
BrackitMR: Flexible XQuery Processing
in MapReduce

Caetano Sauer, Sebastian Bächle, and Theo Härder

University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany
{csauer,baechle,haerder}@cs.uni-kl.de

Abstract. We present BrackitMR, a framework that executes XQuery
programs over distributed data using MapReduce. The main goal is to
provide flexible MapReduce-based data processing with minimal perfor-
mance penalties. Based on the Brackit query engine, a generic query com-
pilation and optimization infrastructure, our system allows for a trans-
parent integration of multiple data sources, such as XML, JSON, and
CSV files, as well as relational databases, NoSQL stores, and lower-level
record APIs such as BerkeleyDB.

1 Introduction

The success of query interfaces for MapReduce (MR), such as Hive [4] and Pig
[1], indicates the importance of having simple distributed data-processing mid-
dlewares, like MR, combined with the expressive power and ease of use of query-
processing languages. A breakthrough of such systems is the flexibility provided
in comparison with traditional data warehouses and parallel databases. The need
for flexibility is particularly strong in the Big Data domain, where data is fre-
quently processed in an ad-hoc manner and usually does not follow a strictly
relational, previously known schema.

Our approach, based on XQuery, takes the flexibility of MR-based query pro-
cessing one step further. The starting point is the Brackit query engine, which
compiles and optimizes XQuery programs in a storage-independent manner. Its
data model extends the original XQuery data model, allowing the system to na-
tively process not only XML structures, but also JSON and relational data. This
allows us to plug-in various data sources that reuse the generic compilation and
optimization steps performed by the engine. Thanks to a well-defined interface
between query processing and storage layers, storage-related optimizations such
as predicate and projection push-down are also exploited, thereby minimizing
the performance penalty that usually comes as a trade-off for flexibility.

BrackitMR is a component which extends the Brackit query engine to produce
MR jobs, transparently benefiting from the optimization techniques and the
versatile storage integration. As we demonstrate, such capabilities go beyond the
simple raw-file approach of related systems like Pig and Hive, providing wider
applicability and better integration with existing infrastructures like DBMSs and
data-warehouse systems.

J. Wang et al. (Eds.): WAIM 2013, LNCS 7923, pp. 806–808, 2013.
© Springer-Verlag Berlin Heidelberg 2013



BrackitMR: Flexible XQuery Processing in MapReduce 807

2 System Overview

Our system is composed of three main components: (i) the Brackit engine, which
not only performs query compilation and optimization, but is also responsible
for the execution of physical query plans within a single node; (ii) the BrackitMR
component, which translates query plans into equivalent MR job specifications;
and (iii) the Collection component, which manages multiple data sources that
implement a unified interface for retrieving data, mapping into our extended data
model, and performing push-down of operations like filters and projections.

Fig. 1. (a) BrackitMR architecture and (b) a sample query accessing multiple stores

Figure 1a illustrates the three components of our system and how they in-
teract with each other and with the Hadoop system. A query is first compiled
and optimized by the Brackit engine, generating a logical query plan which is
processed by the BrackitMR component. It splits the query plan into blocks
of non-blocking operators which are assigned to Map and Reduce functions, as
described in [2]. The technique applied is the same in systems like Hive [4] and
Pig [1]. The generated job specifications are then submitted to the Hadoop clus-
ter. When the Map and Reduce functions are executed, the parts of the logical
plan contained within them are finally translated into physical operators by a
local instance of the Brackit engine. When executed, these operators fetch data
from the Collections component, which transparently handles a variety of data
sources, producing either XML, JSON, or relational data. Figure 1b shows two
sample queries. The top one implements the classical word count problem, while



808 C. Sauer, S. Bächle, and T. Härder

the second one reads data from a JSON data source and produces records con-
taining embedded XML, which is made possible by our extended data model.
Both queries produce JSON records as output, which can be either printed on
the screen or written to a data format specified by the user in the configuration.
Note the use of the => operator, which extracts a field from a JSON record.

3 Demo Description

The system we demonstrate consists of a Web interface which submits queries
to a BrackitMR server. The attendees will be able to select from a predefined
set of queries as well as to write their own queries. The interface will display
the query plans and the steps of transforming it into a MR job. Execution will
be monitored and the user will have the option to activate tracing capabilities
and debug flags to investigate how data is transformed and shipped across nodes
in the Hadoop cluster. The data sources provided will include plain text files,
CSV, JSON, relational databases, native XML databases, BerkeleyDB container
files, HBase tables, MongoDB collections, and so on. The unified interface of the
Collection component allows such sources to be transparently processed within
the same query, allowing data from heterogeneous sources to be processed and
combined into a single dataset.

Another feature of our interface is benchmarking, which gives the possibility
to compare query execution times with optimization features turned on and
off. Furthermore, it is possible to compare the performance of the same query
running on data stored in different formats, as well as compare the performance
of BrackitMR with that of Pig and Hive.

Besides the ability to process data from various sources, BrackitMR is based
on the XQuery language, which has a higher expressive power than PigLatin
and HiveQL. As discussed in [3], XQuery also fulfills a wider set of flexibility
requirements—particularly in the Big Data scenario—than SQL and the men-
tioned related approaches. Our extended data model, which adds support for
JSON, also makes BrackitMR a perfect fit for scenarios in which XML is too
cumbersome, but a flexible nested data model is still desired.

References

1. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-
So-Foreign Language for Data Processing. In: SIGMOD Conference, pp. 1099–1110
(2008)

2. Sauer, C.: XQuery Processing in the MapReduce Framework. Master’s thesis, Uni-
versity of Kaiserslautern, Germany (2012)

3. Sauer, C., Härder, T.: Compilation of Query Languages into MapReduce.
Datenbank-Spektrum 13(1), 5–15 (2013)

4. Thusoo, A., Sen Sarma, J., Jain, N., Shao, Z., Chakka, P., Zhang, N., Anthony, S.,
Liu, H., Murthy, R.: Hive – A Petabyte Scale Data Warehouse using Hadoop. In:
ICDE Conference, pp. 996–1005 (2010)


	BrackitMR: Flexible XQuery Processing
in MapReduce
	1
Introduction
	2
System Overview
	3
Demo Description
	References


