if ((lastInRun != null) && (lastInRun<=buffer[0])) then 

4:   appendToRun() 

5:  return 

6: end if 

 

7: if (currentRun !=null) then 

8:   currentRun.close() 

9: end if 

 

10: run ←  createTempFile() 

  

11: currentRun ←new BufferedOutputStream(new FileOutputStream(run));  

 

12: for (int i = 0; i < count; i++) do 

13:  lastInRun = buffer[i]; 

14:  writeItem(currentRun, lastInRun); 

15: end for 

 

16: runs[runCount++] ←  run; 
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17: size ←  0; 

18: count ←  0; 

19: initialRuns++; 

 

20: end function 

 

 

Phase II: Merging 

 

In this phase, the sorted runs created during the first phase are merged into larger 

runs of sorted tuples. The merge continues until all tuples of the sort input are in one 

large run. The output of the merge phase is the output of the Sort operator. 

 

The merging phase consists of zero or more merge level(s) until one run is 

delivered. Each merge level consumes runs and produces new runs. The number of 

new runs is smaller than the consumed runs at each merge level. The size of each 

new run is equal to the size of the consumed runs. Algorithm 5-3 describes a strategy 

to merge the runs in pairs. The number of merges at each level is calculated dividing 

the number of runs by 2. If the numbers of merges is not even, then the number of 

new runs is the same as the number of merges. The merge pairs can be sorted 

forward or backward. The first one is described in the algorithm.  In case the number 

of runs is even, the number of new runs is equal to the number of merges plus one, 

where the single run is used as output for the next merge level.  

 

Algorithm 5-3 mergeRuns method  

1: function MERGERUNS (File[] runs) 

2:  newRuns ←  null; 

3:  mergeLevel ←  0; 

4: runCount ←  runs.length(); 

 

5:  while (runCount >1) then  

6:   merges ←  runCount/2 

7:  singleRun ←  runCount mod 2 

8:  newRunCount ←  merges + singleRun 

9:  newRuns←  new File[newRunCount] 

 

10:   pos ←  0; 

 

11:  if (singleRun) then 

12:                       for (int i = newRunCount - 1; i > 0; i--) do 

13:               newRuns[pos++] ←  merge(runs[2 * i - 1], runs[2 * i]) 

14:   end for 
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15:              newRuns[newRunCount - 1] ←  runs[0] 

16:  else  

17:                       for (int i = newRunCount - 1; i >= 0; i--) do 

18:             newRuns[pos++] ←  merge(runs[2 * i], runs[2 * i + 1] 

19:              end for 

20:  end if 

              

21:  runs ←  newRuns 

22:  mergeLevel ←  mergeLevel +1 

 

23: end while 

24: end function 

 

 

Using the example of Figure 5.3, the runs generated were Run0, Run1, Run2 and 

Run3. If we merge them using the algorithm introduced previously, we obtain the 

following merge level: 

 

Run0:      Run1:      Run2:       Run3: 

[$a=1, $b=2] [$a=1, $b=1]  [$a=2, $b=1] [$a=3, $b=2] 

[$a=1, $b=3] [$a=2, $b=3]  [$a=2, $b=2] [$a=3, $b=3] 

 

 

Merge Level 0 

 

    NewRun0:       NewRun1:        

[$a=1, $b=1] [$a=2, $b=1] 

[$a=1, $b=2]  [$a=3, $b=2] 

[$a=2, $b=3] [$a=2, $b=2] 

[$a=1, $b=3] [$a=3, $b=3] 

 

 

 Merge Level 1 

    Single merge 

 

  NewRun0:     

[$a=2, $b=1] 

[$a=1, $b=1] 

[$a=3, $b=2] 

[$a=2, $b=2] 

[$a=1, $b=2] 

[$a=3, $b=3] 

[$a=2, $b=3] 

[$a=1, $b=3] 
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If there is no buffered tuple in main memory, the output of the sort operator is 

iterated from the final run merge. It delivers one tuple at a time when the next() 

procedure is requested of the following operator.  If it is not the case, the sorted 

buffer in main memory and the final run merge are iterated delivering each one a 

tuple which are compared providing as an output the one ordered before. The other 

tuple is kept in memory for comparison with the next tuple of final merge run or the 

next tuple of the buffer. The tuples are compared in pair from different sources. 

From the previous example, there is a buffer in main memory containing the 

tuple [$a = 3, $b = 1] which is merged with the final run producing as a 

output the following stream of tuples as they are requested: 

 

SortedOutput:     

[$a=3, $b=1] 

[$a=2, $b=1] 

[$a=1, $b=1] 

[$a=3, $b=2] 

[$a=2, $b=2] 

[$a=1, $b=2] 

[$a=3, $b=3] 

[$a=2, $b=3] 

[$a=1, $b=3] 

 

During internal and external sorting, there is a significant cost of in-memory 

computation. It is dominated by two operations: key comparison and data movement. 

In order to provide good performance for sorting operations, we have implemented 

some techniques to speed up key comparison. In the next section, we introduce the 

techniques implemented in the Brackit engine. 

 

5.4 Optimization sorting techniques 

The cost of in-memory comparison is an issue that can be quite complex due to 

multiple keys to be compared within each tuple, each with its own type, length, sort 

direction (ascending or descending), and so on. Given that each tuple participates in 

many comparisons, it seems worthwhile to reformat each tuple before and after 

sorting if the alternative format speeds-up the multiple operations in between.  

The format that is most advantageous for fast comparisons is a simple binary 

string. Thus the entire complexity can be reduced to comparing binary strings, and 

the sorted output tuples can be recovered from binary string. Since comparing two 

binary strings takes only tens of instructions, it makes sense to use normalized keys 

for sorting. Needless to say, hardware support is much easier to exploit if key 

comparisons are reduced to comparisons of binary strings [18].  
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In the Brackit engine, we have implemented some techniques to speed up the 

comparison of tuples as follows. Fist, the tuple is transformed by adding the key sorts 

items defined in the order by operator at the beginning of the tuple. Second, we 

encode the transformed tuple using our tuple encoding schema defined in Section 

3.4. Then, they are serialized into runs. When the merging phase takes place between 

runs, the tuples are compared as binary string. Then, when the merge phase has 

finished and the tuples need to be delivered, the transformed tuple is restored to the 

original format. Figure 5-5 illustrates this process. 

 

 

Figure 5-5: External Sorting with optimization 

  

The following run exemplifies how the tuples are written into a run with and 

without transformation:  

Run0: 

 

  Tuple    Tuple with transformation 

[$a=1, $b=2]  [$b=2, $a=1, $a=1, $b=2] 

[$a=1, $b=3]  [$b=3, $a=1, $a=1, $b=3] 

 

Transformed tuples may be substantially larger than the original ones, thus 

increasing the requirements for both memory and disk, space and bandwidth. 

However, the proposed optimization technique is beneficial, as most comparison will 

be decided by the first bytes alone. In the next Chapter, we assess the efficiency of 

our implementation. 
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6 Experiments 

Chapter 6rocess Architecture 

Experiments 

 

6.1 XSF 

In this section we evaluate the encoding framework in terms of the size of the 

encoded sequence w.r.t. size of the original sequences and time to encode and decode 

sequences.  

For this experiment, we have generated sequences of different sizes (1 KB, 

1MB, 10MB) containing atomic items of different types (Integer, Float, Double, 

String). The values of the atomic items are randomly generated.  

6.1.1 Sequence size vs. Encoded sequence size 

 

Figures 6-1 illustrates the relative size of the encoded sequence with respect to the 

original size of the sequence. The encoded sequence sizes are up to 3.5 times larger 

than the original sequence.  For Integer atomic items, the encoded sequence size is in 

average 3.5 times the original one. For Float atomic items, its encoded size is 3.2 

times the original one. For Double atomic items, its encoded size is in average 2.8 

times the original one. The size of String atomic items are encoded closely as its 

original size, it is in average 1.1 times.  

 

The encoding schema used for our XQuery Serialization Framework is not 

compact w.r.t. the original XDM instances. This is because the encoded XDM 

instance contains metadata like type and length fields which are used for 

deserialization purpose. The proposed encoding schema can be extended with 

compression techniques to reduce the size of the encoded data.  
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Figure 6-1: Relative encoded sequence size 

 

6.1.2 Encoding time vs. Decoding Time 

 

The time for encoding and decoding a sequence of 1KB, 1MB or 10 MB differs with 

respect to its size and the atomic item type they contain (see Figure 6-2, Figure 6-3 

and Figure 6-4).  

When the sequence size is 1KB (see Figure 6-2), we obtain the following 

measures. If the type is Integer, it takes 12 ms for encoding the sequence. If the type 

is Float, it takes 36 ms for encoding the sequence. If the type is Double, it takes 20 

ms for encoding the sequence. If the type is String, it takes 1 ms for encoding the 

sequence. The time for decoding sequences is less than the maximum time for 

encoding the different sequences. 
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Figure 6-2: Encoding Time vs. Decoding Time (Sequence 1KB) 

 

 

Figure 6-3: Encoding Time vs. Decoding Time (Sequence 1MB) 

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

Integer Float Double String 

Sequence (1KB) 

Encoding Time vs. Decoding Time  

 Encoding Time (ms)  Decoding Time (ms) 

0 

200 

400 

600 

800 

1000 

1200 

Integer Float Double String 

Sequence (1MB) 

Encoding Time vs. Decoding Time  

 Encoding Time (ms)  Decoding Time (ms) 



54 
 

 

Figure 6-4: Encoding Time vs. Decoding Time (Sequence 10MB) 

 

As you can see in Figure 6-2, Figure 6-3 and Figure 6.4, the encoding and 

decoding times of a sequence composed by String atomic items are smaller than 

other types of atomic items. This is because each character of the string is interpreted 

as binary. Thus there is no need for encoding or decoding it. For a sequence of 10MB 

size composed of string atomic items, it takes 138 ms and 97 ms for encoding and 

decoding respectively.  

The measures obtained in this section–encoding size, and execution time for 

encoding and decoding of XDM instances–need to be considered when we run the 

experiments for BufferedSequence and External Sorting.  

6.2 Buffered Sequence 

In this section we measure the execution time for evaluating a FLWOR expression 

which processes large sequences. First, we measure their execution time without 

using our BufferedSequence approach. Second, we measure it using our approach. In 

this second scenario, we measure it using different buffer sizes.  

6.2.1 Execution Time 

Figure 6-5 shows the query used for this experiment. It is a FLWOR expression with 

another nested FLWOR expression. The nested expression generates large 

intermediate results, namely one million integers. These intermediate results are used 

twice by other expressions in the query for generation aggregations.  
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for $x in (1 to 10) 

let $y:= ( for $a in ($1 to 1000000) 

  return $a) 

let $f:= (sum($y)mod $x) 

group by $f 

return avg($y)  

Figure 6-5: Nested FLOWR expression  

 

When we integrate our approach BufferedSequence in the Brackit engine, the 

evaluation of the query transforms the nested FLWOR expression into an instance of 

BufferedSequence. 

Figure 6-6 shows the execution time of the query under different scenarios. If 

no BufferedSequence component is integrated to the Brackit engine, then the 

execution of the query takes 7872 ms.  If we integrate our component to the Brackit 

engine, then the execution time of the query is larger than without using it.  

If we use our BufferedSequence with a buffer size of 1000000–meaning that all 

items in the sequence are added to the buffer and they are never written to disk–then 

the execution of the query takes 13942 ms. This execution time is almost the double 

of the execution time without using the BufferedSequence. It is expected to have the 

double time because we iterate every sequence twice when creating the 

BufferedSequence. The first iteration takes place when we add the items of the 

sequence to the buffer. The second iteration takes places when iterate over the buffer 

for evaluating the sequence. 

If we use our BufferedSequence with buffer size of 1000–meaning that most of 

its items will be serialized–then the execution of the query takes 270167ms. This 

execution time is 34 times the execution time without using the BufferedSequence 

and it is 19 times the execution time using the BufferedSequence with buffer size of 

1000000. It is expected to have larger time because the BufferedSequence generates 

many I/O operations.  

 



56 
 

 

Figure 6-6: Execution time of nested FLWOR expression  

 

6.3 External Sorting 

In this section we measure the execution time for evaluating a FLWOR expression 

which processes large sorting operations using our external sorting algorithm 

implemented for the Sort operator. First, we measure its execution time without 

using binary comparison. Second, we measure it using binary comparison. In both 

scenarios, we increase the size of the buffer to determine how the performance of the 

query varies. 

6.3.1 Execution Time 

 

Figure 6-7 shows the query used for this experiment. It is a FLWOR expression 

which requires the sorting of large stream of tuples, namely one hundred million 

tuples generated by the two for clauses in the expression. The stream of tuples are 

sorted according the sort key $b. 

 

As you can see in Figure 6-8, the execution time of the query using tuple object 

comparison takes more than time than when the tuples are compared by their binary 

representation using the XSF for all different buffer sizes (1000, 10000, 100000, 

1000000). Comparing tuples during external sorting by its binary representation 

spare up to 33% of execution time. It is expected to have such a better performance 

due to the binary representation does not require to be transformed as tuple in the 
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implementation language, therefore we spare this time of encoding and decoding the 

tuple. 

 

for $x in (1 to 1000000) 

for $b in (100 to 1) 

order by $b 

return ($a, $b)  

Figure 6-7: FLWOR expression 

 

 

Figure 6-8: Execution time of Sort Operations  
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7 Conclusion 

Chapter 7rocess Architecture 

Conclusion 

 

We presented an XQuery serialization framework for enabling the management of 

large intermediate results during query evaluation. We used our framework in two 

different applications. The first one, the BufferedSequence component, manages 

large sequences. The second one, the Sort operator, supports external sorting for 

managing large tuple streams.  

The XQuery Serialization Framework proposed in this work defines an 

encoding schema for items, sequences and tuples. The encoding schema of each data 

item includes its metadata like type information and value length, which is obtained 

during the execution of the query. Thus, as it is showed in the experiment in Section 

6.1, the size of the encoded data is larger than its original size because the metadata 

is added for each item.  

We could improve the compactness of our encoding schema by previously 

analyzing the expression tree to determine type information, then adding this 

information as schema of the file where the data is stored. This analysis, known as 

static typing, could avoid us encoding metadata for each item. Thus, we could reduce 

the size of the encoded data and reduce the execution time for encoding and 

decoding. 

Our BufferedSequence component enables the management of large sequences, 

but the performance of a query evaluation using it decreases due to an eager loading 

of items in the buffer when the sequence is constructed. Furthermore, the 

BufferedSequence component is statically integrated into the PipeExpr of the 

Brackit engine. This leads two problems: First, we use BufferedSequence for only 

PipeExpr expressions. Thus, other expressions which may as well result in large 

sequences are not supported. Second, we use BufferedSequence for every instance of 
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PipeExpr. In most expressions, the contents of a sequence are simply streamed, 

which means that there is no need for buffering even very large sequences. This 

situation could be improved by previously analyzing the expression tree to decide 

whether to use a BufferedSequence or not. 

The external sorting algorithm for the Sort operator enables the sorting of large 

tuple streams using external sorting. Moreover, the formatting of the tuples as binary 

string for comparisons paid off showing better performance in the experiments in 

Section 6.3 than without using it. However, its performance could be improved if the 

encoding and decoding of the tuples were smaller than the used one, because a binary 

tuple is encoded by duplicating the sort keys of the order by clause in the 

beginning. Instead of that, we could just move and not append the sort keys of a tuple 

in the beginning without increasing the size of the tuple. 

Besides the merge-sort strategy implemented for the external sorting, other 

merging strategies could be implemented, and later on we could determine which 

strategy performs better or worse than the current one. As we have implemented an 

external algorithm for the Sort operator, we could implement external algorithms for 

other blocking operators like join and group by. 

In this thesis, the XQuery Serialization Framework, the BufferedSequence 

component and the Sort operator are integrated into the execution engine of Brackit. 

However, the performance of our approaches in terms of space consumption and 

execution time could be improved if the compilation phase would be considered for 

the analysis of metadata of XDM instances and estimation of the numbers delivered 

results.  

The use of our framework and the two proposed components enables the 

execution of arbitrary XQuery over very large datasets, whose size is limited only by 

the available external memory. 
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