
Towards an Energy-Proportional Storage System
using a Cluster of Wimpy Nodes

Daniel Schall, Theo Härder

Databases and Information Systems Group
University of Kaiserslautern, Germany
{schall,haerder}@cs.uni-kl.de

Abstract: Previous DB research clearly concluded that the most energy-efficient con-
figuration of a single-server DBMS is typically the highest performing one. This ob-
servation is certainly true if we focus in isolation on specific applications where the
DBMS can steadily run in the peak-performance range. Because we noticed that typ-
ical DBMS activity levels—or its average system utilization—are much lower and
that the energy use of single-server systems is far from being energy proportional, we
came up with the hypothesis that better energy efficiency may be achieved by a clus-
ter of nodes whose size is dynamically adjusted to the current workload demand. We
will show that energy proportionality of a storage system can be approximated using
a cluster of nodes, built of commodity hardware. To simulate data-intensive work-
loads, synthetic benchmarks submit read/write requests against a distributed DBMS
(WattDB) and, in turn, its HDD- and SSD-based storage system, where time and en-
ergy use are captured by specific monitoring and measurement devices. The cluster
dynamically adjusts its configuration such that energy consumption and performance
are tuned to fit the current workload. For each benchmark setting, an optimal number
of nodes is processing the queries in the most energy-efficient way, which does not
necessarily correspond to the best performing configuration. The chosen workload is
rather simple and primarily serves the purpose to deliver a proof of existence that en-
ergy proportionality can be approximated for certain kinds of query processing and,
especially, for storage systems.

1 Introduction

The need for more energy efficiency in all areas of IT gained interest in research recently
and ideas to increase the energy efficiency of stand-alone servers were proposed. Due to
their narrow power range [BH07], i.e., the power spectrum between idle and full utiliza-
tion, the goal of increased energy efficiency cannot be reached using todays hardware.
Besides reducing the energy consumption of servers, other ideas like improving the cool-
ing infrastructure and reducing its power consumption help reducing the energy footprint
of data centers, although they do not decrease the energy consumption at the server level.

The original problem—reducing the energy consumption of installed servers—leads to a
demand for energy-proportional hardware. Energy proportionality describes the ability of
a system to reduce its power consumption to the actual workload, i.e., a system, that is
utilized only 10% of its peak performance, must not consume more than 10% of its peak



power consumption. For specific applications, this goal can be approached by hardware-
intrinsic properties, e.g., CPUs automatically entering sleep states or hard disks spinning
down when idle. So far, automatically scaling systems down when idle—thus prevent-
ing high idle power consumption of todays servers—is the main focus of energy propor-
tionality. Unfortunately, current hardware is not energy proportional for data-intensive
applications as studies have shown (see [BH09]).

Several components such as CPUs are able to quickly change into sleep states, requiring
less energy, when idle. Other components, especially the two main energy consumers of
a DBMS, main memory and storage, exhibit bad energy characteristics. DRAM chips
consume a constant amount of power—regardless of their use—and it is not possible to
turn off unused memory chips in order to reduce energy consumption. Spinning down hard
disks when idle conflicts with long transition times and results in slow query evaluation.
For these reasons, such mechanisms are not very useful in case of DB applications where
reference locality of data in large main-memory-resident DB buffers has to be preserved
and low-latency accessibility of storage devices has to be guaranteed.

Todays servers are not energy efficient and approaches focusing on single machines can-
not achieve energy proportional behavior either. This conclusion shifted the research fo-
cus from single-node approaches to clusters of servers, which appear more promising.
Tsirogiannis et al. [THS10] observed in an extensive study based on empirical DBMS
measurements that “within a single node intended for use in scale-out (shared-nothing)
architectures, the most energy-efficient configuration is typically the highest performing
one”. In an independent study based on DBMS buffer management [OHS10], we came up
at the same time with a similar conclusion concerning performance and energy efficiency
of database systems and storage managers. Therefore, we want to improve energy effi-
ciency of a DBMS by enabling the software side to explicitly power up/down resources as
needed. Many clustered database systems exist, yet none has the ability to flexibly scale
up and down in order to save energy.

We have shown in [SHK12] that real-world workloads usually do not stress database sys-
tems 24/7 with peak loads. Instead, the workloads alternate in patterns between high and
near-idle utilization. But, database systems have to be tailored to the peak performance to
satisfy incoming queries and potential users, i. e., customers. Therefore, database servers
usually come with big DRAM buffers and a number of disks as external storage—both
components that consume a lot of energy. The majority of these resources is only needed
in rare time intervals to handle peak workloads. All other times, they lie waste, thereby
substantially decreasing the overall energy efficiency of the server. During times of un-
derutilization, overprovisioned components are not needed to satisfy the workload. By
adjusting the database systems to the current workload’s needs, i.e., making the system
energy proportional, energy consumption could be lowered while still allowing the maxi-
mum possible performance.

This paper is structured as follows: Section 2 sketches WattDB and explains the power
management algorithm. In Section 3, we describe the benchmarking model we used in
this paper and explain our measurement setup for performance and energy consumption,
before we discuss the results of our empirical benchmark runs in Section 4. Finally, we
conclude and give an outlook in Section 5.



2 The WattDB Approach

For the reasons outlined above, we raised the hypothesis whether or not overall energy-
efficiency optimization or energy-proportional system behavior could be better approached
by a cluster of DB servers and redirected our work towards this research goal [GHP+10].
Hence, we want to achieve optimal DBMS energy efficiency—independent of its level of
activity. For this purpose, we use a cluster of wimpy (lightweight) nodes, which can be
powered on and off individually, allowing the cluster to scale. By dynamically adjusting
the number of nodes in the cluster, the overall performance and energy consumption can
be tailored to the current workload.

Our research project [SH11] focused on approaching energy-proportional runtime behav-
ior for database management. So far, a commercially available DBMS does not exist,
which can dynamically support powering up and down the nodes of a server cluster. There-
fore, we have decided to build WattDB as a research prototype from scratch. The system is
still under development and does not yet provide a full-fledged query execution engine. By
providing limited querying capabilities and a primary-key index for tables, WattDB keeps
queries close to the data. For this reason, it is not necessary to ship data pages to remote
locations, which would burden the rather high network latency with each page read/write
request.

2.1 Cluster Hardware

The cluster hardware consists of identical nodes, interconnected by a Gigabit-Ethernet
switch. Each node is equipped with 2 GB of DRAM, an Intel Atom CPU D510 and (op-
tionally) two storage disks. The hardware components are chosen to balance processing
power and I/O bandwidth, making the nodes Amdahl-balanced [SBH+10]. All compo-
nents running at 100% utilization result in a peak power consumption of about 30 Watts,
hence they are ”wimpy”, compared to typical DB servers. This is the reason for choosing
commodity hardware which uses much less energy compared to server-grade components.
For example, main memory consumes∼2.5 Watts per DIMM module, whereas ECC mem-
ory, typically used in servers, consumes ∼10 Watts per DIMM. Likewise, our HDDs need
less power than high-performance drives, which makes them more energy efficient.

By choosing commodity hardware with limited data bandwidth, Ethernet wiring is suf-
ficient for interconnecting the nodes. Currently, we have up to ten nodes running in the
cluster. The nodes are connected to the same ethernet segment and can all communicate
with each other. The total power consumption of the cluster can be broken down to roughly
20 Watts for the backplane switch, connecting the nodes; another 23 Watts for each active
node, and 2.5 Watts for standby nodes. Fully utilized nodes (disks and CPU) consume
about 30 Watts, mostly accounted to the CPU, as the power consumption of the disk drives
is more or less steady. Replacing the magnetic storage disks with SSDs does not affect the
power consumption of the storage nodes.



Disk

Storage Node

Master Node

Disk Disk

Storage Node

Disk

Disk

Storage Node

Disk Disk

Storage Node

Disk

Disk

Storage Node

Disk

Processing Node

Figure 1: Overview of the cluster

2.2 Software

WattDB is a single-master DBMS, where one dedicated node accepts client connections,
distributes incoming queries and keeps metadata for all cluster nodes. This node is also re-
sponsible for controlling the power consumption of the cluster by turning nodes on and off.
The master is not processing queries, but distributing query plans and collecting results.
This decision was made to prevent interferences between query processing and mainte-
nance tasks on the master. Figure 1 sketches an exemplary cluster of seven nodes with the
master on top. The remaining nodes can be classified as either storage nodes or process-
ing nodes, whether they have disks attached or not. Storage nodes provide storage space
to the cluster and act as page servers for other nodes. Processing nodes are executing
queries by requesting pages from the storage devices, evaluating the content and writing
them back. These nodes also hold the DB buffer to mitigate latency and limited bandwidth
to the storage nodes. As mentioned, the query capabilities are still limited. The minimal
configuration of the cluster requires the master node, at least one processing node, and also
one storage node. It would be possible to allocate all three functions on a single physical
node, but we decided to keep them separate for easier debugging and analysis.

2.3 Database Functionality

WattDB is based on a hybrid storage architecture. At the hardware level, the database can
be considered as a shared-disk system; each processing node can access all storage disks
remotely by connecting to the corresponding node and requesting pages. Characterized
by its processing behavior, the shared-disk architecture is restricted to a logical shared-
nothing DBMS. Each processing node has limited access to the storage layer and may
only work on pages whose accessibility is previously defined by the master node. This re-
striction is enforced by the database software. By combining both approaches, shared disk
and shared nothing, WattDB gains the flexibility to re-assign pages to processing nodes
while avoiding synchronization cost that would come with a plain shared-disk architecture.

Database tables can span multiple processing nodes, each responsible for one of the table’s
partitions. Data is physically partitioned to the storage devices present, logical partitioning
is currently not supported. Therefore, queries have to be evaluated on all processing nodes
having partitions of the table in question. Re-distributing data blocks on storage devices
is always possible and does not require any logical partitioning scheme, because it oper-



ates on physical data blocks. The mapping from logical to physical pages is done in the
processing nodes, redistributing storage blocks only requires an update of the mapping.

2.4 Power Management

To approach energy-proportional processing behavior, WattDB is intended to dynamically
scale the number of active nodes based on the current workload.

The master node is responsible for managing the cluster, switching nodes on and off, and
redistributing the storage load. Each node monitors its disk and CPU usage and reports the
readings periodically to the master to allow informed decisions based on the actual utiliza-
tion of each node. The master is using the monitoring results for cluster orchestration—in
particular, to estimate the overall cluster performance and to react to changing utilization.

Based on the monitoring data, the master node is running a kind of scheduling algorithm
to adjust the number of nodes. This algorithm runs every minute and takes the past five
minutes into account for calculating the IOPS. Listing 1 sketches this process in pseudo-
code. First, all active storage devices in the cluster are examined and the current IOPS are
compared to the threshold of max. allowed IOPS for this device (line 7 of the listing).1

Algorithm 1 Power-management pseudo code

1 ForEach(Storage storage in Cluster.Storages) {
2

3 If(!storage.PoweredOn) {
4 continue;
5 }
6

7 If(storage.IOPS > MAX_IOPS_PER_DISK) {
8 // Storage overloaded, acquire new storage and distribute data
9

10 Storage storageNew = PowerUpAnotherStorage();
11 Storage storageOld = GetStorageWithHighestLoad();
12

13 distributeBlocks(storageOld, storageNew);
14 }
15

16 If(storage.IOPS < MIN_IOPS_PER_DISK) {
17 // Storage underutilized, consolidate data to other active storages
18

19 consolidateStorage(storage);
20 storage.Suspend();
21 }
22 }
23 // Suspend unused nodes
24 ForEach(Node node in Cluster.Nodes) {
25 If(node.ActiveStorages == 0 &&
26 node.Partitions == 0 &&
27 !node.IsMaster) {
28 node.Suspend();
29 }
30 }

1The threshold is set to 90% of the peak IOPS for the drive, which was determined beforehand.



If the current utilization of a device exceeds the threshold, it is considered overloaded and
the data is distributed to other storages devices. Not depicted in this listing is the selection
of the distribution targets (line 13): The algorithm tries to move blocks to active, non-
overloaded storage devices attached to the same node first, to minimize network traffic.
In case these storage devices are already utilized too much, additional disks on the same
node are powered up and used as a target, if possible. Lastly, when all the storage devices
identified above are not sufficient to handle the load, other nodes are taken into account
as well, and data blocks are shipped over the network to re-distribute the load. In case no
other eligible nodes are found, additional storage nodes have to be powered up first.

After analyzing the overutilized storage disks and distributing their load, the algorithm
now examines underutilized storage devices and tries to consolidate data blocks to other
storage devices (line 16). This step performs the opposite work as sketched above and
aims to reduce the number of storage disks, while still maintaining sufficiently high IOPS.
Consolidating storage disks (line 19) follows a similar logic as before: First, disks on
the same node are selected as target devices, if they are not overloaded already. Second,
remote locations are involved and blocks have to be sent via the network. In both cases,
all blocks are moved to other locations in order to shutdown the originating disk. After
redistributing the disk load, the algorithm takes a final step and suspends all nodes, which
do currently not serve a purpose (line 24–30).

3 Benchmarking for Energy Efficiency

So far, we have sketched the essential components of WattDB responsible for approaching
our overall goal. However, testing a system for energy efficiency also requires a new
benchmarking paradigm. Established procedures to measure DBMS performance cannot
be used to get meaningful estimates of the system’s power consumption (see below).

3.1 Benchmark Procedure

As we have shown in [SHK12], typical server workloads strongly vary in their utilization.
In this study, we have examined the servers of an ERP service provider and monitored their
workloads. We observed that servers are typically not fully utilized all the time. Instead,
the servers are usually loaded between 20 and 30% of their peak performance; but these
servers are not overdimensioned for their workloads: During some (short) period of the
day, their full capacities are needed to satisfy the performance demands, either for pro-
cessing the incoming OLTP workload or for generating OLAP reports. This observation
was made by other studies as well. Barroso and Hölzle [BH07] have shown that a cluster
of nodes is more than half of the time below 50% load. Yet, its energy consumption during
underutilization is comparable to its peak.

Current database benchmarks (primarily TPC-*) lately incorporated power measurements
to deliver additional runtime characteristics for their evaluation. TPC-Energy was defined
as such an addition to the performance-centric measurements. Nevertheless, the power



0%

20%

40%

60%

80%

100%

Proposal

Traditional

load

time

Figure 2: Traditional benchmarking compared to our proposal

consumption is only reported for idle and full utilization, leaving the typical DB server
usage disregarded.

We will employ the benchmarking paradigm we proposed earlier [SHK12], which ad-
dresses typical usage patterns of databases and tries to mimic them in a benchmark run.
Figure 2 depicts an exemplary benchmark run compared to traditional benchmarks. While
traditional benchmarks only stress the system under test at 100%, the proposed benchmark
will burden the system at different utilization levels to simulate such typical usage patterns.

Each benchmark step is scheduled to run for 30 minutes. If the DB cluster is able to finish
the benchmark earlier, due to overprovisioned resources, the energy consumption of the
time remaining is still recorded. In case the cluster cannot fulfill all queries in time, the
total additional processing time and energy consumption is measured. These constraints
are introduced in accordance to the benchmark definition in [SHK12].

3.2 Simulating OLTP Queries

Complex query capabilities are not yet implemented in WattDB, therefore, OLTP queries
cannot be used to benchmark the database. Instead, the benchmark consists of a set of
threads, executing an OLTP simulation. Each thread is representing one database client,
running a series of OLTP queries.

Each query consists of a series of page reads, (artificial) processing steps and writes to
simulate an OLTP query trace and to generate load at the storage layer; the processing
nodes are not utilized much. Hence, this benchmark is heavily IO-intensive to empirically
evaluate especially the storage layer and its energy-efficiency potential.

The benchmark operates on a 128 GB database with a primary-key index stored as a B*-
tree. The database is preallocated on a single storage node which also contains the index.
To circumvent the OS file system buffers and minimize the management overhead, no file
system is used; instead, WattDB operates on raw disk devices. The database pages contain
multiple records (which currently consist of an ID column and additional columns, filled
with junk data to increase size). The inner leaves of the index fit into 2 GB of main
memory, hence, after warming up, the buffer should contain a large fraction of the index.



The (simulated) OLTP clients randomly select IDs for reading records. For each request,
the DBMS traverses the primary-key index to fetch the respective leaf page and locates
the requested record inside the page. To emulate data processing, the threads generate
CPU load by spin-locking. Finally, with a 1:4 chance, the page gets marked dirty in
the buffer and, hence, has to be written back to the storage node at some time.2 After-
wards, the benchmark thread goes to sleep for a specified time interval, before commenc-
ing the next read-process-write cycle. Such breaks are necessary when running an energy
benchmark—as opposed to a performance benchmark. The system-under-test utilization
can be tuned by adjusting the number of concurrently running clients, i. e., threads.

3.3 Measuring Energy Consumption

To measure the energy consumption of the cluster during the benchmark runs, we devel-
oped and installed a measurement framework. The basic power measurements are done
using a custom measurement hardware. This device is capable of keeping track of each
node in the cluster and the additional peripherals (i. e., the network switch). It can read
the power consumption at a frequency of 300 Hz and report the values digitally over a
standard USB connection. A software component is reading the measurements and aggre-
gates all values to the cluster’s total power consumption. This aggregate is then reported
along with the benchmark runtime to a log file. Furthermore, the framework consists of
a hardware device, capable of monitoring the energy consumption of up to ten nodes and
infrastructure devices like ethernet switches as well, and a software component which ag-
gregates and logs the measured data. Our framework can be integrated into the benchmark
component and allows combining performance measurements with energy data. Although
it would be possible to monitor the energy consumption of each node separately, we ag-
gregated all energy measures to show the consumption of the cluster for the sake of clarity
(and not their differing distribution in ten separate plots). A detailed description of the
hardware device can be found in [HS11].

3.4 Experimental Setup

Figure 3 depicts the experimental setup. The database cluster, consisting of ten nodes and
the ethernet switch3, is powered by the measurement device, allowing us to monitor the
power consumption of each server. The measured (analog) values (AC) are converted to
digital readings and streamed to a connected computer executing the benchmarks based on
a configuration file (Cfg) defining the specific usage patterns and sends queries to WattDB.
By combining information from the benchmark runs (i. e., start and stop signals, duration)
and the power measurements, the energy consumption for each benchmark run can be
exactly determined. All data is written into a log file for later evaluation.

2The buffer decides which pages and when to write back.
3A single server would not need a dedicated ethernet switch, therefore we think it is fair to include it as a

required hardware component into the measurements.



AC
10 nodes

Energy data

Cfg + Benchmark

Queries

Log data

Figure 3: Experimental measurement environment

4 Measurement Results

In this section, we explain the benchmarking methodology we used to verify our claims
on a cluster of wimpy nodes, as previously described, and show the results of the runs.
We have deployed the WattDB software with an energy management component in the
cluster, connected to an energy measurement device. By running the benchmark against
a cluster configuration, we expect the software to react to the changing workloads and
power up/down nodes as needed. To make results comparable, we have run the identical
load profile (as explained by Figure 2) three times.

For the first cluster configuration, we distributed the DB pages to two storage disks on one
node and disabled the power management algorithm. Therefore, the number of nodes was
fixed to the bare minimum of 3 (master, processing node and storage node) and the cluster
was fixed to its most power-saving configuration delivering the lowest performance.

As next cluster configuration, we distributed the DB pages to all available disks and started
the same benchmark, again with disabled power management. This time, all nodes (the
master, one processing node and five storage nodes) were active and the cluster was able to
work with maximum performance and, as a consequence, maximum power consumption.

The results of these two cluster configurations were used as baselines to estimate the per-
formance and power coverage the cluster can achieve. Finally, we set up an unrestricted
cluster configuration, with the power management component in full control of the cluster
and its current workloads. We expected the cluster to adapt to the current workloads, as
the benchmark runs proceeded.

During each of the runs, we measured the runtime and the energy consumption of the query
phase from the start of the first query until the last query finished. Initially, the benchmarks
were run on a cluster of seven nodes with 10 magnetic disks attached. Five nodes were
acting as storage nodes, each having two disks attached, one was used as processing node
and the remaining one was the coordinating master node. Later, we replaced the magnetic



0%

100%

200%

300%

400%

500%

600%

 ‐

 100,00

 200,00

 300,00

 400,00

 500,00

 600,00

 700,00

 800,00

 900,00

System Utilization
Small Cluster (Fixed)
Big Cluster (Fixed)
Dynamic Cluster

pages /
sec

sys.
load

Performance

(a) HDD

0%

100%

200%

300%

400%

500%

600%

 ‐

 1.000,00

 2.000,00

 3.000,00

 4.000,00

 5.000,00

 6.000,00

 7.000,00

System Utilization
Small Cluster (Fixed)
Big Cluster (Fixed)
Dynamic Cluster

pages /
sec

sys.
load

Performance

(b) SSD

Figure 4: Performance: benchmark results for three cluster configurations

disks with 8 Solid State Disks (SSDs), thus reducing the number of storage nodes to four,
and ran the benchmarks again. Since SSDs provide much more IOPS than traditional
disks, we have increased the workload for the SSD benchmark by the factor of 10.

While running the benchmark against the three cluster configurations, energy consump-
tion and runtime were reported to file. At the bottom of the result graphs, load profile or
system utilization is depicted on the secondary axis. This is similar as in Figure 2 and only
included for reference. Each graph plots the results of three cluster configurations: Small
Cluster is showing results for the first run, where only two storage disks were active, thus
forming the smallest possible configuration, Big Cluster is referencing to the second con-
figuration with 10 (8) storage disks, and Dynamic Cluster depicts the measurements for an
unrestricted run with the power management component active. In addition to the storage
nodes, the master node and a single processing node were used in all three configurations.

On the left of each figure, the results of the configurations using magnetic disks are shown.
The graphs on the right depict the results using SSDs. In all graphs, sys load refers to
the utilization of the storage system, where 100% represent the maximum throughput the
system could achieve (using all storage nodes and disks).

4.1 Performance

Figure 4 shows the performance graph for each run. As expected, the big cluster deliv-
ered the best performance and was even able to handle the highest utilization. The small
cluster’s performance broke down, due to it’s constrained number of storage disks and
the limited maximum IOPS. Finally, the dynamic cluster showed more or less identical
performance to the big one, with small limitations in a case where dynamic adaptation
caused some blocks to be moved between storage devices, which decreased the maximum
performance. (It took only a few minutes to redistribute several Gigabyte of storage via
Gigabit-Ethernet. By using compression, we were able to further reduce network traffic.)
Compared to the total runtime of at least 30 minutes, redistribution cost was acceptable.



0%

100%

200%

300%

400%

500%

600%

 ‐

 50,00

 100,00

 150,00

 200,00

 250,00

System Utilization
Small Cluster (Fixed)
Big Cluster (Fixed)
Dynamic Cluster

Watts

sys.
load

Power Consumption

(a) HDD

0%

100%

200%

300%

400%

500%

600%

 ‐

 20,00

 40,00

 60,00

 80,00

 100,00

 120,00

 140,00

 160,00

 180,00

 200,00

System Utilization
Small Cluster (Fixed)
Big Cluster (Fixed)
Dynamic Cluster

Watts

sys.
load

Power Consumption

(b) SSD

Figure 5: Power consumption: benchmark results for the three cluster configurations5

The performance using SSDs was much better, compared to magnetic disks. Still, the
relative results are comparable, except for the dynamic configuration, which did not deliver
the same peak performance as the pre-configured big cluster. When stressing the SSD
cluster with heavy load, the performance of the cluster did not increase as expected. This
might indicate optimization potential in the power management component or a bottleneck
which was not monitored, e. g., CPU or network.

4.2 Power Consumption

Figure 5 visualizes the power consumption during the benchmark runs. Both fixed con-
figurations exhibit a mainly static power consumption, because the number of nodes was
fixed. The big cluster delivers no measurable difference for the HDD configuration be-
tween idle and full utilization.4 Compared to idle, the SSDs exhibit a slightly increased
power consumption under load. The dynamic configuration oscillates between the lowest
and highest power consumption, as the cluster adapts to the workload. Using HDDs, the
power management decided for our benchmark to use all available storage devices to share
the load. For SSD configurations, however, not all storage devices were used, possibly be-
cause the storage was not over-utilized and some other component of the cluster was the
bottleneck. Our power management decided to distribute the load to two storage disks on
two separate nodes, instead of two disks on the same node. This is another indicator that
the network was the limiting factor in the benchmarks, and not the IOPS of the SSDs.

4CPU-bound benchmarks might reveal different power characteristics.
5The use of enterprise server hardware would enlarge the relative distance between the curves of the small

and big cluster. As a consequence, the overall saving of the dynamic cluster would have been amplified.



0%

100%

200%

300%

400%

500%

600%

 ‐

 0,50

 1,00

 1,50

 2,00

 2,50

 3,00

 3,50

 4,00

 4,50

System Utilization
Small Cluster (Fixed)
Big Cluster (Fixed)
Dynamic Cluster

pages /
Joule

sys.
load

Energy Efficiency

(a) HDD

0%

100%

200%

300%

400%

500%

600%

 ‐

 5,00

 10,00

 15,00

 20,00

 25,00

 30,00

 35,00

 40,00

System Utilization
Small Cluster (Fixed)
Big Cluster (Fixed)
Dynamic Cluster

pages /
Joule

sys.
load

Energy Efficiency

(b) SSD

Figure 6: Variation of energy efficiency for the three cluster configurations

4.3 Energy Efficiency

If we relate performance to energy consumption (which is power consumption times bench-
mark duration), we can calculate the energy efficiency for each of the runs, which is shown
in Figure 6. Energy efficiency is expressed in pages per Joule, i. e., how many pages can be
processed by consuming one Joule of energy. Not surprisingly, the small cluster exhibits
the best energy efficiency during low utilizations. The big cluster is simply overprovi-
sioned to satisfy the workload and consumes more energy to process the same amount of
work, hence, its energy efficiency is worse.

At full utilization, the situation turns in favor of the big cluster. The small cluster is not
suited to handle the high utilization and needs almost 3 times as long as the big cluster to
process the workload (not depicted here). As a consequence, the energy consumption of
the small cluster is much higher and the energy efficiency accordingly lower.

The dynamic cluster powers storage nodes up and down according to the current workload.
Therefore, under low utilization, its energy efficiency is identical to the small cluster. With
rising load, the dynamic cluster powers up additional storage devices; hence, its energy
efficiency gets comparable to that of the big cluster. Again, transition costs to move storage
blocks decrease the energy efficiency in the dynamic case.

Using SSDs, energy efficiency is roughly 10 times better, although the difference between
the small and the big cluster is not as prominent as with magnetic disks. The small cluster
is still the most energy efficient one at low utilization and the big one only pays off at full
load, but the reduced performance of the dynamic cluster affects its energy efficiency.

4.4 Energy Delay Product

When calculating energy efficiency, a system that is twice as slow, but consumes only
half the power, will get the same score, because the same amount of work can be done
using the same amount of energy. This calculation disregards the user expectation, as the



0%

100%

200%

300%

400%

500%

600%

 ‐

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

System Utilization
Small Cluster (Fixed)
Big Cluster (Fixed)
Dynamic Cluster

sys.
load

Energy Delay Product

(a) HDD

0%

100%

200%

300%

400%

500%

600%

 ‐

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

System Utilization
Small Cluster (Fixed)
Big Cluster (Fixed)
Dynamic Cluster

sys.
load

Energy Delay Product

(b) SSD

Figure 7: Illustration of the EDP for the three cluster configurations

user/consumer is interested in getting results quickly. Therefore, we added another metric,
which takes power consumption and query delay (i. e., the inverse of the performance) into
account; the Energy Delay Product (EDP), a metric stemming from chip and microproces-
sor design [GH96]. EDP is defined as follows:

EDP = execution time× energy consumption or

EDP = execution time2 × power consumption

Hence, faster query execution times get rewarded more than power consumption, i. e., a
system with twice the execution time must consume less than 1/4th of the power to get the
same EDP rating. A lower EDP is generally favorable.

Figure 7 shows the EDP for the three benchmark runs. The small cluster exhibits the
lowest EDP under low utilization, but does not perform well under heavy load. Starting at
50% utilization, the EDP of the small cluster outgrows the big cluster’s EDP, because the
load is too high for the small cluster and the execution time nearly triples. The big cluster
shows a stable EDP, regardless of the workload. In most cases, the cluster is underutilized
and, thus, more energy is consumed and the EDP is higher, compared to the small cluster.
Only in peak-load situations, the additional performance of the big cluster pays off. The
dynamic cluster shows the best overall EDP, with a similar score to the small cluster when
not fully utilized and a slightly higher EDP in the peak-performance benchmarks.

Running the benchmark on SSDs, even the big cluster seems to have trouble handling the
heavy workloads, hence, the rising EDP. The dynamic cluster is also unable to adjust the
configuration to score a low EDP. As previously mentioned, this indicates a bottleneck
beyond the reach of the current monitoring.

In summary, the measurements clearly illustrate that no fixed cluster configuration, neither
a small one, nor a big one, is able to process the given workload in the most energy-efficient
way. Hence, the results of the dynamic cluster can be considered as a proof of existence
that, in specific cases, energy proportionality can be approximated for DBMS processing
and that the increased effort pays off in terms of energy saving—without sacrificing too
much performance.



5 Related Work, Conclusion & Outlook

As highlighted, a key result for energy efficiency of single-server DBMSs was published
by Tsirogiannis et al. [THS10]. An exploration of a clustered DB system—close to our
approach—was reported by Lang et al. [LHP+12]. Their contribution identified ways to
improve energy efficiency in database applications by using a static server cluster instead
of a single-server DBMS. Using a COTS (commercial off-the-shelf) parallel DBMS, they
ran a single TCP-H query as workload and repeated their experiments on clusters where
the cluster size/server configurations were set up for each test run. First, they reduced the
number of beefy (powerful) nodes step-by-step from 16 to 8 nodes. Then, they gradu-
ally replaced the beefy nodes by wimpy (lightweight) ones. Both experiments resulted in
decreased energy consumption, because the reduced cluster size or the lightweight nodes
replacing beefy nodes needed less power, and in reduced performance. By analyzing the
results, they revealed opportunities leading to improved energy efficiency. Although the
experiments in [LHP+12] used only static server configurations and did not explain how
the unused servers in the cluster could be turned on/off, they also delivered at least a kind
of existence proof that research in DB clusters may lead to enhanced energy efficiency.

Our results are a step forward towards dynamically achieving energy proportionality. We
have shown that energy proportionality can be approximated by using a cluster of com-
modity hardware and that tuning the system to a certain performance level comes with
the drawbacks of limiting either the maximum processing power or the possible energy
savings. By automatically adjusting the number of nodes to a running workload, which
results in a balanced trade-off between performance and energy consumption, we demon-
strated that it is possible to configure a cluster to process data in the most energy-efficient
way. By dynamically reconfiguring the storage to fit the workload, a cluster of nodes re-
veals substantial energy-saving potential compared to big servers and also compared to
statically configured clusters. The workload explored was rather simple and served as a
starting point to reveal in our future work the data clusters and workload patterns requiring
only limited reorganization/reallocation where such a storage server—while preserving its
intended energy-proportional behavior—can be used. Nevertheless, our findings repre-
sent a milestone towards an energy-proportional DBMS, because the storage in traditional
database systems accounts for more than half of the power consumption [PN08].

By using SSDs, IO is not the only limiting factor in the cluster. In the future, we will
include CPU, main memory, and network into the monitoring scope as well to allow dy-
namic adjustments of all DBMS-relevant components. While scaling at the storage side
was rather easy—it only required to copy/move data from one disk to another, while keep-
ing the logical pointers up-to-date—, scaling at the processing side is more complex.

The experiments show that re-distribution of storage blocks and cluster balancing cannot
be done frequently, due to the cost of shipping storage blocks via the network. By in-
cluding historical measurements and forecast data, we are planning to extend the reactive
power management component to become proactive [KHH12]. Workloads usually follow
an easy-to-predict pattern, e.g., workdays are similar to each other, workloads in Decem-
ber keep rising for e-commerce back-end DBMSs, and so on. Therefore, we expect even
better energy savings with a proactive cluster.



The granularity of control over performance and energy is a single server. With n nodes
in the cluster, the finest grain of adaptation is 1/n-th of the total power. In this work, we
have run the experiments on a cluster of seven nodes (5 storage nodes). This configuration
implies that the finest grain of control is 1/5th of the total, or 20%. For more fine-grained
control, the number of nodes should be increased. Lastly, there is still optimization poten-
tial for power management, and many other factors besides forecast data can be included
in the decision process such as CPU/network/memory utilization, information about the
workloads, repeating patterns, etc. More specific data can lead to more intelligent use of
resources and even better energy efficiency than we have shown in this paper.

References

[BH07] Luiz André Barroso and Urs Hölzle. The Case for Energy-Proportional Computing.
IEEE Computer, 40(12):33–37, 2007.

[BH09] Luiz Andre Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines. Morgan & Claypool Publishers, 2009.

[GH96] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors.
IEEE Journal of Solid-State Circuits, 31(9):1277 –1284, 1996.

[GHP+10] Clement Genzmer, Volker Hudlet, Hyunjung Park, Daniel Schall, and Pierre Senellart.
The SIGMOD 2010 Programming Contest - A Distributed Query Engine. SIGMOD
Record, 39(2):61–64, 2010.

[HS11] Volker Hudlet and Daniel Schall. Measuring Energy Consumption of a Database Clus-
ter. In Proc. 14-th GI-Conf. on Database Systems for Business, Technology and Web,
LNI - P 180, pages 734–737, 2011.

[KHH12] Christopher Kramer, Volker Höfner, and Theo Härder. Lastprognose für energieef-
fiziente verteilte DBMS. In Proc. 42. GI-Jahrestagung, LNI 208, pages 397–411, 2012.

[LHP+12] Willis Lang, Stavros Harizopoulos, Jignesh M. Patel, Mehul A. Shah, and Dimitris
Tsirogiannis. Towards energy-efficient database cluster design. PVLDB, 5(11):1684–
1695, 2012.

[OHS10] Yi Ou, Theo Härder, and Daniel Schall. Performance and Power Evaluation of Flash-
Aware Buffer Algorithms. In DEXA, LNCS 6261, pages 183–197, 2010.

[PN08] Meikel Poess and Raghunath Othayoth Nambiar. Energy Cost, The Key Challenge of
Today’s Data Centers: A Power Consumption Analysis of TPC-C Results. PVLDB,
1(2):1229–1240, 2008.

[SBH+10] Alexander S. Szalay, Gordon C. Bell, H. Howie Huang, Andreas Terzis, and Alainna
White. Low-Power Amdahl-Balanced Blades for Data Intensive Computing. SIGOPS
Oper. Syst. Rev., 44(1):71–75, 2010.

[SH11] Daniel Schall and Volker Hudlet. WattDB: An Energy-Proportional Cluster of Wimpy
Nodes. In SIGMOD Conference, pages 1229–1232, 2011.

[SHK12] Daniel Schall, Volker Höfner, and Manuel Kern. Towards an Enhanced Benchmark
Advocating Energy-Efficient Systems. In TPCTC, LNCS 7144, pages 31–45, 2012.

[THS10] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. Analyzing the Energy
Efficiency of a Database Server. In SIGMOD Conference, pages 231–242, 2010.


