
Noname manuscript No.
(will be inserted by the editor)

XML Indexing and Storage: Fulfilling the Wish List

Christian Mathis · Theo Härder · Karsten Schmidt · Sebastian Bächle

Received: date / Accepted: date

Abstract XML Indexing and Storage (XMIS) techniques
are crucial for the functionality and the overall performance
of an XML database management system (XDBMS). Be-
cause of the complexity of XQuery and performance de-
mands of XML query processing, efficient path processing
operators – including those for tree-pattern queries (so-called
twigs) – are urgently needed for which tailor-made indexes
and their flexible use are indispensable. Although XML in-
dexing and storage are standard problems and, of course,
manifold approaches have been proposed in the last decade,
adaptive and broad-enough solutions for satisfactory query
evaluation support of all path processing operators are miss-
ing in the XDBMS context. Therefore, we think that it is
worthwhile to take a step back and look at the complete pic-
ture to derive a salient and holistic solution. To do so, we
first compile an XMIS wish list containing what – in our
opinion – are essential functional storage and indexing re-
quirements in a modern XDBMS. With these desiderata in
mind, we then develop a new XMIS scheme, which – by
reconsidering previous work – can be seen as a practical
and general approach to XML storage and indexing. Inter-
estingly, by working on both problems at the same time, we
can make the storage and index managers live in a kind of
symbiotic partnership, because the document store re-uses
ideas originally proposed by the indexing community and
vice versa. The XMIS scheme is implemented in XTC, an
XDBMS used for empirical tests.

Keywords XML storage structures · XML indexing · XML
query processing · Node labels

C. Mathis · T. Härder · K. Schmidt · S. Bächle
Dept. of Computer Science, University of Kaiserslautern
E-mail: haerder@cs.uni-kl.de

1 Motivation

XML models semi-structured data and is the standard for
data exchange in many (Web) applications. To avoid con-
version, not only messages but also conventional DB data is
kept more and more in the XML format, often resulting in
huge documents or collections thereof that are managed in
specially tailored XML database systems (XDBMSs). Ap-
plications exploiting the full expressiveness of XML query
languages such as XQuery and its subset XPath, are often
confronted with system-dependent limitations. Besides lan-
guage coverage, query processing style directly determines
the XML awareness of query evaluation. For instance, rela-
tional backends need to adjust XQuery semantics and syn-
tax to suit the SQL-oriented storage and physical operators
available. Because the nested structure part of XML and the
content values play likewise important roles for query for-
mulation, numerous XML-aware operators were proposed
to enhance query processing. However, most of them only
provide partial solutions for subproblems of XML query pro-
cessing, like, for example, path matching or axis evalua-
tion. Additionally, many proposals make too strong assump-
tions on document characteristics and the underlying phys-
ical storage. Thus, these proposals may pay off for special
types of queries, but, in general, quickly suffer from severe
performance penalties, making their general application and
success questionable.

Taking these deficiencies into account, we focus on a
native XDBMS infrastructure without precluding any XML
processing approach a priori through a combination of basic
and well-known database technologies. Internally, XDBMSs
have to implement space-optimized XML document storage
formats, for which they provide efficient access primitives
like navigation and subtree reconstruction, e. g., through a
scan. However, to answer declarative queries over these XML
stores, e. g., XQuery statements [36], basic access primitives

2

Content

Structural Join

Sequence-

XML Twig

Content-and-

Path

indexing

index

index

Structure index

based index

Summary-
based index

complete

partialindex

Tindex [22]

XB-tree [5]

IndexFabric [29]

1-index [25]

A(k) index [17]

F&B index [16]

ViST [32]

Fig. 1 Classification of XML indexing approaches

– for example, navigational operations of the DOM stan-
dard [32] or streaming operations as defined by the “Simple
API for XML (SAX)” [33] – often cannot deliver enough
performance to compute a result in sufficiently short time.
Therefore, secondary XML indexes of different types are
essential to guarantee satisfactory performance for at least
some important types of queries (e. g., for path queries and
tree-pattern queries). In particular, structure and content in-
dexes are important, because they effectively support those
XML queries, which require structural matching for path ex-
pressions or node relationships together with content evalu-
ation for value joins and comparisons. Furthermore, the per-
formance of an XML query processor heavily depends on
the potentially expensive operation of path pattern match-
ing. This operation occurs frequently, because even multi-
ple paths are often defined in a single query; and it may be
expensive, because path evaluation may require physical ac-
cess to the document, in contrast to almost all other con-
structs of an XML query language [36], which are evaluated
on the output generated by path matchings. The performance
of path pattern matching would be boosted, if entire XML
queries or large fractions thereof could be processed in a
way that access to (cached) indexes is sufficient and docu-
ment reference is avoided at all as, e. g., often achieved in
relational DBMSs using B*-tree indexes and tuple ID (TID)
references.

In this paper, Section 2 tries to reveal weaknesses con-
cerning current index approaches and proposes two wish
lists for XML document stores and indexes. Section 3 gives
a description of the essential concepts forming our XML
storage format together with a performance evaluation of the
major operations supported. In contrast to the uncontrolled
growth of XML indexing approaches (see Fig. 1), Section
4 proposes a minimal set of concepts used for XML index-
ing and shows that all existing index types can be derived
by specializing content-and-structure (CAS) indexes with-
out any performance penalty. We assess the related work in
Section 5, where we can – in the light of our wish lists –
identify missing functionalities and properties of competitor
approaches. Finally, Section 6 wraps up with conclusions.

a)
f o r $ t in $d / / j o u r n a l
where $ t / / p a p e r / t i t l e =”XTC”
re turn $ t / p u b l i s h e r

b)

Fig. 2 Sample query: a) XQuery notation and b) twig representation

2 Use of Indexes

After more than a decade of XML research, a plethora of so-
lutions have been published on storage and indexing: e. g.,
storage in Binary Large OBjects (BLOBs), quite a number
of mappings to relational tables (aka “shredding”), and var-
ious tree-to-page mappings, i. e., “native” formats, among
others. Moreover, we know an even more impressive vari-
ety of index structures, which are classified in Fig. 1, where
only a single reference (standing for numerous proposals) is
given per class.

Even the combined functionality of all these proposals
does not provide the desirable index support of an XDBMS.
For example, an index covering path expression //a/b/c

cannot cheaply answer a query //a[b/c], which is, how-
ever, urgently needed for the processing of complex path ex-
pressions. Often, those queries form complex tree patterns,
so-called twigs [5] as shown in Fig. 2b. Moreover, most in-
dexes are not selective, i. e., they often unnecessarily have
to index complete documents, thus leading to high update
costs. A third point is the inflexible clustering of the indexed
data that inherently depends on the index structure and also
leads to expensive post-processing operations. And above
all, most index proposals are “stand-alone or abstract”, be-
cause they are not embedded into a system context – most
notably, a smooth integration with the underlying document
store and the node labeling concept is missing.

We briefly reconsider a representative fraction of these
approaches by trying to evaluate a small sample query (see
Fig. 2), where we refer to an XML document fragment used
as a running example. The dotted line (see Fig. 3) separates
its structure part (i. e. the inner tree nodes) from its con-
tent part (i. e. the leaves carrying the data values). Regarding
TID-style processing in XML, we identify some weak points
that – to our knowledge – have not been properly addressed
so far: The reviewed index proposals fail to provide inner
nodes on the indexed path without expensive document ac-
cess or post-processing.

The XQuery statement depicted in Fig. 2a shall be eval-
uated on the document in Fig. 3 (referenced by $d). This
query can be illustrated as a twig [5] (Fig. 2b) and returns

3

bib

4711 VLDB Springer

2009

Haustein

18 1

XTC

. . .

1

1.1.1.1.1 1.1.1.3.1 1.1.1.5.1

1.1.1.7.1.1 1.1.1.7.3.1 1.1.1.7.5.1

1.1.1.7.9.1.1 1.1.1.7.9.3.1

journals
1.1

journal
1.1.1

issue
1.1.1.7

journal
1.1.5

publisher
1.1.1.5

name
1.1.1.3

issn
1.1.1.1

issue
1.1.1.9

no
1.1.1.7.3

vol
1.1.1.7.1

year
1.1.1.7.5

35XML Schmidt
1.1.1.7.7.1.1 1.1.1.7.7.3.1 1.1.1.7.7.5.1

paper
1.1.1.7.7

author
1.1.1.7.7.3

title
1.1.1.7.7.1

pages
1.1.1.7.7.5

1234 TAS 1993Gray
1.3.1.7.11.3.1.1.1 1.3.1.3.1 1.3.1.5.1

book
1.3.1

author
1.3.1.5

title
1.3.1.3

isbn
1.3.1.1

year
1.3.1.7

books
1.3

. . .

25Mathis
1.1.1.7.9.5.1 1.1.1.7.9.7.1

paper
1.1.1.7.9

author
1.1.1.7.9.3

title
1.1.1.7.9.1

pages
1.1.1.7.9.7

author
1.1.1.7.9.5

. . . price
1.3.1.9

1.3.1.9.1
59.95

. . .

. . .

Fig. 3 XML fragment labeled with DeweyIDs

all publishers whose journals contain a paper with the title
“XTC”. The output node name and the comparison opera-
tor are highlighted. As in the relational world, indexes in
XML should be secondary access structures and, therefore,
optional. Thus, in our discussion, we successively add dif-
ferent types of indexes to the physical layout of our XML
database resulting in the following five alternatives:

Alt. 1: No secondary indexes: The query has to be eval-
uated directly on the document store. In native XDBMSs,
those document stores [39] can support streaming (SAX)
and navigational (DOM) access [32]. Query evaluation over
streamed XML has been discussed in various papers, e. g.,
[3]; navigational processing is the backbone of the XQuery
Formal Semantics [7].

Alt. 2: Content index: In the navigational setting above,
our sample query can only be evaluated top-down, i. e., start-
ing by matching the query root journal, navigating to the
paper children, etc., thus, possibly visiting many interme-
diate nodes that do not lead to an “XTC” title. A content
index [23] (inverted list) can alleviate this situation by en-
abling bottom-up navigational evaluation: The content index
returns all occurrences of the string “XTC” in the document,
which are used as entry points for the navigational evalua-
tion of the structural part.

Alt. 3: Element index: These index structures enable a
merge-join-based evaluation of twig queries [5] by inverting
(inner) XML elements, too. The Holistic Twig Join (HTJ)
applied to our example computes the twig matches on a set
of sequences, one for the “XTC” content nodes (from the
content index) and one for each name test such as paper
(from the element index).

Alt. 4: Content-and-Structure index: Our query tree has
two subpaths: //journal[.//paper/title=‘‘XTC’’] and
//journal/publisher. So-called hybrid or content-and-
structure (CAS) indexes [19,20] deliver tailor-made support

for the evaluation of the first subpath. Those index structures
can directly evaluate simple path expressions consisting of
steps on the child (/) or descendant (//) axis and a content
predicate. In our sample query, we can substitute the left
branch of the query by an index scan operator that delivers
all journal elements. The remaining subpath can be evalu-
ated using alternatives 1 or 3. In this scenario, the content
index would not be required.

Alt. 5: Path index: The above decomposition leaves the
path //journal/publisher open for further treatment. Pure
path indexes [9,26] support their evaluation: The left branch
is answered by a CAS index, the right branch by a path in-
dex. We only intersect the intermediate results on the journal
nodes.

2.1 Problems Observed

After this high-level discussion, you may be convinced that
the existing techniques sufficiently support the evaluation
of branching path queries without further ado. However, a
closer look reveals several weak points:

Alt. 1 and 2 only pay off for extremely low (streaming) or
extremely high (navigation) selectivity queries: For stream-
ing, the complete document is accessed, while navigations
generate random I/Os and subtree traversals [39] (e. g., on
the descendant axis). Nevertheless, a native XDBMS should
implement at least Alt. 1 as a fall-back solution (similar to a
relational table scan).

Alt. 3 replicates the document, because all elements and
the content are duplicated in the indexes. This implies high
update costs. Furthermore, as our experiments will show, the
algorithmic result computation is often by an order of mag-
nitude slower than index combination (see Section 4.3.1).

In Alt. 4, the indexes are not expressive enough to di-
rectly evaluate //journal[.//paper/title=‘‘XTC’’].

4

The reason is that they fail to efficiently provide the required
sequence of (inner) team nodes: IndexFabric [18] and FLUX
[20] can only return leaf nodes or the document’s root node
(“document contains path”). To compute the internal nodes,
the ancestor paths have to be looked up implying accesses
to the document store. In Kaushik’s CAS Index [19], the
internal nodes are computed by using structural joins. On
all approaches, these additional processing steps may cause
substantial performance penalties (see Section 4.3.1).

Indexes for Alt. 5 run into the same expressivity prob-
lem. Furthermore, they impose an intrinsic clustering by par-
titioning the set of XML elements into extents, where all el-
ements in an extent comply with a specific property on their
incoming path(s). For example, in the A(k)-Index [18], all
XML elements in an extent have the same k “immediate”
ancestors (k-bisimilarity). Query processing on descendant
axes (//) often requires to merge these extents. In the A(1)-
Index on our sample document, entries for paper/author
and book/author are in different extents. A query on //Name
has to merge these extents resulting in further costs.

Another problem common to Alt. 3 – 5 is the index fo-
cus, which directly influences index size and maintenance
cost. In most of the above referenced papers, the authors
only argue about the size of the structural summary (that
defines extents), but not about the size of the extents them-
selves. Even in adaptive path indexes [6], all inner elements
of the complete document are contained in the extents. The
term “adaptivity” in these proposals refers to the refinement
or coarsening of extents, but not to the index’ extent size
adaptation. Indexing complete documents is comparable to
indexing all columns of a relational table, which is unneces-
sary most of the time and leads to unjustified update cost.

In general, XQuery gives application developers so many
degrees of freedom that the variety of evaluation strategies
for our little example query reveals only the tip of the ice-
berg. Especially twig queries may always be accompanied
by more complex predicates like optional branches, posi-
tional predicates, or arbitrary content predicates. The twig
in the extended query in Fig. 4, for example, is satisfied if
the paper’s title is either ‘‘XTC’’ or if there exist more
than 3 author children. Further, only the first author child
for each paper in a qualified journal is returned.

Obviously, storage structures and path processing algo-
rithms, optimized for a too narrow class of queries, can so
quickly become useless. Either they do not pay off, because
additional processing steps eat up their benefit or they can
just not be applied to a given query at all. Consequently,
it is questionable to develop a system only for a class of
queries assumed to be “typical”. Any XDBMS should not
only support a narrow class of applications, but should cope
with a variety of different workloads (which may be un-
known at design time), while delivering satisfying perfor-
mance. Therefore, we believe that a flexible infrastructure

a)

f o r $ t in $d / / i s s u e
where $ t / p a p e r / t i t l e =”XTC”
or c o u n t ($ t / p a p e r / a u t h o r)>3
re turn

$ t / p a p e r / a u t h o r [p o s i t i o n () = 1] $

b)

$d

issue

paper paper

authortitle

"XTC"
=

paper

author
pos=1#>3

Fig. 4 Extended sample a) query and b) twig

supporting efficient evaluation strategies for more than just
a single type of queries is mandatory to deal with the great
variety of queries and alternatives to answer them.

Of course, an objective comparison of all approaches
shown would be hard to accomplish and is not possible within
one paper (actually, this would mean to implement them in
one system and to find a fair benchmark). It is even question-
able, if such a comparison would be meaningful, because
many approaches have a completely different intention and
scope (e. g., “shredding” vs. “native”). But, we think it is
still worthwhile to reconsider XML storage and indexing,
because many of the above approaches concentrate on in-
dexing or storage, but not on indexing and storage. We there-
fore can illuminate the opportunities evolving from integrat-
ing indexing and storage in a single scheme. To concentrate
on the integrated use, we exploit well-known XML tech-
niques and DBMS core concepts whenever possible. Con-
sequently, we rely on research that has shown already the
flexibility, applicability, and usefulness of each single tech-
nique, before we come up with new ideas mostly based on
them.

2.2 The XMIS Wish List

We start our reconsideration by composing “wish lists” con-
taining what – in our opinion – modern XML applications
require from storage and indexing. Based on these desider-
ata, we then design our integrated XMIS scheme. As the
name “wish list” implies, we do not consider the desiderata
as normative, but nevertheless assume that they are mean-
ingful for many XML applications. For document stores, we
require the following physical properties:1

S1 Round-Trip: The store should provide some form of round-
trip property, that is, it should be able to export stored

1 To avoid an application-specific focus, these properties are not
ranked. For a universal approach, all properties should have the same
importance.

5

documents “without loss”. Some applications require strict
round-trip, in particular for document-oriented structures
such as books or contracts, meaning that the exported
result should be byte-wise equal to the originally stored
document. For most applications however, a lax round-
trip is sufficient, where the data model instances (e. g., in
the XML Infoset) of the stored and the exported version
comply. This is typically true for data-oriented applica-
tions.

S2 Storage/Scan: The store should support fast storage and
scan procedures: Scans are the basis for document and
subtree reconstruction, for the implementation of the SAX
interface, the fn:data() function, and XQuery result con-
struction. All of them are frequent operations for which
performance is mandatory. Fast storage operations are
required, because XML is a data interchange format and
an XDBMS frequently needs to receive and emit XML
documents.

S3 Navigation: For the realization of the DOM interface of
an XDBMS, navigational operations are required. Fur-
thermore, navigational primitives implement base oper-
ators for XML query processing.

S4 Modification: With the emerging and recently stabilized
XQuery Update Facility [37], all modifications become
first class citizens in XDBMSs. To ensure update per-
formance, modifications have to be carried out at a node
level (replacing only affected nodes), and not at a docu-
ment level (i. e., by replacing a complete document with
a modified version).

S5 Documents and Collections: Documents might come in
single instances of large documents or in large collec-
tions of small documents. No matter how, the store should
efficiently manage them.

S6 Succinctness: A space-efficient document store not only
saves storage, but also leads to reduced I/O and logging
and, thus, better processing performance.

Items S2 and S6 primarily address performance whereas
the remaining items target expressive power. You might miss
two points in these desiderata that are often associated with
XML storage, namely: XML Schema Validation and Version-
ing (i. e., keeping a history of modified subtrees in the store).
We do not consider these points as physical properties of an
XML document store, but rather as logical ones, that can
and should be implemented in a layer on top of the physical
store.

XML indexes play a major role in evaluating declarative
queries over XML data. As already stated, many different
types of indexes have been proposed. Here, we only consider
path indexing (as opposed to more sophisticated indexes),
because path queries frequently occur in declarative XML
query languages. Concerning our indexing scheme, we pose
the following requirements:

I1 Optional Use: As in relational systems, indexes should
be redundant, i. e. non-information-bearing access struc-
tures. This ensures that indexes can be created on de-
mand to trade query performance with maintenance cost
and space consumption.

I2 Expressiveness: Indexes should be able to answer path
queries supporting the child (/) and descendant (//) axes,
name tests, wildcards (*), and one optional structural or
content predicate, e. g., //paper[pages> 25]. This ex-
pressiveness is sufficient enough to answer single path
queries directly and branching path queries by index com-
bination, which are the fundamental elements of declar-
ative (X)query processing.

I3 Selectivity: Index selectivity, i. e., which paths are actu-
ally covered, should be user-defined. It ensures that a set
of indexes can be adjusted to document characteristics,
query workload, and maintenance overhead.

I4 Updates: The index should enable effective updates. De-
pending on index selectivity, not all document updates
lead to index updates. But, efficient mechanisms should
exist to discover when an index needs maintenance.

I5 Applicability: The test whether an index can be applied
for query evaluation should be simple and cost-efficient.
This task is similar to that of the previous requirement
thereby enabling complexity reduction and facilitating
synergies.

I6 Result Computation: An index should allow to retrieve
all elements on an indexed path. If an index exists, e. g.,
on the content of author nodes, it should also allow to
return all matching nodes on the paths to the document
root, e. g., for query //paper[author=‘‘Haustein’’]
the paper nodes. This is of major importance for the in-
tegration into a query engine because, otherwise, expen-
sive reconstruction of internal elements would become
necessary for subsequent processing.

I7 Efficiency: An efficient physical storage layout, adjusted
access algorithms, and effective locality properties are
crucial for the eligibility of an index.

I8 Minimality: In contrast to the variety of types and stor-
age structures proposed for XML indexing, the set of
different index types used in an XDBMS should be min-
imal and based on the same mechanism to be reused for
their implementation. Nevertheless, this minimal index
set should provide enough flexibility to cover the func-
tionality of all existing index proposals.

In the next sections, an integrated XML indexing and
storage scheme is developed that fulfills the requirements
posed in the above two lists. Based on the flexibility ex-
pected by XML applications and exploited by query lan-
guages, these requirements seem to be inevitable to liber-
ate the isolated use of tailored XML processing techniques.
Therefore, a carefully designed toolbox of index and storage
techniques is necessary to provide a robust, flexible, and ef-

6

ficient foundation for further optimization. Employing stan-
dard techniques2, this toolbox – our XMIS scheme – is real-
ized in XTC (XML Transaction Coordinator).

3 XML Storage

An XML storage scheme is actually a mapping from a hi-
erarchical XML instance, such as our running example in
Fig. 3, to a sequence of blocks on external memory. Early
approaches did not set a high value on items S2 to S4, be-
cause they focused on static XML documents. Nowadays,
flexible manipulation of dynamic XML documents and their
fine-grained modification in multi-user ACID transactions
are indispensable. For this reason, native mappings are prime
candidates to realize suitable XML storage structures.

Before we do so, however, we have to introduce three es-
sential ingredients: node labels, the path synopsis, and path
class references (PCRs).

3.1 Node Labels

In an XML storage scheme, node labels provide for logical
references to distinct nodes in an XML tree. Hence, the node
labeling scheme is the key to fine-grained, effective, and ef-
ficient handling of XML documents.

In the first place, a labeling scheme has to guarantee
uniqueness and order preservation of node labels. More-
over, if two node labels are given, the scheme should directly
enable testing of all (important) XPath axes: all axes rela-
tionships should be determined by computation only, i. e.,
access to the document (on external storage) is not needed.
XML documents definitely require immutable labels even
under heavy updates/insertions to guarantee stable node la-
bels during transaction processing. Therefore, they are a pre-
requisite for processing dynamic documents as required in
S4. Furthermore, a given document node label should enable
the reconstruction of all ancestor labels without accessing
the document. As we will see, cheap ancestor reconstruc-
tion is essential for items S6 and I6. Immutability and an-
cestor label computation have far-reaching consequences to
the DBMS-internal processing efficiency: These properties
greatly support intention locking for a specific node and all
its ancestor nodes on the entire path to the root [15]. They
also support efficient path matching, which is crucial for
query processing, especially in case of twig queries.

As explored in [12], a node identification mechanism
satisfying all these properties rests on a prefix-based label-
ing scheme for which a few variations are proposed: Ord-
Paths, DeweyIDs, or DLNs [27] are adequate and equiva-

2 All variations of document stores and index types are implemented
using B*-trees. With code reuse for the base structures, the tree entries
only differ in the representation of keys and values.

bib

journals

journal book

issn name publisher

 papervol no year

4 5 6

118 9 10

PCRs: 1

2

3 16

books

issue7

title author pages12 13 14

15

isbn title author17 18 19 year20 price21

Fig. 5 Path synopsis

lent for our use. Therefore, we prefer the acronym SPLID
(Stable Path Labeling IDentifier) as a generic reference to
such prefix-based labeling concepts. A SPLID consisting of
divisions can be represented (in the human-readable format)
by a variable-length, dot-separated integer list as illustrated
in Fig. 3. Hence, its size depends on the level of the node la-
beled. Therefore, a space-optimal implementation is manda-
tory, which is achieved by XTC using Huffman-encoded di-
visions. Furthermore, SPLIDs in lexicographical order lend
themselves to very effective prefix compression – exploited
by XTC for document store and all index reference lists. As
a consequence, the SPLID size ranges from 3 to 6 bytes in
the average and is, therefore, comparable to that of TIDs.

3.2 Path Synopsis and Path Class References

A path synopsis (see Fig. 5) is an unordered3 structural sum-
mary of all (sub)paths of the document. Each non-content
node belongs to a path class representing all path instances
having the same sequence of ancestor labels. To facilitate
the use of path classes, we enumerate them with so-called
Path Class References (PCRs) serving as a simple and ef-
fective path class encoding. PCRs are used links from index
or document entries to the path class they belong to.

The size of the synopsis depends on the document’s struc-
tural complexity. It can usually be stored in a single page on
external storage. For fast access, it should reside in a small
data structure kept in main memory. Note, the path synop-
sis is conceptually equivalent to a 1-Index [26] or a strong
DataGuide [9], and therefore originates from the indexing
community. In the path-oriented storage scheme, the synop-
sis is re-used to optimize document storage.

We want to emphasize the expressiveness of SPLIDs and
PCRs: a SPLID delivers all SPLIDs of its ancestor path,
while a PCR delivers – by means of the path synopsis – the
element and attribute names of the ancestor path. Together,

3 In the following, we are only interested in the path up to the root
for a given PCR. Therefore, the relative order among siblings is not
relevant, e. g., all permutations of elements issn, name, publisher, and
issue as children of journal may appear in the document.

7

they form a kind of coordinate system for the XML docu-
ment. For example, starting from an arbitrary node whose
SPLID and PCR are known, it is easy to reconstruct the
complete path instance the node belongs to. For example,
text node (“Gray”, 1.3.1.5.1, 19) enables without document
access to compute /bib/books/book/author/‘‘Gray’’.
Because a SPLID contains all its ancestor labels, all SPLIDs
along the path to the document root are delivered for free.

Because a path synopsis does not need order, mainte-
nance in case of document evolution (creation of new path
classes) or shrinking (deleting the last path instance of a path
class) is very simple. New path classes and related PCRs
can be added anywhere and existing, but empty path classes
do not jeopardize correctness of path synopsis use. Further-
more, hash-based access to the PCRs guarantees efficient
evaluation. Providing substantial mapping flexibility, effec-
tive lock management support, and also considerable speed-
up of query evaluation [13], the combined use of SPLIDs
and path synopses/PCRs turned out to be a key concept for
fulfilling many requirements stated in the wish lists.

3.3 Path-Oriented Document Storage

The logical representation of XML documents, as visual-
ized in Fig. 3, can be used to derive a more or less direct
mapping to a physical representation. Observing document
order (left-most depth-first), a straightforward approach in-
serts into a B*-tree an entry < SPLID,D,C > for each doc-
ument node, where SPLID is used as key, D is a descrip-
tor designating the node type (i. e., element, attribute, text,
etc.), and C is the encoded content. The content is a byte
sequence representing either a text node or, in case of ele-
ment and attribute nodes, a VocID reference (thereby replac-
ing the “long” external names) to a vocabulary entry. We
refer to the inner structure of the B*-tree as the document
index and the leaf pages as the document container. This
approach is called naive node-oriented storage scheme, be-
cause every node is explicitly stored. A slight variation of
the naive approach is the so-called prefix-compressed node-
oriented storage scheme (or pc for short), in which prefix
compression on the keys in the B*-tree is enabled, thereby
substantially reducing the SPLID space consumption (see
Table 2).

Collections of (small) XML documents can be stored by
creating a single document with a “virtual” root node for the
whole collection. This way, storage and indexing space is
shared and memory fragmentation is minimized in case of
many small collection documents.

The problem with the naive and the pc approaches is that
they are often “not succinct enough”. Further storage space
reductions are possible by consequently removing structural
redundancy. To measure the structural redundancy, we com-
pared the number of distinct paths P in a collection of real

1.1.1.1.1
5

4711 1.1.1.3.14
1.1.1.5.1 6

1.1.1.7.1.1 8 1.1.1.7.3.1
1 1.1.1.7.5.1 2009

XML12

XTC
9.3.113 Haustein

1.1.1.3 1.1.9

1.1.1.1.1 1.1.1.7.7.1.1 1.1.9 .. .

contentPCRs + admin(compression not shown) SPLIDs

document
index

document
container

1.1.1.7.9.7.1

9
10

1.1.1.7.7.1.1

121.1.1.7.9.1.1

14

SpringerVLDB
18

1.1.1.7.9.5.1
13 Mathis

1.1.1.7.

25

1.1.1.7.7.
3.1 13 Schmidt 1.1.1.7.7.5.114
35

Fig. 6 XML fragment of Fig. 3 stored in po format

world documents taken from [25] with the number of all
paths A in the same documents. In all documents, A was
several orders of magnitude larger than P. Our sample docu-
ment also reveals this kind of redundancy: The paper subtree
occurs multiple times; while the content values differ from
subtree to subtree, the structure remains the same.

The basic idea of path-oriented storage denoted by po is
to avoid to explicitly store the document structure by virtu-
alizing it, as depicted in Fig. 3. Only the text nodes below
the dashed line need to be stored. If we associate PCRs with
these text nodes, it is possible to recompute the inner doc-
ument structure for every path as explained in Section 3.2.
Therefore, whenever a reference to an inner node or a path
is required or an operation is applied, the desired node is
recomputed using its SPLID and the related PCR together
with the path synopsis.

As shown in Fig. 6, the physical po representation con-
tains an entry < SPLID,PCR,D,C > for each document’s
leaf node, where SPLID, D, and C are defined as for node-
oriented storage, and PCR refers to the text node’s parent
element. Because the SPLIDs are stored in lexicographical
order, we effectively apply prefix compression on them.

Again, we reconsider the new storage scheme based on
our wish list. Items S1 and S5 can easily be checked off:
Because the po scheme (similarly to naive and pc) cannot
encode inner element markup, only the lax round-trip prop-
erty is supported. Obviously, collection management can be
smoothly implemented. The remaining “wishes” will be con-
sidered in the following.

3.4 Performance Evaluation

To substantiate how the remaining wish list items are ful-
filled, we will briefly sketch the operational behavior of po
XML documents. To estimate the performance difference
compared to naive and pc storage, we give relative numbers
for the improvements achieved [21]. Our empirical evalu-
ation refers to the well-known XML document collection
[25] widely used for cross-comparisons. A summary of their
characteristics is listed in Table 1, where data size refers to
the plain format, i. e., the “external” XML format.

8

Table 1 Characteristics of XML data sets used

Aspect lineitem uniprot dblp psd7003 nasa
Data size (MB) 32.3 1,821.0 330.0 717.0 25.8

Nodes (Mio) 1.98 135.48 17.42 39.84 0.89
Max/avg depth 4/3.45 7/4.53 7/3.39 8/5.68 9/6.08

All performance measurements were run on a Xeon 2,66
GHz server with 4 GB main memory and 500 GB external
memory and Java Sun JDK 1.6.0. XTC was configured for
8 KB pages and 64 MB buffer.

3.4.1 Storage Consumption

We implemented all sketched storage schemes and measured
the storage consumption for our reference collection of real
world documents. Because all entries have variable length,
some administrative overhead (admin) is needed for byte
alignment. In the naive and the pc schemes, VocIDs were
encoded using 2 bytes. In po, a PCR required 1 byte.

As compared to the plain format, naive as the straight-
forward internal format typically achieves a storage gain of
∼10% to ∼30%, although the saving from VocID usage is
partially compensated by the need for node labels. Table 2
summarizes the results of dedicated experiments to deter-
mine the space consumption of the XML storage schemes
under consideration. Note, we focus on the relative saving
regarding the structure part only, because content compres-
sion is orthogonal and could be applied to either scheme.
Therefore, we have separated the influence factors contribut-
ing to the compression of structure entries. First, we con-
sider the influence of the label encoding. (Note, despite the
“obvious length” of SPLIDs, range-based or sequential la-
beling schemes [12] would consume more storage, because
they do not lend themselves to compression). For naive and
pc, uncompressed resp. prefix-compressed SPLIDs have to
be stored for all nodes in the document, whereas po only re-
quires prefix-compressed SPLIDs for the content part. Com-
puting the size reduction from column 3 to column 4 in Ta-
ble 2 tells us that that prefix compression is very effective;
the relative storage space needed for node labels is reduced
by a substantial margin, in our case by ≥ 76.8%. Neverthe-
less, the optimization from pc to po adds a further storage
gain of ∼40−55% (see column 6 of Table 2).

References and admin data are format-dependent. Only
content nodes carrying PCRs are stored in po format, whereas
VocIDs are needed for all element/attribute nodes in the naive
and pc formats. As listed in column 9 of Table 2, the relative
gain of po compared to naive/pc is considerable. Indicative
overall improvement factors (uniprot) are ∼47% for pc and
∼73% for po, respectively4. For our reference documents,

4 For uniprot, the structure-related saving of the pc and po formats
consists of 465 and 731 Mbytes w.r.t. the naive format. Content com-
pression would reduce the content part by 23−35%, in addition.

Fig. 7 Storage / reconstruction gains (po vs. pc)

these factors range from ∼40% to ∼52% for pc and from
∼70% to∼80% for po, respectively. To the best advantage,
our novel optimization step (from pc to po) accounts for a
space reduction of ∼50−58%.

3.4.2 Storage and Reconstruction

Due to space restrictions, we can only sketch the storage
and scan algorithms (item S2): For storage, a SAX parser
is used to simultaneously create the path synopsis and the
necessary B*-tree entries, when leaf nodes are encountered.
Again, the index can be built bottom-up [10], because the
entries are already sorted on their SPLID used as a key.

Document reconstruction starts at the left-most record
R1 in the document container, for which the root-to-leaf path
is reconstructed. Then, using SPLID arithmetics, the least-
common ancestor L of R1 and its next neighbor R2 is com-
puted. All nodes on R2’s root-to-leaf path below L are com-
puted, and so on. Hence, both storage and reconstruction are
scan-based methods with low memory footprint.

A first indicator for efficient processing is the overhead
for a document arriving in its external format (plain) to trans-
form and store it using the specific internal formats naive, pc
or po and, in turn, to reconstruct it again from the physical
storage representation. Obviously, these processing times are
more or less linearly dependent on the document sizes. Be-
cause the sizes of our reference documents differ almost by
two orders of magnitude, direct response times are hard to
compare. Therefore, we refer to normalized gains for both
storage structure optimization w.r.t naive. We define them as
Gpo =(tnaive−tpo)/tnaive∗100% and Gpc =(tnaive−tpc)/tnaive∗
100%, respectively. In Fig. 7, these gains are illustrated for
the document mapping resp. document reconstruction times
of all documents. The pc mapping overhead in both direc-
tions is more or less identical to that of the naive method,
but identifies a negative gain in some cases, i. e., slightly
higher mapping costs due to SPLID encoding. However, we
can show that storing a virtualized document is substan-
tially faster than using the naive (and pc) methods (∼14−
25%), Even po document reconstruction is more efficient in

9

Table 2 Storage consumption of XML documents in MB

Document Content
Structure

SPLIDs compressed SPLIDs naive/pc po gain in %
(naive) pc po %

lineitem 6.2 8.6 2.0 1.0 50.0% 8.0 3.9 51.2%
uniprot 668.9 582.7 117.7 70.2 40.3% 433.4 214.4 50.5%

dblp 174.2 71.1 16.7 8.8 47.3% 65.8 33.4 49.2%
psd7003 293.0 258.3 40.0 17.9 55.2% 161.1 69.3 57.0%

nasa 12.4 5.2 0.9 0.4 55.5% 3.6 1.5 58.3%

all cases (∼4− 5%), i. e., the computation overhead of the
structure part is more than balanced by I/O saving.

3.4.3 Navigation

Full DOM access (item S3) is provided by the po storage,
too. The four navigational primitives first child, last child,
previous sibling, and next sibling require only a single top-
down traversal of the document index (typically of height
≤ 2 and 1− 60 leaf pages of 16 KB) and a single access
to the path synopsis. Therefore, if the index as well as the
path synopsis are already present in memory, only a single
physical page reference is sufficient to execute any naviga-
tional operation. For brevity, we skip a detailed discussion
on how these navigational primitives are implemented. They
are quite straightforward. In summary, they translate to some
B*-tree lookup methods that work on prefix-based key com-
parisons.

In an XDBMS, navigational operations are either directly
executed via a given API (e. g., DOM [32]) or by the im-
plementation of XML query operators. Because execution
of single navigational operations is not very expressive, we
have designed a benchmark consisting of two tree walkers.
Both walkers T1 and T2 start from the root and apply the
operations first child / next sibling (T1) and last child / pre-
vious sibling (T2). In case of po, root and inner nodes are
virtual and have to be recomputed during the tree walk.

Fig. 8 shows substantial gains for po documents over pc
documents. In all cases, we achieved improvements, most of
them in the range ∼7−32% for T1, resp. ∼9−38%, for T2.
These gains are due to less I/O operations and shorter node
reconstruction times on the compact po documents.

3.4.4 Updates

No matter what kind of language model is used for doc-
ument modification, it has to be translated into node-at-a-
time operations, for which the corresponding DOM opera-
tions provide an appropriate example. The lion’s share of the
overhead caused by updates of nodes (names or values) or
by insertions/deletions of subtrees is carried by two struc-
tural features: B*-trees and SPLIDs. B*-trees enable loga-
rithmic access time under arbitrary scalability and their split

Fig. 8 DOM navigation gains (po vs. pc)

mechanism takes care of storage management and dynamic
reorganization. In turn, SPLIDs provide immutable node la-
beling such that all modifications can be performed locally.

Referring to Fig. 6, a context node cn (stored in the doc-
ument container) can be located either by navigation within
the document, via references from secondary indexes, or
via the document index. To delete cn’s descendants (subtree
deletion), all records whose SPLID starts with cn’s SPLID
have to be deleted. For example, in Fig. 3, the deletion of
the journal node labeled by 1.1.1 results in a deletion of all
records in Fig. 6 that start with 1.1.1. Because all entries to
be removed are stored consecutively in the B*-tree, fewer
entries have to be deleted compared to the pc format.

During the insertion of subtree s, we assign existing PCRs
to the values of those paths in s that conform to the path syn-
opsis; for all other paths, new PCRs have to be generated and
the path synopsis is updated accordingly. As before, inser-
tion affects a smaller set of consecutive entries as for pc.

A pc document contains an entry for each inner node n.
In po format, n is a virtual node. Thus, compared to pc, re-
naming of an inner node [32] is the only possibly expensive
operation in po, where all PCRs of leaf nodes in n’s subtree
(identified by n’s SPLID) have to be updated (additionally,
the path synopsis has to be altered, if renaming introduces
new paths to the document). For a performance evaluation
combined with index maintenance, see Section 4.3.2.

4 Indexing XML Documents

Path and tree pattern queries are essential ingredients in
XML query languages and matching such patterns in XML
documents is a frequently occurring task. Hence, their eval-

10

uation is critical to XDBMS query performance. Because
these patterns may be complex and their optimal evalua-
tion may depend on quite a number of parameters, e. g.,
XPath axes specified, element selectivities present, shape of
the document tree, clustering aspects, etc., the spectrum and
the richness of the different proposals concerning XML in-
dexing can be hardly overlooked. However, the uncontrolled
growth of index types, as stated in Fig. 1, and their hodge-
podge of implementation mechanisms is not recommend-
able for XDBMS use.

From a logical point of view, element indexes and con-
tent indexes are sufficient to evaluate – without scanning or
navigating the document – all types of set-oriented requests
needed for XQuery/XPath processing. An element/attribute
index refers to structure nodes, whereas a content index en-
ables direct document access via text values. These access
paths use SPLIDs to refer to the indexed nodes, which are lo-
cated via the document index. From a performance point of
view, however, the sole existence of both index types would
be disastrous. Furthermore, large parts of the document had
to be often accessed in a random node-at-a-time manner,
which penalizes performance twice, due to extensive I/Os
and unnecessarily large blocking potential to guarantee se-
rializable transactions. Therefore, indexes achieving much
more selective document access are mandatory.

As already stated in our wish list, we want to design in-
dexes that can evaluate simple (non-branching) path expres-
sions with an optional content predicate (item I2). Those ex-
pressions build the cornerstone of most XPath and XQuery
expressions. Our first definition states the shape of the sup-
ported queries more precisely:

Definition 1 A simple path query expression is formally de-
noted by p[T], where p = e1t1e2t2...ek is a path and T is an
optional content comparison predicate or an optional rela-
tive path without further predicates. Path p consists of de-
scendant (//) and child (/) edges ei, as well as element and
attribute node tests or wildcards ti. If T is a comparison
predicate, edge ek of path p refers to a node the value of
which can be Θ -compared. Predicate T is then of the form
C = [tk Θ vi] for a simple comparison or R = [vi Θ1 tk Θ1 v j]

for a range comparison, where Θ1 is suitably chosen from
{=,<,≤,>,≥,!=} and tk is an indexable element/attribute
or an indexable type (e. g., Integer, String, ID, etc.) and vi,
v j appropriate range boundaries. If T is a content predicate,
we call the query a content-and-structure (CAS) query; oth-
erwise, we call it a plain path query.

Examples Q1 = //journals//issue/[year != 2009]

and Q2 = //paper//[1 ≤ Integer ≤ 5] are CAS queries
on the document in Fig. 3. Q3 = //book[./price] and Q4
= //book/price are plain path queries with and without a
relative path predicate.

Note, our simplified path specification is fully compat-
ible to XPath and can easily be transformed into an XPath
expression, where the range comparison is replaced by an
XPath-conform and conjunction of two value comparisons,
and the type check is extended to a type cast. But, to ease
the index definition and query examples, in the following,
we use our simplified path specification from Definition 1.5

4.1 XML Index Types Minimized

Most indexing solutions proposed so far (see Section 5.2),
only exploit structure. To answer CAS queries efficiently,
the combined indexing of values and structure is necessary.
Therefore, we provide a hybrid index that captures content
and structure. The resulting access structure is called CAS
index and is defined as follows:

Definition 2 A CAS index on an XML document D is for-
mally denoted as ID(p,T), where the index path predicate
p is a simple path query (without a relative path predicate),
and T is the indexed content type (e. g., Integer, String, etc.)6.
For each leaf node n of D, an entry is contained in ID(p,T),
iff (C1) the parent element of n is contained in the result of
the evaluation of p against D, and if (C2) n matches the con-
tent type of the index definition. An index entry has the form
< C,SPLID,PCR >, where C is the content of the indexed
leaf node used as key. The keys of ID are in ascending order
w. r. t. T , while the SPLIDs (occurrences of n in D) are in
document order for one and the same key value.

Obviously, a CAS index is optional, and thus fulfills item
I1. It contains all values (of a certain type) that reside on a
certain path. Because every search tree enables checking of
all Θ -based value predicates, B*-trees are the best choice
for our base index structure. As an example, consider I0 =
I(/bib/journals/journal/issue/year, [Integer])

which indexes all values of element year in the related path
class, i. e., for each value vi occurring for year, a node refer-
ence list is maintained (in document order) which stores the
SPLIDs for nodes (records) having vi as a value.

When an index refers to a single path class (or a unique
leaf element name), all SPLIDs occurring in the reference
lists carry the same PCR. Therefore, the PCR can be fac-
tored out as index metadata resulting in homogeneous ref-
erence lists (see Fig. 9a). In contrast to such unique CAS
indexes, collective CAS indexes refer to several path classes
and, hence, carry multiple PCR values resulting in heteroge-
neous reference lists (see Fig. 9b).

5 Although we simplified the path specification for presentation pur-
poses, their XPath equivalent is used to express twig queries as well by
simply combining several path specifications (join) and, thereby, al-
lowing their application for twig operators.

6 Note, subscript D and type T are omitted where non-ambiguous.

11

1.1.1.7.9.5.1 1.1.1.7.7.3.11.3.1.5.1 1319 13

1.1.3.5.3.1

1945 1950 1990 1995

1.1.1.13...

2001 2005

1980 2000

. . .

A... Gray ... Mathis

G K

. . .

M P

. . .

collective CAS index
I(//author)

unique CAS index
I(/bib/journals/

1.3. ...

journal/issue/year)

b)

a)

PCR value

key

2009 2010

heterogeneous reference lists

homogeneous reference lists
1.1.1.7.5.1

Schmidt ...

1.1.1.9...13

PCR: 10

Fig. 9 CAS indexes

A content index is defined by ID(T), where D is the doc-
ument and T is the indexed content type. Obviously, CAS in-
dexes are expressive enough to “simulate” content indexes,
thus avoiding their separate implementation. If an XML doc-
ument stores only text values, a generic index //*[text]

would index all its content. If a document carries typed con-
tent other than text, we need specific typed content indexes
resp. CAS indexes to organize the typed values in B*-trees
and to inherit their salient properties such as range search.
For example, a CAS index defined by //year (with inher-
ited type [integer]) delivers all values under the path class
/bib/journals/journal/issue/year and the path class
/bib/books/book/year, whereas //*[integer] deliv-
ers all integer values in the document, i. e., values of the
elements issn, vol, no, etc. in addition.

To support plain path queries by indexes, we again have
to slightly modify our CAS indexing scheme. A plain path
index definition has the form ID(p), i. e., no content type in-
formation is given, where the entries stored in a plain path
index have the form < PCR,SPLID >. Examples are p1 =

// journal//paper/author or p2 = //books/book/author.
In contrast to a CAS index, where only leaf nodes are main-
tained, a path index inverts inner document nodes which are
not physically stored in po schemes. However, using path
synopsis and index entry, the referenced inner node can be
easily recomputed.

Eventually, a special form of a path index leads to an
element index: p3 = //author inverts all author elements.

In all cases discussed, an indexed value is associated
with a list of < SPLID,PCR > references to the related doc-

ument nodes. Such a combined reference enables together
with the path synopsis the reconstruction of the entire path
without accessing the document. In particular, an index de-
fined by predicate p3 contains all paths indexed by p1 and
p2. Furthermore, as a salient performance feature, their variable-
length reference lists can be defined by <PCR,SPLID> for
PCR clustering or by < SPLID,PCR > for SPLID cluster-
ing (within potentially very long reference lists).

Note, XTC indexes rely on a single B*-tree-based in-
dexing scheme which is more expressive than all schemes
together summarized by Fig. 1 (item I8). Compared to those
conventional content and element indexes, which deliver only
the respective node references, we obtain the entire structure
information via path synopsis and PCRs for free. This mech-
anism makes our structure-oriented indexes much more flex-
ible and expressive. CAS indexes are particularly powerful,
because a large share of matching queries can be evaluated
solely on the index structure. Only when additional nodes
are needed for output, access to the disk-based document
is inevitable. This is even true when CAS indexes refer to
documents in po format, i. e. with virtualized structure part.
Therefore, indexing SPLIDs and PCRs is the key to effi-
ciently implement item I6, i. e., the computation of inner
elements on an index result without document access.

4.2 Index Maintenance

Upon creation of CAS index I, a record including I’s in-
dex definition ID(p,T) is inserted into the metadata catalog.
This allows us to recompute the set of PCRs for p on the
path synopsis of document D at any time. To avoid perpet-
ual evaluation of p, we cache the result in the path synopsis
to cheaply decide index matching for queries and the need
of index update after document modifications [22].

Generally, there are two types of modifications: The first
type does not alter the path synopsis while the second one
does. Subtree insertions/deletions for the first type can be
handled as follows: For each content node n in the affected
subtree, its parent’s PCR p is inferred from the path synop-
sis. If any index definition’s PCR set in the metadata con-
tains this PCR (hash lookup), the modification is propagated
to the corresponding index, because n is contained in that
index. Modifications altering the path synopsis trigger a re-
computation of PCR set deltas on demand. Then, the same
process as described above updates the indexes.

As an example, consider index I(//author) on our
sample in Fig. 9b, where the PCR set {13,19} involved can
be derived from the path synopsis (see Fig. 5). If we alter
for the first paper depicted the content of the author node
to “Bächle”, we can infer PCR 13 from the affected content
node and detect that our index has to be updated. If we add a
path bib/videos/video/author so far non-existing, we
have to alter the path synopsis, resulting in new PCRs (say

12

22, 23, and 24 (for author)); PCR 24 is then added to I’s
PCR set, before the index is updated as above. Note, because
the path synopsis is unordered, we do not need to reassign
PCRs at any time, thus, PCRs are stable.

4.3 Quantitative Results

In the experiments, we focus on the speed-up gained by in-
dex use. Because the anticipated results are strongly depen-
dent on the values and selectivities present, our set of refer-
ence documents did not allow for simple cross-comparisons.
Our reference documents used so far cannot be generated
and, therefore, do not provide comparable selectivities (for
nodes or paths) when predicates are evaluated. Instead, we
used generated XMark [31] documents where these proper-
ties could be controlled. This fact greatly enabled scalabil-
ity considerations with comparable structural properties and
value distributions. We used the same runtime environment
as described in Section 3.4.

4.3.1 Index-Supported Queries

The four queries Q1−Q4 of Table 3 – evaluated on docu-
ments of sizes 10 MB, 100 MB, 500 MB, and 1GB – rep-
resent typical XPath/XQuery expressions and give some in-
sight on how suitable path and CAS indexes influence over-
all query performance. The reported response times are the
average over 10 runs; final result materialization is excluded
because it is the same for all evaluation strategies.

Table 3 also shows various indexes for our performance
evaluation. To better illustrate storage size and cardinality
properties (items I3 and I7) of each index, we included the
statistics of the primary storage – document index D – for
each document.

Query evaluation on document index D always repre-
sents the baseline (item I1). A full scan is required, i.e., each
node has to be fetched from disk. Thus, document sizes di-
rectly correlate with processing times, where the additional
evaluation of simple predicates as in Q2 and Q4 is negligi-
ble. Detailed performance figures for Q1,Q2 and Q3,Q4 can
be found in Table 4 and 5, respectively.

Twig query Q1 definitely benefits from tailored path in-
dexes P1, P2 because they allow to evaluate the path expres-
sion without document access, i.e., their index definitions
completely cover the query paths (item I3). Consequently,
Fig. 10 reveals runtime improvements in the order of several
magnitudes. As P2 perfectly matches the query pattern, in-
dex fetches were minimized which leads to optimal process-
ing times (item I7). Similarly, although no content predicate
needs to be evaluated, the CAS indexes C1, C2 are also appli-
cable, but slightly slower compared to the path-only variants
(item I5). Again, the more specific definition of C2 (i.e., PCR
set) pays off.

Table 4 Runtimes for Q1 and Q2

Case Q1 Q2
doc fetched runtime fetched runtime

D 10 140,463 266.1 140,463 271.1
100 1,400,423 3,032 1,400,423 3,058
500 6,924,339 15,204 6,924,339 15,498

1000 13,373,794 29,478 13,373,79 30,032
D,G 10 – – 0 0.8

100 – – 143 3.9
500 – – 93 3.1

1000 – – 74 2.6
D,P1 10 10,858 13.6 11,577 30.6

100 107,007 120.4 114,273 156.1
500 529,796 608.6 566,404 482.8

1000 1,024,635 1,181 1,095,523 1,566
D,P2 10 719 6.9 1,438 23.6

100 7,266 10.3 14,532 46.6
500 36,698 46.7 73,216 234.8

1000 70,888 93.9 141,776 453.3
D,C1 10 7,217 14 0 0.3

100 73,102 126.2 94 2.9
500 362,402 640.7 53 1.6

1000 701,369 1,222 32 1.3
D,C2 10 719 13 0 0.5

10 7,266 16 10 0.8
500 36,608 69.5 4 0.3

1000 70,888 136.7 4 0.3

 1

 10

 100

 1000

 10000

 100000

10 100 500 1000

qu
er

y
pr

oc
es

si
ng

 ti
m

e
in

 m
s

document size in MB

D
D+P1
D+P2
D+C1
D+C2

Fig. 10 Twig query Q1

 0.1

 1

 10

 100

 1000

 10000

 100000

10 100 500 1000

qu
er

y
pr

oc
es

si
ng

 ti
m

e
in

 m
s

document size in MB

D
D+G
D+P1
D+P2
D+C1
D+C2

Fig. 11 Point query Q2

13

Table 3 XMark documents, indexes, and queries

Document Size 10M 100M 500M 1000M

Query result size result size result size result size
Q1 : //australia//incategory[@category] 719 7,266 36,608 70,888
Q2 : //australia//incategory[@category = ”category432”] 0 10 4 4
Q3 : //closed auctions//closed auction/price 863 8,677 42,900 82,875
Q4 : //closed auction/price[text()< 0.2] 0 23 91 177

Index #pcr card size card size card size card size
DOCUMENT D 548 (all) 140k 9.1M 1.4Mio 91M 6.9Mio 450M 13.3Mio 872M
GENERIC CAS G : //∗∧ //@∗ 444 139k 5.1M 1,38Mio 39.7M 6.8Mio 170M 13.2Mio 316M
PATH P1 : //@category 7 139k 139k 107k 1.4M 529k 7.1M 1Mio 13.8M
PATH P2 : //australia//incategory/@category 1 719 8k 7266 90k 36k 483k 70k 942k
PATH P3 : //price 1 863 8k 8677 98k 43k 516k 83k 999k
CAS C1 : //incategory/@category 6 8219 172k 73k 1.5M 362k 7.9M 701k 15.4M
CAS C2 : //australia//incategory/@category 1 719 8k 7266 147k 36k 778k 70k 1.54M
CAS C3 : //price [double] 1 863 16k 8677 204k 43k 925k 83k 1.7M
ELEMENT E 514 149k 1.7M 1.4Mio 18.3M 6.9Mio 91M 15Mio 186M

Table 5 Runtimes for Q3 and Q4

Case Q3 Q4
doc fetched runtime fetched runtime

D 10 140,463 299.9 140,463 268.4
100 1,400,423 2,896 1,400,423 3,079
500 6,924,339 14,710 6,924,339 15,620

1000 13,373,794 28,523 13,373,794 30,211
D,E 10 863 6.1 1,726 22.6

100 8,677 8.6 17,354 63
500 42,900 42.2 85,800 567.1

1000 82,875 85 165,750 1,103
D,P3 10 863 6.1 1,726 22.7

100 8,677 8.9 17,354 66
500 42,900 40.4 85,800 564,6

1000 82,875 79.9 165,750 1,098
D,C3 10 863 11 2 0.5

100 8,677 17.5 23 0.8
500 42,900 82.3 91 2.7

1000 82,875 154.6 177 4.5

Adding a content predicate, shown in Fig. 11 for point
query Q2, led to similar results. Refining the scope of in-
dexes speeds up query execution; in Fig. 11, the CAS index
C2 performs best (items I2 and I7) among our index sce-
narios. To enable comparison with XML content indexes of
other systems, we added a generic CAS index G. This in-
dex G performs quite well, but is slightly slower than the
tailored variants while occupying drastically more storage
space. Note, query evaluation using path indexes requires
additional lookups for each PCR match on document index
G resulting in substantially increased processing cost.

The simple path query Q3 is expected to benefit from a
path index. The results in Fig. 12 prove that path index P3
performs best, while the larger and “generic” element index
E is comparably fast. However, clustering of E heavily ben-
efits from the structure of the XMark documents where only
a single path contains the price tag. Although CAS index C3
is also applicable, it delivers longer runtimes due to its larger
size resulting in a worse buffer behavior.

Query Q4 is a typed range query, where the predicate
matches content nodes with a value less than 0.2. Fig. 13
shows that path index P3 is equally fast compared to the
“generic” element index E, but both require document ac-
cess for each index node to evaluate the content predicate.

 1

 10

 100

 1000

 10000

 100000

10 100 500 1000

qu
er

y
pr

oc
es

si
ng

 ti
m

e
in

 m
s

document size in MB

D
D+E
D+P3
D+C3

Fig. 12 Path query Q3

The type mismatch also makes all standard (i.e., untyped)
content indexes like the generic CAS index G less valuable,
because they require a full scan due to their default (string-
based) sort order. In contrast, the typed CAS index C3 is
perfectly suited to answer the query without any document
access at all (item I6) and, therefore, delivers the best result.

Eventually, the number of index fetches directly trans-
lates into processing costs. Furthermore, the costs depend
on index type and existence of a content predicate. A CAS
index delivers nodes ordered by content, whereas a path in-
dex delivers nodes in document order, i.e., SPLID-ordered.
In case of path index use and predicate evaluation, document
access is necessarily leading to random IO. In general, the
generic index variants G and E deliver acceptable results,
but have poor locality due to their considerably larger scope
and size. The fine-tuned path and CAS indexes, tailored to
query patterns, are always the fastest alternative. Optional
index typing augments the expressiveness of indexes (item
I2) and supports typed querying.

4.3.2 Document/Index Maintenance

Finally, we checked document updates and index mainte-
nance based on the indexes of Table 3 to illustrate the over-
head of the different index types. Additionally, we measured

14

 0.1

 1

 10

 100

 1000

 10000

 100000

10 100 500 1000

qu
er

y
pr

oc
es

si
ng

 ti
m

e
in

 m
s

document size in MB

D
D+E
D+P3
D+C3

Fig. 13 Range query Q4

the costs of combinations of G and E as well as C1 and
C3. The setup G+E is close to typical setups in other ap-
proaches where the query engine relies on plain content and
element indexes. C1 +C3 exemplifies our view of a good
XML index setup: smaller PCR-powered indexes, focused
to perfectly support the actual workload.

We measured the time needed for inserting 1000 item
subtrees, sampled beforehand from a large XMark instance,
to have both representative sizes and structural properties
for the scenario. We added a price element with a random
value to each item and inserted them at a specified position
to ensure that each subtree insertion affects defined indexes.

The processing times for D in Fig. 14 represent the base-
line, because the document index is updated multiple times,
i.e., for each new leaf node. The cost for updating D is there-
fore also included in all other timings. Clearly, indexing all
content nodes (G) is a performance and scalability threat.
The random value distribution quickly results in bad buffer
hit rates impaired by forced flushes of dirty pages. In con-
trast, the focused CAS indexes (C1 and C2) scale gracefully
due to their smaller sizes. As explained in Section 4.2, PCRs
make it easy to decide whether an update has to be propa-
gated to an index or not (item I4). Thus, the affected in-
dexes can be efficiently identified and their maintenance just
causes normal B*-tree updates (item I7).

The structure-only indexes E, P1 and P2 scaled with grow-
ing document sizes. Surprisingly, even the overhead of the
element index which inverts every single element node var-
ied only in the range of∼60−80%. This pleasent behaviour,
however, is only half the truth. The subtrees were sequen-
tially inserted at the same position resulting in densely as-
cending SPLIDs and thus high locality for updates of SPLID-
clustered indexes. With insertions at random positions, we
would observe a bad behavior of E similar to G, while P1
and P2 retain better locality due to the much smaller size.

At last, the results of G+E and C1 +C3 make the pic-
ture complete. As seen in the previous section, generic in-
dexes on all element and content nodes – reflecting the clas-

 500

 1000

 1500

 2000

 2500

 3000

10 100 500 1000

p
ro

c
e
s
s
in

g
 t
im

e
 i
n
 m

s

document size in MB

4990 55891 83926

5555 58994 91861D
E
G
G+E
C1
C2
C3
C1+C3
P1
P2

Fig. 14 Insert performance

sical setup – provide good support for query processing. But,
their maintenance cost is unacceptable. In turn, our PCR-
based CAS or path indexes easily achieve the same or better
query response times, but with minimal maintenance over-
head. Whenever necessary, additional PCR-based indexes
with different scopes can be defined or deleted. Like C1+C3
shows, their overhead simply accumulates and allows to bal-
ance query performance and update cost as desired.

5 Assessing Competitor Approaches

In the end, we consider some recent storage and indexing
approaches w. r. t. our wish list, but first a word on node
labeling. Quite a large number of storage and indexing pro-
posals rely on a range-based node labeling scheme. Even if
gaps are left in the labeling space, these proposals sooner or
later run into trouble, when the document is modified, be-
cause a prohibitively expensive relabeling may be required.
Further, the expressiveness of these node labels does not al-
low to return inner elements from indexes without document
access or some structural join, as required by item I6.

5.1 Storage

SystemRX [3] stores a document by grouping structurally
related nodes into regions, which are then mapped to physi-
cal pages. Thereby, the goal is to keep subtrees intact. A spe-
cial region index provides the “glue” to reconstruct the XML
tree. The document store of SystemRX fulfills all items of
our storage wish list. However, structure virtualization as
in our approach is not possible. A detailed comparison be-
tween subtree clustering (SystemRX) and sequentially stor-
ing neighboring nodes (as in our approach) w. r. t. XML pro-
cessing is an open research issue. Furthermore, SystemRX
provides a similar indexing facility as our scheme, offering

15

optional, selective, and user-defined indexes. However, lit-
tle to nothing is known about their implementation, the way
updates are processed (item I4), and whether inner elements
can be reconstructed (item I6).

As in our approach, the authors of [1] suggest a struc-
tural summary for storage. They do not use the summary to
virtualize the document, i. e., to enable path-oriented stor-
age, but to manage extent lists, one for each path class. Each
extent list contains all nodes and values on the correspond-
ing path. Sedna [8] follows the same concept, but uses two
extend lists per path class to separate structural from content
nodes. As a result, both approaches have implicite path in-
dexes resp. CAS indexes for all path classes available. How-
ever, the document order is lost, and expensive joins have
to be executed to reconstruct the stored document (item S2).
Furthermore, navigation and update handling (items S3 and
S4) become more complex and produce random I/O. Sedna
tries to improve structure reconstruction with direct and in-
direct pointers for parent/child and sibling relationships, but,
in turn, this leads to higher storage consumption (item S6).

Shredding-based mappings like in MonetDB/XQuery [4]
or XRel [38] often use a schema-agnostic concept, which
stores elements, attributes, and text nodes in separate tables
and answers XML queries through derived relational ac-
cess plans. MonetDB/XQuery additionally uses the tailored
Staircase join operator [11] for faster path processing. As
structural relationships are encoded in special label columns
of each table, document reconstruction also requires costly
joins of the tables containing the shredded information (item
S2). Additionally, the labeling schemes used are not stable
and updates may require a relabeling of large fractions of
a document (item S4). Specialized XML indexes are not
required by these approaches, but query processing can be
supported with conventional indexes on relevant columns.

The SUCXENT++ scheme [28] is another shredding ap-
proach storing only the leaf nodes and a structural summary.
But, it does not exploit the salient features of SPLIDs and
encodes the document “geometry” using additional columns
and tables. Document modifications lead to a re-computation
of this geometric data for the complete document, which is
prohibitively expensive (item S4).

The storage layout of the eXist system [24] is similar to
our node-oriented storage. All nodes are labeled by DLNs
[12] and stored in document order in consecutive data pages.
To speed-up navigation and direct node access, element nodes
at higher document levels are indexed by a conventional B*-
tree. Their descendants have to be searched using DLN com-
parisons in the data store. By default, eXist indexes the la-
bels of all elements and attributes by their name for query
processing. Content predicates can be supported with lim-
ited CAS indexes of the form I(//<label>, [<type>]).
Thus, eXist addresses all items S1 – S6, but does not achieve
the efficiency and compactness of our path-oriented approach.

Finally, the NoK (Next of Kin) storage approach [39]
separates structure from content and encodes the structural
part as a string, using a bracket-based notation. The result
is a quite succinct representation. But, because node labels
are missing, the document can only be indexed using byte
offsets (done to keep the relationship between the structural
and the textual document part). Such offsets are, however,
fatal in case of document updates (item S4).

5.2 Indexing

Plain content indexes, such as Lore’s TIndex [23], suffer
from the missing ability to answer the structural part of a
CAS query. To match the structure, they have to access the
document resulting in random access patterns and bad query
performance (violating items I6 and I7). However, content
indexes can be combined with path matching algorithms,
such as holistic twig joins. Nevertheless, our CAS indexes
have always outperformed this combination in our experi-
ments.

Structural join indexes, like the XB-Tree [5] or the pro-
posal from [16], supply structural joins and holistic twig
joins with input data. The element index employed in the
previous section is also a structural join index. In general,
join indexes are not very expressive (item I2), because they
simply provide posting lists containing XML nodes with
some common property (e. g., with the same element name).
Furthermore, as we have seen, our path/CAS indexes are al-
ways one order of magnitude faster than the algorithmic path
matching via twig join and the join index (item I7).

Twig indexes are data structures that can directly eval-
uate branching path queries (i. e. twigs) with content predi-
cates. Sequence-based indexes [29] transform the document
into a string and the query into a pattern. Then, they apply
pattern matching to retrieve twig matches. The approach vi-
olates item I3, because the complete document is indexed.
Furthermore, in a twig query, the branches are order obliv-
ious (twig siblings impose no restrictions), while the se-
quenced pattern matched against a sequence-based index is
not. Therefore, to evaluate a twig, multiple patterns have to
be generated, matched, and combined (item I7). Finally, the
sequenced document is hard to maintain (item I4).

The disk-based F&B-Index [35] inverts the complete doc-
ument (item I3) and defines quite a complex mapping to
storage (not relying on standard access structures). Further-
more, some very sophisticated access algorithms are required
to actually compute a twig result. The question of how such
an index can be maintained is still open (item I4).

IndexFabric [30], FLUX [20], and the proposal in [19]
are CAS indexes. IndexFabric encodes the paths of a docu-
ment using a Patricia Trie. FLUX employs a B*-tree to store
content values together with a Bloom filter, into which the

16

values path is encoded. Reference [19] relies on a range la-
beling scheme, inverted lists, and a 1-Index [26]. All three
approaches do not provide for user-defined index selectiv-
ity (item I3), do not present maintenance algorithms (item
I4), and are not able to compute inner elements without doc-
ument access (item I6). Furthermore, FLUX’ Bloom filter
is hash-based, and, therefore, causes an unavoidable and ex-
pensive false-positive detection for each returned node, which
results in an additional document index look-up.

Path indexes come in two styles: complete and partial.
An example for the first type is the 1-Index [26]. Basically,
the 1-Index consists of a structural summary and, attached to
each node of the summary, some extents. As explained be-
fore, we also rely on the 1-Index. However, because we can
reconstruct inner elements, we do not need to store inner
extents (and we also do not need to join/merge extents for
query processing). A partial path index addresses the prob-
lem of structural complexity: For a highly irregular docu-
ment, the 1-Index can become quite large (in the worst case,
as large as the document). Therefore, partial indexes, like
the A(k) index [18] restrict the length of the indexed paths
to k. However, the A(k) index inverts the complete docu-
ment, thus violating item I3, and inner elements can also not
be computed out of its extents (item I6).

Further sophisticated approaches, such as materialized
views for XPath [2], offer more specific query evaluation
support for frequent query patterns. However, their main-
tenance overhead on updates is often painful due to costly
re-computations. Furthermore, decisions on index applica-
bility (item I5) become more and more complex, the higher
the expressiveness of the language constructs defining the
materialized view is. In contrast, our CAS index framework
offers scalable, flexible, and adjustable index support as well
as low-maintenance and index-matching costs.

6 Conclusions

In this paper, we proposed the XMIS approach for physi-
cal representation of XML documents with virtualized in-
ner structure and path indexes. It definitely fulfills many
meaningful requirements posed by XML applications. Key
to XMIS is the use of SPLIDs as node labels and of the
path synopsis [14], which both together enable fast com-
putation of structure nodes. This property is consequently
exploited to reduce storage space by structure virtualization
and to compute inner elements from index results. Actually,
because storage and indexing share many concepts and even
the same infrastructure (i. e., B*-trees), XMIS is easy to un-
derstand and to implement.

Compared to optimized vocabulary-based approaches,
our empirical evaluation revealed substantial savings in stor-
age consumption and considerable improvements of process-
ing times for storing and reconstructing XML documents.

Even navigation along virtualized document hierarchies de-
livered positive results. Because the document store is aware
of paths, index maintenance detection can be solved in a
very efficient way.

Adjusted to the document store, we designed a flexible
index mechanism for content and path indexing. The index
use was generalized such that the same implementation can
serve as a unique, collective, or generic index. A simple al-
gorithm based on path synopsis use achieves very efficient
index matching when a query predicate is to be evaluated.
Compared to the so far prevailing application of structural
binary joins or holistic twig joins for queries involving struc-
ture predicates and content predicates, we achieved substan-
tial improvements in the order of one magnitude or even
two. This is due to the replacement of joins by the use of
our specific CAS index supported by SPLIDs for the com-
putation and matching of the document structure.

In summary, the overwhelming fraction of known XML
storage and indexing proposals claims optimized performance
through huge storage redundancy by keeping the structure
nodes and by using differing code bases and structures for
various indexing approaches. In contrast, we have eliminated
storage redundancy to the extent possible by virtualizing the
document structure and simplified indexing by reducing it to
a single mechanism based on a proven code basis. And our
approach is backed by convincing performance results.

References

1. Arion, A., Bonifati, A., Manolescu, I., and Pugliese, A. Path Sum-
maries and Path Partitioning in Modern XML Databases. World
Wide Web 11:1, 117-151 (2008)

2. Balmin, A., Özcan, F., Beyer, K. S., Chochrane, R. J., and Pira-
hesh, H. A Framework for Using Materialized XPath Views in
XML Query Processing. Proc. VLDB: 60-71 (2004)

3. Beyer, K., Cochrane, R., Josifovski, V., Kleewein, J., Lapis, G.,
Lohman, G. M., Lyle, R., Özcan, F., Pirahesh, H., Seemann, N.,
Truong, T. C., Van der Linden, B., Vickery, B., and Zhang, C.
System RX: One Part Relational, One Part XML. Proc. SIGMOD:
374-358 (2005)

4. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J.,
and Teubner, J. MonetDB/XQuery: a fast XQuery processor pow-
ered by a relational engine. Proc. SIGMOD: 479–490 (2006)

5. Bruno, N., Koudas, N., and Srivastava, D. Holistic twig joins: op-
timal XML pattern matching. Proc. SIGMOD: 310–321 (2002)

6. Chen, Q., Lim, A., and Ong, K. W. D(k)-Index: An Adaptive
Structural Summary for Graph-Structured Data. Proc. SIGMOD:
134-144 (2003)

7. Draper, D., Frankhauser, P., Fernandéz, M., Malhotra, A., Rose,
K., Rys, M., Siméon, J., and Wadler, P. XQuery 1.0 and XPath 2.0
Formal Semantics (2004)

8. Fomichev, A., Grinev, M., and Kuznetsov, S. Sedna: A Native
XML DBMS. Proc. SOFSEM: 272–281 (2006)

9. Goldman, R. and Widom, J. DataGuides: Enabling Query For-
mulation and Optimization in Semistructured Databases. Proc.
VLDB: 436-445 (1997)

10. Graefe, G. and Larson, P.-A. B-Tree Indexes and CPU Caches.
Proc. ICDE: 349-358 (2001)

17

11. Grust, T., van Keulen, M., and Teubner, J. Staircase Join: Teach
a Relational DBMS to Watch its (Axis) Steps. Proc. VLDB: 524-
525 (2003)

12. Härder, T., Haustein, M. P., Mathis, C., and Wagner, M. Node la-
beling schemes for dynamic XML documents reconsidered. Data
& Knowledge Engineering 60:1, 126-149, Elsevier (2007)

13. Härder, T., Mathis, C., and Schmidt, K. Comparison of complete
and elementless native storage of XML documents. Proc. IDEAS:
102-113 (2007)

14. Haustein, M. P., Härder, T., Mathis, C., and Wagner, M. DeweyIDs
– The Key to Fine-Grained Management of XML Documents.
Proc. 20th Brazilian Symposium on Databases: 85-99 (2005)

15. Haustein, M. P. and Härder, T. An efficient infrastructure for native
transactional XML processing. Data & Knowledge Engineering
61:3, 500-523 (2007)

16. Jiang, H., Wang, W., Lu, H., and Xu Yu, J. Holistic Twig Joins on
Indexed XML Documents. Proc. VLDB: 273-284 (2003)

17. Kaushik, R., Bohannon, P., Naughton, J. F., and Korth, H. F. Cov-
ering Indexes for Branching Path Queries. Proc. SIGMOD: 133-
144 (2002)

18. Kaushik, R., Shenoy, P., Bohannon, P., and Gudes, E. Exploit-
ing Local Similarity for Indexing Paths in Graph-Structured Data.
Proc. ICDE: 129-140 (2002)

19. Kaushik, R., Krishnamurthy, R., Naughton, J. F., and Ramakrish-
nan, R. On the Integration of Structure Indexes and Inverted Lists.
Proc. SIGMOD: 779-790 (2004)

20. Li, H.-G., Aghili, S. A., Agrawal, D., and El Abbadi, A. FLUX:
Content-and-Structure Matching of XPath Queries with Range
Predicates. Proc. XSym: 61-76, LNCS 4156 (2006)

21. Mathis, C. Storing, Indexing, and Querying XML Documents in
Native XML Database Management Systems. Ph. D. Thesis, Ver-
lag Dr. Hut (2009)

22. Mathis, C., Härder, T., and Schmidt, K. Storing and Indexing XML
Documents Upside Down. Computer Science – Research and De-
velopment 24:1-2: 51–68, Springer (2009)

23. McHugh, J. and Abiteboul, S. Lore: A Database Management Sys-
tem for Semistructured Data. SIGMOD Record 26: 54-66 (1997)

24. Meier, W. eXist: An Open Source Native XML Database. Proc.
Web, Web-Services, and Database Systems, LNCS 2593: 169-183
(2002)

25. Miklau, G. XML Data Repository. www.cs.washington.edu/ re-
search/xmldatasets

26. Milo, T. and Suciu, D. Index Structures for Path Expressions. Proc.
ICDT: 277-295 (1999)

27. O’Neil, P. E., Pal, S., Cseri. I., Schaller, G., and Westbury, N. OR-
DPATHs: insert-friendly XML node labels. In Proc. SIGMOD:
903–908 (2004)

28. Prakash, S., Bhowmick, S. S., and Madria, S. Efficient Recursive
XML Query Processing Using Relational Database Systems. Data
and Knowl. Engineering 58:3, 207-242 (2006)

29. Prasad, K. H. and Kumar, P. S. Efficient Indexing and Querying of
XML Data Using Modified Prüfer Sequences. Proc. CIKM: 397-
404 (2005)

30. Sample, N., Cooper, B. F., Franklin, M. J., Hjaltason, G. R., Shad-
mon, M., and Cohen, L. Managing Complex and Varied Data with
the IndexFabric(tm). Proc. ICDE: 492-493 (2002)

31. Schmidt, A. R., Waas, F., Kersten, M. L., Carey, M. J., Manolescu,
I., and Busse, R. XMark: A Benchmark for XML Data Manage-
ment. Proc. VLDB: 974-985 (2002)

32. Document Object Model (DOM) Level 3 Core Specification, W3C
Recommendations (Jan. 2004)

33. Brownell, D. SAX2. O’Reilly Media (2002)
34. Wang, H., Park, S., Fan, W., and Yu, P. S. ViST: A Dynamic Index

Method for Querying XML Data by Tree Structures. Proc. SIG-
MOD: 110-121 (2003)

35. Wang, W., Jiang, H., Wang, H., Lin, X., Lu, H., and Li, J. Ef-
ficient Processing of XML Path Queries Using the Disk-Based
F&B-Index. Proc. VLDB: 145-165 (2005)

36. XQuery 1.0: An XML Query Language. W3C Recommendation
(Jan. 2007)

37. XQuery Update Facility 1.0. W3C Recommendation (17 March
2011)

38. Yoshikawa, M., Amagasa, T., Shimura, T., and Uemura, S. XRel:
A Path-Based Approach to Storage and Retrieval of XML Doc-
uments Using Relational Databases. ACM TOIT 1:1, 110-141
(2001)

39. Zhang, N., Kacholia, V., and Özsu, T.; A Succinct Physical Stor-
age Scheme for Efficient Evaluation of Path Queries in XML.
Proc. ICDE: 54-63 (2004)

Christian Mathis studied Computer Science from 1998
to 2004 at the University of Kaiserslautern. Since Oct. 2004
he was a Ph. D. student and since Oct. 2007 scientific staff
member at the DBIS research group lead by Prof. Härder.
He received his Ph. D. degree in Computer Science from the
University of Kaiserslautern in July 2009. For his Ph.D. the-
sis, he earned the Dissertation Award of the GI-Fachbereich
DBIS for the years 2009 and 2010. In the XTC project, he
explored various important aspects of XML query process-
ing. (http://wwwlgis.informatik.uni-kl.de/cms/index.php?id=36)

Theo Härder obtained his Ph. D. degree in Computer
Science from the University of Darmstadt in 1975. In 1976,
he spent a post-doctoral year at the IBM Research Lab in

18

San Jose and joined the project System R. In 1978, he was
associate professor for Computer Science at the University
of Darmstadt. As a full professor, he is leading the research
group DBIS at the University of Kaiserslautern since 1980.
He is the recipient of the Konrad Zuse Medal (2001) and
the Alwin Walther Medal (2004) and obtained the Honorary
Doctoral Degree from the Computer Science Dept. of the
University of Oldenburg in 2002. Since October 2010, he
is senior professor for research at the University of Kaiser-
slautern. Theo Härder’s research interests are in all areas of
database and information systems – in particular, DBMS ar-
chitecture, transaction systems, information integration, and
XML database systems. He is author/coauthor of 7 text-
books and of more than 280 scientific contributions with >

160 peer-reviewed conference papers and > 70 journal pub-
lications. His professional services include numerous posi-
tions as chairman of the GI-Fachbereich Databases and In-
formation Systems, conference/program chairs and program
committee member, editor-in-chief of Computer Science –
Research and Development (Springer), associate editor of
Information Systems (Elsevier), World Wide Web (Kluver),
and Transactions on Database Systems (ACM).

Karsten Schmidt studied Computer Science from 1999
to 2006 at the Technical University of Ilmenau. Since June
2006 he is a scientific staff member in the XTC project at
the DBIS research group lead by Prof. Härder. His main
interests are storage structures and indexes for XML doc-
uments and adaptivity in database management systems. He
received his Ph. D. degree in Computer Science from the
University of Kaiserslautern in September 2011.

Sebastian Bächle studied Computer Science from 2002
to 2007 at the University of Kaiserslautern. Since September
2007 he is a scientific staff member in the XTC project at the
DBIS research group lead by Prof. Härder. His main inter-
ests are concurrency control in XML documents and opera-
tor efficiency in XML database management systems.

