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Abstract. Due to high access performance and price-per-byte consider-
ations, flash memory has been recommended for use as a mid-tier cache
in a multi-tier storage system. However, previous studies related to flash-
based mid-tier caching only considered the indirect use of flash memory
via a flash translation layer, which causes expensive flash-based cache
maintenance. This paper identifies the weaknesses of such indirect meth-
ods, with a focus on the cold-page migration problem. As improvements,
we propose two novel approaches, an indirect approach called LPD (log-
ical page drop) and a native approach called NFA (native flash access).
The basic idea is to drop cold pages proactively so that the garbage col-
lection overhead can be minimized. Our experiments demonstrate that
both approaches, especially the native one, effectively improve the use of
flash memory in the mid-tier cache. NFA reduces the number of garbage
collections and block erasures by up to a factor of five and improves the
mid-tier throughput by up to 66%.

1 Introduction

Despite fast page-oriented random access, storage devices based on flash memory
(flash-based devices), e. g., flash SSDs, are still too expensive to be the prevalent
mass storage solution. In fact, flash memory perfectly bridges the gap between
RAM and magnetic disks (HDDs) in terms of price per capacity and perfor-
mance3. Therefore, using them in the middle tier of a three-tier storage hierarchy
is a much more realistic approach. In such a hierarchy, the top tier incorporates
fast but expensive RAM-based buffer pools, while the bottom tier is based on
slow but cheap storage devices such as HDDs or even low-end flash SSDs. The
middle tier acts as a cache larger but slower than the top-tier buffer pool. Such
a three-tier storage system can be deployed as, e. g., the storage sub-system
of a database (DB) system. Nevertheless, flash memory has some distinguishing
characteristics and limitations that make its efficient use technically challenging.
This paper studies its efficient use for mid-tier caching.

3 We focus on NAND flash memory due to its suitability for storage systems.



1.1 Flash memory and FTL

Flash memory supports three basic operations: read, program, and erase. Read
and program (also known as write) operations must be performed in units of flash
pages, while erase operations have to be done at a larger granularity called flash
block (block), which contains a multiple of (e. g., 128) flash pages. Read operations
have a very small latency (in the sub-millisecond range). However, program
operations are much slower than them, typically by an order of magnitude.
Erase operations are even slower than program operations, by another order
of magnitude. Let Cfr, Cfp, and Cfe be the costs of read, program, and erase
operations, respectively, we have: Cfr < Cfp < Cfe.

An erase operation turns a block into a free block, and, consequently, each of
its flash pages into a free flash page, which is a flash page that has never been
programed after the block erasure. Only free flash pages can be programed, i. e.,
a non-free flash page can become programmable again – but only after an erase
of the entire block. This limitation, known as erase-before-write, implies that an
in-place update of flash pages would be very expensive [1]. Furthermore, after
enduring a limited number of program/erase (P/E) cycles4, a block becomes
highly susceptible to bit errors, i. e., it becomes a bad block.

Mainly due to the aforementioned limitations, flash memory is often accessed
via an intermediate layer called flash translation layer (FTL), which supports
logical read and write operations, i. e., reading and writing of logical pages. A
flash page normally consists of a main area of several KBs for storing user data,
and a spare area of a few bytes to facilitate the FTL implementation. For brevity,
we assume that (the size of) a logical page corresponds to a bottom-tier page
(e. g., a DB page) and they are of the same size of the main area, and we use the
term page to refer to a logical page, which is to be distinguished from a physical
page, i. e., a flash page.

To avoid the expensive in-place updates, FTL follows an out-of-place update
scheme, i. e., each logical page update is served using a free flash page prepared
in advance. Consequently, multiple writes to a logical page can result in multiple
page versions co-existing in flash memory. The term valid page refers to the latest
version, while invalid pages refer to the older versions. Similarly, a valid flash
page is the physical page where the latest version resides. When free flash pages
are in short supply, some space taken by invalid pages has to be reclaimed. This
is done by a procedure called garbage collection (GC), which reduces the number
of invalid pages and increases the number of free flash pages.

To keep track of the valid flash page of a (logical) page, an address mapping
mFTL : AF 7→ Af is maintained, where AF represents the set of FTL logical
addresses (FLAs), i. e., logical page numbers supported by the FTL, and Af the
set of FTL physical addresses (FPAs), i. e., flash page addresses available on the
device. Depending on the map-entry granule of the mFTL implementation, FTL
algorithms can be classified into three categories: page-level mapping [2,3], block-
level mapping [4,5], and hybrid mapping [6,7]. Among them, page-level mapping
4 The number of cycles depends on density, vendor, and flash memory type. SLC

NAND flash memory is typically rated for ∼100,000 P/E cycles.
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Fig. 1: Three-tier storage system with
indirect use of flash memory by the
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interface of the flash memory transpar-
ent to the mid-tier cache manager. The
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vice, surrounded by the dashed line,
appear as a “black box” and act to-
gether as a persistent array of logical
pages that can be read and overwrit-
ten.

has the greatest performance potential, but it also has the highest resource
requirements, mainly due to the mapping table size. However, recent studies
have shown that the resource problem of page-level mapping can be effectively
dealt with using methods such as demand paging of the mapping table [8] or new
hardware such as PCM (phase-change memory) as the mapping table storage
media [9]. Therefore, in this paper, we focus on page-level mapping in favor of
the performance potential, although the problems studied and the basic ideas
leading to our solutions are not specific to any FTL implementation.

1.2 Problem

Previous studies on flash-based mid-tier caching only considered the indirect use
of flash memory, i. e., the use of flash memory via an FTL, as shown in Fig. 1.
Although simplifying the use of flash memory, the indirect approach has some
fundamental problems. FTL implementations are usually vendor-specific and
proprietary [1,10]. The proprietary FTL logic makes it impossible to accurately
model or predict the performance of flash-based devices. This is not acceptable
for performance-critical applications, because their optimization is often based
on the cost model of the underlying storage devices. Furthermore, without direct
control over potentially expensive procedures such as GC, the response time
becomes indeterministic for the application. It has been reported that GC can
take up to 40 seconds[11], which is not only an issue for applications with real-
time requirements, but also intolerable for normal use cases.

For flash-based mid-tier caching, the indirect approach has an even more
serious problem related to GC. This problem is explained in the following with
the help of a simplified GC procedure, which involves three steps:

1. Select a set of garbage blocks, which are blocks containing some invalid pages.
2. Move all valid pages from the garbage blocks to another set of (typically

free) blocks, and update the corresponding management information.
3. Erase the garbage blocks, which then become free blocks.



If a block has M pages and Step 1 selects only one garbage block, which
has v valid pages, then Step 2 consumes v free flash pages, and the procedure
increases the total number of free flash pages by M − v, at a total cost of
(Cfr + Cfp) × v + Cfe, where (Cfr + Cfp) × v is caused by Step 2, and Cfe

caused by Step 3. The ratio v/M is called block utilization. Obviously, GC is
more effective and also more efficient for smaller values of v/M , because more
free flash pages are gained at a lower cost. Therefore, v/M is an important
criterion to be considered for the garbage block selection in Step 1. If the entire
flash memory is highly utilized, i. e., v/M is statistically close to 1, GC becomes
relatively expensive, ineffective, and has to be invoked frequently.

Although for a cache, only hot pages should be kept and cold pages should
be evicted, FTL must guarantee each valid page is accessible no matter the
page is cold or hot. This means that, during GC processing, cold pages have
to be moved along with hot pages (Step 2), while the cold ones, which make
v/M unnecessarily high, could actually be discarded from the cache manager
perspective. We call this problem the cold-page migration (CPM) problem.

More specifically, the CPM problem negatively impacts mid-tier performance
in two aspects: 1. The cost of GC, due to the (unnecessary) CPM; 2. The fre-
quency of GC, because, if cold pages are regarded valid, fewer pages can be
freed by one invocation of GC, and, as a result, the subsequent GCs have to be
invoked earlier. Furthermore, the GC frequency is proportional to the number
of block erases, which is inversely proportional to the device life time due to the
endurance limitation.

A similar problem exists when flash SSDs are used as the external storage
under a file system. File deletion is a frequent operation, but the information
about deleted files is normally kept in OS and not available to the SSD. The
latter has to keep even the deleted data valid, at a potentially high operational
cost. As solution, a Trim attribute for the Data Set Management command has
been recently proposed and become available in the ATA8-ACS-2 specification
[12]. This attribute enables disk drives to be informed about deleted data so that
their maintenance can be avoided.

However, no sufficient attention has been paid to the CPM problem, which
actually impacts the performance in a more serious way. First, when used in the
mid-tier cache, flash-based devices experience a much heavier write traffic than
that of file systems, because pages are more frequently loaded into and evicted
from the cache. To flash-based devices, heavy write traffic means frequent GCs.
Second, the capacity utilization of a mid-tier cache is always full, which makes
GC expensive and ineffective (especially for heavy write workloads). In contrast,
the GC issue is less critical to file systems, because typically a large portion of
their capacity is unused.

1.3 Solution

To solve the CPM problem, we develop two approaches, which share the same
basic idea: drop cold pages proactively and ignore them during GCs.



1. The first approach, LPD (logical page drop), accesses flash memory indirectly
via an extended FTL, which can be informed about proactively evicted cold
pages, and ignore them during GCs.

2. The second approach, NFA (native flash access), manages flash memory in a
native way, i. e., it implements the out-of-place update scheme and handles
GC by the cache manager, without using an FTL.

According to our experiments, both approaches significantly outperform the
normal indirect approach, by improving the GC effectiveness and reducing its
frequency. For example, NFA reduces the GC frequency by a factor of five, which
not only contributes to the data access performance, but also implies a greatly
extended device life time. In terms of overall performance (IOPS), NFA achieves
an improvement ranging from 15% to 66%, depending on the workload.

1.4 Contribution

To the best of our knowledge, our work is the first that identifies the CPM prob-
lem. Our work is also the first that considers managing flash memory natively
in the mid-tier cache. Our further major contributions are:

– We propose two novel approaches for flash-based mid-tier caching: LPD and
NFA, both of them effectively deal with the CPM problem.

– Our study shows that, for a flash-based mid-tier cache, our native approach
significantly improves the storage system performance while reducing the
resource requirements at the same time.

– More importantly, the results of our study urge the reconsideration of the
architectural problem of optimally using flash memory in a DB storage sys-
tem, i. e., whether it should be managed natively by the DBMS or indirectly
via the proprietary FTL implementations.

1.5 Organization

The remainder of this paper is organized as follows: Section 2 discusses related
works. Section 3 presents and discusses our approaches. Section 4 reports our
experiments for the evaluation of both approaches. The concluding remarks are
given in Section 5.

2 Related Work

Before flash memory became a prevalent, disruptive storage technology, many
studies, e. g., [13,14,15,16], addressed the problem of multi-level caching in the
context of client-server storage systems, where the first-level cache is located at
the client side and the second-level (mid-tier) cache is based on RAM in storage
server. However, these studies did not consider the specific problems of a flash-
based mid-tier cache. Our proposals are orthogonal to and can be combined



with their approaches, because their primary goal is to reduce the disk I/O of
the storage server, while our approaches primarily focus on the operational costs
of the middle tier.

In one of the pioneer works on flash-aware multi-level caching [17], Koltsidas
et al. studied the relationships between page sets of the top tier and the mid-tier
caches, and proposed flash-specific cost models for three-tier storage systems. In
contrast, a detailed three-tier storage system implementation and performance
study was presented in [18]. Their empirical study has demonstrated that, for
certain spectrum of applications, system performance and energy efficiency can
be both improved at the same time, by reducing the amount of energy-hungry
RAM-based memory in the top tier and using a much larger amount of flash
memory in the middle tier.

Not only academia, but also industry has shown great interest in flash-based
mid-tier caching. Canim et al. [19] proposed a temperature-aware replacement
policy for managing an SSD-based middle tier, based on access statistics of disk
regions. In [20], the authors studied three design alternatives of an SSD-based
middle tier, which mainly differ in the way how to deal with dirty pages evicted
from the first-tier, e. g., write through or write back.

Although flash-specific cost models and their difference to those of traditional
storage devices have been taken into account by previous works on flash-based
mid-tier caching [17,18,19,20], they commonly only consider the indirect ap-
proach, while hardly any efforts have been made to examine the internals of
flash-based devices when used as a mid-tier cache. Such efforts fundamentally
distinguish our work from the previous ones.

3 Our Approaches

As introduced in Section 1.3, our basic idea is to drop cold pages proactively
and ignore them during GCs. A question critical to the success is to what extent
valid but cold pages are dropped. Note, if we drop valid pages too greedily, the
benefit will not be covered by the cost of increased accesses to the bottom tier.

Which pages are cold and can be dropped is the decision of the cache man-
ager, while the decision, when and how to do GC, is typically made by the FTL
– if we follow the architecture of Fig. 1. Therefore, another important question
is how to bring these two pieces of information together.

3.1 LPD

The LPD approach is basically an indirect approach, which follows the architec-
ture shown in Fig. 1. However, to make the basic idea working, we propose, as an
extension to the FTL interface, a delete operation, in addition to the read and
write operations. Similar to the read and write operations, the delete operation is
also a logical operation. Upon such a delete request, FTL should mark the corre-
sponding flash page invalid (and update other related management information
properly) so that it can be discarded by subsequent GCs.



Algorithm 1: Allocation of a
free cache slot by LPD

data: parameter d, set F of free
slots, set S of occupied slots

1 if F 6= ∅ then
2 remove and return one

element from F ;

3 else
4 cache slot v ← select and

remove a victim from S ;
5 evict the page cached in v ;
6 for 0 to d and S 6= ∅ do
7 cache slot s← select and

remove a victim from S ;
8 evict the page cached in s ;
9 FTL.delete(s) ;

10 add s to F ;

11 return v ;
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Fig. 2: Example of logical page drop.
Note mLPD is not shown in the figure.

LPD has some typical cache manager data structures. To tell whether and
where a page is cached, it maintains an address mapping table mLPD : Ab 7→ AF ,
where Ab denotes the set of bottom-tier addresses (BTAs) and AF the set of
FLAs. A cache slot is a volatile data structure corresponding to exactly one FLA.
In addition to the FLA, the cache slot uses one bit to represent the clean/dirty
state of the cached page. A dirty page contains updates not yet propagated to
the bottom tier. Therefore, evicting such a page involves writing it back to the
bottom tier. A free5 cache slot is a cache slot ready to cache a new page. Such a
slot is needed when a read or write cache miss occurs, so that the missing page
can be stored at the corresponding FLA. Storing the page turns a free cache slot
into an occupied slot, which becomes free again when the page is evicted.

For the mid-tier cache manager to make use of the extended FTL, the proce-
dure of allocating a free cache slot has to be enhanced by some additional code
as shown in Algorithm 1. The piece of code (Line 6 to 10) evicts up to the d
coldest pages and instructs FTL to delete them, i. e., dropping a page involves
evicting it from the cache and deleting it logically via the extended FTL. Page
dropping happens after the standard logic of cache replacement (Line 4 to 5),
which is only required when there is no free cache slot available.

An example of LPD is shown in Fig. 2, where the cache slot with FLA
= 1 was just dropped and became free. The corresponding flash page, although
containing the latest version of page A (A2 in the figure), was invalidated (shown
in grey). If later block 1 is garbage-collected, A2 can be simply discarded.

The tuning parameter d controls how greedily cold pages are dropped. When
d = 0, LPD degenerates to the normal indirect approach without using the

5 There is no connection between free cache slot and free flash page, although both
concepts use the word “free” by convention.
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extension. In contrast, when d > 0, the d coldest pages are dropped and the
same number of cache slots are turned into free slots, ready to be used for the
subsequent allocations of free cache slots (Line 1 to 2).

The LPD approach is orthogonal to the cache replacement policy responsible
for the victim selection (Line 4 and Line 7), which shall identify the coldest page
as per its own definition. In other words, LPD is compatible with other cache
management techniques, which can be used to further improve the hit ratio.

3.2 NFA

In contrast to the indirect approaches, NFA does not require an FTL. Instead, it
manages flash memory natively. As shown in Fig. 3, the operations available to
the NFA cache manager are read and program of flash pages, and erase of blocks.
Besides the common cache management functionality, NFA has to provide the
implementation of an out-of-place update scheme and GC.

For the cache management functionality, NFA maintains a mapping table
mNFA : Ab 7→ Af , where Ab denotes the set of BTAs and Af the set of FPAs.
Note in LPD (and other indirect approaches), two mapping tables are required:
mLPD for cache management, and mFTL maintained by FTL (see Section 1.1).

A volatile data structure, block management structure (BMS) represents the
state of a block. BMS contains two bit vectors, validity and cleanness, which
mark the valid/invalid and clean/dirty states for each flash page in the block.
Validity is used by the GC processing, while cleanness is checked when dropping
a page. Furthermore, BMS stores, for each of its valid flash pages, the corre-
sponding BTA to speed up reverse lookups, and the corresponding last access
time, which is used by the page-dropping logic. The memory consumption of
BMS is very low, e. g., using 4 bytes per BTA and another 4 bytes per access
time, for 8 KB pages, the memory overhead of BMS is 0.1% at maximum.

Following the out-of-place update scheme, both serving a write request and
caching a (not yet cached) page consume a free flash page, which is allocated
according to Algorithm 2. The algorithm maintains a write pointer wp, which
always points to the next free flash page to be programed. After the program



Algorithm 2: Allocation of a
free flash page by NFA

data: pointer wp, set F of free
blocks, watermarks wl, wh

1 if current block is fully written
then

2 wp← the first flash page of a
free block ;

3 if |F | ≤ wl then
4 while |F | < wh do GC;

5 return wp ;

6 else
7 return wp← wp + 1 ;

Algorithm 3: NFA GC
data: page-dropping threshold t

1 block b← select a garbage block ;
2 if all pages in b are valid then
3 b← select a victim block ;
4 t← the last access time of b ;

5 foreach page p ∈ b do
6 if last access time of p ≤ t

then
7 drop(p) ;
8 else
9 move p to a free flash page ;

10 erase b and mark it a free block ;

operation, wp moves to the next free flash page in the same block, until the block
is fully written – in that case, wp moves to the begin of a new free block.

Because GC is a relatively expensive procedure, it is typically processed by
a separate thread. NFA uses a low watermark wl and a high watermark wh to
control when to start and stop the GC processing. GC is triggered when the
number of free blocks is below or equal to wl, and stops when it reaches wh,
so that multiple garbage blocks can be processed in one batch. The available
number of blocks and the high watermark determine the logical capacity of the
cache. If we have K blocks with M pages per block, the logical capacity of the
cache is: (K −wh)×M . We say that wh blocks are reserved for GC processing.

Note that the out-of-place update scheme and the use of reserved blocks
for GC processing shown in Algorithm 2 are common FTL techniques. They
are presented here for comprehension and completeness, because they are now
integral to the NFA approach.

The NFA GC procedure (shown in Algorithm 3) is similar to that of a typi-
cal FTL in some steps (Line 1, 9, and 10 roughly correspond to Step 1, 2, and
3 of the simplified GC discussed in Section 1.2). The difference is due to the
dropping of victim blocks and cold pages. Victim blocks are selected by a victim-
selection policy based on the temporal locality of block accesses. In contrast,
garbage blocks are selected by a garbage-selection policy, for which block utiliza-
tion is typically the most important selection criterion. Except for these basic
assumptions, the NFA approach is neither dependent on any particular garbage
selection policy (Line 1) nor on any particular victim selection policy (Line 3).

Dropping of a victim block happens when the selected garbage block is fully
utilized, i. e., all its pages are valid. Garbage-collecting such a block would not
gain any free flash page. Furthermore, such a garbage block signals that the
overall flash memory utilization is full or close to full (otherwise the garbage-
selection policy would return a block with lower block utilization). Therefore,
instead of processing the garbage block, a victim block is selected by the victim-
selection policy (Line 3). The last access time of the block is used to update the
page-dropping threshold t. This has the effect that all pages of the victim block



are then dropped immediately (Line 6 to 7). The dynamically updated threshold
t is passed on to subsequent GC invocations, where the threshold makes sure
that valid pages accessed earlier than t are dropped as well.

A flash page managed by NFA has the same set of possible states (shown in
Fig. 4) as those managed by a FTL: free, valid, and invalid. However, NFA has
a different set of possible state transitions, e. g., a read or write page miss in an
NFA cache can trigger a program operation (for storing the missing page) which
changes the state of a free flash page into valid, while for FTL, serving a read
request does not require a program operation. Obviously, the drop transition is
not present in any FTL, either. The semantic of NFA page dropping is similar to
that of LPD: the page is evicted (removing the corresponding entry from mNFA,
and, if the page is dirty, it is written back to the bottom tier), and then the
corresponding flash page is marked invalid.

From the NFA cache manager perspective, the free flash pages for storing
pages newly fetched from the bottom tier (due to page faults) are completely
provided by the GC procedure in units of blocks. Therefore, NFA does not require
page-level victim selection and eviction, which are common in classical caching.

3.3 Discussion

Although sharing the same basic idea, the presented approaches, LPD and NFA,
are quite different from each other. While NFA directly integrates the drop logic
into the GC processing, LPD can only select the drop candidates and delete
them logically. LPD can not erase a block due to the indirection of FTL – the
intermediate layer required by an indirect approach. Therefore, contiguously
dropped logical pages may be physically scattered over the flash memory and
LPD has no control when these pages will be garbage-collected, which is again
the responsibility of FTL. Such dropped pages can neither contribute to the
mid-tier cache hit ratio nor contribute to the reduction of GC cost, until the
space taken by them is eventually reclaimed by some GC run. In contrast to the
LPD approach, the pages dropped by NFA immediately become free flash pages.

To control how greedily pages are dropped, LPD depends on the parameter
d, for which an optimal value is difficult to find, while the “greediness” of NFA is
limited to M pages (one block at maximum). However, due to the victim selection
based on block-level temporal statistics, the NFA hit ratio could be slightly
compromised and a few more accesses to the bottom tier would be required.

4 Experiments

To evaluate our approaches, we implemented a three-tier storage system simu-
lator supporting both architectures depicted in Fig. 1 and Fig. 3. The simulated
flash memory and HDD modules used in our experiments were identical for both
architectures.

The workloads used in our experiments originate from three buffer traces,
which contain the logical page requests received by DB buffer managers under



Table 1: Size ratios of the top tier and middle tier relative to the DB size

trace top tier middle tier DB size (max. page number)

TPC-C 2.216% 13.079% 451,166

TPC-H 0.951% 5.611% 1,051,590

TPC-E 0.002% 0.013% 441,138,522

the TPC-C, TPC-H, and TPC-E benchmark workloads. The TPC-C and TPC-H
buffer traces were recorded by ourselves, while the TPC-E trace was provided by
courtesy of IBM. Therefore, the buffer traces represent typical, strongly varying
workloads to the top tier and our results are expected to be indicative for a
broad spectrum of applications.

The logical page requests recorded in the buffer traces were sent to the top tier
to generate the mid-tier traces running the experiments. The top tier, which had
a buffer pool of 10,000 pages managed under an LRU replacement policy, served
the requests directly from the buffer pool whenever possible. In cases of buffer
faults or eviction of dirty pages, it had to read pages from and write pages to
the middle tier. The sequences of read and write requests received by the middle
tier were recorded and served as the mid-tier traces used in the experiments.
We used them to stress the systems containing the middle and bottom tiers.
As a result, the access statistics to the flash memory and HDD modules were
collected for the performance study.

Three approaches were under comparison: NFA, LPD (with d = 1024 unless
otherwise specified), and a baseline (BL), which is a mid-tier cache with indirect
flash access (but without the delete extension). Our FTL implementation uses
page-level mapping, which is the ideal case for the indirect approaches LPD and
BL. For all three approaches, the LRU replacement policy was used for selecting
victim cache pages (LPD and BL) or victim blocks (NFA), and the greedy policy
[21,22] is used for selecting garbage blocks, which always selects the block having
the least number of valid pages.

For each approach, the flash memory module was configured to have 512
blocks of 128 pages. Similar to [23] and [24], the low and high watermarks for
GC were set to 5% and 10%, respectively. Due to this setting, the logical size
of the mid-tier cache is 59,008 pages ((512 − 51) × 128) for all approaches. In
Table 1, we list the ratios of the top-tier buffer pool size and the logical size of
the mid-tier cache relative to the DB size (using the maximum page number as
an estimate6).

4.1 Overall performance

We use the throughput of the middle tier, i. e., the throughput seen by the top
tier, as the overall performance metric, which is defined as: throughput = N/tv,

6 For the TPC-E trace, the DB size estimation is coarse because the trace was con-
verted from a proprietary format addressing more than 20 DB files whose sizes and
utilization were unavailable to us.



Table 2: Operation costs

operation cost (ms)

Cfr 0.035

Cfp 0.350

Cfe 1.500

CH 5.500
 150

 200
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 300

 350

 400
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BL
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NFA

Fig. 5: Throughput (IOPS)

where N is the number of page requests in a trace and tv its execution time,
which is further defined as:

tv = tm + tb (1)

tm represents the total operational cost in the flash memory, and tb the total
disk I/O cost. tm is defined as tm = nfr × Cfr + nfp × Cfp + nfe × Cfe, where
nfr, nfp, and nfe are the numbers of flash read, program, and erase operations.
tb is similarly defined as tb = nH ×CH , with CH being the cost of a disk access
and nH the number of disk accesses. Therefore, the trace execution time tv is
the weighted sum of all media access operations performed in the middle tier
and bottom tier while running the trace.

For the costs of flash operations, Cfr, Cfp, and Cfe, we used the correspond-
ing performance metrics of a typical SLC NAND flash memory of a leading
manufacturer, while the disk access cost corresponds to the average latency of a
WD1500HLFS HDD [25]. These costs are listed in Table 2.

Fig. 5 compares the overall performance of the three approaches under the
TPC-C, TPC-H, and TPC-E workloads. Our two approaches, NFA and LPD,
significantly outperformed BL, and NFA had a clear performance advantage over
LPD. For the TPC-C workload, NFA achieved an improvement of 43% and 66%
compared with LPD and BL respectively.

The performance improvement of our approaches can be entirely credited
to the cost reduction in the middle tier, because both of our approaches do
not focus on minimizing disk accesses. In fact, they even had a slightly higher
number of disk accesses due to proactive page dropping. It is expected that a
small fraction of the dropped pages are re-requested shortly after the dropping,
which increases disk accesses. However, this is the small price we have to pay in
order to achieve the overall performance gain.

Fig. 6 confirms our expectation, where we provide a breakdown of the execu-
tion times according to (1). The mid-tier cost tm is further broken down into two
fractions: the fraction caused by GCs, denoted as tg, and the fraction caused by
normal caching operations (e. g., read operations due to cache hits and program
operations due to cache replacements), denoted as tc, such that

tv = tm + tb = (tg + tc) + tb
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Fig. 6: Breakdown of the trace execution time (seconds) into the fractions of
GC tg, cache overhead tc, and disk accesses tb

As clearly shown in Fig. 6, both our approaches effectively improved the GC
fraction, without significantly increasing the cost of other two fractions.

The remainder of this section is a detailed analysis of the experimental re-
sults. Due to space constraints, we only focus on the performance metrics col-
lected under the TPC-C workload and omit those of the TPC-H and TPC-E
workloads, from which similar observations were made.

4.2 Detailed analysis

To further understand why our approaches improved the GC efficiency and re-
duced the number of its invocations, we plotted, in Fig. 7, the distribution of
the number of valid pages in garbage-collected blocks. The majority of blocks
garbage-collected in the BL configuration had a number of valid pages very close
to 128, which resulted in a poor efficiency of GC. Compared with Fig. 7a, the
dense region in Fig. 7b is located slightly farther to the left, meaning fewer valid
pages in the garbage blocks. For NFA, the majority of garbage-collected blocks
had less than 96 valid pages per block, i. e., more than 32 pages could be freed
for each garbage block.

Interestingly, in Fig. 7c, the region between 96 and 127 is very sparse. This is
the filtering effect (Line 6 to 7 of Algorithm 3). The valid pages in a block either
become invalidated due to logical overwrites or are filtered out when they become
cold. Therefore, the probability that a block has full or close-to-full utilization
is artificially reduced.

For LPD, we ran the trace multiple times scaling d from 0 up to 65,536,
which controls how greedily pages are dropped from the cache. For d = 0, LPD
is equivalent to BL, which does not use the extended FTL and does not drop
any pages. For d = 65536, it drops all pages from the cache whenever a cache
replacement occurs (Line 5 to 11 of Algorithm 1).

Under the same workload (independent of d), NFA processed 22,106 GCs and
achieved a hit ratio of 0.7438. Relative to these values, Fig. 8 plots the number
of GCs and the hit ratio of LPD, with d scaled from 0 to 65,536. For d = 0,
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Fig. 7: Distribution of the number of valid pages in garbage-collected blocks. A
bar of height y at position x on the x-axis means that it happened y times that
a block being garbage-collected contains x valid pages. Note the different scales
of the y-axis.

LPD (and BL, due to equivalence) obtained a slightly higher hit ratio than NFA
(by 5.84%), however, its number of GCs was much higher than that of NFA (by
a factor of five). For d = 65536, although LPD’s number of GCs was greatly
reduced (still higher than that of NFA by 21%), its hit ratio drastically dropped
and became only 63.1% of the NFA hit ratio. Note, we could not find a value for
d ∈ [0, 65536] for LPD, such that the number of GCs is lower and the hit ratio
is higher than those of NFA at the same time.

4.3 Wear leveling

So far, we have not discussed other aspects of flash memory management such as
wear leveling and bad block management, which are not the focus of our current
work, because they can be dealt with using standard techniques proposed in
previous works related to FTL. However, fortunately, our approaches seem to
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have automatically distributed the erases uniformly to the blocks, as shown in
Fig. 9, where the number of erases for each of the 512 blocks is plotted for all
three approaches under comparison.

5 Conclusion

In this paper, we studied the problem of efficiently using flash memory for a
mid-tier cache in a three-tier storage system. We identified the problems of us-
ing flash memory indirectly, which is the common approach taken by previous
works. Among these problems, the most important one is the CPM problem,
which not only greatly impacts performance, but also shortens the life time of
flash-based devices used in the cache. Our basic idea to solve this problem is
to drop cold pages proactively and ignore them during GCs. Based on this ba-
sic idea, we proposed two approaches, an indirect one and a native one, that
effectively handle the problem, as shown by our experiments. The experiments
also demonstrated the gravity of the CPM problem, which is ignored so far
by typical indirect approaches represented by the baseline. The cache-specific
knowledge (e. g., which pages can be dropped) and the direct control over the
flash memory (e. g., when is the GC to be started) is the key to the significant
performance gain achieved by NFA, the native approach.

We believe that the optimal use of flash memory in a mid-tier cache can only
be achieved when the flash memory is managed natively by the cache manage-
ment software. For similar reasons, system designers should seriously consider
how to natively support flash memory in the database software.
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