
XQuery processing over NoSQL stores

Henrique Valer
University of Kaiserslautern

P.O. Box 3049
67653 Kaiserslautern,

Germany
valer@cs.uni-kl.de

Caetano Sauer
University of Kaiserslautern

P.O. Box 3049
67653 Kaiserslautern,

Germany
csauer@cs.uni-kl.de

Theo Härder
University of Kaiserslautern

P.O. Box 3049
67653 Kaiserslautern,

Germany
hearder@cs.uni-kl.de

ABSTRACT
Using NoSQL stores as storage layer for the execution of
declarative query processing using XQuery provides a high-
level interface to process data in an optimized manner. NoSQL
refers to a plethora of new stores which essentially trades off
well-known ACID properties for higher availability or scal-
ability, using techniques such as eventual consistency, hori-
zontal scalability, efficient replication, and schema-less data
models. This work proposes a mapping from the data model
of different kinds of NoSQL stores—key/value, columnar,
and document-oriented—to the XDM data model, allowing
for standardization and querying NoSQL data using higher-
level languages, such as XQuery. This work also explores
several optimization scenarios to improve performance on
top of these stores. Besides, we also add updating semantics
to XQuery by introducing simple CRUD-enabling function-
alities. Finally, this work analyzes the performance of the
system in several scenarios.

Keywords
NoSQL, Big Data, key/value, XQuery, ACID, CAP

1. INTRODUCTION
We have seen a trend towards specialization in database

markets in the last few years. There is no more one-size-fits-
all approach when comes to storing and dealing with data,
and different types of databases are being used to tackle
different types of problems. One of these being the Big Data
topic.

It is not completely clear what Big Data means after all.
Lately, it is being characterized by the so-called 3 V’s: vol-
ume—comprising the actual size of data; velocity—comprising
essentially a time span in which data data must be analyzed;
and variety—comprising types of data. Big Data applica-
tions need to understand how to create solutions in these
data dimensions.

RDBMS’s have had problems when facing Big Data ap-
plications, like in web environments. Two of the main rea-

24th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 29.05.2012 - 01.06.2012, Lübbenau, Germany.
Copyright is held by the author/owner(s).

sons for that are scalability and flexibility. The solution
RDBMS’s provide is usually twofold: either (i) a horizontally-
scalable architecture, which in database terms generally means
giving up joins and also complex multi-row transactions; or
(ii) by using parallel databases, thus using multiple CPUs
and disks in parallel to optimize performance. While the lat-
ter increases complexity, the former just gives up operations
because they are too hard to implement in distributed envi-
ronments. Nevertheless, these solutions are neither scalable
nor flexible.

NoSQL tackles these problems with a mix of techniques,
which involves either weakening ACID properties or allow-
ing more flexible data models. The latter is rather simple:
some scenarios—such as web applications—do not conform
to a rigid relational schema, cannot be bound to the struc-
tures of a RDBMS, and need flexibility. Solutions exist,
such as using XML, JSON, pure key/value stores, etc, as
data model for the storage layer. Regarding the former,
some NoSQL systems relax consistency by using mechanisms
such as multi-version concurrency control, thus allowing for
eventual-consistent scenarios. Others support atomicity and
isolation only when each transaction accesses data within
some convenient subset of the database data. Atomic oper-
ations would require some distributed commit protocol—like
two-phase commit—involving all nodes participating in the
transaction, and that would definitely not scale. Note that
this has nothing to do with SQL, as the acronym NoSQL
suggests. Any RDBMS’s that relaxes ACID properties could
scale just as well, and keep SQL as querying language.

Nevertheless, when comes to performance, NoSQL sys-
tems have shown some interesting improvements. When
considering update- and lookup-intensive OLTP workloads—
scenarios where NoSQL are most often considered—the work
of [13] shows that the total OLTP time is almost evenly
distributed among four possible overheads: logging, locking,
latching, and buffer management. In essence, NoSQL sys-
tems improve locking by relaxing atomicity, when compared
to RDBMS’s.

When considering OLAP scenarios, RDBMS’s require rigid
schema to perform usual OLAP queries, whereas most NoSQL
stores rely on a brute-force processing model called MapRe-
duce. It is a linearly-scalable programming model for pro-
cessing and generating large data sets, and works with any
data format or shape. Using MapReduce capabilities, par-
allelization details, fault-tolerance, and distribution aspects
are transparently offered to the user. Nevertheless, it re-
quires implementing queries from scratch and still suffers
from the lack of proper tools to enhance its querying capa-

bilities. Moreover, when executed atop raw files, the pro-
cessing is inefficient. NoSQL stores provide this elemental
structure, thus one could provide a higher-level query lan-
guage to take full advantage of it, like Hive [18], Pig [16],
and JAQL [6].

These approaches require learning separated query lan-
guages, each of which specifically made for the implementa-
tion. Besides, some of them require schemas, like Hive and
Pig, thus making them quite inflexible. On the other hand,
there exists a standard that is flexible enough to handle the
offered data flexibility of these different stores, whose compi-
lation steps are directly mappable to distributed operations
on MapReduce, and is been standardized for over a decade:
XQuery.

Contribution
Consider employing XQuery for implementing the large class
of query-processing tasks, such as aggregating, sorting, fil-
tering, transforming, joining, etc, on top of MapReduce as a
first step towards standardization on the realms of NoSQL
[17]. A second step is essentially to incorporate NoSQL sys-
tems as storage layer of such framework, providing a sig-
nificant performance boost for MapReduce queries. This
storage layer not only leverages the storage efficiency of
RDBMS’s, but allows for pushdown projections, filters, and
predicates evaluation to be done as close to the storage level
as possible, drastically reducing the amount of data used on
the query processing level.

This is essentially the contribution of this work: allowing
for NoSQL stores to be used as storage layer underneath a
MapReduce-based XQuery engine, Brackit—a generic XQuery
processor, independent of storage layer. We rely on Brackit’s
MapReduce-mapping facility as a transparent-distributed ex-
ecution engine, thus providing scalability. Moreover, we ex-
ploit the XDM-mapping layer of Brackit, which provides
flexibility by using new data models. We created three
XDM-mappings, investigating three different NoSQL imple-
mentations, encompassing the most used types of NoSQL
stores: key/value, column-based, and document-based.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the NoSQL models and their characteris-
tics. Section 3 describes the used XQuery engine, Brackit,
and the execution environment of XQuery on top of the
MapReduce model. Section 4 describes the mappings from
various stores to XDM, besides all implemented optimiza-
tions. Section 5 exposes the developed experiments and the
obtained results. Finally, Section 6 concludes this work.

2. NOSQL STORES
This work focuses on three different types of NoSQL stores,

namely key/value, columnar, and document-oriented, repre-
sented by Riak [14], HBase[11], and MongoDB[8], respec-
tively.

Riak is the simplest model we dealt with: a pure key/-
value store. It provides solely read and write operations to
uniquely-identified values, referenced by key. It does not
provide operations that span across multiple data items and
there is no need for relational schema. It uses concepts
such as buckets, keys, and values. Data is stored and ref-
erenced by bucket/key pairs. Each bucket defines a virtual
key space and can be thought of as tables in classical rela-
tional databases. Each key references a unique value, and
there are no data type definitions: objects are the only unit

of data storage. Moreover, Riak provides automatic load
balancing and data replication. It does not have any rela-
tionship between data, even though it tries by adding link
between key/value pairs. It provides the most flexibility, by
allowing for a per-request scheme on choosing between avail-
ability or consistency. Its distributed system has no master
node, thus no single point of failure, and in order to solve
partial ordering, it uses Vector Clocks [15].

HBase enhances Riak’s data model by allowing colum-
nar data, where a table in HBase can be seen as a map of
maps. More precisely, each key is an arbitrary string that
maps to a row of data. A row is a map, where columns
act as keys, and values are uninterpreted arrays of bytes.
Columns are grouped into column families, and therefore,
the full key access specification of a value is through column
family concatenated with a column—or using HBase nota-
tion: a qualifier. Column families make the implementation
more complex, but their existence enables fine-grained per-
formance tuning, because (i) each column family’s perfor-
mance options are configured independently, like read and
write access, and disk space consumption; and (ii) columns
of a column family are stored contiguously in disk. More-
over, operations in HBase are atomic in the row level, thus
keeping a consistent view of a given row. Data relations
exist from column family to qualifiers, and operations are
atomic on a per-row basis. HBase chooses consistency over
availability, and much of that reflects on the system archi-
tecture. Auto-shardling and automatic replication are also
present: shardling is automatically done by dividing data
in regions, and replication is achieved by the master-slave
pattern.

MongoDB fosters functionality by allowing more RDBMS-
like features, such as secondary indexes, range queries, and
sorting. The data unit is a document, which is an ordered
set of keys with associated values. Keys are strings, and
values, for the first time, are not simply objects, or arrays
of bytes as in Riak or HBase. In MongoDB, values can be
of different data types, such as strings, date, integers, and
even embedded documents. MongoDB provides collections,
which are grouping of documents, and databases, which are
grouping of collections. Stored documents do not follow any
predefined schema. Updates within a single document are
transactional. Consistency is also taken over availability in
MongoDB, as in HBase, and that also reflects in the system
architecture, that follows a master-worker pattern.

Overall, all systems provide scaling-out, replication, and
parallel-computation capabilities. What changes is essen-
tially the data-model: Riak seams to be better suited for
problems where data is not really relational, like logging. On
the other hand, because of the lack of scan capabilities, on
situations where data querying is needed, Riak will not per-
form that well. HBase allows for some relationship between
data, besides built-in compression and versioning. It is thus
an excellent tool for indexing web pages, which are highly
textual (thus benefiting from compression), as well as inter-
related and updatable (benefiting from built-in versioning).
Finally, MongoDB provides documents as granularity unit,
thus fitting well when the scenario involves highly-variable
or unpredictable data.

3. BRACKIT AND MAPREDUCE
Several different XQuery engines are available as options

for querying XML documents. Most of them provide ei-

ther (i) a lightweight application that can perform queries
on documents, or collections of documents, or (ii) an XML
database that uses XQuery to query documents. The for-
mer lacks any sort of storage facility, while the latter is just
not flexible enough, because of the built-in storage layer.
Brackit1 provides intrinsic flexibility, allowing for different
storage levels to be “plugged in”, without lacking the neces-
sary performance when dealing with XML documents [5].
By dividing the components of the system into different
modules, namely language, engine, and storage, it gives us
the needed flexibility, thus allowing us to use any store for
our storage layer.

Compilation
The compilation process in Brackit works as follows: the
parser analyzes the query to validate the syntax and ensure
that there are no inconsistencies among parts of the state-
ment. If any syntax errors are detected, the query compiler
stops processing and returns the appropriate error message.
Throughout this step, a data structure is built, namely an
AST (Abstract Syntax Tree). Each node of the tree de-
notes a construct occurring in the source query, and is used
through the rest of the compilation process. Simple rewrites,
like constant folding, and the introduction of let bindings are
also done in this step.

The pipelining phase transforms FLWOR expressions into
pipelines—the internal, data-flow-oriented representation of
FLWORs, discussed later. Optimizations are done atop
pipelines, and the compiler uses global semantics stored in
the AST to transform the query into a more-easily-optimized
form. For example, the compiler will move predicates if pos-
sible, altering the level at which they are applied and poten-
tially improving query performance. This type of opera-
tion movement is called predicate pushdown, or filter push-
down, and we will apply them to our stores later on. More
optimizations such as join recognition, and unnesting are
present in Brackit and are discussed in [4]. In the opti-
mization phase, optimizations are applied to the AST. The
distribution phase is specific to distributed scenarios, and
is where MapReduce translation takes place. More details
about the distribution phase are presented in [17]. At the
end of the compilation, the translator receives the final AST.
It generates a tree of executable physical operators. This
compilation process chain is illustrated in Figure 1.

Figure 1: Compilation process in Brackit [5].

1Available at http:\\www.brackit.org

XQuery over MapReduce
Mapping XQuery to the MapReduce model is an alternative
to implementing a distributed query processor from scratch,
as normally done in parallel databases. This choice relies
on the MapReduce middleware for the distribution aspects.
BrackitMR is one such implementation, and is more deeply
discussed in [17]. It achieves a distributed XQuery engine in
Brackit by scaling out using MapReduce.

The system hitherto cited processes collections stored in
HDFS as text files, and therefore does not control details
about encoding and management of low-level files. If the
DBMS architecture [12] is considered, it implements solely
the topmost layer of it, the set-oriented interface. It executes
processes using MapReduce functions, but abstracts this
from the final user by compiling XQuery over the MapRe-
duce model.

It represents each query in MapReduce as sequence of jobs,
where each job processes a section of a FLWOR pipeline.
In order to use MapReduce as a query processor, (i) it
breaks FLWOR pipelines are into map and reduce functions,
and (ii) groups these functions to form a MapReduce job.
On (i), it converts the logical-pipeline representation of the
FLWOR expression—AST—to a MapReduce-friendly ver-
sion. MapReduce uses a tree of splits, which represents the
logical plan of a MapReduce-based query. Each split is a
non-blocking operator used by MapReduce functions. The
structure of splits is rather simple: it contains an AST and
pointers to successor and predecessor splits. Because splits
are organized in a bottom-up fashion, leaves of the tree are
map functions, and the root is a reduce function—which
produces the query output.

On (ii), the system uses the split tree to generate pos-
sibly multiple MapReduce job descriptions, which can be
executed in a distributed manner. Jobs are exactly the ones
used on Hadoop MapReduce [20], and therefore we will not
go into details here.

4. XDM MAPPINGS
This section shows how to leverage NoSQL stores to work

as storage layer for XQuery processing. First, we present
mappings from NoSQL data models to XDM, adding XDM-
node behavior to these data mappings. Afterwards, we dis-
cuss possible optimizations regarding data-filtering techniques.

Riak
Riak’s mapping strategy starts by constructing a key/value
tuple from its low-level storage representation. This is es-
sentially an abstraction and is completely dependent on the
storage used by Riak. Second, we represent XDM opera-
tions on this key/value tuple. We map data stored within
Riak utilizing Riak’s linking mechanism. A key/value pair
kv represents an XDM element, and key/value pairs linked
to kv are addressed as children of kv. We map key/value
tuples as XDM elements. The name of the element is sim-
ply the name of the bucket it belongs to. We create one
bucket for the element itself, and one extra bucket for each
link departing from the element. Each child element stored
in a separated bucket represents a nested element within the
key/value tuple. The name of the element is the name of the
link between key/values. This does not necessarily decrease
data locality: buckets are stored among distributed nodes
based on hashed keys, therefore uniformly distributing the

Figure 2: Mapping between an HBase row and an XDM instance.

load on the system. Besides, each element has an attribute
key which Riak uses to access key/value pairs on the storage
level.

It allows access using key/value as granularity, because
every single element can be accessed within a single get op-
eration. Full reconstruction of an element el requires one ac-
cess for each key/value linked to el. Besides, Riak provides
atomicity using single key/value pairs as granularity, there-
fore consistent updates of multiple key/value tuples cannot
be guaranteed.

HBase
HBase’s mapping strategy starts by constructing a colum-
nar tuple from the HDFS low-level-storage representation.
HBase stores column-family data in separated files within
HDFS, therefore we can use this to create an efficient map-
ping. Figure 2 presents this XDM mapping, where we map
a table partsupp using two column families: references and
values, five qualifiers: partkey, suppkey, availqty, supplycost,
and comment. We map each row within an HBase table to
an XDM element. The name of the element is simply the
name of the table it belongs to, and we store the key used
to access such element within HBase as an attribute in the
element. The figure shows two column families: references
and values. Each column family represents a child element,
whose name is the name of the column family. Accordingly,
each qualifier is nested as a child within the column-family
element from which it descends.

MongoDB
MongoDB’s mapping strategy is straight-forward. Because
it stores JSON-like documents, the mapping consists essen-
tially of a document field → element mapping. We map
each document within a MongoDB collection to an XDM el-
ement. The name of the element is the name of the collection
it belongs to. We store the id—used to access the document
within MongoDB—as an attribute on each element. Nested
within the collection element, each field of the document
represents a child element, whose name is the name of the
field itself. Note that MongoDB allows fields to be of type
document, therefore more complex nested elements can be
achieved. Nevertheless, the mapping rules work recursively,
just as described above.

Nodes
We describe XDM mappings using object-oriented notation.
Each store implements a Node interface that provides node

behavior to data. Brackit interacts with the storage using
this interface. It provides general rules present in XDM [19],
Namespaces [2], and Xquery Update Facility [3] standards,
resulting in navigational operations, comparisons, and other
functionalities. RiakRowNode wraps Riak’s buckets, key/-
values, and links. HBaseRowNode wraps HBase’s tables, col-
umn families, qualifiers, and values. Finally, MongoRowN-
ode wraps MongoDB’s collections, documents, fields, and
values.

Overall, each instance of these objects represents one unit
of data from the storage level. In order to better grasp the
mapping, we describe the HBase abstraction in more de-
tails, because it represents the more complx case. Riak’s
and MongoDB’s representation follow the same approach,
but without a “second-level node”. Tables are not repre-
sented within the Node interface, because their semantics
represent where data is logically stored, and not data itself.
Therefore, they are represented using a separated interface,
called Collection. Column families represent a first-level-
access. Qualifiers represent a second-level-access. Finally,
values represent a value-access. Besides, first-level-access,
second-level-access, and value-access must keep track of cur-
rent indexes, allowing the node to properly implement XDM
operations. Figure 3 depicts the mapping. The upper-most
part of the picture shows a node which represents a data
row from any of the three different stores. The first layer
of nodes—with level = 1st—represents the first-level-access,
explained previously. The semantic of first-level-access dif-
fers within different stores: while Riak and MongoDB inter-
pret it as a value wrapper, HBase prefers a column family
wrapper. Following, HBase is the only implementation that
needs a second-level-access, represented by the middle-most
node with level = 2nd, in this example accessing the wrap-
per of regionkey = “1”. Finally, lower-level nodes with level
= value access values from the structure.

Optimizations
We introduce projection and predicate pushdowns optimiza-
tions. The only storage that allows for predicate push-
down is MongoDB, while filter pushdown is realized on all of
them. These optimizations are fundamental advantages of
this work, when compared with processing MapReduce over
raw files: we can take “shortcuts” that takes us directly to
the bytes we want in the disk.

Filter and projections pushdown are an important opti-
mization for minimizing the amount of data scanned and
processed by storage levels, as well as reducing the amount

Figure 3: Nodes implementing XDM structure.

of data passed up to the query processor. Predicate push-
down is yet another optimization technique to minimize the
amount of data flowing between storage and processing lay-
ers. The whole idea is to process predicates as early in the
plan as possible, thus pushing them to the storage layer.

On both cases we traverse the AST, generated in the be-
ginning of the compilation step, looking for specific nodes,
and when found we annotate the collection node on the AST
with this information. The former looks for path expressions
(PathExpr) that represents a child step from a collection
node, or for descendants of collection nodes, because in the
HBase implementation we have more than one access level
within storage. The later looks for general-comparison op-
erators, such as equal, not equal, less than, greater than, less
than or equal to, and greater than or equal to. Afterwards,
when accessing the collection on the storage level, we use
the marked collections nodes to filter data, without further
sending it to the query engine.

NoSQL updates
The used NoSQL stores present different API to persist data.
Even though XQuery does not provide data-storing mecha-
nisms on its recommendation, it does provide an extension
called XQuery Update Facility [3] for that end. It allows
to add new nodes, delete or rename existing nodes, and re-
place existing nodes and their values. XQuery Update Fa-
cility adds very natural and efficient persistence-capabilities
to XQuery, but it adds lots of complexity as well. More-
over, some of the constructions need document-order, which
is simply not possible in the case of Riak. Therefore, simple-
semantic functions such as “insert” or “put” seam more at-
tractive, and achieve the goal of persisting or updating data.

The insert function stores a value within the underlying
store. We provide two possible signatures: with or without

a $key, therefore allowing for both insertions and updates.

db:insert($table as xs:string,

$key as xs:string,

$value as node()) as xs:boolean

The delete function deletes a values from the store. We
also provide two possible signatures: with or without $key,
therefore allowing for deletion of a giveng key, or droping a
given table.

db:delete($table as xs:string,

$key as xs:string) as xs:boolean

5. EXPERIMENTS
The framework we developed in this work is mainly con-

cerned with the feasibility of executing XQuery queries atop
NoSQL stores. Therefore, our focus is primarily on the proof
of concept. The data used for our tests comes from the TPC-
H benchmark [1]. The dataset size we used has 1GB, and
we essentially scanned the five biggest tables on TPC-H:
part, partsupp, order, lineitem, and customer. The experi-
ments were performed in a single Intel Centrino Duo dual-
core CPU with 2.00 GHz, with 4GB RAM, running Ubuntu
Linux 10.04 LTS. HBase used is version 0.94.1, Riak is 1.2.1,
and MongoDB is 2.2.1. It is not our goal to assess the scal-
ability of these systems, but rather their query-procedure
performance. For scalability benchmarks, we refer to [9]
and [10].

5.1 Results

Figure 4: Latency comparison among stores.

Figure 4 shows the gathered latency times of the best
schemes of each store, using log-scale. As we can see, all ap-
proaches take advantage from the optimization techniques.
The blue column of the graph—full table scan—shows the
latency when scanning all data from TPC-H tables. The red
column —single column scan—represents the latency when
scanning a simple column of each table. Filter pushdown op-
timizations explain the improvement in performance when
compared to the first scan, reducing the amount of data flow-
ing from storage to processing level. The orange column—
predicate column scan—represents the latency when scan-
ning a single column and where results were filtered by a
predicate. We have chosen predicates to cut in half the
amount of resulting data when compared with single column
scan. The querying time was reduced in approximately 30%,
not reaching the 50% theoretically-possible-improvement rate,

essentially because of processing overhead. Nevertheless, it
shows how efficient the technique is.

In scanning scenarios like the ones on this work, MongoDB
has shown to be more efficient than the other stores, by al-
ways presenting better latency. MongoDB was faster by de-
sign: trading of data-storage capacity for data-addressability
has proved to be a very efficiency-driven solution, although
being a huge limitation. Moreover, MongoDB uses pre-
caching techniques. Therefore, at run-time it allows work-
ing with data almost solely from main memory, specially in
scanning scenarios.

6. CONCLUSIONS
We extended a mechanism that executes XQuery to work

with different NoSQL stores as storage layer, thus providing
a high-level interface to process data in an optimized man-
ner. We have shown that our approach is generic enough to
work with different NoSQL implementations.

Whenever querying these systems with MapReduce—taking
advantage of its linearly-scalable programming model for
processing and generating large-data sets—parallelization
details, fault-tolerance, and distribution aspects are hidden
from the user. Nevertheless, as a data-processing paradigm,
MapReduce represents the past. It is not novel, does not use
schemas, and provides a low-level record-at-a-time API: a
scenario that represents the 1960’s, before modern DBMS’s.
It requires implementing queries from scratch and still suf-
fers from the lack of proper tools to enhance its querying
capabilities. Moreover, when executed atop raw files, the
processing is inefficient—because brute force is the only pro-
cessing option. We solved precisely these two MapReduce
problems: XQuery works as the higher-level query language,
and NoSQL stores replace raw files, thus increasing perfor-
mance. Overall, MapReduce emerges as solution for situ-
ations where DBMS’s are too “hard” to work with, but it
should not overlook the lessons of more than 40 years of
database technology.

Other approaches cope with similar problems, like Hive,
and Scope. Hive [18] is a framework for data warehousing on
top of Hadoop. Nevertheless, it only provides equi-joins, and
does not fully support point access, or CRUD operations—
inserts into existing tables are not supported due to sim-
plicity in the locking protocols. Moreover, it uses raw files
as storage level, supporting only CSV files. Moreover, Hive
is not flexible enough for Big Data problems, because it is
not able to understand the structure of Hadoop files with-
out some catalog information. Scope [7] provides a declar-
ative scripting language targeted for massive data analysis,
borrowing several features from SQL. It also runs atop a
distributed computing platform, a MapReduce-like model,
therefore suffering from the same problems: lack of flexibil-
ity and generality, although being scalable.

7. REFERENCES
[1] The tpc-h benchmark. http://www.tpc.org/tpch/,

1999.

[2] Namespaces in xml 1.1 (second edition).
http://www.w3.org/TR/xml-names11/, August 2006.

[3] Xquery update facility 1.0. http://www.w3.org/TR/
2009/CR-xquery-update-10-20090609/, June 2009.

[4] S. Bächle. Separating Key Concerns in Query
Processing - Set Orientation, Physical Data

Independence, and Parallelism. PhD thesis, University
of Kaiserslautern, 12 2012.

[5] S. Bächle and C. Sauer. Unleashing xquery for
data-independent programming. Submitted, 2011.

[6] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Y. Eltabakh, C.-C. Kanne, F. Özcan, and E. J.
Shekita. Jaql: A scripting language for large scale
semistructured data analysis. PVLDB,
4(12):1272–1283, 2011.

[7] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets. Proc.
VLDB Endow., 1(2):1265–1276, Aug. 2008.

[8] K. Chodorow and M. Dirolf. MongoDB: The
Definitive Guide. Oreilly Series. O’Reilly Media,
Incorporated, 2010.

[9] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[10] T. Dory, B. Mejhas, P. V. Roy, and N. L. Tran.
Measuring elasticity for cloud databases. In
Proceedings of the The Second International
Conference on Cloud Computing, GRIDs, and
Virtualization, 2011.

[11] L. George. HBase: The Definitive Guide. O’Reilly
Media, 2011.

[12] T. Härder. Dbms architecture - new challenges ahead.
Datenbank-Spektrum, 14:38–48, 2005.

[13] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. Oltp through the looking glass, and
what we found there, 2008.

[14] R. Klophaus. Riak core: building distributed
applications without shared state. In ACM SIGPLAN
Commercial Users of Functional Programming, CUFP
’10, pages 14:1–14:1, New York, NY, USA, 2010.
ACM.

[15] F. Mattern. Virtual time and global states of
distributed systems. In C. M. et al., editor, Proc.
Workshop on Parallel and Distributed Algorithms,
pages 215–226, North-Holland / Elsevier, 1989.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, SIGMOD ’08, pages 1099–1110, New York, NY,
USA, 2008. ACM.

[17] C. Sauer. Xquery processing in the mapreduce
framework. Master thesis, Technische Universität
Kaiserslautern, 2012.

[18] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive -
a petabyte scale data warehouse using hadoop. In
ICDE, pages 996–1005, 2010.

[19] N. Walsh, M. Fernández, A. Malhotra, M. Nagy, and
J. Marsh. XQuery 1.0 and XPath 2.0 data model
(XDM). http://www.w3.org/TR/2007/
REC-xpath-datamodel-20070123/, January 2007.

[20] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, 2012.

