Datenbank Spektrum
DOI 10.1007/s13222-012-0112-8

SCHWERPUNKTBEITRAG

Compilation of Query Languages into MapReduce

Caetano Sauer - Theo Hirder

Received: 26 November 2012 / Accepted: 20 December 2012
© Springer-Verlag Berlin Heidelberg 2013

Abstract The introduction of MapReduce as a tool for Big
Data Analytics, combined with the new requirements of
emerging application scenarios such as the Web 2.0 and sci-
entific computing, has motivated the development of data
processing languages which are more flexible and widely
applicable than SQL. Based on the Big Data context, we dis-
cuss the points in which SQL is considered too restrictive.
Furthermore, we provide a qualitative evaluation of how re-
cent query languages overcome these restrictions. Having
established the desired characteristics of a query language,
we provide an abstract description of the compilation into
the MapReduce programming model, which, up to minor
variations, is essentially the same in all approaches. Given
the requirements of query processing, we introduce simple
generalizations of the model, which allow the reuse of well-
established query evaluation techniques, and discuss strate-
gies to generate optimized MapReduce plans.

1 Introduction

The popularity of MapReduce arises mainly from two fac-
tors: (i) distribution transparency, which enables users to
specify only the sequential, independent parts of the com-
putation, while the framework takes care of the execution in
parallel; and (ii) flexibility to implement specific data for-
mats, serialization schemes, partitioning functions, etc. Be-
cause of these characteristics, MapReduce hits an abstrac-

C. Sauer - T. Hirder ()
University of Kaiserslautern, Kaiserslautern, Germany
e-mail: haerder @cs.uni-kl.de

C. Sauer
e-mail: csauer @cs.uni-kl.de

Published online: 24 January 2013

tion sweet-spot, serving as a general tool for easily scaling
out data-intensive computations.

This paper focuses on efforts to push the programming
abstraction further by providing higher-level data process-
ing languages which resemble query languages like SQL
and XQuery. This allows users to specify computations us-
ing data processing operations such as selection, projec-
tion, grouping, aggregation, join, etc.—operations which are
cumbersome to implement directly in the MapReduce pro-
gramming model. Besides providing more specific opera-
tions, such languages also specify richer data models to
more conveniently represent user data and provide more ex-
pressive power to operations.

The flexibility of MapReduce aims to support some of
the requirements of Big Data, which involves a broader set
of computation patterns and data types than those provided
by relational databases. Therefore, SQL is considered too
restrictive for such scenarios. In Sect. 2, we elaborate on
these restrictions by defining a list of desired characteristics
for MapReduce query languages and provide a qualitative
analysis of existing approaches according to such criteria.

Having defined the desired characteristics of a higher-
level query language, we go back to the lower layer of
MapReduce and discuss how its computational model could
be adapted to improve the support for such languages. In
Sect. 3, we specify a slightly generalized model, which is, up
to implementation aspects, equivalent to that of Hadoop, the
popular open-source implementation of MapReduce. The
discussion of the generalized model serves mainly the pur-
pose of providing an informal but precise specification of
the actual features and tunings of MapReduce being used in
real applications. It aims to fulfill the gap between the basic
MapReduce programming model [5] and the one actually
used in practice. Furthermore, the specified model serves as
basis for the following sections.

@ Springer

mailto:haerder@cs.uni-kl.de
mailto:csauer@cs.uni-kl.de

Datenbank Spektrum

The process of compiling an instance of a query program-
ming model into the generalized MapReduce model is dis-
cussed in Sect. 4. As we shall see, the process is essentially
the same for all query languages presented in Sect. 2. It de-
pends only on an abstract definition of operators and their
composition as well as on their classification into blocking
or non-blocking.

In Sect. 5, we discuss the main aspects which impact the
performance of query evaluation in MapReduce. These fall
into two categories: (i) general query-processing optimiza-
tions, and (ii) distribution aspects of the MapReduce envi-
ronment. Because the first category fits in the widely known
domain of query optimization, we will focus on the second
class of problems. We show how some of these problems
can be solved within MapReduce, either by customizing the
framework or by injecting knowledge about the data, while
others are inherent to the computational model.

Finally, Sect. 6 draws our conclusive remarks, focusing
on future work and related approaches.

2 Query Languages Reconsidered

The emergence of MapReduce alone does not justify the in-
troduction of new languages for data processing. Because
it is nothing but a generic infrastructure for data-intensive
parallel computations, the choice of a higher-level language
depends only on the targeted application scenarios. If we
consider business-oriented data processing, which is the tra-
ditional use case of relational databases and OLAP/OLTP,
SQL is perfectly suitable, and we could move directly to the
discussion of compiling SQL into MapReduce.

The context of Big Data, however, is not only about
technical requirements such as scalability, availability, or
elasticity—it is mainly about different application scenarios
than those for which scalable databases are designed. Given
their relevance in current technology trends, we identify two
major classes of applications. First, there is the new con-
text of Web 2.0, in which the rate of data production reaches
the petabyte-per-month scale and the technical requirements
widely vary from those of relational databases and ACID
transactions. Second, there is the context of scientific com-
puting, in which the amounts of data being processed were
traditionally small when compared to the computation and
communication loads of typical tasks, but the increasing fre-
quency of data-intensive loads narrows this gap, posing new
architectural challenges.

In the case of scientific computing, the challenges of
Big Data arrive in two opposite directions. From one side,
we have tools for statistical computing and data analysis
such as R and MATLAB, which are primarily designed
for single-machine use and are thus incapable of scaling
with ever-increasing amounts of data. On the other side,

@ Springer

we have high-performance computing (HPC), which deals
with scalable infrastructures, but whose focus lies primarily
at computation-intensive tasks. Thus, HPC models lack the
support for data-oriented workloads such as query process-
ing.

Because the Big Data challenges have a deeper technol-
ogy impact in HPC, the progress is obviously slower, and no
significant approach for languages or programming models
has been established yet. Therefore, our language analysis
will focus on the Web 2.0 context, which in fact has more in
common with database research and consequently receives
more attention within the community.

2.1 Analyzed Languages

Our analysis will focus on four languages: PigLatin [15],
HiveQL [18], Jaql [4], and XQuery [19]. We provide a qual-
itative analysis on how each of these languages overcomes
deficiencies of SQL, based on a list of criteria which are rel-
evant for query processing in Big Data environments. We
refer to this list as our query language wish list. Because in-
troducing each language is out of the scope of this paper, we
assume that the reader is familiar with their basic syntax and
data models.

Systems that implement these languages are beyond the
scope of this discussion, since they basically rely on MapRe-
duce as the execution engine. Furthermore, as we point out
in Sect. 4, we can discuss the compilation and execution pro-
cesses based on a dataflow graph model which is common
to all the considered approaches.

We chose these four languages not only because there
exist MapReduce-based implementations for them (for
XQuery, see [17]), but also because they have basic charac-
teristics of a query language: declarative, dataflow-oriented,
targeted at factual databases, etc. Therefore, we do not dis-
cuss simple scripting languages for scientific computing,
such as Sawzall [16].

As a kind of wish list, we illustrate the properties of such
languages in the following.

2.2 Semi-declarative Nature

A common criticism to SQL is that, because of its declar-
ative style, complex queries are often hard to express and
understand. An SQL query is a monolithic entity, whose
simplification into smaller parts is not very intuitive. For a
query composed of SELECT, FROM, and WHERE clauses,
for instance, the more advanced user understands that first
the data is fetched from the tables as specified in the FROM
clause, then it is filtered according to the WHERE predicate,
and finally the columns of the result set are extracted as de-
fined in the SELECT clause. For complex queries, this step-
by-step division is crucial for human understanding, and the

Datenbank Spektrum

monolithic style of SQL can become a burden. Therefore,
we believe that a semi-declarative style is better suited. Even
though the “declarativeness” of a language is hard to mea-
sure, it is clear that expressing queries in a step-by-step style
sits in between the abstraction levels of SQL and lower-level
procedural access paths. Hence, we make use of the term
semi-declarative.

Note that explicitly expressing the order in which opera-
tions are applied does not inhibit the query optimizer from
reordering them to produce more efficient execution strate-
gies. If anything, it introduces a decision criterion for when
it is hard to choose an optimal strategy, namely the order of
operations preferred by the user.

In the semi-declarative model, queries are composed in
a manner which corresponds closer to that of the algebraic
representation or logical plan. Consider, for example, the
following Jaql query, which counts the number of persons
over the age of 18 in each city:

read (hdfs ("person.txt"))
-> filter $.age >= 18
-> group by ¢ = $.city as grouped
into { city: ¢, count: count(grouped) }
-> write (hdfs ("output.txt"))

Note how the “->” syntax, which represents function com-
position, emphasizes the sequence of operations applied to
the input data. After being read from a file, the records are
fed into the £i1ter operator, and then to the group by op-
erator, and so on. This compositional characteristic is used
in the algebraic foundations of query processing, as well as
in the logical query plan representation.

The semi-declarative style is incorporated in PigLatin by
means of variable assignments. The output of each operator
is assigned to a variable, and these variables are then used
as input to other operators. A query plan is then built by
tracking the dependency of these variables. This variable-
based composition is also available in Jaql, as an alternative
to the function composition syntax, and it represents a very
flexible and powerful way of enabling the user to compose
arbitrary dataflow graphs of operators.

In XQuery, the semi-declarative style is present in
FLWOR expressions, which are composed of a sequence
of clauses which can occur multiple times and in any or-
der. The semantics dictates that each clause in the sequence
consumes a tuple stream from the previous clause, thus re-
sembling a query plan. FLWOR expressions, however, have
the same monolithic characteristic of SQL queries, because
the clauses do not exist as an independent language con-
struct, such as a function or an operator. Instead, a whole
FLWOR block is treated as a single expression, and the flow
of tuples from one clause to another is hidden in its inter-
nal semantics. This means that XQuery is less flexible and

elegant than Piglatin and Jaql when it comes to composing
queries as dataflow graphs.

We believe that the graph-oriented approach is more
powerful, because the output of an operator can be fed into
different processing streams. Such functionality, which re-
sembles the UNIX command tee, is useful for large com-
plex queries, which apply an initial transformation step (e.g.,
to clean the data), which multiple (not necessarily indepen-
dent) computations rely on. The only restriction is that such
graphs are acyclic (i.e., DAGs), because cycles introduce
complex termination issues into the evaluation process.!

HiveQL, which is based on a relational model and is de-
signed to be similar to SQL, suffers from the same draw-
backs as SQL. Unlike XQuery, it does not emphasize the
sequence of clauses and does not allow multiple clauses.
Hence, it is a purely declarative language.

2.3 Nested Data Model

Several Big Data applications prefer to store data in a de-
normalized manner. From the technical perspective, there
are well-known trade-offs from database literature in stor-
ing data in normalized vs. denormalized form, and such dis-
cussions are out of the scope of our study. From the per-
spective of data modeling, the decision depends only on the
workload and data relationship patterns of a particular ap-
plication. Hence, a query language should provide thorough
support for both formats.

The problem which we identify with SQL is that, even
though its latest versions support nesting through lists, tu-
ples, and multisets, the language has poor support for oper-
ations on nested data. Furthermore, database engines are not
designed to efficiently store and process nested data. This
means that users are forced into choosing a normalized de-
sign, even when the denormalized approach would be more
applicable. Therefore, we consider proper support for a fully
nested data model and its transparent integration in the lan-
guage’s operations an important point in our wish list.

HiveQL follows the SQL approach. It deals with data
stored in tables, whose column types can be atomic values as
well as the typed data structures list, map, and struct. A list
is an arbitrarily long sequence of values of the same type; a
map is an associative array; and a struct is a fixed-length set
of attribute names and values. These types are composable,
which allows combinations like, for example, a list of maps
of structs.

The drawbacks of HiveQL are essentially the same as in
SQL, namely that there is no query support for data con-
tained in these data structures—the only access method is

! Although cycles are necessary to model more “exotic” operations
such as recursive queries.

@ Springer

Datenbank Spektrum

through get operations. A further problem is that the struc-
tures used to store and manipulate data—tables or collec-
tions of tuples—are not available as types to the program-
mer. This characteristic is related to the over-declarative na-
ture of queries, and it also has an impact on the wish for
transparent UDF support, as we discuss later on.

One important characteristic, which is present in both
PigLlatin and Jaq], is that the types of data items and their
collections are explicitly defined in the language and made
available to the user. We refer to these types as the element
type and the bulk type, respectively. In SQL and HiveQL,
we have tables as the bulk type and tuples as the element
type. It is not possible, however, to define the value of a col-
umn or a function argument as a tuple or table.” If the types
were available in the data model, it means that an operator
is nothing but a function on the bulk type, and this is a key
characteristic that enables the flexible, graph-oriented, and
semi-declarative style mentioned earlier. In PigLatin, a bag
is used as bulk type and a tuple as element type. In Jaql, we
have, correspondingly, arrays and records.

The XQuery data model is based on the idea that every-
thing is a sequence. A sequence is an ordered, arbitrarily
long list of items, and a single item has no distinction to a
singleton sequence containing it. A sequence may not con-
tain another sequence as one of its elements, but an item
may be an XML node, which enables nesting by creating
trees of nodes. The use of XML as basis for the data model
has advantages and disadvantages. Despite being an ele-
gant and general format for representing various shapes of
user data, it is cumbersome from the programming perspec-
tive, because there is no notion of data structures or abstract
data types. This means that there is no convenient way of
implementing composite types like lists, dictionaries, ma-
trices, and such. Instead, the only way to build composite
nested structures is by creating a tree of XML elements.
Even though it allows to simulate a wide range of data struc-
tures, the tree representation destroys any property of the
data structure, restricting the access method to the much
slower path navigation. Furthermore, XQuery hides its ele-
ment and bulk types—tuples and tuple streams—as internal
structures.

Nevertheless, the generic approach of modeling data us-
ing just trees has some advantages. First, because XML
nodes have an identity, it is suitable for object-oriented pro-
gramming and data management. Second, because of the re-
cursive nature of trees and the composability of XQuery,
there is no restriction on the kind of queries that may be
executed on nested data.

ZNewer revisions of SQL actually include the types MULTISET and
TUPLE, but they are not used transparently as the type of stored tables
and intermediate results.

@ Springer

2.4 Transparent UDF Support

Given the wider applicability of query processing in Big
Data scenarios, it is crucial for a query language to allow
a seamless integration of user-defined functionality. In Big
Data Analytics, users must often integrate functions imple-
mented in languages like R or MATLAB, in order to accom-
modate complex data analysis algorithms. One example in
XQuery is the following query, which filters a collection of
emails based on the isSpam UDF:

for $e in collection("emails")
where !isSpam(Se)
return Se

Internally, isSpam probably applies a machine learning al-
gorithm, which would be cumbersome to implement in
XQuery itself. Hence, it is crucial for the query language to
support extensibility by allowing the definition of external
UDFs and treating them transparently like any other (built-
in) function.

If the user prefers to have a more homogeneous environ-
ment by implementing all functions in the query language
itself, the expressive power of the language should not be
a limitation. This point is where SQL falls short, because
it defines a separate language (SQL/PSM) for procedural
code, which has a rather “exotic” syntax when compared
to popular procedural and functional languages. This im-
plies that the database system must provide two separate
evaluation mechanisms: one for procedural code of UDFs,
and one for dataflow graphs of queries. We believe this ap-
proach is not only redundant, but also prone to inefficien-
cies, because query optimization logic may not be directly
applicable to procedural code. XQuery, in contrast, offers
full-fledged support for recursive functions, and its compo-
sitionality allows FLWOR expressions to be used not only
for bulky user-data processing, but also for simple iterative
computations. This approach relies on the foundations of
functional programming to unify the query and UDF en-
vironments, providing transparent integration in the query
language as well as optimization potential to UDFs.

Jaql provides the same functionality by means of higher-
order functions, but it goes one step further by exposing
bulk and element types. Hence, UDFs can also be used as
operators, because they are nothing but higher-order func-
tions. The integration of user-defined operators and its im-
pact on query optimization, however, is a complex problem
which must be researched on its own. We refer to work in the
Stratosphere project [10] for UDF optimization techniques
in the context of dataflow models more general than MapRe-
duce.

HiveQL and PigLatin have limited expressive power, be-
cause they support neither recursive nor higher-order func-
tions, and also have limited procedural capabilities, because

Datenbank Spektrum

of the lack of constructs for control flow, such as looping
and conditional statements. Therefore, they do not suffice as
a general-purpose (but data-centric) programming language.

2.5 Partial Schema Definition

The definition of a schema allows data to be processed more
intuitively, by referring to structures by name, as well as
more efficiently and type-safely, by specifying types. Sim-
ilar to other points in this wish list, SQL is too strict when
it comes to schema definition, because it enforces the com-
plete schema specification before enabling any processing
on the data. The specification must be precise, which is a
limitation for ad-hoc scenarios where the exact schema of a
particular dataset cannot always be known in advance. For
Big Data scenarios, which have a strong ad-hoc nature and
often deal with self-describing data, it is crucial to allow
data processing to start right away, freeing the user from the
tedious task of defining schemas for data which is already
available.

This does not mean, however, that the language should
not support schema at all, because it has major advantages
for the user. As in other points of this wish list, it is im-
portant to give the user the freedom to specify an amount
of schema information which he judges convenient. Using a
partial schema, the user is allowed to specify the basic struc-
ture of the data, representing unknown types with a wild-
card such as the * symbol. One may wish to specify, for ex-
ample, a table with four well-defined columns and one fifth
column for miscellaneous data, which can occur in various
shapes or which the user simply has no knowledge about.
The task of the query processor in such cases is to take ad-
vantage of as much type information as possible to speed up
query execution.

Jaql and XQuery are the only languages with support
for partial schemas. In XQuery, the types of items are or-
ganized in a single hierarchy, in which anyType is the root.
This allows unknown schema information to be specified us-
ing general types, based on type substitution. A schema can
then be refined simply by specifying more specific types.
Item types are then combined with a cardinality to build se-
quence types. Cardinalities can be zero, one, zero or one,
zero or many, and one or many. Because every instance of
the XQuery data model is a sequence, a schema in XQuery is
simply a collection of sequence types. Furthermore, because
it is based on XML Schema [20], it provides powerful rules
to specify various shapes of documents in different levels of
rigor.

Jaql has a much simpler approach, based on a pattern lan-
guage similar to regular expressions. Atomic types are spec-
ified by their names, and composite structures are specified
using a straight-forward syntax. For example, a record with
id as its first attribute, a second optional url attribute, and

arbitrary fields after that can be specified as {id: string,
url?: string, *}.

The disadvantage of Jaql is that there are no user-defined
types, which means that schema information is only a con-
straint on possible values of a domain, but it does not spec-
ify a domain on its own. Thus, it is not possible for users to
specify types that occur multiple times within an application
and refer to them by name. Furthermore, the schema facil-
ity of Jaql basically relies on dynamic typing, which has the
downside that there is no type safety in the query language,
which is in fact an expected feature when defining a schema.

HiveQL, like SQL, enforces the use of schema, while
PigLatin uses an all-or-nothing approach—bags are either
completely untyped or have a full SQL-like schema. One
disadvantage of Piglatin towards HiveQL, though, is that
data structures are untyped. Hence, it is not possible to spec-
ify a map from strings to integers, for instance—all that can
be specified is a map. This is a rather primitive and inflexible
approach when compared to the other languages.

2.6 Generality

Apart from XQuery, all the languages that we analyzed
were developed with the primary goal of expressing MapRe-
duce jobs at a higher level of abstraction. Despite also aim-
ing, rather as a secondary goal, at being applied in more
generic data processing scenarios, in practice they have
found no use outside MapReduce processing. Because of
such a MapReduce-driven development, features that sup-
port the use case of traditional database systems are not in-
cluded. For example, there are no statements for inserting
or updating stored data, no data definition sub-language, no
transaction-related statements, etc. In essence, MapReduce
query languages are designed specifically for large-scale
batch processing, when in fact the same data model and se-
mantics can be applied to wider data management scenarios.
It is therefore a relevant point in our wish list to require gen-
erality, in order to support heterogeneous environments in a
versatile manner.

3 A Generalized MapReduce Model

The programming model of MapReduce has become widely
known, and hence we assume that the reader is familiar with
its basic structure. Nevertheless, for the sake of complete-
ness, we provide a quick overview of a parallel job execu-
tion, which is illustrated in Fig. 1.

The execution starts by exploiting data parallelism in the
input dataset, dividing it into partitions called splits. Each
split is processed independently by a map task, which is as-
signed to run in one of the worker nodes. A map task iter-
ates over all key-value pairs of its input split, calling a user-
specified map function on each pair to produce a list of out-
put pairs. The pairs resulting from all map invocations are

@ Springer

Datenbank Spektrum

workery

o

workers
split 1 %
splitz |

split 3 workers

split 4 %
-

Fig. 1 Job execution in a MapReduce cluster

workery
workers

2 @)z

:' 52

44 S]

[N

workerg

T TN
P . pnTH

Ay

then concatenated, sorted, and divided into R partitions. In
Fig. 1, we have R = 3, which is represented by three shades
of gray coming out of the map tasks m;. These partitioned
outputs are stored in the local storage of the worker node
which executed the map task.

For each of the R partitions, a shuffle task is scheduled for
execution in a worker node. Its job is to fetch its correspond-
ing partition (e.g., task s, fetches the second partition) from
all the workers that completed the map tasks. The fetched
key-value pairs are merged into a single sorted list and then
grouped by key, which produces a list of keys associated to
lists of values. This list serves as input for a following reduce
task. Each reduce task works on a single partition. For this
reason, it may execute in the same worker node of the cor-
responding shuffle task. Similar to map tasks, a reduce task
executes a user-provided reduce function on each grouped
key-value pair. The pairs produced by reduce invocations
are finally concatenated to form the job’s output, which is
partitioned into R output sets.

The general structure of a MapReduce computation can
be organized into three phases: Mapper, Shuffle, and Re-
ducer. As noted in [13], the Mapper and Reducer phases
are essentially equivalent, in which they simply provide
the functionality of the well-known map function of func-
tional programming languages—namely applying a function
to each item of an input list. The only difference between
them lies at how they deal with inputs and outputs: Map-
per reads from splits and writes to partitioned lists; Reducer
reads from local Shuffle output and writes to output lists
on distributed storage. The first generalization we propose
comes from abstracting the input and output aspects away
from the actual phases. This allows us to model a MapRe-
duce computation as a sequence of Mapper-Shuffle-Mapper
phases, where the way in which each phase consumes input
and produces output is specified separately.

This elimination of the distinction between Mapper and
Reducer phases directly allows us to apply a further gen-
eralization: multi-stage jobs. The Shuffle phase essentially
performs a global group-by-key operation. In case, the task
to be executed involves a subsequence of two or more of
such operations, it is necessary to execute multiple jobs.

@ Springer

The problem with this approach is that, in concatenating the
phases executed in a sequence of two jobs, we have a Map-
per phase at the end of the first job (it replaces the Reducer
phase in our first generalization) followed by another Map-
per at the beginning of the second job. These two Mapper
phases are obviously redundant, and, what is worse, it tech-
nically means that data is completely written to distributed
storage, only to be read again in the following phase, in a
blocking manner. This is clearly a waste of time and band-
width. Therefore, we propose a generalization in which a
single job is composed of n Mapper phases interleaved by
n — 1 Shuffle phases.

A further generalization arrives if we look at what is ex-
ecuted sequentially inside a single map task. In order to im-
plement the functional map, the task iterates over each key-
value pair of its input, calls the user-provided map function’
on each pair, and concatenates the resulting pairs into a sin-
gle output list. We may allow the user to provide the task
code itself, which we refer to as task function, so that the
processing of a whole split or partition is abstracted. In the
query processing scenario, for example, this model enables
us to apply the iterator model to the input list, allowing ef-
ficient pipelined evaluation. Given this generalization, the
finest granule of parallel computation is a task, and we no
longer speak of the original map and reduce functions.

The last generalization we propose allows multiple inputs
at each phase, which is needed to implement binary opera-
tions such as joins. The key observation here is that a Shuf-
fle phase fetches scattered key-value pairs from the previous
Mapper phase to produce global groups. This means that, as
long as the keys belong to the same domain, it does not mat-
ter whether the key-value pairs were generated from a sin-
gle input or from multiple inputs. This also implies that the
tasks themselves may execute different functions, as long as
the produced keys are in the same domain. Therefore, we al-
low Mapper phases to run on k inputs, where a task function
is specified for each input. The Shuffle phase following a
multiple-input Mapper may then either combine any subset
of the k outputs produced, or execute on a single output as
in the original model.

An instance of our fully generalized model is illustrated
in Fig. 2, which depicts a multi-stage job composed of four
Mapper phases My, ..., M4. A phase is constituted of a se-
ries of task functions #;, each of which will spawn multiple
tasks when executed in a parallel setting. The linkage be-
tween these functions, which specifies the data flow, is de-
fined by input and output specifications which are attached
to each task function. We do not provide a precise specifi-
cation of how such inputs and outputs can be defined, but

3Note that the MapReduce authors ambiguously refer to map as the
first-order function that, in the functional programming setting, is ac-
tually a parameter to the higher-order function map.

Datenbank Spektrum

e o &
R @

M O

% L
M;

s (;)
2

Fig. 2 Generalized phase-oriented model

it suffices to say that data may be read from or written to
files on the distributed storage as well as on local disks, and
that it should include options like sorting and partitioning, in
order to properly simulate the original MapReduce model.

The job depicted in Fig. 2 corresponds to the same phase
structure that would be generated for a bushy four-way join
followed by a group-by operation, for example. In Sect. 4,
we explain how such a job is generated from the actual query
plan. Note that Shuffle phases always execute the same built-
in function s, which is the generalized version supporting
one or more Mapper inputs and producing a single grouped
output. This function always precedes a user-provided task
function in a Mapper phase. Hence, we could also illustrate
a job in our generalized model as a graph of task functions
t;, omitting the implicit Shuffle phases.

Despite being a generalization of the original MapRe-
duce model introduced in [5], our proposed model can be
fully implemented in Hadoop. Task functions and multiple
inputs are already supported, whereas the other generaliza-
tions, namely elimination of Reducer and multi-stage jobs,
can be simulated by sequences of multiple jobs with empty,
or identity, map/reduce functions. This simulation is obvi-
ously inefficient, but this is exactly the reason why the origi-
nal MapReduce model is not well suited for executing com-
plex queries. As we discuss in Sect. 5, there are alternative
approaches where our model can be simulated efficiently.

4 Translation Mechanism

The generalized version of the MapReduce computational
model, which we from now on refer to as GMR, serves as
target of the compilation mechanism. Before explaining the
actual compilation process, we establish an abstract model

for the logical representation of a query—the source for-
mat of the compilation. Any of the four languages discussed
so far can be fully expressed in terms of this model, which
makes use only of general assumptions that are relevant for
the parallel evaluation. As we established earlier, the popu-
lar MapReduce implementation Hadoop can be used to sim-
ulate the GMR model. Hence, we do not further distinguish
the GMR model from the original MapReduce model when
discussing the compilation process.

4.1 Query Plans

We assume that a query plan is a tree of operators. Later
on, we discuss techniques to generalize this assumption into
directed acyclic graphs. For now, the tree assumption simpli-
fies the discussion. Operators can be interpreted as higher-
order functions that consume and produce instances of a
bulk type (e.g., array, bag, or table). The operators in the
leaf nodes of the tree are special scan operators, which have
the purpose of fetching elements from stored datasets. Sim-
ilarly, the root is a sink operator, which delivers the result of
the query into a file or console.

The bulk type, which is the input and output type of op-
erators, contains instances of an element type, which are
the individual items fetched by operators. No assumption
is made as to what the structure of an element is. It may be
an associative list, a fixed-length set of attributes and values,
or a single complex item such as an XML node—from the
MapReduce perspective, it is only important to identify keys
and values, regardless of what the actual content of these
keys and values are.

To ease the nomenclature in the following discussions,
we assume, without loss of generality, that the bulk type is
array and the element type is tuple.

4.2 Compilation into GMR Model

In the GMR model, we have the concept of a task function
as the equivalent of a query operator. Like operators, task
functions are also composed into a tree in order to form a job
specification. Therefore, it becomes clear that the compila-
tion process is based on a mapping between operators and
task functions. Given this mapping scheme, the input/out-
put specifications of the task functions, i.e., the edges in the
graph, can be derived directly from the composition of op-
erators.

The mapping is based on the classification of operators
into blocking and non-blocking. The former are operators
which allow pipelined execution—as supported by the itera-
tor model (i.e., open-next-close)—by operating on one tuple
at a time [8]. This characteristic enables a data-parallel ex-
ecution, which is the key to mapping into MapReduce. In
fact, one may argue that “non-blocking” and “data-parallel”

@ Springer

Datenbank Spektrum

Fig. 3 Rewrite of query plan
(a) and its translation into task
functions (b)

l Select ‘

are equivalent definitions, in the sense that they imply each
other.

In the blocking category, we have operators for which
the value of at least one output tuple depends on the value
of more than one input tuple. Note that the common infor-
mal definition as an operator which buffers the complete in-
put before producing any output is more strict than the one
given. However, our definition simplifies the discussion, be-
cause it basically implies that we cannot generally assume
that a data-parallel execution is possible. Based on this def-
inition, a more formal definition for non-blocking operators
can be derived as the converse statement.

In the GMR model, the task functions which are executed
in Mapper phases are essentially non-blocking, because they
only operate on independent partitions of the input. Hence,
whatever operation is implemented by the user inside a task,
it can only be of non-blocking nature. Note that the defini-
tion of blocking and non-blocking depends on the granule
of the element type in consideration. In the GMR model,
we have datasets which are composed of partitions, which,
in turn, contain key-value pairs. If we consider the partition
granule, task functions are non-blocking, because their input
is a single partition. If we step down to the level of key-value
pairs, then we may have partition-wise blocking operators,
which are blocking with respect to pairs being processed by
a single task, but non-blocking with respect to the whole
phase input. The combine operation defined in the origi-
nal MapReduce model [5] is an example of a partition-wise
blocking operator, because it pre-aggregates the key-value
pairs of a single partition to speed up a blocking global ag-
gregation later on.

The shuffle function, which is executed by tasks of a
Shuffle phase (function s in Fig. 2), is a blocking operation,
because it implements a global sort and merge of the key-
value pairs generated by the previous Mapper phase. It is

@ Springer

Select ‘

Select ‘ ‘ Select ‘

e

the only blocking operation provided in GMR, and because,
contrary to a task function, it is fixed by the framework,
other blocking operations must be somehow simulated by
a shuffle. Therefore, the first step in the translation process
is to rewrite the query plan so that there is only one kind of
blocking operator, namely one that is equivalent to a shuffle.
In our query model, we make use of a Shuffle operator to
simulate the functionality of the GMR shuffle function.

The strategy to convert blocking operators into a Shuf-
fle is to make use of a post-processing non-blocking oper-
ator which, based on the sorted Shuffle output, rearranges
the tuples to produce the correct result. This is only possible
because a Shuffle essentially implements a multiple-input
sort-merge, which is a basic algorithm that can be used to
implement the Join, GroupBy, and Sort operators, for in-
stance. Figure 3a illustrates how a query plan with Join and
GroupBy operators is translated into sequences of Shuffle-
PostJoin and Shuffle-PostGroupBy, respectively.

Based on the rewritten query plan, we specify the map-
ping between operators and task functions. The Shuffle op-
erator, which is the only blocking operator in the rewrit-
ten plan, is trivially mapped into a shuffle function. Non-
blocking operators, on the other hand, have the property that
their composition is also non-blocking. Hence, we can map
a sequence of adjacent non-blocking operators into a single
task function. If we omit the Shuffle phase from the graphi-
cal representation and interpret the boxes on the right-hand
side of Fig. 3b as task functions, the resulting graph can be
interpreted as an instance of the GMR model.

Technically, this idea of “packing” a sequence of non-
blocking operators into a task function has the interesting
property that the iterator model may be used to evaluate
them. In fact, we may execute these “partial pipelines” us-
ing a standard database query execution engine, resulting in
a very efficient evaluation at the task level. This is exactly

T

(inputy)

Datenbank Spektrum

why it pays off to abstract away from map/reduce functions
and consider tasks as the finest computation granule.

4.3 Implementation of Common Blocking Operators

The basic operator to which all blocking operators must be
converted to is Shuffle. Figure 4 illustrates, at the bottom, a
Shuffle on two arrays of tuples. Here, we assume that tuples
are records with atomic values, as in the relational model.
The value of the first column of each input is used as group-
ing key. In our general model, we assume that a function
extractKeys is provided along with each task function that
precedes a Shuffle phase. This function takes a tuple as in-
put and delivers a sequence of atomic values, which are used
as keys in the GMR key-value pairs. In the example, extrac-
tKeys would be, for both inputs, a projection of the first col-
umn.

Note that the output is not grouped, as normally assumed
in the original MapReduce model. In a distributed setting,
the Shuffle operation performs a global rearrangement of the
key-value pairs by merging, sorting, and repartitioning. The
grouping operation is trivial to perform in the sorted output,
and, because it is not necessary for joining and sorting, we
abstract it from the task function.

The Sort operator is equivalent to a Shuffle with a sin-
gle input. Hence, no post-processing operators are needed.
A GroupBy is implemented by a single-input Shuffle fol-
lowed by a PostGroupBy, which simply groups adjacent tu-
ples that have the same key. This behavior corresponds to
a sort-based implementation of GroupBy. Note that, in this
case, it is assumed that the language supports a nested data
model, which means that groups can be formed within a tu-
ple without any implied aggregation. This is in contrast to
the relational model, where grouping is always attached to
an aggregation specification for each non-grouped column.

Fig. 4 Implementation of Join
using Shuffle and PostJoin

15| NY | 0 | null
10| CA | 0| null
1
1

BIWAlL] f
12 [MA[1] f
A

PostJoin

15 [NY |
10| CA |
0 [null |
35 [WA |
12 [MA |
1 f |
1] 8
0 h
A

1ffle

'J‘:'J".‘-l ©

Ao |o|o| o e

12 [MA
sy
b | 35 | WA b
[a 10| CA a

L= Kzl

To implement Join, a Shuffle of two inputs is used. This
basically implements a kind of sort-merge join algorithm,
where the two inputs are “shuffled” together into a single
one before performing the actual join. The PostJoin operator
then buffers all input tuples with the same join key, i.e., all
adjacent tuples that deliver the same value for extractKeys.
These buffered tuples must then be separated according to
which input they come from and finally combined with a
Cartesian product. This behavior is illustrated in Fig. 4. Note
that the number of matches for a single join argument value
is expected to be small, so the PostJoin computation can usu-
ally be carried out in main memory.

The separation of tuples in PostJoin is based on a tag
value which must be attached to the key-value pairs before
entering the Shuffle phase. This technique, referred to as
reduce-side join [21], may be implemented either by attach-
ing the tag to the tuple or by incorporating it into extrac-
tKeys. To keep the discussion at an abstract level, we assume
the existence of a function called extractTag, which identi-
fies whether a given tuple comes from the left or right input.
Note that the PostJoin execution can be optimized by using
the tag as a secondary sort key, which means that only tuples
from one input must be buffered.

4.4 Query Plans as DAGs

So far, we have only considered operators which produce
a single output, which results in tree-shaped plans. Multi-
ple outputs, that result in DAG-shaped plans, can be im-
plemented using a Split operator, which can be explicitly
generated from demultiplexing commands in the query lan-
guage (such as Jagl’s tee), or automatically by identifying
common sub-expressions in the query optimizer. In a tra-
ditional query evaluation mechanism based on the iterator
model, a Split operator introduces buffering concerns when
output branches consume tuples at different rates or points
in time. In the GMR scenario, however, the implementation
of a Split depends on whether or not blocking operators are
in the output branches.

For the output branches of a Split which contain only
non-blocking operators, the evaluation is carried out using
the task-level query evaluation mechanism, which has to
deal with the buffering issues mentioned above. Because it
stays at the task level, this kind of splitting does not involve
GMR shuffles, and hence the job graph will be tree-shaped.
This mechanism also works if the non-blocking branches
are all combined together later on by means of a join. In
this case, the (de)multiplexing logic is again hidden from
the GMR model by executing inside task functions.

In the case of blocking operators, we rely on the syn-
chronous execution of Mapper and Shuffle phases. Because
it is a blocking operation, a Shuffle cannot start until all

@ Springer

Datenbank Spektrum

Mapper tasks have finished.* Therefore, there are no buffer-
ing issues when demultiplexing, and the Split operator can
be implemented by multiple task functions whose input
specifications are based on the same source. The simulation
of this behavior in Hadoop may require the use of iden-
tity map and reduce functions, which, just like in multi-
stage jobs, introduce a performance bottleneck. We give an
overview of such issues in the following section.

For an overview of how the Split operator is implemented
in the Pig query engine, we refer to [7].

5 Performance Considerations
5.1 Query Optimization

Because the starting point for our compilation mechanism
is the query plan, we assume that standard query optimiza-
tion techniques such as predicate push-down, join reorder-
ing, projection, etc., have already been applied when being
submitted for translation. Nevertheless, there are issues to
be considered when dealing with the evaluation in MapRe-
duce. We give a brief overview of some of these issues in the
following discussion.

The first issue concerns the provisioning of statistical in-
formation for cost-based decisions. Because the MapReduce
environment does not assume exclusive control of the data, it
is not possible to keep and maintain statistics as it is done in
database systems. On top of that, the arbitrary complexity of
nested data, combined with the potential lack of full schema
information makes it difficult to select the domains on which
statistical information is collected. A simple approach to
solve these problems, which is only viable in batch-oriented
scenarios like MapReduce, is to run a preliminary sampling
job on a small (but hopefully representative enough) sub-
set of the complete dataset. Such a sampling technique pro-
vides us with estimations not only for cardinalities of input
datasets, but also for the selectivity and running time of each
operator.

An alternative to sampling arrives when we consider the
synchronous execution of phases in MapReduce. It enables
the query plan to be optimized on-the-fly. As each phase
completes, it may report its statistics back to the compiler,
which may then reorganize the plan sections in the following
phases. As an example of application, this techniques pro-
vides an elegant solution for implementing join reordering.
Regardless of the shape of the join tree (left-deep, bushy, or
right-deep), a task function is eventually executed for each

4Note that if we consider the implementation of Shuffle as a two-phase
step—first sorting each map task output locally and then globally merg-
ing all partitions—, the first phase can start before all map tasks are
completed. Nevertheless, because the merge phase still needs to wait,
the whole process is itself synchronous.

@ Springer

join input. Therefore, in an n-way join, we may execute the
n task functions independently. Then, based on the cardinal-
ities collected, the optimal shape of the join tree may be de-
rived. Join optimization in MapReduce has been discussed
in several publications [1, 14, 22].

If we step down into the MapReduce (or GMR) level,
cost-based optimization techniques can be applied to find
optimal values of distribution-related parameters such as the
number of tasks and partitions. Such techniques are intro-
duced in [9], which also provides relevant related work on
MapReduce optimization. Additional approaches, such as
Manimal [12] and Hadoop++ [6], try to optimize data access
on raw MapReduce programs (i.e., on the user-provided map
and reduce functions instead of on a query plan). Optimiza-
tion of dataflow operator graphs and MapReduce programs
is a topic which is currently under heavy research, and an
investigation of these techniques is out of the scope of this

paper.
5.2 GMR Simulation in Hadoop

The GMR model proposed in Sect. 3 can be implemented
in Hadoop, but, as we already eluded to, there are signifi-
cant performance bottlenecks in such a less general model.
The first, and perhaps most critical problem is the imple-
mentation of plans containing multiple blocking operators.
Because the framework does not allow multi-stage jobs, we
must simulate it using multiple jobs where all but the first
have empty Mapper phases. This implies that there are, for
each but the first phase, additional costs from reading and
writing the complete intermediate result one additional time.
This superfluous read-and-write operation is performed by
the empty tasks. Thus, the only solution for this problem is
the multi-stage generalization.

A further problem of MapReduce, which is also reflected
in our GMR model, concerns its inflexibility to implement
blocking operators. The translation into a Shuffle operator
requires cumbersome post-processing steps, especially in
case of the Join operator. Furthermore, it does not enable
the implementation of hash-based algorithms, restricting all
operators to sort-based strategies.

More general computational models based on parallel
dataflow graphs, such as Dryad [11] and Nephele [3], are
better suited to implement multi-stage jobs and efficient
blocking operators. These models not only provide higher
flexibility of building dataflow graphs—beyond the phase-
based approach of GMR—, but also offer a richer set of
input/output specification patterns to connect the nodes in
the graph. The flexibility to build arbitrary graphs with dif-
ferent edge connection patterns enables the implementation
of a wide range of blocking operators, whereas in MapRe-
duce there is only Shuffle. This allows the implementation
of more efficient join operators, which come close to the
performance of parallel database systems.

Datenbank Spektrum

6 Conclusion and Outlook

This paper provided an introduction to abstract query compi-
lation techniques for the MapReduce computational model.
The presented wish list of query language capabilities gives
an overview of the expressive power required by Big Data
applications. To fulfill the wish list, we need data processing
languages with more expressive power and flexibility. We
introduced four competing languages which attempt to fill
these needs, but as our qualitative analysis shows, none of
them is fully applicable, and there is still room for improved
proposals. Based on our evaluation criteria, we believe that
Jaql is currently the best suited data processing language for
Big Data.

The efficient support for the required capabilities intro-
duces new challenges for query optimization and execution.
Such languages better suited for Big Data Analytics signif-
icantly push the boundaries of the well-organized, closed
world of relational data. Based on the versatile and extensi-
ble query evaluation infrastructure of the Brackit project [2],
we have implemented a prototype for the XQuery language.
It currently provides comparable performance to the sys-
tems which implement the other three evaluation languages
[17]. More comprehensive measurements, including paral-
lel database systems and general parallel dataflow systems
such as Dryad [11] and Nephele [3], would be a valuable
contribution to the field.

On the MapReduce side, our generalized specification
aims to provide a proper level abstraction to discuss the
mapping of query plans. A direct implementation of our
GMR model allows a simplified compilation process, be-
cause there is no need to introduce Hadoop idiosyncrasies
such as empty tasks. On the other hand, our model does
not generalize too much, since it maintains the main char-
acteristics of the MapReduce programming model and can
be fully simulated by Hadoop. Therefore, we believe that
we achieved a proper compromise between the simplicity of
MapReduce and the power and flexibility of general parallel
dataflow models.

References

1. Afrati FN, Ullman JD (2011) Optimizing multiway joins in a map-
reduce environment. IEEE Trans Knowl Data Eng 23(9):1282—
1298

10.

11.

12.

14.

15.

16.

17.

19.

20.

21.

22.

Bichle S (2012) Separating key concerns in query processing—
set orientation, physical data independence, and parallelism. PhD
thesis, University of Kaiserslautern, Germany

Battré D, Ewen S, Hueske F, Kao O, Markl V, Warneke D (2010)
Nephele/PACTs: a programming model and execution framework
for web-scale analytical processing. In: SoCC, pp 119-130
Beyer KS, Ercegovac V, Gemulla R, Balmin A, Eltabakh MY,
Kanne CC, Ozcan F, Shekita EJ (2011) Jaql: a scripting language
for large-scale semistructured data analysis. Proc VLDB Endow
4(12):1272-1283

Dean J, Ghemawat S (2010) MapReduce: a flexible data process-
ing tool. Commun ACM 53(1):72-77

Dittrich J, Quiané-Ruiz JA, Jindal A, Kargin Y, Setty V, Schad J
(2010) Hadoop++: making a yellow elephant run like a cheetah
(without it even noticing). Proc VLDB Endow 3(1):518-529
Gates A, Natkovich O, Chopra S, Kamath P, Narayanam S, Olston
C, Reed B, Srinivasan S, Srivastava U (2009) Building a high-
level dataflow system on top of MapReduce: the pig experience.
Proc VLDB Endow 2(2):1414-1425

Graefe G (1993) Query evaluation techniques for large databases.
ACM Comput Surv 25(2):73-170

Herodotou H, Babu S (2011) Profiling, what-if analysis, and cost-
based optimization of MapReduce programs. Proc VLDB Endow
4(11):1111-1122

Hueske F, Peters M, Sax M, Rheinldnder A, Bergmann R, Kret-
tek A, Tzoumas K (2012) Opening the black boxes in data flow
optimization. Proc VLDB Endow 5(11):1256-1267

Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: dis-
tributed data-parallel programs from sequential building blocks.
In: EuroSys, pp 59-72

Jahani E, Cafarella MJ, Ré C (2011) Automatic optimization for
MapReduce programs. Proc VLDB Endow 4(6):385-396

. Lammel R (2008) Google’s MapReduce programming mModel—

revisited. Sci Comput Program 70(1):1-30

Okcan A, Riedewald M (2011) Processing theta-joins using
MapReduce. In: SIGMOD conference, pp 949-960

Olston C, Reed B, Srivastava U, Kumar R, Tomkins A (2008) Pig
Latin: a not-so-foreign language for data processing. In: SIGMOD
conference, pp 1099-1110

Pike R, Dorward S, Griesemer R, Quinlan S (2005) Interpreting
the data: parallel analysis with Sawzall. Sci Program 13(4):277-
298

Sauer C, Béchle S, Hérder T (2012) Versatile query processing in
the MapReduce framework based on XQuery (submitted)

Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Zhang N, Anthony
S, Liu H, Murthy R (2010) Hive—a petabyte scale data warehouse
using Hadoop. In: ICDE conference, pp 996-1005

W3C (2011) XQuery 3.0: an XML query language. http://
www.w3.org/TR/xquery-30/

W3C (2011) XQuery and XPath data model 3.0. http://www.
w3.org/TR/xmlschema-11-1/

White T (2011) Hadoop—the definitive guide: storage and analy-
sis at Internet scale, 2nd edn. O’Reilly, Sebastopol

Zhang X, Chen L, Wang M (2012) Efficient multi-way theta-join
processing using MapReduce. Proc VLDB Endow 5(11):1184—
1195

@ Springer

http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xmlschema-11-1/
http://www.w3.org/TR/xmlschema-11-1/

	Compilation of Query Languages into MapReduce
	Abstract
	Introduction
	Query Languages Reconsidered
	Analyzed Languages
	Semi-declarative Nature
	Nested Data Model
	Transparent UDF Support
	Partial Schema Definition
	Generality

	A Generalized MapReduce Model
	Translation Mechanism
	Query Plans
	Compilation into GMR Model
	Implementation of Common Blocking Operators
	Query Plans as DAGs

	Performance Considerations
	Query Optimization
	GMR Simulation in Hadoop

	Conclusion and Outlook
	References

