
Separating Key Concerns
in Query Processing
Set Orientation, Physical Data Independence,
and Parallelism

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Inf. Sebastian Bächle

Dekan des Fachbereichs Informatik:

Prof. Dr. Arnd Poetzsch-Heffter

Prüfungskommission:

Vorsitzender: Jun.-Prof. Dr. rer. nat. Roland Meyer

Berichterstatter: Prof. Dr.-Ing. Dr. h. c. Theo Härder

Prof. Dr.-Ing. Wolfgang Lehner

Datum der wissenschaftlichen Aussprache:

14. Dezember 2012

ii

iv

Acknowledgements

After crossing a finish line, one should not miss the opportunity to look
back and revive the memory of all the good things that happened along
the way. During my time in Kaiserslautern, I had the privilege to work
with many smart, creative, and valuable persons, which supported my
work and enriched my life in manifold ways.

First and foremost, I want to express my deepest gratitude to my
advisor Prof. Theo Härder. His offer to join the DBIS research group
opened me the door to an experience of personal and professional de-
velopment from which I will benefit the rest of my life. He gave me the
freedom to pursue my own research and I could always count on his
support and learn from his great experience.

At this point, I also want to thank Prof. Wolfgang Lehner and
Jun.-Prof. Roland Meyer for accepting the role as second examiner
and head of the examination board, respectively. Their feedback and
interest in my work before, during, and after my defense have been a
great compliment to me.

Due to the great cooperative culture and personal atmosphere in
Kaiserslautern, I can look at long list of colleagues and friends from
which I have learned and who shared their valuable thoughts with me.

First, I want to thank the whole team of the XTC project, especially
Christian Matthias, Andreas Weiner, and Ou Yi. Starting my research
work in collaboration with you was a great experience. My special
thanks go to my friend Karsten Schmidt for his consistent support in
all areas of professional and personal life. His thoughts and advice
greatly helped me to improve my work.

It is my pleasure to thank further members of the “old” and the “new”
Teeecke generation, namely Andreas Bühmann, Jürgen Göres, Volker
Höfner, Thomas Jörg, Daniel Schall, and Boris Stumm, for the many
insightful and entertaining discussions about research and the real life.
Furthermore, I appreciate the advice and experience that Prof. Stefan
Deßloch shared with me.

v

Acknowledgements

My former students, the “Brackiteers” Max Bechtold, Martin Hiller,
Roxana Gomez, Caetano Sauer, and Henrique Valer, passionately con-
tributed improvements and extensions to the prototype implementation
Brackit used in this thesis. I had a great time with all of them.

Outside the university, the strong and unconditional support of my
parents Magda and Walter and my brother Matthias helped me to keep
the balance during the hard times of this journey. I am blessed to have
a family who always gives me the opportunity and the confidence to go
my own way.

Finally, I owe my deepest gratitude to my beloved wife Susanne. She
always believed in me and her patience and encouragement gave me the
strength to stay focused during all the ups and downs. Knowing such
a wonderful person at my side is invaluable.

Sebastian Bächle

Homburg, February 2013

vi

Abstract

Declarative query languages are the most convenient and most produc-
tive abstraction for interacting with complex data management systems.
While the developer can focus on the application logic, the compiler
takes care of translating and optimizing a query for efficient execution.
Today, applications increasingly call for declarative data management
for many novel storage designs and system architectures.

The realization of a query processing system for every new kind of
storage, language, or data model is a complex and time-consuming task.
It requires considerable effort to design, implement, test, and optimize
a compiler, which utilizes the system optimally. Thereby, a large part
of the work is devoted to porting and adapting proven algorithms and
optimizations from existing solutions.

This thesis studies the design of a compiler and runtime infrastructure
for consolidating these development efforts. It aims at a decoupled
organization of the main concerns of every query processing system:

Set orientation is a key concept for efficiently processing large amounts
of data. We develop an intermediate representation for compil-
ing queries and scripts with arbitrary nestings. It bases on the
idea of composing higher-order functions to relational-style pro-
cessing pipelines, which allow us to apply common set-oriented
optimizations independently of the concrete data model used.

Physical data independence is mandatory for building a portable com-
piler and runtime. Our approach generally abstracts from physi-
cal aspects to cover a wide range structured and semi-structured
data models. For efficiency, we present compilation techniques for
tailoring and optimizing a query for a concrete platform.

Parallelism is crucial for exploiting modern hardware architectures. We
present a novel push-based operator model, which uses divide-and-
conquer and self-scheduling techniques for creating and controlling
parallelism dynamically at runtime.

vii

viii

Contents

Acknowledgements v

1. Introduction 1
1.1. Language-supported Data Processing 2
1.2. Motivation . 3
1.3. Contributions . 9
1.4. Limitations . 10
1.5. Outline . 11

2. Anatomy of a Data Programming Language 13
2.1. Data Model . 13

2.1.1. Values . 14
2.1.2. Types and Schema 17

2.2. Basic Language Features 19
2.2.1. Composition and Decomposition of Data 19
2.2.2. Core Operations 22
2.2.3. Function Calls 23

2.3. Bulk Processing . 24
2.3.1. Transformation and Filtering 25
2.3.2. Sorting, Grouping, and Aggregation 27
2.3.3. Joining and Combining 29
2.3.4. Composition of Operators 31

2.4. Data Manipulation . 34
2.4.1. Update Queries 35
2.4.2. Immutability . 36

2.5. Runtime Aspects . 37
2.5.1. Evaluation Model 37
2.5.2. Side Effects . 38
2.5.3. Error Handling 41

ix

Contents

3. Extended XQuery 43
3.1. Data Model . 43

3.1.1. Items and Sequences 44
3.1.2. Properties and Accessors 46
3.1.3. Types . 47
3.1.4. Additional Concepts 49

3.2. Expressions . 49
3.2.1. FLWOR Expressions 50
3.2.2. Filter Expressions 52
3.2.3. Path Expressions 53
3.2.4. Quantified Expressions 54

3.3. Evaluation Context . 56
3.3.1. Static Context 56
3.3.2. Dynamic Context 56

3.4. Scripting . 57

4. Hierarchical Query Plan Representation 59
4.1. Requirements . 59
4.2. Query Representation 60

4.2.1. Comprehensions 61
4.2.2. AST-based Query Representation 68
4.2.3. FLWOR Pipelines 70
4.2.4. Runtime View 73

4.3. Compiler Architecture 74
4.3.1. Compilation Pipeline 75
4.3.2. Plan Generation 78

5. Pipeline Optimization 83
5.1. Generalized Bind Operator 83
5.2. Join Processing . 86

5.2.1. Join Recognition 87
5.2.2. Pipeline Reshaping 90
5.2.3. Join Groups . 91

5.3. Pipeline Lifting . 94
5.3.1. 4-way Left Join 95
5.3.2. Lifting Nested Joins 99

5.4. Join Trees . 100
5.5. Aggregation . 106

x

Contents

6. Data Access Optimization 109
6.1. Generic Data Access . 109
6.2. Storage-specific Data Access 112

6.2.1. Native Operations 112
6.2.2. Eager Value Coercion 115
6.2.3. Path Processing 116

6.3. Bulk Processing . 118
6.3.1. Twig Patterns 118
6.3.2. Multi-bind Operator 119
6.3.3. Indexes . 123

7. Parallel Operator Model 125
7.1. Speedup vs. Scaleup . 126
7.2. Parallel Nested Loops 127

7.2.1. Data Partitioning 130
7.2.2. Task Scheduling 131

7.3. Operator Sinks . 138
7.3.1. Parallel Data Flow Graphs 140
7.3.2. Fan-Out Sinks 141
7.3.3. Fan-in Sinks . 147
7.3.4. Join Sink . 155

7.4. Performance Considerations 158
7.4.1. Partitioning . 158
7.4.2. Buffer Memory 159
7.4.3. Process Management 159

8. Evaluation 161
8.1. Experimental Setup . 161
8.2. Main-memory Processing 162

8.2.1. Workload . 162
8.2.2. Pipeline Optimization 164
8.2.3. Competitors . 164

8.3. XML Database Processing 167
8.3.1. Access Optimization 167
8.3.2. Scalability . 170
8.3.3. Competitors . 170

8.4. Relational Data . 174
8.4.1. Workload . 174

xi

Contents

8.4.2. Data Access Optimization 175
8.4.3. Comparison with RDBMS 176

8.5. Parallel Processing . 177
8.5.1. Workload . 177
8.5.2. Filter and Transform Query 178
8.5.3. Group and Aggregate Query 179
8.5.4. Join Query . 180
8.5.5. Scalability . 181
8.5.6. XMark Benchmark 182

8.6. Evaluation Summary . 184

9. Related Work 185
9.1. A Short History of Query Languages 185
9.2. Related Languages and Data Models 187

9.2.1. Lorel Query Language 187
9.2.2. UnQL . 188
9.2.3. TQL . 189
9.2.4. Object Query Language (ODMG) 189
9.2.5. Rule-based Object Query Language 190
9.2.6. SQL:1999 and SQL:2003 190

9.3. Data Processing Languages 191
9.3.1. JSON and Jaql 192
9.3.2. Pig Latin . 193
9.3.3. LinQ . 194
9.3.4. Database-backed Programming Languages 195

9.4. Extensible Data Processing Platforms 196
9.4.1. Compiler Infrastructures 196
9.4.2. Database Languages 197

9.5. XQuery Compiler . 199
9.5.1. Iterative Compilers 200
9.5.2. Set-oriented Compilers 200

10.Summary and Future Work 205
10.1. Conclusions . 206
10.2. Outlook and Future Work 207

A. Translation of Operator Pipelines 209

xii

Contents

B. Suspend in Chained Sinks 211

C. Benchmark Queries 213
C.1. XMark . 213
C.2. TPCH . 219
C.3. TPoX . 222

Bibliography 227

xiii

xiv

1. Introduction

The term data management classically centered around businesses and
their information needs. In this setting, most data is homogeneously
structured and data management is aligned to standardized processes,
usually in form of sequences of short and well-defined business trans-
actions. Along with data volumes and workloads, which grew fast but
still at feasible rates, relational databases formed a long time the perfect
basement for almost any kind of data-intensive application.

The internet changed this situation substantially. The scope of data
management was and is more and more widened, reinterpreted, and
redefined by the uprise of new applications with new types of data
and workloads. Accompanied by tremendously increasing data volumes,
new hardware, and mandatory connectivity and availability, this acts
like a centrifugal force upon the industry. It led to the emergence of a
whole zoo of new system designs, languages, and APIs, each optimized
to store and process data for certain types of applications. The days
of the ubiquitous relational database management systems seem to be
over. In fact, they fall out of favor and diminish to a solution for their
own niche of well-structured business data.

For developers of data management systems, this brave new world
quickly turns out to be a curse rather than a blessing. Proven query
processing concepts must be ported to every new platform, but with-
out SQL and the relational model as given building blocks, they lack
two of the most successful abstractions for reducing the complexity of
managing large amounts of data. Furthermore, increasing numbers of
paradigms, patterns, and APIs must be coordinated in the application
code. Both, academia and industry, are therefore challenged to contain
the growing complexity and consolidate the achievements of decades.

1

1. Introduction

1.1. Language-supported Data Processing

Database management systems (DBMS) play a key role in the ecosystem
of data-intensive applications. However, in face of the great diversity
of technologies today, applications increasingly have to be built around
highly specialized systems without knowing whether or not they will
also be appropriate as the application evolves. A second, wide-spread
limitation of current DBMS is their focus on plain query processing.
They are not designed as a platform for running multi-step data pro-
cesses. Extension mechanisms like user-defined functions/procedures
(UDF/UDP), ECA engines (Event, C ondition, Action), and external
library routines come to help, but in most cases developers will write
separate programs and scripts to implement application logic and data
analysis jobs, or just to provide the glue code for simple query and up-
date sequences. This is not only cumbersome for ad-hoc tasks, it may
also be less efficient if data must be transferred between the program
and the DBMS.

In practice, both limitations require system architects and developers
to carefully consider the properties and capabilities of each subsystem
very early in the development process to choose the right mix of tech-
nologies. An appealing approach in the current situation is therefore
to look at data processing from the opposite perspective, i.e., no longer
bottom-up from the point of view of a particular data store, but top-
down from the point of view of the application. Application design is
then primarily driven by the application’s logical view on data and not
by technical aspects of a certain platform. Ideally, one does not need to
decide about how to map application data to a specific storage model
until all application logic is defined.

The growing number of data formats and systems available calls here
for a suitable abstraction to implement data processing tasks without
having to cope with proprietary or low-level aspects of a specific data
management system. A unifying platform providing the ease and ex-
pressiveness of declarative query processing and naturally supporting
the flexibility and scalability needs of modern data processing through
proven database technology seems to be the new gold standard. The
benefit of such an abstraction will be huge. Among others, it increases
productivity, simplifies testing and tool development, and it reduces the
coupling between applications and backend systems.

2

1.2. Motivation

From an abstract point of view, a language for processing both struc-
tured and semi-structured data needs to fulfill some key requirements.
First, it needs a set of primitives to compose and decompose data, i.e.,
to construct and access data of different granules and shapes. Second, it
must conveniently support a common set of processing tasks present in
almost any data-intensive application. The quadriga of operations is fil-
ter, transform, combine, and aggregate, which imply the support of basic
features like arithmetics, Boolean logic, comparisons, etc. Third, all lan-
guage constructs must be composable for implementing data-intensive
multi-step processes and, of course, the language must support exten-
sions to make custom functionality available. Virtually, this resembles
to a marriage of basic programming and query processing.

Aside the difficulties to design a language for data programming, its
success is clearly tied to the ability of translating it into meaningful
operations on the underlying data, which utilize the data management
system and its processing capabilities effectively. In other words, as the
burden of dealing with system-specific and thereby also performance-
critical aspects is moved away from the developer to the compiler, ef-
fective compilation and optimization techniques for the particular tar-
get platform are needed. However, with a great diversity of target
platforms, less common features can be abstracted and exploited by a
compiler. Aiming here solely for the least common denominator of all
systems is certainly also the wrong approach. This work strives for a
pragmatic solution for a reasonably large and practically relevant set of
target platforms.

1.2. Motivation

The literature knows dozens of categorization schemes for programming
languages. A language can be declarative or imperative, follow a func-
tional philosophy or a procedural one, imply a structured or object-
oriented style, etc. Real-world languages often incorporate traits of
several paradigms at the same time, which makes it impossible to give
a well-defined taxonomy. The actual difference between languages is
explained best with the provided level of abstraction.

3

1. Introduction

At this point, it seems a bit difficult to characterize a certain class of
languages as data programming languages, because any program, in-
dependent of the language it is written in, consumes, processes, and
produces some form of data. In this thesis, the term denotes languages
which provide a level of abstraction according to the following definition:

“A data programming language is a declarative query and
scripting language for processing and manipulating struc-
tured and semi-structured data in various formats and in a
broad spectrum of data processing systems.“

The role of XQuery in this thesis should be only understood as that
of a widely-known data programming language, which provides tailored
syntax, data abstractions, type concepts, and auxiliary functionality for
querying and processing XML data. In that sense, XQuery serves us
as a concrete front-end language, which embodies the general concepts
of a data programming language. In the following, we will contour the
intention of a data programming language and substantiate the central
points of the above definition.

Queries and Scripts

Conventional programming languages focus on algorithms and data
structures, which rely on a properly-specified flow of control. In con-
trast, query languages provide a data-centric and result-oriented per-
spective without any notion of intermediate state or execution order.
Hence, it is feasible to look at a query as a function, which returns a
result for given input data set. In that sense, a functional program or
a query respectively, is a formal description of a computational goal,
which has to be realized by the language’s runtime.

Scripts or batches of queries are handy for automatizing tasks con-
sisting of multiple steps. Typically, individual steps will build on each
other, e.g., input data is filtered first, then cleansed, transformed, com-
bined, and finally aggregated. The result is returned to the application
or written out to stable storage. Often it is possible to express every-
thing concisely in a single query, but sometimes it is not, e.g., because
the query language cannot integrate external tools for processing in-
termediate results. Sometimes it is just inconvenient to write queries
which refer multiple times to the same data.

4

1.2. Motivation

The essence of scripting-style query processing is the ability to chain op-
erations and share intermediate results. In contrast to complex, event-
driven workflows, most data processing scripts have a rather simple, lin-
ear structure and can run autonomously without waiting for additional
user input. To some degree, this resembles functional programming
languages, which model problems, i.e., programs, as series of function
calls. Intermediate results appear here in form of function arguments
and as local variables.

For most scripting tasks, it will be sufficient to support simple se-
quences of query statements. The result of each query qi can be assigned
to a variable vi so that it can be used as input by any following state-
ment qj,j>i. Accordingly, we intend to support scripts of the following
form:

v1 := q1;
v2 := q2;
.
vn := qn;

The restriction of scripts to linear sequences of statements is a con-
cession to simplify reasoning about and optimization of data flows in a
script. The abandonment of non-linear scripting constructs yet does not
imply that the language will not be capable to carry out more complex
tasks. Conditional branching, for example, can be realized by decom-
posing a script into separate parts; loop constructs and recursion can
be encapsulated in recursive, user-defined functions.

Semi-structured Data

The nature of semi-structured data is not precisely defined in the litera-
ture. The long list of describing attributes reaches from structural prop-
erties like complex, nested, and irregular to classifications like schema-
less, self-describing, partial schema-conform, and ”fairly structured but
rapidly evolving“ [Abi97, AQM+97, Bun97]. One gets an intuitive un-
derstanding by explaining what is not considered as semi-structured.
Structured data is widely seen as synonymous to relational data, i.e.,
well-specified collections of flat and uniformly-typed tuples, which can
be queried and processed in a structured fashion. In contrast to this,
unstructured data is coined to data which does not follow a partic-

5

1. Introduction

ular structure and, thus, requires statistical analysis and information
retrieval techniques. Examples are text in natural language and mul-
timedia content like audio, video, and images. Semi-structured data
locates somewhere between both extremes, but transitions are blurry.

The Web is a tireless producer of incredibly large amounts of semi-
structured data in form of news feeds, data interchange messages, struc-
tured documents, log data, web pages, etc. Accordingly, one could char-
acterize semi-structured data as collections of data items of a common
super-structure but with individual diversity in form of irregular, in-
complete and sometimes deeply-nested structures. The excerpt of an
XML log file in Figure 1.1 gives an example of semi-structured data.
All log entries share a common base structure, but individual entries
differ in size and content.

Super-structures lend itself as anchors for locating data of interest.
Common properties like the timestamps and IP addresses in the sample
log data allow for systematic filtering and grouping of related objects.
Structurally heterogeneous parts are better matched against patterns
to extract information. In the worst case, the actual shape of data is
a priori completely unknown and one must fall back on full-text search
and similar techniques.

The XQuery in Figure 1.2, for example, uses the basic structure of log
entries to filter them by date and severity, but uses a path expression
as pattern to search for message strings in the contents. The resulting
overview reports for each system are shown in Figure 1.3.

Formats, Systems and Platforms

The processing of semi-structured data reveals substantial similarity to
relational query processing with explicit filter, sort, and aggregation
steps as shown in the example query above. Accordingly, it is worth-
while to reuse the algorithms and techniques from this area to reduce
the number of additional concepts to a minimum. Nevertheless, a query
processor has to go some new ways abroad the classic relational path
to cope with structural complex and heterogeneous data. The goal of
a data programming language is to find a compromise between data
abstraction, language constructs, and typical processing needs that is
applicable to various formats, data stores, and platforms.

6

1.2. Motivation

<log tstamp="2012-04-27+08:49:012" severity="critical">
<src>192.168.12.31</src>
<watchdog pid="47232">
<event>possible attack detected</event>
<msg>lock user "admin" for domain "evil-empire.org"</msg>

</watchdog>
</log>
<log tstamp="2012-04-27+09:00:002" severity="low">
<src>192.168.14.132</src>
<msg>finished system update: no update required</msg>

</log>
<log tstamp="2012-04-27+08:48:991" severity="high">
<src>192.168.12.201</src>
<watchdog pid="3241">
<event>service not responding</event>
<msg>restarting system service "clustermgnt"</msg>

</watchdog>
</log>
<log tstamp="2012-04-27+08:48:733" severity="mid">
<src>192.168.12.31</src>
<auth action="login" result="fail">
<user>admin</user>
<domain>evil-empire.org</domain>
<protocol>ssh</protocol>
<msg>authentication failure: user "admin" ; attempt: 5</msg>

</auth>
</log>

Figure 1.1.: Example of semi-structured log data in XML format.

for $e in collection("log.txt")
let $src := $e/src
let $info := <info>{$e//msg/text()}</info>
where $e/@tstamp > "2012-04-01+00:00:000"

and $e/@severity = ("critical", "high", "mid")
order by $e/@severity
group by $src
return <report system="{$src}" incidents="{count($e)}">

{ $info }
</report>

Figure 1.2.: Sample XQuery for XML log data.

7

1. Introduction

<report system="192.168.12.31" incidents="2">
<info>lock user "admin" for domain "evil-empire.org"</info>
<info>authentication failure: user "admin" ; attempt: 5</info>

</report>
<report system="192.168.12.201" incidents="1">

<info>restarting system service "clustermgnt"</info>
</report>

Figure 1.3.: Output of sample query on XML log data.

X <
XM
L/
>

ENGINE

(a) transform and load

X <
XM
L/
>

ENGINE

(b) wrap and extend

X <
XM
L/
>

ENGINE

(c) extract and process

Figure 1.4.: Query processing across different data sources.

Todays relational DBMS are sophisticated experts for processing tab-
ular data residing in their own data store. Traditionally, they provide
only limited support for data in foreign structures and formats. If an
application needs to process external, possibly heterogeneous data, e.g.,
in form of plain text files, CSV data, XML, or binary files, it requires
considerable effort to facilitate the processing capabilities of an SQL-
based DBMS.

Conceptually, there exist three basic strategies for joint processing
of external data and data in a DBMS as depicted in Figure 1.4. If the
query engine is embedded in the DBMS, either all data needs to be con-
verted into an appropriate relational representation and imported into
the system, or the query engine interacts with external data through a
mix of adapters, extension modules, and stored procedures. In practice,
however, it is often simpler to process all data outside the DBMS with a
dedicated ETL tool (Extract, T ransform, Load), shell script, or custom
application code.

8

1.3. Contributions

A data programming language will be deployable in all three sce-
narios rendered. It abstracts from a concrete data format and allows
to express data processing tasks at an abstract level without the need
to take low-level and system-specific aspects into account. Ideally, a
platform-independent compiler kernel will focus on the optimization of
storage-independent query logic and delegate the final mapping from
the logical view on data to its physical representation, e.g., in a DBMS,
to platform-aware extensions. Such extensions may not only implement
basic data access routines, but also delegate subqueries or entire queries
to the respective data sources, thus, maximizing potential performance
gains of native processing. Uncovered operations or otherwise lacking
functionality of the storage layer needs to be filled in by generic variants
implemented in the language runtime.

1.3. Contributions

This thesis studies the realization of a portable compiler and runtime
platform for processing structured and semi-structured data. Con-
cretely, it addresses the compilation of an extended variant of XQuery
as being a well-suited candidate for a real cross-platform query and
data programming language. Although it is primarily intended to query
XML data, it is nevertheless a suitable basement for this work, because
it is capable to represent, interpret, and process different kinds of infor-
mation from diverse sources.

The main parts cover the translation and evaluation of basic language
concepts like bulk operations, loop nestings and data access primitives.
Special consideration is given to three central challenges: set-oriented
processing of structured and semi-structured data in heterogeneous for-
mats, support of platform-specific features, and automatized parallel
processing. Accordingly, most of the findings and concepts developed
are not inherently specific to XQuery/XML and can be generalized.

An additional aspect of this work is the extensive evaluation of the
former concepts, e.g., inside a native XML database management sys-
tem, where XQuery/XML are first-class citizens. Besides providing
deeper insights into application and effectiveness of certain compilation
techniques, this part puts the consideration of environmental aspects
like external memory in the center of interest.

9

1. Introduction

In summary, the main contributions of this thesis are:

• A retargetable compiler framework and runtime environment for
an XQuery-based data programming language with a clear-cut
separation of language-inherent aspects from physical aspects of
the underlying data store

• A hierarchical intermediate representation for queries and script-
like processes inspired by functional paradigms

• A novel push-based operator design for dynamic parallelization of
queries based on divide-and-conquer and work stealing techniques

• Experimental evaluation of all concepts presented in various set-
tings including a full-fledged prototype of a native XML database
management system

The major intention of this work is the development of architectural
strategies and design principles rather than a specific system or algo-
rithm. Nevertheless, we will sometimes need to discuss certain aspects
of the latter in detail because it helps to clarify the rationale behind
design decisions or because common algorithms are accompanied with
substantial implications on runtime, which must be taken into account.

1.4. Limitations

This work does not claim that the presented compilation techniques
always yield to optimal solutions across all logical and physical aspects
of a query. A holistic approach may have the potential to outperform
some of the presented optimization strategies, but it would be highly
complex and therefore of doubtful practical relevance.

Furthermore, this thesis does not proclaim XQuery as well-suited for
any data processing task. Instead, it tries to explicitly disclose use cases
which do not fit well into the picture like some applications for scientific
data. Also, this work does not attempt to provide a solution for schema
mapping and information integration in general.

To avoid any misconception, some topics should also be mentioned,
which are related to this thesis, but not covered, because they are con-
sidered as orthogonal or out of focus:

10

1.5. Outline

• General programming language design and compiler techniques
(e.g., typing, memory management, or code generation in general)

• Statistics-based and cost-based query optimization as well as tech-
niques for automatic tuning and robustness of query plans

• Distributed data and distributed query processing

• Machine-specific optimization (e.g., memory, I/O, SIMD) and spe-
cialized hardware (GPU, FPGA, etc.)

• Intrinsics of parallel shared-memory architectures like scheduling,
core-to-core communication, and memory management

Whenever necessary or helpful for presenting or understanding the ma-
terial in this thesis, however, some of this aspects will be commented
on, but without intending to discuss an issue exhaustively.

1.5. Outline

Chapter 2 introduces design principles and core language constructs for
declarative query processing and scripting. Thereafter, Chapter 3 gives
an overview of XQuery, which will be used in this thesis as concrete
instance of the abstract data programming language defined before.

In Chapter 4, we present a hierarchical query representation which
is derived from the functional core of the abstract language. We also
outline individual query rewriting and optimization phases of the com-
pilation process.

A detailed discussion of the central compilation stages addressed by
this thesis follows in the chapters 5 and 6. They present techniques and
rewriting rules for optimizing queries with respect to set-oriented and
physical aspects, respectively.

Chapter 7 introduces a novel pull-based operator model, which allows
to automatically exploit data-parallel sections in a query.

The concepts and techniques developed in this thesis are empirically
evaluated in Chapter 8. Related work is reviewed in Chapter 9.

Finally, this thesis closes with a summary and an outlook on future
work in Chapter 10.

11

12

2. Anatomy of a Data
Programming Language

For a better understanding of the various challenges addressed in this
thesis, we start with an introduction of the ingredients of a data pro-
gramming language. The primary goal of this chapter is to provide
insight into central aspects like a basic data model, core operations,
and bulk processing logic rather than giving a full language specifica-
tion or syntax. Thus, the presentation will stay at an abstract level,
but with references to the XQuery language specification as source for
concrete specifications. In Chapter 3, we will find the application of the
concepts presented in a more specific fashion, geared for XML support.

2.1. Data Model

The heart of every query language lies in the underlying data model. In
the classic definition, a data model consists of three parts: a set of types
and structures, a set of operations, and a set of constraints [Cod80].

The types and structures available in a data model determine its
expressiveness, i.e., the ability to represent information in a concise and
logically coherent form. Practically, they define the shape of data and
thereby influence the design of applications and physical storage.

To work with instances of types and structures, the data model must
define operations on them. All operations must be closed within the
data model, i.e., all values produced must also be valid instances of the
data model. A few basic primitives are usually sufficient to provide the
logical basement for building convenient APIs and query languages at
a higher level of abstraction.

13

2. Anatomy of a Data Programming Language

Value

ArrayMap Primitive Functor

Double

Float

Decimal

Integer

String

Boolean

Date

...

Figure 2.1.: Value types in a data programming language.

Constraints enforce well-formedness and integrity of data in a data
model. Generally, they are divided into two classes. Value-space con-
straints restrain the domains of primitive values like integers, strings,
etc. Structural constraints specify the range of valid combinations of
structures and the relationships between them. Some data models also
build on combinations of both.

For a data programming language, it is of utmost importance that
the underlying data model conceptually suits common shapes of data
as found in programming languages and serialization formats. Oth-
erwise, the language loses too much of its advantages and expensive
user-defined mechanisms are required to convert the input to a suitable
representation beforehand.

2.1.1. Values

A value is the logical unit or granule of information in the data model.
An overview of the basic value kinds for modeling semi-structured data
at different levels of abstraction is given in Figure 2.1.

14

2.1. Data Model

Primitive Values

Atomic units of data are strings, Boolean values, integers, floating point
numbers, etc. In principle, many kinds of values may be considered as
primitives when necessary. Query languages, for example, often include
support for dates, timestamps, and binary data. As this thesis builds
upon XQuery, we stick to the atomic value types defined in [W3C04b].

Complex Values

Complex values are composites of primitive values and other compos-
ites, which represent abstract concepts in applications like accounts, log
records, and orders. The only two composition types required in our
abstract language are array and map.

An array is an ordered sequence of values. Individual values may be
of heterogeneous types and may occur multiple times in an array.

A map represents an ordered mapping of primitive values, called keys,
to other values. Keys are required to be distinct and the order of all keys
in a map is stable. The enforcement of primitive keys is a concession
to facilitate efficient implementations of map values. In cases where the
application requires map values with non-primitive keys, one can define
primitive surrogate keys for complex values.

Some query languages for semi-structured data include bags and sets
as explicit, order-insensitive composite types [ORS+08]. Practically,
they can be considered as special cases of arrays, where conceptual
differences primarily become relevant when constructing new values. In
this sense, arrays could also be interpreted as a special case of maps with
densely ascending integers as keys. Because of their practical relevance
and performance-relevant implications, however, it seems wise to treat
arrays as basic building blocks, too.

Composite types may be arbitrarily nested, but the nesting must not
be cyclic. For example, an array cannot be a field value of itself. In
other words, complex values must form a tree of values; pointers are
not supported.

Note, depending on the context, a complex value may be considered
as a value of its own or as a composite of individual values. An XML
element, for example, can be referred to as an individual node and as
representative of a whole XML subtree.

15

2. Anatomy of a Data Programming Language

Functors

A functor or function value is a callable function object. It embodies
a function definition or algorithm that can be applied to a given set of
arguments and can be used like any other value type, e.g., as field value
in arrays and maps. The arguments and the return value of a function
can be values of any type, including other functors.

The explicit representation of function values enhances the flexibility
and extensibility of the language, but does not introduce higher compu-
tational expressiveness. It is also not a typical requirement in a query
language, but it is of high practical value in a data programming lan-
guage. Higher-order functions can, for example, be exploited to plug-in
custom functionality in standard query constructs. In combination with
complex values, they allow to encapsulate related data and operations
similar to object-oriented programming languages [Weg87].

Null

Incomplete or unknown information is represented through the special
value null. Its use may or may not be tolerated in individual situations
or data structures. In comparisons and predicates, null is used for
implementing a three-valued logic [Cod90].

Identity

Neither primitive nor complex values have an identity. Primitive values
are considered equal when they represent the same value of the same
basic unit type. Equality of complex values is defined recursively. Two
complex values are considered equal when they are ”deep equal“, i.e.,
their sub-components are pair-wise equal.

Identity concepts at a higher level of abstraction like primary keys or
node identity in XML can be achieved by adding and enforcing explicit
or implicit identity values to a structure.

Relationships

A complex value stands in a natural parent-of relationship to the in-
dividual parts it consists of. In conjunction with the ordering of child
values, the relationship defines the basement for any operation in the

16

2.1. Data Model

data model. Further structural relationships can be inductively defined
whenever necessary.

The parent-of relationship is asymmetric, e.g., it is possible to get the
values of a map by their keys, but it is not possible to obtain all maps
referring to a particular value. If reversely-directed relationships are
needed, e.g., if values must be able to refer to a complex value as their
parent, it must be modeled by adding value-based identity and foreign-
key concepts to the parent and the children, respectively. Alternatively,
the relationship can be emulated with an operation, which returns the
parent value by selecting the value which contains the respective value
as a child.

2.1.2. Types and Schema

The presence of a type system is – as in any language – devoted to
numerous advantages. Most importantly, it serves as an abstraction
to reduce complexity within the language itself and to simultaneously
increase the modularity of software written in that language. Besides,
static and dynamic type checking help to ensure safety and correctness
of a program and enable compilers to reason about data and exploit
this information for optimization.

Types appear as an additional dimension of values. Every value has
an annotated type, which becomes an integral part of the value itself. A
type system defines a hierarchical is-a relationship among types. This
facilitates techniques like polymorphic subtyping and implicit conver-
sion of values, e.g., for function calls [Lie87, LS88]. The basic type
hierarchy is identical to the value hierarchy shown in Figure 2.1. Ex-
tension points allow the introduction of additional application-specific
or platform-specific subtypes through domain restriction and structural
constraints for primitive values and composite values, respectively.

Extending the Type Hierarchy

To leverage typing information of a specific data model like the rela-
tional model or XDM, it must be tightly integrated in the type hierarchy.
The straightforward solution models the building blocks of a concrete
data model as subtypes of the existing primitive and complex types.
But if a new type should reflect a completely distinct kind of data, a

17

2. Anatomy of a Data Programming Language

more intrusive integration strategy must be pursued. The new type is
then modeled as a separate top-level branch in the type hierarchy. Val-
ues thereof then appear as separate types, even if they embody the same
composition types and primitive values as types in other branches. The
extended XQuery data model presented in Section 3, for example, incor-
porates with XML and JSON two completely different abstractions of
semi-structured data. Conceptually, however, XQuery treats all values
as sequences and thus operates only on array composites.

Technically, both extension strategies are feasible, because types are
solely relevant in the context of type-sensitive operations. At the phys-
ical level, a single implementation of maps and arrays is sufficient to
represent values of any type. Ideally, however, the compiler is equipped
with tailored implementations for concrete abstractions (e.g., XML) and
leverages the capabilities of specialized storages.

Schema Information

The integrity of a value is not automatically guaranteed. Assume a type
that represents relational tables as two-dimensional arrays of primitive
values. For values of this type, we should enforce consistent sizes and
value types across rows and columns. Normally, such conditions will
have to be checked when a value is instantiated. However, application-
level aspects like types of column values and foreign-key constraints,
are usually out of reach of the instantiating operation. Informally, we
denote such a set of domain-specific type definitions and invariants as
schema.

In many query languages, especially those for homogeneously struc-
tured data, schema information is mandatory and often an integral part
of the storage layout. Invariants like uniqueness constraints and foreign
keys may then be eagerly exploited to derive better execution plans. In
the field of semi-structured data, however, proper schema descriptions
are less common. In most scenarios, e.g., ad-hoc data analysis, schema
knowledge is encoded directly in the data processing logic. Schema de-
scriptions and schema languages are merely adopted in standardized
application domains or large applications. Consequently, a query pro-
cessor should be able to leverage complete or partial schema information
when available, but must primarily deal well with schema-less data.

18

2.2. Basic Language Features

This work focuses on query compilation and evaluation without ex-
plicit schema information, but the presented techniques can be anytime
refined and complemented for the integration, verification, and exploita-
tion of schema knowledge. For our purposes, we assume that the burden
of ensuring data integrity and validity of queries is put on the developer.

2.2. Basic Language Features

The core features of a data programming language can be grouped into
three categories: Creation and manipulation of data, primitives for com-
putations and calculations, and extensibility aspects.

2.2.1. Composition and Decomposition of Data

Almost every operation in a query involves the inspection, interpreta-
tion, and combination of data. Accordingly, creation, composition and
decomposition of primitive and complex values are key tasks.

Constructors

Operations for creating primitive values and complex values are called
constructors. In a query, constructors are invoked explicitly via function
calls and dedicated language constructs, or implicitly when a value is
computed as intermediate result. If the type of a newly created value
needs to obey certain constraints, the constructor must also perform
the respective consistency checks.

Primitive values are either directly parsed or converted from a text
or binary representation, e.g., for literals in the query string or for
results of standard operations like arithmetics, string operations, type
conversions, etc. Complex types may be composed from any given set
of primitive and complex argument values. In every case, however,
complex values must base on the composition types array and map.

In principle, the same kinds of values can be created through an arbi-
trary number of different constructor functions. Multiple constructors
for a particular value kind may be provided, e.g., to support syntactical
variants, to enforce certain type properties, or to expose performance-
and storage-relevant properties.

19

2. Anatomy of a Data Programming Language

Value Type XQuery/XDM JSON

Primitive 1
3.14159e0
"a string"
xs:boolean("true")
xs:date("2012-07-21")

1
3.14159e0
"a string"
true

Null value () null

Array (1,"2",3.0) [1,"2",3.0]

Map <e a="1">
<c>a child<c/>
some text

</e>

element e {
attribute a { 1 },
element c {
"a child"

},
text { "some text" }
}

{
"e": {
"attrs" : [{ "a" : 1 }],
"chlds" : [
{ "c" : {

"attrs" : [],
"chlds" : ["a child"]

}
},
"some text"

]
}

}

Table 2.1.: Examples of data constructors for XQuery/XDM and JSON.

Whenever feasible, examples in this thesis use the simple syntax of the
data serialization format JSON [Cro06] for representing array and map
values. Arrays are specified as comma-separated lists of values enclosed
in squared brackets []. Maps are specified as comma-separated lists
of key/value pairs enclosed in curly braces {}. Keys and values are
separated by a colon (:), respectively. Table 2.1 exemplifies syntax
variants for constructing primitive and complex values in XQuery/XDM
and JSON.

Path Operations

The counterpart to constructors are functions and other built-in fa-
cilities for decomposing complex values, i.e., accessing individual parts.
When they are combined, they virtually reflect navigation through tree-
like structures of complex values. Field accesses are therefore commonly
called path operations.

20

2.2. Basic Language Features

As the data model consists of only two composition types, there are
solely two corresponding types of access operations. Both, arrays and
maps, support associative field access by position and key, respectively.

The fields of an array can be accessed with the binary operator [[]].
The first parameter is the respective array, the second is the position
of the array field. In typical array syntax, the second argument is
enclosed inside the squared brackets1, i.e., x[[y]] returns the y-th
element of the array x. As usual, the numbering starts with 0 so that
["a","b"][[0]] will return "a".

A mapped value can be obtained through the binary operator =>,
which uses the second argument as lookup key for the map provided as
first argument. The expression {x:2,y:3}=>y, for example, yields the
value 3. Left-precedence and infix notation foster convenient chaining
to navigate arbitrarily deep paths of the form x1=>x2=>. . .=>xn. Ac-
cordingly, {point:{x:2,y:3}}=>point=>y yields the y value 3 of
the given point record.

Advanced Path Operations

As said, accesses to map values and array fields mimic a drill down into
a tree-like structure. Generally, they are sufficient to explore arbitrary
nestings and relationships between values. However, if a query needs
to evaluate more elaborate search patterns, it quickly gets complicated
to express this as a combination of simple down steps and supporting
predicates. Very likely, the evaluation of complex compound patterns
has an impact on performance, too.

To facilitate a crisp notation of complex search patterns and to open
the door for better performing search routines, front-end languages can
augment further access operations, as it is the case in XQuery, respec-
tively its subset XPath. For navigating XML trees, they define 7 for-
ward axes like child, descendant, and following-sibling, and
5 backward axes like parent, ancestor, and preceding [W3C10a,
W3C07]. The same way, path operations can be enriched with support
for wildcards, type matching, etc.

1The notation with two squared brackets was chosen to avoid confusion with
XQuery predicates and filters.

21

2. Anatomy of a Data Programming Language

Auxiliaries

Sometimes it is necessary to inspect unknown structures in a query. To
complete the picture, we make therefore use of two auxiliary functions
entries() and length() to get a list of key/value pairs and the
number of elements for maps and arrays, respectively.

At the physical level, both constructors and path operations must
operate on a common representation. However, if multiple data sources
and different storages are used within the same query, there are always
pairs of data construction operations and data access operations that
belong together. In such cases, a query processor may utilize a generic
access interface and appropriate adapters for each storage. A perfor-
mance penalty through adapters may be avoided if operations can be
safely confined to a particular storage. However, this requires careful
analysis of the data flow in a query as detailed in Section 6.

2.2.2. Core Operations

As in any query language, a comprehensive tool set of core operations
like arithmetics, comparisons, conditional branching, and type conver-
sion, is necessary to carry out meaningful tasks. Without going into
details, we assume to have common standard functionality available as
defined in XQuery/XPath [W3C10a, W3C11a].

Coercion

The working principles of basic operations on primitive values, e.g.,
arithmetics, is folklore. However, their application for non-primitive
values requires further specification. For example, a comparison a>b is
well-defined if a and b are numeric values, but its semantics is unclear
if one or both of them are complex values.

If an operation is considered invalid or forbidden for particular com-
bination of value types, an error should be raised. Alternatively, a
complex argument value can be coerced to a primitive value for which
the respective operation is defined [Abi97]. For example, if a and b in
the above example were two arrays [1,2,3] and [2,3,4], one could
coerce both arrays transparently to the sum of their elements, yielding
the valid comparison 6>9.

22

2.2. Basic Language Features

Clearly, automatic argument conversion is primarily a comfort feature
and not a technical necessity. A front-end language may specify mean-
ingful coercion rules for certain operations and value types but also raise
typing errors. Again, we assume in this work intuitive type conversion
and coercion rules like in XQuery/XPath [W3C10a, W3C11a].

Platform Specifics

Another peculiarity of core operations arises at the implementation
level. The support of heterogeneous target platforms requires consistent
treatment of all system-specific aspects like arithmetic overflows, round-
ing, character sets, character encodings, byte ordering, etc. XQuery
refers here to widely-used industry standards to define the expected
behavior for operations on built-in primitives [W3C04b, W3C11a].

2.2.3. Function Calls

The support of built-in and user-defined functions is of essential util-
ity. Built-in or system-defined functions primarily implement basic or
low-level functionality like I/O, string manipulation, date operations,
etc. Additionally, built-in functions may be used to make proprietary
capabilities of the target platform accessible. User-defined functions
encapsulate parameterized queries and utility operations, which allows
for better code reuse and maintainability.

A function can take any number of input parameters and produces
a single result value. When a function is called, the runtime is allowed
but not required to handle the arguments in a non-strict fashion. For
large input arguments, the query processor can then facilitate memory-
efficient pipelining techniques instead of computing each argument en-
tirely beforehand. In addition to that, lazy argument handling also
brings the freedom to use arbitrary forms of directly and mutually re-
cursive functions. For performance reasons, a function implementation
may also take advantage of lazy evaluation and compute large results
incrementally, too.

23

2. Anatomy of a Data Programming Language

declare function sum-greater-3-rec($val, $pos, $end, $acc) {
if ($pos > $end) then
$acc

else if ($val[$pos] <= 3) then
sum-greater-3-rec($val, $pos + 1, $end, $acc)

else if (empty($acc)) then
sum-greater-3-rec($val, $pos + 1, $end, $val[$pos])

else
sum-greater-3-rec($val, $pos + 1, $end, $acc + $val[$pos])

}

Figure 2.2.: Recursive function to sum up all values greater than 3.

2.3. Bulk Processing

The language features described so far are already very powerful. Con-
ditional branching and recursive functions yield a Turing-complete lan-
guage, which allows to perform arbitrary computations. However, it is
not yet sufficient for effective data processing.

The handling of serious data volumes depends on efficient algorithms
and careful resource management. Hence, a compiler must be able to
reason about a query, its use of data, and its runtime properties. It must
recognize data flows, patterns, and dependencies to assemble filter, join,
and grouping algorithms to an efficient execution plan.

It is difficult, if not impossible, to extract the actual intention of a
query from arbitrary functions. Even the most basic query pattern is
hard to identify without appropriate support from the language itself.
Consider the function in Figure 2.2. It uses a non-trivial recursion
to compute the sum of all elements in the input sequence $val that
are greater than 3. It requires sophisticated analysis to recognize that
parameters $pos and $end are used to scan sequentially through the
input sequence, and that parameter $acc is the accumulator variable
holding the current sum.

Obviously, the excessive use of recursive functions is barely efficient
and often cumbersome to write, too. Dedicated language constructs for
expressing data-intensive processes without recursion can fill this gap.
The explicit specification of bulk operations and data flows simplifies
analysis, optimization, and code generation dramatically. Internally,

24

2.3. Bulk Processing

bulk operations look like higher-order functions whose special role is
known by the compiler. This avoids the need to introduce completely
different language concepts and simplifies the compilation process.

A bulk processing function operates in a relational fashion over sets
of tuple-like structures. We assume here the simplest form of rela-
tional structures, i.e., two-dimensional arrays of values. Each function
accepts at least a two-dimensional array as input and produces a two-
dimensional array as output. This makes the mapping to efficient tuple-
oriented techniques and algorithms straightforward.

Without intending to provide an exhaustive list of all advisable bulk
operations, this work focuses on three groups of standard operations as
listed in Table 2.2. In the following, we will denote bulk functions as
operators to emphasize their special role as internal query constructs
and use upper-case names to distinguish them from normal functions.
An upper-case type parameter T stands for a whole list of columns, i.e.,
a function [T]→[[S]] takes an array with columns t1, t2, . . . , tn
and returns an array of arrays with columns s1, s2, . . . , sm.

2.3.1. Transformation and Filtering

The first group of operators transforms and filters a given input rela-
tion. The functions can be characterized as encapsulations of looping
primitives, which iteratively process the input relation row by row.

The ForEach operator works similar to the map pattern in functional
programming. It computes a sequence of Cartesian products where one
input can be functionally dependent on the other. The function bind
is applied on each tuple t in the input relation in to produce a second
relation, which is used to compute the cross product with the respective
input tuple. Figure 2.3 illustrates the working principle of ForEach for
a simple bind function, which maps the first column value of a tuple
[x,y] to a relation of two tuples [x+1] and [x+2].

The relative order between input tuples is preserved in the output,
reflecting a nested-loops-like evaluation strategy. However, if a query
permits permutations of tuples in the output relation, the query pro-
cessor may exploit this, e.g., for parallelism, and produce a randomly
ordered output.

25

2. Anatomy of a Data Programming Language

Operator Parameter Return Type

ForEach in [[T]] [[T,S]]

bind [T]→[[S]]

Project in [[T]] [[S]]

proj [T]→[S]

Select in [[T]] [[T]]

pred [T]→bool

OrderBy in [[T]] [[T]]

cmp [T]×[T]→bool

GroupBy in [[T]] [[S]]

grp [T]→int

agg [[T]]→[S]

Count in [[T]] [[T,int]]

Join / LeftJoin in [[T]] [[T,S,R]]

left [T]→[[T,S]]

right [T]→[[T,R]]

pred [T,S]×[T,R]→bool

Concat in [[T]] [[T,S]]

left [T]→[[T,S]]

right [T]→[[T,S]]

Union / Intersect in [[T]] [[T,S]]

left [T]→[[T,S]]

right [T]→[[T,S]]

cmp [T,S]×[T,S]→bool

Table 2.2.: Overview of bulk processing operators.

The bind mechanism can be used to feed additional data into the output
relation. In a chain of bulk functions, ForEach will therefore often play
the role of an input provider.

The operators Project and Select are equivalent to projection
and selection in classic relational settings. The former strips specific
columns from the input relation. The latter discards tuples from the
input relation, which do not fulfill the given predicate. Note, Select
can be seen as a specialized version of ForEach. Examples for both
are given in Figure 2.4.

26

2.3. Bulk Processing

in

1 "c"
2 "b"
3 "a"

ForEach(in,bind)

1 "c" 2
1 "c" 3
2 "b" 3
2 "b" 4
3 "a" 4
3 "a" 5

with bind := [x,y] → [[x+1],[x+2]]

Figure 2.3.: Exemplified output of ForEach operator.

in

1 "c"
2 "b"
3 "a"

Project(in,proj)

1
2
3

Select(in,pred)

2 "b"
3 "a"

with proj := [x,y] → [x]
pred := [x,y] → x > 1

Figure 2.4.: Exemplified output of Project and Select.

2.3.2. Sorting, Grouping, and Aggregation

The second group of operators hosts sort and aggregation functions. In
contrast to the first group, they operate on a per-relation basis and eval-
uate relationships and correlations between individual rows. Without
surprise, the sort operator OrderBy is identical to its relational coun-
terpart. It reorders the tuples in the input relation according to the
ordering scheme determined by the comparison function cmp. Without
loss of generality, we assume that cmp evaluates a less-or-equal relation-
ship between tuples. An example of OrderBy is given in Figure 2.5.

In a language like SQL, which initially bases on the order-agnostic re-
lational model, a sort operator can basically employ any sort algorithm.
In array and map values, however, order is a fundamental aspect. Hence,
OrderBy must implement a stable sort to guarantee deterministic re-
sults. Similarly to ForEach, this requirement can be relaxed if a query
tolerates non-stable sorting.

27

2. Anatomy of a Data Programming Language

in

1 "c"
2 "b"
3 "a"

OrderBy(in,cmp)

3 "a"
2 "b"
1 "c"

with cmp := [x1,y1]×[x2,y2] → y1 ≤ y2

Figure 2.5.: Example of OrderBy.

The GroupBy operator divides the input relation into separate par-
titions and aggregates each of the latter to a single output tuple. The
partitioning scheme is defined by the given grouping function2. The
function agg aggregates the tuples in each non-empty partition. To
obtain deterministic results, we require again that the relative order of
input tuples is preserved within each partition. The ordering of the
aggregated tuples in the output relation, however, is implementation-
dependent to permit efficient grouping algorithms.
GroupBy is a generalized variant of standard grouping operators for

plain relational data. As in SQL, the tuples within each partition must
only be aggregated column-wise. However, the aggregation function
itself is not limited to primitive aggregates like count, sum, min, max,
etc. Any aggregation function yielding a primitive or non-primitive
aggregate value is allowed. A very simple aggregation function, for
example, could combine all column values into a single array.

Figure 2.6 demonstrates the output of GroupBy for a simple sum-
mation function agg1 and a concatenation function agg2, which are
both defined as specializations of the higher-order aggregation func-
tion foldl [Hut99]. Note that both aggregation functions obey the
mentioned standard behavior of a grouping operation. The columns of
a partition are aggregated separately and the column that served as
grouping key is reduced to a single representative value.

The operator Count enumerates a relation and attaches to each tuple
its position in the input relation. The numbering is dense and starts
with 1. An example is shown in Figure 2.7.

2For illustration purposes, Table 2.2 assumes numbered partitions and a grouping
function [T]→int, which assigns a tuple to a specific partition.

28

2.3. Bulk Processing

in

1 1
2 4
1 3
3 2
2 3

GroupBy(in,grp,agg1)

1 4
2 7
3 2

GroupBy(in,grp,agg2)

1 [1,3]
2 [4,3]
3 [3]

with grp := [x,y] → x
agg1 := [[x,y]] → foldl(add-right,[∅,0], [x,y])]
agg2 := [[x,y]] → foldl(concat-right,[∅,[]],[x,y])]
add-right := [x1,y1]×[x2,y2] → [x2,y1+y2]
concat-right := [x1,[y]]×[x2,y2] → [x2,[y,y2]]

Figure 2.6.: Examples of aggregation types in GroupBy.

in

"a"
"b"
"c"

Count(in)

"a" 1
"b" 2
"c" 3

Figure 2.7.: Example of Count.

In some situations, the compiler presented in Chapter 4 will use Count
just to assign each tuple a unique label, which can be used later on as
sort or grouping key. In this case, an implementation may optimize the
labeling process in favor of parallelism and permit ”holes“.

2.3.3. Joining and Combining

The last group of bulk operators provides means to combine two re-
lations in various ways. In contrast to the aforementioned operators,
however, neither operator of this group is essential. Each one can be
replaced through combinations of other operators to yield the same re-
sult. However, because efficient algorithms are usually indispensable for
queries which combine data, the operators in this group are included
to enable the use of optimized algorithms and simplify the compilation
process.

29

2. Anatomy of a Data Programming Language

The operators Join and LeftJoin implement standard join func-
tionality3, but in a more general manner. The table functions left and
right are consecutively applied to the tuples of the input relation in
to produce left and right join inputs, respectively. The predicate func-
tion decides which pairs of tuples from these inputs will be combined to
an output tuple. In case of LeftJoin, every tuple from the left input
will be included in the result. If a tuple does not find a join partner
in the right input, it is padded with null values to ensure homogeneous
tuple width in the output relation. As always, the input order is pre-
served in the output if not stated otherwise. Order precedence is given
to the left input, which reflects a nested-loops-style evaluation strategy.
Note that this does not imply that implementations cannot use other
join algorithms like hash join or merge join.

Examples for both join variants are given in Figure 2.8. The input
relation in consists of a single empty tuple. Accordingly, the input
functions left and right, which return the static relations left-in
and right-in, respectively, are invoked only once. These two relations
are joined with a simple equality predicate over the first column values.

It is important to emphasize that the computation of multiple left
and right join inputs, one for each input tuple, is a fundamental dif-
ference to the structure of a classic relational join. Effectively, Join
and LeftJoin compute sequences of joins and concatenate the results.
However, typical situations will often allow the query processor to take
advantage of constant input functions. For example, if the right join
input is functionally independent of the input relation as in Figure 2.8,
a hash join implementation must load the hash table for the right input
only once. In contrast, functionally dependent inputs as in Figure 2.9,
require to rebuild the hash table for each input tuple. Section 5.2 ad-
dresses joins and related optimization strategies in more detail.

As their names suggest, Concat, Union, and Intersect cover fur-
ther standard operations on relations. Like the join operators, they
operate on two relations, which are step-wise computed for each tuple
in the given input. As always, input order is preserved if not stated
otherwise. Illustrations are given in Figure 2.10.

3Inner joins and left joins are particularly interesting for the material in this work.
Further kinds of outer joins and self joins are left out for brevity, but not for
practical or technical reasons.

30

2.3. Bulk Processing

in left-in

1 "a"
2 "b"
3 "c"

right-in

3 "x"
1 "y"
1 "z"

Join(in,left,right,pred)

1 "a" 1 "y"
1 "a" 1 "z"
3 "c" 3 "x"

LeftJoin(in,left,right,pred)

1 "a" 1 "y"
1 "a" 1 "z"
2 "b"
3 "c" 3 "x"

with pred := [x1,y1]×[x2,y2] → x1=x2

left := [x] → left-in
right := [x] → right-in

Figure 2.8.: Exemplified output of Join and LeftJoin.

2.3.4. Composition of Operators

The consistent use of relational structures in operators facilitates their
composition to accommodate typical query patterns. A composition
can be established by chaining operators via output/input parameters,
e.g., to form sequences of scan, filter, and transformation steps, or in
form of nestings inside joins, unions, etc.

The summation function from Figure 2.2 can be rewritten with op-
erators as shown in Figure 2.11. In contrast to the recursive solution,
a compiler can easily deduce that the data flows from inside out within
this composition. Starting with the empty tuple, the auxiliary function
transpose converts the input array to a single-column relation which
is also the result of the respective ForEach function. Select filters
this result by evaluating the predicate first-greater-than-3 for
each tuple. GroupBy assigns the remaining tuples to the partition 0
by using the constant partitioning function zero, and finally computes
the sum of all values in this partition.

The equivalence to a relational query plan is obvious. By taking re-
course on relational query optimization, we can therefore employ similar
rewriting techniques for operator compositions. Select filters should

31

2. Anatomy of a Data Programming Language

in

1
2

Join(in,left,right,pred)

1 2 2
2 3 3

left([1])

1 2
1 3
1 4

left([2])

2 3
2 4
2 5

right([1])

1 2
1 0

right([2])

2 3
2 1

with pred := [x1,y1]×[x2,y2] → y1=y2

left := [x] → [[x,x+1],[x,x+2],[x,x+3]]
right := [x] → [[x,x+1],[x,x-1]]

Figure 2.9.: Join with functionally-dependent input functions.

be moved upwards in a chain to reduce the size of intermediate results,
a filtered Cartesian product should be replaced by a join, etc. How-
ever, to perform such restructuring, we must first complete the picture
and expose hidden dependencies in compositions of higher-order bulk
functions.

So far, we tacitly assumed that composition knowledge is encapsu-
lated in supplementary functions like first-greater-than-3. The
predicate function expects an input relation with rows having at least
one column and compares the value at position 0 of a given input tuple
against the constant 3. Similarly, the function sum-first accumu-
lates only the values at position 0. Any reordering of operators may
easily break such dependencies.

To get rid of auxiliary functions and hard-coded tuple positions, we
introduce a naming scheme for columns as it is natural in relational
settings. If every column in the output relation of a function is labeled so
that the consuming operator can access individual columns by referring
to the respective label, the compiler can easily trace dependencies during
optimization.

In Figure 2.12, we labeled the single output columns of ForEach
and Select with $a and $a’ as indicated by the suffixes [$a] and
[$a’], respectively. The two unary helper functions sum-first and
first-greater-than-3 were replaced with parameterized versions.

32

2.3. Bulk Processing

in left-in

1 "a"
2 "b"
3 "c"

right-in

3 "x"
2 "b"
1 "a"

Concat(in,left,right)

1 "a"
2 "b"
3 "c"
3 "x"
2 "b"
1 "a"

Union(in,left,right,cmp)

1 "a"
2 "b"
3 "c"
3 "x"

Intersect(in,left,right,cmp)

1 "a"
2 "b"

with cmp := [x1,y1]×[x2,y2] → x1=x2 ∧ y1=y2

left := [x] → left-in
right := [x] → right-in

Figure 2.10.: Exemplified output of Concat, Union, and Intersect.

The summation function is replaced by sum($a) and the predicate
is replaced by the function call greater-than($a,3). The output
column of GroupBy is labeled with $a’ instead of $a to indicate that
values in this column are not the original values produced by ForEach,
but aggregates thereof.

Effectively, a column label is a variable binding for a specific column
position and a reference to it translates into a respective access opera-
tion on the current input tuple. As will be shown in Section 4.2.1, the
abstraction mechanisms of the lambda calculus will provide the right
tool for defining symbolic column names and modeling the dependen-
cies between individual operators. However, recall that we introduced
dedicated operators only as internal representation of common query
constructs and data flows. At the syntax level, we aim for dedicated
language constructs which allow to express bulk operations in a concise
and natural fashion. In our front-end language XQuery, this part is
greatly accomplished by FLWOR expressions.

33

2. Anatomy of a Data Programming Language

declare function sum-greater-3-bulk($val) {
GroupBy(

Select(
ForEach(

[],
transpose($val)

),
first-greater-than-3

),
zero,
sum-first)

}

Figure 2.11.: Bulk function to sum up all values greater than 3.

declare function sum-greater-3-bulk($val) {
GroupBy[$a’](

Select[$a](
ForEach[$a](

[],
transpose($val)

),
greater-than($a,3)

),
zero,
sum($a))

}

Figure 2.12.: Use of named column positions in bulk operations.

2.4. Data Manipulation

In the elementary data model, data manipulations will reflect modifi-
cations of map and array values in form of insert, update, and delete
operations. An insert adds new key/value pairs and fields to maps and
arrays, respectively. An update replaces mapped values and array fields.
A delete shrinks composite values by removing key/value pairs or array
fields. Because the effect of these basic update primitives is obvious,
we can omit a detailed presentation. However, a detailed specification
of update operations is necessary in the context of a concrete frontend-
language or data model, e.g., the XQuery Update Facility [W3C06b].

34

2.4. Data Manipulation

Conceptually, data manipulation requires clarification at two different
levels. It must be specified how updates are applied and propagated to
persistent storage and how queries and scripts cope with mutable data.

2.4.1. Update Queries

Declarative update statements enable users to evaluate a query for spec-
ifying how data should be updated. The canonic example in SQL is the
withdrawal of money from a bank account. The account is identified
by the account number and its current balance is used to compute the
update value:

UPDATE accounts

SET balance = balance - 100

WHERE account no = 270612 .

Update queries like this must be processed with care because the
update itself may interfere with the predicates evaluated. Otherwise,
updates have ambiguous semantics or can result in uncontrollable be-
havior at runtime. This is independent of the language, the shape of
data, and the kind of updates performed. Thus, appropriate precautions
must be taken in a data programming language, too.

Snapshot Semantics

To circumvent problems with update queries, they must be carried out
in two phases. In the first phase, only the query part of the update is
evaluated to compute the necessary update operations. In the second
phase, the latter are applied. This prevents that a declarative insert
like the following ends in an infinite loop of insertions:

INSERT INTO entries

SELECT account no, max(no)+1, -100, current-date()

FROM entries

WHERE account no = 270612 .

The splitting of update queries in two phases is also referred to as
snapshot semantics, because the updates are computed on a snapshot
of the data. Clearly, this property is mandatory for specifying any
meaningful update.

35

2. Anatomy of a Data Programming Language

Transactions

Transactions are the second major concern of update processing, par-
ticularly in database systems. A transaction is a programming ab-
straction that shields the users of a database system from reliability
and consistency issues arising from concurrency4, failures, and distri-
bution [GR93]. Broken down into key words, transactions guarantee
atomicity, consistency, isolation, and durability for queries and updates.

Conceptually, transactions do not affect the outcome of queries and
updates5. They solely provide a transparent execution context, which
can span over multiple queries and updates. Consideration or even
enforcement of transactional properties is therefore out of the scope of a
language specification. Nevertheless, efficiency and correctness concerns
usually require a tight integration of transaction processing and query
evaluation.

2.4.2. Immutability

For the time a query is evaluated, each value read or created must be
logically immutable. This guarantees that query predicates hold once
they are evaluated and, thus, it prevents chaos.

In principle, immutable values must not be enforced explicitly. In the
first place, it is a direct consequence of two-phased update processing or
follows from the general absence of update primitives. In fact, snapshot
semantics will guarantee that even those values that will be modified in
the update phase appear to be immutable in the preceding query phase.

Immutability is also in many other ways a valuable property. It sim-
plifies reasoning about data and enables the compiler to perform vari-
ous kinds of optimizations like constant folding and memoization. For
parallel processing, it is paramount as it rules out race conditions6.
Concurrency and transactions (see 2.4.1) are orthogonal aspects on a
concrete target platform.

4Note that concurrency control mechanisms must not be confused with the afore-
mentioned snapshot semantics of update queries.

5Practically, optimizations like non-serializable isolation levels and savepoints relax
this property in favor of faster response times and higher throughput.

6In fact, immutability of data is the major reason for the current renaissance of
functional principles in the context of highly parallel architectures.

36

2.5. Runtime Aspects

Note that, to benefit from immutability in scripts, the first phase of
update processing must be extended over all subqueries, i.e., all updates
specified therein are deferred until the end of the script. Obviously, this
is a rather rigid restriction, but it is necessary to avoid arbitrary complex
analysis of which intermediate results are affected.

2.5. Runtime Aspects

After having described the general structures of a data programming
language, it must be clarified how queries and scripts are actually eval-
uated. In the following, we focus on aspects, which may influence the
outcome of a query. Concrete evaluation techniques and technicalities
are subject to other chapters.

2.5.1. Evaluation Model

In principle, every part of a query, from simple arithmetic to func-
tion calls, is treated as an expression, which yields a result value. An
expression may consist of several subexpressions and even individual
statements in a script are subexpression in a sequence of expressions.
Accordingly, queries and scripts form trees of expressions, which are
evaluated recursively.

Individual expressions may be evaluated in an eager or a lazy fash-
ion. With eager evaluation, the result value is computed and mate-
rialized instantly, whereas with lazy evaluation, a placeholder value
mimics the materialized result and computes it incrementally on de-
mand [LS88, Lie87]. The query processor is free to choose the best
evaluation strategy for an expression with respect to CPU consumption
and memory overhead.

The query processor is in principle also free to evaluate the expression
tree in arbitrary orders or even in parallel – as long as the respective
expressions are independent of the surrounding context. The context
of an expression is an implicit environment of variable bindings, which
influences its outcome. Variable bindings refer to user-specified input
parameters, but also reflect results of preceding statements, function
arguments, and, primarily, the lambda abstractions in operator compo-
sitions as mentioned in Section 2.3. As will be shown, modeling of this

37

2. Anatomy of a Data Programming Language

context is key to scalable query processing. Thus, large parts of this
thesis will primarily focus on how to organize the dynamic environment
and how to evaluate context-dependent expressions.

Inside expression trees, sections with basic operations like data ac-
cesses, function calls, and general computations can be arbitrarily inter-
leaved with bulk processing operators. Clearly, the high data volumes
intended to be processed by the latter demand special treatment. To
leverage relational bulk algorithms, an operator composition is treated
like a pipeline of relational operators. Within the whole query, however,
the composition acts as a single expression.

The localization of bulk processing logic offers various possibilities for
optimized processing. At runtime, the representation as higher-order
functions can be completely dissolved, e.g., to pipeline intermediate
tuples between operators. Depending on the shape of a query, the input
data, and available system resources, a composition can be processed as
a pull-based operator tree or a push-based data-flow graph, sequentially
or in parallel, with or without materialization of intermediate results.

2.5.2. Side Effects

Functions that directly or indirectly interact with the system or external
resources may cause side effects or deliver indeterministic results. This
is critical for the same reasons as mutable values are. Indeterminism
can result in manifold problems including silent errors and crashes. Un-
fortunately, it is not possible to prevent side effects and indeterminism
in practice at all. For example, if a query or a script reads input from
a file or another uncontrolled resource, then there is no guarantee that
this input is stable and can be read repeatedly. Therefore, functions
causing or relying on side effects should be avoided whenever possible.
In consequence, the direct use of algorithms that rely on mutable data
structures is restricted or at least discouraged.

Functional programming languages face exactly the same problems
and developed strategies to cope with side effects. The most obvious
solution is the specification of an evaluation order for certain constructs,
which allows the developer to reason about the occurrence of side ef-
fects. Pure functional languages do not permit side effects by design and
help themselves with monadic type constructs, which encapsulate inde-
terminism in a proper functional value (see Section 4.2.1). Internally,
monadic values enforce a specific ordering of side-effecting actions.

38

2.5. Runtime Aspects

The application of strict execution policies deprive a query language
of many optimizations including the most important ones: operator
reordering, lazy evaluation and parallelism. As a compromise, we es-
tablish a few basic rules, from which happens-before relationships can
be derived, which in turn allow to reason about program execution.

Generally, a query term may be evaluated in any order, which seems
appropriate to the query processor. The summation a+b, for example,
may evaluate operand a before b, but also b before a. This rule applies
to all kinds of terms except the ones described in the following.

Conditional Branching

Language constructs which implement conditional branching like an
if-then-else must always evaluate in the same sequential order. In
a term if (c) then a else b, the condition c is evaluated first
and, depending on the outcome of c, either a or b is evaluated next. It
is neither allowed to evaluate the branches before the condition, nor it
is allowed to evaluate both of them. The same rationale applies to all
supported variations of conditional execution like switch-case.

Conjunction and Disjunction

Boolean expressions consisting of conjunctive and disjunctive clauses
are evaluated sequentially, but the evaluation stops as soon as the final
truth value is fixed. The conjunction a and b evaluates a first and b
only if a yields true. The disjunction a or b evaluates a first, too,
but b only if a yields false.

Statements

The individual subqueries in a query script are evaluated in their order
of appearance, i.e., a statement vi:=qi is evaluated before the following
statement vi+1:=qi+1. Effectively, this allows to serialize most prac-
tically relevant cases where side-effect-afflicted I/O occurs, e.g., when
writing and reading intermediate results to and from disk, respectively.

39

2. Anatomy of a Data Programming Language

Lazy Evaluation

Despite the above evaluation rules, there are still some aspects left open,
which influence whether and how often a side-effecting action will take
place or not. Namely, it must be clarified what it actually means if one
expression is said to be evaluated before another.

The evaluation process embodies two main sources of uncertainty.
If an expression is evaluated in a lazy fashion, it may happen that a
suspected side effect has not yet occurred while another expression is
evaluated that is supposed to happen logically after the side-effecting
one. Related to this problem is the question of whether or not inter-
mediate results are materialized. If the result of an expression which
produces side effects is not materialized but recomputed every time it
is required, e.g., in a recursive function, then the respective side effect
can occur multiple times. Because there exists no general solution to
this problem except insisting on eager evaluation with materialization
for all intermediate results, we simply negate the näıve assumption that
an expression is evaluated exactly once and in its entirety. Instead, the
developer is required to wrap a critical expression in a special construct,
e.g., strict{write-to-file(...)}, which instructs the compiler
to evaluate it eagerly and only once, and to materialize the result.

Optimization

With regard to side effects, optimizations conducted by the compiler
can lead to unexpected results. Reordering of operators is one of them.
It causes problems if, e.g., two operators in a chain of operators are
swapped, whereby the formerly first one causes side effects on which
the second one depends. Other major optimizations that may silently
suppress side effects are the removal of unused subexpressions, the re-
placement of expressions with output-equivalent alternatives, and early
exits, i.e., the partial evaluation of query parts, which stops as soon as
the final result can be constructed. Last but not least, parallelism is
another source of indeterminism that jeopardizes all chances to reason
about side effects.

A general banning of the mentioned and similar optimizations is not
an option, because optimization is one of the central strengths of a
declarative language. Furthermore, functions with side effects are rarely

40

2.5. Runtime Aspects

necessary in data processing and should be avoided anyway. Therefore,
the compiler is allowed to generally assume that a function does not
cause side effects unless it is annotated accordingly by the developer. In
the latter case, the compiler must not attempt optimizations which re-
order or suppress the occurrence of side effects with respect to the strict
evaluation of a non-optimized query. Passive but side-effect-dependent
sections must be annotated similarly to avoid reordering, too. Although
this does not determine the outcome of queries with side effects in gen-
eral – the language remains declarative and does not base on a fully
specified execution model – this allows the developer at least to reason
about the query with respect to the canonical evaluation strategy of a
specific target platform, which, for example, evaluates operators in a
pipelined nested-loops style.

In a certain sense, annotating a function as a source of indeterminism
taints a – potentially large – part of the query, which cannot profit
from advanced optimization or parallelism. Thus, a front-end language
may alternatively offer a special language construct, which prohibits
optimization of critical regions, e.g., restricted{...}.

2.5.3. Error Handling

Compilation and evaluation of a query may lead to various kinds of
static and dynamic errors. Most of them are related to typing issues,
e.g., when function is called with illegal argument values. Without
delving into details, we assume the compiler to perform respective type
checks at runtime and statically, if possible. Other kinds of runtime
errors concern a broad spectrum reaching from unavailable resources
and dynamic failures (e.g., division by zero) to constraint violations in
a specific data model.

Errors are always reported immediately and lead to the abortion of a
query. However, expressions may be nested try-catch constructs as
in programming languages to enable automatic recovery from runtime
errors, e.g., to work around partially invalid inputs.

If the compiler restructures and optimizes a query, it may happen
that some errors will not be raised by the optimized version, because
the erroneous situation does not occur anymore. For example, an illegal
comparison in a search predicate might not be evaluated in an optimized
query, because the data fulfilling the query predicate is accessed directly

41

2. Anatomy of a Data Programming Language

using an additional index. Without restraining optimization efforts,
we resort here to the rule set of XQuery [W3C10c], which allows non-
detected errors in optimized queries as long as occurring errors are not
purposely suppressed. The other way around, i.e., optimizations that
yield errors which would not occur in the unoptimized query, are not
allowed.

42

3. Extended XQuery

XQuery is a query language for XML data that was specified by the
W3C almost a decade ago to consolidate various efforts in declarative
XML processing [W3C98b, W3C98c, RCF00, W3C10a]. In the course
of several revisions, the language grew to a versatile functional program-
ming language, but still has its major strengts in XML bulk processing.

For this thesis, the most important aspect of XQuery is the ability
to specify query patterns and control flows in a data- and platform-
independent manner. In combination with the composition features of
a functional language, this makes XQuery a decent demonstration can-
didate for the working principles and compilation aspects of a data pro-
gramming language. This chapter presents the key aspects of XQuery
and introduces a few extensions, which help to draw a more complete
picture of our vision.

To illustrate the conceptual independence of data processing concepts
and physical data representation, this work augments XQuery with data
structures and operation primitives for the competing serialization for-
mat JSON [Cro06]. With a small syntax extension, we also uncover
already built-in scripting capabilities.

3.1. Data Model

The XQuery and XPath Data Model (XDM) [W3C11b] is built around
the family of XML standards, e.g., [W3C06a, W3C04a, W3C04b]. As a
result, XDM is a relatively complex basement for a query language but,
fortunately, most subtleties of XML can be confined to node construc-
tion, schema validation, and serialization. For this thesis, it is sufficient
to concentrate on the main aspects of XDM and show the correspon-
dences to the basic data model described in the previous chapter.

43

3. Extended XQuery

Sequence

Item

FunctionNode xs:anyAtomicType

Array

Object

Element

Attribute

Text

Document

Comment

Proc-Instr

Namespace

xs:untypedAtomic

xs:double

xs:float

xs:decimal

xs:integer

xs:QName

xs:boolean

xs:date

xs:string

Figure 3.1.: Items and sequences in the extended XQuery data model.

3.1.1. Items and Sequences

The central concept in XDM is the notion of items and sequences as
illustrated in Figure 3.1. Sequences are ordered lists of zero or more
items. Conceptually, they are array composites with the speciality that
nestings of sequences are always flattened, i.e., it is not possible to
build hierarchical structures of sequences. Single items are treated as
equivalent to a sequence of one item. Because the empty sequence ()
is also used to represent missing data, it serves as null value in XDM.

Originally, items are distinguished into three classes. Atomic items
are XDM’s notion of primitive values like strings and numerics. Node
items represent the nodes of an XML document tree. Function items
are objects representing XQuery functions, which can be evaluated for

44

3.1. Data Model

a set of arguments. In our extended version, array items and object
items reflect the respective data structures from the JSON data model.

XML

Node items are the standard abstraction for representing structured and
semi-structured data in XML. Nodes appear in seven different kinds,
e.g., as elements, attributes, or text, and have various kind-specific
properties like a name, a type, a typed value, a text value, a set of
children, and a parent. Furthermore, nodes have an identity, which
also has implications for XML processing. Altogether, these properties
are defined in the XML Infoset specification [W3C04a], which specifies
how XML nodes can be composed to model data as XML documents
or fragments.

Conceptually, a node item reduces to a complex composite of array
and map values, but choosing a concrete composition form is not neces-
sary for our discussion. Neither necessary for this thesis and, thus, gen-
erally omitted are advanced XML specifics like serialization, whitespace
handling, and XML namespaces. For details we refer to the respective
standard documents [W3C11c, W3C09].

Objects and Arrays

Object items and array items are extended variants of the respective
structures in JSON, which, in turn, represent incarnations of the two
fundamental composition types map and array of Section 2.1.1. For a
seamless integration with common idioms of XQuery, array items are
indexed with atomic integer values and maps are keyed by QNames,
respectively. QNames are the standard atomic type for object names
in XDM. Furthermore, nodes and sequences are legal values, which de
facto extends the basic JSON model. Null and the JSON value types
boolean, string and numeric are mapped to the empty sequence
and atomic value types, respectively.

A basic constructor syntax for static JSON items was already exem-
plified in Table 2.1. Examples for dynamically computed objects and
arrays are given in Table 3.1.

45

3. Extended XQuery

Value Type Examples

Array [1=1, substring("banana", 3, 5), () , <a/>]

evaluates to

[2, "nana", null, <a/>]

[(1 to 5), ["x", true()]]

evaluates to

[(1,2,3,4,5), ["x", xs:boolean(1)]]

[=(1 to 5), 19.54, false()]

evaluates to

[1, 2, 3, 4, 5, 19.54, xs:boolean(0)]

Object { "a": 1, ’b’ : 2, c : 3 }
evaluates to

{ "a" : 1, "b" : 2, "c" : 3 }
{ a : concat(’f’,’oo’) , b : [1,2][[1]] }
evaluates to

{ "a" : "foo", "b" : [2]}
let $r := { x:1, y:2 } return { $r, z:3 }
evaluates to

{ "x" : 1, "y" : 2, "z" : 3}
{ x : 1, y : 2, z : 3 }{z,y}
evaluates to

{ "z" : 3, "y" : 2 }

Table 3.1.: Dynamic construction of array and object items.

3.1.2. Properties and Accessors

Between items and sequences exist various kinds of relationships. The
name of an XML element node, for example, is an atomic value. Both
can be part of several sequences and the element can also be parent,
child, and sibling of other nodes in an XML fragment. XDM defines
many of these relationships explicitly in form of properties.

Operations in XDM are simple accessors for sequences and node
item properties. Groups of in total 17 accessors cover the logical as-
pects of a node. The central ones are accessors for structural prop-
erties (attributes, children, parent) and accessors for value
and type properties (node-name, string-value, typed-value,
type-name, node-kind). The other accessors cover miscellaneous
XML-related properties (e.g, document-uri, is-id, etc.).

46

3.1. Data Model

In XPath/XQuery, accessors are either exposed as functions (e.g.,
fn:name()) or as part of higher-level axis step expressions. The latter
evaluate whole combinations of item properties. The axis step expres-
sion child::revenue, for example, fetches the child list of the context
node through its children accessor and then uses the node-kind
and node-name accessors to filter this list for element nodes having
the name revenue. Of course, query processors must not strictly fol-
low this procedure and may implement more efficient algorithms for
evaluating paths in XML trees.

JSON objects and arrays provide each solely a single accessor, which
they inherited from the underlying composition type. Maps expose the
property entries for enumerating the key/value pairs. Arrays expose
their field values via the property fields. Note that this is already
sufficient to implement the access operations presented in Section 2.2.1,
but, as with XML nodes, the query processor may realize most of them
with more efficient strategies like associative lookups.

3.1.3. Types

A central design goal for XDM was to support decent XML processing
for both properly typed, schema-conform data as well as for schema-
less or unvalidated XML. The resulting type hierarchy therefore needed
to embody the original type system from XML Schema. In addition
to that, XDM was required to model data, i.e., nodes, atomics, and
recently also functions, in a way that allows to define a concise and
consistent query language. As a result, the type system of XDM is
characterized by a dualism created by merging two distinct type hier-
archies, the item hierarchy and the XML Schema hierarchy, into one.

XML Schema

The XML Schema part of the hierarchy is rooted by xs:anyType.
It is shown in Figure 3.2. Notably, the branch xs:anyAtomicType
overlaps with the item type hierarchy.

The dualism requires to use the merged type hierarchy with the ap-
propriate perspective. The item perspective comes close to the type sys-
tems of standard programming languages and is the default in XQuery.
The XML Schema perspective comes into play when XML needs to be

47

3. Extended XQuery

xs:anyType

xs:anySimpleType

xs:untyped

user-defined
complex types

xs:IDREFS

xs:NMTOKENS

xs:ENTITIES

user-defined list
and union types

Item

xs:anyAtomicType

Figure 3.2.: XML Schema part of the dual XDM type system.

validated against a schema definition, which may be the case before,
during, or after the actual query. After successful validation, XML
nodes are labeled with a corresponding schema type annotation, which
effectively determines their (sub-)type in the item perspective. The
special types xs:untyped and xs:untypedAtomic serve as default
types for unvalidated XML nodes and their content, respectively. As a
comfort feature, values of the latter type are subject to implicit conver-
sion rules, which simplify the work with data originating from textual
XML representations.

Like in the item type perspective, every major group in XML Schema
has extension points for user-defined types. The shared branch of atomic
types is interpreted in both perspectives as hierarchy of primitive values,
which supports sub-typing by domain restriction.

Sequence Types

On top of the item perspective, XQuery uses the notion of sequence
types for referring to the type of results, function arguments, etc.

48

3.2. Expressions

A sequence type is a pair of an item type and an optional occurrence
indicator ?, *, or + meaning zero-or-one, zero-or-many, and one-or-
many respectively. The special type empty-sequence() represents
the empty sequence.

Sequence type matching is a mechanism for ensuring the type of a
sequence. A function foo(xs:date,xs:int*)→ xs:string+, for
example, must only be invoked for two arguments, with the first ar-
gument being an atomic value of type xs:date or any subtype of
xs:date and the second argument being a sequence of atomic values
of type xs:int or any subtype of xs:int. Furthermore, the function
must only return a non-empty sequence of xs:string values. Respec-
tive type validation must be performed both statically and dynamically.
Typing errors raise exceptions in the runtime system.

3.1.4. Additional Concepts

To simplify common situations, XQuery defines three additional con-
cepts for items and sequences. For the sake of completeness, we name
them here, but refer to the language specification for details:

Document Order A total, stable ordering of all node items in a
query. Within XML fragments, document order is defined as the order
in which the nodes appear in the serialized representation.

Atomization A coercion mechanism for converting arbitrary se-
quences into sequences of atomic values. It is primarily applied to the
arguments of arithmetics, comparisons, function calls, etc.

Effective Boolean Value An implicit truth value of items and se-
quences for convenient use in logical and conditional expressions. It
is based on common programming language idioms, e.g., a non-empty
string has the effective Boolean value true and the empty sequence has,
as representation of the null value, the effective Boolean value false.

3.2. Expressions

A query is a tree of expressions that is evaluated to a sequence of items.
The spectrum of expression types reaches from basic ones like literals,
arithmetics and function calls, to XQuery-specific FLWOR expressions

49

3. Extended XQuery

and expressions derived thereof like filter expressions and path expres-
sions. A full overview of all built-in expression types of XQuery 3.0 is
given in Table 3.2.

As mentioned in Chapter 2, equivalents to the basic expression types
can be found in almost any programming language. FLWOR-based
expressions, however, are the language-specific equivalent to bulk op-
erator compositions and serve fundamental data processing tasks. As
such, they play a central role for this thesis and will be introduced
briefly in the following.

3.2.1. FLWOR Expressions

FLWOR expressions are the language’s backbone. The name stems from
their general structure – a sequence of clauses, i.e., composable language
primitives for iterating, filtering, reordering and grouping of data. The
standard clauses are for, let, where, order by, and return. In
the current working draft for version 3.0 of XQuery [W3C10c], they are
accompanied by the clauses count, window, and group by1.

Inside a FLWOR expression, the individual clauses operate on a logi-
cal tuple stream. A tuple is a set of named variables, which are bound to
XDM sequence values by individual clauses and visible to all following
clauses within the same FLWOR expression. Each sequence of clauses is
terminated by a single return clause, which reduces the tuple stream
to a single XDM sequence – the result of the FLWOR expression. For il-
lustration, consider the sample query and the corresponding expression
tree shown in Figure 3.3.

The query consists of two nested FLWOR expressions with for-loop
clauses. The outer loop binds the values 1, 2, and 3 successively to
a variable $a and evaluates for each binding the nested FLWOR ex-
pression, which itself loops with a run variable $b over the sequence
(2,3,4) to compute {$a,$b} pairs. The let clause binds the sum
$a+$b for each pair that fulfills the where predicate $a=$b to a vari-
able $c. Finally, the return clause produces the output by concate-
nating all values bound to $c. Accordingly, we obtain the result (4,6).

The correspondence between FLWOR clauses and bulk operators is
obvious. The for, let, and where clauses match to ForEach and

1All XQuery examples in this thesis base on the syntax and language features of
the W3C XQuery 3.0 working draft from December 13, 2011.

50

3.2. Expressions

Expression Type Examples
Literal 11 1.34e10 "a string"
Variable Reference $var
Parenthesized Expression (...)
Context Item Expression .
Static Function Call fn:substring("brothers", 3, 6)
Named Function Reference fn:substring#3
Inline Function Expression function($a) as xs:integer { $a*$a }
Filter Expression (19,81,11,11)[.>11]
Dynamic Function Call $fun("foo","bar")
Path Expression $n//person/address:address t/city[2]

$n/parent::*/attribute::id
$number!sqrt(.)

Sequence Expression 3, foo("bar"), $x+1
Range Expression 1 to 500
Node Sequence Combination (<a/>,) union (<c/>)

(and intersect, except)
Arithmetic 3 + 4.8 (and -, *, div, idiv, mod)
String Concatenation "foot" || "ball"
Value Comparison 3 eq 1 (and ne, lt, le, gt, ge)
General Comparison (3,1,5)=(9,5) (and =, !=, <, <=, >, >=)
Node Comparison <e>1</e> is <e>1</e> (and <<, >>)
And/Or Expression "yes" and "no" false() or true()
Node Constructor <elem attr="val"><child/></elem>

<node>{"con" || "tent"}</node>
attribute "id" { 340 }
text { "some value" }

FLWOR Expression for $p in doc("parts.xml")
where $p/price > 5000
return $p/@id

(Un-)ordered Expression unordered {...} ordered {...}
Conditional Expression if ($i>10) then "y" else "n"
Switch Expression switch ($i)

case "I" return 1 case "II" ...
default return -1

Quantified Expression some $x in $y satisfies check($x)
every $x in $y satisfies check($x)

Try/Catch Expression try { calc() } catch * { "oops" }
Instance Of Expression 5 instance of xs:integer
Typeswitch Expression typeswitch ($node)

case $n as element(*,address t)
return $n/city() case ...

default return "unsupported type"
Cast Expression "1.3" cast as xs:double
Castable Expression "1.3" castable as xs:double
Constructor Function xs:boolean("true")
Treat Expression treat $nums as xs:integer+
Validate Expression validate strict { doc(’data.xml’) }

Table 3.2.: Overview of expression types in XQuery 3.0.
51

3. Extended XQuery

for $a in (1,2,3)
return for $b in (2,3,4)

where $a=$b
let $c := $a+$b
return $c

⇓
flwor

for $a

()

1 2 3

return

flwor

for $b

()

2 3 4

where

=

$a $b

let $c

+

$a $b

return

$c

Figure 3.3.: Expression tree for nested FLWOR expression.

Select operators, respectively. The return clause reflects a combi-
nation of Project and GroupBy. Variable bindings directly translate
to tuple positions in the intermediate relations.

3.2.2. Filter Expressions

Filter expressions allow to filter an item sequence by a given positional
or general predicate. The filter expression ("a","b","a")[1], for
example, selects the first item "a" from the input sequence, whereas
the predicate in ("a","b","a")[.="a"] matches both "a" string
items yielding the sequence ("a","a"). Intrinsically, filter expressions
are syntactic sugar for plain FLWOR expressions as shown in Figure 3.4.

52

3.2. Expressions

e1[e2] ⇔

let $tmp := e1

let $fs:last := fn:count($tmp)
for $fs:dot at $fs:pos in $tmp
let $p := e2

return if (fs:is-numeric($p)) then
if ($p eq $fs:pos) then
fs:dot

else
()

else
if ($p) then
fs:dot
else
()

Figure 3.4.: Equivalence of filter expressions and FLWOR expressions.

The initial expression e1 is evaluated once and its result is bound
to a temporary variable $tmp. The size of the result is bound to an
auxiliary variable $fs:last. The second expression e2 is the filter
predicate. It is evaluated for each item in $tmp by iterating over the
input sequence with a run variable $fs:dot and a position variable
$fs:pos. The variables $fs:dot, $fs:last, and $fs:pos define
the implicit evaluation context for evaluating e2 (see also Section 3.3).

The return clause consists of a two-staged conditional expression
which simply returns the item currently bound to $fs:dot if the pred-
icate is fulfilled and emits the empty sequence () otherwise.

3.2.3. Path Expressions

Path expressions probably attracted the most attention of all expression
types, because they are the building block for navigating XML trees.
Syntactically, they have the form e1/e2 with e1 and e2 being individual
subexpressions. Their special role in XML processing is owned to the
fact that the second expression evaluates in the context of first, i.e.,
e2’s result is dependent on the outcome of e1. This is achieved by
interpreting path expressions as composites of a FLWOR expression
and the two step expressions e1 and e2 as shown in Figure 3.5.

53

3. Extended XQuery

e1/e2 ⇔
fs:ddo (
let $tmp := e1

let $fs:last := fn:count($tmp)
for $fs:dot at $fs:pos in $tmp
return e2

)

Figure 3.5.: Equivalence of path expressions and FLWOR expressions.

The evaluation of path expressions is similar to the aforementioned
filter expressions, except that the sequences obtained by evaluating e2

are part of the result. The FLWOR is wrapped in a call of the auxiliary
function fs:ddo(), which enforces some XML-specific ordering and
typing properties like distinct-document-order on the result sequence.

XQuery 3.0 introduces the map operator ! as a generalized variant
of the traditional path operator /. A path expression e1!e2 is then
evaluated as shown before, except that the map operator does not imply
the use of the fs:ddo() function.

In practice, most step expressions are so-called axis steps, which allow
to use path expressions for pattern-based navigation in complex XML
structures. As already shown in Section 3.1, axis steps basically consist
of an axis specifier and a node test, which evaluate the XDM accessor
functions for a given node. The context node is the implicitly bound
variable $fs:dot.

Optionally, an axis step may also have a trailing list of predicates
enclosed in ’[]’ for further filtering the list of qualified result nodes.
The predicates in axis steps are treated similarly to filter expressions
except for subtle differences in the treatment of positional predicates
when the axis specifier navigates in reverse document order.

3.2.4. Quantified Expressions

Quantified expressions yield a truth value for a predicate over a collec-
tion of values. A some quantified expression iterates with a variable
over a sequence and yields true, if the predicate holds for any value in
the sequence. In an every quantified expression, the predicate must
hold for a values in the sequence.

54

3.2. Expressions

some var in expr
satisfies predicate

⇔
some(

for var in expr
return predicate

)

every var in expr
satisfies predicate

⇔

every(
for var in expr
return if (predicate) then

xs:boolean(1)
else

xs:boolean(0)
)

Figure 3.6.: Interpretation of quantified expressions as FLWORs.

The standard considers quantified expressions as independent expres-
sion types [W3C10b]. However, they can also be emulated by simple
FLWOR expressions as shown in Figure 3.6. A single for loop iter-
ates over the input sequence and the return expression evaluates the
respective predicate. The actual quantification is finally performed by
passing the result of the FLWOR as argument to a helper function.

For the every quantifier, one must take care that the predicate does
not evaluate to the empty sequence, because it would be discarded from
the result even though it should cause the whole quantification to eval-
uate to false. Accordingly, the respective predicate in Figure 3.6 is
wrapped in an if-then-else as a guard against empty sequences.

A query processor is allowed to evaluate quantified expressions in ar-
bitrary orders and short-circuit the evaluation to stop as soon as the
truth value is determined. In the FLWOR representation, this obvious
optimization is not present anymore, but for the sake of simplicity, we
assume that quantified expressions will always be converted to corre-
sponding FLWORs. With regard to efficiency, we can also safely assume
that the compiler understands the semantics of the employed helper
functions and introduces appropriate short-circuiting techniques.

55

3. Extended XQuery

3.3. Evaluation Context

Some expressions and FLWOR clauses depend on variables and other
external factors, which affect their result or their behavior. This ex-
ternal environment is divided into a static and a dynamic part. The
plain variable reference expression $a, for example, evaluates to the
value currently bound to the respective variable. The FLWOR clause
order by $a refers to tuple position associated with the variable $a
to get the sorting key for incoming tuples and it depends on the static
declaration order empty indicating whether to treat empty sorting
keys as greatest or least possible value in comparisons.

3.3.1. Static Context

The static context contains information for the static analysis and com-
pilation of a query like namespace declarations, imported libraries, func-
tion signatures, and schema types. Aside this, it contains default op-
tions for runtime operations like orderings, URI resolution, etc. Most
importantly, the static context contains all global and external variables
and it provides default values for the implicit context variables.

The implicit context consists of the artificial context item variable
$fs:dot, its position in a context sequence ($fs:pos), and the size
of the latter ($fs:last). In principle, they are plain variables in
the static context, which are overriden in desugarized filter and path
expressions as shown in Section 3.2.1. However, they cannot be accessed
like normal variables. They can only be referred to via the context
item expression ’.’ and the special functions fn:position() and
fn:last(), respectively.

3.3.2. Dynamic Context

The dynamic context is the environment in which expressions evalu-
ate individual subexpressions. Besides platform- and runtime-specific
settings like available resources and the current date, it consists of all
dynamically-bound variables in the current scope. Accordingly, simple
expressions like arithmetics or comparisons evaluate subexpressions in
the same context they are evaluated in, whereas variable-binding ex-
pressions or FLWOR clauses modify the dynamic context beforehand.

56

3.4. Scripting

In a FLWOR expression, the variables currently bound by for, let,
window, and count clauses can be referenced in all expressions of
subsequent clauses. Within the for loops in Figure 3.3, e.g., individual
subexpressions like the comparison and the summation are evaluated
multiple times, but each time within a different iteration, i.e., dynamic
context. Similarly, each step in a path expression provides a context
node to the next step by iteratively binding its local result to the implicit
context variables $fs:dot, $fs:pos, and $fs:last. Non-FLWOR-
based expressions which bind variables are, e.g., typeswitch expressions,
quantified expressions, and try-catch expressions.

3.4. Scripting

XQuery is not as scripting language in the sense of an operating system
shell or even a general-purpose scripting language. It was designed as
functional-style query language and therefore lacks an explicit control
flow and does not support mutable data structures. Nevertheless, the
language accommodates the simpler form of data processing scripts dis-
cussed in Chapter 2 very well. Recall, they consist of a simple sequence
of statements, which bind the result to a variable for further reuse.

XQuery’s equivalent to a statement is a let binding. A let clause
evaluates an expression, i.e., a query, binds the result to a variable, and
continues with the next clause in the FLWOR. Accordingly, a script is
simply a sequence of let bindings in the same FLWOR expression.

As convenient variant to the standard FLWOR syntax, we may enrich
XQuery therefore with a special syntax, which translates a sequence of
’;’-terminated statements into a single FLWOR expression as exem-
plified in Figure 3.7. A statement of the form $v := e; is directly
translated to let $v := e. Statements without variable assignment
like the function call write-file(...); are complemented with an
anonymous variable. The result of a script FLWOR is simply the result
of the last statement.

Note again that statements are a simple syntax extension to simplify
the writing of data processing tasks already covered by regular XQuery.
It is neither a subset of nor an equivalent to the XQuery Scripting Exten-
sion 1.0 [W3C10d], which defines an explicit control flow and weakens
immutability guarantees by introducing explicit side effects.

57

3. Extended XQuery

$start := now();
$log := fn:collection("log.txt");
$report := generate-report($log);
write-file(’reports.txt’, $report);
for $i in search-incident($report)
send-report(’admin@acme.org’, $i);

$end := now();
"Duration: " || ($end - $start) || "ms.";

⇔
let $start := now()
let $log := fn:collection("log.txt")
let $report := generate-report($log)
let $v0 := write-file(’reports.txt’, $report);
let $v1 := for $i in search-incident($report)

send-report(’admin@acme.org’, $i);
let $end := now();
let $v2 := "Duration: " || ($end - $start) || "ms."
return $v2

Figure 3.7.: FLWOR-based statement syntax for scripting.

58

4. Hierarchical Query Plan
Representation

The translation of a query, respectively a script, into an executable
query plan is a complex process. The initial query string is parsed
into an internal representation, which is subject to various transforma-
tions and optimizations, and finally translated into an executable form.
Therefore, a suitable intermediate representation is essential for the
compilation process. In the following, we present the theoretical base-
ment of a compiler, which takes advantage of a hierarchical top-down
representation for modeling nested evaluation scopes and variable bind-
ings in a query.

4.1. Requirements

Before starting with the introduction of the top-down query representa-
tion, we motivate first a catalog of requirements that should be covered:

Conciseness The query representation should reflect the query intent
in a crisp and consistent form to facilitate both query rewriting
and standard compilation techniques (simplification, dead-code
elimination, etc.).

Portability To support multiple platforms, query representation and
rewriting rules should abstract from platform and machine-specific
aspects (e.g., CPU registers, caches, memory) to the most possible
extent, but at least to the final stages before the platform-specific
translation into an executable query plan.

Set-orientation Support for set-oriented optimization and translation is
mandatory for data processing. The query representation should
reflect set-oriented aspects in a way that allows the optimizer to

59

4. Hierarchical Query Plan Representation

perform common and data-specific optimizations. Chances for
parallel query execution should be maximized and easy to exploit.
However, all this should not interfere with other parts of a query
and still permit a decent representation of non-bulk-oriented sec-
tions.

Abstract Data Access To maximize the portability of compiler rules,
there should be clear-cut separation of query logic and data access
primitives. Data access operations should be primarily treated as
abstract operations to support the translation to both generic
implementations (e.g., adapters) and efficient native alternatives.
Furthermore, storage-specific operations and indexes should be
easy to integrate, too.

Extensibility An extensible query representation enables not only sup-
port for native storage, but also for specialized operations and
algorithms like XML twig joins [BKS02]. With a customizable
compiler kernel, specific functionality should only require mini-
mal adjustments of the compilation process – ideally, in form of a
few rewrite rules and small utility functions.

With these design goals in mind, the first step towards an appropriate
query representation requires to look at bulk operators and variable
bindings from a more abstract perspective. As foretold in Section 2.3.4,
we want to abstract referential dependencies to variable bindings with
the help of lambda abstractions. The following section introduces the
respective theoretical basement for operator compositions and rewriting
rules, which finally leads to a sound and flexible query representation.

4.2. Query Representation

In contrast to most other query languages, our data programming lan-
guage does not base on an operator algebra, but on a functional spec-
ification, where variable bindings and arbitrarily nested scopes play a
central role. A typical bottom-up data flow graph of set-oriented opera-
tors is therefore not ideal to represent a query. It is too difficult to keep
track of variable dependencies, if variables are bound at the bottom

60

4.2. Query Representation

nodes of a query plan, but referenced at higher levels in nested expres-
sions and subqueries, which imply a local top-down view. Instead, a
consistent, hierarchical top-down representation is preferable because
it naturally reflects nestings and variable scopes, which notably simpli-
fies the analysis of variable dependencies. Furthermore, a proper tree
structure simplifies routines for pattern matching and rewriting rules.

4.2.1. Comprehensions

In functional programming, lambda abstractions occur in various syn-
tactical forms. For implementing variables, i.e., dynamic bindings of
values to names, many languages support constructs like the let-clause
bindings in XQuery. A simple let, however, binds a variable only once
in a scope and cannot reflect dynamic computation. Therefore, some
languages use lambda abstractions for realizing list comprehensions, a
syntactic structure for representing iterative computations on lists as
functional values [ASS85].

In the functional programming language Haskell, for example, the list
comprehension [x|x<-[1..9],x<=3] represents the list [1,2,3],
which is derived by iterating over the integers 1,2,. . . ,9 and picking all
values less or equal 3 to construct the result. In each iteration, the
variable x serves as symbolic name for the current value in the integer
sequence. A closer look at this comprehension reveals that it already
incorporates similar functionality as the bulk operators ForEach and
Select: It enumerates and filters data.

Conceptually, a list comprehension has the basic structure [t | q] with
a term t and a qualifier q [Wad90]. A qualifier is either the empty qual-
ifier Λ, a generator of the form x←u, a filter b, or a composition of
qualifiers (p; q). A comprehension is interpreted by applying the follow-
ing rules1:

1Function applications are written in the classic functional syntax of the original
paper without parentheses around the function arguments. The term foo a b,
for example, could also be written as foo(a, b) and denotes the application of a
function foo on two arguments a and b.

61

4. Hierarchical Query Plan Representation

a) [t |Λ] = unit t

b) [t |x←u] = map (λx→ t) u

c) [t | b] = if b then [t] else []

d) [t | (p; q)] = join [[t | q] | p]

The function unit in rule a) is a constructor, i.e., for the empty qualifier
Λ, [t |Λ] creates a list of the single value t. In a generator x←u, the x
denotes a variable and u denotes a list value. Rule b) says accordingly
that the higher-order function map creates a list by applying a function
on each element x of the input list u defined by the term t. The third
rule produces a singleton list [t] and an empty list [] for true and false
Boolean-valued terms b, respectively. Finally, rule d) normalizes com-
positions of qualifiers recursively to the three other cases. The function
join concatenates the resulting lists to a single list. Altogether, these
rules provide a framework for composing iterative computations on list
values, which use variables as glue between generators and terms.

Monads

A generalization of list comprehensions, so-called monad comprehen-
sions, will allow us to represent all bulk operators and compositions
thereof as a clear-cut concept. This great utility of comprehensions for
representing queries has been recognized in the literature more than
twenty years ago [TW89, Feg98, Gru99].

A monad itself is a type concept around a set of axioms, the so-called
monad laws, which allows to encapsulate computation in values. Let id
be the identity function and let f ◦ g denote the composition of two
functions f and g, then the three functions map, unit and join form a
monad if the following conditions hold [Wad90]:

1) map id = id

2) map (g ◦ f) = map g ◦ map f
3) map f ◦ unit = unit ◦ f
4) map f ◦ join = join ◦ map (map f)

5) join unit = id

6) join ◦ map unit = id

7) join ◦ join = join ◦ map join

62

4.2. Query Representation

To support filters as qualifiers, a monad needs the additional function
zero, which creates the empty monad, e.g., the empty list monad []. It
must support the following supplementary rules:

8) map f ◦ zero = zero ◦ g
9) join ◦ zero = zero

10) join ◦ map zero = zero

Monads play a key role in functional languages because they allow to
model I/O, mutable state, nondeterminism, etc. in a functional setting.
The theory behind and application of monadic constructs is a wide
research field and we refer to the literature for further details.

For our discussion it is sufficient to note that monadic comprehensions
are not limited to lists. They can model bags, sets, and any other type
τ for which the respective functions unitτ , mapτ , joinτ , and zeroτ

obeying the above rules can be defined [Gru99]. In fact, it is possible
cover the functionality of all bulk operators by defining monads which
operate on two-dimensional arrays, i.e., lists of lists.

The derivation of monadic representations of ForEach, Project
and Select follows straightforward from the design ideas of list com-
prehensions. In a respective monad array2, solely the four monad func-
tions must be adapted for operating on two-dimensional arrays instead
of lists. The constructor function unitarray

2

takes a tuple, i.e., an ar-
ray and produces a relation of this tuple. The map function maparray

2

applies a transformation function to each input tuple and produces the
cross product of the resulting value and the input tuple. The function
joinarray

2

concatenates relations. The neutral element in this monad
is the empty relation [[]] created by zeroarray

2

. For simplicity, we as-
sume here that tuples in a relation must not be of the same size. A
tuple with less elements is considered equivalent to a tuple in which all
further elements are padded with null values. In case of Project, the
actual elimination of columns happens in the final term t.

Bulk operators that operate on a per-relation basis, i.e., OrderBy,
GroupBy, and Count, are a bit more difficult, because they do not in-
corporate the simple nested-loops-like behavior of the others. They
must be defined as individual monads, which also operate on two-
dimensional array values.

63

4. Hierarchical Query Plan Representation

The key idea of comprehensions, which compute values over whole
relations, e.g., aggregates, bases on a suitable definition of the mapτ

function. To give an idea of how an appropriate function definition
may look like, assume a simple monad sum for summing up the values
in a 2-dimensional array of the form 1×n. It can be specified as

zerosum x = [[0]],

unitsum x = [x],

mapsum f g = foldrsum (λx xs→ (f x) +sum xs) [[0]] g,

joinsum x = foldrsum (++sum) [[0]] x.

The zero element in this monad is the 2-dimensional array [[0]]. In-
tuitively, it represents the sum aggregation of the values of zero 1-
dimensional arrays. The constructor function unitsum takes a value,
which is in this monad a 1-dimensional array, and wraps it to create a
1×1-dimensional array. The functions unitsum and joinsum employ the
higher-order function foldr, a standard operator for realizing structural
recursion on list types [Hut99], to enumerate, transform, and combine
the fields of a given array. For the binary infix operator ⊕, the term
foldr⊕ [0] [[1], [2], [3]], for example, evaluates to [1]⊕ ([2]⊕ ([3]⊕ ([0]))).

The actual aggregation is performed by the summation function2

+sum, which adds two 1×1-dimensional arrays:

[[x]] +sum [[y]] = [[x+ y]],

The sum monad is now ready to be used. For example, the sum of
all row values greater than 2 in the table [[1], [2], [3], [4]] can be written
as the comprehension

[x | x←[[1], [2], [3], [4]]; x > [2]]sum.

The evaluation of the comprehension follows directly from the appli-
cation of the general comprehension rules and the respective functions
defined for this monad:

2Note that we use the more intuitive infix notation for the binary function +sum.

64

4.2. Query Representation

[x | x←[[1], [2], [3], [4]]; x > [2]]sum

= joinsum [[x | x > [2]] | x←[[1], [2], [3], [4]]]sum

= joinsum [if x > [2] then [[x]] else [[0]] | x←[[1], [2], [3], [4]]]sum

= joinsum [

foldr (λx xs→ (if x > [2] then [[x]] else [[0]]) +sum xs)

[[0]]

[[1], [2], [3], [4]]

]sum

= joinsum [

if [1] > [2] then [[1]] else [[0]] +sum

(if [2] > [2] then [[3]] else [[0]] +sum

(if [3] > [2] then [[3]] else [[0]] +sum

(if [4] > [2] then [[4]] else [[0]] +sum

([[0]]))))

]sum

= joinsum [[[0]], [[0]], [[3]], [[4]], [[0]]]

= foldrsum (++sum) [[0]] [[[0]], [[0]], [[3]], [[4]], [[0]]]

= [[7]]

The use of the structural recursive function foldr allows to model
any kind of monad that aggregates values. Because it is parameterized
to take any suitable aggregation function, it is independent of the actual
kind of values, i.e., it also nicely operates on tuples of semi-structured
items and sequences. With foldr it is also possible to sort and enu-
merate a relation as required for OrderBy and Count, respectively.
An alternative solution, which does not need nested comprehensions
was presented in [JW07].

The monadic representation of the third group of operators (i.e.,
Join, Concat, Union) follows from their nature as combinations of
the other operators. For example, a simple join can be replaced by a
cross product and a selection, which corresponds to a monad with two
consecutive generators and a filter.

65

4. Hierarchical Query Plan Representation

Composing Monads

Because all bulk monads operate on relational-structured data, they
can be composed like bulk operators. For example, the composite func-
tion sum-greater-3-bulk of Figure 2.12 can be represented by the
monad expression:

[

[$a | $a←$val; $a > 3; $g′←[[0]]; $g′ = $g]sum$a

| $g←[[0], [1], . . .]

]array
2

In the array2 comprehension, the generator $g←[[0], [1], . . .] produces
tuples of dummy partition identifiers for the grouping step and evalu-
ates for each the nested comprehension. The generator $a←$val in
the sum$a comprehension enumerates input tuples from $val and binds
them successively to the variable $a. Then, the filter $a > 3 elimi-
nates all tuples where $a is less or equal three. Finally, the generator
$g′←[[0]] attaches 0 as grouping column $g′ to all tuples. The filter
comparison $g′ = g eliminates all tuples except those in the current
grouping partition identified by the value in column g. Finally, the
sum$a comprehension sums up the $a column values of the remaining
tuples.

Note, because the bulk function aggregates the input relation as a
whole and not partitions of it, the grouping column $g′ is static and,
hence, the comparison filter will eliminate all tuples except those of
the partition group $g = 0. Accordingly, we could omit the outer
array2 monad completely. However, for the purpose of demonstration,
we included the dummy partitioning step to exemplify a basic pattern
for data partitioning and grouping in comprehensions.

To summarize, we can state that the working principles of operators
and variable bindings can be explained with the theoretical construct of
monads. For the compilation process, however, a monadic specification
of each operator is not practical. Instead, we must find a representation,
which is easy to handle during the compilation processes, but can be
mapped anytime to the theoretical comprehension model, e.g., to justify
rewriting rules.

66

4.2. Query Representation

Compiling Monads

As shown in the previous section, monads are perfectly suitable for
representing bulk operators and variable bindings in an abstract way.
In addition to that, monads also provide an algebraic kernel for our
query compiler. With the monad laws, one can derive transformation
rules to reorganize and simplify comprehensions in various ways, which
in turn serve as solid basement for optimizing operator compositions.
For example, [Wad90] states two useful equivalences for implementing
predicate pushdown. For two Boolean-valued terms a and b holds

[t | b; c] = [t | (b∧ c)],

and if the Boolean qualifier b is independent of the variables bound
by qualifier q, the following equation holds:

[t | q; b] = [t | b; q].

With these rules, conjunctive predicates in a query can be splitted
into separate filters, which can then be separately pushed close to the
binding qualifiers they refer to, i.e., the inputs of the query.

Further, sophisticated rewrite rules can be formulated inductively by
applying the equivalence rules of the monad axioms or by showing the
output equivalence of two comprehensions with respect to the respec-
tive monad functions. For the systematic application of such rewrite
rules, the query optimizer can employ any of the well-known rule-based,
heuristics-based, or statistics-based search strategies.

Besides performing structural optimizations, it is crucial to derive
efficient execution plans from an abstract comprehension model. Con-
ceptually, comprehensions reflect nested loops over relations, because
they are defined on the higher-order functions map and foldr, which
are specified as iterative and recursive operations, respectively. The key
to efficiency is the implicit independence of individual loops. Under the
premise that side effects do not occur, the order in which loops are pro-
cessed does not affect the result of most comprehensions, because each
variable binding is independent and only valid in the in scope of nested
qualifiers. Practically, this allows the compiler to transform and unnest
loops to align the nested, inherently sequential evaluation process to
set-oriented algorithms and physically advantageous patterns.

67

4. Hierarchical Query Plan Representation

4.2.2. AST-based Query Representation

The comprehension model is a powerful foundation for the query com-
piler, but it does not directly lead to a concrete representation for
queries. To obtain a query representation, which reflects the hierar-
chical nesting of variable-binding expressions and variable-resolving ex-
pressions on the one hand and which profits from set-oriented algorithms
on the other hand, bulk operations must be modeled appropriately. The
goal is to incorporate the algebraic power of comprehensions in a com-
posable, hierarchical representation.

The qualifier lists of comprehensions, which are evaluated from left
to right and normalized to nested comprehensions, already yield a top-
down view. However, bulk operators, as we defined them, can only be
composed in nestings, which effectively form a tree with implied bottom-
up data flow. The solution is a redesign of operators to continuation-
passing style (CPS) [Rey72, SJ75]. Operators get a continuation func-
tion as additional parameter and, instead of returning the result directly,
they return now the result obtained by applying the given function on
the former result.

The conversion of the sample function sum-greater-3-bulk to
CPS-style operators is shown in Figure 4.1. In the CPS version, the
previously nested ForEach has become the top-most function, which
returns as result the application of Select on the own output relation.
Select, in turn, filters the input as before, but applies GroupBy on the
filtered relation and returns the result. The former top-most GroupBy
is now at the inner-most position and applies its result to a function
End, which terminates the continuation passing and simply returns the
given input as result.

Note that the conversion to CPS-style operators is solely of structural
nature. The change preserves the general functionality of each operator,
however, it inverts the composition logic. Logically, everything still fits
the abstract comprehension model. In fact, monad types have been
shown to be equivalent to CPS [Wad90].

The CPS representation delivers the desired top-down style for bulk-
oriented operators so that they can be easily integrated into the stan-
dard expression tree. Everything is represented in its most natural
form – as a tree of scoped expressions. Hence, the compiler operates
practically on a hierarchical, AST-like query representation, just like

68

4.2. Query Representation

declare function sum-greater-3-bulk($val) {
GroupBy[$a’](

Select[$a](
ForEach[$a](

[],
transpose($val)

),
greater-than($a,3)

),
zero,
sum($a))

}

⇓
declare function sum-greater-3-bulk($val) {
ForEach[$a](
[],
transpose($val),
Select[$a](

greater-than($a,3),
GroupBy[$a’](

zero,
sum($a),
End

)
)

)
}

Figure 4.1.: Conversion of bulk operators to CPS.

compilers for conventional programming languages. The initial expres-
sion tree, i.e., the AST of the parsed query, must solely be brought
to a form where all variable-binding expressions form trees of properly
nested of variable scopes.

69

4. Hierarchical Query Plan Representation

flwor

for $a

(1,2,3)

return

flwor

for $b

(2,3,4)

where

$a=$b

let $c

$a+$b

return

$c

⇓
pipe

Start

ForBind$a

(1,2,3) ForBind$b

(2,3,4) Select

$a=$b LetBind$c

$a+$b End

$c

Figure 4.2.: Conversion of a FLWOR expression to an operator pipeline.

4.2.3. FLWOR Pipelines

To compile XQuery, the initial AST must be reshaped to a form where
all variable bindings in the query reflect nested variable scopes. Target
to the rewriting process are all individual FLWORs as well as nestings
of them. The rest of the query is left intact3. Figure 4.2 illustrates
rewriting of the expression tree4. Listing 1 shows the core loop of the
rewriting process, which successively replaces all FLWOR expressions.

3For brevity, we focus the discussion on FLWORs only. The derivation of correctly
nested AST representations for the few other variable-binding expression types
like typeswitch and try-catch is trivial because they do not imply iterative
behavior.

4In the remainder of this thesis, illustrations of trivial subtrees like arithmetics and
comparisons will be collapsed to a single expression node to save space.

70

4.2. Query Representation

Listing 1 Introduction of FLWOR pipelines in the AST.

1: function introduce pipelines(ast)
2: while ast contains FLWOR do
3: flwor ← find FLWOR(ast)
4: pipe← create pipeline(flwor)
5: ast← replace node(ast, flwor, pipe)
6: end while
7: return ast
8: end function

Every flwor expression in the AST is replaced by a pipe expression
with a right-deep pipeline of operators. The actual pipeline begins with
an artificial Start operator, which provides the initial input. In a
loop over all clauses, an operator is introduced for each clause, which
provides its output to the operator created for the following clause.
At the end, a special End operator terminates the pipeline and binds
the result of the return-clause expression for each input tuple to an
anonymous variable. With exception of the terminating End, every
operator node feeds its output always to the right-most child, which
is the next operator in the pipeline. Accordingly, the subtree of the
right-most child virtually represents the continuation function.

During this rewriting process, a first and very small simplification
can be performed on the fly. If the return clause evaluates itself a
FLWOR, it can be directly integrated into the current pipeline. Re-
spective pseudocode for the pipeline construction is given in Listing 2.
The mapping function map to operator in line 19 instantiates the cor-
responding operator AST nodes for non-return clauses.

To simplify the AST, the variable-binding clauses for, let and
window, which actually translate to ForEach operators with respec-
tive bind functions, are rendered as the operators ForBind, LetBind,
and WindowBind, respectively. In case of ForBind, the implicit bind
function produces a tuple for each item in the sequence obtained by
evaluating the attached binding expression. If the for clause specifies
a position variable, the bind function produces an array of 2-tuples
with the current item in the first position and its index in the second
position. Consequently, the ForBind binds in this case two variables.

71

4. Hierarchical Query Plan Representation

Listing 2 Creation of FLWOR pipelines.

1: function create pipeline(flwor)
2: pipe← create node(PIPE)
3: prev ← create node(START)
4: append child(pipe, prev)
5: clauses← children(flwor)
6: while clauses is not empty do
7: clause← remove first(clauses)
8: if clause is RETURN then
9: expr ← first child(clause)

10: if expr is FLWOR then
11: // continue pipeline with nested FLWOR
12: clauses← children(expr)
13: else
14: end← create node(END)
15: append child(end, expr)
16: append child(prev, end)
17: end if
18: else
19: op← map to operator(clause)
20: append child(prev, op)
21: prev ← op
22: end if
23: end while
24: return pipe
25: end function

The bind function of a LetBind produces a single tuple for the
whole binding sequence.

WindowBind operators use the most complex bind functions. They
produce a relation, which reflects a sliding or tumbling window over the
binding sequence. Besides the sequence of items in the current window,
the tuples can consist of several other variable bindings, e.g., the first
and last items in the current window.

72

4.2. Query Representation

4.2.4. Runtime View

At runtime, the static structure of the expression tree is augmented
with the notion of intermediate state, which reflects the values currently
bound to variables. With respect to performance, the realization of
variable bindings, i.e., the dynamic context, is certainly the most crucial
aspect. One option is to treat the dynamic context literally as a set of
variables, which is accessible to each expression and updated whenever
necessary, i.e., when a new value is bound to a variable. The second
option is to represent each specific state during processing as a separate
and immutable dynamic context. Each binding of a value to a variable
then creates a new copy of the current context.

A set-oriented compiler like the one developed in this thesis, requires
the explicit representation of each individual state to compute the result
of a FLWOR expression interleaved for multiple or all iterations. Al-
though this implies some overhead to materialize the dynamic context,
the performance and scalability advantages usually outweigh. Further-
more, a mutable dynamic context inhibits parallelism, which is another
reason, why we build exclusively on explicit but immutable context tu-
ples for each context change.

In the default case, the expression tree is evaluated – like in most
XQuery processors – in a sequential fashion. The result is computed
in a bottom-up fashion, i.e., subexpressions are evaluated before the
actual result sequence is built. Intermediate results are usually not ma-
terialized to save main memory. Instead, most expressions evaluate to a
lazy sequence, which employs a pull-based iterator concept to compute
individual result items on demand [BBB+09]. In general, this makes
even processing of very large results very space efficient.

The dynamic context is stored in context tuples which are passed
between expressions and operators. A tuple [1,2], for example, can
represent a dynamic context with the variable bindings $a=1 and $b=2.
Variable reference expressions like the operands of the summation ex-
pression $a+$b evaluate then to respective variable values in the given
context tuple. In analogy to procedural languages, a context tuple re-
flects the stack at a specific point in time.

73

4. Hierarchical Query Plan Representation

ForBind$a
$a

1
2
3

ForBind$b
$a $b

1 2
1 3
1 4
2 2
2 3
2 4
3 2
3 3
3 4

Select
$a $b

2 2
3 3

LetBind$c
$a $b $c

2 2 4
3 3 6

End
$a $b $c

2 2 4 4
3 3 6 6

Figure 4.3.: Output of the pipeline operators of Figure 4.2.

The fundamental difference between normal expressions and bulk-
oriented operators is that the former are evaluated for a single context
tuple at a time and produce a result value, whereas the latter consume
and produce streams or arrays of context tuples. The pipe expression
at the top of operator pipelines mediates between the two processing
modes. It passes the single context tuple on to the Start operator,
which feeds it as a single-tuple relation to the pipeline, and builds the
final result sequence by merging the anonymous return variable values
in the output tuples of the final End. The output relations of the
pipeline operators of Figure 4.2 are shown in Figure 4.3.

Last but not least, function calls are realized with the very same
mechanisms. Within a function, parameters appear like references to
variables that are bound by the caller. The only difference between
function calls and normal expressions is that functions only have access
to their parameters and not to the variables bound in the scope where
the function is called.

To call a function, the argument expressions are evaluated and the
resulting arguments are passed on to the function as a normal context
tuple. The result value is returned to the caller. If necessary, dynamic
type checking is performed on both the arguments and the result.

4.3. Compiler Architecture

The flexibility and portability ambitions of a data processing platform
come at a certain cost. Monolithic solutions, which tightly integrate
physical aspects of the storage in the compilation process can per-

74

4.3. Compiler Architecture

form optimizations, which are out of reach of a more general approach.
Nevertheless, a modular compiler with a set of solid core algorithms
and optimizations that are complemented with storage-specific exten-
sions is able to achieve competitive performance, too. For example,
recent successes of the language-independent compiler infrastructure
LLVM demonstrate well that modular architectures can achieve top
results, when they are equipped with strong platform-specific code gen-
erators [LA04]. Besides, such infrastructures excel in categories like
portability, stability, and time-to-market, because a large fraction of
core optimizations is required in every specialized compiler, too.

The main objective of our compiler architecture is a clear-cut separa-
tion of set-oriented aspects from physical aspects. The optimization of
the former is given priority in the compilation process, because wrong
decisions here easily result in query plans which are orders of magnitude
slower. Despite, physical aspects increasingly come into focus on mod-
ern hardware platforms, too. For example, storage subsystems and even
whole DBMSs are today already tuned for data cache and instruction
cache locality.

4.3.1. Compilation Pipeline

The compilation process consists of several rewriting stages and the final
assembly of the executable plan. An overview of the rewriting process
is given in Figure 4.4. The initial expression tree is created directly by
the parser and processed by individual rewriting stages, which annotate
and transform it for the final translation to an executable plan. In the
following, we will make a brief walk-through of the whole process. The
highlighted stages are in the focus of this work and are covered in detail
in Section 4.2.3 and the following chapters, respectively.

In the first step, syntactic sugar and functional redundancy in the ini-
tial expression tree is normalized. For example, quantified expressions
are converted to FLWOR expressions as shown in Section 3.2.4. How-
ever, in contrast to other compilers, not everything is strictly normal-
ized to basic language constructs of the XQuery Core model [W3C10b].
Among others, this would break up all path expressions into sequences
of FLWOR expressions, and, as we will see in Chapter 6, it is benefi-
cial to preserve data access operations like path expressions and filter
expressions in the first place.

75

4. Hierarchical Query Plan Representation

Parser

Normalization

Static Typing

Simplification

Pipelining

Pipeline Optimization

Data Access Optimization

Function Optimization

Parallelization

Distribution

Translator

Figure 4.4.: The query rewriting pipeline.

The next stage performs static typing. The query is checked for type
errors and all expressions are annotated with type information for data-
type-specific optimizations in subsequent steps.

The simplification stage is intended for standard pruning operations
like the removal of unused variables, constant folding and dead-code
elimination. Furthermore, type information derived in the previous
stage is used to simplify expressions, which can be confined to certain
types, and to eliminate otherwise mandatory runtime checks, e.g., for
function arguments and return values.

In following stage, FLWOR expressions are transformed into opera-
tor pipelines as explained in Section 4.2.3. The rewriting stage itself
is rather simple, because it simply brings the expression tree into a
different form.

76

4.3. Compiler Architecture

After bringing all FLWORs into the nested pipeline form, various
pipeline-local optimizations like early filtering, join rewriting, sort elim-
ination, etc. are performed. Furthermore, nestings of pipelines are fu-
sioned to maximize the potential of set-oriented optimizations. Details
on the central rewriting rules are given in Chapter 5.

The following stage takes care of physical data accesses, i.e., path
expressions and related operations. Naturally, the rewritings performed
in this stage heavily depend on the target platform, but in essence,
this stage introduces platform-specific “expressions”, which are later
compiled into native operations instead of generic storage adapter calls.
As the selection of DB-specific optimizations presented in Chapter 6
illustrates, data access optimization takes places in this stage at multiple
granules and in multiple dimensions.

The next stage optimizes function calls. It is primarily important for
user-defined functions, because each declared function is itself a query.
Accordingly, opportunities for optimization are high. Non-recursive
functions, for example, can be inlined to avoid the overhead of func-
tion invocation and to increase chances for further optimization. The
function call is replaced in the expression tree by the function body
and references to function arguments are replaced by the corresponding
argument expressions. However, if the statically available typing infor-
mation is not sufficient to guarantee correct types of arguments and
results, additional code must be generated to discover typing errors
at runtime. In the normal case, respective checks are integrated into
the dynamic function call mechanism. Recursive functions can benefit
from other well-known compiler techniques like tail-call optimization
[ASS85]. Higher-order functions and partial function application can
draw from the compilation of functional languages [PL92].

To improve parallel processing, the next stage allows to enhance the
expression tree with additional information like the maximum degree of
parallelism for operations or suitable buffer sizes. Note, our parallel ex-
ecution framework presented in Chapter 7 exploits query-inherent data
parallelism automatically at runtime and does not need a structural
reorganization of the expression tree itself.

Finally, we envision a stage for taking care of the special requirements
in distributed environments. These, however, have not been studied in
the context of this thesis, but the field of MapReduce-based languages
[BEG+11, ORS+08] suggests itself as starting point for future work.

77

4. Hierarchical Query Plan Representation

4.3.2. Plan Generation

The final expression tree is compiled into an executable query plan in a
single top-down pass. The compilation is straightforward as the pseudo
code in Listing 3 shows. For each expression type, there is a concrete
implementation, which is initialized with the compiled subexpressions
and, if present, annotated information in the AST. The translation pro-
cess is that simple because each subexpression, i.e., each subtree in the
AST, is self-contained and does not have to obey other dependencies
than plain variable references.

Listing 3 Translation of expressions.

1: function compile expression(ast)
2: if ast is LITERAL then
3: expr ← compile literal(ast)
4: else if ast is AND then
5: expr ← compile and expression(ast)
6: else if ast is OR then
7: expr ← compile or expression(ast)
8: else if . . . then
9: . . .

10: end if
11: return expr
12: end function

13: function compile and expression(ast)
14: f ← child(0, ast)
15: first← compile expression(f)
16: s← child(1, ast)
17: second← compile expression(s)
18: expr ← create and expression(first, second)
19: return expr
20: end function

Variable bindings are handled completely by the respective binding
expression or operator. A variable must be declared before subexpres-
sions in the visibility scope of the variable are compiled, and it must
be undeclared again when the variable goes out of scope, i.e., after the

78

4.3. Compiler Architecture

respective subexpressions have been compiled. A variable table keeps
track of all variables declared and assigns them a binding position in
the corresponding scope. In subexpressions with a variable dependency,
a simple lookup in the variable table is sufficient to resolve the corre-
sponding position in context tuples. Accordingly, a variable reference
translates at runtime into a simple array access in a context tuple.

The special scope variables $fs:dot, $fs:last, and $fs:pos are
treated like normal variable declarations. Expressions modifying this
part of the context (e.g., filter expressions) declare them as special vari-
ables, which are resolved during compilation of expressions referring to
these elements. Listing 4 illustrates the variable binding and resolution
process for filter expressions and the context size expression last().

Listing 4 Binding and resolution of variables.

1: function compile filter expression(ast)
2: input← child(0, ast)
3: e← compile expression(input)
4: predicate← child(1, ast)
5: bind(table,fs:dot)
6: bind(table,fs:last)
7: bind(table,fs:position)
8: p← compile expression(predicate)
9: bind i← unbind(table,fs:position)

10: bind l← unbind(table,fs:last)
11: bind p← unbind(table,fs:dot)
12: expr ← create filter expression(e, p, bind i, bind l, bind p)
13: return expr
14: end function

15: function compile context size expression(ast)
16: name← variable name(fs:last)
17: position← lookup(table, name)
18: expr ← create tuple access(position)
19: return expr
20: end function

79

4. Hierarchical Query Plan Representation

pipe

Opn

. . .

Op1

Start

next()

next()

next()

next()

type Cursor {
void open()
Tuple next()
void close()

}

(a) Pull-based pipeline

pipe

Op1

. . .

Opn

Return

output()

output()

output()

output()

type Sink {
void begin()
void output(Tuple t)
void end()

}

(b) Push-based pipeline

Figure 4.5.: Comparison of pull-based and push-based pipelines.

The compilation of operator pipelines is almost identical to the com-
pilation of expressions. Beginning at the Start operator of the corre-
sponding pipe expression, the pipeline is compiled in a recursive top-
down pass along the output edges. The binding and resolution mecha-
nism for variables is also identical. Pseudocode for the compilation step
is found in Listing 17 and Listing 18 in Appendix A.

Note that the actual realization of an operator pipeline is independent
of the compilation process. The system can either employ a pull-based
or push-based operator model as depicted in Figure 4.5(a) and Fig-
ure 4.5(b), respectively. The pull-based model is widely used in all kinds
of database systems, because it matches the bottom-up perspective of
conventional query plans. The push-based model is almost identical,
but better suits to the top-down perspective.

In the pull-based model, each operator is realized as a cursor, which
implements a simple open-next-close interface [Gra94]. The client, in
our case the compiled pipe expression, initializes the cursor pipeline

80

4.3. Compiler Architecture

by passing on the start tuple the Start operator. Then, it iteratively
retrieves the result by calling next() on the cursor of the last operator in
the pipeline, which propagates the call through the individual pipeline
stages. The push-based model works in the exact opposite direction.
Each operator is represented as a sink, which receives a tuple stream
as input and emits a tuple stream to another sink. The pipe expression
emits the start tuple to the first operator in the pipeline by calling
output() and collects the results, which are emitted by the final operator
in the pipeline.

81

82

5. Pipeline Optimization

The conversion of FLWORs to operator pipelines is the enabling step
for improving the scalability aspects of a query, because it opens the
door for various set-oriented rewritings of the operator tree. Generally,
the compiler can employ any prevalent optimization from the relational
world like projection, predicate merge, sort elimination, etc. As long
as the final stream of output tuples is not affected, operators can be
reordered, merged, or replaced to obtain a better performing pipeline.

Besides the fact that a pipeline reflects in principle an upside down
version of a relational query plan, the rewriter must additionally take
care of the data-model-inherent order sensitivity. However, in many
data processing scenarios, users may safely override strict order preser-
vation to increase query performance.

The following discussion concentrates on optimization rules for join
processing and aggregation, which are special to or particularly effec-
tive in the context of nested top-down pipelines. But beforehand, some
general aspects of rewriting rules and binding operators will be intro-
duced with the most obvious pipeline optimization: predicate pullup –
the equivalent to predicate pushdown in a bottom-up query plan.

5.1. Generalized Bind Operator

Due to the hierarchical nesting of variable binding operators and depen-
dent expressions, the realization of predicate pullup is quite simple. A
simple look at the ancestors of a Select operator in the AST reveals
the operators, which bind the variables on which the predicate expres-
sion depends. This information is sufficient to decide whether and to
where the filter can be pulled up in the pipeline to reduce the number of
intermediate tuples. In Figure 5.1, for example, the predicate $a>1 de-
pends only on variable $a and, thus, the Select can be placed directly
under the ForBind that makes $a available in the local scope.

83

5. Pipeline Optimization

pipe

Start

ForBind$a

(1,2,3) ForBind$b

(2,3,4) LetBind$c

$a+$b Select

$a>1 End

$c

⇒

pipe

Start

ForBind$a

(1,2,3) Select

$a>1 ForBind$b

(2,3,4) LetBind$c

$a+$b End

$c

Figure 5.1.: Predicate pullup in the operator pipeline.

Consideration of such variable dependencies is crucial for almost every
rewriting rule. As the example shows, the proper nesting of scopes in
the AST makes it easy to keep track of variable dependencies. The
source of a binding can be resolved by looking at ancestor nodes; uses
of a binding can be found by traversing the subtree of the binding node.
The notation of rewrite rules, however, gets cumbersome, because many
rules will refer to structural relationships with wildcard patterns like
“the ancestor that binds variable $a”.

To allow for a crisp notation of rewrite rules, we can make use of
the fact that most operators in the AST reduce to specializations of
ForEach. Except Project, OrderBy, GroupBy, and Count, all
operators virtually bind zero or more variables and emit for each input
tuple the Cartesian product with an input-dependent relation, thereby
preserving the relative order of input tuples. Commonly, these operators
can be referred to with a generalized operator Bind$X:$V , characterized
as a ForEach-based operator, which binds additional variables $X =
$x1, . . . , $xn and depends on variables $V = $v1, . . . , $vn to compute for
each input tuple a binding relation for emitting the Cartesian product.

Because the Cartesian product on relations is associative, a sequence
of two operators Bind$X:$V and Bind$Y :$W exposes, when considered

84

5.1. Generalized Bind Operator

as a whole, the same properties as a single one. Hence, it is valid
to merge them to a single operator Bind$X,$Y :$V ∪$W . In rewriting
rules, we can use this property to collapse sequences of ForEach-based
operators as a match for a single Bind operator. Accordingly, the
rewriting rule for pulling up Select predicates can be formulated as
shown in Rule 1. Note, the rule is applicable in Figure 5.4 because the
two consecutive operators ForBind$b and LetBind$c can be matched
together as Bind$b,$c:∅.

Rule 1 Pullup of Select predicate.

$x1, . . . , $xn ⇒ $X $v1, . . . , $vm ⇒ $V
Bind$X:$V ⇒ Opx pred independent of $X

Opx(Select(pred, out)) ⇒ Select(pred,Opx(out))

The reordering of binding operators within pipelines – remember
Select is also a Bind operator – is advantageous in many situations,
e.g., for bringing a pipeline into an appropriate form for join rewriting or
to extract expensive, loop-invariant let-bound variables out of a for
loop. However, two consecutive Bind operators may only be swapped
under the following conditions:

1. The nested Bind is independent of the variables bound by the
parent operator.

2. The nested Bind will not shadow variables on which the parent
depends, i.e., it does not re-bind values to variables on which the
parent depends1.

3. The swapping does not influence the ordering of output tuples.
This is the case when at least one of the two Bind operators
emits at most one tuple per input tuple. This suggests particu-
larly Select and LetBind operators as potential candidates for
reordering. Alternatively, it is allowed to swap to Bind operators
if the user specified that the (partial) order of tuples must not be
preserved or if the reordering does not affect the final outcome

1Implementations may circumvent this problem by internally assigning unique vari-
able names.

85

5. Pipeline Optimization

of the pipeline. The latter property, however, is very difficult to
prove in the general case.

4. Neither of both operators causes side effects or produces otherwise
indeterministic results.

The correctness of pipeline rewritings can be shown with equivalences
in the monad comprehension model. For example, correctness of Rule 1
is given by the respective equivalence rule mentioned in Section 4.2.1.
Usually, common sense behind a rewriting rule is evident and, because
this thesis puts emphasis on the realization aspects of a data program-
ming language, we abstain from formal proofs for rewriting rules pre-
sented.

5.2. Join Processing

The looping nature of ForEach-based operators frequently results in
pipelines which compute expensive Cartesian products. Efficient join
support is therefore crucial to fight the data explosion of nested loops.

To get familiar with the representation of joins in top-down pipelines,
consider again the pipeline of Figure 4.2. Two consecutive ForBind
operators compute the cross product of the sequences (1,2,3) and
(2,3,4), which is filtered afterwards with a join-like equality predi-
cate. Obviously, the direct nesting of the two ForBinds can be inter-
leaved with a Join as shown in Figure 5.2.

The Join node has three children. The right-most child is, as for
all operators, the pipeline to which the output is fed. The first and the
second child produce the left and right join input relations, respectively,
i.e., they reflect the join parameter functions left and right. The
equality predicate of the Select has been splitted. The operand ex-
pressions have become the join keys, which are located under the End
terminators of the left and right input pipelines for correct scoping. The
comparison type is a property of the Join node, which is indicated by
the = subscript in the example.

The join is computed exactly as described in Section 2.3.3. The tuples
of the input relation [[1],[2],[3]], are successively fed to the join
input pipelines, and their respective outputs are pairwise matched for
the join predicate. Notably, the left join input is a trivial pass-through,

86

5.2. Join Processing

pipe

Start

ForBind$a

(1,2,3) Join=

End

$a

ForBind$b

(2,3,4) End

$b

LetBind$c

$a+$b End

$c

Figure 5.2.: Introduction of a basic join in the pipeline of Figure 4.2.

which only provides the left join key for the input tuple. In turn, the
right join input binds the sequence (2,3,4) and emits three tuples per
input tuple including their join keys.

Without further assistance, the computation of the join will result
in the same nested-loops behavior as the nested ForBind operator,
because the Join operator actually computes and concatenates three
results of three separate joins – one join per input tuple. Hence, even
if the equi join was implemented as a hash join, the hash table for the
inner table, i.e., the right input, had to be rebuild for each input tuple,
which effectively would make a hash join even more costly than simple
nested loops. However, the right input is independent of the variable
$a, which allows to push the outer ForBind down to the left join
input branch as shown in Figure 5.3. Now only one join is computed
– one for the single input tuple emitted by Start. If the equi join is
then implemented as a hash join, the initially nested binding sequence
(2,3,4) has to be processed only once to build the hash table.

5.2.1. Join Recognition

In contrast to SQL, the front-end language XQuery is not able to express
joins explicitly. Accordingly, the optimizer must detect join semantics
in a pipeline, i.e., the filtering of a Cartesian product, by itself. Without
loss of generality, a Cartesian product can be confined to a nesting of two

87

5. Pipeline Optimization

pipe

Start

Join=

ForBind$a

(1,2,3) End

$a

ForBind$b

(2,3,4) End

$b

LetBind$c

$a+$b End

$c

Figure 5.3.: Join with two independent inputs.

arbitrary but independent Bind operators. Independent means that the
inner Bind, is independent of the variables bound by the outer Bind.
If the Cartesian product is immediately followed by a Select with a
comparison predicate Θ ∈ {=, <,>,<=, . . .} and if the two operand
expressions disjointly depend on variables bound by either the inner
or by the outer Bind, then this operator sequence has join semantics.
Rule 2 and Rule 3 show the respective rewriting patterns, which are
illustrated in Figure 5.4.

Rule 2 Introduction of Join.

$x1, . . . , $xn ⇒ $X $v1, . . . , $vm ⇒ $V
$y1, . . . , $yl ⇒ $Y $w1, . . . , $wk ⇒ $W
Bind$X:$V ⇒ Opx Bind$Y :$W ⇒ Opy

Opy independent of $X
k1 independent of $Y k2 independent of $X

Θ ∈ {=, <,>,<=, . . .}
Opx(Opy(Select(k1Θk2, out))

⇒ Opx(JoinΘ(End(k1), OpyEnd(k2), out)))

88

5.2. Join Processing

Bind$X:$V

Bind$Y :$W

Select

k1Θ k2

⇒

Bind$X:$V

JoinΘ

End

k1

Bind$Y :$W

End

k2

⇒

JoinΘ

Bind$X:$V

End

k1

Bind$Y :$W

End

k2

Figure 5.4.: Application of join rewriting rules 2 and 3.

Rule 3 Push-down of independent bindings to left join input.

$x1, . . . , $xn ⇒ $X $v1, . . . , $vm ⇒ $V
Bind$X:$V ⇒ Opx JoinΘ ⇒ Opj

Right independent of $X k2 independent of $X
Θ ∈ {=, <,>,<=, . . .}

Opx(Opj(Left(End(k1)), Right(End(k2))), out)
⇒ Opj(Opx(Left(End(k1)), Right(End(k2))), out)

The sample query in Figure 4.2 contains the simplest pipeline con-
stellation that fits the join rule pattern. In the Select predicate,
the left-hand operand, the variable reference $a, depends solely on the
outer ForBind$a, whereas the right-hand operand $b depends solely
on the inner ForBind$b. Furthermore, the binding sequence of the
inner ForBind$b is independent of $a, too.

89

5. Pipeline Optimization

ForBind$a

(1,2,3) ForBind$b

(2,3,4) LetBind$c

-$a Select

$a=$b+$c

⇒

ForBind$a

(1,2,3) LetBind$c

-$a ForBind$b

(2,3,4) Select

$a-$c=$b

Figure 5.5.: Pipeline reshaping for join processing.

Join=

ForBind$a

(1,2,3) LetBind$c

-$a End

$a

ForBind$b

(2,3,4) End

$b

Figure 5.6.: Join in reshaped operator pipeline.

5.2.2. Pipeline Reshaping

Figure 5.5 shows a more difficult example of join semantics. In the left
expression tree, both variable references in the right predicate operand
are bound after $a, but $c directly depends on variable $a. Thus, a
join rewriting cannot be performed. However, there is the chance to
rewrite the query to the expression tree shown at the right-hand side of
Figure 5.5. Now, there is a proper separation of bindings and references,
which can be assigned to the left and to the right input of the join in
Figure 5.6, respectively.

Obviously, reshaping of a pipeline to match the join pattern can be-
come arbitrarily complex. Especially, if an arbitrary join predicate has

90

5.2. Join Processing

to be adjusted as in the example above. Note also that it was here
only possible to move the critical variable binding $c because it was
let-bound and because the binding expression is side-effect-free.

Of course, join semantics may also be embodied in all FLWOR-based
or FLWOR-like expressions, e.g., in filter expressions of the general form
s2[e2Θe1], where e2 is a predicate over the inner context provided by
s2 and e1 is a predicate over the context of a surrounding loop over
an external sequence s1. In these cases, we may rewrite the respective
expression to their equivalent FLWOR representation and compute the
join in the pipeline.

In summary, we can state that the presented join rewriting rule is
capable to cover a wide range of typical join scenarios, but there is no
guarantee that hidden join semantics will always be detected.

5.2.3. Join Groups

Some aspects of XQuery make join processing conceptually more com-
plex than in SQL. First, there is the strong emphasis on tuple order,
which is not preserved automatically in many standard algorithms. Sec-
ond, comparisons in XQuery follow subtle typing and type conversion
rules – a concession to work smoothly with untyped and semi-structured
data. In consequence, a join operator has to cope with untyped data and
mixed-type sequences if the types of the operands cannot be statically
determined.

As result of the above restrictions, a sort-merge join is only useful if
the operands can be determined to be of a single type beforehand and
if output order can be ignored or is compensated by an explicit sort
afterwards. More typically, join algorithms will keep one input (the
inner) in a lookup table, e.g., a hash table or a sorted index and probe
it with the other input (the outer). Further implementation details can
be found in [RSF06].

An important aspect of lookup-table-based algorithms is the possi-
bility to reuse a lookup table. Reconsider the initial join rewriting in
Figure 5.2. The empty left input pipeline implied a rebuilding of the
lookup table for each incoming tuple – although the right input and,
thus, the lookup table was not affected. In Figure 5.3, we fixed the
issue by pushing the ancestor operators from which the right input is
independent of to the left input.

91

5. Pipeline Optimization

ForBind$a

ea Join=

ForBind$b

eb End

$b

Join=

ForBind$c

ec End

$a

ForBind$d

ed End

$d

End

$a+$c

Figure 5.7.: Potential inefficiency of nested joins.

In more complex situations or in case of deep nestings of both FLWOR
and non-FLWOR expressions, it is not possible to push all unrelated
binding operators to the left input. Then again, the lookup table may
have to be rebuilt more often than necessary.

Consider the example in Figure 5.7. Let all binding expressions ea,
eb, ec, and ed be free of variable dependencies. The top-most operator
ForBind$a potentially binds multiple values to $a, which leads to mul-
tiple evaluations of the top-most join. Because the third branch of the
nested join is dependent on $a, ForBind$a cannot be pushed down to
the left input branch. Hence, the nested join, i.e., the right input of the
parent join, must be recomputed of for each iteration of $a, which, in
turn, triggers a re-build of the lookup table, although the right input of
the nested join is not affected by the changed binding of $a.

Clearly, the above situation is unsatisfactory. Therefore, the proto-
type developed in this thesis keeps a loaded lookup table until a recom-
putation is actively triggered or until the query has finished. The trigger
mechanism is transparently embedded in the tuple flow. For each join,
a Count operator is introduced directly after the lowest ancestor that
binds a variable upon which the right join input depends. Every change
of the counter variable then indicates a new binding situation. Accord-
ingly, the join must simply check for each input tuple whether or not
the counter variable changed, i.e., whether or not the lookup table must
be recomputed.

92

5.2. Join Processing

ForBind$a

ea Count$z

Join$z
=

ForBind$b

eb End

$b

Join=

ForBind$c

ec End

$a

ForBind$d

ed End

$d

End

$a+$c

Figure 5.8.: Use of trigger variable for join table rebuilding.

Figure 5.8 renders the situation for the example. An additional opera-
tor Count$z was introduced directly after ForBind$a and the top-most
join was annotated accordingly to trigger a rebuild of the lookup table
on each change of $z. For the nested join, such a trigger is not nec-
essary because its right join input is independent of foreign variables.
Hence, the lookup table of the nested table is computed only once and
reused when the parent join re-builds its lookup table.

From an abstract view point, the trigger mechanism allows to share
intermediate results between a sequential group of individual nested
iterations. We call them join groups and refer to the respective rewriting
rule accordingly as join group demarcation:

Rule 4 Join group demarcation.

JoinΘ(left, right, out)⇒ Op1 Bind$a ⇒ Op2

$a⇒latest-bound variable on which right depends
Θ ∈ {=, <,>,<=, . . .}
Op1 ⇒ Op$join−grp

1

Op2(out)⇒ Op2(Count$join−grp(out))

93

5. Pipeline Optimization

Note that this optimization principle directly applies to the similarly-
structured operators Concat, Union, and Intersect, too. If either
the left, the right, or both inputs are stable throughout multiple itera-
tions (i.e., groups of consecutive input tuples), it can be memoized to
reduce compuation overhead.

5.3. Pipeline Lifting

So far, we only considered for-bound variables, which hold the single
items of a binding sequence. However, XQuery also allows to bind whole
item sequences to variables, e.g., with let bindings as exemplified by
the query in Figure 5.9. After rewriting the corresponding expression
tree, we obtain a nesting of two pipelines as depicted in Figure 5.10. The
operator LetBind$c evaluates for each incoming context tuple a pipe
expression for the rewritten FLWOR expression of the initial binding
and binds the entire result to variable $c. Accordingly, it produces the
[$a,$c] tuples [1,(2,3,4)], [2,(3,4)], [3,4], and [4,()].

for $a in 1 to 4
let $c:= for $b in 2 to 4

where $a<$b
return $b

return ($a,$c)

Figure 5.9.: Nested FLWOR in let binding.

Technically, tuples of sequences instead of single items are sometimes
disruptive but rarely a problem. Small to medium-sized sequences can
be stored inline in a tuple; bindings of large sequences may be realized
as pointers to the respective sequences, which may reside in memory or
on external storage. Remember, it is often also possible to bind just a
lazy sequence, i.e., a closure, that will compute its items on demand.

In many cases, it is reasonable to compute let-bound sequences di-
rectly within the pipeline, e.g., because it offers more options for op-
timizations, or because cheap lazy sequences that simply flow through
the pipeline can cause significant load skew during parallel processing
– the single process at the pipeline end does all the real work.

94

5.3. Pipeline Lifting

ForBind$a

1 to 4 LetBind$c

pipe

Join<

End

$a

ForBind$b

2 to 4 End

$b

End

$b

Figure 5.10.: Nested FLWOR pipelines.

The nested join in Figure 5.10 reveals a fairly common pattern in
XQuery. Outer join semantics is expressed with a nested FLWOR,
because the language does not provide an explicit join primitive. Un-
fortunately, initialized pipelines and, thus, also the lookup tables built
for joins are lost between evaluations of a nested FLWOR, because an
expression is, in contrast to an operator, evaluated only for a single
context tuple at a time. In general, pipeline sharing across multiple
evaluations is viable, but violates the principle that expression evalua-
tions are independent and evaluation order is only partially specified,
i.e., expressions can be evaluated in parallel. Hence, the problem of
multiple join evaluations must be solved here differently.

5.3.1. 4-way Left Join

To overcome potential inefficiency of FLWOR nestings, we perform pipe
lifting : In several rewriting steps, we “lift” pipelines nested in LetBind
operators and integrate them into the higher-level pipeline. In the first
step, we apply Rule 5, which converts the LetBind with the nested
pipe expression to a left join as shown in Figure 5.11.

95

5. Pipeline Optimization

ForBind$a

1 to 4 LeftJoin=

End

true()

Join<

End

$a

ForBind$b

2 to 4 End

$b

End

true()

LetBind$c

$b GroupBy

dft:single

seq:$b

End

Figure 5.11.: Conversion of let-binding to 4-way LeftJoin with post-
join pipeline.

Rule 5 LetBind to LeftJoin conversion.

End((true()))⇒ end1 End((true()))⇒ end2

LetBindvar(pipe(Op(End(e))), out)⇒
LeftJoin=(end1, Op(end2),LetBindvar(e,GroupBy(End)), out)

Note, the rendered LeftJoin= operator has four children. The two
first children are the two join input pipelines, the third child is a special
post-join pipeline, and the last child is the normal output pipeline.

The post-join pipeline implements a post-processing step, which re-
stores the grouping semantics of the rewritten LetBind. The principle
is as follows: Each group of left-join matches, i.e., the join result con-
structed from one tuple of the left input and the matching tuples from
the right input, is fed to the post-join pipeline before the result is passed
on to the output. For $a=1, these are the tuples [1,2], [1,3], and
[1,4]; for $a=2 these are the tuples [2,3] and [2,4]; and for
$a=3, it is the tuple [3,4]. For $a=4 there is no join partner in the
right input, thus the left-join tuple [4,()] does not pass through the
post-join pipeline.

96

5.3. Pipeline Lifting

Conceptually, the 4-way LeftJoin is a macro, which maps to the
original 3-way left-join operator as depicted in Figure 5.12. In the ex-
panded version, a counter variable $grp is introduced to define the
virtual post-join partitions described above. The optional nature of the
post-join pipeline is realized by a Concat operator, which, dependent
on whether or not a left input tuple found a join partner, processes or
skips the post pipeline fragment, respectively. We introduce the 4-way
representation not only for simplifying the AST, but also because it is
easier translated into a more efficient query plan.

The most interesting part of the lifted section is the GroupBy step
at the end of the post-join pipeline. In the AST, the grouping function
for GroupBy is expressed as a sequence of child expressions, which
evaluate to primitive, SQL-like grouping keys. In the 4-way left join,
the GroupBy does not specify any grouping keys, which means that all
incoming tuples will belong to the same partition. In the normalized
the 3-way left join, the count variable $grp serves as grouping key.

The aggregation of non-grouping columns in a partition is specified
by additional operator properties. The default aggregation type for
all columns is specified by the property dft. In the 4-way case, it is
single, which means that one column value is picked as aggregate
for all column values. The default aggregation type is overridden for
the $b column, which is aggregated by combining all values to a single
sequence as indicated by the property seq:$b. Further details about
the specification of aggregates will be given in Section 5.5.

Putting it all together, the left join in Figure 5.11 emits tuples of the
form [$a,$b,$c]2. Assuming, that aggregation type single picks
the column value of the first tuple in a partition, the respective out-
put tuples are [2,2,(3,4)], [3,3,4], and [4,4,()]. Except the
additional binding column $b, this output is equivalent to the original
[$a,$c] output tuples of LetBind$c in Figure 5.10. Logically, vari-
able $b is now out of scope and therefore does not influence subsequent
operations. Physically, the additional column is harmless ballast, but
it can be dropped for efficiency.

2XQuery’s grouping clause simply re-binds aggregated columns to the same variable
names.

97

5. Pipeline Optimization

LeftJoin=

left

End

k1

right

End

k2

post

GroupBy

dft:single

seq:$b

End

⇔
Count$grp

LeftJoin=

left

End

k1

right

LetBind$ok

true() End

k2

Concat

Select

not($ok) End

Select

$ok post

End

GroupBy

dft:single

seq:$b

$grp

Figure 5.12.: Expansion of 4-way LeftJoin macro.

98

5.3. Pipeline Lifting

ForBind$a

1 to 4 LeftJoin=

LeftJoin<

End

$a

ForBind$b

2 to 4 End

$b

LetBind$c

$b GroupBy

dft:single

seq:$b

End

End

true()

End

true()

End

Figure 5.13.: Trivial join nesting after lifting.

5.3.2. Lifting Nested Joins

After converting the nested pipeline to the right input of a left join,
we can employ standard join group demarcation to effectively prevent
continuous rebuilding of the lookup table in the nested join. However,
considering the trivial shape of the introduced left join allows further
simplification.

The left join input is empty; it solely echoes the respective input
tuple. Hence, the two join branches can be swapped without tampering
output order. However, swapping the inputs of a left join requires us to
convert the topmost join of the right input into a left join. Of course,
the input grouping for the post-join pipeline must also be observed. The
post-join pipeline is therefore moved to the left input side, turning the
converted 3-way left join into a 4-way left join as shown in Figure 5.13.

If we consider a join as just another representation form of nested
loops, the performed input swapping effectively “lifts” the nested it-
eration, i.e., the right join input, to the outer iteration. Accordingly,
Rule 6 is called left-join lifting.

99

5. Pipeline Optimization

Rule 6 Left-join lifting.

LeftJoin= ⇒ Opj JoinΘ ⇒ Opj2
End((true()))⇒ end1 End((true()))⇒ end2

Θ ∈ {=, <,>,<=, . . .}
Opj(end1,Join(left, right, end2), post, out)⇒

Opj(LeftJoin(left, right, post, end1), end2,End, out)

Cleaning Up

Left-join lifting leaves the AST with a nesting of two left joins, where
the parent is a trivial left join against an empty right input. As last
step, this trivial left join is removed from the pipeline with Rule 7.

Rule 7 Trivial left-join removal.

LeftJoin= ⇒ Opj
End((true()))⇒ end1 End((true()))⇒ end2

Opj(Right(end1), end2,End, out)⇒ Right(out)

The final AST for the sample query is shown in Figure 5.14. The
major difference to the unlifted version is that the result items of the
let-bound FLWOR expression are now directly computed within the
upper-level operator pipeline and not in a separate pipe expression.
Furthermore, the final AST exploits the join semantics present in the
original nested FLWOR efficiently.

5.4. Join Trees

Queries combining data from more than two sources are very common in
data management, especially in the context of relational DBMS where
frequently several tables are joined via foreign-key references. In the
standard bottom-up representation of relational systems, joins over mul-
tiple inputs are, as shown in Figure 5.15, usually modeled as binary join
trees distinguished as either left-deep, right-deep or irregular, i.e., bushy.

100

5.4. Join Trees

ForBind$a

1 to 4 LeftJoin<

End

$a

ForBind$b

2 to 4 End

$b

LetBind$c

$b GroupBy

dft:single

seq:$b

End

Figure 5.14.: Final pipeline after removal of trivial left join.

1
$c=$d

1
$b=$c

1
$a=$b

e1 e2

e3

e4

(a) left-deep

1
$a=$b

e1 1
$b=$c

e2 1
$c=$d

e3 e4

(b) right-deep

1
$b=$c

1
$a=$b

e1 e2

1
$c=$d

e3 e4

(c) bushy

Figure 5.15.: Bottom-up style join trees.

101

5. Pipeline Optimization

Finding the optimal arrangement of joins is a multi-faceted challenge
since the late 1970’s [SAC+79]. It is dependent on various factors such
as input cardinalities, join selectivity, I/O, parallelism, etc. In the fol-
lowing, we present basic rewriting rules for transforming linear join
sequences into nested forms, which reflect bushy bottom-up join trees.
With these rules, advanced join ordering algorithms can be transfered
to the top-down representation.

To get started, consider the XQuery given in Figure 5.16. It binds
4 inputs successively to for-bound variables $a, $b, $c, and $d, re-
spectively and filters the resulting tuple stream with join-like equality
predicates. Clearly, the O(n4) complexity of the näive nested loops cry
for efficient join support. For the purpose of demonstration, we assume
again that the expressions e1, e2, e3, and e4 are independent of variable
bindings. Note that we also ignore in the following that this particular
query actually searches for matches where $a=$b=$c=$d.

for $a in e1

for $b in e2

for $c in e3

for $d in e4

where $a=$b
and $b=$c
and $c=$d

return e5

Figure 5.16.: Join cascade of for-bound inputs.

After splitting the predicate into multiple where clauses and applying
predicate pullup and join rewriting, we obtain the typical right-deep
operator pipeline shown in Figure 5.17. Initially, the left join input
branch is always the empty pipeline, i.e., each join actually joins the
right join input with the (shared) common input. In the bottom-up
view, this effectively reflects the join order of a left-deep join tree.

For conversion into a bushy join tree, the for-bound input sources
must be moved to the independent left and right join input branches of
joins. This is achieved in two steps. The first step is similar to the join
input pushdown Rule 3. For two consecutive joins, Rule 8 pushes the
upper join down to the left join input branch of the lower join as shown

102

5.4. Join Trees

ForBind$a

e1 Join=

End

$a

ForBind$b

e2 End

$b

Join=

End

$b

ForBind$c

e3 End

$c

Join=

End

$c

ForBind$d

e4 End

$d

Figure 5.17.: Pipeline with cascade of join operators.

in Figure 5.18. Of course, the right join input must not be dependent
on variables bound by the parent. Like the general join input pushdown
rule, this rewriting does actually only change the size of the left join
input and the number of evaluations of the second join. Accordingly,
the join order remains the same as before.

Rule 8 Input join pushdown.

$x1, . . . , $xn ⇒ $X $v1, . . . , $vm ⇒ $V
$y1, . . . , $yl ⇒ $Y $w1, . . . , $wk ⇒ $W

JoinΘ$X:$V ⇒ Opj1 JoinΘ$Y :$W ⇒ Opj2
right2 independent of $X

Θ ∈ {=, <,>,<=, . . .}
Opj1(left, right,Opj2(left1, right2, out))⇒
Opj2(Opj1(left, right, left1), right2, out)

Rule 9 applies the symmetric idea to the output of two consecutive
joins and pulls a join into the right join input of its parent. It is illus-
trated in Figure 5.19. Note, in contrast to Rule 8, join order now has
changed because the inputs e3 and e4 are joined first.

103

5. Pipeline Optimization

ForBind$a

e1 Join=

End

$a

ForBind$b

e2 End

$b

Join=

End

$b

ForBind$c

e3 End

$c

Join=

End

$c

ForBind$d

e4 End

$d

m
ForBind$a

e1 Join=

Join=

End

$a

ForBind$b

e2 End

$b

End

$b

ForBind$c

e3 End

$c

Join=

End

$b

ForBind$d

e4 End

$d

Figure 5.18.: First step of join tree rewriting.

Rule 9 Output join pullup.

$x1, . . . , $xn ⇒ $X $v1, . . . , $vm ⇒ $V
$y1, . . . , $yl ⇒ $Y $w1, . . . , $wk ⇒ $W

JoinΘ$X:$V ⇒ Opj1 JoinΘ$Y :$W ⇒ Opj2 End(k)⇒ end
$x1, . . . , $xi bound by left, $xi+1, . . . , $xn bound by right

left2 independent of $x1, . . . , $xi
right2 independent of $x1, . . . , $xn

Θ ∈ {=, <,>,<=, . . .}
Opj1(left, Right(end), Opj2(left2, right2, out))⇒
Opj1(left, Opj2(Right(left2), right2, end), out)

104

5.4. Join Trees

ForBind$a

e1 Join=

Join=

End

$a

ForBind$b

e2 End

$b

End

$b

ForBind$c

e3 End

$c

Join=

End

$c

ForBind$d

e4 End

$d

m
ForBind$a

e1 Join=

Join=

End

$a

ForBind$b

e2 End

$b

End

$b

Join=

ForBind$c

e3 End

$c

ForBind$d

e4 End

$d

End

$c

Figure 5.19.: Second step of join tree rewriting.

Finally, by applying Rule 3 twice, the AST reflects a fully balanced
join tree as shown in Figure 5.20.

In summary, the rules 8 and 9 provide basic mechanisms for re-
arranging the order precedence of multiple joins. But again, their ben-
efit is highly dependent on data characteristics and system properties
and requires statistics, which are not considered in this work.

Join input swapping can also greatly improve query performance.
However, it must be applied only if the output order may be changed,
too. If this is the case, the rewriting is trivial because two join input
branches are guaranteed to be independent.

105

5. Pipeline Optimization

ForBind$a

e1 Join=

Join=

End

$a

ForBind$b

e2 End

$b

End

$b

Join=

ForBind$c

e3 End

$c

ForBind$d

e4 End

$d

End

$b

m
Join=

Join=

ForBind$a

e1 End

$a

ForBind$b

e2 End

$b

End

$b

Join=

ForBind$c

e3 End

$c

ForBind$d

e4 End

$d

End

$c

Figure 5.20.: Third step of join tree rewriting.

5.5. Aggregation

The default semantics of grouping clauses is regularly a source of severe
performance problems. Already queries over moderate data volumes
are likely to exhaust available main memory, because the values of non-
grouping variables are simply concatenated to sequences. Furthermore,
analytical workloads frequently compute standard aggregates on these
sequences manually afterwards, which results in additional overhead.
Direct integration of tailored aggregation schemes in GroupBy opera-
tors is therefore an important aspect.

Figure 5.21 exemplifies a typical situation. A tuple stream with sev-
eral variable bindings is grouped by one variable and the aggregated
sequences of non-grouping variables are reduced afterwards by the func-

106

5.5. Aggregation

for $a in e0

let $b := e1

let $c := e2

group by $b
return [

count($a),
sum($c),
avg($c)
]

pipe

ForBind$a

e0 LetBind$b

e1 LetBind$c

e2 GroupBy

dft:seq

$b End

Array

count($a) sum($c) avg($c)

Figure 5.21.: Default aggregation of GroupBy.

tions count(), sum(), and avg(). Remarkably, $c is reduced twice,
i.e., the potentially huge aggregated sequence must be processed by
both sum() and avg().

The optimizer takes here advantage of the flexible specification of col-
umn aggregate types introduced in Section 5.3.1. Instead of aggregating
all non-grouping variables to sequences, it changes the default aggrega-
tion type from seq to the cheaper single and introduces manual
overrides for those columns, which are actually used after the grouping
step. Thanks to the hierarchical AST, all usages of non-grouping vari-
ables can be found with a simple scan of the operator output subtree.

Note that changing the default aggregation type from seq to single
is not essential for this optimization. Alternatively, unnecessary group-
ing overhead can be completely avoided by dropping all non-grouping
variables which are not referenced after the grouping.

If a variable like $a in the example is referenced as argument of a
supported aggregation function (here: count()), a respective aggregate
variable (e.g., $acnt) is introduced as additional output binding to the
GroupBy operator, which is computed space and time efficient during

107

5. Pipeline Optimization

pipe

ForBind$a

e0 LetBind$b

e1 LetBind$c

e2 GroupBy

dft:single

cnt:$a → $acnt

sum:$c → $csum

avg:$c → $cavg

$b End

Array

$acnt $csum $cavg

Figure 5.22.: Optimized aggregation in GroupBy.

the grouping phase. The referring aggregate function is replaced by a
reference to the new variable. If a variable is not used in an aggregation
function, but in an arbitrary expression, the default grouping behavior
is restored with a respective binding for the aggregation type seq.

The demand-driven binding of variable aggregates can be applied
to a single non-grouping variable more than once. In the optimized
GroupBy of Figure 5.22, two aggregate variables, $csum and $cavg,
were introduced for variable $c.

108

6. Data Access Optimization

Despite careful data flow optimization within operator pipelines, query
performance will not be competitive if the compiler cannot exploit the
physical capabilities of the target platform. Hence, storage-specific com-
pilation has been a major concern for the design of the compiler frame-
work. In fact, it is one of its biggest strengths. Almost every aspect is
open for platform-optimized code, because the compiler does not pre-
sume a specific data layout.

The effectiveness of optimizations is necessarily tightly coupled with
the concrete system. Some platforms will profit more from tailored data
access operations than others, but typical use cases, query patterns, and
shapes of semi-structured data suggest storage designs with comparable
capabilities and predictable performance profiles. The presented strate-
gies for exploiting platform-specific capabilities are therefore justified
by referring to properties and performance characteristics of relational
DBMS, native XML-DBMS, and common implementation strategies.

6.1. Generic Data Access

Like any portable architecture, our compiler depends on generic default
implementations for all data access operations. As explained in Sec-
tions 2.2 and 2.1.2, the basic composition types array and map serve as
building blocks upon which a concrete front-end language can define its
own abstractions of data including respective types, constructors and
access operations. Especially with regard to the latter, data abstrac-
tions can and should be picked up by the compiler to support efficient
operations. Therefore, we must employ wrapper and adapter techniques
to abstract from the physical data organization and allow to plug-in
virtually any kind of storage1 and data source into the system. In the

1The term storage refers in this context to any kind of disk-resident or memory-
resident data structure without any implications regarding database-specific
functionality like persistence or transactions.

109

6. Data Access Optimization

type Node {
QName name()
Atomic value()
Type type()
Node parent()
Node first-child()
Node last-child()
Node prev-sibling()
Node next-sibling()
...

}

(a) Node interface

Node

prev-sibling() next-sibling()

first-child() last-child()

parent()

(b) Elementary navigation

Figure 6.1.: Operations of XML node interface.

concrete case of XQuery, the compiler will rely on an interface-based
design for abstracting from XDM data types such as sequence, item,
and node.

Adapter interfaces must provide all basic operations for implementing
data-specific query logic in a storage-agnostic manner. XPath expres-
sions, for example, are typically processed as iterative traversals of the
XML tree. Accordingly, the interface of an XML node will at least need
to expose DOM-like operations as depicted in Figure 6.1 for navigat-
ing the tree structure. Note that without considering efficiency at this
point, every storage will be able to support an adapter for these simple
operations. Accordingly, we can safely assume that primitive naviga-
tion will work as default option in every system and, therefore, do not
go into further details [BBB+09]. More interesting is how we can cope
with the drawback of hiding all opportunities for use of efficient native
operations behind an interface.

The natural performance penalty of a wrapper-based approach de-
pends on three factors, which will vary between different storages. The
main source of inefficiency is the overhead of translating operations
between different abstractions. For example, consider the interface op-
eration next-sibling(), which returns the right sibling of an XML node
in the tree. It will translate to a cheap pointer dereference operation

110

6.1. Generic Data Access

for a linked tree structure in main memory, but may translate to an
expensive scan if the XML tree is stored externally in a relational table.

The second source of inefficiency is indirectly caused by a mismatch in
the granularity of operations exposed by the wrapper and supported by
the storage layer. In the example above, the navigation step matched
the lightweight pointer structure of the in-memory tree, but was too
fine-grained to justify a bulk-oriented scan operation. For a path ex-
pression //a/b/c, however, a scan operation might be adequate to
retrieve all matching nodes at once. That aspect is not necessarily sym-
metric. While node-wise tree traversal is usually prohibitively expensive
on external storage, navigation in main memory is still quite efficient.

The third source of inefficiency results from poor consideration of
locality effects. The order and the volumes in which data is accessed
by a query will considerably affect on performance. Again, this is par-
ticularly true for data on external storage, but even operations on in-
memory data will be penalized by poor locality.

Data locality is especially difficult to address in a portable design
because it is a physical property of the system. However, the assumption
that logically related data, e.g., all nodes in an XML fragment, is also
physically clustered, is generally a good heuristics. However, the nodes
of a linked XML tree, e.g., might also be randomly scattered in memory.

To summarize, we can identify the following key challenges:

Access Granularity The granularity of data accesses performed by a
query should be aligned to the capabilities and performance char-
acteristics of the underlying storage.

Access Economy The total number of data accesses should be mini-
mized because every operation will incur some overhead.

Access Locality The locality of operations should be optimized with re-
spect to the physical layout of the data.

In the following, we will investigate common query situations and
show how physical data access can be optimized with respect to the
above challenges. The optimization strategies pursued will rely on the
following principles:

111

6. Data Access Optimization

Simplify Complex data access sequences (e.g., path expressions) should
be simplified to equivalent but cheaper operations.

Batch Groups and sequences of related data accesses should always be
mapped to coarse-grained alternatives.

Short-circuit Superfluous checks and additional operations for special
cases should be short-circuited whenever possible.

Choose The cheapest alternative should be chosen if there are several
ways to realize an operation or a sequence of operations (e.g., by
the use of an index).

6.2. Storage-specific Data Access

The largest fraction of data access operations belongs to navigation
routines, which match structural patterns against complex values. The
pattern matching itself is a complex process that makes heavy use of
relatively fine-grained operations. Accordingly, there is a huge saving
potential if navigation routines are shortened.

Consider the evaluation of the single-step path expression ./item
through the basic adapter interface. To find the target elements, the
näıve navigation algorithm will iterate over the children of the context
node by repeatedly calling next-sibling() and perform the matching by
calling name(), and kind() for each node. Executing the same logic
directly on the storage is likely to be much faster. This optimization
can be seen as some sort of predicate pushdown.

6.2.1. Native Operations

In the first place, native navigation routines dramatically reduce the
code path for the matching loop. Additionally, most storage implemen-
tations will be able to leverage additional knowledge about the data,
which is not available to the generic runtime. For example, a storage
might know the location of child nodes with a particular name or that
only one child node will qualify at most. This information can be used
by the storage to guide the search or to stop as soon as the final result
is fixed.

112

6.2. Storage-specific Data Access

type Node {
...
Sequence child-elements(QName name)
Sequence desc-elements(QName name)
...

}

Figure 6.2.: Supplementary operations of XML node interface.

The performance gain achieved by offloading query logic to the stor-
age varies not only between different systems but also between different
data sets. For example, if the navigated XML subtree is very small,
the improvement will also be rather small, but large instances or huge
document collections can profit a lot.

Enriched Adapter Interfaces

For frequent query patterns, it is advisable to extend the adapter inter-
face with operations, which map the query logic directly to operations
on the storage. XPath-based navigation of XML trees, for example,
suggests dedicated navigation operations for the important child and
descendant axes as shown in Figure 6.2. Compiling step expressions
to make use of these operations is trivial.

The disadvantage is that storage interfaces are bloated up and that
similar logic must be implemented in each adapter. However, it is also
feasible to treat the implementation of supplementary operations as
optional and automatically fall back on standard navigation routines.

At this point, it should be emphasized that respective optimizations
are not restricted to XML data. In XQuery, the sequence interface
will, for example, profit from operations for positional access to support
filter operations like $myseq[last()]. Front-end languages for other
data models will similarly suggest useful operations for supporting query
logic.

Direct Embedding

The alternative to the extension of adapter interfaces is a mapping of op-
erations and sequences of operations to custom expressions that compile

113

6. Data Access Optimization

directly to native operations of the respective storage. The correspond-
ing AST rewriting logic, the implementations of the new expression
types, and everything else necessary can be conveniently packaged in
a storage-specific compiler module. The efficiency of native processing
can so be leveraged without tampering other storage modules.

The rewriting of expressions to native operations requires the ability
to confine data access operations at compile time to a particular storage.
In case of a path expression $a/b/c, for example, the compiler must
be able to trace back the variable reference $a to the respective data
source, which is typically a function call like fn:doc(’data.xml’).
Due to the hierarchical scopes in the AST, the analysis is usually simple,
but most queries will access data from a single storage anyway.

However, if a query accesses multiple data sources, there may arise
constellations where it is not possible to statically confine operations to
a particular storage. In this case, one has solely the chance to dynami-
cally make the distinction and dispatch the operation to the respective
storage. But depending on the complexity and the frequency of the
operation, the additional runtime overhead can dominate the gains.

Data-specific Simplification

If data source analysis is able to deliver additional information about the
data queried, even more powerful rewritings can be performed. Espe-
cially the processing of structured data will benefit from the availability
of schema information, because navigation steps reduce to structured
field accesses rather than structural pattern matching.

As example, consider a database of customer records. The logical and
the physical representation of a Customer record may be completely
different. Depending on the abstraction principles of the front-end lan-
guage, it can be logically represented, e.g., as a JSON object or an
XML fragment, but physically stored in a relational table, a text file
or a structured value in main memory. For accessing a component of a
record, the storage logic will need to perform a lookup, e.g. in a hash
table, to map the field name to the corresponding array field or offset.
For large data sets this overhead accumulates and costs performance.
With schema-information, however, lookups can be performed once at
compile time or at the beginning of the query, so that native operations
can access the fields directly.

114

6.2. Storage-specific Data Access

pipe

Start

ForBind$c

e1 Select

=

$c=>ID 2107

End

$c=>name

⇒

pipe

Start

ForBind$c

e1 Select

=

field[$c,0] 2107

End

field[$c,1]

Figure 6.3.: Pre-compilation of navigational access for structured data.

$person/age > 21

(a) Comparisons

<user name="{$u/name}"/>

(b) Constructors

fn:max($p/price)

(c) Arguments

Figure 6.4.: Common examples for value coercion.

Figure 6.3 illustrates the pre-compilation of field accesses for a struc-
tured Customer record, rendered in the query as a JSON object. The
string-based map lookups have been replaced by storage-specific expres-
sions, which directly access the field values through positional access to
the underlying array structure.

6.2.2. Eager Value Coercion

The importance of value coercion for processing semi-structured data is
regularly underestimated. As the examples in Figure 6.4 show, it is an
important aspect of many frequent and therefore performance-critical
operations.

In the context of operations, which coerce arguments respectively
subexpressions, it is beneficial to perform the coercion eagerly as part
of the navigation routines, which yield the respective values. It shortens
the code path, effectively reduces expensive data access, and prevents
the creation of temporary objects. Note that eager coercion can be
realized with both extended adapter interfaces and native operations.

115

6. Data Access Optimization

path

$a desc-or-self::a child::b child::c

⇓
path

$a [desc-or-self::a,
child::b,
child::c]

Figure 6.5.: Generalization of axis steps to a complex path step.

6.2.3. Path Processing

The generalization of individual navigation steps to a single multi-step
path operation can deliver performance gains in the order of magni-
tudes. The coarser operation granule comes with less call overhead and
has advantages in terms of code and data locality. Furthermore, efficient
evaluation of path expressions is a key concern in most XML storages,
which is why substantial performance improvements may be expected.

If the storage offers direct support for multi-step path operations,
the compiler needs only a simple rewriting to merge individual step
expressions as depicted in Figure 6.5. Note that this form of rewriting is
also the reason, why we do not desugarize path expressions to FLWORs
beforehand. It is much easier and more efficient to compile the original
path expression with all steps at once instead of breaking them up into
nested FLWORs and putting the scattered pieces later together again.

As explained in Section 3.2.3, XPath requires the result of a path ex-
pression to be free of duplicates and sorted in document order. There-
fore, the canonical FLWOR-based evaluation of path expressions em-
ploys a post-processing step, e.g., a utility function fs:ddo(), for sort-
ing and duplicate removal. However, expensive post-processing is in
many cases not necessary, because navigation algorithms delivering un-
sorted results are uncommon and because duplicates can appear only
under certain circumstances. Whether or not a path expression will de-

116

6.2. Storage-specific Data Access

if then else

not($n instance
of node()?)

fs:ddo()

flwor

for $tmp

$n

return

scan()

$tmp [desc-or-self::a,
child::b,
child::c]

scan()

$n [desc-or-self::a,
child::b,
child::c]

Figure 6.6.: Native path processing with runtime checks.

liver sorted and duplicate-free results can often be determined statically,
but it is extremely complex for non-trivial paths [FHM+05].

Holistic path processing routines at the storage level also guaran-
tee sorted and duplicate free results. For example, a popular eval-
uation strategy for paths in XML stores are localized subtree scans,
which use special stack-based algorithms [BKS02] or metadata struc-
tures [GW97, MHSB12] to match a path against nodes streaming in.
Hence, in addition to general efficiency gains, this form of evaluating
multi-step paths on the storage relieves the runtime from expensive
query analysis and post-processing overhead. Additional care is only
required in situations where the results from multiple path evaluations
have to be merged, i.e., if the path matching routine is called for several
context items within the same path expression. In this case, the com-
piler has to generate guarded code with runtime checks as exemplified
in Figure 6.6.

In practice, the pushdown of path expressions to the storage has lim-
itations. Most storage implementations do not support paths where in-
termediate steps have additional predicates like in $a/b[.x = 5]/c.
At most only a few systems are able to evaluate a restricted form of
such patterns (see Section 6.3.1). Similarly, many storages do not of-
fer extended support for uncommon axes like previous-sibling,
following, etc. However, the dominating axes child, descendant,
descendant-or-self, and attribute will be efficiently supported
in most storage designs.

117

6. Data Access Optimization

6.3. Bulk Processing

The importance of efficient bulk processing requires to look at data
access operations particularly within the context of operator pipelines.
Here we find potential for optimizing binding operations and data source
accesses in general, but also opportunities for improving access locality
across several pipeline stages. Our primary goal will be again to identify
certain access patterns in order to map large parts of the query directly
to native operations.

6.3.1. Twig Patterns

The simplest and, at the same time, one of the most frequent situations
that we can exploit is a byproduct of the predicate-pullup rewriting
shown in Section 5.1. It intended the reduction of tuples flowing through
the pipeline as early as possible. The Select filter is floated up the
pipeline to the earliest possible point, which is usually directly below
the binding operator on which the predicate depends. The idea is now
to combine the binding operator and the filter to avoid the creation
binding tuples, which would otherwise be immediately discarded by
the following filter. Furthermore, we want to exploit data locality by
pushing predicate evaluation down to the storage.

Achieving the first goal is trivial. The binding expression and the
predicate are combined to a filtered binding expression and the superflu-
ous filter operator is removed. The second goal is not a self-runner, be-
cause the resulting filter expression can be of arbitrary kind and shape.
However, the way structured and semi-structured data is processed will
frequently lead to a certain access pattern, which we can exploit.

Pipelines are used to iterate over and process collections of data.
Hence, they always start with one or several binding operators, which
feed the data into the pipeline. They bind “data items” of a certain
granule or super-structure, and the subsequent pipeline operators nav-
igate within these logical granules to extract further information, e.g.,
for filtering. Accordingly, we can expect to frequently find the situation
that the filter predicate navigates into the tree structure of the data
item to be bound.

This form of filtering by a structural pattern is called twig pattern
matching, because the downward paths reflect a tree-like structural pat-

118

6.3. Bulk Processing

tern that is matched against the data. The frequency and cost of twig
pattern matching makes native storage support advantageous. Hence,
the topic gained a lot of attention in research and efficient algorithms
for different kinds of storages were developed [Mat09].

Simple but frequent twigs with a single branch and an optional con-
tent predicate like in $products//product[./name] are efficiently
supported by almost every XML storage. Most designs support even
more advanced algorithms for matching complex twigs with multiple
branches and arbitrary sequences of child and descendant axes. As a
result, many storages will allow to compile filtered binding expressions
to native twig operations.

The capabilities and limitations of the various proposals are manifold
so that we can here refer only to the literature. It should be emphasized,
however, that the applicability of twig matching routines is easy to test,
because twig patterns will appear in the pipeline respectively the AST
very clearly. Again, this is owned to the fact that path expressions are
not normalized to FLWORs.

6.3.2. Multi-bind Operator

Twig patterns appear in more flavors than simple combinations of bind-
ing operators and filters. Merely, the mentioned downward path match-
ing against structured and semi-structured data items is a central aspect
in most queries. Variable-bound items are navigated at many points for
filtering, aggregation, result projection, etc.

Consider the example given in Figure 6.7(a). From a bird’s eye view,
one can see how different parts of the same logical abstraction, a product
item, are used. Aside in the filter condition, the for-bound variable
is used multiple times as starting point for paths in the final result
construction. The tree structure of the corresponding twig pattern is
shown in Figure 6.7(b).

From the physical perspective, such a twig pattern can be processed
efficiently if all branches are matched in a single operation, e.g., by
fetching all parts of interest in a single subtree scan. Within a for
loop, we achieve efficiency through access locality and by reducing the
number of expensive I/O for disk-based storages.

Although the clauses of a FLWOR imply a logical evaluation order,
the actual evaluation order can be different, e.g., because of lazy eval-

119

6. Data Access Optimization

for $p in e1

where $p/@id = 47261
return

<product>
<name>
{$p/name/text()}
</name>
<color>

{$p/details/color/text()}
</color>
<tags>

{$p/details//tag}
</tags>
</product>

(a) Query

$p

@id name

text()

details

color

text()

tag

(b) Twig pattern

Figure 6.7.: Twig pattern within a pipeline loop.

uation or rewritings performed by the compiler. Efficiency through
physical and temporal locality is therefore not guaranteed. Surely, the
compiler can never give such guarantees, because it will not be in con-
trol of the storage. However, it can perform rewritings, which allow to
put the storage in charge of an efficient evaluation.

The strategy pursued is explained best with a running example for
the query of Figure 6.7. First, all twig paths are extracted from their
context by binding them to let variables as shown in Figure 6.8. Note,
how simple the extraction is with the hierarchical AST. We only need
to pull-out nested path expressions starting at the loop variable.

In the next step, all twig bindings are moved up to the respective
ForBind operator. This is allowed because a LetBind reflects a nested
loop with only a single iteration and exchanging such loops will not
influence output order. In this sense, it is very similar to predicate
pull-up. The resulting pipeline is shown in Figure 6.9.

120

6.3. Bulk Processing

Start

ForBind$p

e1 LetBind$p1

$p/@id Select

$p1=47261 LetBind$p2

$p/name
/text()

LetBind$p3

$p/details
/color/text()

LetBind$p4

$p/details
//tag

End

<product>
<name>{$p2}</name>
<color>{$p3}</color>
<tags>{$p4}</tags>

</person>

Figure 6.8.: Pipeline after extraction of twig branches.

The last step is the key. The initial binding expression, all filter twig
branches, and all binding twig branches are merged to a single twig
operation, which can be pushed down to the native storage.

At this point, it should be emphasized that twig algorithms are not
limited to match branches for filtering only. Matched twig branches can
also be returned as part of the result. The result of a twig operation
is then a sequence of twig vectors, of which each consists of the root
node of the matched structure and all nodes matched at the twig output
branches.

For binding the twig result vector, i.e., the loop variable and the
additional output paths, the ForBind is generalized respectively2 – a
feasible step, because the underlying Bind operator offers the possibility
of binding multiple variables anyway. The resulting AST is shown in
Figure 6.10.

2Alternatively, the twig output vector could also be bound as array value.

121

6. Data Access Optimization

Start

ForBind$p

e1 LetBind$p1

$p/@id LetBind$p2

$p/name
/text()

LetBind$p3

$p/details
/color/text()

LetBind$p4

$p/details
//tag

Select

$p1=47261 End

...

Figure 6.9.: Pipeline after pull-up of twig branches.

Start

MultiBind$p,$p1,$p2,$p3,$p4

e1 $p/@id $p/name
/text()

$p/details
/color/text()

$p/details
//tag

Select

$p1=47261 End

...

Figure 6.10.: Final pipeline with twig vector binding.

122

6.3. Bulk Processing

Treating all data matched by the twig pattern as a unit, we can look
at the operation as a sort of projection for semi-structured data. Ac-
cordingly, twig output paths should be materialized eagerly to leverage
locality benefits of twig matching. For example, the element construc-
tor in the return clause copies all subtrees of the nodes bound to $p4

into the result. Therefore, it will not be sufficient to bind solely the sin-
gle twig output nodes to variable $p4. The constructor would need to
access the storage again to reconstruct each subtree. Instead, the twig
should materialize small fragments, thus, saving the need for additional
storage access. Similarly, the twig algorithm should perform coercion if
necessary, too.

If statistics are not available at compile time, the decision whether or
not eager materialization is appropriate should be made dynamically,
e.g., if the substructure is rather small. Thereby it should be kept in
mind that the additional bindings performed by this optimization al-
ready increase the memory footprint of pipeline tuples, which may have
a considerable effect on the memory requirements of blocking operators.

6.3.3. Indexes

In addition to primary storage, database systems as target platform
offer indexes as secondary access path for fast data retrieval. In this
area, we can again leverage from extensive research, especially in the
context of XML.

In contrast to relational systems, which specify indexes on column
values, semi-structured data can be indexed by three classes of in-
dexes [MHSB12]:

Value Indexes are the simplest form and map atomic values to a corre-
sponding complex value, e.g., the text value of an XML attribute
to the respective attribute node.

Path Indexes contain references to structures on a certain path. For
example, a path index for the pattern //product/name will
contain references to all name elements in a document collection,
which are children of product elements.

Content-and-Structure Indexes (CAS) are a combination of the latter
and enable value-based retrieval of structures on certain paths.

123

6. Data Access Optimization

For example, a CAS index for //product/name[xs:string]
will allow to search for product names by string.

A specialty of all three index types is that they are scoped to specific
types of values and structures on specific paths. In contrast, a relational
index on a table contains an entry for each row.

From the compiler point of view, indexes yield a promising alterna-
tive for evaluating various kinds of path expressions and content pred-
icates. Particularly interesting is the use of indexes for evaluating fil-
tered binding expressions. For example, whenever the compiler detects
a for-bound path expression, which is probably also augmented with
an additional twig-like predicate as introduced in Section 6.3.1, it will
try to find appropriate indexes for evaluating the binding expression.
Especially highly selective twig patterns, which are matched against the
whole document or collection (e.g., the path starts with fn:doc()),
will benefit from the speed of focused data access through a single index
or a combination of several indexes.

As always, the crucial step at compilation time is the analysis which of
the indexes available are applicable and which combination of indexes
is best. The index selection problem is known to be NP-hard, so we
need to fall back on heuristics and, if available, statistics. Interestingly,
an index can even be used if its scope does not fully match the twig
pattern, i.e., if it is more general and delivers only candidate matches.
In this case, the index is used to partially evaluate the twig pattern and
the rest is evaluated on the primary storage. The other way around,
i.e., the use of an index with a narrow scope for a more general query
pattern, is possible if additional metadata is available, which guarantees
that qualifying results will not be missed.

The actual rewriting and compilation steps are identical to normal
path rewriting. Hence, we can refer again to [MHSB12] for details and
examples on index matching and selection.

124

7. Parallel Operator Model

Even the most advanced compilation techniques stay without effect if
the runtime cannot deliver expected performance. Query performance,
in particular, stands and falls with the efficiency of bulk operations. In
general, the classic pull-based model with the open-next-close protocol
is a good choice for implementing operators. It is simple, efficient and
most query algorithms are streamlined to it. However, current trends
in multi-core and many-core architectures require new designs, which
naturally embrace parallelism and utilize available resources. Such a
design requires careful balancing of various aspects. One must not only
identify, which parts of a query can be processed in parallel, but must
also find a good balance of parallelism and overhead for scheduling and
synchronization.

Achieving high parallelism is particularly difficult if the system is not
tied to a particular data storage, because one cannot expect to be in con-
trol of important aspects like data partitioning. Instead, opportunities
for effective parallelization must be identified, created, and exploited
dynamically at runtime. Existing solutions for parallel processing in
the pull-based model are not suitable, because parallelism is statically
compiled into the query pipeline and often confined to single operators,
e.g., a parallel join algorithm.

In the following, we present a novel push-based operator model, which
dynamically partitions data flows and pipeline operators for parallel
processing. In tradition of previous chapters, the concept developed
assumes very little knowledge about the query and the actual data itself.
Parallelization is performed automatically at runtime and adapts itself
to the current workload situation. It neither presumes the availability
of cost functions and statistics for the query plan nor does it depend
on input of a specific kind, size, or shape. But if desired, the presented
solution can be enriched with compile-time or runtime knowledge to
improve performance.

125

7. Parallel Operator Model

7.1. Speedup vs. Scaleup

The goal of parallelization is called speedup. It is a measure for the
performance improvement of a parallel execution in comparison to the
serial execution.

The literature knows two definitions of speedup. The classic defini-
tion of Amdahl [Amd67] calculates speedup with regard to the faster
time to completion of a parallel program. The alternative definition
of Gustafson [Gus88] calculates speedup as the capability to use paral-
lelism for compensating scaling of the problem size. In some contexts,
it is therefore also called scaleup [DG92].

Which of the two definitions applies best depends on the concrete use
case. Some scenarios require parallelism to reduce the time spent for a
task, e.g., to improve the response time of a server, whereas others re-
quire parallelism to scale a system to larger data volumes. Interestingly,
the two definitions must not necessarily lead to completely different sys-
tems. In many cases, a better parallel design will yield improvements
with respect to both definitions.

Independent of the parallelization goal, all efforts will only pay off if
a reasonably large part of the work can benefit from it. Accordingly, a
high degree of parallelism must be established as fast as possible and
also kept alive as long as possible. The concrete challenges that need
to be addressed here are manifold. Sequential operations and I/O can
turn out as bottlenecks as well as various forms of resource contention
and load thrashing. Furthermore, it is generally difficult to distribute
operations on semi-structured data.

In this setting, optimal parallel execution of a query is almost im-
possible to guarantee. Therefore, the execution framework presented
pursues the philosophy to create at least opportunities for parallelism
between operators and within operators. Whether they are exploited or
not will depend on available resources at runtime. Therefore, speedup
and scaleup achieved will be sensitive to various factors, but improve,
the more chances for parallelism are taken and the less overhead is im-
posed by the infrastructure itself.

126

7.2. Parallel Nested Loops

1

1

1 2 .. n

2

1 2 .. n

.. n

1 2 .. n

2

1

1 2 .. n

.. n

1 2 .. n

.. n

1

1 2 .. n

.. n

1 2 .. n

for $a in ea

for $b in eb

for $c in ec

where
pred($a,$b,$c)

order by $c

let $d := ed

return
($a,$b,$c,$d)

2 2 n 1 n 2 1 1 n2

1 2 n

Figure 7.1.: FLWOR iteration tree.

7.2. Parallel Nested Loops

The idea for the parallel operator model builds on the parallelization
of nested loops – a characteristic of operator pipelines that we men-
tioned several times. Figure 7.1 illustrates nested iterations for a typi-
cal FLWOR expression with several variable bindings, a where clause
and an order by clause. Starting from a single context tuple which
is passed to a pipe expression, sequences of Bind operators form a
tree of nested iteration scopes. The fan-out of a node in the tree is
determined by the size of the respective binding expression. In case of
Select and LetBind, the fan-out is at most one, but a ForBind may
easily reach millions. The operators OrderBy, GroupBy, and Count,
as well as the final End create the corresponding fan-in and optionally
a fan-out.

127

7. Parallel Operator Model

The parallel execution of nested loops has been extensively studied
in the literature. A large part of the research work concentrated on
techniques for re-organizing loop constructs and loop nests to elimi-
nate loop-carried dependences [WB87]. The presence of dependences
implies a full or partial order in which individual iterations of a loop
must be executed to yield the correct result. For example, the simplest
form of a loop-carried dependence is a counter variable, which is incre-
mented and used in each iteration. In general programming, various
other forms of dependences exist and typically require smart analysis
and rewriting techniques to peal out exploitable parallelism from a loop
nesting [KA02]. Note that dependences are of structural nature only
and do not depend on the actual data itself.

Fortunately, operator pipelines are per se free of dependences, be-
cause data is immutable and variables are assigned only once within a
loop. Furthermore, iterations do not share an intermediate state. Thus,
operators can be freely parallelized. In the following, we can therefore
safely focus on the actual creation and scheduling of parallel work.

Forms of Parallelism

The iteration graph in Figure 7.1 visualizes the two options for creating
parallelism in an operator pipeline. Pipeline parallelism is achieved by
“cutting” the graph horizontally into decoupled processing stages, which
run in parallel. In the extreme case, each operator in the sequence is
assigned to a separate process1. Data parallelism is achieved by cutting
the graph vertically, i.e., multiple “copies” of each operator are applied
in parallel to partitions of the input. Both strategies have individual
advantages and drawbacks.

Pipeline parallelism is simple to realize and therefore very popular for
parallelizing producer/consumer-like constellations. It is even in pull-
based query plans very convenient. One must only introduce artificial
exchange operators in the pipeline [Gra94].

On the flip side, pipeline parallelism is very sensitive to load skew.
Optimally, the workload is balanced and the processing of all pipeline
stages overlaps as much as possible. Practically, however, this is hardly

1The term process commonly denotes a unit of scheduling and program execution.
For the sake of simplicity, we abstract from its concrete realization as operating
system process, thread, etc.

128

7.2. Parallel Nested Loops

the case. For example, binding operators act like multipliers and typ-
ically emit more input tuples than they consume, as rendered in Fig-
ure 7.1. In a parallel pipeline, this increases the load on the respective
following operators.

Another form of workload skew occurs if one stage is more costly than
others. The resulting load imbalance quickly disrupts the pipeline flow
and results in poor parallelism. This is particularly bad as pipelines
already need a warmup time before the first inputs reach later stages.
Intermediate blocking operators like OrderBy further reduce the ben-
efit of pipeline parallelism.

Last but not least, pipeline parallelism suffers from limited scalability.
The maximum degree of parallelism is fixed by the pipeline structure,
i.e., the approach cannot scale with the number of available resources.

Given a sufficiently large input, data parallelism scales, at least theo-
retically, much better, because it distributes the load over all available
resources. However, data parallelism is relatively complex to realize
and must be explicitly implemented within each operator. Especially,
blocking operators must be coded carefully with parallel algorithms and
low-overhead data structures.

In practice, the scalability of data parallelism is limited, because data
dependencies and inherently serial operations do not allow to decompose
programs entirely into data-parallel operations. The need to synchro-
nize access to shared resources is another performance threat. Data-
intensive scenarios particularly suffer here from I/O, because external
storage is slow and does not well support random access.

Task Granularity

Splitting a query into independent units of work is the first and at
the same time the most critical step of parallelization: Fine-grained
work units achieve a good load balance, i.e., high parallelism, but cause
a high scheduling overhead. Coarse-grained work units impose only
minimal overhead, but then the system is likely to suffer from load skew.
Translated into the context of parallel nested loops, we need to find a
good balance between serial and parallel execution of loop iterations.

With respect to a single loop, the maximum degree of parallelism is
achieved by scheduling each individual iteration as a separate, parallel
task. However, any larger loop will anyway exceed the number of avail-

129

7. Parallel Operator Model

able processors by orders of magnitude, so that potential parallelism
cannot be exploited. Besides, this approach results in a high overhead
per iteration, which only pays off if the loop body is very expensive.
Scheduling tasks for whole bunches of iterations in turn reduces the
theoretical degree of parallelism, but amortizes overhead.

For optimal parallelism, loop iterations must be evenly distributed
among the available processing units. However, an equal number of
iterations per task achieves only a good balance if the cost of iterations
is equally uniform. If some iterations are considerably more costly than
others, the workload is again skewed. Optimal parallelization of loop
nestings is especially difficult as it requires to consider the cost and,
thus, the fan-out of inner loops, too. Accordingly, smart and fast loop
partitioning is the key to high parallel performance.

7.2.1. Data Partitioning

The literature proposes various techniques and partitioning schemes for
parallelizing nested loops. Conceptually, they share all similar ideas
and schedule loop iterations either block-wise or with a constant stride
over the input.

Unfortunately, most ideas cannot be directly applied in the query
processing context, because the research of parallel systems focuses on
loops over array-organized data in main memory and assumes that loop
size is known beforehand and data can be accessed randomly using
the loop variable as index. In our case, binding operators loop over
sequences, which is a powerful abstraction for data processing, but also
poisoned with a scalability problem: it is inherently sequential. The
work cannot be näıvely partitioned by simply specifying ranges over
a loop variable, because the size of a sequence is often unknown and
not all kinds of sequences support efficient random access. Accordingly,
effective realization of loop-level parallelism depends on the capabilities
of the binding sequence and the runtime must find the best way to
partition it as quickly as possible.

If a sequence supports random access, it is best partitioned with
a divide-and-conquer strategy, because it creates very quickly a high
fan-out, i.e., parallelism as shown at the left side in Figure 7.2. Even
better, the recursive partitioning can run in parallel as well. In contrast,
sequential binding sequences can only be partitioned step-wise as shown

130

7.2. Parallel Nested Loops

at the right side of Figure 7.2. It is inferior to the divide-and-conquer
scheme in every regard. It takes longer to reach the maximum fan-out
and the splitting process itself is inherently sequential.

Surely, both partitioning schemes can also be combined. For example,
if the input sequence reflects a scan operation, it can be fetched chunk-
wise into memory, where it can be efficiently partitioned with the divide-
and-conquer pattern. In the opposite situation, if the input sequence
supports random access, but individually-computed chunks must be
joined afterwards again in their initial order, e.g., at the return, split-
ting the input asymmetrically in a smaller head and a larger tail chunk
reduces the need to buffer already processed results from “later” itera-
tions. Hence, choosing the right partition size is crucial for CPU and
memory efficiency.

Lazy binding sequences come with the additional penalty that making
use of the sequence is already an expensive operation. Partitioning a
lazy sequence can easily take a considerable share of the total processing
time of a loop. In the worst case, the partitioning will even take longer
than the actual parallel computation of the loop body. However, if the
processing of a partition is more costly than the partitioning step, even
sequential inputs can benefit from parallel processing.

Under our initial assumption that statistical information about in-
puts and the query itself is not available or too complex to infer, we
cannot expect to find the optimal degree of parallelism at compile time.
Therefore, we pursue an optimistic, dynamic variant of parallel loop
scheduling. We use relatively small partitions but employ a lightweight
scheduling mechanism, which accommodates both the sequential and
the divide-and-conquer partitioning scheme and adaptively regulates
the number of utilized processes.

7.2.2. Task Scheduling

The complement to input partitioning is the assignment of loop parti-
tions to parallel processes in form of tasks. At the beginning, a query
is assigned to a single process, which drives the computation by con-
tinuously creating subtasks for parallel execution. However, we do not
directly assign each subtask to a parallel process. The system is de-
signed to treat parallelism as always optional. It allows to increase or
decrease the number of processes assigned to a query at any time.

131

7. Parallel Operator Model

1 2 3 4 5 6 7 8

1 2 3 4

1 2

1 2

1 2

1 2

5 6 7 8

5 6

5 6

7 8

7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8

3 4 5 6 7 8

4 5 6 7 8

5 6 7 8

6 7 8

7 8

tim
e

Figure 7.2.: Recursive and sequential input partitioning.

Therefore, the initial process does not only create the tasks, it also
executes them. If additional processes are available or become avail-
able at runtime, they will take over some tasks and thereby poten-
tially creating new subtasks themselves. If the system needs the help-
ing processes again for other tasks, e.g., for a second query issued by
another client, the initial process continues by processing the remaining
subtasks itself. This adaptive approach is often referred to as self-
scheduling [PK87, Pol88, KA02].

For load balancing, self-scheduling algorithms employ a technique
called work stealing, which has been widely studied and implemented
in the context of parallel shared-memory architectures [BL94, FLR98,
Rei07, TCBV10]. The key idea of work-stealing schedulers is the use
of one or several task queues in which processes place spawned tasks
and from which parallel processes “steal”. Therefore, lightweight and
highly-concurrent queue operations stand in the center of interest of
most work-stealing schedulers [HS02, CL05, SLS06].

Numerical and scientific applications, the usual adopters of work-
stealing techniques, offer great chances for highly parallel input parti-

132

7.2. Parallel Nested Loops

T3 T2 T1

fork()

join()

steal()

Figure 7.3.: The fork/join task dequeue of worker process.

tioning and result consolidation. Subtasks usually operate in-memory
only and have predictable input and output sizes (e.g., matrix multi-
plication). In query processing, the situation is usually more complex,
because the actual output size of individual subtasks may considerably
differ (e.g., filter operations) and buffering of large intermediate results
may require expensive I/O. Additionally, the scheduling mechanism
must often obey (partial) ordering constraints, e.g., to accommodate
output order preservation in a pipeline.

Fork/Join Model

The fork/join model is ideal to schedule tasks from inputs, which sup-
port efficient random access. The design principle is very popular in
parallel programming, because it can be directly applied to any re-
cursive divide-and-conquer algorithm [FLR98, Lea00]. A given task is
recursively divided into smaller subtasks until it is small enough for
sequential processing. During unwinding the recursion, the partial re-
sults are merged. The pseudocode in Listing 5 shows the skeleton of a
fork/join computation.

Parallelism is achieved by processing only one half of the divided
input whereas the second one is forked, i.e., it is made available for par-
allel processing. If the own share of the work has been processed, the
spawned task is joined, i.e., the initiating process waits for its comple-
tion through a parallel process or completes it by itself, if necessary.

For efficient forking and joining, every process maintains its tasks in
a double-ended queue (deque) as shown in Figure 7.3. One queue end is
exclusively used by the owning thread for pushing (fork) and popping
(join) tasks. The other queue end is solely accessed by free processes
seeking for pending tasks (steal).

133

7. Parallel Operator Model

Listing 5 Parallel computation in fork/join model.

1: function compute(task)
2: if task is small enough then
3: compute task
4: return result
5: else
6: split up task in subtask1 and subtask2
7: schedule subtask2 for parallel execution (fork)
8: compute subtask1
9: wait for/complete subtask2 (join)

10: merge results from subtask1 and subtask2
11: return merged result
12: end if
13: end function

Besides the elegant realization of lightweight parallelism at variable
granularities – the task size depends on the recursion level at which it
was created – fork/join has several other advantages. In practice, the
number of steals is fairly low, because at the beginning larger subtasks
are forked, which quickly saturate all free processes. Thereafter, the
framework does not require any further load balancing. In contrast to
many other parallelization schemes, the model also allows to compose
nestings of parallel computations, i.e., every elementary subtask can be
the root task of a nested parallel computation. Furthermore, fork/join
algorithms have a good locality with respect to the input because pro-
cesses execute forked subtasks in LIFO order. In fact, the processing
order of fork/join with a single process is identical to sequential pro-
cessing. In the general case, a task is seamlessly distributed over any
number of processes.

Essential for the fork/join model are the fast creation of subtasks
and a reasonably large recursion depth to create enough subtasks in the
queue for stealing. Note, an overflow of the task queue is unlikely be-
cause of the logarithmic depth of a typical divide-and-conquer recursion.
However, asymmetric partitioning patterns are prohibitive, because it
provokes “steal-back” thrashing and results in poor locality.

134

7.2. Parallel Nested Loops

Producer/Consumer Model

The basic producer/consumer model is suitable to schedule tasks from
sequential inputs. The initiating process, the producer, continuously
creates tasks and submits them to a simple FIFO queue, while one or
more free processes, the consumers, poll the queue for new tasks to
process them in parallel.

Even though this is the simplest of all parallel patterns, it has sev-
eral advantages. Additional consumers can be dynamically added or
removed and, if necessary, the single producer process can anytime take
over the consumer part and process generated subtasks interleaved with
the input partitioning. If sufficient computing resources are available,
the producer can process the input almost without interruption and at
very high speed. If the input is read from external storage, chances are
good to utilize full sequential I/O bandwidth. Finally, the synchroniza-
tion overhead of the task queue is as little as in the fork/join model.
Further communication between parallel processes is not required.

In contrast to the fork/join model, the producer/consumer model is
more sensitive to task granularity. Because the former creates tasks of
different granularities, it is more likely to hit a partition size that leads
to a good balance of parallelism and runtime overhead. A producer
process, however, schedules only tasks of a certain size. If the tasks are
too small, it provokes a high overhead; if they are too large, it costs
parallelism. Clearly, one may collect queueing statistics and heuristics
to adjust the size of subtasks dynamically, but dynamically determining
the task size that balances the enqueue/dequeue ratio and optimally
utilizes available processors, memory, and I/O is prohibitively costly.

Worker Pool Organization

To meet the requirements of both sequential and random access bind-
ing sequences, we use a pool of pre-allocated worker processes, which
supports scheduling queues for fork/join tasks and producer/consumer
tasks at the same time. A schematic overview of the pool is given in
Figure 7.4. As standard in fork/join models, each worker has a local
task dequeue, which is used by the owning process like a stack and by
others like a queue. For producer/consumer tasks, the pool maintains a
global task queue, which is uniformly accessed by all workers in a FIFO
manner. Idle processes are queued until additional work is available.

135

7. Parallel Operator Model

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

T7 T3 T9 T6

dispatch() poll()

W5 W3

block() unblock()idle queue

task queue

Ty Tx

Tc Tb Ta

steal()

Figure 7.4.: The jork/join pool with 5 worker threads.

The number of allocated workers should be chosen with respect to
the number of available of hardware contexts. A pool with less workers
than hardware contexts cannot fully utilize the computing capabilities
of the platform, but may be reasonable if some resources need to be
reserved for system services etc. More workers than hardware contexts
produce overhead for additional context switches, but may also keep
the system utilized if processes are frequently suspended for I/O.

The main loop executed by each worker process is shown in Listing 6.
First, the worker looks for a pending task at the tail of its local queue
(line 4), then at the head of the global task queue (line 6), and finally
at the heads of the local queues of other workers (line 9). This process
continues until a pending task is found for execution (lines 12-13). To
avoid needless spinning and expensive memory synchronization between
parallel processes, the worker is suspended when a retry threshold is
reached (lines 17-22). Before blocking, the worker enqueues itself in
the idle worker queue (line 17) and then checks again if a new task
was assigned to the worker after the local task queue was inspected.
Without this re-check, it may happen that the unblock() signal gets
missed if the worker is already removed from the idle queue (line 20).

The general task dispatch routine is shown in Listing 7. First, the
idle queue is inspected (line 2). If a free worker was found, the task is

136

7.2. Parallel Nested Loops

Listing 6 Main loop of worker processes.

1: function run
2: retries← 0
3: while TRUE do
4: t← try dequeue from local tail()
5: if t is null then
6: t← try dequeue from pool head()
7: end if
8: if t is null then
9: t← try steal from local queues()

10: end if
11: if t is not null then
12: execute(t)
13: retries← 0
14: else if retries has not reached threshold then
15: retries← retries+ 1
16: else
17: enqueue in idle queue()
18: t← try dequeue from local tail()
19: if t is null then
20: block(self)
21: retries← 0
22: end if
23: end if
24: end while
25: end function

placed in the worker’s local queue and the worker is unblocked (lines
4-5). Otherwise, the task is added to the global task queue, where it
will be picked up by a running worker as soon as it has drained its local
task queue.

The task join routine shown in Listing 8 is almost identical to the
main loop of a worker. If the joined task is not yet completed (line 9),
the joining worker uses the mean time to process pending tasks from the
global queue (lines 11 and 20), the local queue (line 14), and the local
queues of others (line 17). The flag sequential is used to ensure that
tasks are always joined according to the caller’s local forking scheme.

137

7. Parallel Operator Model

Listing 7 Dispatching fork/join and producer/consumer tasks.

1: function dispatch(task)
2: w ← try dequeue from idle queue()
3: if w is not null then
4: enqueue in worker queue(w, task)
5: unblock(w)
6: return TRUE
7: else
8: enqueue in task queue(taks)
9: return FALSE

10: end if
11: end function

This is crucial, because joining tasks in arbitrary orders may lead to
overflowing task queues.

If a fork/join task is joined, the most recent task in the local queue
will be the joined task itself. This way, execution of the found pending
task (line 23) will be the end of the loop. However, if the joined task
was stolen by a parallel worker, the loop continues seeking for further
uncompleted tasks. After several unsuccessful attempts to find some
work, the worker is suspended until the joined task is completed (line
17). The corresponding notification will be issued by the respective
stealer.

7.3. Operator Sinks

As shown in Section 4.3.2, the pull-based and push-based operator mod-
els have a fairly similar structure. Merely, they differ in the philosophy
of whether something is actively produced or reactively delivered. In
this aspect, the eager nature of the push-based model suits better to
the parallel computation of individual loop iterations than the reactive
pull-based model. The realization of parallelism within a sink pipeline
is explained in the following sections in detail.

138

7.3. Operator Sinks

Listing 8 Task join routine.

1: function join(task, sequential)
2: if sequential then
3: done← try execute(task)
4: if done then
5: return
6: end if
7: end if
8: retries← 0
9: while task is not finished do

10: if sequential then
11: t← try dequeue from pool head()
12: end if
13: if t is null then
14: t← try dequeue from local tail()
15: end if
16: if t is null then
17: t← try steal from local queues()
18: end if
19: if t is null and not sequential then
20: t← try dequeue from pool head()
21: end if
22: if t is not null then
23: execute(t)
24: retries← 0
25: else if retries has not reached threshold then
26: retries← retries+ 1
27: else
28: wait for task(task, self)
29: retries← 0
30: end if
31: end while
32: end function

139

7. Parallel Operator Model

type Sink {
void begin()
void output(Buffer buffer)
void end()
Sink fork()
Sink partition(Sink stop)

}

(a) Sink interface

S0

S1

begin()

output()

end()
output()

fork()

partition()

(b) Sink state automata

Figure 7.5.: Extended operator sink model for parallel processing.

7.3.1. Parallel Data Flow Graphs

The basic begin-output-end interface of a sink has been extended as
shown in Figure 7.5(a). The output() operation accepts a buffer of tuples
instead of a single tuple at a time. The operations fork() and partition()
were added to dynamically create a data-parallel graph of sinks. Except
of the terminating Return, every sink writes to a single output sink,
which is used according to the state diagram2 in Figure 7.5(b).

First, we look at the normal case. Before the first output is emitted
to a sink, the operation begin() is called to initialize it. It is followed
by a sequence of output() calls, which passes over a buffer of tuples to
be processed. Finally, end() signals the sink that all input tuples were
received. In a non-blocking sink like ForBind, the end() is just propa-
gated to the subsequent sink, but in a blocking operator like OrderBy,
it triggers the sorting of all tuples received, which are then emitted to
the next sink in a series of output() calls.

Parallelism within the pipeline is created by using worker processes
in some sinks to actively “pump” data through the pipeline. If such a
sink receives tuples via an output() call, it encapsulates the local pro-
cessing of the received tuples together with the duty of propagating the
result to the next sink in a task, which is submitted to the worker pool.
Conceptually, this creates pipeline parallelism similar to the exchange
operator [Gra94]. By dividing the work into multiple tasks, however,

2For the purpose of demonstrating the core concept, we excluded the handling of
error conditions.

140

7.3. Operator Sinks

the sink is capable of creating data parallelism as well.

In general, multiple output tasks must not use the same sink in par-
allel, e.g., because it causes race conditions within the sink or because
it results in chaotic tuple order. Therefore, each task must have its
own private sink, which is created by forking the original one. The sink
returned by calling fork() is an independent copy of the sink, which can
be safely used in parallel. Of course, every fork sink can be forked itself.

Usually, forking requires to fork the subsequent sink, too. In fact,
the forking process propagates through the pipeline to sinks, which do
not operate on a per-tuple level, i.e., the blocking sink types OrderBy,
GroupBy, and Return and the enumerator Count.

The operation partition() is a special variant of fork(), which creates
independent forks for blocking sink types. The fork obtained by calling
partition() on an OrderBy sink, for example, will only sort the tuples
arriving at itself and at all “normal” forks of it. Its purpose will be
explained in Section 7.3.4.

The forking mechanism turns the straight pipeline dynamically into
a directed acyclic graph as depicted in Figure 7.6. Obviously, a sink
graph shares similarity with the nested iteration tree of a FLWOR like
the one in Figure 7.1. Accordingly, we distinguish between fan-out sinks
(ForBind, LetBind, Select, . . .) and fan-in sinks (OrderBy, GroupBy,
Count, Return).

In principle, every sink type can make use of the forking mecha-
nism. However, for practical and performance reasons, we use it only
in ForBind sinks, because they embody the expensive looping nature3

that we want to parallelize. Hence, ForBind sinks are the active drivers
in the pipeline, which is indicated in Figure 7.6 by the shaded boxes
around them.

7.3.2. Fan-Out Sinks

The fan-out sink types LetBind and Select are the simplest kinds of
sinks. They process a single tuple at a time and output at most the
same number of tuples as were received. Furthermore, they do not use

3The same looping nature is of course also present in, e.g., Join and WindowBind.
For brevity, we want to focus the discussion on ForBind, but the presented mech-
anism can be transferred to other looping sink types, too.

141

7. Parallel Operator Model

ForBind$a

LetBind$b

ForBind$c

Select

GroupBy

Selectb

GroupByb

Selectc

GroupByc

ForBindb
$c

LetBindb
$b

Selectd

GroupByd

Return

fork()

fork()

fork() fork() fork()

fork() fork() fork()

Figure 7.6.: Fork tree of operator sinks.

a shared data structure like a hash table so that the processing logic
must not be adapted for parallel work at all.

A fork creates a simple copy for the simultaneously forked output
sink. As example, Listing 9 demonstrates the simple structure of a
LetBind4 sink. Note that begin() and end() are not listed because they
solely propagate the call to the next sink.

The implementation of ForBind can be done similarly, but, because we
want it to drive the parallel computation, output() requires a bit more
effort as shown in Listing 10. First, the output logic is decoupled from
the ForBind by creating and executing for each input tuple a binding
task, which encapsulates the tuple, the corresponding binding sequence,
and an output sink (line 7). Note that each task is executed directly
and not submitted to the worker pool. The scheduling of parallel work

4Note that we use an object-oriented style in the following listings: Variables start-
ing with an underscore (e.g., sink) denote member variables and the arrow
notation (→) is used to indicate a method call.

142

7.3. Operator Sinks

Listing 9 Operations of a LetBind sink.

1: function LetBind:output(buffer)
2: for each tuple in buffer do
3: sequence← binding expr→evaluate(tuple)
4: output tuple← concat(tuple, sequence)
5: replace(buffer, tuple, output tuple)
6: end for
7: sink→output(buffer)
8: end function

9: function LetBind:fork()
10: sink ← sink→fork()
11: fork ← create letbind sink(binding expr, sink)
12: return fork
13: end function

14: function LetBind:partition(stopAt)
15: sink ← sink→partition(stopAt)
16: partition← create letbind sink(binding expr, sink)
17: return partition
18: end function

will happen later if a bind task turns out to be large enough.

Noteworthy is that the sink is forked each time a new task is created
(lines 5-6). This is necessary because we cannot know in advance if
further bind tasks will be created, e.g., when output() is called again.
However, we know that every task that will be created in the future must
be completely decoupled from the previously created ones. Hence, each
task needs to have its own fork of the sink, which in turn requires to
keep always one fork spare. To signal the subsequent sink correctly the
final end(), we must therefore “fake” proper use of the spare sink by
issuing an extra begin() before end().

The routine process partition() shown in Listing 11 is the centerpiece
of the framework. It is structured similarly to the fork/join pattern
sketched in Listing 5. First, the binding sequence is partitioned into
two halves, part1 and part2 (line 2). If the binding sequence is small
enough to be handled by a single process, part2 will be empty and part1

143

7. Parallel Operator Model

Listing 10 Output operation of a ForBind sink.

1: function ForBind:output(buffer)
2: for each tuple in buffer do
3: sequence← binding expr→evaluate(tuple)
4: if sequence is not empty sequence then
5: sink ← sink
6: sink ← sink→fork()
7: task ← create bind task(sink, tuple, sequence)
8: task→process partition()
9: end if

10: end for
11: end function

– the binding sequence itself – is directly processed (line 4). However,
if the binding sequence is large enough, it will be processed in parallel.

Sequential Binding

The sequential processing of small binding sequences or partitions is
straightforward. The pseudocode is given in Listing 12. In a simple
loop over the given input sequence, the output tuples are created by
concatenating the sequence elements to the current context tuple (line
5) and added to an output buffer (line 6). At the end and if the buffer
size is exceeded during the loop, all tuples produced so far are emitted
to the output sink and the buffer is cleared (lines 7-10 and 12-13).

Parallel Binding of Random Access Sequences

If the binding sequence is large enough for parallel processing and sup-
ports random access, the two partitions are processed in the recursive
divide-and-conquer strategy of the fork/join model (lines 6-11). The
partitions are encapsulated in separate subtasks (lines 6-8), whereby
the sink is forked for the second subtask. The latter is then forked for
parallel execution, i.e., submitted to the worker pool, before the first
one is executed by the current process (lines 9-10). Afterwards, the sec-
ond task is joined (line 11). The recursion ends if the created partitions
are small enough for sequential processing.

144

7.3. Operator Sinks

Listing 11 Execution logic of a bind task.

1: function BindTask:process partition()
2: part1, part2← split(sequence,MIN SIZE,MAX SIZE)
3: if part2 is empty then
4: bind(part1)
5: else if sequence supports random access then
6: sink2← sink→fork()
7: task1← create bind task(sink, tuple, part1)
8: task2← create bind task(sink2, tuple, part2)
9: fork(task2)

10: task1→process partition()
11: join(task2, false)
12: else
13: queue← allocate queue()
14: while TRUE do
15: task ← create bind task(sink, tuple, part1)
16: if part2 is not empty then
17: sink ← sink→fork()
18: end if
19: dispatch(task)
20: enqueue(queue, task)
21: if part2 is empty then
22: break
23: end if
24: if size(queue) reaches threshold then
25: dispatched← dequeue(queue)
26: join(dispatched, true)
27: end if
28: part1, part2← split(part2,MIN SIZE,MAX SIZE)
29: end while
30: while queue is not empty do
31: dispatched← dequeue(queue)
32: join(dispatched, true)
33: end while
34: end if
35: end function

145

7. Parallel Operator Model

Listing 12 Bind operation in bind tasks.

1: function BindTask:bind(part)
2: sink→begin()
3: buffer ← allocate buffer(BUF SIZE)
4: for each element in part do
5: output tuple← concat(tuple, element)
6: add(buffer, output tuple)
7: if buffer is full then
8: sink→output(buffer)
9: clear(buffer)

10: end if
11: end for
12: sink→output(buffer)
13: clear(buffer)
14: sink→end()
15: end function

Parallel Binding of Sequential Sequences

Large sequential binding sequences are processed in a loop, which dis-
patches a binding task for the respective head partition to the global
task queue of the worker pool (lines 15-19). The rationale behind this
loop is the assumption that free workers will take care of the submitted
tasks while the current process can continue with the – potentially ex-
pensive – iteration of the binding sequence. Note that each task created
will be small enough to be processed without further partitioning.

To keep track of the tasks dispatched, they are locally held in a queue
(line 20). If the queue size reaches a certain threshold, the oldest task
is dequeued and joined to ensure that new tasks are not created faster
than they are processed (lines 24-27). Furthermore, this mechanism
guarantees continuous progress, because the joined task will be indi-
rectly executed by the joining process if it has not yet been adopted by
a free worker (see 7.2.2).

At the end of each iteration, the second partition is partitioned again,
i.e., a new head chunk is pulled from the sequential input (line 28). The
looping continues until the sequence has been fully consumed (lines 21-
22). At the end, the remaining tasks in the submission queue are joined
to ensure that all of them will be fully processed (lines 30-33).

146

7.3. Operator Sinks

Sequence Partitioning

The crucial point in the whole routine is clearly the partitioning of the
binding sequence. Multiple aspects play here a role.

If the sequence is materialized, e.g., because the binding expression
was eagerly evaluated, we know its size and can easily choose a suitable
splitting point. Most likely, the materialized sequence also supports
random access so that we can represent the partitions with lightweight
pointers into the base sequence and must not cautiously keep an eye
on how much additional memory we need for copying the data into
materialized partitions.

If the sequence is lazy, which is the normal case, the partitioning is
more difficult. The partitioning step will typically not know the actual
size of the sequence, because this would require to compute the entire
sequence. In general, it will also not be possible to create two lazy
partitions by splitting up the computation logic encapsulated in a lazy
sequence. Accordingly, the partitioning step will need to materialize
at least the items for part1, whereas part2 reflects the remaining part
of the partially-evaluated sequence. Note that this nicely fits into the
parallel framework because the computation of the remaining items will
likely happen in a separate worker process.

To keep control of the memory used for the materialization, the pa-
rameters MIN SIZE and MAX SIZE specify minimum and max-
imum buffer size limits for the partitioning step, respectively. If the
binding sequence is smaller than MIN SIZE, then part1 is the (ma-
terialized) sequence itself and part2 is empty. If the binding sequence
is larger than MAX SIZE, then the leading MAX SIZE share of the
binding sequence is materialized in part1 and the (un-materialized) rest
in part2. Note, in the rather rare cases where a lazy sequence can be
partitioned without any partial materialization (e.g. in a range expres-
sion 1 to 10000), the two parameters can be completely ignored.

7.3.3. Fan-in Sinks

Fan-in sinks come in two flavors. Some are independent of the order in
which tuples arrive; others require that the input is received in exactly
the same order as in a serial execution. This character of a fan-in sink
is not necessarily determined by the type of the operator; it can be the

147

7. Parallel Operator Model

case that one operator is realized by two different sink implementations
of which the compiler chooses the appropriate one.

For example, if a FLWOR pipeline is evaluated in an ordered context,
the Return sink will need to enforce the right (serial) output order. But
if output order must not be preserved, the results from all forks can be
collected in parallel, which is typically much faster.

In the following, we describe the skeletons for realizing both classes
of fan-in sinks and explain how these skeletons are used to implement
concrete sinks for the different operator types.

Concurrent Sinks

The easiest way to create an order-insensitive fan-in sink is to imple-
ment fork() so that it returns the sink itself instead of creating a real
fork. Because every parallel branch in the fork tree will then write to
the same sink, there are some aspects that need to be considered. First,
one must be aware that, because of the parallel use, the operations be-
gin(), output(), and end() will be called multiple times and in arbitrary
schedules. Second, one must take appropriate measures against race
conditions, because these calls may be concurrent.

Fortunately, the nature of a concurrent sink is transparent and every
caller will just use its fork according to the protocol shown in Fig-
ure 7.5(b). Thus, we know that, even in a highly parallel environment,
the very first call will be a begin() and the very last call will be an
end(). Consequently, one must only keep track of how many “virtual”
sinks have been forked and are still active, to find out which of the
concurrent begin() and end() calls really indicate begin and end of the
output() calls. Chronologically intermediate calls of begin() and end()
may be safely ignored.

The basic skeleton for a concurrent sink is shown in Listing 13. It
can be used for various types of order-insensitive sinks like OrderBy,
GroupBy (hash-based), or Return (unordered).

For lightweight and highly parallel bookkeeping, we use two simple
integer variables, state and count, for toggling the state and counting
the number of active forks, respectively. Both variables are exclusively
modified with atomic memory instructions, because locks or mutexes
are prohibitively expensive under highly concurrent access.

148

7.3. Operator Sinks

The member variable state is initialized with 0. While the value of
state is not 2, each caller of begin() will try with an atomic compare-

and-swap operation to change the value from 0 to 1 (line 4). The first
and only one that succeeds will perform the actual initialization (indi-
cated by line 6), all others will be trapped in the spinlock (lines 3-9)
until the winner has finished the initialization step and set the value
of state to 2 (line 7). All future calls of begin() will read the atomic
variable only once (line 2), which is on most platforms a very cheap
operation.

The bookkeeping in end() and fork() is similarly lightweight. They
increment, respectively decrement the atomic variable count, which is
initialized with 1. If end() has decremented count to 0, all “virtual”
sinks have been closed and the sink can be finalized (lines 13-15).

Listing 13 Skeleton of a concurrent sink.

1: function begin()
2: state← volatile get(state)
3: while state 6= 2 do
4: first← atomic cmp and swap(ready, 0, 1)
5: if first then
6: sink-specific initialization
7: volatile set(state, 2)
8: end if
9: end while

10: end function

11: function end()
12: alive← atomic decrement and get(count)
13: if alive is 0 then
14: sink-specific housekeeping
15: end if
16: end function

17: function fork()
18: alive← atomic increment and get(count)
19: return self
20: end function

149

7. Parallel Operator Model

The presented base routines are already concurrency-safe, but note
that output() must still be protected against race conditions. In some
cases, a simple mutex will be sufficient, e.g., in OrderBy for adding
the given tuples to the sort buffer. In other cases, operation-specific
synchronization or concurrent data structures (e.g., for the hash table
in a GroupBy) will achieve better parallelism.

Note also that scalability of sorting and aggregation is often improved
by organizing it in multiple parallel stages, e.g., sort-merge trees or
multi-stage computation of additive aggregates like sum(), min(), and
max(). Evidently, such advanced evaluation strategies can be realized
in the sink model and with the presented skeleton, too.

Sink Chaining

Order-sensitive fan-in sinks can be realized without expensive sorting.
The key observation for their realization is that they can restore the se-
rial tuple order by themselves. The forking mechanism ensures that the
fan-out created already produces a proper left-to-right order among the
individual fork branches at each level. Each branch guarantees correct
order for its own partition anyway, because it is executed by a single
process. Accordingly, fan-in sinks can restore the serial order for tuples
arriving in parallel by keeping track of the logical order relationships
between created forks.

The cheapest way for controlling the serial ordering of sinks is illus-
trated in Figure 7.7. The forks are connected in a pointer chain, which
points from each sink to the respective next one. Note that even if
the sinks are forked concurrently in arbitrary schedules, the creation
of a fork remains a local operation, which can be realized without any
synchronization.

The tuples will arrive at the forks in a globally random but locally se-
rial order. Hence, to restore the ordering, some tuples must be buffered
locally until the logical serial process has reached the respective sink.
The progress of this serial tuple flow is marked by a token, which is
passed on from the left to right through the pointer chain. At the
beginning, the token is at the left-most sink – the root sink.

The sink that owns the token is allowed to process the tuples received
via output() directly. In parallel, all others can only perform eventual
preprocessing steps, but must defer the actual serial part of the pro-

150

7.3. Operator Sinks

Sink Sinkb Sinkc Sinkd

Out

end() end() end()

tuple buffer

T

token

Figure 7.7.: Token passing and tuple buffering in serial fan-in sinks.

cessing. For example, a fork of a Return sink may evaluate the return
expression if it does not possess the token, but it must not yet, e.g.,
append the result to the result sequence.

If end() is called on the owning sink, the token is passed on to the right
sibling by following the next pointer. If end() has already been called
for the sibling sink, any pending tuples are processed and the token is
passed further to the next sibling in the chain. This propagation process
continues until the token is handed over to an unfinished sink or the
end of the chain is reached.

Token passing must be carefully coordinated and synchronized to
work properly. Particularly, output() and end() require further expla-
nation, whereas begin() and fork() are trivial and omitted for brevity.

The overall concept is easier understood by starting with the output()
routine shown in Listing 14. The integer member variable token holds
the token state of the sink expressed here with the symbolic constants
NEED, AWAIT , and HAS. The root sink initializes token with
HAS. All forks initialize token with NEED. Note that we use an
atomic variable because the state is accessed and modified concurrently.

Each time output() is called, the sink’s token state is checked (line 2).
If the sink has the token, possibly pending tuples from previous output()
calls are handled first (line 4-6). Then, the actual tuples received are
processed (indicated by line 7). Without the token, the given tuples are
just added to a local buffer (line 9).

151

7. Parallel Operator Model

Listing 14 Conditional output handling in chained sinks.

1: function output(buffer)
2: t← volatile get(token)
3: if t = HAS then
4: if has pending output then
5: process pending()
6: end if
7: sink-specific tuple processing
8: else
9: add pending(buffer)

10: end if
11: end function

Pseudocode for end() is given in Listing 15. If the sink possesses the
token (lines 14-20), pending output is processed if necessary (lines 15-
17), the token is promoted (line 18), and sink-type-specific housekeeping
operations (e.g., closing file handles and propagating end() to the output
sink) are performed (indicated by line 19).

If the sink is at the beginning not in possession of the token, it tries
to switch the token state atomically from NEED to AWAIT (line 5).
If the compare-and-swap operation fails, the predecessor must concur-
rently have passed on the token5 to the sink (line 12) and the algorithm
continues just as if the token had been owned at the beginning of end().

If the compare-and-swap operation succeeds, the predecessor is put in
charge of processing all pending output and propagating the token. The
current process can exit and continue with executing other tasks (line
10). However, if parallel workers fill the local buffers too fast for the
token propagation process, uncontrolled parallelism will quickly lead to
memory exhaustion. Hence, to give the slower token propagation the
chance to catch up and free utilized buffer memory, the current worker
is suspended if necessary until the token reaches the sink (lines 7-9).

The routine promote token(), shown in Figure 16, propagates the
token the next successor, which has not yet finished. As complement
to the compare-and-swap operation in end(), it tries to switch the state

5A real implementation might also use a state to signal and propagate errors, but
this is left out here for brevity.

152

7.3. Operator Sinks

Listing 15 Finalization of a chained sink.

1: function end()
2: t← volatile get(token)
3: if t = NEED then
4: worker ← current worker()
5: done← atomic cmp and swap(token,NEED,AWAIT)
6: if done then
7: if suspend recommended then
8: suspend(worker)
9: end if

10: return
11: end if
12: t← volatile get(token)
13: end if
14: if t = HAS then
15: if has pending output then
16: process pending()
17: end if
18: promote token()
19: sink-specific housekeeping
20: end if
21: end function

of the successor sink atomically from NEED to HAS (line 4). If it
is successful, the routine ends (line 6). Otherwise, the calling process
wakes up the suspended worker, if necessary (line 8), takes care of the
pending output left behind (lines 9-11), and performs the respective
housekeeping (indicated by line 12). Afterwards, it starts a new attempt
for the next successor in the chain (line 13). If the end of the chain is
reached, sink-specific cleanup operations are performed (line 16).

The serialization of parallel tuple streams plays an important role
in the framework, because the operator semantics defaults to order-
preserving output. Besides the ordered version of Return, the skeleton
described is also used for implementing Count or a sequential variant of
GroupBy, which efficiently aggregates inputs that are already sorted by
the grouping key. Furthermore, the mechanism can be used to realize a

153

7. Parallel Operator Model

Listing 16 Token propagation in chained sinks.

1: function promote token()
2: n← next
3: while n is not null do
4: done← atomic cmp and swap(n→ token,NEED,HAS)
5: if done then
6: return
7: end if
8: unsuspend(n→ worker)
9: if n has pending output then

10: n→process pending()
11: end if
12: housekeeping as in normal end()
13: n← n→ next
14: end while
15: if n is null then
16: finalize sink chain
17: end if
18: end function

universal Valve operator, which can be plugged into a pipeline wherever
a serialization of parallel output is required.

Technically, chained sinks are special, because they are the only com-
ponents that need to manually interfere with the scheduler of the oper-
ating system. Like any form of serialization they can and will need to
slow down parallelism in some situations and suspend worker processes.
Note that deadlock freedom is nevertheless guaranteed, because both
scheduling mechanisms use a binary partitioning scheme and always
give execution precedence to the left partition. As a result, at least
one process – the one which is assigned to the task with the current
token-owning sink – will be able to make progress. The proof of this
property is given in Appendix B.

154

7.3. Operator Sinks

7.3.4. Join Sink

The join operator belongs to a special category of fan-out operators.
In contrast to a simple binding operator, it computes for each input
tuple a combination of the results of two pipelines – the left input and
the right input. As discussed in Section 5.2.3, there is often the chance
to re-use the result of one or both input pipelines if their outcome
is independent or at least partially independent of the input tuples
received. In particular, we considered join groups, i.e., sequences of
input tuples, which allow to re-use the inner join table, once it has been
loaded with the output of the right input pipeline.

Exploiting join groups in a parallel setting is a challenging task, be-
cause tuples arrive randomly at multiple forks. Furthermore, the lookup
table is a shared resource which is concurrently accessed by many sinks.
Even though loading and probing happens in disjoint phases, everything
must be properly timed and synchronized. Tuples from the left join in-
put pipeline can be probed against the same lookup table only if they
were produced from input tuples of the same join group. Altogether,
this calls for are careful design, which impacts on parallelism as little
as possible.

Figure 7.8 illustrates the conceptual realization of a join. In contrast
to other operators, it consists of three individual sink types. The ac-
tual Join sink at the top orchestrates the join computation. For each
input tuple received, it checks if the respective lookup table must be
rebuilt, i.e., if the input tuple belongs to a different join group than the
previously processed one. If necessary, it instantiates then a new sink
pipeline for the right join input, which outputs to a Load sink. Then
the respective input tuple is fed to this pipeline and the output tuples
are loaded into the lookup table. When the lookup table has been built,
the Join sink can pass the input tuple further to the left input pipeline,
which in turn outputs a Probe sink. There, the join candidate tuples
are probed against the lookup table and the actual join output tuples
are constructed and emitted to the next pipeline operator.

Because a join group is actually a group of related tuples, which all
belong to the same superordinate iteration, they appear sequentially in
the input tuple stream. By exploiting this property and enforcing that
all tuples from the same join grouping are processed together, we can
avoid that the same lookup table is computed twice. Therefore, Join is

155

7. Parallel Operator Model

Join

Left

Probe

Right

Load

create()*

lookup table

load()

probe()

Figure 7.8.: Loading and probing of join lookup table.

realized as a chained sink, but with a less strict emphasis on sequential
order. We are only interested in a partial order, which preserves the
locality of join groups. Hence, the token passing is not used to control,
which fork is allowed to perform output (i.e., to feed tuples to the left
join pipeline), but which sink has the right to rebuild the lookup table.

Once the lookup table has been loaded by the fork that owns the
token, all successor forks can probe this table in parallel. If a successor
fork receives tuples from “later” join groups, it must wait for the token
to load the respective lookup table itself or at least wait until one of its
predecessors does it. Of course, we can apply the buffering mechanism
again to keep parallelism alive as long as possible. Note also that the
idea can be adapted to implement optimized variants of Concat, Union,
and Intersect, too.

The left and the right join input pipelines must not obey any re-
strictions with respect to parallelism and forking. A Load sink is a
concurrent fan-in sink, which adds arriving tuples to the lookup table
in parallel. However, if the pipeline is evaluated in an ordered context,
a serializing Valve must be prepended so that the lookup table can be
loaded in the serialized tuple order. A Probe is a normal fan-out sink.

156

7.3. Operator Sinks

Probe

Post

PostEnd

Out

Probeb

Postb

PostEndb

Outb

fork()

partition()

partition()

fork()

Figure 7.9.: Partitioned fork of optional post-join pipeline.

The realization of the optional post-join pipeline of LeftJoin is a
simple extension of a normal join as shown in Figure 7.9. The optional
post pipeline is directly attached to the Probe sink. It is separated from
the actual join output pipeline by an additional PostEnd sink at the end.
This fourth sink type serves two purposes. It is used as target to bypass
the post-join pipeline if a probe tuple does not find a join partner, and
it plays a special role as boundary for a special type of forking.

As detailed in Section 5.3.1, the post-join pipeline reflects a nested
evaluation scope. Hence, each join result must be processed sepa-
rately. In particular, this includes all relation-based operations (e.g.,
GroupBy), which must only span over tuples belonging to the same
join match. Therefore, Probe issues partition() on the post join pipeline
to create an independent sink branch for the join matches of each probe
tuple.

As already mentioned, partition() is a special kind of fork() that
creates independent forks for fan-in sinks. Like a normal fork operation,
the call propagates through the pipeline. When the propagation reaches
the PostEnd that was given by Probe as parameter, the PostEnd finalizes
the post join partition and propagates it as a normal fork().

157

7. Parallel Operator Model

As visualized in Figure 7.9, the partition mechanism is also used for
forking. If fork() is called on a Probe sink, it is propagated through the
optional pipeline as partition(). The corresponding PostEnd translates
it then back into a normal fork(). A callback mechanism, indicated by
the red arrows, establishes the connection between the newly created
forks of Probe and PostEnd.

7.4. Performance Considerations

The framework presented is designed to create and maintain parallelism
automatically. However, it is not completely “knob-less”. Besides the
worker pool size, there are several other factors, which influence parallel
performance of a query. In the following, we consider three central
aspects and discuss their influence on the general performance of the
system.

7.4.1. Partitioning

The central factor in any parallel system is the granularity of parallel
work. In the sink framework, it is controlled by the size of the binding
sequence partitions created in a ForBind. As already mentioned, par-
titioning in a nested-loops scenario is difficult, because the cost of an
iteration is hard to determine. Furthermore, the partitioning of sequen-
tial and lazy sequences is particularly critical.

Certainly, the framework will not be able to determine good partition
sizes without statistics and cost estimates. But even if at least the size
of a binding sequence is known at runtime, a good partition size is
not obvious. Hence, the system or the user necessarily need to provide
default values, whether they are appropriate or not.

Large partitions are preferable if the average loop cost per output tu-
ple is low. However, coarse-grained partitioning can also result in poor
parallelism and load skew. Furthermore, large partitions will consume a
lot of memory if the partition mechanism must materialize lazy inputs.
Smaller partitions are better for expensive loop bodies. They allow
for higher parallelism, but may impose a large overhead per iteration.
Ideally, the partition sizes can be controlled individually for individual
pipeline levels. In many situations, domain knowledge and the nest-

158

7.4. Performance Considerations

ing depth of a binding operator already yields reliable information for
choosing good partitioning sizes. Therefore, the prototype developed
for this thesis allows to hint the compiler a good partition size.

7.4.2. Buffer Memory

Chained sinks use local buffers for storing already computed intermedi-
ate results. Clearly, the more memory they are allowed to allocate, the
better they will be able to keep parallelism alive. However, a hard limit
for the maximum total amount of buffer memory is hard to realize.

The buffer memory currently in use is a quickly fluctuating value. It is
concurrently increased by parallel workers and decreased by the current
token owner. Hence, controlling and enforcing the total amount of mem-
ory used exactly, would create a heavily contented hotspot. Therefore,
our prototype relaxes the hard limit to reduce overhead. It uses a single
atomic integer variable to keep track of the amount of buffer memory in
use, but updates the value only if a sink is closed and some tuples have
been added to the local buffer. Accordingly, it may happen that some-
times even more memory will be used than actually intended. However,
if the memory use overruns the threshold, the suspension mechanism
described will slow down parallelism until sufficient buffer memory has
been reclaimed.

Nevertheless, the configured buffer memory is rather a guideline for
the system and should be set defensive to avoid memory exhaustion.
Practically, the maximum amount of overuse possible is indirectly de-
termined by the number of available processes and the maximum size
of the partitions emitted by the parent fan-out sink.

7.4.3. Process Management

The reason for rampant use of buffer memory is an imperfect paral-
lel input provision for a serializing operation. A typical situation is
illustrated in Figure 7.10. It shows a snapshot of the parallel output
produced in a multi-level fork tree. The bar at the bottom visualizes
the entire output that is fed to a chained fan-in sink. The dark-colored
area at the bottom left of the bar stands for output already emitted and
processed by the serializing sink. The light-colored areas show buffered
output, which arrived too early for the serializing operation.

159

7. Parallel Operator Model

1

2

1

1 2 .. n

n

1 2 .. n

1

1

1 2 .. n

2

1 2 .. n

n

1 2 .. n

serial order

processed

buffered

Figure 7.10.: Snapshot of serialized output in a parallel computation.

Obviously, less data had to be buffered if the parallel work concen-
trated on the left root branch of the fork tree first. But for several
reasons, it is extremely difficult to avoid scattered output on the one
hand and achieve high parallelism at the other hand. There are many
unknown or uncertain factors in a pipeline like input sizes, selectivi-
ties, and operation overhead, which will influence the time needed to
process a particular branch in the fork tree. Hence, it is almost impossi-
ble to make reliable estimates and optimize in the partitioning process.
Furthermore, the fork tree grows recursively and in parallel, making it
impossible to make globally optimal decisions without tampering par-
allelism through expensive control mechanisms.

Suspension of workers is the last resort when the memory shortage
does not settle by itself. Although it is very effective to fight excessive
memory usage, a better use of available computing resources is desir-
able. The actual goal is to reduce parallelism in the chained sink, but
suspended processes are also unavailable for speeding up overall per-
formance. Possibly, they were better utilized for other tasks or queries
running in parallel. Pools with more workers than available hardware
contexts and dynamically spawned processes are sometimes feasible so-
lutions for compensating the temporary loss of computing power. How-
ever, they also increase the overhead for process management and con-
text switching. Therefore, our prototype simulates only the suspension
of a worker and processes other tasks while “waiting” for the token.

160

8. Evaluation

The concepts and techniques developed in this thesis have been im-
plemented for empirical evaluation. In the following, we present and
discuss the results of various experiments, in which we evaluated ef-
fectiveness and interplay between optimization rules and compilation
techniques.

8.1. Experimental Setup

The compiler prototype implemented for this thesis is written in Java
and uses XQuery as front-end language. To prove that our concepts are
feasible to meet real-world requirements, we built a mature compiler,
which has full coverage of XQuery 1.0, supports the group-by and
count clauses of XQuery 3.0, and implements the XQuery Update Fa-
cility. Large parts of it have also been published as open-source XQuery
engine called Brackit1.

The optimizer performs rule-based optimization and applies sets of
transformation rules in separate stages as detailed in Section 4.3.1. For
testing specific optimizations, individual rules can be enabled and dis-
abled as desired. Per default, the runtime of the prototype uses a
standard pull-based operator model with open-next-close interface. For
the parallelization experiments in Section 8.5, we also implemented the
push-based operator model presented in Chapter 7.

To assess the compiler inside a database context, we implemented a
native XDBMS prototype called BrackitDB from scratch. The system
offers full ACID guarantees and internally uses the developed compiler
and runtime for query processing. The XML store is inspired by the
path-oriented storage of the native XDBMS XTC and stores the nodes
of XML documents keyed by DeweyID labels in a specialized, disk-
resident B+-tree [HHMW05]. The storage supports fine-grained navi-

1Source code is available at http://brackit.org.

161

http://brackit.org

8. Evaluation

gation at the node level as well as efficient scan access. Furthermore, it
features a rich set of advanced indexes for fast XML retrieval by content
predicates and path predicates like in [MHS09].

The measurements were conducted on a dual Intel Xeon server with
4 cores at 2.66GHz, 4GB main memory, and two 500GB SATA drives
in RAID level 3. The operating system was Ubuntu Linux 10.04 64-Bit
with kernel version “2.6.32-24-server”. For the parallelization bench-
marks in Section 8.5, we used a quad Intel Xeon server with 24 cores
at 2.93GHz, 96GB main memory, and a 1TB SATA disk drive under
Ubuntu Linux 10.04 64-Bit with kernel version “2.6.32-41-server”. The
Java version used on both servers was Oracle Java 1.6.0 64-bit.

We report for all test queries the fastest runtime out of 10 timed
runs. The timings include compilation time and serialization of the
result to a /dev/null output stream. For the database benchmarks
in Section 8.3, the results were completely transferred from the database
server to the client residing on the same machine. For tests with Java-
based systems, we ensured to perform a sufficient amount of warm-up
runs for optimization by the JIT compiler before the measurements.
The benchmark queries used can be found in Appendix C.

8.2. Main-memory Processing

Typical XQuery use cases for data integration and message processing
operate on relatively small XML documents in main memory. Accord-
ingly, we start with an evaluation, whether or not our prototype meets
the standard requirements for this setting: fast compile times and a
lightweight runtime for traversing XML trees.

8.2.1. Workload

To assess the XML performance of our prototype, we used the widely ac-
cepted XMark benchmark [SWK+02]. The suite consists of a data gen-
erator and 20 read-only queries, which cover a broad range of XQuery
features and optimization challenges.

XMark models an auction platform with persons, items, bids, etc.,
which are represented as data-centric XML fragments and interspersed
with small markup sections. The database consists of a single docu-

162

8.2. Main-memory Processing

ment, which organizes the different entity types as clustered siblings
under the root node. Although this kind of data organization is barely
used in practice – semi-structured databases primarily consist of large
collections of small, independent documents – XMark is a valuable tool
to assess the quality of a query compiler, as its wide-spread use in re-
search and industry shows.

Except for a few queries, which navigate paths with a descendant
axis step, the benchmark solely makes use of normal child steps and
attribute steps. Each query consists of a top-level FLWOR expres-
sion, which navigates into one or several document regions, where it per-
forms more or less complex forms of filtering and result transformation.
Thereby, every query addresses a certain optimization aspect, which
requires the whole spectrum from logical transformation and pruning
to physical optimization of operators and at the storage level. Accord-
ingly, the main cost drivers in a query may vary considerably between
two systems. In the following, we give a brief summary of the main
challenges to give the reader a better insight into the results reported.

Query Q1 is a point query, which searches for a person with a cer-
tain id attribute value. Q2 and Q3 evaluate path matching routines for
multiple paths with (redundant) positional predicates. Q4 contains a
quantified expression as filter predicate, which requires to evaluate doc-
ument order between fragments. Q5 is a simple filter and count query,
which also assesses the performance of the frequently required type cast-
ing from an uninterpreted string to a numeric value. Q6 and Q7 are
scan-intensive queries, which contain multiple paths with descendant
steps. Q8 and Q9 evaluate nested 1:n joins, respectively 1:n:1 joins of
fragments from separate document regions. Q10 performs an n:m join,
which selectively copies many sub-elements from qualified fragments to
construct complex results. Q11 computes an n:m join, which returns a
large number of results. Q12 is almost identical to Q11, but contains an
additional filter predicate, which reduces the result size. Q13 performs
only simple navigation and aims at fast reconstruction of the original
document structure. Q14 scans the document structure and performs
substring matching on text content. Q15 navigates a deep child path
with 13 axis steps. Q16 uses a deep child path with 10 steps as existen-
tial predicate. Q17 uses a test for missing elements as filter predicate.
Q18 evaluates the efficiency of evaluating a simple user-defined function
as predicate. Q19 tests the sort performance with an order by clause.

163

8. Evaluation

Q20 performs multiple count aggregations by evaluating identical path
expressions with similar filter predicates to manually compute disjoint
partitions of qualified nodes.

8.2.2. Pipeline Optimization

In our first experiment, we addressed the basic performance of the proto-
type and effectiveness of pipeline optimizations. The optimizer configu-
ration nested closely resembles standard XQuery semantics with nested
evaluation and performs only basic pipeline rewritings like predicate
pull-up. The unnested configuration additionally performs pipeline lift-
ing and optimized aggregation. Finally, the configuration join employs
the full set of pipeline optimizations including join rewriting.

We ran the benchmark with scale factor 0.1, i.e., the queries were
evaluated on a 12MB document in main memory. Path expressions
were processed with basic navigation routines. The benchmark results
are shown in Figure 8.1.

Although a 12MB document is already quite large for typical XML
processing in main memory, the benchmark queries were not a real
challenge for the prototype. Except for the join queries Q8-Q12, query
times are below 5ms, which proves fast query compilation and efficient
operators. However, the results for the join queries also demonstrate
how nested for loops can quickly lead to dramatic increases in response
time.

The difference between the configurations nested and unnested is only
marginal. In most cases, nested evaluation even performed slightly bet-
ter, because pipeline lifting results in larger tuples and, thus, higher
overhead. The benefit of FLWOR unnesting as preparation step be-
comes apparent for the join queries. With the optimizer configuration
join enabled, all implicit joins where detected by the compiler, which
led to performance gains up to a factor of 20. The small resisting spike
for Q10 is caused by the relatively complex result construction, which
navigates 11 short paths for each join match to collect data.

8.2.3. Competitors

In the second experiment, we compared main-memory performance of
our engine against current state-of-the-art competitors using the XMark

164

8.2. Main-memory Processing

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 [
m

s
]

XMark query

nested
unnested

join

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

nested 2 3 4 2 1 2 3 56 72 21
unnested 2 3 5 2 1 1 3 58 77 22
join 1 3 4 3 1 2 3 4 5 16

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

nested 100 30 <1 5 1 1 1 3 4 3
unnested 101 34 1 4 1 1 1 2 4 3
join 5 3 <1 4 <1 1 1 3 3 2

Figure 8.1.: XMark performance for different pipeline optimization
levels on a 12MB document in main memory.

query set. The test field consists of both mature and widely used proces-
sors [BAS, Kay08, BBB+09, XQI, QIZ] and research or in-development
systems [MXQ, QEX, VXQ]. Except for implementation details and
individual optimization capabilities, all systems operate on pluggable
main-memory stores and evaluate queries in the standard nested fash-
ion with lazy iterators over intermediate results.

Because of the spread in runtime and system performance, we chose
again scale factor 0.1. Except of XQilla and Zorba, which are realized in
C++, all tested engines are implemented in Java and were configured for
a maximum heap size of 1.5GB. Figure 8.2 shows the fasted runtimes
for each query and system. Note, to keep the diagram readable, the
graph includes only the results of the fastest six processors.

Clearly, our prototype shares the lead with Qizx and delivers high
performance for each query type. Obviously, Qizx is the only other
engine for main memory that was also able to detect and exploit join
semantics in Q8-Q12. All other engines suffered from the nested loops.

165

8. Evaluation

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 [
m

s
]

XMark query

Brackit
BaseX

Qizx
Saxon
XQilla
Zorba

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Brackit 1 3 4 3 1 2 3 4 5 16

BaseX 6.7 1 4 9 8 2 22 54 3066 3504 440
MXQuery 0.6.0 106 147 200 147 142 166 299 1.0e6 1.5e6 8354
Qexo 1.11 9 11 16 Err Err Err Err Err 287 67
Qizx/open 4.1 2 5 3 1 1 2 5 4 5 15
Saxon HE 9.3 1 3 6 4 2 1 4 1288 1537 262
VXQuery 0.1 3 23 43 19 6 181 371 5058 1756 Err
XQilla 2.2.4 11 17 53 33 16 23 44 12426 14755 1598
Zorba 1.4.0 6 14 31 40 7 <1 132 6466 10305 1554

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Brackit 5 3 <1 4 <1 1 1 3 3 2

BaseX 6.7 6777 1571 6 35 3 3 6 4 21 11
MXQuery 0.6.0 1.6e6 1.1e5 150 158 116 104 134 161 199 381
Qexo 1.11 Err Err 5 17 6 8 7 1 24 Err
Qizx/open 4.1 4 2 1 4 <1 <1 1 2 3 2
Saxon HE 9.3 752 233 7 19 1 2 4 3 19 4
VXQuery 0.1 8969 8863 9 123 4 11 30 Err 81 18
XQilla 2.2.4 40922 13342 28 48 4 7 18 17 56 93
Zorba 1.4.0 6404 2116 31 53 4 6 22 9 67 38

Figure 8.2.: Comparison of XMark performance of XQuery engines
on a 12MB document in main memory.

Only Saxon, often regarded as unofficial XQuery reference implementa-
tion, achieved slightly better results than the other engines without join
support. It is able to retain intermediate results in on-demand indexes,
which help to reduce the effects of quadratic scaling in nested loops. For
all other queries, Saxon, BaseX, XQilla, and Zorba performed solidly,
but did not reach the performance of our prototype and Qizx.

166

8.3. XML Database Processing

VXQuery is still in a very early development phase and execution
failed for Q10 and Q18. However, from the current state, it seems
likely that future versions will achieve performance comparable to the
broad field of mature processors without join support.

Qexo is the only engine, which generates plain Java byte code from a
query plan. However, it is also still in a highly experimental stage and
fails for many queries. Furthermore, Qexo was not able to exploit the
potential advantage of direct code generation, because we tested ad-hoc
performance and the Java just-in-time compiler does not immediately
optimize newly generated code.

MXQuery delivered the slowest results and revealed serious perfor-
mance problems even for simple queries. Our analysis confirmed that
the system suffers from the overhead of a very fine-grained, token-based
data representation [BBB+09].

8.3. XML Database Processing

In the second series of experiments, we evaluated the compiler inside a
native XDBMS environment, which is a greater challenge than a normal
main-memory setup. The compiled query plans must prove to handle
larger data volumes and efficiently interact with external storage.

8.3.1. Access Optimization

To evaluate effectiveness of optimized access to disk-resident XML, we
ran the XMark benchmark in BrackitDB for three configurations. In the
first configuration (default), the queries are compiled in the same man-
ner as in the main-memory setup, i.e., the XML tree was navigated with
basic operations and all filter predicates were applied within the engine
itself. In the second configuration (interface), the compiler makes use
of an enhanced storage interface and translates individual path steps
to dedicated navigation routines. For example, a path step ./person
is translated to a single storage call, which returns only matching ele-
ment nodes for the given context node. At runtime, the storage then
jointly evaluates navigation steps and node filter operations. In the
third configuration (native), we extended this approach further and let
the system perform storage-specific optimizations at compile time. Sin-

167

8. Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 [
m

s
]

XMark query

default
interface

native

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

default 80 139 391 435 107 1680 3531 445 1444 4094
interface 81 146 389 405 101 198 1450 445 1442 3929
native 65 137 396 356 96 201 1478 408 1394 3395

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

default 3614 2273 157 1714 172 187 205 170 1806 545
interface 3614 2246 151 990 179 195 239 155 1455 512
native 3523 2200 148 979 52 87 194 157 1411 345

Figure 8.3.: XMark performance for different data access optimization
levels on a 112MB document in BrackitDB.

gle navigation steps and sequences of child steps are directly compiled
to native operations without the indirection of an adapter interface.

For the experiment, we stored the benchmark document with scale
factor 1 (112MB) in BrackitDB and report the timings for warm buffers.
Note that we did not create any supporting indexes on the document,
as we intended to evaluate differences between compilation and opti-
mization strategies for navigating XML.

The results of the experiment are shown in Figure 8.3. In compari-
son to the main-memory experiment, navigation on disk-resident XML
is not only slower, the larger benchmark document also emphasizes the
importance of data access locality. Accordingly, we observed a greater
performance loss for those queries, which inspect larger parts of the
document. In the default configuration, particularly queries with de-
scendant axes (Q6, Q7, Q14) suffered from the expensive data access,
because they scan large document regions. The join queries Q8-Q12
suffered, too, because they access large parts of the document when

168

8.3. XML Database Processing

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 [
m

s
]

XMark query

interface
native

Figure 8.4.: Relative performance gain of data access optimizations.

loading the join tables. Higher response times due to poor data locality
can be observed for Q19, because it sorts all data before accessing the
storage again to construct the result.

It is not a surprise that the storage-optimized configurations outper-
formed the default configuration. However, the relative speed-up varies
considerably between the queries. The greatest performance gain was
achieved in queries with descendant axes (Q6, Q7, Q14) and long down-
ward paths (Q15, Q16), which offer the highest potential for aggressive
short-circuiting of navigation and filtering. In contrast, the join queries
show only minor improvements, because the amount of data accessed
and random accesses after joining the data dominate.

As Figure 8.4 shows, the difference between the optimizer configura-
tions interface and native is relatively small. Only for the long paths in
Q15 and Q16, native compilation clearly outperformed adapter-based
navigation and delivered the result more than two times faster. In this
configuration, long paths were not evaluated by traversing the document
tree node-wise for matching the child axis steps. Instead, the compiler
directly leveraged the storage system of BrackitDB, which can evalu-
ate paths alternatively as subtree scans with cheap candidate filtering.
This option always pays off if a subtree scan is cheaper than match-
ing a path node-wise. As built-in heuristic, the compiler performs this
optimization for child paths with more than 6 axis steps.

169

8. Evaluation

In summary, this experiment proves feasibility and importance of
compiler-optimized data access. But note that the results reported
do not mark the optimum. Performance will be improved if content
predicates are pushed down and evaluated directly during document
navigation. Indexes and holistic twig pattern matching, as shown in
Chapter 6, will lead to further improvements as similar attempts for
the related XDBMS prototype XTC proved in [MHSB12]. However,
note also that the more crucial set-oriented aspects including corre-
lated nestings have already been optimized in the independent pipeline
rewriting and join rewriting stages.

8.3.2. Scalability

We repeated the previous benchmark with the native configuration of
BrackitDB for the scale factors 0.001-10 (1.2MB-11GB) to investigate
the scalability of the system.

As the results in Figure 8.5 show, both the query plans and the sys-
tem itself scale solidly. However, we observe that poor access locality
has a notable effect on performance for large documents. In Q19, for
example, the additional data accesses after the sorting step resulted in
a lot of random I/O for the 11GB document. As a typical scenario
for twig-like data access, our prototype will benefit from implementing
the “piggy-backing” techniques described in Section 6.3.2. Note, the
growth in response time for Q11 and Q12 is characteristic for the work-
load, because the result size grows quadratically with the size of the
document.

8.3.3. Competitors

For comparing the quality of our compiler with dedicated XQuery com-
pilers for persistent XML storage, we ran the XMark benchmark in
scale factor 1 also for other XML(-enabled) database systems. Aside
the general efficiency of query evaluation, this experiment gives insight
into advantages and disadvantages of specific storage designs.

Like BrackitDB, eXist [Mei09] uses a prefix-based numbering scheme
for encoding hierarchical structure and stores XML nodes with their
prefix keys in a B+-tree. Additionally, eXist generates default indexes

170

8.3. XML Database Processing

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 [
m

s
]

XMark query

1.2 MB 12 MB 112 MB 1.1 GB 11 GB

Figure 8.5.: Execution times of XMark benchmark for different scale
factors in BrackitDB.

for accessing elements and attributes by name. In contrast to Brack-
itDB, however, it does not maintain a dynamic schema, which can be
exploited, e.g., for complex path matching or indexing.

A lightweight alternative to prefix-based node labels are range-based
numbering schemes [HHMW05]. Instead of addressing nodes with stable
but variable-length keys, they use simple pairs of integers. However,
because such labels are not stable, already small structural updates may
require a re-labeling of large document regions, which is particularly
expensive if these changes must be propagated to secondary indexes.
Accordingly, storages which use such a labeling scheme are favorable
only for read-intensive workloads. In our test field, two systems use a
range-based encoding.

BaseX [BAS] stores XML nodes in an array-like sequential file, which
is read page-wise from disk. The nested XML structure is encoded with
the so-called pre-post numbering scheme [BGvK+05]. In the default
configuration, BaseX creates a path summary for faster path resolution
and additional content indexes for text nodes and attributes.

MonetDB [BGvK+06] uses a relational storage engine, which sep-
arates document structure and content in ternary tables. The node
labeling scheme used is an enhanced variant of the pre-post number-
ing scheme, which reduces the re-labeling cost for structural document
updates [BFG+06].

171

8. Evaluation

Sedna [FGK06] stores XML trees as linked structures, where each
node maintains pointers to its siblings, its first child and its parent. For
mapping this structure transparently to external storage, Sedna uses an
intermediate layer, which translates virtual memory addresses to data
blocks on disk. An additional metadata structure, which reflects the
dynamic schema of a document, organizes nodes on the same path in
chained data blocks. Like a path index for all paths in a document, it
serves as efficient gateway for direct jumps into the document structure.

As in the previous experiment, we stored the benchmark document
in each database, but did not perform manual tuning, e.g., by defin-
ing additional indexes. However, note again that some systems create
indexes per default. As in the main memory benchmark, we adjusted
the maximum heap size for the Java-based systems to 1.5GB, which
was sufficient for each system to handle the workload. Figure 8.6 shows
the fastest runtimes measured for each system. For comparison with
BrackitDB, we repeat here the results for the native configuration.

As a result of the different storage designs, the general performance
characteristic of each system is less homogeneous than in the main-
memory experiment. Some systems achieve extraordinary fast results
for certain queries, but this is often not the result of superior compilation
techniques. Merely, those queries hit a sweet spot of the underlying
XML storage. For example, BaseX can leverage its default attribute
index to answer the point query Q1. Accordingly, it is more than one
order of magnitude faster than all other systems, which need to search
for the qualifying node in the document itself. Sedna outperforms all
others in Q6 and Q7, because its metadata structure provides direct
access to all nodes, which qualify for paths with descendant steps.

The curve shapes indicate that the quality of our query plans is com-
petitive throughout all queries. Recognizing and processing joins effi-
ciently again proves to be an advantage over most competitors. Only
MonetDB also handled the join queries without a drastic decrease in
performance. For simpler queries, however, BrackitDB did not reach
the best marks of the other systems. A closer look at the queries and
the competitors reveals that query plan quality is here not the decisive
factor. Merely, the other systems benefit from faster storage engines or
had additional indexes available.

172

8.3. XML Database Processing

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 [
m

s
]

XMark query

BrackitDB
BaseX

eXist
MonetDB

Sedna

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

BrackitDB 65 137 396 356 96 201 1478 408 1394 3395

BaseX 6.7 3 75 181 161 56 150 1242 917 1427 2902
eXist 1.4.0 172 348 1071 2.9e5 160 23 74 3.2e6 5.3e6 2.5e5
MonetDB 1.1.11 52 88 220 409 61 30 44 273 334 1260
Sedna 3.4.66 43 398 240 137 27 9 21 5.6e5 7.2e5 66860

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

BrackitDB 3523 2200 148 979 52 87 194 157 1411 345

BaseX 6.7 1.6e6 3.8e5 176 841 41 37 80 93 288 142
Exist 1.4.0 7.3e6 7.3e6 99 540 78 380 405 168 855 660
MonetDB 1.1.11 760 501 96 508 81 98 127 74 244 210
Sedna 3.4.66 9.7e5 2.2e5 271 762 30 33 474 184 899 142

Figure 8.6.: Comparison of XMark performance for XML databases
on a 112MB document in main memory.

.

For example, eXist was able to use the default element index for per-
forming index-based path navigation, which is especially advantageous
in queries with a descendant step (Q6, Q7, Q14). In turn, BrackitDB
dominated eXist in queries which do not benefit from the availability of
a basic structural index – even though both use a similar storage layout.

For BaseX, we observe the expected performance advantage of a
range-based node labeling scheme. For all non-join queries aside Q1,
where BaseX can leverage a content index, the query plans compiled
by BaseX and BrackitDB are almost identical. But in the end, the
lightweight comparison of fixed-size node labels in BaseX made the dif-
ference, because it allows for cheaper navigation logic. Note, with regard
to our compilation approach, this result is not deciding. If we used our

173

8. Evaluation

compiler to evaluate queries on the same storage, we would benefit from
the better performance in the same way.

MonetDB obviously pairs a highly efficient runtime with a capable
query compiler. The cheap range-based labeling and the heavily tuned
relational storage play well together. In conjunction with a specialized
path processing operator [GvKT03] and join recognition, the system
delivers consistently good results. For simple queries, Sedna achieves
similar performance and sometimes even better results than MonetDB.
However, Sedna is not able to process the joins in Q8-Q12 efficiently.

A direct comparison of both systems with BrackitDB is problematic.
First, they are implemented in C/C++ and therefore have numerous
advantages with respect to I/O and memory management. Second, the
entirely different storage layouts and, thus, different evaluation strate-
gies make it hard to compare the quality of the query plans. MonetDB,
for example, emits relational query plans and lives from raw scan per-
formance, whereas Sedna profits from efficient path processing through
the index-like metadata structure.

In the end, the ability to recognize and exploit joins remains the
only aspect we can identify as a clear advantage of MonetDB and our
prototype.

8.4. Relational Data

For showcasing efficiency and versatility of our compilation approach,
we setup an experiment in which we processed regular relational data
instead of semi-structured XML.

8.4.1. Workload

To model a realistic workload, we took the dataset of the relational de-
cision support benchmark TPC-H [TPC12] and measured performance
for XQuery versions of the SQL queries Q2 and Q6. We chose these two
because they represent typical classes of relational queries and challenge
different aspects of a query engine. Q6 is a simple filter and aggregation
operation over a single table. Q2 is a complex join query over 5 tables
with a correlated subquery with another join of 4 tables.

174

8.4. Relational Data

In the queries, we modeled tables as sequences of structured record
objects, where the column values can be accessed through the field ac-
cess operator (=>). For reading the tables with correct data types, the
custom XQuery function parse-schema() loads respective schema
information from a separate XML configuration file. The function re-
turns a virtual record object, which instantiates sequence abstractions
for expressing table scans with for loops.

The queries were evaluated over normal files in which we stored the
relational data. We tested two setups. In the first setup, we ran the
queries directly on the ’|’-separated text files generated by the dbgen
tool of the benchmark. In the second setup, we stored the table data in
files with a simple binary encoding.

The database generated for the measurements had a total size of 1GB
(scale factor 1). The accessed subset of the database in query Q2 is only
about 140MB large, but because of many joins and a subquery, efficient
evaluation is challenging. Query Q6 scans the lineitem table (726MB
raw data, ∼6Mio rows) and sums up the revenue of each qualified row.

8.4.2. Data Access Optimization

For processing regularly structured table data as fast as a relational
system, the compiler must optimize column accesses and filter opera-
tions. Hence, we evaluated the compiler with the näıve configuration
default and two optimized configurations schema and native. The con-
figuration schema inspects at compile time, which columns are accessed
by the query and propagates respective projection information as argu-
ment to the parse-schema() function. Furthermore, the compiler
replaces dereference expressions for column accesses with cheaper po-
sitional access routines. The configuration native additionally extracts
pipeline filters to evaluate them directly when scanning the base tables.
The results are given in Figure 8.7.

As expected, the optimized configurations outperformed the standard
configuration considerably. Configuration schema almost halved run-
time for both queries through skipping unused columns when reading
the input and through cheap positional column access. The additional
push-down of predicates in the native configuration further improved
performance. The scan-dominated query Q6 ran almost two times faster
than with configuration schema.

175

8. Evaluation

 0

 2

 4

 6

 8

 10

 12

binary text

T
im

e
 [
s
e

c
]

default
schema

native

(a) TPCH Query 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

binary text

T
im

e
 [
s
e

c
]

default
schema

native

(b) TPCH Query 6

Figure 8.7.: Execution times of TPC-H benchmark queries Q2 and Q6.

8.4.3. Comparison with RDBMS

To put the results of our prototype in relation to state-of-the-art sys-
tems, we measured query times for the SQL versions of Q2 and Q6 on the
relational databases PostgreSQL 8.4 and DB2 9.7. To get comparable
results, we did not configure supporting indexes, but created detailed
table statistics and assigned sufficient memory to the database buffer
and the queries to ensure that both systems created efficient plans and
performed the computation entirely in memory. Neither system had to
perform any disk access when running with warm buffers. Figure 8.7
shows the fastest results for each system.

The pictures of the two queries look very different. In the complex
join query, our prototype is more than an order of magnitude faster
than the relational systems. This clear result is caused by a better
handling of the correlated subquery, which is performed in all systems
using nested loops. Like both DBMS, our compiler generated a bushy
operator tree with hash joins and a final sort. But in contrast to the
relational systems, our prototype is able to reuse hash join tables in the
nested query between iterations, as detailed in Section 5.2.3.

For Q6 the relational systems are about 2 times faster than our pro-
totype on binary files. However, this is the result of a more efficient
scan-and-filter logic rather than the result of a superior query plan.

176

8.5. Parallel Processing

 0

 20

 40

 60

 80

 100

 120

 140

 160

T
im

e
 [
s
e

c
]

Brackit (bin)
Brackit (text)

Postgres 8.4
DB2 9.7

(a) TPCH Query 2

 0

 1

 2

 3

 4

 5

 6

T
im

e
 [
s
e

c
]

Brackit (bin)
Brackit (text)

Postgres 8.4
DB2 9.7

(b) TPCH Query 6

Figure 8.8.: System comparison for TPC-H queries Q2 and Q6.

In summary, this experiment underlines the great utility of pairing
a versatile data processing language like XQuery with a set-oriented,
storage-independent runtime. With minimal effort, we can perform
general data processing tasks on top of different data models and rep-
resentations.

8.5. Parallel Processing

In our final measurement series, we evaluate the push-based operator
model and the dynamic parallelization framework.

8.5.1. Workload

For assessing our parallelization framework, we took the data generator
of the TPoX benchmark [NKS07] to setup a simple test scenario. In-
spired by the original benchmark queries, we derived three basic query
types, which allowed us to focus on the behavior of individual operators
and for which we could easily investigate the influence of the partition-
ing scheme used.

The generated XML collections represent complex customer and order
records in a financial application scenario. The data generator creates
batches of 50,000 (∼320MB) and 500,000 (∼715MB) documents per file,

177

8. Evaluation

respectively. The advantage of this approach is that the documents in
each batch can be read both sequentially and randomly. For random
access, the data generator produces an additional metadata file per
batch, which contains the offsets of document boundaries. For reading
and parsing the documents from a batch file within XQuery, we pro-
vided respective input functions like read-batch(), parse(), and
parse-batch().

The default partitioning size for binding expressions was set to 1, but
overridden within the queries with XQuery pragmas to hint the compiler
to partition batch file sequences in chunks of 50 documents. The size
of the worker pool was varied in each experiment. The maximum Java
heap size was limited to 3GB.

8.5.2. Filter and Transform Query

In the first experiment, we evaluated a simple filter query over a single
customer batch file. In the outer for loop, the documents are read
with the function read-batch() as plain strings from the batch file.
Parsing and further processing takes places in the loop body.

For testing both partitioning schemes, we used two variants of the
input function for reading the batch file. The lazy sequence returned by
the first variant can only be partitioned sequentially, the lazy sequence
returned by the second variant can be partitioned recursively with the
divide-and-conquer pattern.

The queries were evaluated in both ordered mode and unordered
mode, i.e., the return clause was compiled in the former case to an
order-preserving chained sink and in the latter case to a concurrent sink.

Figure 8.9 shows the results for different worker pool sizes. All setups
show a great scaling behavior with respect to the number of available
workers. Because of the high selectivity of the query – only 0.02% of the
documents in the batch matched the query predicate – the difference
between ordered mode and unordered mode was negligible.

The query with sequential partitioning was only slightly slower than
the one with divide-and-conquer partitioning. The reason for this good
result is the deferred parsing of the documents within the loop body. Be-
cause the documents were read from the batch file only as cheap strings,
sequential partitioning was relatively fast and led to good speedups.

178

8.5. Parallel Processing

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of workers

sequential
parallel

(a) ordered

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of workers

sequential
parallel

(b) unordered

Figure 8.9.: Execution times of parallel filter query.

For comparison we repeated the experiment with a slightly modified
query, in which the documents were directly parsed by the input func-
tion parse-batch(). The result in Figure 8.10 shows now clearly the
advantage of divide-and-conquer partitioning. Because parsing as major
cost driver in the query is now integral part of the sequential partition-
ing process, the parallel infrastructure cannot benefit from parallelism
at all. The parallel partitioning scheme, however, still scales with the
number of available workers as before, because expensive parsing only
takes places when the partitions are small enough for sequential pro-
cessing. This result underlines the importance of cheap and effective
partitioning.

8.5.3. Group and Aggregate Query

The query in the second experiment groups the accounts of rich cus-
tomers in a batch by nationality and aggregates the results. The rest
of the setup is identical to the previous experiment.

The results in Figure 8.11 show again good speedups for larger worker
pools. However, performance gains for sequential partitioning are not
as good as in the filter query. The reason is a disadvantageous balance
of partitioning cost and cost per loop iteration. Because this query
does not contain a complex filter predicate, the load shifts towards the
loop binding with the more expensive sequential partitioning. Note, the
divide-and-conquer scheme is not affected by a cheaper loop body.

179

8. Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of workers

sequential
parallel

Figure 8.10.: Execution times of parallel filter query with expensive
input binding.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of workers

sequential
parallel

(a) ordered

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of workers

sequential
parallel

(b) unordered

Figure 8.11.: Execution times of parallel group query.
.

8.5.4. Join Query

For evaluating join performance of the parallel operator model, we used
a join query over an order and a customer batch. Both input batches are
bound in nested for loops and combined in a where clause. The com-
piler recognizes the join semantics and compiles the query to a pipeline
with join operator. The results are shown in Figure 8.12.

As in the previous experiments, the speedup for parallel partitioning
is almost ideal and still strong for sequential partitioning. For the first
time, we observe also some clear scalability problems when running a

180

8.5. Parallel Processing

 0

 10000

 20000

 30000

 40000

 50000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of workers

sequential
parallel

(a) ordered

 0

 10000

 20000

 30000

 40000

 50000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of workers

sequential
parallel

(b) unordered

Figure 8.12.: Execution times of parallel join query.

query in ordered mode. As detailed in Section 7.3.4, evaluating a join
in ordered mode requires the join operator to serialize the loading of the
hash table. Accordingly, parallel performance degrades the more entries
have to be loaded. The fact that we only observe a slowdown for the
sequential partitioning indicates us that this scheduling pattern is more
prone to disruptions, e.g., if workers are suspended during serialization.

8.5.5. Scalability

At the end of the TPoX measurements series, we evaluated the filter
query and the group query again, but step-wise scaled both worker pool
size and number of processed batches. Therefore, we nested the original
queries inside a loop over the number of batches to be processed. For
the sequential variant, this means that individual batches are still read
sequentially, but multiple batches can be read in parallel. Note, we
could not run this test for the join query, because the Java runtime
used cannot efficiently manage applications which require more than
4GB heap.

As the results in Figure 8.13 show, the growth in input size was
greatly compensated by the higher degree of parallelism. In the largest
setting, the 20 times larger input resulted in only about 2.25 times
longer execution times.

181

8. Evaluation

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [

m
s
]

Number of workers and batches

sequential
parallel

(a) Filter query

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [

m
s
]

Number of workers and batches

sequential
parallel

(b) Group query

Figure 8.13.: Results for scaling worker pool size and input size.

In this experiment, the higher locality of sequential partitioning even
outperformed divide-and-conquer partitioning for 12 parallel workers
and more. With growing degrees of parallelism, more batches were
read in parallel at multiple positions, which stressed the I/O subsystem
and degraded performance of the file system buffer.

8.5.6. XMark Benchmark

As our final experiment, we repeated the XMark benchmark in the
XDBMS setting with the push-based operator model and with different
pool sizes. The results are shown in Figure 8.14.

Except for small deviations, we do not observe any effect through
parallelization. The reason for this lies again in the partitioning of
the for-bound input sequences. XMark evaluates solely path expres-
sions as binding sequences, which can only be processed sequentially
and usually navigate over large parts of the input document. Accord-
ingly, a considerable fraction of total query time is spent for evaluating
binding sequences and, hence, partitioning is too slow to achieve paral-
lel speedup. To benefit from data parallelism in such single-document
databases, a system needs efficient alternatives like a secondary index
to evaluate binding sequences fast enough.

182

8.5. Parallel Processing

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of workers

Q1
Q2
Q3

Q4
Q5
Q6

Q7
Q8
Q9

Q10
Q11
Q12

Q13
Q14
Q15

Q16
Q17
Q18

Q19
Q20

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 [
m

s
]

XMark query

1 worker
2 worker
4 worker

6 worker
8 worker

10 worker

12 worker
14 worker
16 worker

18 worker
20 worker

Figure 8.14.: Execution times of parallel XMark benchmark per query
in BrackitDB on a 112MB document.

As positive result of this final test, we can state that the design goal
of a low-overhead framework, which creates at least opportunities for
parallel processing has been achieved. Even poorly parallelizable situ-
ations are not unnecessarily burdened with additional overhead by the
parallel operator framework.

183

8. Evaluation

8.6. Evaluation Summary

The main observations from our empiric evaluation can be summarized
as follows:

1. The compilation approach presented provides a solid basement
for a complex real-world language like XQuery. The experiments
with relational workloads proved also that declarative languages
like SQL may be easily mapped to this infrastructure.

2. Our design is able to deliver competitive performance in vari-
ous setups and on different storage platforms. In main memory,
our prototype excels with fast compile times and a lightweight
runtime. In disk-based settings, we depend on storage-specific
optimizations to compete with specialized compilers. In several
experiments, we could demonstrate the potential of such optimiza-
tions, which are simplified by the strict separation of query logic
and data access routines.

3. Set-oriented optimization and join processing is and must always
be a key concern in a query processor. Our approach successfully
recognized and handled joins in all benchmark queries and, thus,
outperformed most competitors in this discipline.

4. Physical optimization is an important building block to achieve
high performance. We showed that we can support various kinds
of storages and different levels of storage abstraction. The eval-
uated spectrum reaches from simple wrapper interfaces to native
operations. Our results in the XDBMS context have shown that
optimization efforts only pay off, if the granularity of operations
and not the storage itself is the limiting factor.

5. Several experiments proved that our push-based operator model
is able to process queries in parallel without additional assistance
by the user or the compiler. We also demonstrated that our ap-
proach scales for both input size and number of available proces-
sors. The advantage of partitioning data dynamically in a divide-
and-conquer fashion was evident in all experiments. However, our
tests also showed that queries, which can read input only sequen-
tially, greatly benefit from parallel processing if the sequential
input can be accessed and partitioned efficiently.

184

9. Related Work

Considering the broad spectrum of topics touched by this thesis, it is not
possible to narrow related work to a few areas. Therefore, the following
concentrates on giving insight into the most important works, which
pursue similar objectives or served as inspiration.

Because declarative, database-style query processing is the leading
theme, we start with a brief walkthrough of query language history
to emphasize the various connections to decades of database research.
Thereafter, we present related query and data processing languages,
and discuss other approaches to build flexible data processing platforms.
Finally, we review related work in the field of XQuery compilation.

9.1. A Short History of Query Languages

The revolutionary simplicity of the relational data model, which was
introduced in [Cod70], provided the ground for vivid research activity
in the field of declarative query languages. In tandem with the devel-
opment of SQL as front-end language, the relational model became a
success story that lasts until today.

Very soon, practical reasons lead to first extensions of the initial re-
lational algebra, e.g., to incorporate aggregation [Klu82, OO83]. More
radically, several works introduced the so-called nested relational alge-
bra to overcome the shortcomings of flat relations in 1NF [JS82, OO83,
RKS88]. In essence, they complemented the relational algebra with nest
and unnest operations for relation-valued columns.

Although nested relational algebra was never adopted in practice, its
core ideas paved the way for object-relational systems [Dit86]. Inspired
by the abstraction concepts of object-oriented programming, they in-
troduced complex data types, object identity, inheritance, and poly-
morphism and integrated them into SQL-based or SQL-like query lan-
guages [RS87, CD88, LR89]. For the first time, application-level con-

185

9. Related Work

cepts and abstractions could be directly modeled with custom data
types in both database storage and queries.

In addition to the novel abstraction concepts for structured entities
in the context of database systems, extensibility aspects have been an-
other driving force in the object-relational movement [BBG+88, CH90,
Gra94]. In a sense, object(-relational) databases made the first step to-
wards a separation of query processing logic and physical data represen-
tation. Thereby, the concepts of nested relational algebra continuously
contributed to optimization efforts of nested queries, which are typical
for the navigation of linked structures [SPSW90, CM94, KM94].

Despite enormous research efforts and availability of commercial-class
ORDBMS products, the object-relational ”wave“ ([SM95]) finally ebbed
in favor of the simpler and more robust relational systems. But the
next big trend was already in sight. New application fields emerged,
which processed or produced large amounts of graph-structured data
like in geographic applications, transportation and logistics, and biol-
ogy [Woo12]. Because processing of arbitrarily structured graphs con-
siderably differs from requirements in classic data management, the
development of graph databases and query languages lead to decoupled
research fields [AG08]. However, a special class of graph-like data –
tree-like structures and hierarchical data – crystallized, spread in form
of XML and other semi-structured formats, and became the new trend
in database research [Bun97, Abi97, FLM98, W3C98b].

Besides various new challenges at the storage level, semi-structured
data introduced several new aspects in querying processing. The flex-
ibility aspects and the lack of a rigid schema required some form of
tree pattern matching techniques to locate data of interest in hier-
archical structures. Also, the need to construct and access nested
structures raised again. Notably, most query languages still had a
close similarity to the familiar SELECT-FROM-WHERE constructs of
SQL [AQM+97, BFS00].

In the wake of the XML navigation language XPath [W3C99] and the
XML query language Quilt [RCF00], which finally lead to the develop-
ment of XQuery, tailored tree algebras were developed to better meet
the requirements of querying collections of labeled, ordered tree struc-
tures [BT99, FSW00, JLST02, SA02]. Interestingly, none of them found
its way from research platforms to commercial XML-DBMS. Instead,
one pursued fairly different strategies for compiling XQuery/XPath in-

186

9.2. Related Languages and Data Models

cluding nested relational algebra [BHKM05], extensions of the relational
query graph model (QGM) [ÖSW08, Mat09], and purely relational en-
codings [GRT08].

At the language level, Quilt introduced a paradigm-shifting novelty:
an explicit looping construct over variable-bound input sequences. The
idea of nested loops was a step back from full declarative query process-
ing, but it suited two major concerns perfectly. It allowed to draw and
process collections of data from various sources and it enabled traversals
within nested tree structures. The notion of a stream of variable-binding
tuples within these loops bridged the gap to the efficient set-oriented
techniques from the relational world.

9.2. Related Languages and Data Models

The common denominator of all proposals for declarative processing
of object-like and semi-structured data is the representation of data
as variations of tree or graph structures that is accompanied by some
sort of navigation facilities [Abi97]. The star player in this field is
certainly XQuery/XPath, which is also put in the center of this work
and discussed in detail. In the following, we summarize other important
approaches and systems of research and industry.

9.2.1. Lorel Query Language

The Lore (Lightweight Object Repository) project is a prototype DBMS
for semi-structured data [MAG+97]. The underlying data model is
the Object Exchange Model, short OEM, which was initially developed
as a self-describing data interchange model for heterogeneous environ-
ments [PGmW95] and later slightly adjusted to facilitate its use in the
Lorel query language [AQM+97].

An OEM object is a triple with the fields type, value, and object-ID.
The type field indicates either an atom object like a string, an integer,
or a floating point number, or a set object. The value field is the actual
payload. The object-ID is a unique identifier of the object.

The set type is the composition type in OEM. It models complex
structures by enumerating pairs of labels and object identifiers in the
value of set-typed objects. Each pair represents a labeled edge to a

187

9. Related Work

child object. The label carries the meaning of the relationship, e.g.,
an edge to a string object that is labeled ”street” reflects the name of
the street in a complex address record. Virtually, a set value in OEM
is an unordered map. Array values are not supported, but might be
emulated by a complex value with integer-labeled edges. Cyclic data
structures are generally permitted, although typical use cases yield tree
structures.

The query language supports set-oriented queries over OEM graphs
in the classic SELECT-FROM-WHERE structure. Declarative updates
are supported, too. A traversal over the edges of an OEM graph can
be specified as a path, which can be a simple sequence of edge labels or
a complex pattern with optional labels, regular expressions, and wild-
cards. A path can also specify label and object variables at individual
paths steps. They are assigned to the matched OEM objects during a
traversal and can be used as anchors for further traversals, e.g., in the
WHERE or SELECT clause. The output of a query is an OEM instance,
rooted under an artificial answer object.

9.2.2. UnQL

The UnQL query language [BFS00] uses structural recursion and pat-
tern matching, two popular techniques in functional programming, to
query tree-organized semi-structured data. Like the OEM model of the
Lorel query language, UnQL represents data as unordered, edge-labeled
trees, which consist of atomic and non-atomic nodes. In contrast to
OEM, it does not treat nodes as identifiable objects, i.e., a non-atomic
node is an anonymous set of label/tree pairs. Accordingly, UnQL spec-
ifies equality solely by value.

Queries are written as select-where constructs. The where clause
specifies a structural query pattern, which is translated into an algebra
of function compositions, which use argument pattern matching to per-
form a recursive traversal through the tree structure. The query pattern
can contain variable bindings, which can be referred to in the select
clause to construct the result.

The where clause may consist of multiple patterns, which allows to
specify joins. Furthermore, UnQL supports nested queries within the
select clause to group results or to express outer join semantics.

188

9.2. Related Languages and Data Models

The structural recursion in UnQL can be evaluated as a standard top-
down recursion, which is equivalent to a nested-loops-like tree traversal.
Alternatively, the recursion pattern can be transformed to bulk opera-
tions by using dependent joins [Flo99, MHM04], which allows to perform
set-oriented optimization [BFS00].

9.2.3. TQL

TQL [CG04] takes a unique approach to querying semi-structured data.
It is also a query language for edge-labeled, unordered trees, called
information trees. It is a logic-based language and, thus, it contrasts to
most SQL-influenced proposals with a quite different query syntax.

A query has the form from Q |= A select Q’ and is interpreted
as a matching of the subject Q (the data) against the formula A, which
yields a set of variable bindings, for which the parameterized result
expression Q’ is evaluated. The result of the query is the concatenation
of the results of all evaluations of Q’.

A formula describes a query pattern, which consists of structural
and first-order logic operators. The former are matched against the
information tree, the latter serve as combinators and quantifiers for
variables. Wildcard patterns and a recursion operator allow to match
complex patterns in the tree at arbitrary depths. With the universal
quantifer foreach, TQL provides a similar feature like XQuery’s for
loops. However, the construct is limited to the tree pattern logic.

Details about the implementation of TQL are given in [CFG02], but
information about the efficiency of the fully algebraic compilation is not
available.

9.2.4. Object Query Language (ODMG)

Query languages for object(-relational) structures have a close affinity
to semi-structured data. Perhaps the most influential one is the Ob-
ject Query Language (OQL), which was standardized by the Object
Data Management Group (ODMG) [Coo97]. The OQL is defined for
graphs of typed, class-based objects as they are common in object-
oriented languages. Supported composition types for collection-based
object properties are Array, Set, Bag, and List.

189

9. Related Work

The syntax of OQL leans very close on SQL and supports almost the
same expressiveness for quantification (e.g., exists), grouping, sorting,
and aggregation. The result of a query is a collection of objects.

Navigation within the object graph is equivalent to dereference op-
erations in a normal programming language. In contrast to languages
for semi-structured data, however, it is not possible to match complex
path patterns with wildcards and variable-length paths.

Although OQL turned out to be too complex to become ever im-
plemented, it widely influenced efforts in the object-relational world.
Many ideas served as blueprint for the object-relational extensions of
SQL [SQL99] and a great variety of O/R mapping middleware.

9.2.5. Rule-based Object Query Language

The work in [SR92] presents a rule-based query language – also enti-
tled as OQL – and an algebra for object-oriented databases. Objects
are identifiable instances of classes, which are defined as composites of
atomic values and other composites. Supported composition types are
Tuple, Set, and List, for which distinct null values (nulltuple, nullset,
nulllist) exist.

The algebra defines six sets of operators for working with objects,
tuples, lists, and sets, and for list/set conversion. Further, it defines an
operator ASSIGN for assigning an object to a variable and an operator
REPEAT UNTIL for evaluating recursive queries.

A query is a sequence of statements, which are either variable assign-
ments or rules. A rule consist of a head and a body, which consists of a
set of generators and qualifiers that implement the matching logic. Nav-
igation in the object graph is performed with path expressions. Nesting
and unnesting for set-valued types are performed explicitly via rules.

A direct relationship between practically relevant set-oriented con-
cepts, algorithms, and optimization principles does not exist. In this
sense, the whole nature of the language is similar to Datalog [SKS06].

9.2.6. SQL:1999 and SQL:2003

With the SQL revisions SQL:1999 [SQL99] and SQL:2003 [SQL03], the
former pure relational standard was equipped with plenty new options
for representing and querying structured and semi-structured data.

190

9.3. Data Processing Languages

It introduced a rich set of object-relational features like structured
data types, reference types, typed tables, and table hierarchies, which
come close to many features of ODMG’s OQL model, but are less gen-
eral and easier to implement.

SQL:1999 added the anonymous collection types ROW and ARRAY,
which made multi-valued columns possible, but could not be nested to
form arbitrary nestings as required for semi-structured data. SQL:2003
added the collection type MULTISET and finally allowed arbitrary
nestings of all collection types [Tü03].

The counterpart to collection type constructors is the table-valued
function UNNEST, which allows, e.g., to use collection values in the FROM
clause of a SELECT statement. As of today, however, many DBMS only
provide very limited support for collection types if any.

The third novelty of SQL:1999 found much better adoption in com-
mercial systems: the new data type XML and the language extension
SQL/XML. They enabled support for hybrid query processing over
both relational and XML data. Queries can be formulated in either
SQL or XQuery; data in the respective ”foreign“ format can be queried
through special mapping functions and data constructors. For these
new features, most DBMS manufacturers developed tailored XML stor-
ages with extensive indexing support and other DBMS-class features
like transactions, etc. [NvdL05, Rys05, LKA05].

9.3. Data Processing Languages

Data processing techniques increasingly find applications outside the
traditional database context. New extensions and APIs for general-
purpose programming languages give the application logic direct access
to the efficient, set-oriented infrastructure. A second, very active com-
munity creates dedicated data processing languages as an abstraction
layer for the MapReduce framework and other platforms for distributed,
large-scale data processing [IBY+07, DG08, STL11]. Such languages
naturally operate beyond the narrow ”closed system assumption“ of a
database query language and embrace semi-structured data from vari-
ous sources. Therefore, and because of their scripting capabilities, they
are especially interesting for this thesis. In the following, we particularly
spotlight the language features of the various approaches.

191

9. Related Work

9.3.1. JSON and Jaql

Jaql [BEG+11] is a declarative scripting language targeting at large-
scale data analysis in the Hadoop MapReduce framework [Whi09]. It
builds upon an extension of the JSON data model, i.e., it includes struc-
tured records and arrays and a variety of common atomic data types.
Furthermore, Jaql supports functions as data type, which is of essential
utility in the operational model of the language.

A Jaql script is a sequence of statements like library imports, variable
assignments, and expressions. The set of supported expression types is
relatively small. It comprises Boolean logic, arithmetic, conditional
branching, function calls, and data constructors. The latter include
various forms of path expressions, for accessing and projecting values
of from arrays and records. Flexible (path) pattern matching for semi-
structured data as, e.g., in XQuery/XPath, is not supported.

The strength of Jaql is a composable set of array-based, higher-order
functions, called operators, which implement bulk processing logic. For
a convenient chaining of operators, the language provides a special pipe
operator -> as syntactical variant of normal function composition. The
pipe operator visualizes the data flow from one operator to the other.
Built-in are streaming operators like FILTER, TRANSFORM (implements
a functional map operation), and EXPAND (implements unnesting), the
blocking operators SORT and GROUP, and a JOIN operator. Because
extensibility is a major concern, Jaql operators are higher-order func-
tions that can be customized by user-defined code, e.g., a comparison
function. Furthermore, Jaql can be extended with custom operators.

Because the language is intended for data processing in MapReduce
clusters, it typically operates on huge collections of relatively small data
items, which reside in distributed file systems or key/value stores. They
are loaded and converted into the internal data model via customizable
I/O adapters.

Although Jaql is purposely not a declarative query language in the
classical sense – the user wires the query operators by itself – the com-
piler can leverage knowledge about built-in operators and perform (sim-
ple) optimizations like predicate pushdown, etc. If available, full or
partial schema information can also be leveraged during optimization.

192

9.3. Data Processing Languages

The compiler’s main concern is the identification of opportunities to
process parts of a script in the parallel MapReduce environment. There-
fore, it identifies operations, which can be applied independently over
partitions of the input collection (e.g., TRANSFORM), or which perform
a distributable aggregation (e.g., inside GROUP). These are compiled to
dedicated Jaql functions, which can be manually optimized by the de-
veloper (source-to-source translation) or directly deployed as Map and
Reduce functions in the distributed framework.

9.3.2. Pig Latin

Pig Latin [ORS+08] is a high-level language for MapReduce clusters,
which is positioned in between the fully declarative world of SQL and
the low-level, procedural world of manual Map and Reduce functions. A
Pig Latin program is compiled into MapReduce jobs, which are carried
out in a Hadoop cluster [Whi09].

The data model of Pig Latin consists of the four types: atom, tuple,
bag, and map. Collection types can be arbitrarily nested; a bag is
considered as a collection of tuples. The supported expression types are
constants, conditionals, field/map access and projection, function calls,
and flattening of nested collections.

A program is a hand-crafted data flow graph of typical query oper-
ations. The data flow is assembled as a sequence of statements, which
perform an operation, and bind the result to a variable. Variable ref-
erences in subsequent statements implement the actual pipelining of
intermediate results.

At the beginning, input data is loaded with the LOAD command,
which references a bag-structured input collection and, optionally, spec-
ifies its schema. Afterwards, the bag is processed with various bulk
commands like FILTER, FOREACH, COGROUP, JOIN, ORDER, etc. All
of them are of higher-order nature and are parameterized by expres-
sions or functions. For nested data, FOREACH supports a limited form
of nested bulk processing (e.g., filtering and sorting), but only at the
direct child level. Processing of arbitrarily nested semi-structured data
or advanced structural pattern matching is not possible.

The execution of commands, i.e., the actual data processing, is de-
ferred until a STORE command occurs. The lazy approach enables
pipelining and other cross-command optimizations like early filtering.

193

9. Related Work

Pig, the runtime of Pig Latin, creates a logical plan for the com-
mands that operate on every referenced bag. If the resulting bag is
finally stored with STORE, the logical plan is compiled to a sequence
of MapReduce jobs, which is executed in the cluster. Thereby, the
compiler puts special care on the effective mapping of groupings and
aggregations to the MapReduce framework.

9.3.3. LinQ

LINQ (Language-Integrated Query) [MBB06] is a query abstraction for
data processing within the Microsoft .NET framework. It introduces
standard patterns for querying and updating data, which can be vir-
tually mapped to almost any kind of data – independent of whether
the ”database“ is an in-memory collection of objects, a relational SQL
database, or an XML document. Therefore, the framework blends the
programming language view on a collection type, e.g., a simple list, with
a database view considering a list as a queryable data source. At the in-
ner core, LINQ queries embody many ideas of functional programming
like lazy evaluation and monad comprehensions [Mei07] and wrap them
in the object model of the .NET runtime.

The SQL-like queries are first-class citizens in the .NET languages C#
and Visual Basic and are carried out by the backing LINQ Provider of
the respective collection. In case of a simple in-memory list, the provider
processes the query directly on the list; in case of a relational database,
the provider generates SQL, sends the query on the database server, and
makes the result available to the .NET program as a collection value.

Conceptually, LINQ is data-model agnostic in the sense that query
operations (select, where, orderby, etc.) are performed on col-
lections of any kind of value. To overcome the heterogeneity of data
models, it makes use of the properties of an object representation of
the data. A list of point objects, for example, can be filtered with
where point.x > 3. The query capability for a semi-structured for-
mat like XML is obtained by representing it as a DOM-like tree struc-
ture [W3C98a]. With this object abstraction, it is possible to expose
structural relationships as collection-valued methods and use them to
perform flexible path pattern matching within queries. For example,
an XPath expression like $docs//book over an XML resource can be
evaluated in LINQ as docs.Descendants("book").

194

9.3. Data Processing Languages

The actual query execution through a LINQ provider can be realized
in various forms. In the most simple case, a custom provider exposes the
queried resource as a collection value and uses the default, in-memory
query logic. More complex but also more efficient solutions can trans-
late, compile, and execute (parts of) the actual query expression tree by
themselves. This form of flexible consideration of querying capabilities
is comparable to the integration strategies of heterogeneous database
systems [CHS+95].

9.3.4. Database-backed Programming Languages

Several approaches pursue the idea of delegating data-intensive tasks
transparently from the program to external DBMS.
Kleisli [Won98] is a data integration system that has been de-

veloped for the special requirements of bioinformatics. Kleisli hosts a
high-level functional query language, called CPL (Collection Program-
ming Language), which focuses on database-backed processing of ”bulk“
data types. To accommodate the needs of data representation in bioin-
formatics, the data model of CPL supports arbitrarily nested records,
sets, lists, bags, and variants thereof. A CPL query uses a comprehen-
sion syntax [Wad90], which allows to filter, unnest, and transform the
input. The comprehension is translated to Nested Relational Calcu-
lus [BNTW95], algebraically optimized, and then send to an external
DBMS for processing.
Links [CLWY06] is a programming language for web applications,

which compiles to both client-side JavaScript code and server side SQL
code. It also uses a comprehension syntax to compile data access oper-
ations into SQL code. In contrast to Kleisli, however, it supports only
the flat relational model.
Ferry [GMRS09] is compilation framework, which is able to offload

data-intensive computations to a relational database. Like Kleisli, it
supports arbitrarily nested tuples and lists, but also puts considerable
effort to reduce the number of queries that are generated for queries
over nested structures. Therefore, Ferry uses a lifting technique, which
was pioneered in the relational XQuery processor Pathfinder for query-
ing nested XML structures [GRT08]. Ferry features its own research
language, but has also been integrated into Ruby and in a library for
Haskell [GGSW11].

195

9. Related Work

9.4. Extensible Data Processing Platforms

Various contributions before already aimed at building a versatile and
reusable data processing platform. Basically, they can be distinguished
as compiler-centric approaches and system-centric approaches. The for-
mer pursue an extensible compiler infrastructure, which can be cus-
tomized for new kinds of data and operations. The latter design the
database platform as a kind of virtual machine to which front-end lan-
guages and data models are mapped.

9.4.1. Compiler Infrastructures

Extensible compiler infrastructures have been studied in the context
of extended relational systems and object-based systems. Three of the
most influential works are presented in the following; other major ap-
proaches can be found in [Bat88, CDG+90, SRH90, SPSW90, VB96].

Starburst

The Starburst project [HFLP89] introduced a new compiler model for
extending classic relational DBMS technology. The featured SQL exten-
sion builds on table expressions as building blocks, which can represent
any kind of table-structured data source like base tables, view defini-
tions, function applications, etc. Queries are internally represented in
the query graph model (QGM) as directed graphs of high-level query op-
erators, which are translated into physical operators for execution. A
single node in the logical query graph can thereby reflect multiple phys-
ical operations at once, e.g., a scan, a projection, and a join. QGM has
been recognized as particularly useful for join enumeration and other
optimization techniques, but also offers an extension point for new op-
erators. QGM was adopted by the relational DBMS DB2, where it
primarily drives relational workloads, but also successfully serves as ba-
sis for object-relational and XML extensions.

Garlic

Garlic [RAH+96, CHS+95] is a data integration middleware, which pro-
vides an SQL-based query interface for heterogeneous and distributed

196

9.4. Extensible Data Processing Platforms

data sources, which supports path expressions, nested collections, and
methods. The backbone is a flexible wrapper architecture, which encap-
sulates all data sources behind object-based interfaces. The specialty
of Garlic is the flexible offloading of query functionality to individual
wrappers, without the need to know the data sources themselves. In-
stead, all wrappers involved are identified and then participate directly
in the query planning process. Queries over multiple data sources are
decomposed and, depending on the capabilities of the wrapper imple-
mentation, delegated to the sources. Orchestration and lacking func-
tionality is handled by the Garlic query processor itself. The optimizer
generates alternative query plans, by asking each wrapper, which share
of the query plan it can handle and at which cost. The final plan is the
combination with the cheapest cost.

Volcano

The Volcano system [Gra94] is a data flow query processing system,
which abstracts all physical operators as pull-based iterators with the
open-next-close protocol. Queries are translated from a logical algebra,
e.g., relational algebra, to Volcano’s physical algebra, which implements
standard query processing algorithms like filters and joins. Set-oriented
processing and interpretation of data is strictly separated by param-
eterizing iterators for support functions, which implement the actual
data access logic. The framework provides extensibility in various di-
mensions. New data models are introduced as abstract data type and
new support functions. New query capabilities or access methods are
introduced by implementing the iterator model.

9.4.2. Database Languages

Database languages pursue a two-step compilation approach for realiz-
ing flexible data processing platforms. A front-end compiler logically
maps the data model and query constructs of a concrete language like
SQL to a generic storage and query infrastructure, where the database
language compiler performs the physical optimization for the mapped
query. Naturally, performance directly correlates with the capabilities
of the storage and the quality of data mapping.

197

9. Related Work

Without going into technical details, the following shortly discusses
two approaches, which base on radically different physical layouts. Fur-
ther noteworthy approaches can be found in [Gü89] and [OBBt89].

MIL

MIL [BK99] is an intermediate language for building read-intensive
query processing systems on top of the extensible database system
Monet. It is designed for relational and object-oriented applications
and uses a fragmented data model, i.e., MIL operates on binary ta-
bles (BAT) of primitive data types only. This allows for high scan
performance by clustering related attributes, but requires the MIL pro-
gram to reconstruct related data by itself. For reading a structured
record, e.g., the BATs containing the respective attribute values must
be joined. However, respective equi joins are relatively cheap, because
MIL is designed for memory-resident data and can perform them often
in an array-like fashion with positional lookups in fixed-length BATs.

The language forms an algebra of side-effect-free bulk operators which
cover standard query constructs like filter, join, aggregation, and group-
ing. A MIL program is a script of bulk operator statements, basic con-
trol structures, and variable bindings for intermediate results. A script
is typically generated by the compiler for the front-end language, which
logically optimizes the query and decides about the execution order of
the algebraic BAT operators (”query strategy“). The MIL interpreter
itself analyzes the script and choses suitable algorithms implementing
them (”tactics“). Therefore, the system maintains sets of properties for
BATs, which help to exploit physical properties like orderings. Multi-
threaded parallelism is supported in two ways. Statements with par-
allelizable BAT operators can be annotated with the desired degree of
parallelism. Parallel execution of multiple statements can be specified
by putting them inside parallel blocks.

MIL and the heavily optimized Monet infrastructure has been shown
to achieve high performance for relational analytic workloads. In tan-
dem with the Pathfinder compiler (see 9.5.2), it also proved to be highly
efficient for running XQuery logic, too.

198

9.5. XQuery Compiler

FAD

FAD [DV92] is the strongly-typed interface language for the parallel
database system Bubba [BAC+90]. It is a declarative language for
transient and persistent collections of sets, tuples, and structured ob-
jects, which closely resembles the expression-style of functional general-
purpose languages.

A FAD program consists of a composition of actions, which are dis-
tinguished in basic actions like value construction and selection, and
higher-order actions for implementing control logic and bulk logic. A
let construct binds intermediate results to variables, explicit looping
constructs and operations like filter, pump, and group provide the tool
set for bulk processing. Data items have an identity and side-effecting
updates are allowed in some, but not all action types. For type safety,
proper definition of all data types is required.

Aside translating a program to operations of the parallel infrastruc-
ture, the compiler can optimize distributed data access. Higher-level
algebraic optimization is not performed.

9.5. XQuery Compiler

The XQuery compilers available considerably differ in functionality, per-
formance, and scalability, because they are designed for special use
cases and target platforms. The spectrum reaches from lightweight
stand-alone solutions for main-memory data to embedded compilers for
database-resident data, and specialized solutions for full-text search,
streaming applications, etc.

The character of a compiler can be distinguished as either iterative
or set-oriented. Iterative compilers follow closely the XQuery standard
and evaluate queries in the normal nested-loops fashion. Set-oriented
compilers like the one presented in this thesis, translate queries first into
a more general plan representation or algebra to compute independent
subexpressions and multiple iterations with more efficient operations, in
a different order, or even in parallel. An overview of XQuery processing
models is presented in [BBB+09].

199

9. Related Work

9.5.1. Iterative Compilers

Nested, iterator-based evaluation is wide-spread in main-memory en-
gines, which focus on fast XML transformation and data extraction.
The direct compilation of expressions is simple but quick and easily
integrates all new programming features of XQuery 3.0 like function
items and partial function application. Because most compilers repre-
sent data closely to the XQuery standard as sequences of items, they
can run on top of different data layouts.

The dynamic context is usually represented as a mutable set of vari-
ables. It is simple and naturally fits the processing model. Some imple-
mentations use a global context object, whereas others split the context
and store bindings locally in the scope of the corresponding sequence
iterator. In this case, the local scopes must be recursively passed on to
subexpressions and the entire dynamic context turns into a hierarchical
leaf-to-root composite.

The disadvantage of the mutable dynamic context is an implied se-
quential evaluation order of context-dependent expressions. It requires
special treatment in individual situations to perform common optimiza-
tions like parallel computation of (partial) results or application of an
efficient join algorithm instead of computing and filtering the Cartesian
product. As a result, processors often suffer from nested-loops seman-
tics and poor scalability. Because of its simplicity, it is, nevertheless,
the most common design used in XQuery processors for main memory
today [Kay08, Mei09, BBB+09, Grü10].

9.5.2. Set-oriented Compilers

Set-oriented compilers are prevalent in XML-enabled database backends
and excel with scalability and extensive XML index support. However,
most of them require data in a specialized internal layout or lack support
for certain language features.

Compilers for native XML storages are often tailored for a partic-
ular data representation and XML node labeling scheme [HHMW07,
OOP+04]. As a result, the optimizer is often faced with special oper-
ators and must cope with unusual query plan shapes, or sophisticated
dependencies between operators.

200

9.5. XQuery Compiler

Compilers for relational target platforms suffer from the complexity
of XQuery and need elaborate concepts to map queries and data to
relational algorithms and data layouts. Relational thinking requires
them to radically rewrite the whole query, which severely complicates
the realization of language concepts beyond plain ”Select-Project-Join”
and requires an advanced optimizer to compile efficient query plans.

In both types of systems, the programming aspects of XQuery like
user-defined functions, recursion, and higher-order functions usually fall
behind. They just do not fit into the picture of database-style process-
ing. This disqualifies such systems as runtime environment for general
data programming tasks. Nevertheless, users often accept partial lan-
guage conformance as long as a system meets their compatibility and
performance needs. On the flip side, they cannot take advantage of one
of XQuery’s biggest strengths – the ability to represent, interpret, and
process different kinds of data from diverse sources.

In the following, we summarize the key aspects of the most prominent
approaches.

Pathfinder

Pathfinder [GRT08] is a compiler for relational backends which requires
to have all data, i.e., item values, sequences, and entire XML docu-
ments, encoded in a ternary table layout. Variable bindings and it-
eration scopes are loop-lifted to turn nested-loops into operations on
”unrolled“ tables. A specialized join operator speeds up XML process-
ing [GvKT03]. Pathfinder is especially successful on top of the Mon-
etDB backend [BGvK+06] because the ternary table layout and the
frequent equi-join operations for loop-lifting suit the system’s infras-
tructure. However, the strict relational view complicates the sometimes
subtle semantics of XQuery (e.g., in comparisons) as well as its func-
tional aspects. Furthermore, loop-lifting causes query plans to quickly
grow in size and complexity [GMR09].

XTC

XQGM is the logical, tuple-based operator graph representation of a
query in XTC [Mat09]. It is based on the relational query graph model
(QGM) [HFLP89] and introduces so-called correlated edges, which indi-

201

9. Related Work

cate context dependencies, i.e., nestings, between operators. Extensive
unnesting rules eliminate these correlations and apply independent join
operations instead. Special consideration is thereby given to opportuni-
ties for twig join processing. After logical optimization, a great variety
of physical operator alternatives and evaluation strategies is available
to compile XQGM into an executable plan. Query rewriting and op-
timization within XQGM is a non-trivial task, because the correlated
edges turn the operator tree into a directed graph.

NAL

NAL [MHM04] is an algebra of tuple-based operators, which accommo-
date XQuery’s FLWOR bindings. They consume and produce nested
tuples forming sequences of sets of variable bindings. After translating
a query into algebraic form, the compiler applies a set of equivalence
rules to rewrite nested queries to more efficient set-oriented constructs.
In principle, the approach is applicable to any storage, but even without
considering physical properties, the pattern matching for the rewritings
is quite complex. Furthermore, the approach assumes nested tuples,
which generally complicates variable handling during compilation and
the implementation of efficient physical operators.

Galax

Galax [RSF06] comes with a feature-complete XQuery algebra, which
distinguishes between XML operators, tuple operators, and a third
group of explicit boundary operators, which connect the two other parts
of the algebra. Similar to the compiler developed in this thesis, expres-
sion trees are compiled directly and FLWORs are compiled to tuple
operator trees. Nestings are modeled as dependent join operations.
Galax also supports basic optimizations for unnesting and value-based
joins. Further optimizations are not mentioned.

IBM pureXML

IBM’s pureXML extends the QGM-based query representation of the
relational database DB2 for joint processing of XML and relational
data [ÖSW08]. FLWORs are modeled in the set-oriented QGM by com-
binations of new ForEach quantifier types and existing table-valued

202

9.5. XQuery Compiler

operators like SELECT. All other expression types are realized as con-
ventional scalar functions. XML processing is widely delegated to the
native storage in form of path matching routines. Although the mature
optimizer can be reused, several minor and major rewritings are still
necessary to yield efficient XQuery. Furthermore, the compiler heav-
ily depends on the advanced storage engine to pushdown complex path
patterns.

203

204

10. Summary and Future Work

This thesis presented a complete walk-through of a retargetable com-
piler infrastructure and runtime platform for processing structured and
semi-structured data.

Starting from a specification of basic ingredients for declarative query
processing and scripting, we derived a compiler around a top-down
query representation, which naturally models variable bindings and
nested evaluation scopes. We obtained a hybrid design based on plain
expression trees with integrated operator pipelines. It localizes expen-
sive bulk sections in a query and allows to optimize and compile them
separated from remaining aspects like data access operations, functions,
and arithmetics.

The concept developed is fully composable, i.e., query nestings may
be arbitrarily deep and rewrite rules are independent of the surround-
ing expression. Furthermore, the approach is not limited to certain
query constructs and custom functionality can be plugged in flexibly as
functions, custom expression types and even custom operators.

On top of the query representation, we presented the realization of
proven set-oriented optimization techniques, which can be reduced to
algebraic transformations in the functional monadic core.

For efficient data handling at runtime, we demonstrated compilation
strategies and extension points for tailoring the compilation process to
a specific data store.

For exploiting the capabilities of modern multi-core and many-core
architectures, we introduced a novel push-based operator model, which
is capable to dynamically parallelize query sections. We gave detailed
insight into effective data partitioning and load balancing mechanisms
as well as the realization of the most important types of query operators.

Finally, we empirically evaluated all facets of the approach for differ-
ent data sets and in various settings.

205

10. Summary and Future Work

10.1. Conclusions

In the rear-view mirror, the concept of a data programming language as
proposed in this thesis is a composition of ideas, which originate from
all epochs in query processing. It borrows the functional scripting-style
and the nested-loops-based query logic from XQuery/Quilt, but strips
it from the narrow focus on XML1. Instead, it picks up the extensibility
idea from the object-relational world and uses the skeleton of looping
constructs, variable bindings, and tuple streams for bulk processing of
any kind of structured and semi-structured data.

At the data level, we embrace the idea of abstract data types from
object-relational settings, because it implies the encapsulation of data
access routines for system-internal optimization. However, we abstain
from other ”golden rules“ ([ABD+89]) like object identity, persistence,
and concurrency, because they have proven to be sources of inefficiency
(e.g., cyclic data structures) or to be inappropriate in the context of a
query language. At the same time, we emphasize the need for schema-
less structural pattern matching in semi-structured data. Because of the
latter, the data model builds on tree-structured compositions of array
and map structures, which subsumes the representation of structured
data as well.

Blending so many ideas in a single concept always embodies the dan-
ger of inefficiency through too many abstraction layers. Therefore, we
oriented ourselves at the lesson learned from the success of the relational
model – simplicity is key – and imported as much practical knowledge
about relational query processing as possible. Furthermore, we aimed
at a simple compilation and evaluation process, based bulk processing
on simple function composition, and stepped back from attempts to
implement a universal but complex (nested) algebraic solution.

In the end, the concepts developed and orchestrated in this thesis
proved to be sustainable to carry our vision of building a compiler
and runtime kernel, which integrates the best-of-breed concepts from
decades of data management and can serve as solid basement for the
rapid development of tailored query and data processing systems.

1As a good play, the Quilt grammar itself embodied XPathExpression as terminal
symbol [RCF00].

206

10.2. Outlook and Future Work

10.2. Outlook and Future Work

As usual in a thesis, it is not possible to exhaustively cover and discuss
all topics addressed or touched. Even though the corner stones for the
compiler and the parallel query runtime have been laid in this work, a
wide field of topics is left open for future research and improvements.
Many opportunities for improvements will concretize from practical use,
refinement, and evolution of the prototype developed, but others deserve
thorough consideration in theoretic contexts as well.

Traditionally, query optimization provides the largest playground for
additional work. At the logical level, state-of-the-art algorithms like join
enumeration, statistics, cost-based query optimization have to be ported
and evaluated. Interesting is also the examination of how structures
and idioms of concrete front-end languages interact with applicability
and effectiveness of optimization rules. Likely, one will identify sets of
universally applicable and specific optimizations, which can be bundled
to optimization profiles for different languages and environments.

At the physical level, this work only scratched at the surface of possi-
ble optimizations. Aside smart tracing and mapping routines for partic-
ular classes of storages, plenty of challenges are worth to look at. In the
days of cache-optimized storage structures and algorithms, for example,
a portable compiler framework needs to go new ways for augmenting
query plans with additional information for exploiting and optimizing
data locality. Where current relational systems can rely on fixed-size
tuple structures and metadata, more powerful concepts are needed to
model and trace data sizes and locality within the compilation process.
Efficient handling of variable-sized, tree-structured data and interaction
with external storage in query operators is also important for practical
use cases.

Regarding the parallelizing operator model, there are also oppor-
tunities for improvements. Although parallelization is performed au-
tonomously, it still relies on predefined thresholds for the partitioning
step and buffer management to keep parallelism and memory consump-
tion under control. This aspect is open for consideration of dynamic
approaches from the field of self-tuning systems. Improved scheduling
mechanisms may take the overall progress and memory requirements of
a query into account. Last but not least, scalability demands suggest to
extend capabilities for automatized parallelism to distributed platforms.

207

208

A. Translation of Operator
Pipelines

Listing 17 Translation of operator pipeline.

1: function compile pipe expression(ast)
2: operator ← child(0, ast)
3: end← create end()
4: start← compile operator(operator, end)
5: expr ← create pipe expression(start, end)
6: return expr
7: end function

8: function compile operator(ast, end)
9: if ast is START then

10: op← compile start(ast, end)
11: else if ast is END then
12: e← child(0, ast)
13: expr ← compile expression(ast)
14: set expression(end, expr)
15: op← end
16: else if ast is FORBIND then
17: op← compile forbind(ast, end)
18: else if . . . then
19: . . .
20: end if
21: return op
22: end function

209

A. Translation of Operator Pipelines

Listing 18 Translation of ForBind operator.

1: function compile forbind(ast, end)
2: var ← run variable(ast)
3: pos← pos variable(ast)
4: bind(table, var)
5: bind(table, pos)
6: expr ← child(0, ast)
7: e← compile expression(expr)
8: out← child(1, ast)
9: o← compile operator(out, end)

10: bind v ← unbind(table, var)
11: bind p← unbind(table, pos)
12: op← create forbind operator(e, o, bind v, bind p)
13: return op
14: end function

210

B. Suspend in Chained Sinks

Chained sinks (see Section 7.3.3) are the only components in the push-
based operator model, which take influence on the scheduling of tasks,
respectively workers. The following proof shows that deadlocks will not
occur, even if worker processes are temporarily suspended in the end()
routine of chained sinks.

Proof. Let t1 and t2 be two binding tasks created by a process p for
two consecutive partitions of a binding sequence. Let the respective
partitions of t1 and t2 be small enough so that they can output without
further partitioning to chained sibling sinks s1 and s2, respectively.
Assume the chain token is owned by s1.

In the fork/join model, t1 will be executed directly by p. In the
producer/consumer model, t1 is guaranteed to be executed by either p
or by a free worker f . In both cases, t1 is completed without suspending
the executing process and the token will be passed on from s1 to s2.

If t2 was not stolen or adopted by a second worker w before p joins t2
after completion of t1, p will execute t2 itself without being suspended.
Thereafter, the token will be owned by s2’s right sibling in the fork tree.

If t2, however, was assigned to a parallel worker w, three constellations
may occur:

a) If s2 receives the token before w calls end() on s2, any pending and
all further incoming tuples will be processed by w itself and t2 is
completed without suspending w. The token will be propagated to
s2’s right sibling.

b) If w calls end() on s2 before the token is received and sufficient buffer
memory is available, t2 is completed by w, but any pending tuples
are left behind at s2. They will be taken care of when the process
that executes t1 passes on the token over from s1 to s2. Thereafter,
this process will propagate the token to s2’s right sibling.

211

B. Suspend in Chained Sinks

c) If w calls end() on s2 before the token is received and available buffer
memory is insufficient, w is suspended. When s2 receives the token
from the process that executes t1, w is restarted and continues the
execution of t2 by processing all pending and all further incoming
tuples. At the end, w calls end() on s2 to finalize the sink, and the
token gets propagated to s2’s right sibling.

As shown, the token from s1 will be always propagated over the sib-
ling sink s2 to the next sink in the chain. As we know that always the
left-most sink starts with the token and is handled by a worker, we can
deduce by induction that at least one worker will always be active and
propagate the token. This property holds for the chained sinks at the
leaf level of any fork tree and because the left-to-right execution prece-
dence is guaranteed for all corresponding tasks, cyclic wait conditions
cannot occur.

212

C. Benchmark Queries

C.1. XMark

Q1

let $auction := doc("auction.xml") return
for $b in $auction/site/people/person[@id = "person0"]
return $b/name/text()

Q2

let $auction := doc("auction.xml") return
for $b in $auction/site/open_auctions/open_auction
return <increase>{$b/bidder[1]/increase/text()}</increase>

Q3

let $auction := doc("auction.xml")
return for $b in $auction/site/open_auctions/open_auction

where zero-or-one($b/bidder[1]/increase/text()) * 2
<= $b/bidder[last()]/increase/text()

return
<increase
first="{$b/bidder[1]/increase/text()}"
last="{$b/bidder[last()]/increase/text()}"/>

Q4

let $auction := doc("auction.xml") return
for $b in $auction/site/open_auctions/open_auction
where
some $pr1 in $b/bidder/personref[@person = "person20"],

$pr2 in $b/bidder/personref[@person = "person51"]
satisfies $pr1 << $pr2

return <history>{$b/reserve/text()}</history>

213

C. Benchmark Queries

Q5

let $auction := doc("auction.xml") return
count(

for $i in $auction/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

)

Q6

let $auction := doc("auction.xml") return
for $b in $auction//site/regions return count($b//item)

Q7

let $auction := doc("auction.xml") return
for $p in $auction/site
return

count($p//description) +
count($p//annotation) +
count($p//emailaddress)

Q8

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $a :=
for $t in $auction/site/closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t

return <item person="{$p/name/text()}">{count($a)}</item>

Q9

let $auction := doc("auction.xml") return
let $ca := $auction/site/closed_auctions/closed_auction return
let $ei := $auction/site/regions/europe/item
for $p in $auction/site/people/person
let $a :=
for $t in $ca
where $p/@id = $t/buyer/@person
return

let $n := for $t2 in $ei
where $t/itemref/@item = $t2/@id
return $t2

return <item>{$n/name/text()}</item>
return <person name="{$p/name/text()}">{$a}</person>

214

C.1. XMark

Q10

let $auction := doc("auction.xml") return
for $i in distinct-values($auction/site/people/person/

profile/interest/@category)
let $p :=
for $t in $auction/site/people/person
where $t/profile/interest/@category = $i
return
<personne>

<statistiques>
<sexe>{$t/profile/gender/text()}</sexe>
<age>{$t/profile/age/text()}</age>
<education>{$t/profile/education/text()}</education>
<revenu>{fn:data($t/profile/@income)}</revenu>

</statistiques>
<coordonnees>

<nom>{$t/name/text()}</nom>
<rue>{$t/address/street/text()}</rue>
<ville>{$t/address/city/text()}</ville>
<pays>{$t/address/country/text()}</pays>
<reseau>

<courrier>{$t/emailaddress/text()}</courrier>
<pagePerso>{$t/homepage/text()}</pagePerso>

</reseau>
</coordonnees>
<cartePaiement>{$t/creditcard/text()}</cartePaiement>

</personne>
return <categorie>{<id>{$i}</id>, $p}</categorie>

Q11

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $l :=
for $i in $auction/site/open_auctions/open_auction/initial
where $p/profile/@income > 5000 * exactly-one($i/text())
return $i

return <items name="{$p/name/text()}">{count($l)}</items>

215

C. Benchmark Queries

Q12

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $l :=
for $i in $auction/site/open_auctions/open_auction/initial
where $p/profile/@income > 5000 * exactly-one($i/text())
return $i

where $p/profile/@income > 50000
return <items person="{$p/profile/@income}">{count($l)}</items>

Q13

let $auction := doc("auction.xml") return
for $i in $auction/site/regions/australia/item
return <item name="{$i/name/text()}">{$i/description}</item>

Q14

let $auction := doc("auction.xml") return
for $i in $auction/site//item
where contains(string(exactly-one($i/description)), "gold")
return $i/name/text()

Q15

let $auction := doc("auction.xml") return
for $a in
$auction/site/closed_auctions/closed_auction/annotation/
description/parlist/listitem/parlist/listitem/text/
emph/keyword/text()

return <text>{$a}</text>

Q16

let $auction := doc("auction.xml") return
for $a in $auction/site/closed_auctions/closed_auction
where

not(
empty(

$a/annotation/description/parlist/listitem/
parlist/listitem/text/emph/keyword/text()

)
)

return <person id="{$a/seller/@person}"/>

216

C.1. XMark

Q17

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
where empty($p/homepage/text())
return <person name="{$p/name/text()}"/>

Q18

declare namespace local = "http://www.foobar.org";
declare function local:convert($v as xs:decimal?) as xs:decimal?
{
2.20371 * $v (: convert Dfl to Euro :)

};
let $auction := doc(’auction.xml’) return
for $i in $auction/site/open_auctions/open_auction
return local:convert(zero-or-one($i/reserve))

Q19

let $auction := doc("auction.xml") return
for $b in $auction/site/regions//item
let $k := $b/name/text()
order by zero-or-one($b/location) ascending
return <item name="{$k}">{$b/location/text()}</item>

217

C. Benchmark Queries

Q20

let $auction := doc("auction.xml") return
<result>

<preferred>
{count($auction/site/people/

person/profile[@income >= 100000])}
</preferred>
<standard>

{
count(

$auction/site/people/person/
profile[@income < 100000 and @income >= 30000]

)
}

</standard>
<challenge>

{count($auction/site/people/
person/profile[@income < 30000])}

</challenge>
<na>

{
count(

for $p in $auction/site/people/person
where empty($p/profile/@income)
return $p

)
}

</na>
</result>

218

C.2. TPCH

C.2. TPCH

Q2 (XQuery)

declare ordering unordered;
declare variable $schema-file external;
let $schema := rel:parse-schema($schema-file, (), ())
for $p in $schema=>part,

$s in $schema=>supplier,
$ps in $schema=>partsupp,
$n in $schema=>nation,
$r in $schema=>region

where $p=>p_partkey eq $ps=>ps_partkey
and $s=>s_suppkey eq $ps=>ps_suppkey
and $p=>p_size eq 15
and fn:ends-with($p=>p_type, ’BRASS’)
and $s=>s_nationkey eq $n=>n_nationkey
and $n=>n_regionkey eq $r=>r_regionkey
and $r=>r_name eq ’EUROPE’

let $supplycost :=
for $ps in $schema=>partsupp,

$s in $schema=>supplier,
$n in $schema=>nation,
$r in $schema=>region

where $p=>p_partkey eq $ps=>ps_partkey
and $s=>s_suppkey eq $ps=>ps_suppkey
and $s=>s_nationkey eq $n=>n_nationkey
and $n=>n_regionkey eq $r=>r_regionkey
and $r=>r_name eq ’EUROPE’

return $ps=>ps_supplycost
where $ps=>ps_supplycost eq min($supplycost)
order by $s=>s_acctbal descending,

$n=>n_name, $s=>s_name, $p=>p_partkey
return
{
s_acctbal : $s=>s_acctbal,
s_name : $s=>s_name,
n_name : $n=>n_name,
p_partkey : $p=>p_partkey,
p_mfgr : $p=>p_mfgr,
s_address : $s=>s_address,
s_phone : $s=>s_phone,
s_comment : $s=>s_comment

}

219

C. Benchmark Queries

Q2 (SQL)

SELECT s_acctbal, s_name, n_name, p_partkey,
p_mfgr, s_address, s_phone, s_comment

FROM part, supplier, partsupp, nation, region
WHERE p_partkey = ps_partkey

AND s_suppkey = ps_suppkey
AND p_size = 15
AND p_type LIKE ’%BRASS’
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ’EUROPE’
AND ps_supplycost = (

SELECT min(ps_supplycost)
FROM partsupp, supplier,

nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ’EUROPE’

)
ORDER BY s_acctbal DESC,

n_name, s_name, p_partkey
FETCH FIRST 100 ROWS ONLY

Q6 (XQuery)

declare ordering unordered;
declare variable $schema-file external;
let $schema := rel:parse-schema($schema-file, (), ())
for $l in $schema=>lineitem
where $l=>l_discount le 0.07

and $l=>l_discount ge 0.05
and $l=>l_shipdate ge xs:date("1994-01-01")
and $l=>l_shipdate lt xs:date("1994-01-01") +

xs:yearMonthDuration("P1Y")
and $l=>l_quantity lt 24

let $revenue := $l=>l_extendedprice * $l=>l_discount
group by *
return

{ revenue : sum($revenue) }

220

C.2. TPCH

Q6 (SQL)

SELECT sum(l_extendedprice * l_discount) AS revenue
FROM lineitem
WHERE l_shipdate >= date (’1994-01-01’)
AND l_shipdate < date (’1994-01-01’) + 1 year
AND l_discount between .06 - 0.01 and .06 + 0.01
AND l_quantity < 24

221

C. Benchmark Queries

C.3. TPoX

Filter query (sequential)

declare default
element namespace "http://tpox-benchmark.com/custacc";

for $xml in
(bit:partition min=50 max=50 queue=6)
{ tpox:read-batch(’batch-1.xml’) }

let $customer := bit:parse($xml)/Customer
let $balance := (

for $account in $customer/Accounts/Account
let $obalance := $account/Balance/OnlineActualBal
where $obalance > 900000

and $account/Currency = "EUR"
and ($customer/Nationality = "Greece"

or $customer/Nationality = "Germany")
return $obalance

)
where not(empty($balance))
return
<premium_customer id="{$customer/@id}">

<name>{$customer/ShortNames/ShortName/text()}</name>
<balance>{max($balance)}</balance>
<nationality>{$customer/Nationality/text()}</nationality>

</premium_customer>

Note:
The divide-and-conquer versions of the above and the following queries
differ solely in the input function used. The divide-and-conquer versions
read batches with the function tpox:read-batch-parallel().

222

C.3. TPoX

Filter query (sequential, expensive binding)

declare default
element namespace "http://tpox-benchmark.com/custacc";

for $doc in
(bit:partition min=50 max=50 queue=6)
{ tpox:parse-batch(’batch-1.xml’) }

let $customer := $doc/Customer
let $balance := (

for $account in $customer/Accounts/Account
let $obalance := $account/Balance/OnlineActualBal
where $obalance > 900000

and $account/Currency = "EUR"
and ($customer/Nationality = "Greece"

or $customer/Nationality = "Germany")
return $obalance

)
where not(empty($balance))
return
<premium_customer id="{$customer/@id}">

<name>{$customer/ShortNames/ShortName/text()}</name>
<balance>{max($balance)}</balance>
<nationality>{$customer/Nationality/text()}</nationality>

</premium_customer>

223

C. Benchmark Queries

Filter query (sequential, multiple batches)

declare default
element namespace "http://tpox-benchmark.com/custacc";

declare variable $count external;
for $batch in (1 to $count)
for $xml in

(bit:partition min=50 max=50 queue=6)
{ tpox:read-batch(concat(’batch-’, $batch, ’.xml’)) }

let $customer := bit:parse($xml)/Customer
let $balance := (

for $account in $customer/Accounts/Account
let $obalance := $account/Balance/OnlineActualBal
where $obalance > 900000

and $account/Currency = "EUR"
and ($customer/Nationality = "Greece"

or $customer/Nationality = "Germany")
return $obalance

)
where not(empty($balance))
return
<premium_customer id="{$customer/@id}">

<name>{$customer/ShortNames/ShortName/text()}</name>
<balance>{max($balance)}</balance>
<nationality>{$customer/Nationality/text()}</nationality>

</premium_customer>

Group query (sequential)

declare default
element namespace "http://tpox-benchmark.com/custacc";

for $xml in
(bit:partition min=50 max=50 queue=6)
{ tpox:read-batch(’custacc/batch-1.xml’) }

let $customer := bit:parse($xml)/Customer
where $customer/Accounts/Account/Balance/

OnlineActualBal > 500000
let $nationality := $customer/Nationality
group by $nationality
return
<nation>

<name>{$nationality}</name>
<count>{count($customer)}</count>

</nation>

224

C.3. TPoX

Group query (sequential, multiple batches)

declare default
element namespace "http://tpox-benchmark.com/custacc";

declare variable $count external;
for $batch in (1 to $count)
for $xml in

(bit:partition min=50 max=50 queue=6)
{ tpox:read-batch(concat(’custacc/batch-’, $batch, ’.xml’) }

let $customer := bit:parse($xml)/Customer
where $customer/Accounts/Account/Balance/

OnlineActualBal > 500000
let $nationality := $customer/Nationality
group by $nationality
return
<nation>
<name>{$nationality}</name>
<count>{count($customer)}</count>

</nation>

Join query (sequential)

declare default
element namespace "http://www.fixprotocol.org/FIXML-4-4";

declare namespace c="http://tpox-benchmark.com/custacc";
for $ordxml in

(bit:partition min=50 max=50 queue=6)
{ tpox:read-batch(’order/batch-1.xml’) }

let $ord := bit:parse($ordxml)/FIXML/Order
for $custxml in

(bit:partition min=50 max=50)
{ tpox:read-batch(’custacc/batch-1.xml’) }

let $cust := bit:parse($custxml)/c:Customer
where $ord/OrdQty/@Cash>3000

and $cust/c:CountryOfResidence = "Germany"
and $cust/c:Accounts/c:Account/@id = $ord/@Acct/fn:string(.)

return $cust

225

226

Bibliography

[ABD+89] Malcolm Atkinson, François Bancilhon, David DeWitt,
Klaus Dittrich, David Maier, and Stanley Zdonik. The
Object-Oriented Database System Manifesto. 1989.

[Abi97] Serge Abiteboul. Querying Semi-structured Data. In Proc.
ICDE, LNCS, vol. 1186, Springer, 1997, pp. 1–18.

[AG08] Renzo Angles and Claudio Gutierrez. Survey of Graph
Database Models. ACM Computing Surveys, 40(1):1–39,
February 2008.

[Amd67] Gene M. Amdahl. Validity of the Single Processor Ap-
proach to Achieving Large Scale Computing Capabilities.
In Proc. AFIPS (Spring), vol. 30, 1967, pp. 483–485.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason Mchugh, Jennifer
Widom, and Janet Wiener. The Lorel Query Language
for Semistructured Data. International Journal on Digital
Libraries, 1:68–88, 1997.

[ASS85] Harold Abelson, Gerald Jay Sussman, and Julie Sussman.
Structure and Interpretation of Computer Programs, MIT
Press, Cambridge, MA, 1985.

[BAC+90] Haran. Boral, William. Alexander, Larry. Clay, George.
Copeland, Scott. Danforth, Michael. Franklin, Brian. Hart,
Marc. Smith, and Patrick. Valduriez. Prototyping Bubba, A
Highly Parallel Database System. IEEE Trans. on Knowl.
and Data Eng., 2(1):4–24, March 1990.

[BAS] BaseX XML Database.
http://basex.org.

227

http://basex.org

Bibliography

[Bat88] Don S. Batory. Concepts for a Database System Compiler.
In Proc. PODS, 1988, pp. 184–192.

[BBB+09] Roger Bamford, Vinayak R. Borkar, Matthias Brantner,
Peter M. Fischer, Daniela Florescu, David A. Graf, Don-
ald Kossmann, Tim Kraska, Dan Muresan, Sorin Nasoi,
and Markos Zacharioudaki. XQuery Reloaded. PVLDB,
2(2):1342–1353, 2009.

[BBG+88] D. S. Batory, J.R. Barnett, J.F. Garza, K.P. Smith,
K. Tsukuda, B.C. Twichell, and T.E. Wise. GENESIS: An
Extensible Database Management System. IEEE Transac-
tions on Software Engineering, 14(11):1711 –1730, 1988.

[BEG+11] Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey
Balmin, Mohamed Y. Eltabakh, Carl-Christian Kanne,
Fatma Özcan, and Eugene J. Shekita. Jaql: A Scripting
Language for Large Scale Semistructured Data Analysis.
PVLDB, 1272–1283, 2011.

[BFG+06] Peter Boncz, Jan Flokstra, Torsten Grust, Maurice van
Keulen, Stefan Manegold, Sjoerd Mullender, Jan Rittinger,
and Jens Teubner. MonetDB/XQuery - Consistent & Ef-
ficient Updates on the Pre/Post Plane. In Proc. EDBT,
2006, pp. 1190–1193.

[BFS00] Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL:
A Query Language and Algebra for Semistructured Data
Based on Structural Recursion. VLDB Journal, 9(1):76–
110, March 2000.

[BGvK+05] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan
Manegold, Jan Rittinger, and Jens Teubner. Pathfinder:
XQuery—the relational way. In Proc. VLDB, 2005,
pp. 1322–1325.

[BGvK+06] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan
Manegold, Jan Rittinger, and Jens Teubner. MonetDB/X-
Query: A fast XQuery Processor Powered by a Relational
Engine. In Proc. SIGMOD, 2006, pp. 479–490.

228

Bibliography

[BHKM05] Matthias Brantner, Sven Helmer, Carl-Christian Kanne,
and Guido Moerkotte. Full-fledged Algebraic XPath Pro-
cessing in Natix. In Proc. ICDE, 2005, pp. 705–716.

[BK99] Peter A. Boncz and Martin L. Kersten. MIL Primitives for
Querying a Fragmented World. VLDB Journal, 8(2):101–
119, October 1999.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holis-
tic Twig Joins: Optimal XML Pattern Matching. In Proc.
SIGMOD, 2002, pp. 310–321.

[BL94] Robert D. Blumofe and Charles E. Leiserson. Scheduling
Multithreaded Computations by Work Stealing. In Proc.
FOCS, 1994, pp. 356–368.

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Lim-
soon Wong. Principles of Programming with Complex Ob-
jects and Collection Types. Theoretical Computer Science,
149:3–48, 1995.

[BT99] Catriel Beeri and Yariv Tzaban. SAL: An Algebra for
Semistructured Data and XML. In Informal Proc. SIG-
MOD Workshop on The Web and Databases, 1999, pp. 37–
42.

[Bun97] Peter Buneman. Semistructured Data. In Proc. PODS,
1997, pp. 117–121.

[CD88] Michael J. Carey and David J. DeWitt. A Data Model and
Query Language for EXODUS. In Proc. SIGMOD, 1988,
pp. 413–423.

[CDG+90] Michael J. Carey, David J. Dewitt, Goetz Graefe, David M.
Haight, Joel E. Richardson, Daniel T. Schuh, Eugene J.
Shekita, and Scott L. V. The EXODUS Extensible DBMS
Project: An Overview. In Readings in Object-Oriented
Database Systems, Morgan Kaufmann, 1990, pp. 474–499.

[CFG02] Giovanni Conforti, Orlando Ferrara, and Giorgio Ghelli.
TQL Algebra and its Implementation. In Proc. IFIP, 2002,
pp. 422–434.

229

Bibliography

[CG04] Luca Cardelli and Giorgio Ghelli. TQL: A Query Lan-
guage for Semistructured Data Based on the Ambient Logic.
Mathematical Structures in Computer Science, 14(3):285–
327, 2004.

[CH90] Michael Carey and Laura Haas. Extensible Database Man-
agement Systems. SIGMOD Record, 19(4):54–60, Decem-
ber 1990.

[CHS+95] Michael J. Carey, Laura M. Haas, Peter M. Schwarz, Man-
ish Arya, William F. Cody, Ronald Fagin, John Thomas,
John H, and Edward L. Wimmers. Towards Heterogeneous
Multimedia Information Systems: The Garlic Approach. In
Proc. RIDE Workshop DOM, 1995, pp. 124–131.

[CL05] David Chase and Yossi Lev. Dynamic Circular Work-
stealing Deque. In Proc. SPAA, 2005, pp. 21–28.

[CLWY06] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yal-
lop. Links: Web Programming Without Tiers. In Proc.
FMCO, Springer, 2006.

[CM94] Sophie Cluet and Guido Moerkotte. Nested Queries in Ob-
ject Bases. In Proc. DBPL, 1994, pp. 226–242.

[Cod70] Edgar F. Codd. A Relational Model of Data for Large
Shared Data Banks. Communications of the ACM,
13(6):377–387, 1970.

[Cod80] Edgar F. Codd. Data Models in Database Management. In
Proc. SIGMOD Workshop on Data Abstraction, Databases
and Conceptual Modelling, vol. 11, 1980, pp. 112–114.

[Cod90] Edgar F. Codd. The Relational Model for Database Man-
agement: Version 2, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1990.

[Coo97] Richard Cooper. Object Databases: An ODMG Approach,
Database Technology Series, International Thomson Com-
puter Press, 1997.

230

Bibliography

[Cro06] Douglas Crockford. The application/json Media Type for
JavaScript Object Notation (JSON). July 2006, RFC 4627
(Informational).

[DG92] David J. Dewitt and Jim Gray. Parallel Database Systems:
The Future of High-performance Database Systems. Com-
munications of the ACM, 35:85–98, 1992.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simpli-
fied Data Processing on Large Clusters. Communications
of the ACM, 51(1):107–113, January 2008.

[Dit86] Klaus R. Dittrich. Object-oriented Database Systems (ex-
tended abstract): The Notions and the Issues. In Proc.
OODBS, 1986, pp. 2–4.

[DV92] Scott Danforth and Patrick Valduriez. A FAD for Data
Intensive Applications. IEEE Trans. on Knowl. and Data
Eng., 4(1):34–51, February 1992.

[Feg98] Leonidas Fegaras. Query Unnesting in Object-oriented
Databases. In Proc. SIGMOD, 1998, pp. 49–60.

[FGK06] Andrey Fomichev, Maxim Grinev, and Sergey Kuznetsov.
Sedna: A Native XML DBMS. In Proc. SOFSEM, 2006,
pp. 272–281.

[FHM+05] Mary Fernández, Jan Hidders, Philippe Michiels, Jérôme
Siméon, and Roel Vercammen. Optimizing Sorting and Du-
plicate Elimination in XQuery Path Expressions. In Proc.
DEXA, 2005, pp. 554–563.

[FLM98] Daniela Florescu, Alon Levy, and Alberto Mendelzon.
Database Techniques for the World-Wide Web: A Survey.
SIGMOD Record, 27:59–74, 1998.

[Flo99] Daniela Florescu. Query Optimization in the Presence of
Limited Access Patterns. In Proc. SIGMOD, 1999, pp. 311–
322.

231

Bibliography

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.
The Implementation of the Cilk-5 Multithreaded Language.
In Proc. SIGPLAN, vol. 33, 1998, pp. 212–223.

[FSW00] Mary Fernandez, Jerome Simeon, and Philip Wadler. An
Algebra for XML Query. Proc. FST TCS 2000, LNCS, vol.
1974, 2000, pp. 11–45.

[GGSW11] George Giorgidze, Torsten Grust, Nils Schweinsberg, and
Jeroen Weijers. Bringing Back Monad Comprehensions. In
Proc. ACM Symposium on Haskell, 2011, pp. 13–22.

[GMR09] Torsten Grust, Manuel Mayr, and Jan Rittinger. XQuery
Join Graph Isolation: Celebrating 30+ Years of XQuery
Processing Technology. In Proc. ICDE, 2009, pp. 1167–
1170.

[GMRS09] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom
Schreiber. FERRY: Database-supported Program Execu-
tion. In Proc. SIGMOD, 2009, pp. 1063–1066.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques, Morgan Kaufmann, 1993.

[Gra94] Goetz Graefe. Volcano: An Extensible and Parallel Query
Evaluation System. IEEE Trans. on Knowl. and Data Eng.,
6(1):120–135, February 1994.

[GRT08] Torsten Grust, Jan Rittinger, and Jens Teubner.
Pathfinder: XQuery Off the Relational Shelf. IEEE Data
Eng. Bull., 31(4):7–14, 2008.

[Gru99] Torsten Grust. Comprehending Queries. Tech. report,
1999.

[Grü10] Christian Grün. Storing and Querying Large XML In-
stances. Ph.D. thesis, University of Konstanz, Konstanz,
2010.

[Gus88] John L. Gustafson. Reevaluating Amdahl’s Law. Commu-
nications of the ACM, 31:532–533, 1988.

232

Bibliography

[GvKT03] Torsten Grust, Maurice van Keulen, and Jens Teubner.
Staircase Join: Teach a Relational DBMS to Watch Its
(Axis) Steps. In Proc. VLDB, 2003, pp. 524–535.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling
Query Formulation and Optimization in Semistructured
Databases. In Proc. VLDB, 1997, pp. 436–445.

[Gü89] Ralf Hartmut Güting. Gral: An Extensible Relational
Database System for Geometric Applications. In Proc.
VLDB, 1989, pp. 33–44.

[HFLP89] Laura M. Haas, Johann-Christoph Freytag, Guy M.
Lohman, and Hamid Pirahesh. Extensible Query Process-
ing in Starburst. SIGMOD Record, 18(2):377–388, 1989.

[HHMW05] Michael Peter Haustein, Theo Härder, Christian Mathis,
and Markus Wagner. DeweyIDs - The Key to Fine-Grained
Management of XML Documents. In Proc. SBBD, 2005,
pp. 85–99.

[HHMW07] Theo Härder, Michael Peter Haustein, Christian Mathis,
and Markus Wagner. Node Labeling Schemes for Dynamic
XML Documents Reconsidered. Data & Knowledge Engi-
neering, 60(1):126–149, 2007.

[HS02] Danny Hendler and Nir Shavit. Non-blocking Steal-half
Work Queues. In Proc. PODC, 2002, pp. 280–289.

[Hut99] Graham Hutton. A Tutorial on the Universality and Ex-
pressiveness of Fold. Journal of Functional Programming,
9(4):355–372, July 1999.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and
Dennis Fetterly. Dryad: Distributed Data-parallel Pro-
grams from Sequential Building Blocks. Proc. SIGOPS,
41(3):59–72, 2007.

[JLST02] H. Jagadish, Laks Lakshmanan, Divesh Srivastava, and
Keith Thompson. TAX: A Tree Algebra for XML. Proc.
DBPL, LNCS, vol. 2397, Springer, 2002, pp. 149–164.

233

Bibliography

[JS82] Gerhard Jaeschke and Hans-Jörg Schek. Remarks on the
Algebra of Non-first Normal Form Relations. In Proc.
PODS, 1982, pp. 124–138.

[JW07] Simon Peyton Jones and Philip Wadler. Comprehen-
sive Comprehensions. In Proc. SIGPLAN Workshop on
Haskell, 2007, pp. 61–72.

[KA02] Ken Kennedy and John R. Allen. Optimizing Compilers
for Modern Architectures: A Dependence-based Approach,
Morgan Kaufmann, San Francisco, CA, USA, 2002.

[Kay08] Michael Kay. Ten Reasons Why Saxon XQuery is Fast.
IEEE Data Eng. Bull., 31(4):65–74, 2008.

[Klu82] Anthony Klug. Equivalence of Relational Algebra and Re-
lational Calculus Query Languages Having Aggregate Func-
tions. ACM Journal, 29(3):699–717, July 1982.

[KM94] Alfons Kemper and Guido Moerkotte. Object-oriented
Database Management: Applications in Engineering and
Computer Science, Prentice-Hall, Inc., 1994.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis Transformation.
In Proc. CGO, 2004, pp. 75–86.

[Lea00] Doug Lea. A Java Fork/Join Framework. In Proceedings
ACM Java Grande, 2000, pp. 36–43.

[Lie87] Henry Lieberman. Object-oriented Concurrent Program-
ming. MIT Press, Cambridge, MA, USA, 1987, pp. 9–36.

[LKA05] Zhen Hua Liu, Muralidhar Krishnaprasad, and Vikas
Arora. Native XQuery Processing in Oracle XMLDB. In
Proc. SIGMOD, 2005, pp. 828–833.

[LR89] Christophe Lécluse and Philippe Richard. The O2
Database Programming Language. In Proc. VLDB, 1989,
pp. 423–432.

234

Bibliography

[LS88] Barbara Liskov and Luiba Shrira. Promises: Linguistic
Support for Efficient Asynchronous Procedure Calls in Dis-
tributed Systems. SIGPLAN Not., 23(7):260–267, jun 1988.

[MAG+97] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallas
Quass, and Jennifer Widom. Lore: A Database Manage-
ment System for Semistructured Data. SIGMOD Record,
26(3):54–66, September 1997.

[Mat09] Christian Mathis. Storing, Indexing, and Querying XML
Documents in Native Database Management Systems.
Ph.D. thesis, University of Kaiserslautern, July 2009.

[MBB06] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ:
Reconciling Object, Relations and XML in the .NET
Framework. In Proc. SIGMOD, 2006, pp. 706–706.

[Mei07] Erik Meijer. Confessions of a Used Programming Language
Salesman. SIGPLAN Not., 42(10):677–694, October 2007.

[Mei09] Wolfgang Meier. eXist: An Open Source Native XML
Database. In Proc. Web, Web-Services, and Database Sys-
tems, 2009, pp. 169–183.

[MHM04] Norman May, Sven Helmer, and Guido Moerkotte. Nested
Queries and Quantifiers in an Ordered Context. In Proc.
ICDE, 2004, pp. 239–250.

[MHS09] Christian Mathis, Theo Härder, and Karsten Schmidt.
Storing and Indexing XML Documents Upside Down. Com-
puter Science - R&D, 24(1-2):51–68, 2009.

[MHSB12] Christian Mathis, Theo Härder, Karsten Schmidt, and Se-
bastian Bächle. XML Indexing and Storage: Fulfilling the
Wish List. Computer Science - R&D, 27(2), 6 2012.

[MXQ] MXQuery XQuery Processor.
http://http://mxquery.org.

[NKS07] Matthias Nicola, Irina Kogan, and Berni Schiefer. An XML
Transaction Processing Benchmark. In Proc. SIGMOD,
2007, pp. 937–948.

235

http://http://mxquery.org

Bibliography

[NvdL05] Matthias Nicola and Bert van der Linden. Native XML
Support in DB2 Universal Database. In Proc. VLDB, 2005,
pp. 1164–1174.

[OBBt89] Atsushi Ohori, Peter Buneman, and Val Breazu-tannen.
Database Programming in Machiavelli, A Polymorphic
Language with Static Type Inference. 1989, pp. 46–57.

[OO83] Zehra Meral Özsoyoglu and Gultekin Özsoyoglu. An Ex-
tension of Relational Algebra for Summary Tables. In Proc.
SSDBM, 1983, pp. 202–211.

[OOP+04] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Ist-
van Cseri, Gideon Schaller, and Nigel Westbury. ORD-
PATHs: Insert-Friendly XML Node Labels. In Proc. SIG-
MOD, 2004, pp. 903–908.

[ORS+08] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins. Pig Latin: A Not-so-
foreign Language for Data Processing. In Proc. SIGMOD,
2008, pp. 1099–1110.

[ÖSW08] Fatma Özcan, Normen Seemann, and Ling Wang. XQuery
Rewrite Optimization in IBM DB2 pureXML. IEEE Data
Eng. Bull., 31(4):25–32, 2008.

[PGmW95] Yannis Papakonstantinou, Hector Garcia-molina, and Jen-
nifer Widom. Object Exchange Across Heterogeneous In-
formation Sources. In Proc. ICDE, 1995, pp. 251–260.

[PK87] Constantine D. Polychronopoulos and David J. Kuck.
Guided Self-Scheduling: A Practical Scheduling Scheme for
Parallel Supercomputers. IEEE Transactions on Comput-
ers, C-36(12):1425 –1439, dec. 1987.

[PL92] Simon L. Peyton Jones and David R. Lester. Implementing
Functional Languages: A Tutorial, Prentice Hall, 1992.

[Pol88] Constantine D. Polychronopoulos. Parallel Programming
and Compilers, Kluwer Academic Publishers, Norwell,
MA, USA, 1988.

236

Bibliography

[QEX] Qexo XQuery Processor.
http://www.gnu.org/software/qexo.

[QIZ] Qizx XQuery Processor.
http://www.xmlmind.com/qizx.

[RAH+96] Mary Tork Roth, Manish Arya, Laura M. Haas, Michael
Carey, F. William Cody, Ronald Fagin, Peter M. Schwarz,
Joachim Thomas, and Edward L. Wimmers. The Garlic
Project. In Proc. SIGMOD, 1996, p. 557.

[RCF00] Jonathan Robie, Don Chamberlin, and Daniela
Florescu. Quilt: an XML Query Language.
2000, http://www.almaden.ibm.com/cs/people/

chamberlin/quilt_euro.html.

[Rei07] James Reinders. Intel Threading Building Blocks, O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2007.

[Rey72] John C. Reynolds. Definitional Interpreters for Higher-
order Programming Languages. In Proc. ACM Conference
- Volume 2, 1972, pp. 717–740.

[RKS88] Mark A. Roth, Herry F. Korth, and Abraham Silber-
schatz. Extended Algebra and Calculus for Nested Rela-
tional Databases. ACM Transactions on Database Systems,
13(4):389–417, October 1988.

[RS87] Lawrence A. Rowe and Michael Stonebraker. The POST-
GRES Data Model. In Proc. VLDB, 1987, pp. 83–96.

[RSF06] Christopher Re, Jérôme Siméon, and Mary F. Fernández.
A Complete and Efficient Algebraic Compiler for XQuery.
In Proc. ICDE, 2006, p. 14.

[Rys05] Michael Rys. XML and Relational Database Management
Systems: Inside Microsoft SQL Server 2005. In Proc. SIG-
MOD, 2005, pp. 958–962.

[SA02] Carlo Sartiani and Antonio Albano. Yet Another Query
Algebra for XML Data. In Proc. IDEAS, 2002, pp. 106–
115.

237

http://www.gnu.org/software/qexo
http://www.xmlmind.com/qizx
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.html
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.html

Bibliography

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Don D. Cham-
berlin, Raymond A. Lorie, and Thomas G. Price. Access
Path Selection in a Relational Database Management Sys-
tem. In Proc. SIGMOD (New York, NY, USA), SIGMOD
’79, ACM, 1979, pp. 23–34.

[SJ75] Gerald Jay Sussman and Guy L Steele Jr. Scheme: An
Interpreter for Extended Lambda Calculus. In MEMO 349,
MIT AI LAB, 1975.

[SKS06] Abraham Silberschatz, Henry Korth, and S. Sudarshan.
Database Systems Concepts, 5 ed., McGraw-Hill, Inc., New
York, NY, USA, 2006.

[SLS06] William N. Scherer, III, Doug Lea, and Michael L. Scott.
Scalable Synchronous Queues. In Proc. PPoPP, 2006,
pp. 147–156.

[SM95] Michael Stonebraker and Dorothy Moore. Object Relational
DBMSs: The Next Great Wave, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1995.

[SPSW90] Hans-Jörg Schek, H.-Bernhard Paul, Marc. H. Scholl, and
Gerhard Weikum. The DASDBS Project: Objectives, Ex-
periences, and Future Prospects. IEEE Trans. on Knowl.
and Data Eng., 2(1):25–43, March 1990.

[SQL99] ANSI/ISO/IEC 9075-2:1999. Information Technology -
Database languages - SQL - Part 2: Foundation (SQL/-
Foundation). 1999.

[SQL03] ANSI/ISO/IEC 9075-2:2003. Information Technology -
Database languages - SQL - Part 2: Foundation (SQL/-
Foundation). 2003.

[SR92] Manojit Sarkar and Steve Reiss. A Data Model and A
Query Language for Object-Oriented Databases. Tech. re-
port, Providence, RI, USA, 1992.

[SRH90] Michael Stonebraker, Lawrence A. Rowe, and Michael Hi-
rohama. The Implementation of POSTGRES. IEEE Trans.
on Knowl. and Data Eng., 2(1):125–142, March 1990.

238

Bibliography

[STL11] Robert J. Stewart, Phil W. Trinder, and Hans-Wolfgang
Loidl. Comparing High-level Mapreduce Query Languages.
In Proc. APPT, 2011, pp. 58–72.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin Kersten,
Michael J. Carey, Ioana Manolescu, and Ralph Busse.
XMark: A Benchmark for XML Data Management. In
Proc. VLDB, 2002, pp. 974–985.

[TCBV10] Alexandros Tzannes, George C. Caragea, Rajeev Barua,
and Uzi Vishkin. Lazy Binary-splitting: A Run-time Adap-
tive Work-stealing Scheduler. In Proc. SIGPLAN PPoPP,
2010, pp. 179–190.

[TPC12] Transaction Processing Performance Council TPC. TPC
Benchmark H (Decision Support), Standard Specification,
Revision 2.14.4. 2012.

[TW89] Phil Trinder and Philip Wadler. Improving List Com-
prehension Database Queries. In Proc. TENCON, 1989,
pp. 186–192.

[Tü03] Can Türker. SQL:1999 & SQL:2003 - Objektrelationales
SQL, SQLJ & SQL/XML. 2003.

[VB96] Emilia E. Villarreal and Don S. Batory. Rosetta: A Gen-
erator of Data Language Compilers. In Proc. Symposium
on Software Reuse, 1996.

[VXQ] VXQuery XQuery Processor.
http://incubator.apache.org/vxquery.

[W3C98a] W3C. Document Object Model (DOM) Level 1 Specifica-
tion Version 1.0 – W3C Recommendation 1 October, 1998.
1998, http://www.w3.org/TR/REC-DOM-Level-1.

[W3C98b] W3C. XML-QL: A Query Language for XML – Submission
to the World Wide Web Consortium 19. August 1998. 1998,
http://www.w3.org/TR/NOTE-xml-ql.

[W3C98c] W3C. XML Query Language (XQL). 1998,
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

239

http://incubator.apache.org/vxquery
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/NOTE-xml-ql
http://www.w3.org/TandS/QL/QL98/pp/xql.html

Bibliography

[W3C99] W3C. XML Path Language (XPath) Version 1.0 – W3C
Recommendation 16 November 1999. 1999,
http://www.w3.org/TR/xpath.

[W3C04a] W3C. XML Information Set (Second Edition) – W3C Rec-
ommendation 4 February 2004. 2004,
http://www.w3.org/TR/xml-infoset.

[W3C04b] W3C. XML Schema Part 0: Primer Second Edition – W3C
Recommendation 28 October 2004. 2004,
http://www.w3.org/TR/xmlschema-0.

[W3C06a] W3C. Extensible Markup Language (XML) 1.1 (Second
Edition) – W3C Recommendation 16 August 2006, edited
in place 29 September 2006. 2006,
http://www.w3.org/TR/xml11.

[W3C06b] W3C. XQuery Update Facility – W3C Working Draft 11
July 2006. 2006,
http://www.w3.org/TR/xqupdate.

[W3C07] W3C. XML Path Language (XPath) 2.0 W3C Recommen-
dation 23 January 2007. 2007,
http://www.w3.org/TR/xpath20.

[W3C09] W3C. Namespaces in XML 1.0 (Third Edition) – W3C
Recommendation 8 December 2009. 2009,
http://www.w3.org/TR/xml-names.

[W3C10a] W3C. XQuery 1.0: An XML Query Language (Second
Edition) – W3C Recommendation 14 December 2010. 2010,
http://www.w3.org/TR/xquery.

[W3C10b] W3C. XQuery 1.0 and XPath 2.0 Formal Semantics. 2010,
http://www.w3.org/TR/xquery-semantics.

[W3C10c] W3C. XQuery 3.0: An XML Query Language. 2010,
http://www.w3.org/TR/xquery-30.

[W3C10d] W3C. XQuery Scripting Extension 1.0 – W3C Working
Draft 8 April 2010. 2010,
http://www.w3.org/TR/xquery-sx-10.

240

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xml11
http://www.w3.org/TR/xqupdate
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xml-names
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery-semantics
http://www.w3.org/TR/xquery-30
http://www.w3.org/TR/xquery-sx-10

Bibliography

[W3C11a] W3C. XPath and XQuery Functions and Operators 3.0 –
W3C Working Draft 13 December 2011. 2011,
http://www.w3.org/TR/xpath-functions-30.

[W3C11b] W3C. XQuery and XPath Data Model 3.0 – W3C Working
Draft 13 December 2011. 2011,
http://www.w3.org/TR/xpath-datamodel-30.

[W3C11c] W3C. XSLT and XQuery Serialization 3.0 – W3C
Working Draft 13 December 2011. 2011,
http://www.w3.org/TR/xslt-xquery-serialization-30.

[Wad90] Philip Wadler. Comprehending Monads. In Proc. LFP,
1990, pp. 61–78.

[WB87] Michael Wolfe and Utpal Banerjee. Data Dependence
and its Application to Parallel Processing. Interna-
tional Journal of Parallel Programming, 16:137–178, 1987.
10.1007/BF01379099.

[Weg87] Peter Wegner. Dimensions of Object-based Language De-
sign. SIGPLAN Not., 22(12):168–182, December 1987.

[Whi09] Tom White. Hadoop: The Definitive Guide, O’Reilly Me-
dia, 2009.

[Won98] Limsoon Wong. Kleisli, a Functional Query System. Jour-
nal of Functional Programming, 10, 1998.

[Woo12] Peter T. Wood. Query Languages for Graph Databases.
SIGMOD Record, 41(1):50–60, April 2012.

[XQI] XQilla XQuery Processor.
http://xqilla.sourceforge.net.

241

http://www.w3.org/TR/xpath-functions-30
http://www.w3.org/TR/xpath-datamodel-30
http://www.w3.org/TR/xslt-xquery-serialization-30
http://xqilla.sourceforge.net

242

Lebenslauf

Persönliche Daten

Name Sebastian Bächle

Geburtsdatum 11. November 1981

Geburtsort Zweibrücken

Familienstand verheiratet

Schulbildung

1988 -1992 Grundschule Kirrberg, Homburg (Saar)

1992 - 2001 Saarpfalz Gymnasium Homburg, Homburg (Saar)

06/2001 Abitur

Zivildienst

08/2001 - 06/2002 Rettungssanitäter,
Malteser Hilfsdienst, Homburg (Saar)

Studium

10/2002 - 08/2007 Angewandte Informatik, TU Kaiserslautern

08/2007 Erlangen des akademischen Grades Dipl.-Inf.

Berufstätigkeit

09/2007 - 08/2012 Wissenschaftlicher Mitarbeiter,
AG Datenbanken und Informationssysteme,
Fachbereich Informatik,
TU Kaiserslautern

seit 10/2012 Softwareentwickler,
SAP AG,
Walldorf

	Acknowledgements
	Introduction
	Language-supported Data Processing
	Motivation
	Contributions
	Limitations
	Outline

	Anatomy of a Data Programming Language
	Data Model
	Values
	Types and Schema

	Basic Language Features
	Composition and Decomposition of Data
	Core Operations
	Function Calls

	Bulk Processing
	Transformation and Filtering
	Sorting, Grouping, and Aggregation
	Joining and Combining
	Composition of Operators

	Data Manipulation
	Update Queries
	Immutability

	Runtime Aspects
	Evaluation Model
	Side Effects
	Error Handling

	Extended XQuery
	Data Model
	Items and Sequences
	Properties and Accessors
	Types
	Additional Concepts

	Expressions
	FLWOR Expressions
	Filter Expressions
	Path Expressions
	Quantified Expressions

	Evaluation Context
	Static Context
	Dynamic Context

	Scripting

	Hierarchical Query Plan Representation
	Requirements
	Query Representation
	Comprehensions
	AST-based Query Representation
	FLWOR Pipelines
	Runtime View

	Compiler Architecture
	Compilation Pipeline
	Plan Generation

	Pipeline Optimization
	Generalized Bind Operator
	Join Processing
	Join Recognition
	Pipeline Reshaping
	Join Groups

	Pipeline Lifting
	4-way Left Join
	Lifting Nested Joins

	Join Trees
	Aggregation

	Data Access Optimization
	Generic Data Access
	Storage-specific Data Access
	Native Operations
	Eager Value Coercion
	Path Processing

	Bulk Processing
	Twig Patterns
	Multi-bind Operator
	Indexes

	Parallel Operator Model
	Speedup vs. Scaleup
	Parallel Nested Loops
	Data Partitioning
	Task Scheduling

	Operator Sinks
	Parallel Data Flow Graphs
	Fan-Out Sinks
	Fan-in Sinks
	Join Sink

	Performance Considerations
	Partitioning
	Buffer Memory
	Process Management

	Evaluation
	Experimental Setup
	Main-memory Processing
	Workload
	Pipeline Optimization
	Competitors

	XML Database Processing
	Access Optimization
	Scalability
	Competitors

	Relational Data
	Workload
	Data Access Optimization
	Comparison with RDBMS

	Parallel Processing
	Workload
	Filter and Transform Query
	Group and Aggregate Query
	Join Query
	Scalability
	XMark Benchmark

	Evaluation Summary

	Related Work
	A Short History of Query Languages
	Related Languages and Data Models
	Lorel Query Language
	UnQL
	TQL
	Object Query Language (ODMG)
	Rule-based Object Query Language
	SQL:1999 and SQL:2003

	Data Processing Languages
	JSON and Jaql
	Pig Latin
	LinQ
	Database-backed Programming Languages

	Extensible Data Processing Platforms
	Compiler Infrastructures
	Database Languages

	XQuery Compiler
	Iterative Compilers
	Set-oriented Compilers

	Summary and Future Work
	Conclusions
	Outlook and Future Work

	Translation of Operator Pipelines
	Suspend in Chained Sinks
	Benchmark Queries
	XMark
	TPCH
	TPoX

	Bibliography

