
Caching for flash-based databases and
flash-based caching for databases

Vom Fachbereich Informatik

der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Diplom-Informatiker Yi Ou

Dekan des Fachbereichs Informatik:

Prof. Dr. Arnd Poetzsch-Heffter

Promotionskommission:

Vorsitzender: Prof. Dr. Christoph Grimm

Berichterstatter: Prof. Dr. Dr. Theo Härder

Assoc. Prof. Dr. Jianliang Xu

Datum der wissenschaftlichen Aussprache:

14. August 2012

D 386

To my family

Acknowledgements

This dissertation documents my work as a member of the research group Databases
and Information Systems (DBIS) at the University of Kaiserslautern in the past
four years. Nine years ago, I could not have believed that accomplishing such a work
would be possible, when I made a career change and started as university student
again. Until then, my school-time dream of a Computer Science study could not
come true due to various constraints. Now this long-running transaction reached
the commit phase. Fortunately, it is not atomic (everything or nothing), because I
have gained knowledge and experience in every single step of its progressing. I
am also fortunate that, in contrast to real database transactions, it did not run in
isolation, because many people have supported my work—directly or indirectly.

First and foremost, I would like to thank my advisor, Prof. Dr. Dr. Theo Härder,
for his encouragement and support, for keeping me highly motivated, for allowing
me to manage my time flexibly, and, above all, for offering me the opportunity
of doing database research under his guidance. In addition to the guidance, his
office door is consistently open for providing advice and help. Without his help,
this work simply could not be done. It is a great honor and great pleasure to be a
member of his group.

I am grateful to Assoc. Prof. Dr. Jianliang Xu, for accepting to be the second
examiner, for hosting my short visit to his research group at Hong Kong Baptist
University, and for providing valuable advices on my recent research, which greatly
contributed to this dissertation. I am grateful to Prof. Dr. Christoph Grimm
for chairing the doctoral committee and providing a nice atmosphere during the
scientific debate.

I am also grateful to Assoc. Prof. Dr. Peiquan Jin, for numerous inspiring
discussions during his stay in our group as a visiting scientist; and to Dr. Ilia
Petrov, another expert in my area of research, who has generously shared his
know-hows and hands-on experiences with me. Prof. Dr. Gerhard Weikum has
provided me the trace data used in their famous LRU-k paper. Maryela Weihrauch,
Holger Karn, and their colleagues at IBM have also provided trace data for my
experiments. Two students have supported my work: Jonas Jeske has supported
me in collecting trace data and worked on the device-access code of my research
prototype; Max Bechtold has been assisting me in preparing and tutoring of the
practical course of this summer, so that I gained more time for this dissertation.

I

My research has benefited from my previous work experience on the XTC
project. I am grateful to Dr. Michael P. Haustein, the project founder who offered
me my first job as programmer and showed me the internals of a real database
engine; and to Dr. Christian Mathis, who taught me a lot as a nice person, technical
guru, and great team leader. I also learned a lot from the entire project team and
I am fortunate to have been a member of them.

I would like to thank all my current and former colleagues for the nice at-
mosphere in the group. Special thanks go to Dr. Andreas M. Weiner, Joachim
Klein, Dr. Boris Stumm, Sebastian Bächle, and Andreas Bühmann for kind help
on various occasions; to Caetano Sauer, Daniel Schall, and Volker Höfner for
excellent teamwork; and to Heike Neu, Manuela Burkart, and Steffen Reithermann
for administrative support. The regular (and irregular) tea (or coffee, or whatever)
breaks together with Dr. Leonardo A. Ribeiro, Dr. José de Aguiar Moraes Filho,
Dr. Philipp Dopichaj, Dr. Karsten Schmidt, Yong Hu, Weiping Qu, Thomas Jörg,
Dr. Jürgen Göres, Xiaofeng Xia, Huiying Duan, Dr. Nikolas Nehmer, Martin Größl,
and Hongzhe Jia have been relaxing, interesting, and informative.

I would also like to thank all my friends for their affection, help, and encour-
agement. I am fortunate to have a durable friendship with a circle of old-time
friends. Some of them are still visiting my parents regularly, although I have
been away from hometown for many years due to work and study. I am greatly
indebted to them, especially to Yang Huang and Shaofei Hu. Special thanks also
go to my old colleagues and friends, Joachim Götze and Tino Fleuren, for sharing
their knowledge with me from the first day we met on our student job, and for
encouraging me in the final phase of my research work. Lunch meetings on campus
with various friends in Kaiserslautern have not only made the meal more enjoyable
but also broadened my perspective to technology, society, and economy.

Last but not least, I would like to thank my family, especially my wife, Jie,
for love, support, and understanding; for having confidence in me and for sharing
my frustrations and excitements along the journey, especially in the last four
challenging years.

Mainz, August 2012

Yi Ou

II

Abstract

Database storage systems today are primarily based on two technologies: HDD
(hard disk drive) and DRAM (dynamic random-access memory). It is increasingly
difficult for these systems to deliver acceptable performance, due to fast expanding
data volume, growing energy concern, and cost constraints. The emergence of
flash memory has made cost-effective solutions possible. However, conventional
storage systems are designed without the knowledge of flash memory limitations
and flash device characteristics. Therefore, they can not fully exploit the potential
of flash memory.

This dissertation investigates two major aspects of flash-incorporated database
storage systems. The first aspect is related to the buffer management issues of
two-tier storage systems where flash devices are used as the primary storage, i. e.,
caching for flash-based databases. The second aspect is related to the mid-tier
cache management issues for three-tier storage systems where flash memory is used
as a page cache to speed up accesses to the slower primary storage, i. e., flash-based
caching for databases. The major contributions can be summarized as follows:

• It identifies the weaknesses of previously proposed buffer algorithms for flash-
based storage systems and, as improvement, proposes the CFDC (clean-first
dirty-clustered) algorithm, which is one of the earliest proposals addressing the
flash random write problem.
• It examines the parameter tuning problem, which discourages the practical

use of various previously proposed buffer algorithms, and proposes the CASA
(cost-aware self-adaptive) algorithm, which automatically adapts itself to the
extent of device R/W asymmetry and to changing workloads at runtime.
• From an architectural perspective, it empirically compares conventional storage
systems and three-tier storage systems with flash as the mid-tier cache and
delivers indicative implications to system designers.
• It identifies the cold-page migration problem in flash-based mid-tier caching and

proposes two effective solutions. The results suggest an important architectural
consideration that was ignored so far—native management of flash memory by
the mid-tier cache manager.

III

IV

Contents

Nomenclature 5

List of algorithms 7

List of figures 9

List of tables 11

1 Introduction 13
1.1 Motivation . 13
1.2 Flash memory . 14
1.3 Research issues . 17
1.4 Outline . 19

2 Preliminaries 21
2.1 DBMS reference architecture . 21
2.2 Conventional buffer management 24

2.2.1 Basic concepts . 24
2.2.2 Exploiting temporal locality 25
2.2.3 Exploiting spatial locality 26
2.2.4 Relation to transaction management 27

2.3 Flash devices . 28
2.3.1 Flash memory primitives 29
2.3.2 Flash translation layer . 31
2.3.3 Performance characteristics 34

2.4 Flash implications . 37
2.4.1 Buffer management . 37
2.4.2 Architectural variants . 38

2.5 Evaluation methodology . 40
2.6 Summary . 40

1

Contents

3 Flash-aware buffer management 41
3.1 Flash-aware algorithms . 41

3.1.1 The clean-first strategy . 41
3.1.2 Other clean-first algorithms 44
3.1.3 Addressing the FRW problem 44

3.2 The CFDC algorithm . 45
3.2.1 Overview . 45
3.2.2 Page flow . 46
3.2.3 Priority region . 47

3.3 Experiments . 49
3.3.1 Synthetic workload . 51
3.3.2 Scan resistance . 52
3.3.3 Impact of the window size 53
3.3.4 Real-life workload . 54

3.4 Summary . 55

4 Energy efficiency and performance 57
4.1 A tailor-made system . 58
4.2 Experiments . 59

4.2.1 TPC-C workload . 59
4.2.2 Real-life workload . 61

4.3 Summary . 62

5 Cost-aware buffer management 65
5.1 Introduction . 65

5.1.1 The parameter tuning problem 66
5.1.2 Cost ratio . 66

5.2 The CASA algorithm . 67
5.2.1 Overview . 67
5.2.2 The algorithm . 68
5.2.3 Dynamic cost-ratio detection 69
5.2.4 Integrating clustered writes 70
5.2.5 Implementation issues . 71

5.3 Experiments . 72
5.3.1 Changing workload . 72
5.3.2 Cost awareness . 74
5.3.3 Cost-ratio detection . 75
5.3.4 Comparison with CFDC 77

5.4 Summary . 79

2

Contents

6 Energy efficiency and architecture 81
6.1 Related work . 82
6.2 Basic assumptions . 83
6.3 Baseline algorithms . 83

6.3.1 The LOC algorithm . 84
6.3.2 The GLB algorithm . 85
6.3.3 Discussion . 85

6.4 Experiments . 86
6.4.1 Simulations . 87
6.4.2 Running a real-life trace on real devices 90

6.5 Summary . 91

7 A closer look at flash-based mid-tier caching 93
7.1 Introduction . 93

7.1.1 Problem . 94
7.1.2 Solution . 96
7.1.3 Contribution . 96

7.2 Related work . 97
7.3 Our approaches . 97

7.3.1 LPD . 98
7.3.2 NFA . 99
7.3.3 Discussion . 102

7.4 Experiments . 102
7.4.1 Overall performance . 103
7.4.2 Detailed analysis . 105
7.4.3 Wear leveling . 107

7.5 Summary . 108

8 Conclusion and outlook 109
8.1 Conclusion . 109
8.2 Outlook . 110

A Storage devices 113

B Workloads 115
B.1 TPC benchmarks . 116

B.1.1 TPC-C traces . 116
B.1.2 TPC-H traces . 116
B.1.3 TPC-E traces . 116

B.2 Real-life workload . 116

Bibliography 117

3

Contents

4

Nomenclature

AF The set of FLAs, page 93

Ab The set of BTAs, page 98

Af The set of FPAs, page 93

CH Average cost of a disk access, page 24

CH Average cost of a disk access, page 104

CFR Average cost of a flash-device read, page 88

CFW Average cost of a flash-device write, page 88

CH Average cost of a disk access, page 88

Cfe Cost of a flash-memory erase operation, page 29

Cfp Cost of a flash-memory program operation, page 29

Cfr Cost of a flash-memory read operation, page 29

Tb Bottom tier, page 83

Tm Middle tier, page 83

Tt Top tier, page 83

C̃R CASA normalized device read cost, page 69

C̃W CASA normalized device write cost, page 69

algo(X, b) Physical reference string output by algorithm algo, for logical reference
string X, and a buffer pool of b pages, page 24

cost(Y) Cost of serving the sequence of physical requests Y , page 24

mFTL Address mapping table maintained by FTL, page 93

5

Nomenclature

mLPD LPD mapping table, page 98

mNFA NFA mapping table, page 100

pr(c) The priority of a cluster c, page 48

2TA Two-tier architecture, page 39

3TA Three-tier architecture, page 39

BTA Bottom-tier addresses (page numbers), page 98

CASA Cost-aware self-adaptive, page 20

CFDC Clean-first dirty-clustered, page 19

CPM Cold-page migration, page 95

CSC Cluster-switch count, a metric for spatial locality, page 50

DRAM Dynamic random-access memory, page 14

FLA FTL logical address, page 93

FPA FTL physical address, page 93

FRW Flash random write, page 36

FTL Flash translation layer, page 17

GC Garbage collection, page 31

HDD Hard disk drive, disk drive, magnetic disk, or disk, page 14

IOPS I/O per second, page 14

IPD Inter-page distance, page 48

LRU Least recently used, page 25

MLC Multi-level cell, multiple bits per memory cell, page 16

MRU Most recently used, page 42

SAWC Self-adaptive write-clustered, page 70

SLC Single-level cell, one bit per memory cell, page 16

SSD Solid-state disk, page 15

6

List of algorithms

1 CFDC . 47
2 Select a victim from P . 48

3 CASA . 68
4 Clustered write with frequency-based filtering 70

5 LOC read page from Tm . 84
6 GLB evict page to Tm . 85

7 Allocation of a free cache slot by LPD 99
8 Allocation of a free flash page by NFA 101
9 NFA GC . 101

7

List of algorithms

8

List of figures

1.1 IDC estimates for worldwide annual cost spent on powering and
cooling servers and purchasing new servers [Roberts 09] 15

1.2 Typical performance and price of storage devices 16

2.1 Flash memory basic operations 29
2.2 Flash memory operational costs 30
2.3 Flash page state diagram . 30
2.4 FTL page state diagram . 31
2.5 Two-tier archtecture . 38
2.6 Three-tier archtecture . 39

3.1 Example of the CFLRU algorithm, after [Park 06] 43
3.2 Example of the generalized two-region scheme 45
3.3 Page flow in the two-region scheme 46
3.4 Example of clustered write . 49
3.5 Synthetic trace performance . 52
3.6 Increasing the number of scans (x-axis) 53
3.7 Impact of window size under TPC-C workload 54
3.8 Performance under real-life workload 55

4.1 Power measurement setup . 58
4.2 Performance and energy consumption under TPC-C workload . . 60
4.3 Breakdown of average power . 61
4.4 Performance and energy consumption under real-life workload . . 63

5.1 CASA dynamically adjusts list sizes 67
5.2 Virtual execution times running the CONCAT trace 73
5.3 List size changes with the virtual time 74
5.4 Virtual execution times running the bank trace 76
5.5 Detected physical R/W costs vs. the virtual time 76
5.6 Real execution times running the bank trace 77
5.7 Performance under update-intensive workload 78
5.8 Performance under read-intensive workload 79

9

List of figures

6.1 TPC-E trace performance . 88
6.2 TPC-C trace performance . 90
6.3 TPC-H trace performance . 90
6.4 Real-life trace performance . 91
6.5 Statistics running the real-life trace 92

7.1 Architecture of the indirect approach 94
7.2 Example of logical page drop . 99
7.3 NFA architecture . 100
7.4 NFA flash page states . 101
7.5 Throughput (IOPS) . 104
7.6 Breakdown of the trace execution time 105
7.7 Distribution of the number of valid pages 106
7.8 Number of GCs and hit ratio of LPD relative to NFA 107
7.9 Number of erases for each block 107

10

List of tables

2.1 Five-layer reference architecture for DBMSs [Härder 05] 22

4.1 Disk drives used in the test . 58
4.2 Power profile of SUT . 59

5.1 Statistics of the OLTP trace and DSS trace 72
5.2 Number of reads and writes running the bank trace 75

6.1 Energy consumption under TPC-E workload 89

7.1 Size ratios of the top tier and middle tier relative to the DB size . 103
7.2 Operation costs . 104

A.1 Price and performance of storage devices 113

B.1 Buffer traces used in the experiments 115

11

List of tables

12

Chapter 1

Introduction

1.1 Motivation

The worldwide data volume is growing at an astonishing speed. According to IDC,
the amount of information created, captured, or replicated in digital form was 281
EB (exabyte) in 2007, which corresponds to 45 GB (gigabyte) of data in average
for each person in the world. The amount of data produced in 2011 is estimated
to be 1800 EB—a ten-fold growth in merely five years starting from 2006 [IDC 08].
The growth of data volume at such a speed is vividly described as data explosion.

At the same time, data and data management are becoming increasingly
important to both normal users and organizations. Data storage and processing
are involved in nearly every aspect of our daily life such as communication, banking,
shopping, etc. For many organizations, data have become the core assets that
their business relies on and the efficiency of data management directly impacts
their business success.

Efficient management of data particularly depends on the efficiency of storing
and retrieving data, which are the basic functionalities required by any data-
intensive system, e. g., a database system (DBS). Conceptually, a DBS consists of
a collection of hardware, a collection of data, referred to as the database (DB),
and a software system, referred to as the database management system (DBMS),
that manages the data. In this dissertation, the term (database) storage system,
refers to the software and hardware components of a DBS that are responsible for
storing and retrieving data.

The storage systems today are primarily based on two technologies: HDD
(hard disk drive, disk drive, or magnetic disk) and DRAM (dynamic random-access
memory). Being introduced by IBM in the 1950’s, HDDs are still the dominant
storage device in desktop and server computers today. However, due to their
mechanical nature, HDDs suffer from a high access latency. Even for modern
enterprise-class HDDs, the latency is typically several milliseconds. Therefore, it is
impossible to achieve a throughput higher than 1000 IOPS (I/O per second) using

13

Chapter 1. Introduction

a single disk drive. This also explains why 1000 TPS (transactions per second)
was an important milestone for transaction processing systems.

DRAM (or RAM for brevity), the dominant technology for main memory, is
about 100,000 times faster than modern HDDs. However, compared with HDDs,
the performance advantage of DRAM comes at a higher price—by two orders of
magnitude per GB. Therefore, there is a large gap between these two technologies
in terms of both performance and price.

The latency of HDDs and cost of DRAM are two of the most important limiting
factors of today’s storage systems, but not the only ones. Another critical issue
is energy consumption. DRAM-based system memory and disk drives contribute
as much as 50% to the overall power consumption of a data center [Roberts 09].
Moreover, this percentage is expected to increase at a rapid pace as we need more
DRAM modules and disk drives to improve throughput and to accommodate more
data.

In 2005, the total power used by servers in the U.S. represented about 0.6% of
its total annual electricity consumption. When cooling and auxiliary infrastructure
are included, that percentage becomes 1.2%, an amount comparable to the capacity
of five 1000 MW power plants. The total electricity bill for operating those servers
and associated infrastructure in that year was 2.7 billion dollars for the U.S. (7.2
billion dollars for the world) [Koomey 07].

Although servers are becoming more powerful and their capacity keeps being
improved, the number of server installations has been rapidly increasing1. Conse-
quently, the energy cost for running and cooling them grows rapidly, with a clear
trend of exceeding server purchase cost, as shown in Figure 1.1.

Addressing these issues requires a memory technology that is cheaper than
DRAM but faster than HDD, and, ideally, it shall be more energy efficient than
both of them. The search for such a technology has not been successful, until
recently flash memory gained popularity and, driven by the market demand,
achieved great improvements both in price and performance.

1.2 Flash memory

Flash memory is a kind of non-volatile semiconductor memory, therefore, no power
is required to keep the data stored on it and no mechanical component is required
to access those data. This allows for a series of further attractive properties of flash
memory and flash devices (storage devices based on flash memory), e. g., small
form factor, shock resistance, zero noise, and energy efficiency. These properties
have made flash memory particularly popular in mobile devices, e. g., USB flash
drives, digital cameras, portable media players, and smart phones. Among various

1This can be viewed as a perfect example of the Parkinson’s Law.

14

1.2. Flash memory

Figure 1.1: IDC estimates for worldwide annual cost spent on powering and
cooling servers and purchasing new servers [Roberts 09]

flash devices, flash SSDs (flash-based solid-state disks) are particularly interesting
for storage systems, because they have the same host interface as HDDs.

Compared with DRAM, flash memory has a great cost advantage. Its cost has
dropped dramatically in recent years, as the market for flash memory has grown
and its fabrication has become more efficient. Its density has improved due to the
introduction of better processes and additional bits per cell. For example, from
1995 to 2005, the density of flash memory chips has doubled every year2, implying
a corresponding cost reduction of about 50% per year [Samsung 05, Gray 06].

Compared with magnetic HDDs, flash SSDs have a much lower latency (by
two orders of magnitude!), because mechanical movements are not required for
accessing data. Therefore, it is now possible for a single flash SSD to achieve
record-breaking I/O throughputs, which were earlier only possible with dozens of
HDDs working in parallel, e. g., in a RAID (redundant array of inexpensive disks)
configuration. In fact, compared on a price-per-IOPS basis, flash SSDs are already
“cheaper” than HDDs.

Figure 1.2 compares the typical performance and price figures of three major
types of storage devices: DRAM, HDD, and flash memory, based on the data of
Table A.1 in the Appendix.

In terms of power consumption, flash is more efficient than both DRAM and
HDD. For DRAM, a large portion of power is consumed for frequently refreshing
its capacitors due to charge leakage. For HDD, accessing data requires energy-
consuming mechanical movements. Even if there is no data request to be served,

2Faster than an expectation based on the Moore’s Law.

15

Chapter 1. Introduction

10-1

100

101

102

100 101 102 103 104 105 106 107 108

pr
ic

e
($

/G
B

)

latency (ns)

HDD:
DRAM:

flash SSD:

Figure 1.2: Typical performance and price of storage devices

the disks must be kept spinning at a considerable speed.
Due to the aforementioned attractive properties, flash devices are also gaining

attention in the primary storage market (for PCs and servers), in form of flash
SSDs and flash PCIe cards. Although the per-GB price of those devices is still
much higher than that of HDDs, it has a clear trend of becoming more competitive
in the coming years.

Depending on the way flash memory cells are arranged, flash memory can
be classified into two types: NOR and NAND. NOR flash memory is directly
addressable by the processor and it allows for random access in the unit of bytes
[Kim 02], whereas NAND flash memory must be accessed via a controller in much
larger units. However, NOR flash memory suffers from a lower density (which
implies higher price) [Leventhal 08] and higher erase times [Gal 05]. Consequently,
NOR flash is typically used for code storage and NAND flash is more appropriate
for data storage. Therefore, the use of NAND flash in storage systems is the
focus of this dissertation and, hereafter, the terms flash memory and NAND flash
memory are used interchangeably.

There are again two types of NAND flash memory: single-level cell (SLC) and
multi-level cell (MLC), distinguished by the number of bits that can be stored per
memory cell. SLC NAND flash stores a single binary value per cell, while MLC
NAND flash stores multiple binary values per cell. MLC has a higher density but
suffers from a shorter lifespan and higher latencies. Therefore, SLC is more suited
for enterprise solutions and MLC is more appropriate for consumer-grade usages
[Leventhal 08].

16

1.3. Research issues

Flash memory’s prospects are tantalizing, however, its efficient use is technically
challenging, due to some of its special properties and limitations such as erase-
before-write and write endurance (see Section 2.3.1). Therefore, it is often accessed
via an intermediate layer called FTL (flash translation layer), which hides the
limitations of flash memory and typically supports an HDD-like interface, so that
changes to the OS or applications are minimized or not required for using flash
devices. However, the performance characteristics of those devices are largely
different from those of HDDs, due to the characteristics of flash memory and its
limitations. For example, random writes on those devices are generally slower
than sequential writes and read operations. We call this problem the FRW (flash
random write) problem, which will be discussed in more detail in Section 2.3.3.

1.3 Research issues

Due to the exciting recent improvement of flash memory, many believed in its
dominance for primary storage in the future, e. g., Gray predicted in [Gray 06]:

Tape is dead, disk is tape, flash is disk, RAM locality is king.

However, a literal interpretation of that prediction is not appropriate, because
efficient use of flash memory in database systems is more than simply replacing
HDDs by flash SSDs. Existing database systems and algorithms have been designed
with conventional HDDs with rotating media in mind, which is largely different
from flash memory, therefore, many fundamental principles and techniques of
data storage and management must be reconsidered, because, to fully exploit the
potential of flash memory, its characteristics must be taken into account in system
and algorithm design. We can not elaborate on all these aspects, let alone to
discuss them in detail, but the issues sketched below are particularly interesting
both from the research and practical perspective.

Overcoming flash memory limitations. The intrinsic limitations of flash
memory have a great impact on the performance of flash devices as well as their
lifespan. Those limitations must be handled at the device level by improved
FTL algorithms3, e. g., [Kim 02, Lee 07a, Gupta 09], at the file system level
by flash-specific file systems, e. g., [Kawaguchi 95, Woodhouse 01], or at the
storage system level.
Understanding flash device performance. Many flash devices, e. g., flash
SSDs, deal with the aforementioned limitations at the device level. However,
due to the complex (and often proprietary) techniques hidden inside the devices,
their performance behavior is quite different than that of HDDs, and it varies

3Some device-level techniques are introduced in Section 2.3.2, because they are fundamental
for comprehension.

17

Chapter 1. Introduction

severely from device to device. Tailor-made benchmarks and methodology, e. g.,
those of [Bouganim 09, Chen 09a], are required to investigate the performance
behavior of flash devices, because a thorough understanding of their behavior
provides a foundation for the optimization of the system based on them.
Speeding up flash I/O. Exemplified in Figure 1.2, access latency of flash
memory is yet much higher than that of DRAM, by two orders of magnitude.
Therefore, flash devices are typically regarded as I/O devices. Among the major
components of database systems, the buffer management component has the
most critical impact on I/O performance, because it directly controls when and
how to access the storage devices. Conventional buffer algorithms only consider
hit ratio as the primary optimization goal, which is not appropriate anymore
due to the large difference in performance characteristics between flash devices
and HDDs. Some initial efforts, e. g., [Park 06, Jo 06, Jung 08, Seo 08], have
been made in this area.
Speeding up transaction processing. To guarantee the ACID (atomicity,
consistency, isolation, and durability) properties of transactions [Härder 83b],
database systems employ a set of protocols and algorithms for concurrency
control and logging & recovery, e. g., [Mohan 92]. These techniques often
require a considerable amount of (potentially expensive) accesses to persistent
media to guarantee a certain level of data consistency or to ensure well-defined
states of the database and transactions even in case of system crash. How
to leverage the special properties of flash memory to simplify or to speed up
transaction processing is an interesting issue. In [Chen 09b], an approach is
proposed which utilizes multiple low-cost flash devices to speed up logging &
recovery. Contribution [Gottstein 11] proposed a variant of snapshot isolation
that collocates tuple versions created by a transaction in adjacent pages and
minimizes random writes at the cost of random reads.
Flash-specific storage scheme and query processing. There are a great
deal of possibilities to influence how the database engine accesses storage
devices: changing page layout, indexing, and applying novel query processing
algorithms. In [Lee 07b], Lee et al. proposed an in-page logging scheme, which
stores data pages and their corresponding log records in the same flash block
to improve write efficiency of flash-based databases. Contribution [Nath 07]
proposed a self-tuning indexing method for a flash-based storage manager.
The work described in [Tsirogiannis 09] studied data structures and algorithms
that leverage fast random reads to speed up selection, projection, and join
operations for relational query processing.
Architecture of flash-based database systems. For an effective use of
flash memory in database systems, algorithmic improvements alone are not
sufficient, topics regarding architectural issues must also be examined. First, a
predominant use of flash devices instead of HDDs for primary storage is not to

18

1.4. Outline

happen any time soon, as expected by many expects, e. g., [Kim 12, Grupp 12],
mainly due to cost considerations. Therefore, issues regarding hybrid systems
where HDDs and flash devices co-exist are of practical value. Such a system
with a single flash SSD and a single HDD is studied in [Koltsidas 08]: read-
intensive data are placed on the SSD to leverage its superior read performance
and write-intensive data on the HDD to avoid expensive random writes to flash.
Second, it is not yet clear, in a typically layered database architecture, where
flash memory can be used most cost-effectively (in terms of both performance
and energy efficiency). For example, using flash memory for the primary stor-
age is the most straightforward approach, however, it requires a considerable
amount of flash memory, which is still much more expensive than HDDs. Third,
it is also yet to be explored, in which form (e. g., as raw flash memory or in form
of flash devices) flash memory shall be used in a database system: using flash
devices requires less changes to the database software, but the characteristics
of flash memory can only be fully utilized when it is managed directly by the
database management system.

The aforementioned research issues span a spectrum that is too broad to be
covered in a single dissertation. Some of them are mutually exclusive, e. g., if most
of flash I/O can be ideally served by a main-memory buffer pool, the improvements
achieved by flash-specific query processing techniques become insignificant, because
the characteristics of flash memory is hidden by the buffer pool. Therefore, most
of these research issues can be viewed as different solution spaces to the same
basic problem—how to improve performance and energy efficiency of database
systems that incorporate flash memory. The essence of all possible solutions is to
leverage flash-specific characteristics. This dissertation addresses a subset of the
aforementioned issues with a focus on database storage systems.

1.4 Outline

The remainder of this dissertation is organized as follows.
Chapter 2 introduces preliminary concepts and techniques that are relevant to

our study. Most of them are discussed in the context of database storage systems
and flash devices.

Chapter 3 to Chapter 7 present my contribution to this research area. Their
content is partially based on a selection of my research papers published between
2009 and 2012. Their main contributions and relations to this dissertation are
outlined as follows.

• Aiming at speeding up flash I/O, Chapter 3 discusses representative buffer algo-
rithms previously proposed for flash-based systems, identifies their weaknesses
and presents our proposal: the CFDC (clean-first dirty-clustered) algorithm,

19

Chapter 1. Introduction

based on [Ou 09, Ou 10c]. The basic idea of the algorithm was outlined in
[Ou 09], which is one of the earliest works addressing the FRW problem in
a database buffer management context. The work described in [Ou 10c] pre-
sented an extensive empirical study comparing CFDC with various previously
proposed algorithms.
• Extending the study of Chapter 3, Chapter 4 studies the device sensitivity
of various flash-aware buffer algorithms and the relationship between their
performance and energy efficiency, based on the results of [Ou 10b].
• To ease the practical use of buffer algorithms for flash-based systems, Chapter 5,
based on [Ou 10a], examines the parameter tuning problem, which many
previously proposed approaches suffer from, and proposes the cost ratio concept,
emphasizing that the extent of R/W asymmetry is to be taken into account
by the buffer algorithms. The chapter also presents the CASA (cost-aware
self-adaptive) buffer algorithm, which utilizes the cost ratio and adapts itself
at runtime to changing workloads.
• Chapter 6, based on [Ou 11], compares the performance and energy efficiency

of two-tier and three-tier storage systems, following a discussion of key concepts
and techniques of a three-tier storage system incorporating flash memory in
the middle tier. The results of that study reveal that for a variety of workloads,
three-tier storage systems are more efficient (both in terms of performance and
energy consumption), because cheap and energy-efficient flash memory can
be used to replace a considerable amount of energy-hungry DRAM, without
sacrificing performance.
• Based on the conceptual and architectural frameworks presented in Chapter 6,

Chapter 7 looks into the internals of flash devices used for mid-tier caching. It
identifies the CPM (cold-page migration) problem and proposes two effective
solutions. Chapter 7 is based on [Ou 12], which, to the best of our knowledge, is
the first work that studies native management of flash memory by the mid-tier
cache manager.

This dissertation concludes with Chapter 8 which summarizes the work and
outlines future research directions.

20

Chapter 2

Preliminaries

For a discussion on improving the efficiency of flash-based database storage systems,
a basic understanding of database storage systems and flash devices is necessary.
To this end, this chapter first discusses a well-known DBMS reference architecture,
which specifies the responsibilities of all major components of a DBS, before
presenting the basic concepts relevant to database storage systems. Then, it
introduces the major components and techniques used in flash devices from a device-
design perspective, followed by a discussion of their performance characteristics
from a device-use perspective. Finally, it outlines the implications of flash memory
and flash devices on algorithm and system design.

2.1 DBMS reference architecture

DBMSs are certainly among the most complex software systems, due to various
functional and non-functional requirements they have to fulfill, e. g., support
of various user interfaces and APIs, guarantee of transactional properties, and
performance requirements. Even after decades of evolution, new features are still
being continuously added to their “must-have” list, e. g., native support of XML
data and XQuery in recent years [Beyer 05, Mathis 06, Haustein 07]. Developing,
testing, maintaining, or even understanding such a system is difficult without
making considerable efforts concerning its architectural design.

As guidelines for such efforts, a DBMS reference architecture is proposed in
[Härder 83a], based on the basic ideas of structured programming [Dijkstra 68] and
information hiding [Parnas 75]. The reference architecture defines a hierarchy of
five layers (L1 to L5 in Table 2.1) and specifies the major responsibilities and
objects of each layer (level of abstraction), from the level of physical storage up
to the DBMS interface. This well-specified system architecture provides a perfect
context for our discussion. In the following, we briefly interpret the reference
architecture, based on our understanding of [Härder 05].

For this dissertation, the most important levels are file management (L1) and

21

Chapter 2. Preliminaries

Table 2.1: Five-layer reference architecture for DBMSs [Härder 05]
level of abstraction objects auxiliary data

L5 non-procedural or
algebraic access

tables, views, tuples logical schema descrip-
tion

L4 record-oriented, navi-
gational access

records, sets, hierar-
chies, networks

logical and physical
schema description

L3 record and access-path
management

physical records, ac-
cess paths

free space tables, DB-
key translation tables

L2 propagation control segments, pages DB buffer pool, page
tables

L1 file management files, blocks directories, etc.

propagation control (L2). The bottom layer, file management, is responsible for
reading and writing DB pages to and from non-volatile storage devices. Those
storage devices are typically the so-called block devices, e. g., HDDs and flash SSDs,
for which sectors (also called blocks) are the unit of transfer, which are fixed-length
byte arrays. DB pages are equi-length partitions of a linear address space available
to the higher layers. One (DB) page is typically mapped into one or a fixed number
of blocks. L1 encapsulates number, type, and location of storage devices so that
the higher layers do not have to deal with these details. L1 can be implemented
using the file management interface provided by the OS, or directly using the raw
device interface1 for better performance and direct control of the devices.

The next higher layer, propagation control, is mainly responsible for accelerating
the page-oriented accesses to L1, by buffering pages in main memory, which allows
much faster accesses than storage devices. From the L2 perspective, accesses to
L1 are physical, which often require accesses to the physical storage devices. In
contrast, page accesses to L2 are logical, because the higher layers do not have to
care about where the currently being accessed pages are loaded from (they can
be already in the main memory buffer pool or are just fetched from L1) and they
only have to request the pages from L2 using their logical page addresses.

Similarly, we distinguish between logical (page) requests and physical (page)
requests. A logical request is the intention to read or write a page to and from L2,
and a physical request is the intention of L2 to read or write a page to and from
L1. Although often used in the context of L2, the distinction between logical and
physical concepts is not limited to L2 and can be generally applied to each layer
of the reference architecture, because each layer is a level of abstraction, which
provides a logical interface to the higher layer and encapsulates the physical details
of the lower layer.

The third layer, record and access management (L3), implements a more
1On some systems, devices are also abstractly accessed as files.

22

2.1. DBMS reference architecture

complex interface that allows read, insert, delete, and update of physical records.
Moreover, it maintains access path structures of different types, e. g., B-trees,
for fast lookup of physical records based on the order of certain physical fields.
This layer works on the page-oriented interface offered by L2 and maintains the
mapping from physical records to pages. It has to care about the page boundaries
and manage the free space inside pages. Fortunately, such physical details do not
have to be handled by the next higher layer, the navigational access layer (L4),
which allows accesses to logical records via navigational operations or scans in
various orders, e. g., table scan, index scan, or an order provided by sorting at
runtime. Finally, the top layer, non-procedural access layer (L5), is able to provide
logical data structures such as tables and tuples and allows accesses to them via
declarative languages such as SQL.

The reference architecture strictly adheres to the information hiding principle
and a hierarchical design, which offer the following benefits [Härder 05]:

• It simplifies the implementation of higher-level system components by using
the functionality provided by the lower-level system components.
• Changes to the higher-level system components do not require modification of

lower-level system components.
• Lower-level system components can be tested without the presence of higher-

level components2.

However, a real DBMS implementation may have to deviate from a strict
layered design by introducing some cross-layer or reverse dependencies, called
vertical information channels, for the purpose of performance optimization (e. g.,
using query semantics to improve I/O performance [Sacco 82]) or to implement
specific system properties (e. g., guarantee of transactional properties often requires
collaboration of multiple layers). It is also possible to consolidate some layers
to increase the performance optimization potential and to reduce the runtime
overhead introduced by a growing number of layers.

Following the reference architecture, the notion of storage system, which was
introduced in Section 1.1, can be now refined as follows. It consists the bottom-
most two layers of a DBMS, i. e., L1 and L2 of the reference architecture, and
the hardware components managed by them, in particular, the storage devices
managed by L1, and the main memory managed by L2. In the literature, L2 is
often referred to as the buffer manager, and we use the term file manager for L1
in a similar fashion.

The buffer manager plays a key role in the performance optimization of a
storage system. Therefore, in the past, numerous research efforts have been made
on the topic of buffer management algorithms. In the following, we review some of

2By using mock-up (fake) objects, developing and testing of higher-level and lower-level
system components in parallel are possible.

23

Chapter 2. Preliminaries

the concepts and techniques for buffer management in the context of conventional
(disk-based) storage systems.

2.2 Conventional buffer management

Considering the large performance gap between main memory and storage devices
(HDDs), it is obvious that, to achieve an optimal performance, the number of
page requests that can be directly served from the buffer pool shall be maximized
and the number of accesses to the storage devices shall be minimized. However,
compared to the DB size (and the capacity of storage devices where the DB
resides), the capacity of available main memory is typically much smaller due to
economic reasons [Gray 87]. According to [Härder 05], a size ratio of 1 : 1000 is
often a good estimation. Consequently, only a subset of the pages from the DB
can be kept in the buffer pool at any point in time. Therefore, efficient algorithms
must be employed by the buffer manager to effectively utilize the comparatively
small amount of main-memory resource.

2.2.1 Basic concepts

If we denote the sequence of n logical requests (x0, x1, . . . , xn−1) as X, a buffer
management algorithm algo is a function that maps X and a buffer pool of b
pages into a sequence of m physical requests Y := (y0, y1, . . . , ym−1), m ≤ n, i. e.,
algo(X, b) = Y .

Let cost(Y) denote the accumulated time necessary for a storage device to serve
Y , we have cost(Y) = cost(algo(X, b)). We call cost the cost function and cost(Y)
the cost of serving Y . For a disk-based storage system, cost is often assumed to
be:

cost(Y) = |Y | × CH (2.1)

where the constant CH is the average cost of a disk access. Therefore, the
assumption basically says that the cost is dominated by the number of physical
requests |Y |.

Given a sequence of logical requests X, a buffer pool with b pages, and a buffer
management algorithm algo, we say algo is optimal, iff for any other algorithm
algo′, cost(algo(X, b)) ≤ cost(algo′(X, b)).

The MIN algorithm proposed by Belady [Belady 66] is such an optimal algo-
rithm. However, optimal algorithms as per this definition require as input the
complete sequence of logical requests, which is impossible for online algorithms.

Based on the definition of optimality and the assumption of Equation 2.1, the
major optimization goal of buffer management algorithms can be translated into: to

24

2.2. Conventional buffer management

maintain a high hit ratio, which is a measure of how often a page request is satisfied
without requiring a physical access, defined as: hit ratio = (|X| − |Y |)/|X|.

Each buffer hit, i. e., the page being requested is already in the buffer pool,
saves a physical request, because in case of a buffer miss (also called buffer fault),
i. e., the requested page is not in the buffer pool, it must be loaded from disk.
To achieve a high hit ratio, the buffer manager shall keep the “hottest” pages in
the buffer pool, and evict the “coldest” pages to make room for pages that are
requested but not yet in the buffer pool.

Which page is the coldest one that can be evicted is decided by a replacement
policy, which is the core logic of buffer management. Therefore, replacement polices
are sometimes also referred to as buffer algorithms. The to-be-evicted page selected
by the replacement policy is called the victim page.

To effectively utilize the main-memory resource, buffer management algorithms
have to exploit the (temporal and spatial) locality of page accesses [Denning 05].
Temporal locality is the phenomenon that an object referenced at one point in
time will probably be referenced again sometime in the near future, whereas
spatial locality refers to the phenomenon that the probability of an object’s being
referenced is higher if an object stored near it was just referenced.

2.2.2 Exploiting temporal locality

The classical LRU (Least Recently Used) algorithm is one of the most widely-
used buffer algorithms. It orders the buffer pages by their reference recency and
always selects the least-recently referenced page as the victim, using the recency
of reference as an indicator for temporal locality. In other words, it assumes that
more recently referenced pages have a higher probability of being re-referenced
than those that were referenced earlier.

The CLOCK [Corbato 69] algorithm and the Second Chance [Tanenbaum 87]
algorithm are two more classical buffer algorithms. They can be viewed as two
implementation variants of the same basic idea, because they are functionally
identical and always achieve the same hit ratio, which is, in turn, often very close
to that of LRU.

LRU, CLOCK, and Second Chance all have a time complexity of O(1) and are
relatively simple to implement, which is highly desirable in a high-performance
system. However, they are not resistant to scans [Sacco 82], which are sequential
accesses to a long list of pages (sometimes larger than the buffer pool). Scans
typically exhibit a low temporal locality, i. e., pages accessed by a scan have a low
probability of being re-accessed (at least not before the scan is finished). However,
for algorithms based on simple heuristics such as LRU and CLOCK, pages having
higher re-reference probabilities have to be pushed out of the buffer pool to make
rooms for the pages scanned, with decreased hit ratio as a result. The property of
a buffer algorithm’s being resistant to scans is called scan resistance.

25

Chapter 2. Preliminaries

LRU-k is a classical algorithm specific for DB buffer management [O’Neil 93].
It maintains a history of page references which keeps track of the recent k references
to each buffer page. When an eviction is necessary, it selects the page whose k-th
recent reference has the oldest timestamp. Parameter k is tunable, for which the
value 2 is recommended. When k = 1, LRU-k corresponds to the classical LRU
algorithm.

Both recency and frequency of references are considered in its victim selection
decisions. By considering the k-th recent reference instead of only the 1st recent
reference (recency) as in LRU, LRU-k can discriminate between frequently and
infrequently referenced pages. Therefore, it is more resistant to scans than LRU,
for which recency is the only concern.

Another difference of LRU-k to LRU is that it explicitly keeps a history of page
references, whereas LRU only implicitly keeps a reference history limited to the
pages that are currently in the buffer pool (by ordering the pages by reference
recency). The reference history in LRU-k only records the logical page address
and the timestamps of references. Therefore, the algorithm can remember the
reference history for a much larger number of pages than the buffer pool can
accommodate, without requiring too much space overhead. In general, better
replacement decisions can be made by utilizing a longer reference history.

However, LRU-k has a time complexity of O(log n), which discourages its use
in real applications. This issue is elegantly addressed by more recent algorithms
such as LIRS [Jiang 02] and ARC [Megiddo 03], which follow the same basic
principles: utilizing reference history information and using both reference recency
and frequency to exploit temporal locality.

2.2.3 Exploiting spatial locality

Although scans are considered harmful for algorithms such as LRU, they exhibit
a strong spatial locality, i. e., page references in a scan are predictable to some
extent, which can be utilized to improve disk I/O throughput. For HDDs, the
throughput of sequential accesses can be an order of magnitude higher than that
of random disk accesses.

Therefore, once such an access pattern is detected, together with the pages
that are currently being requested, pages predicted to be referenced as next can be
sequentially loaded into the buffer pool in advance, without requiring a separate disk
access when they are actually requested later. This technique is commonly referred
to as prefetching. Some detailed examples are, e. g., [Pai 04, Butt 05, Ding 07].
Prefetching can also be implemented at the file system or device level, where it is
more commonly referred to as read-ahead.

While prefetching only works for sequential reads, the DULO (Dual Locality)
algorithm proposed in [Jiang 05] increases the effectiveness of both I/O scheduling
and prefetching, by exploiting both temporal and spatial locality. The basic idea of

26

2.2. Conventional buffer management

DULO is to influence the physical request streams and make them more sequential,
by leveraging the filtering effect of the buffer pool (physical requests can be viewed
as the output of filtering logical requests using the buffer pool).

2.2.4 Relation to transaction management

The guarantee of transactional properties (ACID) is impossible without the collab-
oration between the buffer manager and the transaction manager (responsible for
concurrency control) and log manager (for logging & recovery).

If a victim page selected by the replacement policy is a clean page, i. e., it has
not been modified after entering the buffer pool, its memory-resident content can
be simply discarded. In contrast, if the victim page is a dirty page, i. e., it has
been modified after entering the buffer pool, its content has to be written back to
persistent storage (called physical write or page flush), before the corresponding
memory area can be reused (otherwise the updates to the victim page are lost
and consistency can not be guaranteed). Hence, if the replacement victim is dirty,
the process or thread requesting a page must wait until page flush completion.
This is potentially a performance problem and shall be considered by the buffer
manager, as noticed by some researchers [Sacco 82, Effelsberg 84]. However, the
clean/dirty page status is commonly ignored in previous works on conventional
buffer algorithms, whose main focus is the hit ratio.

The discussion so far has implied that dirty pages are flushed to disk only when
they are chosen as replacement victims and their memory area is to be reused. This
seems to be a completely autonomous decision of the buffer manager, based on the
replacement policy. In fact, the propagation of dirty pages is closely related to the
guarantee of atomicity and durability. If the buffer manager flushes a dirty page
modified by an incomplete transaction, atomicity can be violated; if it does not
flush the modifications of a committed transaction, durability is not guaranteed.
On the other hand, if (cold) pages modified by uncommitted transactions are not
allowed to be flushed and replaced, the effectiveness of the replacement policy is
reduced; and if commit of a transaction requires flushing all the pages modified by
it, the commit response time will become unacceptable.

To have maximum degree of flexibility for the buffer manager, the NoForce/Steal
policy for buffer management is necessary [Härder 83b]. NoForce means that pages
modified by a transaction do not have to be forced to disk at its commit, but
only the redo logs. Steal means that modified pages can be replaced and their
contents can be written to disk even when the modifying transaction has not yet
committed, provided that the undo logs are written in advance, observing the
WAL (write ahead log) principle. With these options together, the buffer manager
has great flexibility in its replacement decision, because the decision is, to a large
extent, decoupled from transaction management. Hence, it comes as no surprise
that NoForce/Steal is the standard solution for existing DBMSs.

27

Chapter 2. Preliminaries

Another aspect related to logging & recovery is checkpointing, which limits
redo recovery in case of a system failure, e. g., a crash. To create a checkpoint at a
“safe place”, earlier solutions flushed all modified buffer pages thereby achieving
a transaction-consistent or action-consistent firewall for redo recovery on disk.
Such direct checkpoints are not practical anymore, because—given large DB buffer
sizes—they would repeatedly imply limited responsiveness of the buffer for quite
long periods. While checkpoints are written, which often occurs in intervals of
few minutes, systems are restricted to read-only operations. Assume that many
GB (or even TB) of data would have to be propagated to multiple disks using
random writes (in parallel). Reaction times for update operations could reach a
considerable number of seconds or even minutes. Today, the method of choice is
fuzzy checkpointing [Mohan 92], where only metadata describing the checkpoint is
written to the log, but flushing of dirty pages is performed via asynchronous I/O
actions not linked to any specific point in time.

Although the buffer manager is not directly responsible for the isolation of
concurrent transactions, which is the responsibility of the concurrency control logic,
it has to provide a data structure, e. g., a semaphore or a mutex for each buffer
page, to facilitate the protection against concurrent modifications to the same
page [Gray 93]. The data structure allows multiple transactions to concurrently
read the page, but restricts access to a single transaction for writing to the page.
Such an extra protection (in addition to the concurrency control) is necessary,
because the entire page is to be locked, whereas the granularity of locking used by
the concurrency control can be smaller than a page. In addition, with concurrent
execution of transactions, such a protection is necessary for the guarantee of
elementary action consistency, i. e., actions confined to a single page always leave
the page in a consistent state after their execution. Elementary action consistency
is a layer-specific consistency to be guaranteed at L3, and a building block required
by the high-level, transactional consistency [Härder 05]. Therefore, page accesses
via the buffer manager typically follow a fix-use-unfix protocol [Sacco 82, Gray 93].

In summary, the use of NoForce/Steal polices and fuzzy checkpointing is the
most efficient combination, which is also the basic assumption on transaction man-
agement components for the discussion on buffer management in this dissertation.

2.3 Flash devices

Flash memory is not directly addressable to the processor. Flash devices, e. g.,
flash SSDs and flash-based PCIe cards, are accessed via typical host interfaces,
e. g., SATA, USB, FiberChannel, or PCI Express. The most important building
blocks of flash devices are flash memory and FTL. FTL is an intermediate layer
between the host interface and flash memory. It is required due to the limitations
of flash memory such as erase-before-write and write endurance (see Section 2.3.1).

28

2.3. Flash devices

page: read/program unit

block: erase unit

Figure 2.1: Flash memory basic operations

A flash device can have one or multiple flash memory packages (chips). A
package contains one or multiple dies. Each die is organized into multiple planes
(flash memory arrays). Each plane has a small number of page-sized registers,
which are required for the data transfer to and from the flash memory array. Data
transfer to and from multiple planes can be carried out in parallel [Agrawal 08].

External to the flash memory packages, flash devices typically have a small
amount of DRAM, which is used by the FTL (e. g., for storing the address mapping
table) or used as a device cache (on-drive cache) for performance reasons, similar
to that of HDDs.

The remainder of this section first introduces the primitive operations supported
by flash memory, then it outlines the major responsibilities of FTL and introduces
some related key concepts. Finally, it discusses the performances characteristics of
flash devices.

2.3.1 Flash memory primitives

Flash memory is a type of electrically erasable programmable read-only memory
(EEPROM), which supports three basic operations: read, program, and erase.
Read and program (also known as write) operations can be performed in the unit
of flash pages, while erase operations have to be done in a larger unit called flash
block (block, or erase unit), which contains a multiple of (e. g., 128) flash pages, as
illustrated in Figure 2.1.

Read operations have a very small latency (in the sub-millisecond range).
However, program operations are much slower than read operations, typically by
an order of magnitude. Erase operations are even slower than program operations,
by another order of magnitude. Such a relation for two major types of NAND
flash memory is illustrated in Figure 2.2. Let Cfr, Cfp, and Cfe be the costs of
read, program, and erase operations, respectively, we have:

Cfr < Cfp < Cfe (2.2)

29

Chapter 2. Preliminaries

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

SLC NAND MLC NAND

la
te

nc
y

(m
s)

flash memory type

read
program

erase

Figure 2.2: Flash memory operational costs

An erase operation turns a block into a free block and, consequently, each of
its flash pages into a free flash page, which is a flash page that has never been
programed after the block erasure.

A program operation on flash memory can only clear bits, i. e., changing their
values from 1 to 0. To set a (cleared) bit, i. e., changing its value from 0 to 1,
an erase operation is required, which has to erase an array of memory cells (a
flash block) and set all their values to 1 [Woodhouse 01, Gal 05]. This means that
only free flash pages can be programed, i. e., a non-free flash page can become
programmable again—but only after an erase of the entire block. Therefore,
an erase-program combination is required to physically update a flash page, as
illustrated by the state diagram in Figure 2.3. This limitation, referred to as
erase-before-write, implies that an in-place update of flash pages would be very
expensive. Once a flash page is written, the only way to update it in-place is
to erase the entire containing block, followed by a program operation with the
updated page content. Furthermore, a backup of user data from other flash pages
of the same block prior to the erase, and a restoration of them after the erase

free

valid

erase

erase program

Figure 2.3: Flash page state diagram

30

2.3. Flash devices

free

valid

erase

erase program

invalid

logical overwrite

erase

Figure 2.4: FTL page state diagram

are necessary. Such backup and restoration actions require additional read and
program operations.

Moreover, flash memory cells can endure only a limited number (ranging from
10,000 to 1,000,000 [Gal 05]3) of program/erase (P/E) cycles, before they wear
out and become unreliable. Consequently, after enduring a limited number of P/E
cycles, a block becomes highly susceptible to bit errors, i. e., it becomes a bad
block. This limitation is called write endurance.

A direct use of flash memory is, therefore, challenging. To facilitate the
implementation of mechanisms that help to overcome these limitations, a flash
page normally consists of a main area of several KBs for storing user data, and
a spare area of a few bytes for storing Error Correcting Code (ECC) or other
management information required by those mechanisms.

2.3.2 Flash translation layer

Instead of exposing flash pages and blocks to the device user, FTL supports logical
page operations, i. e., reading and writing of logical pages (corresponding to the
size of the main area), and it typically implements an out-of-place update scheme
to avoid the expensive in-place updates. The out-of-place update works as follows:
each logical page update is served using a free flash page prepared in advance, which
becomes associated with the logical page address, and the previously associated
flash page just needs to be invalidated by updating the management information,
as illustrated by the state diagram in Figure 2.4.

Consequently, multiple writes to a logical page can result in multiple page
versions co-existing in flash memory. The term valid page refers to the latest
version, while invalid pages refer to the older versions. Similarly, a valid flash page
is the physical page where the latest version resides. When free flash pages are
in short supply, some space taken by invalid pages has to be reclaimed. This is

3The number of cycles depends on density, vendor, and flash memory type. SLC NAND
flash memory is typically rated for ∼100,000 P/E cycles.

31

Chapter 2. Preliminaries

done by a procedure called garbage collection (GC), which reduces the number of
invalid pages and increases the number of free flash pages.

To keep track of the valid flash page of a logical page, an address mapping
table is maintained. Depending on the map-entry granularity in the concrete
implementation of this mapping table, FTL algorithms can be classified into
three categories: page-level mapping [Ban 95, Birrell 07], block-level mapping
[Ban 99, Estakhri 99], and hybrid mapping [Kim 02, Lee 07a].

Given the endurance constraint, for an ideal device lifespan, the P/E cycles
shall be uniformly distributed to all available blocks. Note, if a subset of blocks
becomes bad blocks more quickly, the entire device will soon become unusable due
to an insufficient number of (usable) blocks, although the remaining blocks are
not yet worn out. However, program and erase operations can be “skewed”, i. e.,
a subset of blocks are erased more often than average. In that case, FTL must
employ some mechanism, called wear-leveling, to “shuffle” blocks that have been
erased more often with blocks that are less frequently erased, in order to maximize
the device lifespan.

The responsibilities of FTL can be summarized from two perspectives. From
the user perspective, it has to support logical page operations, i. e., it shall give the
illusion that flash memory is a persistent array of logical pages that can be read
and overwritten. From the implementation perspective, it has three major tasks:

• Implementing an out-of-place update scheme.
• Garbage collection.
• Wear leveling.

The three address mapping methods are directly related to the implementa-
tion of the out-of-place update scheme. A brief discussion from a performance
perspective is given as follows, where we assume that a block contains M pages.

Page-level mapping

Page-level mapping can effectively deal with the erase-before-write limitation. A
logical write requires one program operation as well as, in average, one read and
1/M erase operations for the GC. Among the three mapping methods, page-level
mapping has the greatest performance potential, but it also has the highest resource
requirements, mainly due to the mapping table size, which can be prohibitive due
to cost reasons and reliability issues (e. g., it is more technically challenging to
make a large mapping table resistant to power failures). However, recent studies
have shown that the resource problem of page-level mapping can be effectively
dealt with using methods such as demand paging of the mapping table [Gupta 09]
or new hardware such as PCM (phase-change memory) as the mapping table
storage media [Kim 08].

32

2.3. Flash devices

Block-level mapping

Using block-level mapping, the mapping table is much smaller, because it only
maps a logical block address to its physical location. However, this implies that the
offset of a page in the physical block must be identical to its offset in the logical
block. To update a page, the new content of the page, due to the offset constraint,
must be written to the same offset in a free flash block and the remaining pages
of the old block have to be copied to the new block, before the old block can be
freed, resulting in M − 1 read, up to M program, and one erase operations.

Hybrid mapping

The problems of page-level and block-level mappings can be addressed by hybrid
mapping schemes, e. g., [Kim 02, Lee 07a]. In such an approach, a dynamic set of
flash blocks, called log blocks, is maintained to serve the write requests. The page
addresses in a log block are mapped at the page level, thus frequent block erasures
can be avoided. The remaining flash blocks, called data blocks, are managed at the
block level. Data blocks generally use a much larger flash area than the log blocks.
Therefore, the size of the mapping table is not a big issue for hybrid mapping
methods.

The approach of [Kim 02] is block associative, i. e., a log block is associated
with a single data block, and it only serves page writes to the associated data
block. If it becomes full, i. e., each page in it has been written once, it is merged
with the associated data block. If there is no free log block available that can
serve the write request to a (not yet associated) data block, one of the (potentially
under-utilized) log blocks must be freed, i. e., its content must be propagated to a
data block. For each page, its valid version—either in the data block or in the log
block—is copied to a third, free block. Then, the third block becomes the new
data block. The log block and the old data block are freed and are erased for later
use as log block or data block. Thus, a merge operation involves two erasures. An
ideal situation happens if a log block contains all valid pages of a data block and
their offsets are identical to those of their corresponding pages in the data block,
then the log block can be simply marked as the new data block and there is only
one erasure necessary to free the old data block. This is called a switch merge.
This approach may suffer from low space utilization in log blocks, because they
often have to be merged before fully utilized.

Lee et al. proposed an approach called fully-associative sector translation
[Lee 07a], which allows a log block to serve page writes targeting at multiple data
blocks, thus achieving higher space utilization in the log blocks and less frequent
merge operations. However, if a log block is associated with multiple, say n, data
blocks, a merge operation involves all the associated data blocks. For each of them,
the valid pages are copied to an empty block. In this case, n+ 1 erase operations
(n erasures for data blocks and one for the log block) are necessary.

33

Chapter 2. Preliminaries

2.3.3 Performance characteristics

Flash devices have a set of complex performance characteristics, which are subject
to both the device and the workload. Most of these characteristics can be ascribed
to the internal design of the devices. The following three aspects of device internals
are of particular importance to understand the performance behavior of flash
devices.

Flash memory type. SLC and MLC are different in performance, endurance
limit, and price. This partially explains why high-end flash devices, which
are typically based on SLC flash, often outperform their low-end or mid-range
contemporaries, which are typically MLC-based due to cost reasons.
Device cache. DRAM is about two orders of magnitude faster than flash
memory. Therefore, the device performance is subject to the presence of a
device cache (based on DRAM) and the size of such a cache. A relatively large
device cache is often the case for high-end flash devices.
FTL algorithms. FTL plays a key role for flash devices, because it dictates,
e. g., how the physical pages and blocks are logically organized, how often the
expensive operations such as block erasure and GC are performed, how the
metadata are stored and managed, and how the device cache is utilized. The
sophisticated mechanisms adopted by FTLs and their broad design space are
the major reason for the complex performance behavior of flash devices and
the large variety of device-specific performance characteristics.

Although the basic principles of flash device design are no secret, the specific
algorithms and components used in a particular device are typically proprietary
and transparent to the user. To gain some insights into the performance behavior of
those devices, efforts have been made to systematically benchmark the performance
of flash SSDs [Gray 08, Chen 09a, Bouganim 09]. The most important findings of
these works are summarized and discussed as follows.

Impact of operation type

Most flash-device benchmark results confirm that read workloads have a throughput
higher than that of write workloads, sometimes by two orders of magnitudes.
This can be attributed to the cost difference among the flash memory primitive
operations (see Formula 2.2). Without the device cache, a logical read requires at
least one flash read, whereas a logical write requires at least one flash write and
sometimes one or multiple flash erases. The presence of a device cache complicates
the situation, e. g., a logical read may require the write back of cached data, which
can further trigger block erases and GC, so that the observed read latency is even
higher than write ones. In that case, a large portion of the latency shall be ascribed
to the previous write requests that wrote the cached data.

34

2.3. Flash devices

The significant impact of operation type (read/write) on flash device perfor-
mance is commonly referred to as read/write asymmetry or R/W asymmetry. In
fact, even for HDDs, the latencies of a read operation and a write operation are
slightly different, because the way they handle a read request is different from that
of a write one. For example, for a read request, an access to the spinning disk is
necessary before the request can be acknowledged, if the requested sector is not in
the device cache, whereas, for a write request, the request can be acknowledged
as soon as the data has reached the device cache. However, for HDDs, the access
pattern dictates how often the disk arm has to be moved (seek) and the latency of
moving the disk arm is the dominating factor of HDD performance. Therefore, for
HDDs, the performance impact of the operation type is typically ignored.

Interplay of access pattern

Since flash devices do not have mechanical parts, it is commonly believed that
access pattern, i. e., whether the access is random or sequential, is not related to
their read performance. However, it is not always the case, again, due to the device
cache. According to [Chen 09a], sequential reads can benefit from a read-ahead
mechanism and achieve a higher throughput than random reads. Nevertheless, the
access pattern does have a relatively small impact on flash-device read performance,
especially compared with its significant impact on HDD performance.

The more serious issue is the impact of access pattern on flash-device write
performance. Let us consider block-level mapping methods: for instance, if a block
has M pages, due to the erase-before-write limitation, a random write may require
up to M − 1 read and M program operations and one erase operation, whereas a
sequential write only requires one program and 1/M erase operations in average.

Hybrid-mapping methods can mitigate the problem to some extent in that
a small number of blocks (log blocks) are mapped at the page level, which are
conceptually similar to a (write) cache which exploits spatial locality. For the
block-associative variant, the probability of a “cache hit”, i. e., the data block
targeted by a random write is already associated with a log block, is much lower
than a sequential write. Consequently, under random write workloads, merge
operation must be frequently performed and the being-merged log blocks are more
under-utilized. In the worst case, each random write triggers a merge operation.
For the fully-associative variant, a merge operation of a randomly filled-up log
block involves a relatively high number of data blocks and, consequently, requires
a larger number of operations than the merging of a sequential one—for which a
switch merge is even possible.

Page-level mapping methods are less sensitive to access patterns. However, to
confine the DRAM used for the mapping table to an acceptable limit, modern
page-level mapping methods store a large portion of the mapping table on the
flash memory. A small portion of it is cached in DRAM on demand [Gupta 09]

35

Chapter 2. Preliminaries

and, in case of updates, its must be synchronized with the copy stored in flash
memory sometime later. The effectiveness of such a cache and the efficiency of
maintaining the mapping table is, again, sensitive to the access pattern.

Therefore, most benchmark results confirm that access patterns have a signifi-
cant impact on flash device write performance. The throughput of flash devices
under random write workloads can be significantly lower than under sequential
workloads, sometimes by orders of magnitude. More generally speaking, their
random-write throughput can be significantly lower than that of writes with strong
spatial locality (sequential write is just a extreme case), due to various cache
mechanisms in the device (e. g., device cache and log blocks). We refer to this
issue as the flash random write (FRW) problem.

Some benchmarks show that flash SSDs can handle random writes with larger
request sizes more efficiently. For example, the bandwidth of random writes using
requests of flash block size can be more than an order of magnitude higher than
writing requests of page size. In fact, such a write is internally handled as multiple
sequential program operations at the page level. Some benchmark results report
that some high-end flash devices are seemingly insensitive to access patterns
and their random-write performance is comparable to the sequential-write one.
There are several reasons for this observation. First, such experiments are often
single-threaded so that they did not saturate the sequential-write throughput.
Second, the address space of the random requests is too small (e. g., smaller than
the capacity of log blocks, or even smaller than the device cache), such that the
problems of random writes are hidden.

Further performance behavior

To understand the complex performance behavior of flash devices, operation type
and access pattern are not the only factors to be kept in mind, although they are
the major ones. For example, under a workload with mixed reads and writes, the
latency of reads can be negatively affected by background operations caused by
writes, e. g., writing back of dirty pages, and writes can also be affected by reads,
which may compete for device cache. Background operations such as GC can
also compete for resources with foreground jobs and cause increased latencies and
indeterministic response times. Furthermore, the internal state of the flash device,
e. g., the number of invalid flash pages and their distribution on the entire flash
memory, can also greatly impact performance [Chen 09a]. More importantly, flash
SSDs suffer from performance degradation when used in a RAID configuration
[Petrov 10], which is often a must in enterprise deployments.

36

2.4. Flash implications

2.4 Flash implications

The distinguished performance characteristics of flash devices provide hints to
both algorithm design and system design, which are discussed in the context of
storage systems as follows.

2.4.1 Buffer management

Although flash devices offer performance improvements over HDDs of up to a
factor 100, buffer management is still an important issue, because there is another
two orders of magnitude performance difference between flash memory and DRAM.
Data-intensive systems can not rely on the device cache, which does not scale with
the device capacity for similar reasons that kept HDD device cache small: cost,
volatility, and energy efficiency.

R/W asymmetry

Buffer management for flash-based system shall consider the R/W asymmetry.
The assumption of Equation 2.1 is acceptable for disk-based storage systems,
because for HDDs under (dominantly) random workloads (which is the case in a
typically OLTP DB environment), the number of physical accesses dominates I/O
performance. However, such an assumption is not valid for flash SSDs, because
their performance behavior is quite different from that of HDDs, especially under
random workloads. Their random read performance is typically two orders of
magnitude higher than that of HDDs, whereas random writes on flash SSDs can
be even slower than those on magnetic disks. As an example, the MTRON MSP-
SATA7525 flash SSD achieves 12,000 IOPS for random reads and only 130 IOPS
for random writes of 4 KB units [Mtron 08], whereas high-end magnetic disks
typically have 200 IOPS for random I/O [Gray 08].

Therefore, the formalization given in Section 2.2.1 can not be directly used
to describe the buffer management problem for flash-based storage systems, for
which the following extension and modification are necessary.

Each page request, either logical xi ∈ X, or physical yi ∈ Y , has to be
represented as a tuple of the form (op, pageId), where op ∈ {R,W} is either a
read request R or a write request W . For a page request p, its operation type is
denoted as op(p). Moreover, cost for a flash device can be assumed as:

cost(Y) = |{y ∈ Y |op(y) = R}| × CFR + |{y ∈ Y |op(y) = W}| × CFW (2.3)

where the constants CFR and CFW are the average costs of a read and a write
operation on a flash device. The optimization goal is, still, minimize cost(Y).

37

Chapter 2. Preliminaries

buffer pools (DRAM)

primary storage (HDDs or SSDs)

Figure 2.5: Two-tier archtecture

The FRW problem

The FRW problem is not only a performance issue, but also a reliability and cost
issue, because behind the performance problem are the higher numbers of flash
P/E operations, which shorten the device lifespan. An intuitive idea to address the
FRW problem is to increase the DB page size, which is the unit of data transfer
between the buffer manager and the file system (or the raw device directly) in most
database systems. It would be an attractive solution if the overall performance
could be improved this way, because only a simple adjustment of a single parameter
would be required. However, a naive increase of the page size generally leads to
more unnecessary I/O (using the same amount of DRAM for the buffer pool),
especially for OLTP workloads, where random accesses dominate. Furthermore, in
multi-user environments, large page sizes favor thread contentions. Hence, simply
increasing the I/O request size is not feasible, and, a more sophisticated solution
is needed.

Read performance

Prefetching of pages plays an important role for conventional disk-based buffer
management: It is not hindered by flash devices. But, because of their random-
read performance, prefetching becomes much less important, because pages can
be randomly fetched on demand without (hardly) any penalty in the form of
access latency. Because prefetching always includes the risk of fetching pages
later not needed, it is even better for flash-aware buffer algorithms to not use this
conventional optimization technique.

2.4.2 Architectural variants

Flash memory not only opens up a broad range of opportunities for algorithmic im-
provements, its effective use also require architectural considerations. To integrate
flash memory into database storage systems, there are basically three architectural
variants :

38

2.4. Flash implications

buffer pools (DRAM)

midtier cache (flash)

primary storage (HDDs or SSDs)

Figure 2.6: Three-tier archtecture

Two-tier architecture (2TA) Flash SSDs support the common host inter-
faces, therefore, using them as the primary storage and completely replacing
HDDs (as shown in Figure 2.5) is the most intuitive usage, which basically
follows the reference architecture introduced in Section 2.1. However, since the
context of discussion is only the storage system instead of the entire DBMS,
we refer to L1 of the reference architecture as the bottom tier (based on HDDs
or flash SSDs), and L2 as the top tier (based on DRAM), for an increased
readability.
Three-tier architecture (3TA) The performance of flash memory and flash
devices also allow their use as a means to enhance existing disk-based storage
systems. Compared with a disk-based storage system following the reference
architecture, the three-tier architecture introduces a flash-based middle tier,
between the DRAM-based top tier and the bottom tier based on HDD storage,
as shown in Figure 2.6. In such a three-tier storage system, there are two
caches: a faster but smaller one (the top-tier buffer pool) and a slower but
larger one (the mid-tier flash-based cache). For increased clarity, we use the
term buffer or buffering to refer to the top-tier buffer pool, and the term cache
or caching to refer to the mid-tier cache, whenever appropriate.
Hybrid storage Hybrid storage is another variant of using flash to enhance
disk-based two-tier storage systems. In this configuration, flash SSDs are used
together with HDDs in the bottom tier as the primary storage. The capacity
of flash storage is typically smaller than the HDD storage due to cost reasons.
Therefore, ideally the “hot” data shall be placed on the flash SSDs which are
faster than the HDDs. The difference to the aforementioned 3TA is that in a
hybrid storage the data is only partially stored on HDDs.

For the hybrid storage, the data placement, i. e., when and how to place
which portion of data to the SSDs, is a complex issue [Koltsidas 08, Schiefer 10].
Furthermore, the buffer management complexity is increased, because it has to

39

Chapter 2. Preliminaries

deal with hybrid storage devices. Both complexities discourage its use in many
cases. Therefore, this dissertation focus on the first two architectural variants:
2TA and 3TA. A storage hierarchy following these two architectures is referred to
as two-tier storage hierarchy or three-tier storage hierarchy, respectively.

2.5 Evaluation methodology

All the experiments in this dissertation are performed using our prototype imple-
mentation of a database storage engine, which has been evolving during the course
of this research work and supports both 2TA and 3TA.

From the user perspective, two-tier and three-tier storage systems have the
same interface, i. e., the buffer manager interface. Therefore, the performance
seen at the buffer manager interface, e. g., IOPS or response time, represents the
overall storage system performance. We use buffer traces, i. e., page reference
strings as a history recording of a buffer manager’s work, as input to the system
(See Appendix B). A test program communicates with the buffer manager by
sending the logical page requests delivered by the input. While the page requests
are being served by the buffer manager, performance metrics such as execution
time (wall-clock time elapsed for running a trace) or number of operations are
collected for our performance study. Similarly, we also use mid-tier traces, which
are reference strings to the mid-tier, to examine the behavior of the mid-tier cache
manager in some studies related to 3TA. The workload is I/O-intensive, because
only the storage engine is involved for storing and retrieving data and no data
processing is involved.

Most of the performance metrics interesting to us, e. g., hit ratio and number of
device accesses, are independent of hardware. However, some of the performance
measurements, e. g., execution time, are indeed specific to the hardware. These
measurements are still important for our performance study, because they allow a
comparison among various approaches on the same hardware platform. In such a
case, we always report the relevant hardware setup to facilitate the repeatability
of the experiments.

2.6 Summary

This chapter presented the preliminary knowledge relevant to other parts of the
dissertation. It gave an overview of database storage systems, including their role
in a DBMS with the help of the reference architecture, an introduction to the
two most performance-critical components, the buffer manager and the storage
device. Based on the characteristics of the storage device, implications on system
and algorithm design are outlined. Finally, the basic approach for performance
evaluation is sketched.

40

Chapter 3

Flash-aware buffer management

Flash SSDs are considered an important alternative to HDDs for storage systems
following the two-tier architecture introduced in Section 2.1. In such systems, the
secondary storage (bottom tier) exclusively consists of flash SSDs. The decision
when and how to access the storage devices is made by the buffer manager (top
tier). Therefore, we focus on the problem of buffer management for such systems.

The major contribution of this chapter is the presentation and evaluation of
the CFDC algorithm, which is originally proposed in [Ou 09] and evaluated in
[Ou 10c]. The basic idea of CFDC is delaying the eviction of dirty pages to reduce
the number of flash writes and exploiting the spatial locality to improve page
flushing efficiency.

The remainder of this chapter is organized as follows. First, Section 3.1 gives a
brief survey of the state-of-the-art buffer algorithms for flash-based systems. Then,
Section 3.2 presents the CFDC algorithm. Finally, the experiments evaluating its
performance are reported in Section 3.3.

3.1 Flash-aware algorithms

To achieve maximized performance on flash-based devices, performance charac-
teristics of flash-based devices, e. g., the R/W asymmetry and the FRW problem,
must be taken into account. Buffer management algorithms tailored to flash-based
devices are referred to as flash-aware algorithms.

3.1.1 The clean-first strategy

Considering the significant R/W asymmetry of flash-based devices, it is straight-
forward that flash-aware buffer algorithms shall try to minimize the number of
physical writes, even at the expense of some increased number of physical reads if
necessary, because the former is much more expensive than the latter.

41

Chapter 3. Flash-aware buffer management

This criterion is now much more important in our context, because, for flash
SSDs, the cost of a page write may be two orders of magnitude higher than that of
a page read. Assume, we have to select one of these two pages as the replacement
victim: a clean page p and a dirty page q. Furthermore, it is known in advance
that, in subsequent requests, p is to be re-read n times, q is to be re-modified m
times, and n and m are comparable (i. e., n ∼ m). Then, it is straightforward to
select and replace p in favor of q, because the cost of n flash reads is much lower
than the benefit of saving m flash writes by serving them directly in the buffer.
We call such a strategy of advancing the eviction of clean pages and delaying the
eviction of dirty pages the clean-first strategy. Besides a potential performance
gain, another strong argument for the clean-first strategy is that saving flash writes
extends the device lifespan and improves system availability.

The success of this strategy depends not only on the clean/dirty page state,
but also on the page access statistics. The dirty pages, whose evictions are delayed,
shall be updated frequently enough, to justify the cost of correspondingly early
eviction of clean pages, because the latter could contribute to buffer hits if they
were kept in the buffer pool. In the aforementioned example, if m = 0, there is no
benefit of keeping q in the buffer pool. Similarly, if p is a hot clean page and q a
cold dirty page (i. e., n� m), there will be hardly any performance gain for the
clean-first strategy. Although flash SSDs allow much faster random read accesses
than HDDs, maintaining a high hit ratio—the primary goal of conventional buffer
algorithms—is still important, because memory access is still much faster (the
bandwidth of main memory is at least an order of magnitude higher than the
interface bandwidth provided by flash SSDs). Therefore, a careful trade-off must
be made between increased number of flash reads and decreased number of flash
writes.

The clean-first strategy is first proposed by Park et al. in [Park 06], where the
CFLRU (Clean-First LRU) algorithm is presented. As the name suggests, the
algorithm is based on the LRU replacement policy, and, similar to LRU, it also
maintains a list structure where all the buffer pages are ordered by their access
recency. However, as a flash-specific improvement, the list in CFLRU is divided
into two regions: the working region at the MRU (most recently used) end of the
list, and the clean-first region at the LRU end. In the clean-first region, clean
pages are always selected as victims over dirty pages. Only when clean pages are
not present in the clean-first region, the dirty page at the LRU tail is selected as
victim. The size of the clean-first region is determined by a parameter w called
the window size. By evicting clean pages first, the buffer area for dirty pages is
effectively increased—thus, the number of flash writes can be reduced.

CFLRU is one of the earliest proposals of flash-aware buffer algorithms. It is of
great importance from a research perspective. However, there are several problems
that hinder a practical use of the algorithm:

42

3.1. Flash-aware algorithms

LRUMRU
victim

cleanfirst region, w = 5working region

dirty page: clean page:

Figure 3.1: Example of the CFLRU algorithm, after [Park 06]

• First, the algorithm often has to walk a potentially very long list in case of a
buffer fault, because it has to search backwards from the LRU end for a clean
page, and such a page is not always at the LRU tail. Furthermore, such a page
tends to stay close to the working region (see Figure 3.1), because clean pages
are always selected over dirty pages in the clean-first region.
• Second, under the LRU assumption, the dirty pages in the clean-first region have
a lower probability of being re-accessed than the clean pages, thus managing
those dirty pages in an LRU fashion may not be an optimal way of utilizing
the valuable main-memory resource.
• Third, CFLRU has the same problem as LRU: it becomes inefficient when the
workload is mixed with scans, because the hot pages cached so far are pushed
away by sequences of cold pages referenced by scans.

Another major problem of CFLRU is its tuning parameter w, which is critical
to performance but its optimal value is difficult to determine. The optimal
value depends on the extent of R/W asymmetry of the storage device and the
update intensity of the workload, which may vary over time. Although its authors
have mentioned a dynamic version of CFLRU, which automatically adjusts the
parameter “based on periodically collected information about flash read and write
operations” [Park 06], its control logic is not presented. However, in this chapter,
we assume that the characteristics of both the storage device and the workload do
not change frequently, so that an empirically determined “optimal” value for w is
acceptable. We will re-visit the parameter-tuning problem in Chapter 5, where
the problem is dealt with as the central topic.

As potential alternatives to the CFLRU algorithm, we discuss in the following
some representative flash-aware buffer algorithms proposed in recent years. These
algorithms can be roughly classified into two categories. Algorithms in the first
category, e. g., LRUWSR, CCFLRU, and ADLRU, share the same basic idea (clean-
first strategy) with CFLRU and deal with the R/W asymmetry, while algorithms
in the second category, e. g., FAB and REF, address the FRW problem.

43

Chapter 3. Flash-aware buffer management

3.1.2 Other clean-first algorithms

LRUWSR (Write Sequence Reordering) [Jung 08] is a flash-aware algorithm based
on LRU and Second Chance, using only a single list as auxiliary data structure.
The idea is to evict clean and cold-dirty pages and keep the hot-dirty pages in
buffer as long as possible. When a victim page is needed, it starts search from
the LRU end of the list. If a clean page is visited, it will be returned immediately
(LRU and clean-first strategy). If a dirty page is visited and is marked “cold”, it
will be returned; otherwise, it will be marked “cold” (Second Chance) and the
search continues.

The authors of CCFLRU (Cold-Clean-First LRU) [Li 09] further refine the
idea of LRUWSR by distinguishing between cold-clean and hot-clean pages. Cold
pages are distinguished from hot pages using the Second Chance algorithm. They
define four types of eviction costs: cold-clean, cold-dirty, hot-clean, and hot-dirty,
with increasing priority, thus cold-clean pages are first considered for eviction, then
cold-dirty, and so on.

The ADLRU (Adaptive Double LRU) algorithm [Jin 12] considers three dimen-
sions in its eviction decision: recency, frequency, and cleaness (i. e., the dirty/clean
status of a page). It uses two LRU lists to distinguish frequently and less-frequently
accessed pages and to identify least-recently-used and least-frequently-used clean
pages, which are then first considered for eviction.

3.1.3 Addressing the FRW problem

FAB (Flash-Aware Buffer) [Jo 06] is a buffer management policy designed for
personal media players. FAB manages buffer pages in two dimensions: pages are
grouped according to their flash-block membership, the page groups are ordered by
recency. If the buffer pool is full, FAB selects a page group as victim and flushes
all pages of the group, which also belong to the same flash block. The victim in
the FAB method is the page group which contains the largest number of pages
and, in case such groups are not unique, the least-recently referenced one among
them.

REF (Recently-Evicted First) [Seo 08] is a flash-aware replacement policy that
addresses the FRW problem based on the LRU algorithm. It also maintains an
LRU list and has a victim window at the MRU end of the list, similar to the
clean-first region of CFLRU. Victim pages are only selected from the so-called
victim blocks, which are blocks with the largest numbers of pages in the victim
window. From the set of victim blocks, pages are evicted in LRU order. When all
pages of the victim blocks are evicted, a linear search within the victim window is
triggered to find a new set of victim blocks. This way, REF ensures that during a
certain period of time, the pages evicted are all accommodated by a small number
of flash blocks, thus improving the efficiency of FTL.

44

3.2. The CFDC algorithm

victim

working region
dirty queue

clean queue

priority region

Figure 3.2: Example of the generalized two-region scheme

FAB and REF both address the FRW problem by flushing pages in groups,
according to their flash-block membership. Such page flushes can be more efficiently
handled by flash-based devices than random page flushes. However, they make no
special efforts on minimizing the number of page flushes and ignore the clean/dirty
page state in the victim-selection decision. In contrast, the clean-first algorithms
focus on reducing the number of page flushes by giving dirty pages higher priorities,
but they do not improve the efficiency of page flushing.

3.2 The CFDC algorithm

The problems of existing approaches motivated the design of the CFDC (Clean-First
Dirty-Clustered) algorithm, aiming at the following goals:

G1 Minimize the number of physical writes.
G2 Improve the efficiency of page flushing.
G3 Keep a relatively high hit ratio.

3.2.1 Overview

To minimize the number of physical writes (G1), we adopt the clean-first strategy
of CFLRU. We address the first problem of CFLRU by introducing two queues for
the clean-first region: one for the clean pages and one for the dirty pages. A page
evicted from the working region goes to the clean queue if it is clean, otherwise to
the dirty queue. Upon a buffer fault, if the clean queue is not empty, the tail of
the clean queue is returned as the victim, otherwise a page from the dirty queue
will be selected as the victim. As a side note, this improvement can also be applied
to the CFLRU algorithm. The improved CFLRU behaves the same as the original
algorithm in terms of hit ratio and number of page flushes, but search costs for
clean pages are entirely eliminated.

45

Chapter 3. Flash-aware buffer management

hit in P

buffer fault

min(W)
hit in W W P

Figure 3.3: Page flow in the two-region scheme

To improve the write efficiency (G2), we propose a technique called clustered
write, which enforces a strong spatial locality of page flushes and improves the
efficiency of writing to flash. A cluster is a set of pages physically located in
proximity and having the same cluster number. We derive the cluster number
by dividing their page number by a constant cluster size. Though page numbers
are logical addresses, because of the space allocation in most DBMSs and file
systems, the pages in the same cluster have a high probability of being physically
neighbored, too. The byte size of a cluster should correspond, but does not have
to be strictly equal to the size of a flash block, thus information about exact flash
block boundaries are not required.

To keep a high hit ratio (G3), we propose a generalized two-region scheme, where
the buffer pool is managed in two regions: a working region, similar to CFLRU,
for keeping hot pages, and a priority region responsible for optimizing replacement
costs by assigning varying priorities to pages. This way, we can delegate the
task of maintaining a high hit ratio to well-studied classical algorithms, without
re-inventing the wheels. Such a scheme also makes it possible to study a variety of
hybrid buffer algorithms whose working region and priority region are managed by
different strategies.

Figure 3.2 shows the generalized two-region scheme using the improved CFLRU
method as an example. In this example, the working region uses LRU, whereas
the priority region assigns higher priorities to dirty pages. Upon a buffer fault, a
victim is selected in the priority region to make room for a page currently in the
working region. After this page displacement, the requested page can enter the
working region.

3.2.2 Page flow

Following the generalized two-region scheme, CFDC manages the buffer pool in two
regions: the working region W and the priority region P . A parameter λ ∈ [0, 1],
called priority window, determines the size ratio of P relative to the total buffer.
Therefore, if the buffer has B pages, then P contains λ ·B pages and the remaining
(1 − λ) · B pages are managed in W . Note, W does not have to be bound to a
specific replacement policy. Various conventional replacement policies can be used

46

3.2. The CFDC algorithm

Algorithm 1: CFDC
data : request for page p, buffer pool B with b pages, working region W and

priority region P , |W | = (1− λ) · b ∧ |P | = λ · b
1 if p ∈ B then
2 if p ∈ W then
3 adjust W as per W ’s policy ;
4 else
5 demote min(W), promote p ;

6 else
7 page q ← select a victim from P ;
8 if q is null then
9 q ← select victim from W as per W ’s policy ;

10 if q is dirty then
11 physically write q ;

12 clear q and read content of p from external storage into q ;
13 p← q ;
14 if p ∈ P then
15 demote min(W), promote p ;

16 return p ;

to maintain high hit ratios in W and, therefore, prevent hot pages from entering
P . Figure 3.3 illustrates the page flow in our two-region scheme.

The code to be executed upon a page request is sketched in Algorithm 1. If
a page in W is hit (line 3), the base algorithm of W should adjust its data and
structures accordingly. For example, if LRU is the base algorithm, it should move
the page that was hit to the MRU end of its list structure. If a page in P is hit
(line 5), a page min(W) is determined by W ’s victim selection policy and moved
(demoted) to P , and the hit page is moved (promoted) to W . In case of a buffer
fault, the victim is always first selected from P (line 7). Only when no victim page
is available from P (e. g., all pages in P are fixed), we select the victim from W
(line 9). Considering recency, the newly fetched page is first promoted to W (line
15).

3.2.3 Priority region

Priority region P maintains three structures: an LRU list Lc of clean pages, a
priority queue Q of clusters where dirty pages are accommodated, and a hash
table H with cluster numbers as keys for efficient cluster lookup.

The victim selection logic in P is shown in Algorithm 2. Clean pages are always

47

Chapter 3. Flash-aware buffer management

Algorithm 2: Select a victim from P

data : priority region P , consisting of a list of clean pages Lc in LRU order
and a priority queue of dirty-page clusters Q

1 if L 6= ∅ then
2 v ← the LRU page of Lc ;

3 if v = null then
4 cluster c← cluster of lowest priority in Q ;
5 if c 6= null then
6 v ← the LRU page in c ;
7 if v 6= null then
8 c.ipd← 0 ;

9 return v ;

selected over dirty pages (line 1–2). If there is no clean page available, a cluster c
having the lowest priority is selected from Q and the LRU page in c is selected
as victim (line 3–6). Once a victim is selected from a cluster, its priority is set
to minimum (line 8) until all dirty pages in this victim cluster are consumed by
subsequent page evictions, resulting in strong spatial locality of page evictions.

For a cluster c with n pages (n > 1) in Q, with page numbers p0, ..., pn−1,
ordered by their time of entering Q, we define a metric, IPD (inter-page distance),
to represent its “randomness”:

ipd(c) =
n−1∑
i=1

|pi − pi−1| (3.1)

IPD is used to distinguish between randomly accessed clusters and sequentially
accessed clusters (IPDs of clusters containing only one page are set to 1). Appar-
ently, we prefer to keep a randomly accessed cluster in the buffer for a longer time
than a sequentially accessed cluster. For example, a cluster with pages {0, 1, 2, 3}
has an IPD of 3, while a cluster with pages {7, 5, 4, 6} has an IPD of 5.

The priority of c, denoted as pr(c), is defined as:

pr(c) =
ipd(c)

n2 × (globaltime− timestamp(c))
(3.2)

The algorithm tends to assign large clusters a lower priority for two reasons:

1. Flash SSDs are efficient in writing such clustered pages.
2. The pages in a large cluster have a higher probability of being sequentially

accessed.

48

3.3. Experiments

6 4 208 1527 13 2928

victim

reference recency

LRUMRU

Figure 3.4: Example of clustered write

Both spatial and temporal factors are considered by the priority function. The
purpose of the time component in Formula 3.2 is to prevent randomly, but rarely
accessed small clusters from staying in the buffer forever. The cluster timestamp
timestamp(c) is the value of globaltime at the time of its creation. Each time
a dirty page is inserted into the priority queue (min(W) is dirty), globaltime
is incremented. We derive its cluster number and perform a hash lookup using
this cluster number. If the cluster does not exist, a new cluster containing this
page is created with the current globaltime and inserted to the priority queue.
Furthermore, it is registered in H. Otherwise, the page is added to the existing
cluster and the priority queue is maintained if necessary. If page min(W) is clean,
it simply becomes the new MRU node in the clean list.

After demoting min(W), the page to be promoted, say p, will be removed
from P and inserted to W . If p is to be promoted due to a buffer hit, we update
its cluster IPD including the timestamp. This will generally increase the cluster
priority according to Formula 3.2 and cause c to stay in the buffer for a longer
time. This is desirable since the remaining pages in the cluster will probably be
revisited soon due to locality. In contrast, when adding demoted pages to a cluster,
the cluster timestamp is not updated.

An example of clustered write is illustrated in Figure 3.4, where the algorithm
selects, from a set of random dirty pages, a cluster with sequential pattern.

The time complexity of CFDC depends on the complexity of the base algorithm
in W and the complexity of the priority queue. The latter is O(logm), where m is
the number of clusters. This should be acceptable, since m� λ ·B, where λ ·B is
the number of pages in P .

3.3 Experiments

Our test machine has an AMD Athlon Dual Core Processor, 512 MB of main
memory, is running Ubuntu Linux with kernel version 2.6.24, and is equipped with
a magnetic disk and a flash disk, both connected to the SATA interface used by the
file system EXT2. Both OS and the storage engine are installed on the magnetic

49

Chapter 3. Flash-aware buffer management

disk. The test data (as a DB file) resides on the flash SSD—a 32 GB MTRON
MSP-SATA7525 based on NAND flash memory [Mtron 08]. All the pages to be
referenced are pre-allocated in the DB file in the file system. Thus, a page fault
will not cause an extra page-allocation operation.

We deactivated the file system prefetching and set the DIRECT_IO flag
when accessing the flash SSD, so that the influences of file system and OS were
minimized. All experiments started with a cold DB buffer. Except for the native
code responsible for file access, the DB engine and the algorithms are completely
implemented in Java. CFDC and competitor algorithms are used by the buffer
manager via an interface.

In the following, we use CFDC-k to denote the CFDC instance running LRU-k
(k = 2) and use CFDC-1 for the instance running LRU in its working region.
Both of them are referred to as CFDC if there is no need to distinguish. We
cross-compared seven buffer algorithms, which can be classified in two groups:
the flash-aware algorithms including CFLRU, LRUWSR, REF, CFDC-k, and
CFDC-1; the classical algorithms including LRU and LRU-k (k = 2). For better
clarity, CFDC-k and LRU-k are not included in the experiments using the real-life
traces, because they are of lower practical importance due to a higher complexity
(O(log n)).

The block size parameter of REF, which should correspond to the size of a
flash block, was set to 16 pages (DB page size = 8 KB, flash block size = 128
KB). To be comparable, the cluster size of CFDC was set to 16 as well. The
V B parameter of REF was set to 4, based on the empirical studies of its authors.
Furthermore, we used the improved version of CFLRU as discussed in 3.2.1, which
is more efficient at runtime, yet functionally identical to the original algorithm.

The spatial locality of page requests can be quantified by the metric CSC
(cluster-switch count). Let S := {q0, q1, . . . , qm−1} be a sequence of page requests,
pn(qi) a function that extracts the page number addressed by request qi, and
nb(p1, p2) a boolean function that tells if two page numbers p1 and p2 are spatially
close, i. e., in the same cluster, the metric csc(S) reflects the spatial locality of S:

csc(S) =
m−1∑
i=0

{
0, if qi−1 exists and nb(pn(qi−1), pn(qi))
1, otherwise (3.3)

In our experiments, the function nb is defined as:

nb(p1, p2) =

{
true, if p1/16 == p2/16
false, otherwise (3.4)

Compared to clustered writes, the sequence of dirty pages evicted by the
algorithm REF generally has a much higher CSC, because it selects victim pages
from a set of victim blocks and the victim blocks can be addressed in any order.
However, this kind of write requests can also be efficiently handled by flash SSDs,

50

3.3. Experiments

if the parameter V B is properly set. Because the sequence of dirty pages evicted
can be viewed as multiple sequences of clustered writes that are interleaved with
one another, we denote the REF approach as semi-clustered writes.

Let R := {p0, p1, . . . , pn−1} be the sequence of logical page requests fed to the
buffer manager, we further define the metric cluster-switch factor (CSF) to reflect
its efficiency in performing clustering:

csf(R, S) = csc(S)/csc(R) (3.5)

Note, if R is constant, it is sufficient to consider the CSC metric alone. If d(S)
is the set of distinct clusters addressed by a sequential access pattern S, we have
csc(S) = |d(S)|. In this section, CSC is used to study the spatial locality of page
flushes, i. e., sequences of physical writes.

3.3.1 Synthetic workload

The synthetic trace simulates typical DB buffer workloads with mixed random
and sequential page requests. Four types of page references are contained in the
trace: 100,000 single page reads, 100,000 single page updates, 100 scan reads, and
100 scan updates. A single page read requests one page at a time, while a single
page update further updates the requested page. A scan read fetches a contiguous
sequence of 200 pages, while a scan update further updates the requested sequence
of pages. The page number of the single page requests are randomly generated
between 1 and 100,000 with an 80–20 self-similar distribution. The starting page
number of the scans is uniformly distributed in [1, 105].

The DB size is 764 MB. Parameter k was set to 2 for both CFDC-k and LRU-k.
Parameter λ was set to 0.5. We varied the buffer size from 500 to 16,000 pages (or
4–125 MB) and plotted the performance metrics of running this trace in Figure 3.5.
The running times (shown in Figure 3.5a) of CFDC-k and CFDC-1 are very close,
with CFDC-k being slightly better. Both CFDC variants clearly outperform all
other algorithms compared. For example, with a buffer of 4,000 page frames, the
performance gain of CFDC-k over REF is 26%.

Detailed performance breakdowns are presented by Figure 3.5b, 3.5c, and 3.5d,
corresponding to the three metrics of interest: number of page flushes, spatial
locality of page flushing, and hit ratio. REF suffers from a low hit ratio and a
high write count, but is still the third-best in terms of execution times due to
its semi-clustered writes. LRU-k performs surprisingly good on flash SSDs—even
better than the flash-aware algorithms CFLRU and LRUWSR. This emphasizes
that hit ratio is still an important metric for flash-aware buffer algorithms.

51

Chapter 3. Flash-aware buffer management

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500 1000 2000 4000 8000 16000

CFDC-k
CFDC-1
CFLRU

LRUWSR
REF
LRU

LRU-k

(a) Execution time

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 500 1000 2000 4000 8000 16000

CFDC-k
CFDC-1
CFLRU

LRUWSR
REF
LRU

LRU-k

(b) Page-flush count

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 500 1000 2000 4000 8000 16000

CFDC-k
CFDC-1
CFLRU

LRUWSR
REF
LRU

LRU-k

(c) CSC

 0.25

 0.30

 0.35

 0.40

 0.45

 0.50

 0.55

 0.60

 0.65

 500 1000 2000 4000 8000 16000

CFDC-k
CFDC-1
CFLRU

LRUWSR
REF
LRU

LRU-k

(d) Hit ratio

Figure 3.5: Synthetic trace performance

3.3.2 Scan resistance

To examine scan resistance, we generated a set of traces by changing the locality of
the single page requests of the synthetic trace to a 90–10 distribution and varying
the number of scan reads and scan updates from 200 to 1,600. The starting page
numbers of the scans are moved into the interval [100001, 150000]. The buffer size
configured in this experiment equals the length of a scan (200 pages). Thus, we
simulate the situation where sequential page requests push the hot pages out of
the buffer.

The buffer hits in this experiment are compared in Figure 3.6a. While most
algorithms suffer from a drop in the number of hits between 5% to 7%, the hits
of CFDC-k only decrease by 1% (from 144,926 to 143,285) and those of LRU-k
only decrease about 2.5%. This demonstrates that CFDC-k gracefully inherits the
merits of LRU-k. Another advantage of CFDC is demonstrated by Figure 3.6b: it
has always the lowest CSF , i. e., its page flushes are effectively clustered.

52

3.3. Experiments

 125000

 130000

 135000

 140000

 145000

 150000

 200 400 600 800 1000 1200 1400 1600

CFDC-k
CFDC-1
CFLRU

LRUWSR
REF
LRU

LRU-k

(a) Hit count

 0.50

 0.55

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 200 400 600 800 1000 1200 1400 1600

CFDC-k
CFDC-1
CFLRU

LRUWSR
REF
LRU

LRU-k

(b) Cluster-switch factor

Figure 3.6: Increasing the number of scans (x-axis)

3.3.3 Impact of the window size

In our two-region scheme, the size of the priority region is configurable with the
parameter λ, similar to the parameter window size (w) of CFLRU. The algorithm
REF has a similar configurable victim window as well. For simplicity, we refer
to them uniformly with the name “window size”. In the experiments discussed
so far, this parameter is not tuned—it was set to 0.5 for all related algorithms.
To examine its impact under a real workload, we ran the TPC-C trace (tpcc in
Section B.1.1) for each of the algorithms CFDC, CFLRU, and REF, scaling the
respective window size from 0.1 to 0.99 relative to the total buffer size (1,000 pages
in this experiment). The performance metrics are shown in Figure 3.7.

The performance of CFDC generally benefits from an increasing window size.
However, its runtime goes slightly up after a certain window size is reached (0.9
in this case). This is because, with the size of the working region approaching
zero, the loss of the hit ratio is too significant to be covered by the benefit of
reducing physical writes and performing clustered writes in the priority region.
Similar behavior is also observed at a window size of 0.8 for CFLRU. Based on
our experience, CFDC often has the best performance when λ is in the range of
[0.5, 0.8].

For CFDC and CFLRU, a larger window size leads to smaller number of writes.
In contrast, the number of physical writes generated by REF grows quickly with
an increase of the window size (Figure 3.7b), resulting in a sharp runtime increase
beginning at window size 0.8. This is due to two reasons: First, in REF’s victim
window, the sizes of the blocks are the only concern when selecting a victim block,
whereas temporal factors such as recency and frequency of references are ignored.
Second, REF does not distinguish between clean and dirty pages such that an
increase of the window size does not lead to more buffer hits of dirty pages.

53

Chapter 3. Flash-aware buffer management

 820000

 840000

 860000

 880000

 900000

 920000

 940000

 960000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CFDC
CFLRU

REF

(a) Execution time

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 340000

 360000

 380000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CFDC
CFLRU

REF

(b) Page-flush count

 140000
 160000
 180000
 200000
 220000
 240000
 260000
 280000
 300000
 320000
 340000
 360000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CFDC
CFLRU

REF

(c) CSC

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 0.90

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CFDC
CFLRU

REF

(d) Hit ratio

Figure 3.7: Impact of window size under TPC-C workload

3.3.4 Real-life workload

We also compared the related algorithms using the real-life OLTP workload: the
bank trace (see Section B.2). For each of the algorithms CFDC, CFLRU, and
REF, we ran all experiments three times with the window size parameter set to
0.25, 0.50, and 0.75 respectively, denoted as REF-25, REF-50, REF-75, etc., and
chose the setting that had the best performance.

With the results shown in Figure 3.8, it is clear that CFDC is superior to
the other algorithms under the real-life workload that is highly skewed. The
performance gain of CFDC over CFLRU is, e. g., 53% for the 16,000-page setting
and 33% for the 8,000-page setting. Under the skewed workload, most of the hot
pages are retained in a large-enough buffer. Therefore, the differences in hit ratios
become insignificant as the buffer size is beyond 2000 pages.

54

3.4. Summary

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 500 1000 2000 4000 8000 16000

CFDC-75
CFLRU-75
LRUWSR

REF-25
LRU

(a) Execution time

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 500 1000 2000 4000 8000 16000

CFDC-75
CFLRU-75
LRUWSR

REF-25
LRU

(b) Page-flush count

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 500 1000 2000 4000 8000 16000

CFDC-75
CFLRU-75
LRUWSR

REF-25
LRU

(c) CSC

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 500 1000 2000 4000 8000 16000

CFDC-75
CFLRU-75
LRUWSR

REF-25
LRU

(d) Hit ratio

Figure 3.8: Performance under real-life workload

3.4 Summary

This chapter focuses on flash-aware buffer management. In Section 3.1, we studied
the representative flash-aware buffer algorithms and identified their potential prob-
lems. Our proposal, the CFDC algorithm, is presented in Section 3.2. Section 3.3
is an extensive empirical study comparing all relevant algorithms in an identical
environment, under a variety of parameters and workloads.

The experimental results clearly show that CFDC’s performance is superior
among the compared algorithms. The basic idea of CFDC is delaying the eviction
of dirty pages to reduce the number of flash writes and exploiting the spatial
locality to improve page flushing efficiency. By following a flexible generalized
two-region scheme, CFDC delegates the task of maintaining a high ratio of buffer
hits to the base algorithm in one of its buffer-pool regions.

Some of the flash-aware algorithms, including CFDC, have a tuning parameter
to control the trade-off between hit ratio and flash-specific optimization. In this

55

Chapter 3. Flash-aware buffer management

chapter, we assumed that the characteristics of both the storage device and the
workload do not change frequently, so that we can use a rule-of-thumb value for
these parameters. Chapter 5 drops this assumption and proposes an algorithm
that can adapt itself to such changes.

56

Chapter 4

Energy efficiency and
performance

Previous research on flash-aware buffer management focused on flash-specific
performance optimizations. However, an important question remains open: how
sensitive is the performance of flash-aware algorithms to the storage device? This
question is important due to two reasons. First, the performance characteristics
of flash-based devices varies greatly from device to device. Second, due to the
lower $/GB cost, magnetic disks will certainly remain dominant in the near future,
therefore enterprises have to deal with the situations where both kinds of devices
co-exist.

Another interesting aspect ignored in all previous works is the energy efficiency
of related algorithms, which is often critical in environments where flash devices
are deployed in the first place, e. g., mobile data management. Energy efficiency is
also becoming increasingly important in server environments, due to rapidly rising
energy costs and environmental concerns.

Based on these observations, this chapter extends the performance study of
Chapter 3 and, at the same time, examines the energy consumption issue. The
major contributions of this chapter are:

• An extensive performance study of related algorithms using a variety of flash
SSDs and magnetic disks. This device sensitivity study is missing in all previous
works, where evaluation was often performed on a single simulated flash device.
• An examination of the energy consumption of the system running these al-
gorithms using an energy measurement device. The examination reveals a
strong correlation between system performance and energy consumption and
demonstrated the great energy-saving potential of flash SSDs.

The remainder of this chapter is organized as follows. Section 4.1 introduces the
hardware system used for both performance and energy measurements. Section 4.2
reports our experimental results. Section 4.3 summarizes our findings.

57

Chapter 4. Energy efficiency and performance

Table 4.1: Disk drives used in the test
name device type idle (W) peak (W) interface
HDD1 WD WD800AAJS 7200 RPM 5.3 6.3 SATA
HDD2 WD WD1500HLFS 10000 RPM 4.5 5.7 SATA
HDD3 Fujitsu MBA3147RC 15000 RPM 8.4 10.0 SAS
SSD1 SuperTalent FSD32GC35M 1.3 2.1 SATA
SSD2 MTRON MSP-SATA-7525-032 1.2 2.0 SATA
SSD3 Intel SSDSA2MH160G1GN 0.1 1.2 SATA

4.1 A tailor-made system

The experiments in this chapter uses a tailor-made hardware system consisting of
a system under test (SUT) and a set of measurement and monitoring components.
The SUT has an Intel Core2 Duo processor and 2 GB of main memory. Both the
OS (Ubuntu Linux with kernel version 2.6.31) and the DB engine are installed on
an IDE magnetic disk (system disk). The test data (as a DB file) resides on a
separate magnetic/flash SSD (data disk). The data disks, listed in Table 4.1, are
connected to the system one at a time.

A power measurement device [Schall 09], consisting of ten voltage and current
meters, connects the power supply and the system’s hardware components, as
depicted in Figure 4.1. The device does not tamper the voltages at the power lines,
because the hardware components are sensitive to voltage variations. Instead,
it measures the current using current transformers with inductive measurement,
and the voltage using voltage dividers on a shunt circuit. Both measurements are
forwarded over a data bus to the A/D-Converter, which allows the signals being
processed by a monitoring PC in real-time.

Using this setup, we are able to precisely measure the energy consumption
of the SUT’s major parts of interest: the data disk (denoted as SATA, although
HDD3 is measured over the SAS power lines), the system disk (denoted as IDE),
and the remaining components on the mainboard (denoted as ATX) including CPU
and RAM. For a time period T , the average power P̄ (T) is given by Formula 4.1:

power supply

system under test

measurement device A/D converter

monitoring PC

Figure 4.1: Power measurement setup

58

4.2. Experiments

Table 4.2: Power profile of SUT
power line components idle (W) peak (W)

SATA/SAS data disk (see Table 4.1)
IDE system disk (Maxtor 6Y080P0) 6.3 12.2
ATX CPU, RAM, and mainboard chips 19.6 33.5

P̄ (T) =
1

T

∫ T

0

(v(t) · i(t))dt (4.1)

where v(t) and i(t) are the voltage and current as functions of time, and∫ T

0
(v(t) · i(t))dt is the work, which is equal to the energy consumption E(T).
Table 4.2 lists the power profile of the major components of SUT. The idle

column refers to the power values when the components are idle (0% utilization)
but ready for serving requests, i. e., not in a service-unavailable state such as
stand-by or hibernate, while the peak column refers to the power values when the
components are under 100% utilization. An interesting observation can be made
from this profile: ignoring the data disk, the idle power of the system is 57% of
the peak power (25.9 W / 45.7 W). In other words, a lion’s share of the power
is consumed only to keep the system in a ready-to-service state. Note this “idle
share” is even larger in practice, because the peak power can only be reached in
some extreme conditions, where all the hardware components are fully-stressed at
the same time. With the data disk, this observation still holds, because similar
ratios exist between the idle and peak power of HDDs, while SSDs had too low
power values to have a large impact on the idle/peak power ratio of the overall
system. Furthermore, this observation is not specific to the test machine discussed
here, because most state-of-the-art servers and desktop computers have similar
idle/peak power ratios.

4.2 Experiments

Our experiments are driven by two OLTP traces: the TPC-C trace (tpcc in
Section B.1.1) and the bank trace (see Section B.2).

4.2.1 TPC-C workload

We ran the TPC-C trace for each of the five algorithms and repeated this on each
of the devices listed in Table 4.1. The parameter “window size” was not tuned—it
was set to 0.5 for all related algorithms. The recorded execution times and energy
consumptions are shown in Figure 4.2.

59

Chapter 4. Energy efficiency and performance

 0

 500000

 1000000

 1500000

 2000000

 2500000

 3000000

 3500000

 4000000

HDD1 HDD2 HDD3 SSD1 SSD2 SSD3

CFDC
CFLRU

LRU
LRUWSR

REF

(a) Execution times (ms)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

HDD1 HDD2 HDD3 SSD1 SSD2 SSD3

CFDC
CFLRU

LRU
LRUWSR

REF

(b) Energy consumption (J)

Figure 4.2: TPC-C trace performance and energy consumption

Since our workload is I/O-intensive, the device performance has a strong
impact on the overall system performance, e. g., SSD3 reduced the average runtime
(average over the algorithms) by a factor of 21 compared with HDD1 and by a
factor of 19 compared with SSD1, while the corresponding energy-saving factors
are 25 and 19, respectively. The CFDC algorithm had the best performance on
all of the devices, with a maximum performance gain of 22% over CFLRU on
SSD1. Interestingly, even on the magnetic disks, CFDC and CFLRU had a better
performance than LRU, which, in turn, outperformed LRUWSR even on the flash
SSDs. In most configurations, REF had the longest execution times due to its
lower hit ratio and higher number of page flushes, with the exception on SSD2,
where its semi-clustered writes are best accommodated by that specific device.

Similar to magnetic disks, it is common for flash SSDs to be equipped with a
device cache. Very often, it can not be deactivated or re-sized by the user or the OS,
and its size is often undocumented. Obviously, the DB buffer in our experiment
should be larger than the device caches. Otherwise, the effect of the DB buffer
would be hidden by them. On the other hand, if the DB buffer is too large, the
difference between our algorithms would be hidden as well, since a large-enough
buffer would hardly provoke any I/O. Based on these considerations, we used a
buffer size of 8000 pages (64 MB) for this experiment, because the largest known
device cache size is 16 MB of HDD3. The difference between the execution times
of the algorithms becomes smaller on SSD3 (see Figure 4.2) due to two reasons: 1.
The I/O cost on SSD3 is much smaller than on other devices, yielding the buffer
layer optimization less significant; 2. This device has supposedly the largest device
cache, since it is the newest product among the devices tested.

Comparing Figure 4.2a with Figure 4.2b, we can see a strong correlation between
execution times and energy consumption. In particular, the best-performing
algorithm was also the most energy-saving algorithm. For example, CFDC reduced

60

4.2. Experiments

 0

 5

 10

 15

 20

 25

 30

 35

 40

IDLE CFDC CFLRU LRU LRUWSR REF

ATX IDE SATA

(a) HDD1

 0

 5

 10

 15

 20

 25

 30

 35

 40

IDLE CFDC CFLRU LRU LRUWSR REF

ATX IDE SATA

(b) SSD1

Figure 4.3: Breakdown of average power (W)

energy consumption by 32% on HDD1 and by 71% on SSD3 compared with REF.
This effect is further explained by Figure 4.3, which contains a breakdown of the

average working power of major hardware components of interest, compared with
their idle power values1. Ideally, the power consumption of a component (and the
system) should be determined by its utilization. But for both configurations, there
is no significant power variation when the system state changes from idle to working.
Furthermore, no clear difference can be observed between the various algorithms,
although they have different complexities and, in fact, also generate different I/O
patterns. This is due to the fact that, independent of the workload, the processor
and the other units of the mainboard consume most of the power (the ATX part
in the figure) and these components are not energy proportional, i. e., their power
is not proportional to the system utilization caused by the workload. However,
due to the missing energy-proportional behavior of most system components, the
elapsed time T of processing the workload almost completely determines the energy
consumption E(T) (note, E(T) = P̄ (T) · T).

4.2.2 Real-life workload

Similar observations were made in our experiment using the bank trace. We ran
this trace for each of the devices listed in Table 4.1 and, for each of them, we scaled
the buffer size from 500 to 16000 pages. In addition, for each of the algorithms
CFDC, CFLRU, and REF, we always ran the trace three times with the window
size parameter set to 0.25, 0.50, and 0.75, respectively. Besides a strong correlation

1The figures shown for the configurations HDD1 and SSD1 are indicative. Similar observations
can be made for the other data disks (IDE and ATX remain constant) and they are, therefore,
omitted for brevity.

61

Chapter 4. Energy efficiency and performance

between performance and energy consumption, we also found that the optimal
window size depends on both the buffer size and the device characteristics, for all
the three related algorithms.

As an indicative example, we discuss the performance and power figures mea-
sured on SSD2 in more detail. For brevity, we choose one best-performing window-
size configuration for each of the related algorithms and compare them with LRU
and LRUWSR in Figure 4.4. For CFDC and CFLRU, it was 0.75 and 0.25 for
REF.

The linear complexity of REF resulted in a higher CPU load compared with
other algorithms having constant complexity. This is captured by Figure 4.4c,
where the working power of the system is illustrated. The power value of REF
goes up with an increasing buffer size, while the power values caused by the
other algorithms slightly decrease, because the larger the buffer sizes the more
physical I/Os were saved. Note, handling a logical I/O from the buffer is more
energy-efficient than doing a physical I/O, because fewer CPU cycles are required
and device operations are not involved.

The algorithms’ complexity did have an impact on the power of the system, but
the time factor had a stronger impact on the overall system energy consumption.
For example, enlarging the buffer from 500 to 16000 pages augmented the power
value of REF by 2.1% (from 28.04 W to 28.63 W), while the corresponding execution
time (Figure 4.4a) decreased by 46.3%. In fact, the effect of the increased CPU
load was hidden by the “idle share” of the working power (27.08 W, not shown
in the figure). Therefore, the energy consumption curves in Figure 4.4b largely
mirror the performance curves of Figure 4.4a. In particular, at a buffer size of
16000 pages, the relative performance gain of CFDC over CFLRU is 54%, while
the corresponding energy saving is 55%.

4.3 Summary

Our experiments reveal a great performance potential of flash SSDs. The use of
flash-aware buffer algorithms can further significantly improve system performance
on these devices. The CFDC algorithm clearly outperforms the other algorithms
in most settings. According to our device sensitivity study, its flash-specific
optimizations do not exclude its application in systems based on magnetic disks.

The performance gain can be translated into a significant energy-saving po-
tential due to the strong correlation between performance and system energy
consumption. Furthermore, faster I/O reduces the overall system runtime and
leaves more opportunities for the system to go into deeper energy-saving states,
e. g., stand-by or even off-line.

As an important future task of hardware designers and device manufacturers,
all system components other than flash SSDs should be developed towards stronger

62

4.3. Summary

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 500 1000 2000 4000 8000 16000

CFDC-75
CFLRU-75

LRU
LRUWSR

REF-25

(a) Execution times (ms)

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 500 1000 2000 4000 8000 16000

CFDC-75
CFLRU-75

LRU
LRUWSR

REF-25

(b) Energy (J)

 27.0

 27.2

 27.4

 27.6

 27.8

 28.0

 28.2

 28.4

 28.6

 28.8

 500 1000 2000 4000 8000 16000

CFDC-75
CFLRU-75

LRU
LRUWSR

REF-25

(c) Power (W)

Figure 4.4: Performance and energy consumption running the bank trace on
SSD2

63

Chapter 4. Energy efficiency and performance

energy-proportional behavior. Then, the speed or runtime reduction gained by
flash use for I/O-intensive applications could be directly translated into further
substantial energy saving. As a consequence, energy efficiency due to flash SSD
use would be greatly enhanced as compared to magnetic disks.

64

Chapter 5

Cost-aware buffer management

Reading a page from a flash SSD is extremely fast, whereas a page update can be
one or two orders of magnitude slower. For this reason, existing flash-aware buffer
algorithms, usually trade physical reads for physical writes to some extent in order
to improve the overall I/O performance, as we have already seen in Chapter 3.
However, the optimal performance of those algorithms may highly depend on the
extent of R/W asymmetry of the storage device and the workload, or on the tuning
of a parameter, whose optimal value, again, depends on the storage device and
workload.

The major contribution of this chapter is the presentation and evaluation of a
cost-aware self-adaptive (CASA) buffer management algorithm (originally proposed
by us in [Ou 10a]), which makes the trade-off between physical reads and physical
writes in a controlled fashion, depending on the extent of R/W asymmetry of the
storage device, and automatically adapts itself to varying workloads. CASA is
designed for two-tier storage systems based on homogeneous storage devices with
possibly asymmetric R/W costs, i. e., 3TA and hybrid storage (see Section 2.4.2)
are not the focus of this chapter.

The remainder of this chapter is organized as follows. Section 5.1 introduces
two important concepts, cost ratio and cost awareness, following the discussion of
the problems of existing flash-aware algorithms. Section 5.2 presents the CASA
algorithm. The related performance study is reported in Section 5.3.

5.1 Introduction

Ideally, the buffer layer should be aware of the characteristics of the underlying stor-
age devices and adapt itself to changes of such characteristics automatically. This
is not the case both for classical buffer algorithms and for flash-aware algorithms.
Classical buffer algorithms, e. g., LRU, assume that a physical read has about
the same cost as a physical write and, therefore, do not apply differing decision
policies when read-only or modified pages are replaced in the buffer [Effelsberg 84].

65

Chapter 5. Cost-aware buffer management

This assumption is reasonable for conventional magnetic disks, but not valid for
flash-based devices. On the other hand, existing flash-aware algorithms are not
applicable for magnetic disks, because their saving in physical writes usually comes
at the expense of a higher number of physical reads or lower hit ratios. In other
words, classical buffer algorithms become suboptimal on flash-based devices and
flash-aware algorithms can not be used for conventional disk-based systems. This
observation reveals an important problem, because magnetic disks are expected to
co-exist with flash SSDs for a long period of time due to the lower $/GB cost of
magnetic disks, their dominant market position is not likely to be taken over by
flash SSDs in the near future.

5.1.1 The parameter tuning problem

Most of the existing flash-aware buffer algorithms assume that a physical write is
much more expensive than a physical read. However, in fact, the extent of R/W
asymmetry of flash-based devices varies from device to device, even among the
devices from the same manufacturer. For example, an Intel X25-V SSD achieves
25 K IOPS for reads and 2.5 K IOPS for writes [Intel 10b], while an Intel X25-M
SSD reaches 35 K IOPS for reads and 8.6 K IOPS for writes [Intel 10a].

Another common problem of existing flash-aware buffer algorithms is that
they ignore the possibly changing update intensity (i. e., the percentage of write
requests) in the workload while making the replacement decision. Some of them,
e. g., CFLRU, leave a parameter for the user to make such an important but
difficult performance tuning.

Although other flash-aware algorithms, e. g., LRUWSR and CCFLRU, do not
require parameter tuning, their clean-first strategy is carried out only based on the
coarse assumption of R/W cost asymmetry and hot-cold detection using the Second
Chance algorithm, which, in turn, only approximates LRU. As a consequence, it
is difficult for them to reason, when should a cold-dirty page be first considered
for eviction over a hot-clean page, and vice versa.

5.1.2 Cost ratio

We use the term R/W cost ratio, or cost ratio for short, defined as the ratio between
the long-term average time used by physical reads and the same used by physical
writes, to express the R/W asymmetry of storage devices, i. e., for a storage device,
it tells how much more expensive is a write compared with a read, and vice versa.
For example, the cost ratios of the above mentioned devices are 1 : 10 and 1 : 4,
respectively, based on their data sheets. Cost ratios deliver important information
for making trade-offs between physical reads and physical writes, but they are
ignored by existing flash-aware algorithms, i. e., these algorithms are not aware of
the cost.

66

5.2. The CASA algorithm

clean list Lc dirty list Ld

|Ld||Lc|

LRU MRU MRU LRU

0 ≤ ≤ b

victim

b = |Lc| + |Ld|

if |Lc| > if |Lc| ≤

Figure 5.1: CASA dynamically adjusts the size of the clean list and the dirty list

We assume that the cost ratio is known, e. g., it may be derived from IOPS
figures or average response times. In Section 5.2.3, we demonstrate an efficient
technique that can detect the cost ratios online.

5.2 The CASA algorithm

5.2.1 Overview

CASA manages the buffer pool B of b pages using two dynamic lists: the clean list
Lc for keeping clean pages, that are not modified since being read from secondary
storage, and the dirty list Ld accommodating dirty pages that are modified at least
once in the buffer. Pages in either list are ordered by reference recency. Both lists
are initially empty, while in the stable state (no empty pages1 available) we have
the following invariants: |Lc|+ |Ld| = b, 0 ≤ |Lc| ≤ b, 0 ≤ |Ld| ≤ b, as illustrated
in Figure 5.1.

The algorithm continuously adjusts parameter τ , which is the dynamic target
size of Lc, 0 ≤ τ ≤ b. Therefore, the dynamic target size of Ld is b− τ . The logic
of adjusting τ is simple: we invest in the list that is more cost-effective for the
current workload. If there is a page hit in Lc, we heuristically model the current
relative cost effectiveness of Lc with |Ld| ÷ |Lc|. Similarly, in case of a page hit in
Ld, we model its current relative cost effectiveness with |Lc| ÷ |Ld|. The relative
cost effectiveness is considered when determining the magnitude of adjustment
for τ (see Section 5.2.2). The simple heuristics used here has low overhead and is
effective, as shown by our experiments in Section 5.3.

1Empty page refers to the buffer area for a page that has not been used since the start of the
buffer manager. Following the convention in the literature, we avoid using the term buffer frame
(data structure holding a page).

67

Chapter 5. Cost-aware buffer management

Algorithm 3: CASA
init. : buffer pool B with capacity b; list E of empty pages, |Le| = b; lists Lc

and Ld, |Lc| = 0, |Ld| = 0; τ ∈ R, τ ← 0
data : request for page p in the form (op, pageId), where op ∈ {R,W};

normalized costs C̃R and C̃W such that C̃R + C̃W = 1 and
C̃R ÷ C̃W = cost ratio

1 if p ∈ B then
2 if p ∈ Lc ∧ op = R then
3 τ ← min(τ + C̃R × (|Ld| ÷ |Lc|), b) ;
4 move p to MRU position of Lc ;
5 else if p ∈ Lc ∧ op = W then
6 move p to MRU position of Ld ;
7 else if p ∈ Ld ∧ op = W then
8 τ ← max(τ − C̃W × (|Lc| ÷ |Ld|), 0) ;
9 move p to MRU position of Ld ;

10 else
// p ∈ Ld ∧ op = R

11 move p to MRU position of Ld ;

12 else
13 victim page v ← null ;
14 if |Le| > 0 then
15 v ← remove tail of Le ;
16 else if |Lc| > τ then
17 v ← LRU page of Lc ;
18 else
19 v ← LRU page of Ld ;
20 physically write v;

21 physically read p into v ;
22 p← v ;
23 if op = R then
24 move p to MRU position of Lc ;
25 else
26 move p to MRU position of Ld ;

27 return p ;

5.2.2 The algorithm

Besides the page request, the algorithm (see Algorithm 3) requires as input also
the normalized read and write costs, C̃R and C̃W , of the storage device, such that
C̃R + C̃W = 1 and C̃R÷ C̃W = cost ratio. They can be derived from the cost ratio,

68

5.2. The CASA algorithm

i. e., important to the algorithm is the extent of the R/W asymmetry, not the
exact costs of physical reads and writes.

The magnitude of the adjustment in τ is determined both by the cost ratio
and by the relative cost effectiveness. The adjustment is performed in two cases:

Case 1 A logical R-request is served in Lc (line 3 of Algorithm 3);
Case 2 A logical W -request is served in Ld (line 8 of Algorithm 3)

In Case 1, we increase τ by C̃R × (|Ld| ÷ |Lc|). Note |Lc| 6= 0, since it is a
buffer hit. The increment combines the “saved cost” of this buffer hit C̃R and
the relative cost effectiveness |Ld| ÷ |Lc|. Similarly, in Case 2, we decrease τ by
C̃W × (|Lc| ÷ |Ld|).

In case of a buffer fault (line 12–26), if there is no empty page available, τ
guides the decision from which list to select the victim page (line 16 and 19). The
actual sizes of both lists are also influenced by the clean/dirty state of requested
pages. The clean/dirty state of a requested page p is decided by its previous state
in the buffer, i. e., in which list it resides, and the current request type (R or W).
If the state of the requested page p is clean (after serving the request), p will be
moved to Lc (line 4 and 24), otherwise to Ld (line 6, 9, 11, and 26). Therefore,
the sizes of Lc and Ld are dynamically determined by τ and the update intensity.
Under a workload with mixed R-requests and W -requests, a starvation of one list
will never happen, even when τ = 0 or τ = b, whereas under R-only (or W -only)
workloads a starvation of Ld (or Lc) is desired and the starved list recovers as soon
as the workload becomes mixed again.

5.2.3 Dynamic cost-ratio detection

Being fundamentally different from flash-aware algorithms that require parameter
tuning or discriminate clean pages based on fixed rules, the CASA algorithm
automatically optimizes itself at runtime, given the knowledge concerning cost
ratios. So far, we have assumed that this knowledge is available to the algorithm.
It can be provided, e. g., by the device manufacturer or by the administrator. It
would be even better if, in the future, devices provide an interface for querying
the cost ratio online.

In fact, the elapsed time serving each physical I/O request can be measured
online. Therefore, it can be used to derive the cost-ratio information. However,
these measurements are subject to severe fluctuations. For example, the latency
of a physical read on magnetic disks depends on the position of the disk arm.
On flash SSDs, a physical write may trigger a much more expensive flash erase
operation or even a garbage collection process involving multiple flash erase
operations [Bouganim 09]. Therefore, we use an n-point moving average of the
measured values to smooth out short-term fluctuations, because only the long-term
average cost is of interest. Hence, the average cost of the last n physical reads

69

Chapter 5. Cost-aware buffer management

Algorithm 4: Clustered write with frequency-based filtering
data : physical-write request for page p, cluster table Tc

1 physically write p ;
2 cluster c← lookup p’s cluster in Tc ;
3 if c exists then
4 foreach q ∈ c ∧ q 6= p do
5 if freq(q) ≤ freq(p) then
6 physically write q ;
7 remove q from c ;

8 if |c| = 0 then
9 remove c from Tc ;

(or writes) is used as the basis for the normalized cost C̃R (or C̃W) required by
Algorithm 3. Note, no change to the algorithm is needed to use the dynamically
detected costs.

Maintaining the moving average requires the last n measurements to be remem-
bered. Assuming that two bytes2 are used to store a measured value to remember,
e. g., 32,768 values, we need only eight pages (page size = 8 KB) and, in total, 16
pages for both reads and writes. To optimize the moving-average procedure, the
measured values can be stored in an array (managed as a FIFO queue). Then, the
time complexity of maintaining the moving average is independent of n: for each
new measurement, only an array-element update and a few arithmetic operations
are involved.

5.2.4 Integrating clustered writes

So far, our discussions in this chapter have not yet addressed the FRW problem,
which is important for many types of flash-based devices. As shown in Chapter 3,
exploiting efficient write patterns can significantly improve the performance of the
buffer manager. Therefore, we develop an approach that integrates the clustered-
write technique with the CASA algorithm.

To enable clustered writes in CASA, a cluster table Tc is maintained, which
keeps track of the dirty pages and, for a given page p, returns the set of dirty
pages that are in the same cluster of p. To integrate the write clustering technique
with CASA, we only have to replace Line 20 of Algorithm 3 by Algorithm 4. For
distinction, we call the resulting algorithm SAWC (Self-Adaptive Write-Clustered).

2Two bytes can store timings ranging from 0 to 65,535 microseconds, which is sufficient to
cover all the possible physical I/O cost values. Furthermore, burst values out of this range can
be safely ignored.

70

5.2. The CASA algorithm

For a physical-write request with regard to page p, Algorithm 4 not only writes
page p, but also identifies and writes some pages in the same cluster of p. This
improves the spatial locality of the flash write requests, but, on the other hand,
it is obvious that, for the same workload, SAWC requires a larger number of
physical writes than CASA does. For this reason, we filter the candidate pages
based on their update frequency and skip the dirty pages that are more frequently
updated than p. Function freq() gives, for page p, its update frequency, which
is the number of logical write requests for p while p is in the buffer. This can be
simply implemented with a counter associated with each buffer page.

The intuition behind the frequency-based filtering is, if page q is more frequently
updated than p, flushing q together with p will have no performance gain, because
q will likely be updated again soon. In contrast, pages that are less frequently
updated will not likely be updated again, flushing them together with p improves
the performance due to higher spatial locality.

Unlike the priority queue Q of CFDC, table Tc does not maintain an ordering
of the clusters. In our current implementation, it has an ignorable space overhead
and its maintenance requires only a constant number of operations.

5.2.5 Implementation issues

Algorithm 3 requires a request in the form of (op, pageId), i. e., the request type
must be present. This may not be the case in some systems, where a page is first
requested without explicitly claiming the request type and it is read or updated
some time later. However, most DBMSs use the classical pin-use-unpin (or fix-use-
unfix) protocol [Gray 93] for pages requests. It is easy to use an update flag, which
is cleared upon the pin call and set by the actual page update operation. Upon
the unpin call, the buffer manager knows the request type by checking this flag.

In practice, page flushes are normally not coupled with the victim replacement
process—most of them are performed by background threads. For better clarity,
the presented algorithms do not include the asynchronous page-flushing logic,
although they are compatible with this technique. For example, line 2 to line 9 of
Algorithm 4 can be executed in an asynchronous fashion. Similarly, in the case of
CFDC, the background routines can directly use CFDC’s dirty queue, where the
dirty pages are already collected and clustered.

As a final remark: the time complexity of the algorithms CASA and SAWC
is O(1) and both of them require minimal auxiliary data structures. As our
experiments will show, they are also very efficient.

71

Chapter 5. Cost-aware buffer management

Table 5.1: Statistics of the OLTP trace and DSS trace
trace attribute OLTP DSS
number of page requests 1,420,613 3,250,972
number of distinct pages 59,782 104,308
min page number 0 220,000
max page number 219,040 325,639
number of reads 1,156,795 3,250,972
number of updates 263,818 0
update percentage 18.57% 0
locality (number of the hottest pages vs.
number of requests for them)

11,957 vs.
1,224,613 (20%
vs. 86%)

20,862 vs.
2,875,664 (20%
vs. 88%)

5.3 Experiments

The experiments in this section are organized in two parts. The first part, Sec-
tion 5.3.1 to Section 5.3.3, focuses on the evaluation of CASA, where it is compared
to four algorithms: three representative flash-aware algorithms: CFLRU, CCFLRU,
and LRUWSR, and one representative conventional algorithm LRU. The second
part, Section 5.3.4, focuses on the comparison among CASA, SAWC, and CFDC.

5.3.1 Changing workload

To examine the behavior of the algorithms under changing workloads, we used
a tailor-made trace, called CONCAT. It was built from an OLTP trace and a
DSS trace. The OLTP trace recorded a TPC-C workload (the first half of tpcc in
Section B.1.1), whereas the DSS trace captured a read-only TPC-H query workload
(the first half of tpch in Section B.1.2). The pages referenced by both traces did
not overlap. Table 5.1 lists specific statistics of these traces recorded. To simulate
changing workloads, we concatenated the first halves of the OLTP and the DSS
traces and attached a copy of them at the end, i. e., as final result, the trace
CONCAT had the four phases OLTP–DSS–OLTP–DSS and an overall update
percentage of 5.6%.

We ran this trace for each algorithm and recorded the number of physical reads
and physical writes necessary to serve the logical request stream. Hit ratios can
be derived from the number of physical reads and the total number of requests,
but of primary concern is the overall I/O cost which, in our simulation, can be
presented by the virtual execution time tv:

tv = nR × C̃R + nW × C̃W (5.1)

72

5.3. Experiments

 0.90

 1.00

 1.10

 1.20

 1.30

 1.40

 1.50

 1.60

 1.70

 1.80

 1.90

 1000 2000 4000 8000 16000

CFLRU-0.25
CCFLRU

LRUWSR
CASA

(a) tv for cost ratio 1:1

 0.90

 1.00

 1.10

 1.20

 1.30

 1.40

 1.50

 1.60

 1.70

 1.80

 1.90

 1000 2000 4000 8000 16000

CFLRU-0.75
CCFLRU

LRUWSR
CASA

(b) tv for cost ratio 1:64

Figure 5.2: Virtual execution times relative to LRU running the CONCAT trace,
for R/W cost ratios 1:1 and 1:64. Buffer size scaled from 1,000 to 16,000 pages.

where nR and nW are the number of physical reads and physical writes, respectively,
and C̃R ÷ C̃W = cost ratio.

Figure 5.2 shows the virtual execution time tv of CASA and the flash-aware
algorithms relative to LRU, for cost ratio 1:1 and 1:64. For CFLRU, we repeated
the experiment for window sizes w = 0.25, w = 0.50, and w = 0.75, relative to
the buffer size, and denoted as CFLRU-0.25, CFLRU-0.50, and CFLRU-0.75. For
improved clarity of the visual presentation, we chose to plot its curve only for the
best-performing w-setting.

The cost ratio 1:1 (Figure 5.2a) simulates the case of magnetic disks. Here,
LRU exhibited the best performance, because it is immune to variations of update
intensities in the workload. While the flash-aware algorithms are clearly outper-
formed by LRU, tv of CASA closely approaches that of LRU. Although read and
write costs are symmetric, the flash-aware algorithms still discriminate clean pages
and try to keep dirty pages as long as possible, resulting in an unjustified high
nR and consequently a higher tv. For example, with 16,000 buffer pages, nR of
CCFLRU is higher than that of LRU by factor three (4, 444, 570 vs. 1, 433, 996),
while its nW savings is only about 12% (111, 891 vs. 128, 456). As a result, its
tv is two times higher than that of LRU (out of the plot area). For CFLRU, the
setting w = 0.25 had the best performance, because, with the other two settings,
the higher numbers of physical reads were not paid off by the savings in physical
writes.

With the cost ratio 1:64 (Figure 5.2b), the window size w = 0.75 of CFLRU
achieved a better performance than its other two settings, because it more greedily
trades reads for writes and this behavior paid off here, because physical writes
are now much more expensive than physical reads. Having a highly read-intensive

73

Chapter 5. Cost-aware buffer management

(a) The complete trace (b) The first 10,000 requests

Figure 5.3: The size of the clean list changes with the virtual time (request
number), reflecting the workload characteristics. The buffer size was 1,000 pages
and the R/W cost ratio was 1:64.

workload, the achievable savings in physical writes are rather small. Therefore,
the performance advantages of CASA and CFLRU over LRU are not significant
and LRUWSR was just comparable to LRU. Nevertheless, CASA outperforms
CFLRU, even when the latter used its best setting. Although not significant, its
performance advantage is clear without ambiguity. Note, the performance figures
are obtained from (discrete-event) simulation, therefore, no measurement error
and runtime overhead were introduced.

In Figure 5.3a, we plot the size of the clean list Lc of CASA versus the virtual
time (request number). The curve clearly reflects the four phases of the workload:
it fluctuates around 200 in the OLTP phases and stays at 1, 000 in the DSS
(read-only) phases. The violent oscillation in the OLTP phases is only a visual
effect. For example, the slowly climbing curve in Figure 5.3b, reflecting the stage
when the clean list gains pages from the empty list during the first 10,000 requests,
is squeezed into nearly a vertical line in Figure 5.3a.

5.3.2 Cost awareness

We now study CASA’s behavior with various cost ratios, whereas the experiments
in Section 5.3.1 focused on the changes in the workload.

For CASA, we ran the real-life trace (see Section B.2) with cost ratios scaling
from 1:1 to 1:128. For the remaining algorithms, there is no need to repeat the test
for cost ratios 1:4 to 1:128, because only CASA is aware of different cost ratios and
can adjust its behavior accordingly. As illustrated by the nR and nW figures listed
in Table 5.2, CASA used increasingly more physical reads and, in turn, saved more

74

5.3. Experiments

Table 5.2: Number of physical reads and physical writes running the bank trace
using 1,000 and 10,000 buffer pages

1,000 pages 10,000 pages
nR nW nR nW

CCFLRU 427,012 71,103 237,518 35,642
CFLRU-0.25 393,914 85,818 175,448 43,096
CFLRU-0.50 389,653 79,408 181,223 39,428
CFLRU-0.75 388,917 74,688 195,160 37,188
LRU 403,056 95,849 177,861 51,157
LRUWSR 409,469 90,183 186,306 46,076
CASA 1:1 389,350 77,884 175,985 44,975
CASA 1:4 398,249 72,190 180,558 39,947
CASA 1:16 417,715 71,359 192,149 37,427
CASA 1:64 425,993 71,138 211,015 36,089
CASA 1:128 426,932 71,116 221,344 35,666

physical writes, while the relative cost of physical writes was increased.
We calculated the tv’s according to Formula 5.1 and show their ratios relative

to those of LRU in Figure 5.4. The workload has a relatively high percentage of
update requests and, as a result, the flash-aware algorithms could demonstrate
their performance advantage over LRU—nearly all of them are below the 1.0 mark
in the chart. CASA had clearly the best performance for nearly all settings. For
cost ratio 1:128 and buffer size 10,000 pages, it is about 30% faster than LRU.
In several cases, it was slightly outperformed by CFLRU with its best w-settings
(which were manually optimized). But in real application scenarios, the best
w-setting of CFLRU is hard to find: it depends not only on the cost ratio and the
update percentage of the workload, but also on the buffer size (This is clear, e. g.,
by comparing Figure 5.4b for cost ratios 1:1 or 1:4.).

5.3.3 Cost-ratio detection

To test the cost-ratio detection technique presented in Section 5.2.3, we ran
the same trace evaluated in Section 5.3.2 using real device accesses to a WD
WD1500HLFS HDD (magnetic disk) and an Intel SSDSA2MH160G1GN flash SSD.
The physical R/W costs were measured and updated online as described above.
We chose n = 32768 for the n-point moving average, because it is large enough to
smooth out the short-term fluctuations and its space overhead is small.

The test machine is equipped with an AMD Athlon Dual Core Processor, 3
GB of main memory, and is running Linux (kernel version 2.6.24) residing on a
magnetic disk. To avoid the influence of the down-stream caches along the cache

75

Chapter 5. Cost-aware buffer management

 0.70

 0.80

 0.90

 1.00

 1.10

 1.20

1:1 1:4 1:16 1:64 1:128

CFLRU-0.25
CFLRU-0.50
CFLRU-0.75

CCFLRU
LRUWSR

CASA

(a) 1,000 pages

 0.70

 0.80

 0.90

 1.00

 1.10

 1.20

1:1 1:4 1:16 1:64 1:128

CFLRU-0.25
CFLRU-0.50
CFLRU-0.75

CCFLRU
LRUWSR

CASA

(b) 10,000 pages

Figure 5.4: Virtual execution times relative to LRU running the bank trace for
buffer sizes of 1,000 and 10,000 pages. The R/W cost ratio was scaled from 1:1 to
1:128.

hierarchy, we deactivated the file system prefetching and the on-device write cache,
and set the DIRECT_IO flag while accessing the device under test.

Figure 5.5 plots the detected R/W costs for the HDD and SSD devices. Our
approach effectively hided the bursts in the measured values and amortized them
in the cost ratio, which is about 1:1.5 for the HDD and 1:4.5 for the SSD. As
an extra advantage, it captures the cost ratio’s long-term variations, which are

 0.00

 2.00

 4.00

 6.00

 8.00

 10.00

 12.00

 14.00

 0 100000 200000 300000 400000 500000 600000

write cost
read cost

(a) R/W costs on HDD (ms)

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

 0 100000 200000 300000 400000 500000 600000

write cost
read cost

(b) R/W costs on SSD (ms)

Figure 5.5: Dynamically detected physical R/W costs vs. the virtual time, using
an n-point moving average (n = 32768), for running the bank trace using 1,000
buffer pages

76

5.3. Experiments

 0.70

 0.80

 0.90

 1.00

 1.10

 1.20

HDD SSD

CFLRU-0.25
CFLRU-0.50
CFLRU-0.75

CCFLRU
LRUWSR

CASA

(a) 1,000 pages

 0.70

 0.80

 0.90

 1.00

 1.10

 1.20

HDD SSD

CFLRU-0.25
CFLRU-0.50
CFLRU-0.75

CCFLRU
LRUWSR

CASA

(b) 10,000 pages

Figure 5.6: Real execution times relative to LRU running the bank trace on the
HDD and the SSD, for buffer sizes of 1,000 and 10,000 pages

caused by, e. g., the change of read/update patterns (random vs. sequential) in the
workload.

We scaled the buffer size from 1,000 to 10,000 pages and measured the real
execution times. On the SSD, CASA had the best performance whereas, on
the HDD, it was comparable to CFLRU with the best w-settings, but better
than the remaining algorithms. Figure 5.6 plots the measured execution times
relative to that of LRU for buffer sizes of 1,000 and 10,000 pages. The relative real
performance shown in Figure 5.6 is roughly comparable with the relative virtual
performance shown in Figure 5.4 for cost ratios 1:1 and 1:4.

In summary, our experiments so far covering varying workload and various
cost ratios have demonstrated the problems of existing flash-aware algorithms:
their performance advantage over conventional algorithms heavily depends on
the update intensity in workloads and the R/W cost ratio of storage devices.
A remarkable example is CCFLRU: under the typical update-intensive OLTP
workload (Figure 5.4), it achieved very good performance for highly skewed cost
ratios (e. g., 1:64 and 1:128), but suffered from a drastic performance degradation for
symmetric R/W costs (1:1). Furthermore, its performance becomes unacceptable
under the workload with varying update intensities (Figure 5.2). In contrast,
CASA exhibits a consistently good performance for various configurations, both in
the simulation and in the real system.

5.3.4 Comparison with CFDC

After comparing CASA with the state-of-the-art flash-aware algorithms, an in-
teresting question remains to be explored: where does CASA (or SAWC) stand

77

Chapter 5. Cost-aware buffer management

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1000000

 500 1000 2000 4000 8000 16000

CASA
SAWC

CFDC-25
CFDC-50
CFDC-75

(a) Execution time (ms)

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 500 1000 2000 4000 8000 16000

CASA
SAWC

CFDC-25
CFDC-50
CFDC-75

(b) Page-flush count

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 500 1000 2000 4000 8000 16000

CASA
SAWC

CFDC-25
CFDC-50
CFDC-75

(c) Cluster-switch count

 0.78

 0.80

 0.82

 0.84

 0.86

 0.88

 0.90

 0.92

 0.94

 500 1000 2000 4000 8000 16000

CASA
SAWC

CFDC-25
CFDC-50
CFDC-75

(d) Hit ratio

Figure 5.7: Performance under update-intensive workload

compared with CFDC? To answer this question, we performed experiments using
a TPC-C trace (tpcc in Section B.1.1) workload and a TPC-E trace (tpce20 in
Section B.1.3). The execution times reported here are measured on a 32 GB
MTRON MSP-SATA7525 NAND flash SSD. The remaining metrics, hit ratio,
CSC, and page-flush count are independent of devices.

TPC-C workload

Figure 5.7 shows the results of running the TPC-C trace. In general, SAWC
achieved a performance comparable to CFDC (Figure 5.7a), without any tuning
effort. Compared with CASA, SAWC required a moderately higher number of
physical writes (up to 14% for the 16000-page setting in Figure 5.7b). However, as
shown in Figure 5.7c, the corresponding cluster-switch count is only 58% of that of
CASA, indicating a much stronger spatial locality of the write requests generated

78

5.4. Summary

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 500 1000 2000 4000 8000 16000

CASA
SAWC

CFDC-25
CFDC-50
CFDC-75

(a) Execution time (ms)

 0.45

 0.50

 0.55

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 500 1000 2000 4000 8000 16000

CASA
SAWC

CFDC-25
CFDC-50
CFDC-75

(b) Hit ratio

Figure 5.8: Performance under read-intensive workload

by SAWC. The clustered writes greatly improved the performance of CASA: with
a reduction of execution time by ∼ 30% for the 16000-page setting (Figure 5.7a).
In terms of hit ratio, CASA and SAWC are very close (Figure 5.7d).

TPC-E workload

In contrast to the TPC-C trace which has an update percentage of 18.7%, the
workload represented by the TPC-E trace is highly read-intensive: it has only 17 k
logical writes out of 2.6 million page requests (update percentage is less than one
percent). Therefore, the performance impact of the number of physical writes and
the cluster-switching count is ignorable and we only show the execution time and
hit ratio in Figure 5.8, because the hit ratio (Figure 5.8b) dominates the execution
time (Figure 5.8a), whereas CSC and page-flush count have ignorable impact on
the execution time. The advantage of self-adaptiveness of CASA and SAWC is
clear here: they achieve a higher hit ratio than CFDC, whose three window-size
settings are all sub-optimal for this nearly read-only workload (For a read-only
workload, the optimal window size should be zero.).

5.4 Summary

The problem of buffer management for storage devices with asymmetric I/O costs
is of great importance with emerging flash SSDs. In this chapter, we focused on a
common problem of typical flash-aware buffer algorithms: the parameter tuning
problem. As solution, we proposed to use the R/W cost ratio to capture the R/W
asymmetry of those devices and presented a cost-aware self-adaptive algorithm
called CASA.

79

Chapter 5. Cost-aware buffer management

Our experiments have shown that CASA is efficient and can adapt itself to
various cost ratios and to changing workloads, without requiring manual tuning.
Our solution is not limited to flash-based storage devices, but should be generally
applicable to block-oriented storage devices with asymmetric I/O costs.

Our experiments also included a comparison between CASA (and SAWC) and
the CFDC algorithm presented in Chapter 3, which reveals some rules for choosing
between these two algorithms in the practice. The CFDC algorithm is suitable for
environments where the workload is relatively write-intensive and its characteristics
does not change frequently. In such cases, the administrator can better optimize the
buffer performance by tuning the parameter λ. For environments with frequently
changing workloads, the self-adaptive algorithm CASA or SAWC is a better choice.

80

Chapter 6

Energy efficiency and architecture

Chapter 3 and Chapter 5 focused on buffer management algorithms, which are
a key issue of a two-tier storage system. Efficient use of flash memory requires
not only algorithmic improvements, but also a reconsideration of the architecture
of storage systems. In this chapter, we study the use of flash memory from an
architectural perspective.

For a conventional storage system following the two-tier architecture (2TA,
see Section 2.4.2), where a buffer pool at the top tier accelerates page requests to
and from the HDD-based bottom tier, the capacity of the expensive and energy-
inefficient RAM-based buffer pool often becomes the bottleneck of scaling, with
an increasing amount of data to be accommodated at the bottom tier. Despite
fast random access, flash devices, e. g., flash SSDs, are still too expensive to be the
primary storage solution.

In terms of performance and per-GB price, flash memory and flash devices
perfectly bridge the gap between DRAM and magnetic HDDs, as indicated by the
figures shown in Figure 1.2. These figures strongly suggest a three-tier architecture
(3TA, Section 2.4.2), where flash is used in the intermediate tier as a page cache
of considerable size, while inexpensive HDDs (or even low-end flash SSDs) are
employed at the bottom tier to accommodate our ever-increasing demand of storage
capacity. With such a storage hierarchy, the capacity of the RAM-based top tier
could be kept relatively small, because a larger amount of pages can be cached on
the flash media, which is still much faster than HDDs. To justify the move from a
(disk-based) 2TA to such a (flash-incorporated) 3TA, a few questions need to be
answered:

Q1 Will the cost of adding the intermediate tier be justified by performance
improvements?
Q2 Can we achieve the goal of improving performance while saving energy at
the same time?

The major contribution of this chapter is giving answers to the questions

81

Chapter 6. Energy efficiency and architecture

Q1 and Q2 by performing an extensive empirical study, where the performance
and energy consumption of 2TA and 3TA are compared under various kinds of
workload. In addition, we define the basic interfaces for the three tiers and present
a prototype design of such a storage system.

The remainder of this chapter is organized as follows. Section 6.1 discusses
related works. Section 6.2 makes some basic assumptions on the design of three-tier
storage systems. Section 6.3 presents and discusses baseline algorithms used in our
empirical study, which is reported in Section 6.4. Our findings are summarized in
Section 6.5.

6.1 Related work

Multi-level caching has been intensively studied in the past. Zhou et al. [Zhou 04]
characterized second-level buffer access patterns and proposed a set of algorithms for
managing the second-level buffer. Those algorithms are not flash-specific, therefore,
their major performance metric is the hit ratio. One of them is implemented in
our prototype system and included in our experiments.

Koltsidas and Viglas [Koltsidas 09] identified three page-flow schemes in a three-
level caching hierarchy and proposed flash-specific cost models for those schemes.
While addressing both theoretical problems and important implementation issues,
their focus is the validation of the cost models and the comparison among those
schemes. Energy efficiency and a comparison between 2TA and 3TA are not
covered in their work.

Narayanan et al. [Narayanan 09] addressed both complete replacement of disks
by SSDs as well as use of SSDs as an intermediate layer between disks and DRAM.
They compare these architectural variants with 2TA using an offline tool which,
given a block-level trace of a workload, suggests the least-cost storage configuration
that supports the workload’s requirements. They found that replacing disks by
SSDs is not a cost-effective option for any of their workloads, due to the higher
dollar-per-GB cost of flash SSDs.

Although our goal partially overlaps with that of [Narayanan 09], there are
several aspects that distinguish our work fundamentally from theirs: 1. Their
traces represent workloads of the bottom tier (block-level traces), whereas our
traces represent those of the buffer manager (buffer traces). 2. Our observations
are quite different from theirs. For example, they found that fewer than 10% of
their workloads can benefit from an intermediate tier based on flash, while in our
experiments, 3TA is superior to 2TA in most configurations. 3. Our observations
are expected to be more accurate, because traces were not executed in their
experiments, but just analyzed by the tool, whereas our traces are actually run in
the real systems.

82

6.2. Basic assumptions

6.2 Basic assumptions

As introduced in Section 2.4.2, a three-tier storage system consists of:

1. The top tier (or buffer layer) Tt managing the RAM-based buffer pool with a
capacity of |Tt| pages,

2. The middle tier (or cache layer) Tm managing the flash-based page cache with
a capacity of |Tm| pages,

3. The bottom tier (or storage layer) Tb based on HDDs with a total capacity of
|Tb| pages.

Considering the relative price and performance ratios of the three types of
storage media, e. g., those listed in Table A.1, we assume that:

|Tt| ≤ |Tm| ≤ |Tb| (6.1)

Due to these capacity constraints and performance ratios, the hottest pages
should be kept in Tt, and Tm should try to keep the hot pages that can not be kept
in Tt. As a consequence, replacement policies are required both for Tt and Tm.

Tt supports a typical buffer pool interface, e. g., that of the classical fix-use-unfix
protocol [Gray 93]. Both Tm and Tb provide the interface of reading or writing
a page, identified by its logical page number. Each tier only uses the interface
provided by the tier directly below it, i. e., there is no cross-tier dependency. In
particular, in a three-tier storage system, Tt never accesses Tb directly.

However, because Tm and Tb basically have the same interface, Tm can be
implemented as an optional tier. When Tm is not present, Tt directly accesses Tb.
In that case, 3TA degenerates to 2TA. Such a degeneration is practically used for
our experiments in Section 6.4.

For both architectures, we assume that Tt follows two basic principles: demand
paging and write back. Consequently, we have the following two invariants, which
are independent of the algorithm and implementation of Tm and valid for both
3TA and 2TA:

I1 Tt calls the read(p) function at the tier directly below it, if page p is not
present in Tt and a page request for p is to be served by Tt (page fault in Tt).
I2 Tt calls the write(p) function at the tier directly below it, if page p is to be
evicted from Tt and p is dirty (modified at least once after entering Tt).

6.3 Baseline algorithms

Tt and Tb are basically the same as in the conventional two-tier disk-based storage
system. For this reason, we only present the replacement algorithms for the

83

Chapter 6. Energy efficiency and architecture

Algorithm 5: LOC read page from Tm

data : read request for page p, list of cache slots Ls, directory H
1 cache slot c← lookup p in H ;
2 if c ∈ Tm then
3 read p from cache slot c ;
4 move c to MRU position of Ls ;
5 else
6 victim cache slot v ← LRU position of Ls ;
7 page q ← the page stored at v ;
8 if v is dirty then
9 read q from cache slot v and flush q to Tb ;

10 read p from Tb and store p at v ;
11 move v to MRU position of Ls ;
12 update H by replacing entry (q, v) with entry (p, v) ;

13 return p ;

management of Tm in the following: the Local (LOC) algorithm and the Global
(GLB) algorithm.

In both algorithms, a list of cache slots Ls with |Ls| = |Tm| is maintained in an
LRU fashion. A cache slot represents a portion of the cache, which corresponds to
the size of a page. A cache slot uses a bit to represent the clean/dirty status of
the page. Furthermore, a directory H is maintained, mapping currently cached
pages to their corresponding cache slots.

6.3.1 The LOC algorithm

In the LOC algorithm, Tm is managed locally in an LRU fashion, without requiring
extra knowledge from Tt. The procedure of reading a page from Tm is shown
in Algorithm 5. An important difference to a main-memory LRU cache is that
flushing a page involves first reading the page from flash and then writing it to
the storage. Writing a page p to Tm involves finding its cache slot c via H and
storing p at c. If p is not found in Tm, it will be written to Tb immediately.

Because |Tt| ≤ |Tm| and LOC only has local knowledge, it is possible that some
or even all pages in Tt are doubly cached in Tm. However, pages in Tt are not
necessarily in Tm, due to different page reference behavior at different tiers. Note,
references to Tm are consequences of buffer faults in Tt.

84

6.3. Baseline algorithms

Algorithm 6: GLB evict page to Tm

data : request for evicting page q, list of cache slots Ls, directory H, bottom
tier Tb

1 victim cache slot v ← LRU position of Ls ;
2 page s← the page stored at v ;
3 if v is dirty then
4 read s from cache slot v and flush s to Tb ;

5 store q at v ;
6 move v to MRU position of Ls ;
7 update H by replacing entry (s, v) with entry (q, v) ;

6.3.2 The GLB algorithm

The GLB algorithm is first introduced in [Zhou 04]. Here, we examine this
algorithm in a flash context. The GLB algorithm follows the exclusive scheme
[Koltsidas 09], i. e., no page is ever cached in Tt and Tm at the same time. For
better comprehension, we assume the replacement policy in Tt is also LRU, without
loss of generality. Based on this assumption, we can think of a global logical LRU
list Lg, consisting of the LRU list of Tt at its MRU end, and the LRU list of Tm at
its LRU end.

Reading a page p from Tm is requested upon a page fault in Tt (see I1). In case
of a cache hit in Tm, p is moved from Tm to Tt (H and Ls are updated accordingly).
In case of a cache miss, p is read directly from Tb to Tt, avoiding doubled caching in
Tm. In both cases, a page q is evicted from Tt to Tm. After being read, p becomes
the MRU page in Tt (also in Lg).

To “maintain” the logical list Lg, page q currently evicted from Tt should
become the MRU page in Tm. Therefore, we have to extend the interface of Tm by
a new function evict called by Tt for passing evicted clean pages to Tm. Note, a
write request is called on Tm, only when the evicted page is dirty (see I2). The
procedure of processing a write or evict request for page q is the same (shown in
Algorithm 6): if the LRU slot v of Ls is dirty, flush the page pointed by it, store q
at v, move v to the MRU position, mark v dirty if q is dirty, and update H.

6.3.3 Discussion

Given the same workload, the global cache hit count (total number of buffer hits
in Tt and Tm) of GLB is expected to be higher than that of LOC, because the
effective cache size of the latter is smaller, due to doubled caching in Tt. However,
in GLB, the number of flash writes equals the number of Tt page evictions. This
is OK for a RAM-based second-level buffer, but it is an issue for flash media in
terms of both performance (see Section 6.4) and lifespan [Gal 05].

85

Chapter 6. Energy efficiency and architecture

For both algorithms in our current implementation, the dirty pages in Tm (whose
cache slots are marked dirty) are flushed to Tb when the system is shutdown, for
the sake of consistency. A simple improvement leveraging the non-volatility of
flash can be made here: we can just materialize the content of H at shutdown
and rebuild H at startup1, without flushing the “dirty” pages in Tm (Note Tm is
non-volatile). This technique not only speeds up the shutdown procedure, but also
shortens the warm-up phase of the system, because the hot portion of the pages
are likely already in Tm, ready for immediate access. For the LOC algorithm, pages
in Tm are up-to-date at restart, iff the dirty pages of Tt are flushed before the
shutdown of Tm starts. For the GLB algorithm, page sets Tm and Tt are disjunct,
therefore, pages in Tm are automatically up-to-date at restart.

6.4 Experiments

To answer the questions Q1 and Q2, we did an extensive empirical study based
on a fair comparison between 2TA and 3TA, using buffer traces recorded under
various workloads. We first present our simulation-based study using TPC-E,
TPC-C, and TPC-H traces (tpce in Section B.1.3, tpcc in Section B.1.1, and
tpch in Section B.1.2) before we discuss the experiments ran on real devices using
the trace from a real-life application (see Section B.2). Our study on energy
consumption is based on the following assumption:

A1 The acquisition cost and power consumption of storage media are linear
to their capacity in use.
Assumption A1 might not be valid at a fine granularity, however, it is reasonable

when observed at a coarser granularity. For example, if the power of a 4-GB DRAM
module is 10 W, according to A1, 0.4 GB of DRAM would consume 1 W, which is
not valid, because, as long as the module is working, it consumes 10 W, no matter
the remaining 3.6 GB are in use or not. But we can safely say that 4n GB of
DRAM based on the same model consume 10n W.

All experiments were done using our prototype implementation of the 3TA
storage system, which can also be easily configured to function as a 2TA system,
as described in Section 6.2. For both architectures, our test program only commu-
nicates with Tt by sending the logical page requests delivered by the traces to its
buffer manager, which manages the Tt buffer pool using the replacement policy
LRU. All experiments start with cold Tt and Tm buffers. The time used to flush
the dirty pages at shutdown is included in the measurements.

In our experiments, we scaled the size parameter b (in number of pages)
logarithmically. For 2TA, b is the size of the buffer pool, i. e., |Tt| = b, while for
3TA, we set |Tt| and |Tm| as follows:

1The byte size of H is much smaller compared to that of Tt and Tm.

86

6.4. Experiments

|Tm| = b× s (6.2)

and

|Tt| = max(1, bb− |Tm| × (Mf/Mr + Sd/Sp)c) (6.3)

where Mf/Mr is the per-GB price ratio of flash to RAM, Sd is the byte size of
a directory entry of H, and Sp the page size in bytes. The term |Tm| ×Mf/Mr

gives the number of RAM pages that should be reduced to achieve a cost-neutral
investment for |Tm| pages of flash memory. The term |Tm|×Sd/Sp is the number of
RAM pages consumed by the directory H for |Tm| flash pages. We call Formula 6.2
and 6.3 the equi-cost constraints, because it enforces a fair basis for the comparison
among the 2TA and 3TA configurations, i. e., having the same acquisition cost.

The parameter s is used to examine the behavior of 3TA when the size of Tm is
scaled. Because |Tt| can not be negative, we have b−|Tm|× (Mf/Mr +Sd/Sp) > 0,
which resolves to s < (Mf/Mr + Sd/Sp)

−1. Together with the constraint in
Formula 6.1, we have the practical range of s:

1 ≤ s < (Mf/Mr + Sd/Sp)−1 (6.4)

If we ignore Sd/Sp, which is relatively small2, then we obtain 1 ≤ s < Mr/Mf .
We chose the price ratio Mf/Mr = 0.10, which is very close to the real price ratios
according to Table A.1, the practical range of s is approximately [1, 10). Note, s
does not have to be an integer. For a given b, the value of s actually controls how
much RAM is traded for flash, observing the equi-cost constraints.

6.4.1 Simulations

For the simulation-based experiments, the Virtual Execution Time (tv) is used as
the major performance metrics, defined as:

tv = tm + tb (6.5)

Here, tm and tb are the simulated device access times elapsed in Tm and in Tb,
respectively. tm is defined as:

tm = tFR + tFW = nFR × CFR + nFW × CFW (6.6)

tFR and tFW are the accumulated times for reading from and writing to a flash
media, nFR is the number of flash reads, CFR the average cost of a flash read, nFW

the number flash writes, and CFW the average cost of a flash write. The flash
reads and flash writes here refer to the physical reads from and writes to a flash

2In our experiments, the page size Sp is 8192 bytes and the directory entry size Sd is 4 bytes.

87

Chapter 6. Energy efficiency and architecture

 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500

 1000 2000 4000 8000 16000 32000

2TA
GLB, s=2
GLB, s=8
LOC, s=2
LOC, s=8

(a) tv (sec) for each b ∈ {1000, ..., 32000}

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

2TA

GLB, s=2

GLB, s=4

GLB, s=6

GLB, s=8

LOC, s=2

LOC, s=4

LOC, s=6

LOC, s=8

nFR nFW nHR nHW

(b) Device accesses (x1000) for b = 1000 (pages)

Figure 6.1: TPC-E trace performance

device. They are not to be confused with the read and write requests sent to the
Tm software. Similarly, tb is defined as:

tb = nH × CH (6.7)

where nH is the number of disk accesses and CH the average latency of disk
accesses. tb can be further split into the read portion tHR and write portion tHW

such that tb = tHR + tHW . The definition of tv only considers the costs of accessing
the storage media and ignores the CPU cost, because all the algorithms involved
have a constant complexity. The inter-tier communication costs are ignored as
well, because the dominating cost in the system is the cost of page access, not page
transfer. In our simulation, we used the average read and write costs close or equal
to those of the middle-class devices in Table A.1, i. e., CFR = 0.030, CFW = 0.120,
and CH = 4.5 (ms).

Figure 6.1a illustrates tv of running the TPC-E trace using 2TA and 3TA. All
3TA configurations tested significantly outperform the 2TA configuration. For
better clarity of the chart, we only show the curves for s = 2 and s = 8. For the
s = 8 configuration, LOC reduced the virtual execution time by 32% to 35% (for
b = 1000 to b = 32000), compared with 2TA.

The behavior of 3TA is better explained by Figure 6.1b, where the number
of device accesses3 is compared for b = 1000. For 2TA, there is no flash device
access, whereas a significant amount of flash device accesses is required for 3TA
(Figure 6.1b). For both GLB and LOC, with s scaled from 2 to 8 (thus an increasing
|Tm| and decreasing |Tt|), the number of flash reads climbs up, indicating a growing
number of hits in Tm, and, consequently, the number of disk reads goes down. The

3In the simulation, no real device access occurs.

88

6.4. Experiments

Table 6.1: Energy consumption of the TPC-E trace for b = 1000

algo s |Tm| |Tt| Pm (mW) Pt (mW) Pm + Pt (mW) tv (s) E (J)
2TA 0 1000 0.000 4.121 4.121 7059 29.09
GLB 2 2000 799.02 0.014 3.292 3.307 5776 19.10
GLB 4 4000 598.05 0.029 2.464 2.493 5304 13.22
GLB 6 6000 397.07 0.043 1.636 1.679 5061 8.50
GLB 8 8000 196.09 0.057 0.808 0.865 4905 4.24
LOC 2 2000 799.02 0.014 3.292 3.307 6305 20.85
LOC 4 4000 598.05 0.029 2.464 2.493 5372 13.39
LOC 6 6000 397.07 0.043 1.636 1.679 5024 8.44
LOC 8 8000 196.09 0.057 0.808 0.865 4818 4.17

latter is equal to the number of global cache misses (i. e., a page is neither in Tt

nor in Tm). Because of the speed difference of flash to disk, the flash accesses
introduced at Tm are paid off in terms of overall performance (Figure 6.1a).

As shown in Figure 6.1b, the number of flash writes performed by GLB increases
with an increasing |Tm| and a decreasing |Tt|, because it depends on the latter, as
discussed in Section 6.3.3. In contrast, the increasing |Tm| reduces the number of
flash writes performed by LOC. This is due to the reduction of Tm cache misses,
because each cache miss requires a flash write (line 10 of Algorithm 5).

Table 6.1 compares the energy efficiency of 2TA and 3TA for b = 1000. The |Tm|
and |Tt| values in the 3rd and 4th column are calculated according to Formula 6.2
and 6.3. Using these values, we can compute the power value of Tt, based on
assumption A1, as follows:

Pt = |Tt| × Sp × ṖR (6.8)

where ṖR is the unit power of RAM, having the value 0.503 × 10−9 (W/B)
here, derived from the data sheet of RAM2 in Table A.1. The power value of Tm,
denoted as Pm, is calculated in a similar way, with ṖF = 0.873 × 10−12 (W/B),
derived from the data sheet of SSD4. Having Pt + Pm and the virtual execution
times (tv), we can then calculate the energy consumption values in the last column.
Note that the top tier of 2TA consumed much more energy than those of 3TA (by
a factor of six for s = 8). Enterprise-class DRAM modules can have a much higher
power consumption than RAM2 (by up to a factor of five), i. e., if we use their
figures, the energy-saving factor of 3TA will be even higher. Bottom-tier values are
not included in the table, because they are of the same size in both architectures.

The results of running the buffer traces of the TPC-C and TPC-H workloads
are shown in Figure 6.2 and Figure 6.3. In general, these results confirm our
observation concerning the performance advantage of 3TA. For both traces, with
b beyond 16000 pages and s = 8, the flash cache of 3TA is large enough to

89

Chapter 6. Energy efficiency and architecture

 500

 1000

 1500

 2000

 2500

 3000

 1000 2000 4000 8000 16000 32000

2TA
GLB, s=2
GLB, s=8
LOC, s=2
LOC, s=8

Figure 6.2: TPC-C trace performance:
tv (sec) for each b ∈ {1000, ..., 32000}

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1000 2000 4000 8000 16000 32000

2TA
GLB, s=2
GLB, s=8
LOC, s=2
LOC, s=8

Figure 6.3: TPC-H trace performance:
tv (sec) for each b ∈ {1000, ..., 32000}

accommodate all pages of the working sets, which are much smaller than that of
the TPC-E trace, therefore, no performance improvement can be observed when b
is increased to 32000 pages. The TPC-H trace is highly read intensive, with only
256 page updates out of 6.5 million page requests. That is the reason why the
performance of 3TA improves much faster with the growing buffer sizes under the
TPC-H workload (Figure 6.3), compared to the TPC-E and TPC-C cases.

6.4.2 Running a real-life trace on real devices

As complement to our simulation-based study, we also experimented with a trace
from a real-life application on real devices. Our test machine is equipped with an
AMD Athlon Dual Core Processor, 1 GB of main memory, and is running Linux
(kernel version 2.6.24). HDD2 from Table A.1 is used as the storage device in
Tb, and SSD4 is used as the flash device in Tm. Both devices are accessed as raw
devices, i. e., no file system or OS caching is involved, and our storage system has
control over the access to the devices.

The measured execution times (wall-clock times) are shown in Figure 6.4. The
curves have a shape very similar to that of Figure 6.2, confirming the accuracy of
our simulation. An interesting observation can be made here: for b = 32000, the
execution time in 3TA increases with s, instead of decreasing with it as in most
cases tested. In our case here, the 51880 distinct pages addressed by the trace
can be completely accommodated by Tt and Tm, for s = 2. Therefore, in such a
situation, trading RAM for more flash does not further avoid any access to the
bottom tier, but reduces the number of buffer hits in Tt and introduces higher
numbers of flash accesses, as indicated by Figure 6.5a, where a breakdown of device
I/O is presented, with measured values of tFR, tFW , tHR, and tHW . Nevertheless,
the energy consumption decreases with an increasing s, as shown in Figure 6.5b,

90

6.5. Summary

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 2000 4000 8000 16000 32000

2TA
GLB, s=2
GLB, s=8
LOC, s=2
LOC, s=8

Figure 6.4: Real-life trace performance: execution time (sec) for each b ∈
{1000, ..., 32000}

which illustrates the energy consumption figures, similarly obtained as those of
Table 6.1.

A question arises here: how much RAM should be traded for flash? Or, in
our context, what is the break-even point for s? Analytically determining the
optimal value for s is a very difficult problem. However, based on our empirical
research, we know that for workloads having a small working set that can be kept
in the RAM buffer pool, there is no performance benefit of trading RAM for flash,
whereas for workloads with larger working sets that do not fit into main memory,
a larger s generally improves performance as well as energy efficiency. Of course,
when s closely approaches Mr/Mf , |Tt| becomes 1 (Formula 6.3), i. e., the RAM
buffer pool has only one page. Such extreme cases should obviously be avoided in
a system configuration. Together with Formula 6.4, our observations can be used
as rules of thumb in practical applications.

Based on our experiments discussed so far, we can summarize the characteristics
of GLB and LOC as follows. For small |Tm|, i. e., |Tm| ∼ |Tt|, GLB achieves higher
hit ratios, whereas for large |Tm|, i. e., |Tm| � |Tt|, LOC is generally better,
because GLB’s advantage in hit ratios becomes insignificant and is eaten up by its
higher number of flash writes, which is much more expensive than flash reads. A
configuration with |Tm| � |Tt| is closer to our goal of managing extremely large
amounts of data with high performance and low power consumption.

6.5 Summary

In this chapter, we looked at the flash-based storage systems from an architectural
perspective. Our empirical study considered the most important aspects of TCO
(Total Cost of Ownership) of a storage system: the acquisition cost and the

91

Chapter 6. Energy efficiency and architecture

 0

 50

 100

 150

 200

 250

2TA

GLB, s=2

GLB, s=4

GLB, s=6

GLB, s=8

LOC, s=2

LOC, s=4

LOC, s=6

LOC, s=8

tFR tFW tHR tHW

(a) Device I/O breakdown (sec)

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0.50

 0.55

s=2 s=4 s=6 s=8

GLB
LOC

(b) Energy consumption relative to 2TA

Figure 6.5: Statistics running the real-life trace for b = 32000

operating cost (power cost). Our study gives positive answers to the questions
Q1 and Q2 and reveals that we can build a 3TA system which is much faster and
much more energy efficient than a 2TA system built with the same acquisition cost,
meeting the goals of performance and energy efficiency, which are often considered
conflicting, at the same time. With a flash-based page cache accelerating the
accesses to the disk-based storage, the amount of expensive and energy-inefficient
RAM required by storage systems can be reduced.

In practice, with improved storage system performance, the number of disks,
which is sometimes higher than necessary to boost disk I/O throughput (e. g., in a
RAID configuration), can generally be reduced, resulting in further operational
cost savings due to reduced floor space and cooling requirements.

The performance advantage of 3TA comes from the superior performance/price
ratio of flash devices compared with HDDs4. This ratio will steadily increase in
the next years, while the performance/price ratio of HDDs will remain relatively
stable. As a consequence, the performance advantage of 3TA will be even more
significant in the future.

LOC and GLB served as the baseline algorithms. No flash-specific optimizations
are yet integrated. Techniques such as using different page size at different tiers as
those discussed in [Koltsidas 09] could further improve the performance of 3TA.
It could also be interesting to examine hybrid configurations of algorithms, e. g., a
frequency-based algorithm at one tier and a recency-based algorithm at the other
tier. However, future improvements expected for performance and energy-efficiency
of 3TA do not conflict with our observations made in this chapter.

4Similar observations are made in our experiments using the values of HDD3, the high-end
HDD in Table A.1.

92

Chapter 7

A closer look at flash-based
mid-tier caching

As indicated by the study in Chapter 6, using flash memory in the middle tier
of a three-tier storage hierarchy is a cost-effective approach for a broad range of
workloads. That study was based on cost models and per-capacity prices of DRAM
and flash devices. There we assumed the existence of an FTL so that flash memory
can be accessed simply as block device and the conventional caching algorithms
can be directly applied without modification. Flash-based mid-tier caching is still
the focus of this chapter, however, we take a different perspective and look deeper
into the internals of flash devices, to exploit their full potential.

7.1 Introduction

Previous studies on flash-based mid-tier caching only considered the indirect use
of flash memory, i. e., the use of flash memory via an FTL, which makes the native
interface of the flash memory transparent to the mid-tier cache manager, as shown
in Figure 7.1.

To distinguish a logical page address supported by the top tier and a logical
address supported by FTL (see Section 2.3.2), we refer to the latter as FTL logical
address. Similarly, the logical pages exposed via the FTL interface are referred to
as FTL logical pages. To keep track of the valid flash page of an FTL logical page,
FTL maintains an address-mapping table mFTL : AF 7→ Af , where AF represents
the set of FTL logical addresses (FLAs), i. e., logical page numbers supported
by the FTL, and Af the set of FTL physical addresses (FPAs), i. e., flash page
addresses available on the device.

As introduced in Section 2.3.2, there are three categories of FTLs, depending on
the map-entry granularity of their mFTL implementations: page-level, block-level,
and hybrid mapping. In this chapter, we focus on page-level mapping in favor

93

Chapter 7. A closer look at flash-based mid-tier caching

flash memory

midtier cache manager

middle tier

read/program/erase

read/write

top tier (based on RAM)

read/write

bottom tier (based on HDDs)

FTL

read/write

Figure 7.1: Three-tier storage system with indirect use of flash memory by the
mid-tier cache. The two components of a flash device, surrounded by the dashed
line, appear as a “black box”.

of its performance potential, although the problems studied and the basic ideas
leading to our solutions are not specific to any FTL implementation.

7.1.1 Problem

Although simplifying the use of flash memory, the indirect approach has some
fundamental problems. FTL implementations are usually vendor-specific and
proprietary [Gal 05, Chung 09]. The proprietary FTL logic makes it impossible to
accurately model or predict the performance of flash-based devices. This is not
acceptable for performance-critical applications, because their optimization is often
based on the cost model of the underlying storage devices. Furthermore, without
direct control over potentially expensive procedures such as GC, the response time
becomes indeterministic for the application. It has been reported that GC can
take up to 40 seconds[Chang 04], which is not only an issue for applications with
real-time requirements, but also intolerable for normal use cases.

For flash-based mid-tier caching, the indirect approach has an even more serious
problem related to GC. This problem is explained in the following with the help
of a simplified GC procedure, which involves three steps:

1. Select a set of garbage blocks, which are blocks containing some invalid pages.
2. Move all valid pages from the garbage blocks to another set of (typically free)

blocks and update the corresponding management information.
3. Erase the garbage blocks, which then become free blocks.

94

7.1. Introduction

If a block has M pages and Step 1 selects only one garbage block, which has v
valid pages, then Step 2 consumes v free flash pages, and the procedure increases
the total number of free flash pages byM−v, at a total cost of (Cfr +Cfp)×v+Cfe,
where (Cfr + Cfp)× v is caused by Step 2 and Cfe caused by Step 3. The ratio
v/M is called block utilization. Obviously, GC is more effective and also more
efficient for smaller values of v/M , because more free flash pages are gained at
a lower cost. Therefore, v/M is an important criterion to be considered for the
garbage block selection in Step 1. If the entire flash memory is highly utilized, i. e.,
v/M is statistically close to 1, GC becomes relatively expensive, ineffective, and
has to be invoked frequently.

Although for a cache only hot pages should be kept and cold pages should be
evicted, FTL must guarantee that each valid page is accessible no matter the page
is cold or hot. This means that, during GC processing, cold pages have to be moved
along with hot pages (Step 2), while the cold ones, which make v/M unnecessarily
high, could actually be discarded from the cache manager perspective. We call
this problem the CPM (cold-page migration) problem.

More specifically, the CPM problem negatively impacts mid-tier performance in
two aspects: 1. The cost of GC, due to the (unnecessary) CPM; 2. The frequency
of GC, because, if cold pages are regarded valid, fewer pages can be freed by
one invocation of GC and, as a result, the subsequent GCs have to be invoked
earlier. Furthermore, the GC frequency is proportional to the number of block
erases, which is inversely proportional to the device lifespan due to the endurance
limitation.

A similar problem exists when flash SSDs are used as the external storage
under a file system. File deletion is a frequent operation, but the information
about deleted files is normally kept in OS and not available to the SSD. The
latter has to keep even the deleted data valid, at a potentially high operational
cost. As solution, a Trim attribute for the Data Set Management command has
been recently proposed and became available in the ATA8-ACS-2 specification
[INCITS 07]. This attribute enables disk drives to be informed about deleted data
so that their maintenance can be avoided.

However, no sufficient attention has been paid to the CPM problem, which
actually impacts the performance in a more serious way. First, when used in the
mid-tier cache, flash devices experience a much heavier write traffic than that
of file systems, because pages are more frequently loaded into and evicted from
the cache. To flash devices, heavy write traffic means frequent GCs. Second, the
capacity utilization of a mid-tier cache is always full (i. e., the flash memory is
highly utilized), which makes GC expensive and ineffective (especially for heavy
write workloads). In contrast, the GC issue is less critical to file systems, because
typically a large portion of their capacity is unused.

95

Chapter 7. A closer look at flash-based mid-tier caching

7.1.2 Solution

To solve the CPM problem, we develop two approaches, which share the same basic
idea: drop cold pages proactively such that the garbage collector sees a reduced
block utilization.

1. The first approach, LPD (logical page drop), accesses flash memory indirectly
via an extended FTL, which can be informed about proactively evicted cold
pages, and ignores them during GCs.

2. The second approach, NFA (native flash access), manages flash memory in a
native way, i. e., it implements the out-of-place update scheme and handles GC
by the cache manager, without using an FTL.

According to our experiments, both approaches significantly outperform the
normal indirect approach, by improving the GC effectiveness and reducing its
frequency. For example, NFA reduces the GC frequency by a factor of five,
which not only contributes to data access performance, but also implies a greatly
extended device life time. In terms of overall performance (IOPS), NFA achieves
an improvement ranging from 15% to 66%, depending on the workload.

7.1.3 Contribution

To the best of our knowledge, our work is the first that identifies the CPM problem.
Our work is also the first that considers managing flash memory natively in the
mid-tier cache. Our further major contributions are:

• We propose two novel approaches for flash-based mid-tier caching: LPD and
NFA, both of them effectively deal with the CPM problem.
• Our study shows that, for a flash-based mid-tier cache, our native approach
significantly improves the storage system performance while reducing the
resource requirements at the same time.
• More importantly, the results of our study urge the reconsideration of the

architectural problem of optimally using flash memory in a DB storage system,
i. e., whether it should be managed natively by the DBMS or indirectly via the
proprietary FTL implementations.

The remainder of this chapter is organized as follows: Section 7.2 discusses
related works. Section 7.3 presents and discusses our approaches. Section 7.4
reports our experiments for the evaluation of both approaches. The concluding
remarks are summarized in Section 7.5.

96

7.2. Related work

7.2 Related work

Before flash memory became a prevalent, disruptive storage technology, many
studies, e. g., [Zhou 04, Chen 05, Jiang 07, Gill 08], addressed the problem of multi-
level caching in the context of client-server storage systems, where the first-level
cache is located at the client side and the second-level (mid-tier) cache is based on
RAM in the storage server. However, these studies did not consider the specific
problems of a flash-based mid-tier cache. Our proposals are orthogonal to and
can be combined with their approaches, because their primary goal is to reduce
the disk I/O of the storage server, whereas our approaches primarily focus on the
operational costs of the middle tier.

In one of the pioneer works on flash-aware multi-level caching [Koltsidas 09],
Koltsidas et al. studied the relationships between page sets of the top tier and
the mid-tier caches and proposed flash-specific cost models for three-tier storage
systems.

Not only academia, but also industry has shown great interest in flash-based mid-
tier caching. Canim et al. [Canim 10] proposed a temperature-aware replacement
policy for managing an SSD-based middle tier, based on access statistics of disk
regions. In [Do 11], the authors studied three design alternatives of an SSD-based
middle tier, which mainly differ in the way how to deal with dirty pages evicted
from the first tier, e. g., write-through or write-back.

Although flash-specific cost models and their difference to those of traditional
storage devices have been taken into account by previous works on flash-based
mid-tier caching [Koltsidas 09, Ou 11, Canim 10, Do 11], they commonly only
consider the indirect approach, whereas hardly any efforts have been made to
examine the internals of flash devices when used as a mid-tier cache. Such efforts
fundamentally distinguish our work from the previous ones.

7.3 Our approaches

As introduced in Section 7.1.2, our basic idea is to drop cold pages proactively
and ignore them during GCs. A question critical to the success is: to what extent
valid but cold pages are dropped? Note, if we drop valid pages too greedily, the
benefit will not be covered by the cost of increased accesses to the bottom tier.

Which pages are cold and can be dropped is the decision of the cache manager,
whereas the decision, when and how to do GC, is typically made by the FTL—if
we strictly follow the architecture of Figure 7.1. Therefore, another important
question is how to bring these two pieces of information together.

97

Chapter 7. A closer look at flash-based mid-tier caching

7.3.1 LPD

The LPD approach is basically an indirect approach, which follows the architecture
shown in Figure 7.1. However, to make the basic idea working, we propose, as an
extension to the FTL interface, a delete operation, in addition to the read and write
operations. Similar to the read and write operations, the delete operation is also a
logical operation. Upon such a delete request, FTL should mark the corresponding
flash page invalid (and update other related management information properly) so
that it can be discarded by subsequent GCs.

LPD has some typical cache manager data structures. To tell whether and
where a page is cached, it maintains an address mapping table mLPD : Ab 7→ AF ,
where Ab denotes the set of bottom-tier addresses (BTAs) and AF the set of FLAs.
A cache slot is a volatile data structure corresponding to exactly one FLA. In
addition to the FLA, the cache slot uses one bit to represent the clean/dirty state
of the cached page. A dirty page contains updates not yet propagated to the
bottom tier. Therefore, evicting such a page involves writing it back to the bottom
tier. A free1 cache slot is a cache slot ready to cache a new page. Such a slot is
needed when a read or write cache miss occurs, so that the missing page can be
stored at the corresponding FLA. Storing the page turns a free cache slot into an
occupied slot, which becomes free again when the page is evicted.

For the mid-tier cache manager to make use of the extended FTL, the procedure
of allocating a free cache slot has to be enhanced by some additional code as shown
in Algorithm 7. The piece of code (Line 6 to 10) evicts up to the d coldest pages
and instructs FTL to delete them, i. e., dropping a page involves evicting it from
the cache and deleting it logically via the extended FTL. Page dropping happens
after the standard logic of cache replacement (Line 4 to 5), which is only required
when there is no free cache slot available.

An example of LPD is shown in Figure 7.2, where the cache slot with FLA
= 1 was just dropped and became free. The corresponding flash page, although
containing the latest version of page A (A2 in the figure), was invalidated (shown
in grey). If later block 1 is garbage-collected, A2 can be simply discarded.

The tuning parameter d controls how greedily cold pages are dropped. When
d = 0, LPD degenerates to the normal indirect approach without using the
extension. In contrast, when d > 0, the d coldest pages are dropped and the same
number of cache slots are turned into free slots, ready to be used for the subsequent
allocations of free cache slots (Line 1 to 2).

The LPD approach is orthogonal to the cache replacement policy responsible
for the victim selection (Line 4 and Line 7), which shall identify the coldest page
as per its own definition. In other words, LPD is compatible with other cache
management techniques, which can be used to further improve the hit ratio.

1There is no connection between free cache slot and free flash page, although both concepts
use the word “free” by convention.

98

7.3. Our approaches

Algorithm 7: Allocation of a free
cache slot by LPD
data : parameter d, set F of free

slots, set S of occupied slots
1 if F 6= ∅ then
2 remove and return one

element from F ;
3 else
4 cache slot v ← select and

remove a victim from S ;
5 evict the page cached in v ;
6 for 0 to d and S 6= ∅ do
7 cache slot s← select and

remove a victim from S ;
8 evict the page cached in s ;
9 FTL.delete(s) ;

10 add s to F ;

11 return v ;

3

0

0(0,3)

1

2

1

2(1,3)

3(0,2)
B0

A1

C2

B3

A2

D1

C0

B1

E0

A0

C1

block 0 block 2

block 1 block 3

occupied

free

FPA:=(block #, offset)
empty box: free flash page
grey box: invalid page
white box with page and version number: valid page

FLAFPA

cache slots flash device

mFTL : AF Af

Figure 7.2: Example of logical page
drop. Note mLPD is not shown in the
figure.

7.3.2 NFA

In contrast to the indirect approaches, NFA does not require an FTL. Instead, it
manages flash memory natively. As shown in Figure 7.3, the operations available
to the NFA cache manager are read and program of flash pages, and erase of blocks.
Besides the common cache management functionality, NFA has to provide the
implementation of an out-of-place update scheme and GC.

For the cache management functionality, NFA maintains a mapping table
mNFA : Ab 7→ Af , where Ab denotes the set of BTAs and Af the set of FPAs. Note
in LPD (and other indirect approaches), two mapping tables are required: mLPD

for cache management and mFTL maintained by FTL as introduced in Section 7.1.
A volatile data structure, block management structure (BMS) represents the

state of a block. BMS contains two bit vectors, validity and cleanness, which mark
the valid/invalid and clean/dirty states for each flash page in the block. Validity
is used by GC processing, whereas cleanness is checked when dropping a page.
Furthermore, BMS stores, for each of its valid flash pages, the corresponding BTA
to speed up reverse lookups and the corresponding last access time, which is used
by the page-dropping logic. The memory consumption of BMS is very low, e. g.,
using 4 bytes per BTA and another 4 bytes per access time, for a block of 128
pages (each 8 KB), the memory overhead of BMS is 0.1% at maximum.

Following the out-of-place update scheme, both serving a write request and
caching a (not yet cached) page consume a free flash page, which is allocated

99

Chapter 7. A closer look at flash-based mid-tier caching

flash memory

NFA cache manager

middle tier

read/program/erase

read/write

read/write

top tier

bottom tier

Figure 7.3: NFA architecture

according to Algorithm 8. The algorithm maintains a write pointer wp, which
always points to the next free flash page to be programed. After the program
operation, wp moves to the next free flash page in the same block, until the block
is fully written—in that case, wp moves to the begin of a new free block.

Because GC is a relatively expensive procedure, it is typically processed by
a separate thread. NFA uses a low watermark wl and a high watermark wh to
control when to start and stop the GC processing. GC is triggered, when the
number of free blocks is below or equal to wl, and stops when it reaches wh, so
that multiple garbage blocks can be processed in one batch. The available number
of blocks and the high watermark determine the logical capacity of the cache. If
we have K blocks with M pages per block, the logical capacity of the cache is:
(K − wh)×M . We say that wh blocks are reserved for GC processing.

Note that the out-of-place update scheme and the use of reserved blocks for GC
processing shown in Algorithm 8 are common FTL techniques. They are presented
here for comprehension and completeness, because they are now integral to the
NFA approach.

The NFA GC procedure (shown in Algorithm 9) is similar to that of a typical
FTL in some steps (Line 1, 9, and 10 roughly correspond to Step 1, 2, and 3 of the
simplified GC discussed in Section 7.1.1). The difference is due to the dropping
of victim blocks and cold pages. Victim blocks are selected by a victim-selection
policy based on the temporal locality of block accesses. In contrast, garbage blocks
are selected by a garbage-selection policy, for which block utilization is typically
the most important selection criterion. Except for these basic assumptions, the
NFA approach is neither dependent on any particular garbage selection policy
(Line 1) nor on any particular victim selection policy (Line 3).

Dropping of a victim block happens when the selected garbage block is fully
utilized, i. e., all its pages are valid. Garbage-collecting such a block would not gain

100

7.3. Our approaches

Algorithm 8: Allocation of a free
flash page by NFA
data : pointer wp, set F of free

blocks, watermarks wl, wh

1 if current block is fully written
then

2 wp← the first flash page of a
free block ;

3 if |F | ≤ wl then
4 while |F | < wh do GC ;

5 return wp ;
6 else
7 return wp← wp+ 1 ;

Algorithm 9: NFA GC
data : page-dropping threshold t

1 block b← select a garbage block ;
2 if all pages in b are valid then
3 b← select a victim block ;
4 t← the last access time of b ;

5 foreach page p ∈ b do
6 if last access time of p ≤ t then
7 drop(p) ;
8 else
9 move p to a free flash page ;

10 erase b and mark it a free block ;

any free flash page. Furthermore, such a garbage block signals that the overall flash
memory utilization is full or close to full (otherwise the garbage selection policy
would return a block with lower block utilization). Therefore, instead of processing
the garbage block, a victim block is selected by the victim selection policy (Line 3).
The last access time of the block is used to update the page-dropping threshold t.
This has the effect that all pages of the victim block are then dropped immediately
(Line 6 to 7). The dynamically updated threshold t is passed on to subsequent
GC invocations, where the threshold makes sure that valid pages accessed earlier
than t are dropped as well.

A flash page managed by NFA has the same set of possible states (shown in
Figure 7.4) as those managed by an FTL: free, valid, and invalid. However, NFA
has a different set of possible state transitions, e. g., a read or write page miss in an
NFA cache can trigger a program operation (for storing the missing page) which
changes the state of a free flash page into valid, whereas for FTL, serving a read

free

valid

erase

erase program

invalid

logical overwrite

erase

drop

Figure 7.4: NFA flash page states

101

Chapter 7. A closer look at flash-based mid-tier caching

request does not require a program operation. Obviously, the drop transition is not
present in any FTL, either. The semantics of NFA page dropping is similar to that
of LPD: the page is evicted (removing the corresponding entry from mNFA, and, if
the page is dirty, it is written back to the bottom tier), and then the corresponding
flash page is marked invalid.

From the NFA cache manager perspective, the free flash pages for storing pages
newly fetched from the bottom tier (due to page faults) are completely provided by
the GC procedure in units of blocks. Therefore, NFA does not require page-level
victim selection and eviction, which are common in classical caching.

7.3.3 Discussion

Although sharing the same basic idea, the presented approaches, LPD and NFA,
are quite different from each other. While NFA directly integrates the drop logic
into the GC processing, LPD can only select the drop candidates and delete
them logically. LPD can not erase a block due to the indirection of FTL—the
intermediate layer required by an indirect approach. Therefore, contiguously
dropped logical pages may be physically scattered over the flash memory and
LPD has no control when these pages will be garbage-collected, which is again the
responsibility of FTL. Such dropped pages can neither contribute to the mid-tier
cache hit ratio nor contribute to the reduction of GC cost, until the space taken by
them is eventually reclaimed by some GC run. In contrast to the LPD approach,
the pages dropped by NFA immediately become free flash pages.

To control how greedily pages are dropped, LPD depends on the parameter d, for
which an optimal value is difficult to find, while the “greediness” of NFA is limited
to M pages (one block at maximum). However, due to the victim selection based
on block-level temporal statistics, the NFA hit ratio could be slightly compromised
and a few more accesses to the bottom tier would be required.

7.4 Experiments

To evaluate our approaches, we implemented a three-tier storage system simulator
supporting both architectures depicted in Figure 7.1 and Figure 7.3. The simulated
flash memory and HDD modules used in our experiments were identical for both
architectures.

The workloads used in our experiments originate from three buffer traces,
which contain the logical page requests received by DB buffer managers under the
TPC-C, TPC-H, and TPC-E benchmark workloads (tpcc100, tpch10, and tpce
in Section B.1). Therefore, the buffer traces represent typical, strongly varying
workloads at the top tier and our results are expected to be indicative for a broad
spectrum of applications.

102

7.4. Experiments

Table 7.1: Size ratios of the top tier and middle tier relative to the DB size
trace top tier middle tier DB size (max. page number)
TPC-C 2.216% 13.079% 451,166
TPC-H 0.951% 5.611% 1,051,590
TPC-E 0.002% 0.013% 441,138,522

The logical page requests recorded in the buffer traces were sent to the top tier
to generate the mid-tier traces running the experiments. The top tier, which had
a buffer pool of 10,000 pages managed under an LRU replacement policy, served
the requests directly from the buffer pool whenever possible. In cases of buffer
faults or eviction of dirty pages, it had to read pages from and write pages to the
middle tier. The sequences of read and write requests received by the middle tier
were recorded and served as the mid-tier traces used in the experiments. We used
them to stress the systems containing the middle and bottom tiers. As a result,
the access statistics to the flash memory and HDD modules were collected for the
performance study.

Three approaches were under comparison: NFA, LPD (with d = 1024 unless
otherwise specified), and a baseline (BL), which is a mid-tier cache with indirect
flash access (but without the delete extension). Our FTL implementation uses
page-level mapping, which is the ideal case for the indirect approaches LPD and
BL. For all three approaches, the LRU replacement policy was used for selecting
victim cache pages (LPD and BL) or victim blocks (NFA), and the greedy policy
[Rosenblum 92, Kawaguchi 95] is used for selecting garbage blocks, which always
selects the block having the least number of valid pages.

For each approach, the flash memory module was configured to have 512
blocks of 128 pages. Similar to [On 11] and [Prabhakaran 08], the low and high
watermarks for GC were set to 5% and 10%, respectively. Due to this setting,
the logical size of the mid-tier cache is 59,008 pages ((512 − 51) × 128) for all
approaches. In Table 7.1, we list the ratios of the top-tier buffer pool size and the
logical size of the mid-tier cache relative to the DB size (using the maximum page
number as an estimate2).

7.4.1 Overall performance

We use the throughput of the middle tier, i. e., the throughput seen by the top
tier, as the overall performance metric, which is defined as: throughput = N/tv,
where N is the number of page requests in a trace and tv its execution time, which

2For the TPC-E trace, the DB size estimation is coarse because the trace was converted
from a proprietary format addressing more than 20 DB files whose sizes and utilization were
unavailable to us.

103

Chapter 7. A closer look at flash-based mid-tier caching

Table 7.2: Operation costs

operation cost (ms)
Cfr 0.035
Cfp 0.350
Cfe 1.500
CH 5.500

is further defined as:
tv = tm + tb (7.1)

tm represents the total operational cost in the flash memory and tb the total
disk I/O cost. tm is defined as tm = nfr ×Cfr + nfp ×Cfp + nfe ×Cfe, where nfr,
nfp, and nfe are the numbers of flash read, program, and erase operations, and
the corresponding costs of flash memory operations are denoted as Cfr, Cfp, and
Cfe, as introduced in Section 2.3.1. tb is similarly defined as tb = nH × CH , with
CH being the cost of a disk access and nH the number of disk accesses. Therefore,
the trace execution time tv is the weighted sum of all media access operations
performed in the middle tier and bottom tier while running the trace.

For the costs of flash operations, Cfr, Cfp, and Cfe, we used the corresponding
performance metrics of a typical SLC NAND flash memory of a leading man-
ufacturer, while the disk access cost corresponds to the average latency of a
WD1500HLFS HDD [WDC 11]. These costs are listed in Table 7.2.

Figure 7.5 compares the overall performance of the three approaches under
the TPC-C, TPC-H, and TPC-E workloads. Our two approaches, NFA and LPD,
significantly outperformed BL, and NFA had a clear performance advantage over
LPD. For the TPC-C workload, NFA achieved an improvement of 43% and 66%
compared with LPD and BL, respectively.

 150

 200

 250

 300

 350

 400

TPC-C TPC-H TPC-E

BL
LPD
NFA

Figure 7.5: Throughput (IOPS)

104

7.4. Experiments

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

BL LPD NFA

tb
tc
tg

(a) TPC-C

 0

 5000

 10000

 15000

 20000

 25000

BL LPD NFA

tb
tc
tg

(b) TPC-H

 0

 1000

 2000

 3000

 4000

 5000

 6000

BL LPD NFA

tb
tc
tg

(c) TPC-E

Figure 7.6: Breakdown of the trace execution time (seconds) into the fractions
of GC tg, cache overhead tc, and disk accesses tb

The performance improvement of our approaches can be entirely credited to
the cost reduction in the middle tier, because both of our approaches do not focus
on minimizing disk accesses. In fact, they even had a slightly higher number of
disk accesses due to proactive page dropping. It is expected that a small fraction
of the dropped pages are re-requested shortly after the dropping, which increases
disk accesses. However, this is the small price we have to pay in order to achieve
the overall performance gain.

Figure 7.6 confirms our expectation, where we provide a breakdown of the
execution times according to Formula 7.1. The mid-tier cost tm is further broken
down into two fractions: the fraction caused by GCs, denoted as tg, and the
fraction caused by normal caching operations (e. g., read operations due to cache
hits and program operations due to cache replacements), denoted as tc, such that

tv = tm + tb = (tg + tc) + tb

As clearly shown in Figure 7.6, both our approaches effectively improved the
GC fraction, without significantly increasing the cost of other two fractions.

The remainder of this section is a detailed analysis of the experimental results.
For brevity, we only focus on the performance metrics collected under the TPC-C
workload and omit those of the TPC-H and TPC-E workloads, from which similar
observations were made.

7.4.2 Detailed analysis

To further understand why our approaches improved the GC efficiency and reduced
the number of its invocations, we plotted, in Figure 7.7, the distribution of the
number of valid pages in garbage-collected blocks. The majority of blocks garbage-
collected in the BL configuration had a number of valid pages very close to 128,

105

Chapter 7. A closer look at flash-based mid-tier caching

 0

 5000

 10000

 15000

 20000

 25000

 0 32 64 96 128

(a) BL

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 32 64 96 128

(b) LPD

 0

 200

 400

 600

 800

 1000

 0 32 64 96 128

(c) NFA

Figure 7.7: Distribution of the number of valid pages in garbage-collected blocks.
A bar of height y at position x on the x-axis means that it happened y times that
a block being garbage-collected contains x valid pages. Note the different scales of
the y-axis.

which resulted in a poor efficiency of GC. Compared with Figure 7.7a, the dense
region in Figure 7.7b is located slightly farther to the left, meaning fewer valid
pages in the garbage blocks. For NFA, the majority of garbage-collected blocks
had less than 96 valid pages per block, i. e., more than 32 pages could be freed for
each garbage block.

Interestingly, in Figure 7.7c, the region between 96 and 127 is very sparse. This
is due to the filtering effect (Line 6 to 7 of Algorithm 9). The valid pages in a
block either become invalidated due to logical overwrites or are filtered out when
they become cold. Therefore, the probability that a block has full or close-to-full
utilization is artificially reduced.

For LPD, we ran the trace multiple times scaling d from 0 up to 65,536,
which controls how greedily pages are dropped from the cache. For d = 0, LPD
is equivalent to BL, which does not use the extended FTL and does not drop
any pages. For d = 65536, it drops all pages from the cache whenever a cache
replacement occurs (Line 5 to 11 of Algorithm 7).

Under the same workload, NFA processed 22,106 GCs and achieved a hit ratio
of 0.7438 (independent of d). Relative to these values, Figure 7.8 plots the number
of GCs and the hit ratio of LPD, with d scaled from 0 to 65,536. For d = 0, LPD
(and BL, due to equivalence) obtained a slightly higher hit ratio than NFA (by
5.84%), however, its number of GCs was much higher than that of NFA (by a factor
of five). For d = 65536, although LPD’s number of GCs was greatly reduced (still
higher than that of NFA by 21%), its hit ratio drastically dropped and became
only 63.1% of the NFA hit ratio. Note, we could not find a value for d ∈ [0, 65536]
for LPD, such that the number of GCs is lower and the hit ratio is higher than
those of NFA at the same time.

106

7.4. Experiments

 1

 2

 3

 4

 5

 6

 7

 8

0 128 1024 8192 65536
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
relative number of GC (left y-axis)

relative hit ratio (right y-axis)

Figure 7.8: Number of GCs and hit ratio of LPD relative to NFA, when d is
scaled from 0 to 65,536

7.4.3 Wear leveling

So far, we have not discussed other aspects of flash memory management such as
wear leveling and bad block management, which are not the focus of our current
work, because they can be dealt with using standard techniques proposed in
previous works related to FTL. However, fortunately, our approaches seem to
have automatically distributed the erases uniformly to the blocks, as shown in
Figure 7.9, where the number of erases for each of the 512 blocks is plotted for all
three approaches under comparison.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500

NFA
LPD

BL

Figure 7.9: Number of erases for each block. Each position on the x-axis refers
to a block.

107

Chapter 7. A closer look at flash-based mid-tier caching

7.5 Summary

In this chapter, we studied the problem of efficiently using flash memory for a
mid-tier cache in a three-tier storage system. We identified the problems of using
flash memory indirectly, which is the common approach taken by previous works.
Among these problems, the most important one is the CPM problem, which not
only greatly impacts performance, but also shortens the lifespan of flash devices
used in the cache. Our basic idea to solve this problem is to drop cold pages
proactively and ignore them during GCs. Based on this basic idea, we proposed
two approaches, an indirect one and a native one, that effectively handle the
problem, as shown by our experiments. The experiments also demonstrated the
gravity of the CPM problem, which is ignored so far by typical indirect approaches
represented by the baseline. The cache-specific knowledge (e. g., which pages can
be dropped) and the direct control over the flash memory (e. g., when is the GC
to be started) is the key to the significant performance gain achieved by NFA, the
native approach.

We believe that the optimal use of flash memory in a mid-tier cache can only
be achieved when the flash memory is managed natively by the cache management
software. For similar reasons, system designers should seriously consider how to
natively support flash memory in the database software.

108

Chapter 8

Conclusion and outlook

8.1 Conclusion

This dissertation studied various problems concerning the design and implementa-
tion of flash-based storage systems and proposed effective solutions. It addressed
buffer management issues for two-tier storage systems (caching for flash-based
databases), where flash-based devices are used as the primary storage. It also
examined the efficient use of flash memory as a mid-tier page cache (flash-based
caching for databases) to speed-up access to the primary storage, in the context of
three-tier storage systems.

All the experiments in this dissertation were performed on our prototype
implementation of a database storage engine, which has evolved into a highly con-
figurable system supporting various algorithms at three tiers for both simulations
and real-device accesses. We also implemented a flash-device simulator, which
can be integrated into the storage engine, either into the middle tier or into the
bottom tier, depending on the configuration.

As a basic approach, our studies are based on the cost models of related storage
media and devices. Although it is impossible to improve the efficiency of a storage
system without making device-type-specific optimizations, we kept our cost models
as concise as possible to achieve a high degree of device model independence, which
shall ease the practical application of the proposed methods. The effectiveness of
the proposed methods are demonstrated in various empirical studies. The major
conclusions based on our studies can be summarized as follows.

• Significant improvements over conventional methods can be achieved by apply-
ing flash-specific algorithms and architectures.
• Cost models of flash memory and flash devices are essential for performance

optimizations.
• Careful tradeoff must be made between the level of abstraction and performance.

109

Chapter 8. Conclusion and outlook

8.2 Outlook

A lot of interesting and challenging topics related to flash memory and emerging
new memory technologies are yet to be explored, especially in the context of data
storage and management.

Although studied intensively for years, the performance behavior of flash de-
vices still remains partially unpredictable or unexplainable. The major reason
responsible for that is the complexity of FTL implementations and its proprietary
nature. Tailor-made micro-benchmarks, e. g., those of [Chen 09a, Bouganim 09],
are necessary measures towards a better understanding of their sometimes myste-
rious performance behavior. However, trying to explain those behavior without
looking into the internals of the devices is difficult. In our opinion, benchmark-
ing with flash devices alone is not sufficient. To gain a deeper insight into the
performance characteristics of flash devices, accurate flash device simulators are
necessary as well. The flash device simulator implemented for this dissertation is
an initial step towards this direction.

One of the major differences of a flash-based cache to a RAM-based cache is
non-volatility. We have discussed a technique leveraging this property to shorten
the warm-up phase of the system in Section 6.3.3, which is to be empirically
evaluated in the future. The non-volatility of flash memory should be further
exploited to speed-up processing of transactions. An interesting work in this area
is [On 11], where a novel transaction commit scheme, “flag commit”, is proposed,
which exploits the unique characteristics of SLC flash memory to improve the
performance of transaction processing.

Our work focused on typical database storage systems supporting page-oriented
accesses. Flash memory technology can certainly be leveraged also for new types
of data management systems emerged in recent years. For example, [Debnath 10]
proposed to use flash memory in a high-throughput persistent key-value store;
[Bernstein 11] presented a distributed log-structured multi-versioned transactional
record manager based on flash memory.

Another important future research direction is related to database storage
systems using Phase Change Memory (PCM). PCM is a promising next-generation
memory technology, with a range of features interesting to system designers.
Similar to flash memory, PCM is non-volatile and can endure only a limited
number of writes. However, unlike flash memory, whose update is subject to
the erase-before-write constraint, PCM is bit alterable and its update does not
require a separate erase operation. Similar to DRAM, PCM is byte addressable.
However, due to its higher density, the cost of PCM can potentially be much lower
than DRAM. Therefore, PCM is often considered an alternative to DRAM or an
extension of DRAM.

There have been some pioneer works on the use of PCM in database systems.
For example, Gao et al. presented a novel logging scheme that exploits the non-

110

8.2. Outlook

volatility and bit alterability of PCM for efficient transaction logging in disk-based
databases [Gao 11]. The use of PCM for logging and recovery is a challenging
research topic, because PCM has the potential of drastically changing the design of
the logging component, which is one of the most performance-critical and complex
components of database engines. At the same time, changes to the logging scheme
may not be compatible with existing concurrency control and indexing schemes.
Therefore, the impact of PCM on core database technology can be even greater
than flash memory.

111

Chapter 8. Conclusion and outlook

112

Appendix A

Storage devices

Table A.1 lists, for each storage media type, the prices and performance figures of
a few devices (from low-end to high-end)1.

Table A.1: Price and performance of storage devices
device model number price (EUR/GB) latency (ms)
RAM1 Kingston KVR667D2D8P5/2G 19.00 ∼ 10 ns
RAM2 Kingston KHX1600C9D3B1K2/4GX 19.11 ∼ 10 ns
RAM3 Kingston KVR1333D3D4R9S/4G 24.70 ∼ 10 ns
SSD1 SuperTalent FSD32GC35M N/A 0.1
SSD2 MTRON MSP-SATA-7525-032 N/A 0.083
SSD3 Intel SSDSA2MH160G1GN 2.40 0.029
SSD4 Intel SSDSA1MH160G2GN 2.44 0.029
SSD5 Crucial CTFDDAC256MAG-1G1 2.01 0.017
HDD1 WD WD800AAJS 7200 RPM 0.38 15.000
HDD2 WD WD1500HLFS 10000 RPM 0.77 4.500
HDD3 Fujitsu MBA3147RC 15000 RPM 0.76 2.000

1We used the sales prices of Internet stores as of November 2010. Prices for SSD1 and
SSD2 were already not available (N/A) at that time due to rapid improvements of flash devices.
Performance figures are read from or derived from the device data sheets for randomly accessing
pages of 4 KB.

113

Appendix A. Storage devices

114

Appendix B

Workloads

This appendix describes the most important buffer traces used in our empirical
research. The statistics of those traces are listed in Table B.1. They recorded
the sequences of logical page requests received by the buffer managers of both
open-source and commercial DBMSs. Two categories of workloads were used to
collect these traces: TPC1 benchmarks (Section B.1) and a real-life workload
(Section B.2). The TPC benchmarks include TPC-C, TPC-H, and TPC-E. The
TPC-C and TPC-H traces were obtained using a PostgreSQL DBMS: our code
integrated into its buffer manager enables it to record the logical page requests.
The TPC-E traces originate from a trace collected by IBM using DB2 and delivered
in binary format.

Either based on these traces or using a random generator, further traces were
built to study some special issues. Those special-purpose traces are introduced in
the text where they are used.

Table B.1: Buffer traces used in the experiments
trace number of requests distinct pages update intensity locality2

tpcc 2,841,225 88,698 18.72 % 88 %
tpcc100 12,316,654 111,337 16.72 % 90 %
tpch 6,502,242 105,640 0.00 % 72 %
tpch10 10,000,000 1,051,591 7.41 % 87 %
tpce 3,341,738 460,064 1.03 % 87 %
tpce20 2,613,847 150,065 0.67 % 92 %
bank 607,390 51,880 22.51 % 72 %

1http://www.tpc.org/
2Percentage of requests addressing the top 20% hottest pages.

115

Appendix B. Workloads

B.1 TPC benchmarks

B.1.1 TPC-C traces

tpcc This trace recorded the buffer reference string of a 20-minute TPC-C
workload with a scaling factor of 50 warehouses and one terminal.
tpcc100 This trace recorded the buffer reference string of a 30-minute TPC-C
workload with a scaling factor of 100 warehouses and 100 terminals.

B.1.2 TPC-H traces

tpch This trace recorded a workload generated by read-only TPC-H queries
with a scaling factor of one and executed in one stream.
tpch10 This trace recorded the first ten million page requests of a TPC-H
workload with a scaling factor of ten and executed in three concurrent streams.

B.1.3 TPC-E traces

tpce This trace is parsed and converted from the binary TPC-E trace using
the metadata provided by IBM.
tpce20 This trace is based on the aforementioned TPC-E trace (tpce), but
only contains the references to the top-20 hottest files.

B.2 Real-life workload

bank The real-life trace is a one-hour page reference string of the production
OLTP system of a bank. It was also used in experiments of, e. g., [O’Neil 93,
Johnson 94, Lee 01, Megiddo 03, Li 09]. It contains 607,390 references to 51,880
distinct pages of 8 KB in a DB having a size of 22 GB, addressing 51,870
distinct page numbers. Moreover, this trace exhibits an extremely high access
skew, e. g., 40% of the references access only 3% of the DB pages used in
the trace [O’Neil 93], and 20% (10,376) of the hottest pages are referenced by
72% (434,702) of the requests. About 23% of the references update the page
requested.

116

Bibliography

[Agrawal 08] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse
& R. Panigrahy. Design tradeoffs for SSD performance. In
USENIX ATC’08, pages 57–70. USENIX Association, 2008.

[Ban 95] A. Ban. Flash file system, 4 1995. US Patent 5,404,485.

[Ban 99] A. Ban. Flash file system optimized for page-mode flash tech-
nologies, 10 1999. US Patent 5,937,425.

[Belady 66] L. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems journal, vol. 5, no. 2, pages
78–101, 1966.

[Bernstein 11] P. Bernstein, C. Reid & S. Das. Hyder–A Transactional Record
Manager for Shared Flash. In 5th Biennial Conf. on Innov. Data
Syst. Research (CIDR), Asilomar, CA, USA, pages 9–20, 2011.

[Beyer 05] K. Beyer, F. Özcan, S. Saiprasad & B. Van der Linden.
DB2/XML: designing for evolution. In SIGMOD, pages 948–952.
ACM, 2005.

[Birrell 07] A. Birrell, M. Isard, C. Thacker & T. Wobber. A design for
high-performance flash disks. SIGOPS Oper. Syst. Rev., vol. 41,
no. 2, pages 88–93, 2007.

[Bouganim 09] L. Bouganim, B. Jónsson & P. Bonnet. uFLIP: understanding
flash IO patterns. In CIDR’09, 2009.

[Butt 05] A. R. Butt, C. Gniady & Y. C. Hu. The performance impact
of kernel prefetching on buffer cache replacement algorithms.
In SIGMETRICS, pages 157–168, New York, NY, USA, 2005.
ACM.

[Canim 10] M. Canim, G. Mihaila, et al. SSD bufferpool extensions for
database systems. In VLDB, pages 1435–1446, 2010.

117

Bibliography

[Chang 04] L.-P. Chang, T.-W. Kuo & S.-W. Lo. Real-time garbage collection
for flash-memory storage systems of real-time embedded systems.
ACM Trans. Embed. Comput. Syst., vol. 3, no. 4, pages 837–863,
November 2004.

[Chen 05] Z. Chen, Y. Zhang, Y. Zhou, H. Scott & B. Schiefer. Empirical
evaluation of multi-level buffer cache collaboration for storage
systems. In SIGMETRICS, pages 145–156, New York, NY, USA,
2005. ACM.

[Chen 09a] F. Chen, D. A. Koufaty & X. Zhang. Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives. In SIGMETRICS/Performance, pages 181–
192, 2009.

[Chen 09b] S. Chen. FlashLogging: exploiting flash devices for synchronous
logging performance. In SIGMOD’09, pages 73–86. ACM, 2009.

[Chung 09] T. Chung, D. Park, S. Park, D. Lee, S. Lee & H. Song. A survey
of flash translation layer. Journal of Systems Architecture,
vol. 55, no. 5, pages 332–343, 2009.

[Corbato 69] F. J. Corbato. A paging experiment with the multics system. In
In Honor of Philip M. Morse, page 217. MIT Press, Cambridge,
Mass, 1969.

[Debnath 10] B. Debnath, S. Sengupta & J. Li. FlashStore: High throughput
persistent key-value store. PVLDB, vol. 3, no. 1-2, pages 1414–
1425, 2010.

[Denning 05] P. J. Denning. The locality principle. Commun. ACM, vol. 48,
no. 7, pages 19–24, July 2005.

[Dijkstra 68] E. Dijkstra. Letters to the editor: go to statement considered
harmful. Communications of the ACM, vol. 11, no. 3, pages
147–148, 1968.

[Ding 07] X. Ding, S. Jiang, F. Chen, K. Davis & X. Zhang. DiskSeen:
exploiting disk layout and access history to enhance I/O prefetch.
In USENIX ATC, pages 20:1–20:14, Berkeley, CA, USA, 2007.
USENIX Association.

[Do 11] J. Do, D. DeWitt, D. Zhang, J. Naughton, et al. Turbocharging
DBMS buffer pool using SSDs. In SIGMOD’11, pages 1113–1124.
ACM, 2011.

118

Bibliography

[Effelsberg 84] W. Effelsberg & T. Härder. Principles of database buffer man-
agement. ACM TODS, vol. 9, no. 4, pages 560–595, 12 1984.

[Estakhri 99] P. Estakhri & B. Iman. Moving sequential sectors within a block
of information in a flash memory mass storage architecture, July
1999. US Patent 5,930,815.

[Gal 05] E. Gal & S. Toledo. Algorithms and data structures for flash
memories. ACM Computing Surveys, vol. 37, no. 2, pages
138–163, 2005.

[Gao 11] S. Gao, J. Xu, B. He, B. Choi & H. Hu. PCMLogging: reducing
transaction logging overhead with PCM. In CIKM’11, pages
2401–2404, 2011.

[Gill 08] B. Gill. On multi-level exclusive caching: offline optimality and
why promotions are better than demotions. In USENIX, pages
1–17. USENIX Association, 2008.

[Gottstein 11] R. Gottstein, I. Petrov & A. Buchmann. SI-CV: Snapshot Isola-
tion With Co-Located Versions. In TPC Technology Conference
on Performance Evaluation and Benchmarking (TPCTC’11), in
conjunction with VLDB’11, August 2011.

[Gray 87] J. Gray & F. Putzolu. The 5 minute rule for trading memory
for disc accesses and the 10 byte rule for trading memory for
CPU time. In SIGMOD, pages 395–398, New York, NY, USA,
1987. ACM.

[Gray 93] J. Gray & A. Reuter. Transaction processing: Concepts and
techniques. Morgan Kaufmann, 1993.

[Gray 06] J. Gray. Tape is dead, disk is tape, flash is disk, RAM locality
is king. Storage Guru Gong Show, December 2006.

[Gray 08] J. Gray & B. Fitzgerald. Flash disk opportunity for server
applications. ACM Queue, vol. 6, no. 4, pages 18–23, 2008.

[Grupp 12] L. M. Grupp, J. D. Davis & S. Swanson. The bleak future of
NAND flash memory. In USENIX FAST’12. USENIX Associa-
tion, 2012.

[Gupta 09] A. Gupta, Y. Kim & B. Urgaonkar. DFTL: a flash translation
layer employing demand-based selective caching of page-level
address mappings. In Proceedings of the 14th international
conference on architectural support for programming languages

119

Bibliography

and operating systems, ASPLOS ’09, pages 229–240, New York,
NY, USA, 2009. ACM.

[Härder 83a] T. Härder & A. Reuter. Concepts for implementing a centralized
database management system. In Int. Computing Symp. on App.
Sys. Devel., Nürnberg, pages 28–61. Teubner-Verlag, 1983.

[Härder 83b] T. Härder & A. Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys, vol. 15, no. 4,
pages 287–317, 12 1983.

[Härder 05] T. Härder. DBMS Architecture – Still an Open Problem. In
BTW’05, LNI 65, pages 2–28, Karlsruhe, Germany, March 2005.
GI.

[Haustein 07] M. P. Haustein & T. Härder. An efficient infrastructure for
native transactional XML processing. Data Knowl. Eng, vol. 61,
no. 3, pages 500–523, 2007.

[IDC 08] IDC. The diverse and exploiding digital universe – (an IDC
white paper sponsored by EMC). www.emc.com/collateral/
analyst-reports/diverse-exploding-digital-universe.
pdf, March 2008.

[INCITS 07] INCITS. Data Set Management commands proposal for
ATA8-ACS2 (revision 6). http://t13.org/Documents/
UploadedDocuments/docs2008/e07154r6-Data_Set_
Management_Proposal_for_ATA-ACS2.doc, 2007. INCITS
T13.

[Intel 10a] Intel. X25-M SSD datasheet. http://download.intel.com/
design/flash/nand/mainstream/322296.pdf, 2010. Intel
Corp.

[Intel 10b] Intel. X25-V SSD datasheet. http://download.intel.com/
design/flash/nand/value/datashts/322736.pdf, 2010. In-
tel Corp.

[Jiang 02] S. Jiang & X. Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. In SIGMETRICS, pages 31–42, New York, NY, USA,
2002. ACM.

[Jiang 05] S. Jiang. DULO: An effective buffer cache management scheme
to exploit both temporal and spatial localities. In USENIX
FAST’05, pages 101–114. USENIX, 2005.

120

www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
http://download.intel.com/design/flash/nand/mainstream/322296.pdf
http://download.intel.com/design/flash/nand/mainstream/322296.pdf
http://download.intel.com/design/flash/nand/value/datashts/322736.pdf
http://download.intel.com/design/flash/nand/value/datashts/322736.pdf

Bibliography

[Jiang 07] S. Jiang, K. Davis, et al. Coordinated multilevel buffer cache
management with consistent access locality quantification. IEEE
Transactions on Computers, pages 95–108, 2007.

[Jin 12] P. Jin, Y. Ou, T. Härder & Z. Li. AD-LRU: an efficient buffer
replacement algorithm for flash-based databases. Data & Knowl-
edge Eng., vol. 72, pages 83–102, 2012.

[Jo 06] H. Jo, J. Kang, S. Park, J. Kim & J. Lee. FAB: flash-aware
buffer management policy for portable media players. Trans. on
Cons. Electr., vol. 52, no. 2, pages 485–493, 2006.

[Johnson 94] T. Johnson, D. Shasha, et al. 2Q: a low overhead high perfor-
mance buffer management replacement algorithm. In VLDB,
pages 439–450, 1994.

[Jung 08] H. Jung, H. Shim, et al. LRU-WSR: integration of LRU and
writes sequence reordering for flash memory. Trans. on Cons.
Electr., vol. 54, no. 3, pages 1215–1223, 2008.

[Kawaguchi 95] A. Kawaguchi, S. Nishioka & H. Motoda. A flash-memory based
file system. In Proceedings of the USENIX 1995 Technical
Conference, TCON’95, pages 13–13, Berkeley, CA, USA, 1995.
USENIX Association.

[Kim 02] J. Kim, J. M. Kim, S. H. Noh, S. L. Min & Y. Cho. A space-
efficient flash translation layer for CompactFlash systems. IEEE
Transactions on Consumer Electronics, vol. 48, no. 2, pages
366–375, May 2002.

[Kim 08] H. Kim & S. Ahn. BPLRU: a buffer management scheme for
improving random writes in flash storage. In USENIX FAST’08,
pages 239–252. USENIX, 2008.

[Kim 12] B. Kim. Commercial SSD products – status quo and next (invited
talk). In DASFAA’12, 2nd Int’l Workshop on FlashDB, LNCS.
Springer, 4 2012.

[Koltsidas 08] I. Koltsidas & S. D. Viglas. Flashing up the storage layer. VLDB
Endow. Arch., vol. 1, no. 1, pages 514–525, 2008.

[Koltsidas 09] I. Koltsidas & S. D. Viglas. The case for flash-aware multi-level
caching. Rapport technique, University of Edinburgh, 2009.

121

Bibliography

[Koomey 07] J. Koomey. Estimating total power consumption by servers in
the US and the world. http://sites.amd.com/de/Documents/
svrpwrusecompletefinal.pdf, February 2007.

[Lee 01] D. Lee, J. Choi, et al. LRFU: A spectrum of policies that
subsumes the least recently used and least frequently used policies.
Trans. on Computers, vol. 50, no. 12, pages 1352–1361, 2001.

[Lee 07a] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park & H.-J.
Song. A log buffer-based flash translation layer using fully-
associative sector translation. ACM Trans. Embed. Comput.
Syst., vol. 6, no. 3, July 2007.

[Lee 07b] S. Lee & B. Moon. Design of flash-based DBMS: an in-page
logging approach. In SIGMOD’07, pages 55–66. ACM, 2007.

[Leventhal 08] A. Leventhal. Flash storage memory. Communications of ACM,
2008.

[Li 09] Z. Li, P. Jin, et al. CCF-LRU: a new buffer replacement algo-
rithm for flash memory. Trans. on Cons. Electr., vol. 55, pages
1351–1359, 2009.

[Mathis 06] C. Mathis, T. Härder & M. Haustein. Locking-aware structural
join operators for XML query processing. In SIGMOD, pages
467–478. ACM, 2006.

[Megiddo 03] N. Megiddo & D. S. Modha. ARC: a self-tuning, low overhead
replacement cache. In USENIX FAST’03. USENIX, 2003.

[Mohan 92] C. Mohan, D. J. Haderle, et al. ARIES: a transaction recovery
method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst., vol. 17,
no. 1, pages 94–162, 1992.

[Mtron 08] Mtron. Solid state drive MSP-SATA7525 product specification,
2008. MTRON Ltd.

[Narayanan 09] D. Narayanan, E. Thereska, et al. Migrating server storage to
SSDs: analysis of tradeoffs. In EuroSys, pages 145–158. ACM,
2009.

[Nath 07] S. Nath & A. Kansal. FlashDB: dynamic self-tuning database
for NAND flash. In Int. Conf. on Information Processing in
Sensor Networks, pages 410–419, 2007.

122

http://sites.amd.com/de/Documents/svrpwrusecompletefinal.pdf
http://sites.amd.com/de/Documents/svrpwrusecompletefinal.pdf

Bibliography

[On 11] S. T. On, J. Xu, B. Choi, H. Hu & B. He. Flag Commit:
supporting efficient transaction recovery on flash-based DBMSs.
IEEE Transactions on Knowledge and Data Engineering, vol. 99,
2011.

[O’Neil 93] E. J. O’Neil, P. E. O’Neil, et al. The LRU-K page replacement
algorithm for database disk buffering. In SIGMOD, pages 297–
306, 1993.

[Ou 09] Y. Ou, T. Härder & P. Jin. CFDC: a flash-aware replacement
policy for database buffer management. In SIGMOD Workshop
DaMoN, pages 15–20, 2009.

[Ou 10a] Y. Ou & T. Härder. Clean first or dirty first? a cost-aware
self-adaptive buffer replacement policy. In IDEAS’10, Montreal,
QC, Canada, 2010.

[Ou 10b] Y. Ou, T. Härder & D. Schall. Performance and power evaluation
of flash-aware buffer algorithms. In DEXA, 2010.

[Ou 10c] Y. Ou & T. Härder. CFDC: a flash-aware buffer management
algorithm for database systems. In ADBIS’10, volume 6295 of
LNCS, pages 435–449. Springer, 9 2010.

[Ou 11] Y. Ou & T. Härder. Trading memory for performance and
energy. In DASFAA’11, 1st Int’l Workshop on FlashDB, pages
241–253. Springer-Verlag, 2011.

[Ou 12] Y. Ou, J. Xu & T. Härder. Towards an efficient flash-based
mid-tier cache. In DEXA’12 (accepted to appear in LNCS).
Springer, September 2012.

[Pai 04] R. Pai, B. Pulavarty & M. Cao. Linux 2.6 performance im-
provement through readahead optimization. In Proceedings of
the Linux Symposium, volume 2, 2004.

[Park 06] S. Park, D. Jung, et al. CFLRU: a replacement algorithm for
flash memory. In CASES, pages 234–241, 2006.

[Parnas 75] D. Parnas & D. Siewiorek. Use of the concept of transparency in
the design of hierarchically structured systems. Communications
of the ACM, vol. 18, no. 7, pages 401–408, 1975.

[Petrov 10] I. Petrov, G. Almeida, A. Buchmann & U. Gräf. Building large
storage based on flash disks. In ADMS’10 (in conjunction with
VLDB’10), September 2010.

123

Bibliography

[Prabhakaran 08] V. Prabhakaran, T. L. Rodeheffer & L. Zhou. Transactional
flash. In Proceedings of the 8th USENIX conference on operating
systems design and implementation, OSDI’08, pages 147–160,
Berkeley, CA, USA, 2008. USENIX Association.

[Roberts 09] D. Roberts, T. Kgil, et al. Integrating NAND flash devices onto
servers. Communications of the ACM, vol. 52, no. 4, pages
98–103, 2009.

[Rosenblum 92] M. Rosenblum & J. K. Ousterhout. The design and implementa-
tion of a log-structured file system. ACM Trans. Comput. Syst.,
vol. 10, pages 26–52, February 1992.

[Sacco 82] G. Sacco & M. Schkolnick. A mechanism for managing the buffer
pool in a relational database system using the hot set model. In
VLDB, pages 257–262, 1982.

[Samsung 05] Samsung. Memory technology and solutions roadmap.
http://www.samsung.com/us/aboutsamsung/ir/
ireventpresentations/analystday/downloads/analyst_
20051104_0800.pdf, 2005. Samsung Analyst Day, Samsung
Electronics Co., Ltd.

[Schall 09] D. Schall. Energieeffizienz in Datenbanksystemen - Entwurf einer
Meß- und Auswertungsumgebung. Diplomarbeit, Technische
Universität Kaiserslautern, September 2009.

[Schiefer 10] B. Schiefer. DB2 / ISAS and SSD – overview, performance
insights, challenges. DB2 Community Meeting, 2010.

[Seo 08] D. Seo & D. Shin. Recently-evicted-first buffer replacement policy
for flash storage devices. Trans. on Cons. Electr., vol. 54, no. 3,
pages 1228–1235, 2008.

[Tanenbaum 87] A. S. Tanenbaum. Operating systems, design and impl. Prentice-
Hall, 1987.

[Tsirogiannis 09] D. Tsirogiannis, S. Harizopoulos, M. Shah, J. Wiener &
G. Graefe. Query processing techniques for solid state drives. In
SIGMOD, pages 59–72. ACM, 2009.

[WDC 11] WDC. Specifications for the 150 GB SATA 3.0 Gb/s VelociRap-
tor drive (model WD1500HLFS, WD1500BLFS). http://wdc.
custhelp.com/app/answers/detail/search/1/a_id/2716,
retrieved on 14th Mar. 2012, 2011. Western Digital Corp.

124

http://www.samsung.com/us/aboutsamsung/ir/ireventpresentations/analystday/downloads/analyst_20051104_0800.pdf
http://www.samsung.com/us/aboutsamsung/ir/ireventpresentations/analystday/downloads/analyst_20051104_0800.pdf
http://www.samsung.com/us/aboutsamsung/ir/ireventpresentations/analystday/downloads/analyst_20051104_0800.pdf
http://wdc.custhelp.com/app/answers/detail/search/1/a_id/2716
http://wdc.custhelp.com/app/answers/detail/search/1/a_id/2716

Bibliography

[Woodhouse 01] D. Woodhouse. JFFS: the journalling flash file system. In The
Ottawa Linux Symp., 2001.

[Zhou 04] Y. Zhou, Z. Chen, et al. Second-level buffer cache management.
IEEE Transactions on Parallel and Distributed Systems, vol. 15,
no. 6, pages 505–519, 2004.

125

Bibliography

126

Curriculum Vitae

Personal information

First name Yi

Last name Ou

Date of birth Oct. 13, 1974

Place of birth Changsha, Hunan, China

Research

Mar. 2008–today Doctoral candidate, research group Databases and Infor-
mation Systems (DBIS), University of Kaiserslautern

Education

Apr. 2003–Jan. 2008 Study of Computer Science with emphasis on Enterprise
Information Systems, University of Kaiserslautern
Acquired academic degree: Diplom-Informatiker

Oct. 2002–Jan. 2003 German language courses, Goethe-Institut Peking

Sep. 1993–Jun. 1997 Study of Industrial Foreign Trade, Hunan University, China
Acquired academic degree: Bachelor of Engineering

Sep. 1981–Jun. 1993 Primary and secondary education, Hunan, China

Work experience

Jan. 2007–Apr. 2007 Internship, DFKI GmbH, Kaiserslautern

Nov. 2005–Dec. 2006 Programmer, XTC project, University of Kaiserslautern

Sep. 2004–Dec. 2006 Network administrator, Institut für Technologie und Arbeit,
Kaiserslautern

Jul. 1997–Jul. 2002 Assistant (in the first year) and account manager, China
Electronics Shenzhen Company, Shenzhen, China

http://lgis.cs.uni-kl.de/cms/dbis
http://lgis.cs.uni-kl.de/cms/dbis
http://www.uni-kl.de
http://www.goethe.de/ins/cn/pek/deindex.htm
http://www.hnu.edu.cn
http://www.dfki.de
http://www.xtc-project.de
http://www.ita-kl.de/
http://www.ceiecsz.com.cn/en/index.aspx
http://www.ceiecsz.com.cn/en/index.aspx

	Nomenclature
	List of algorithms
	List of figures
	List of tables
	Introduction
	Motivation
	Flash memory
	Research issues
	Outline

	Preliminaries
	DBMS reference architecture
	Conventional buffer management
	Basic concepts
	Exploiting temporal locality
	Exploiting spatial locality
	Relation to transaction management

	Flash devices
	Flash memory primitives
	Flash translation layer
	Performance characteristics

	Flash implications
	Buffer management
	Architectural variants

	Evaluation methodology
	Summary

	Flash-aware buffer management
	Flash-aware algorithms
	The clean-first strategy
	Other clean-first algorithms
	Addressing the FRW problem

	The CFDC algorithm
	Overview
	Page flow
	Priority region

	Experiments
	Synthetic workload
	Scan resistance
	Impact of the window size
	Real-life workload

	Summary

	Energy efficiency and performance
	A tailor-made system
	Experiments
	TPC-C workload
	Real-life workload

	Summary

	Cost-aware buffer management
	Introduction
	The parameter tuning problem
	Cost ratio

	The CASA algorithm
	Overview
	The algorithm
	Dynamic cost-ratio detection
	Integrating clustered writes
	Implementation issues

	Experiments
	Changing workload
	Cost awareness
	Cost-ratio detection
	Comparison with CFDC

	Summary

	Energy efficiency and architecture
	Related work
	Basic assumptions
	Baseline algorithms
	The LOC algorithm
	The GLB algorithm
	Discussion

	Experiments
	Simulations
	Running a real-life trace on real devices

	Summary

	A closer look at flash-based mid-tier caching
	Introduction
	Problem
	Solution
	Contribution

	Related work
	Our approaches
	LPD
	NFA
	Discussion

	Experiments
	Overall performance
	Detailed analysis
	Wear leveling

	Summary

	Conclusion and outlook
	Conclusion
	Outlook

	Storage devices
	Workloads
	TPC benchmarks
	TPC-C traces
	TPC-H traces
	TPC-E traces

	Real-life workload

	Bibliography

