
Energy-proportional Query Execution
using a Cluster of Wimpy Nodes

Daniel Schall, Theo Härder

Databases and Information Systems Group
University of Kaiserslautern, Germany

{schall,haerder}@cs.uni-kl.de

ABSTRACT
Because energy use of single-server systems is far from being
energy proportional, we explore whether or not better energy
efficiency may be achieved by a cluster of nodes whose size is
dynamically adjusted to the current workload demand. As
data-intensive workloads, we submit specific TPC-H queries
against a distributed shared-nothing DBMS, where time and
energy use are captured by specific monitoring and mea-
surement devices. We configure various static clusters of
varying sizes and show their influence on energy efficiency
and performance. Further, using an EnergyController and
a load-aware scheduler, we verify the hypothesis that en-
ergy proportionality can be well approximated by dynamic
clusters.

1. INTRODUCTION
Energy efficiency is becoming more important in database

design. A substantial number of scientific contributions ex-
amined and optimized the energy consumption of database
servers and their components. Recently, the research focus
shifted from inflexible single-server DBMSs to distributed
clusters running on lightweight nodes [4]. Although distri-
buted systems impose some performance degradation com-
pared to a single, brawny server, they offer higher energy
saving potential in turn.

Current hardware is not energy proportional, because a
single server consumes, even when idle, a substantial frac-
tion of its peak power [1]. Because typical usage patterns
lead to a server utilization far less than its maximum, en-
ergy efficiency of a server aside from peak performance is
reduced [6]. In order to achieve energy proportionality using
commodity hardware, we have chosen a clustered approach,
where each node can be powered independently. By turn-
ing on/off whole nodes, the overall performance and energy
consumption can be fitted to the current workload [2]. Un-
used servers could be either shut down or made available to
other processes. If present in a cloud, those servers could be
leased to other applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DaMoN’13, June 24 2013 New York, NY, USA
Copyright 2013 ACM 978-1-4503-2196-9/13/06 ...$15.00.

So far, only the contribution by Lang et al. [4] delivered
initial results to this problem, however, only using experi-
ments on static clusters with differing server configurations
where Vertica was running some TPC-H queries. Although
they did not explain how the unused servers in the clus-
ter could be turned on/off, they provided at least a kind
of existence proof that research in DB clusters may lead to
enhanced energy efficiency for DB applications.

Focusing on the DBMS’s storage system, we have already
checked the feasibility of approaching energy proportionality
by dynamically migrating whole storage segments (32 MB)
across nodes to balance between performance and energy
consumption [5]. In this paper, we rely on a statically config-
ured storage system with fixed segment/page allocation and
aim at optimizations based on flexible turning on/off pro-
cessing nodes to approximate an energy-proportional query-
execution layer. We are running TPC-H queries on a cluster
of nodes, in which we dynamically adjust the number of
nodes to fit to the current workload. By measuring the en-
ergy consumption, we verify that energy-proportional query
processing can be achieved.

2. ENERGY PROPORTIONALITY
Single-server DBMSs exhibit poor energy-proportional be-

havior, because most of the built-in hardware components
are more or less static energy consumers, e. g., main mem-
ory, storage disks, and mainboard. Only the processor is
capable of scaling down when idle [1].

A key observation made by Tsirogiannis et al. [8] con-
cerning the energy efficiency of single servers, the best per-
forming configuration is also the most energy-efficient one,
because power use is not proportional to system utilization
and, for this reason, runtime needed for accomplishing a
computing task essentially determines energy consumption.
Hence, the system must be fully utilized to be most energy
efficient. However, real-world workloads do not stress servers
continuously. Typically, their average utilization ranges be-
tween 20 and 50% of peak performance [1]. Therefore, tradi-
tional DB-servers are chronically underutilized and operate
below their optimal energy-consumption-per-query ratio. As
a result, there is a big optimization opportunity to decrease
power consumption during off-peak times.

The main drawback of a traditional server is its high
amount of static power consumption. Typically, an idle
server, ready to accept queries, is already consuming more
than 50% of its peak power, without performing any work.
In a cluster of lightweight nodes, single servers can be pow-
ered independently, thus allowing more fine-grained control

Master Node

Processing
Node

S
S
D

Processing
Node

S
S
D

Processing
Node

S
S
D

Processing
Node

S
S
D

Disk

Storage Node

Disk
Disk Disk

S
S
D

Disk

Storage Node

Disk
Disk Disk

S
S
D

Disk

Storage Node

Disk
Disk Disk

S
S
D

Disk

Storage Node

Disk
Disk Disk

S
S
D Disk

Storage Node

Disk
Disk Disk

S
S
D

S
S
D

Figure 1: Overview of the WattDB cluster

over the overall energy consumption. We are taking this
approach with WattDB, expecting energy savings under re-
alistic workloads.

3. CLUSTER DESIGN
We have developed a research prototype of a distributed

DBMS called WattDB on a scale-out architecture, consist-
ing of n (currently 10) nodes, interconnected by an 1GBit/s
Ethernet switch. The cluster consists of 10 identical nodes,
composed of an Intel Atom D510 CPU, 2 GB DRAM and
an SSD. The configuration is considered Amdahl-balanced
[7], i. e., balanced between I/O and network throughput on
one hand and processing power on the other.

Compared to InfiniBand, the bandwidth of the intercon-
necting network is limited but sufficient to supply the light-
weight nodes with data. More expensive, yet faster con-
nections would have required more powerful processors and
more sophisticated I/O subsystems. Such a design would
have pushed the cost beyond limits, especially because we
would not have been able to use commodity hardware. Fur-
thermore, by choosing lightweight components, the overall
energy footprint is low and the smallest configuration, i. e.,
the one with the fewest number of nodes, exhibits low power
consumption. Moreover, experiments running on a small
cluster can easily be repeated on a cluster with more pow-
erful nodes.

A dedicated node is the master node, handling incoming
queries and coordinating the cluster. Some of the nodes have
each four hard disks attached, and act as storage nodes, pro-
viding persistent data storage to the cluster. The remain-
ing nodes (without hard disks drives) are called processing
nodes. Due to the lack of directly accessible storage, they
can only operate on data provided by other nodes (see Fig-
ure 1).

All nodes can evaluate (partial) query plans and execute
DB operators, e. g., sorting, aggregation, etc., but only the
storage nodes can access the DB storage structures, i. e.,
tables and indexes. Each storage node maintains a DB buffer
to keep recently referenced pages in main memory, whereas
a processing node does not cache intermediate results. As a
consequence, each query needs to always fetch the qualified
records from the corresponding storage nodes.

Hence, our cluster design results in a shared-nothing ar-
chitecture where the nodes only differentiate to those which
have or have not direct access to DB data on external stor-
age. Each of the nodes is additionally equipped with a
128GB Solid-State Disk (Samsung 830 SSD). The SSDs do

TBSCAN
LINEITEM

SORT

M‐SORT

AGGREG

TBSCAN
LINEITEM

SORT

TBSCAN
LINEITEM

SORT

(a) TPC-H Query 1

IX
LINEITEM

H‐JOIN

AGGREG

IX
ORDERS

IX
ORDERS

(b) TPC-H Query 4

Figure 2: TPC-H queries

not store the DB data, they provide swap space to support
external sorting and to provide persistent storage for con-
figuration files. We have chosen SSDs, because their access
latency is much lower compared to traditional hard disks;
hence, they are better suited for temp storage.

In WattDB, a dedicated component, running on the mas-
ter node, controls the energy consumption, called Energy-
Controller. This component monitors the performance of all
nodes in the cluster. Depending on the current query work-
load and node utilization, the EnergyController activates
and suspends nodes to guarantee a sufficiently high node
utilization depending on the workload demand. Suspended
nodes do only consume a fraction of the idle power, but
can be brought back online in a matter of seconds. It also
modifies query plans to dynamically distribute the current
workload on all running nodes thereby achieving balanced
utilization of the active processing nodes.

3.1 Power Consumption
As we have chosen lightweight nodes, the power consump-

tion of each node is rather low. A processing node with
an SSD attached, but no additional hard drives, consumes
∼22 Watts. Each hard drive adds about 1.5 Watts to the
power consumption, hence each of our storage nodes use ∼28
Watts. The interconnecting switch needs 17 Watts and is in-
cluded in all measurements. The minimal configuration of
the cluster consists of the storage nodes, as they cannot be
switched off without losing access to the data, and the coor-
dinating master, necessary to receive and distribute queries
and to manage the cluster. All functionalities (storage, pro-
cessing, and coordination) could be centralized on one node,
further minimizing the static energy use. For the results
reported in this paper, we have chosen to run the tasks on
separate nodes to minimize interferences of the functions,
e. g., memory contention.

3.2 Storage Structures and Indexes
In WattDB, data is stored in tables, which are subdivided

into partitions using the physical tuple order. Hence, tuple
distribution among the partitions is not controlled by logical
predicates. Partitions organized as heaps consist of a set of
segments, where a segment specifies a range of pages on a
hard drive. To preserve physical clustering of a partition, it
is always assigned to a single node and their segments are
only distributed across the hard disks of that node. Seg-
ments can be moved to other disks and even to other nodes,
but that technique is not used in this paper [5]. Indexes
implemented as B*-trees can be created on a partition to
speed up query evaluation.

In this paper, we have incorporated the TPC-H data gen-
erator directly into WattDB. The generator runs on the mas-
ter node and inserting tuples on the storage nodes. The
main reason to incorporate the data generator, instead of
running an external application, was to reduce data genera-
tion times. Our decision did not interfere with query evalu-
ation. Some data types of the TPC-H specification are yet
unsupported by WattDB and therefore replaced by equiva-
lent types. For example, the DATE type was replaced by
an INTEGER, storing the date as YYYYMMDD, which is
functionally identical. Key constraints were not enforced
because of the same reason. Yet, the data generator auto-
matically adheres to these constraints.

To support different query characteristics, i. e., I/O- and
CPU-intensive workloads, we have created indexes on the
columns used in query Q4. As a result, the query optimizer
prefers an IX-Scan to a TABLESCAN, thus reducing the
I/O requirements of the query. We did not create further
indexes, especially ones to support query Q1 to keep that
query I/O-bound.

3.3 Load-aware Scheduler
The challenge of optimizing and scheduling queries in single-

node systems becomes even more important in distributed
environments. In addition to the two traditional optimiza-
tion criteria, i. e., I/O and CPU usage, network utilization
plays a crucial factor in distributed query plans. Further-
more, in a dynamic cluster, the number of computational
resources is not fixed, i. e., additional nodes can be turned
on to provide more CPU power and main memory if neces-
sary. Hence, the choice where to execute a query operator is
non-trivial, especially while trying to minimize energy con-
sumption and/or execution times. Data access operators
cannot be re-assigned, because table and index scans only
occur at the storage level, i. e., performed by the storage
nodes. But join, sort, and aggregate operators can be freely
placed among the nodes.

We have implemented a cost-based scheduler, working on
predefined statistics to estimate I/O and CPU costs of each
operator. As dynamic decision information, the scheduler
receives monitoring data from all nodes to estimate their cur-
rent utilization. After annotating each operator in a query
plan with its expected cost and the estimated number of re-
sult tuples, the operators are distributed among the nodes
according to the nodes’ utilization and the estimated net-
work delay. The scheduler’s estimated overall utilization of
the cluster acts as an indicator for the power management
component whether or not to adjust the number of active
nodes. In turn, the total number of active nodes directly
influences the scheduler’s decisions.

Distributing query plans is the final step in query plan-
ning, before the execution of the physical operators begins.
Because the scheduler is called for every new query, reacting
to changing workloads can be performed very quickly, on a
per-query-basis.

As we will show in the following, energy efficiency does not
depend on query performance, instead we have to trade-off
between the two. The scheduler can therefore be tuned to
optimize for performance, energy consumption, or a mix of
both. Optimizing for performance increases the estimated
utilization of all nodes, hence, the power management will
power-up nodes more aggressively.

3.4 Power Measurement
We have developed a measurement device, capable of mon-

itoring the power and energy consumption of each node in
the cluster, the number of active database nodes and the to-
tal throughput of queries during each test. This device sends
the stream of measurements to a connected PC, running the
monitoring software. This computer is also controlling the
benchmark execution by submitting queries to the master
node; thus, it enables fine-grained monitoring in correlation
with the benchmark runs. The measurement frequency of
the device reaches up to 100 Hz, hence we are able to de-
termine the power consumption in high resolution. A more
detailed description of the measurement device can be found
in [3].

4. EXPERIMENTAL SETUP
We run all experiments using DB data and queries from

the well-known TPC-H benchmark. We have generated a
TPC-H database with a scale factor of 1 on the storage nodes
and provided indexes (as conventional B*-trees) for the most
important attributes.

In our experiments, we use a varying number k ≤ 7 of
statically assigned storage nodes. In case of k = 1, all TPC-
H tables are allocated across the disks of that single storage
server. In case of k > 1, the larger tables LINEITEM and
ORDERS are divided into k equal-sized partitions and uni-
formly assigned across the k storage nodes, whereas each of
the smaller tables (PART, SUPPLIER, PARTSUPP, CUS-
TOMER, NATION, REGION) is always fully allocated on a
single storage node. Up to n−k nodes are used as processing
nodes.

As our workload, we have selected the TPC-H queries Q1
and Q4, because these queries enable us to check and demon-
strate important performance-critical aspects of a DBMS—
primarily the scan/sort/aggregate and join performance of
WattDB.

4.1 Q1
The query plan for Q1 is depicted in Figure 2(a). This

is an I/O- and CPU-intensive query, scanning all data in
the LINEITEM relation and selecting some tuples. The tu-
ples are then sorted and aggregated. To leverage the high
number of CPU cores in the cluster, sorting is split into two
phases: First, all tuples are pre-sorted on the originating
storage node. This done using an external sort algorithm,
spilling the intermediate sort runs to the Solid-State Disk.
Second, the pre-sorted tuples are streamed to a processing
node, where all runs from the partitions are sorted using
merge sort. Additionally, the now sorted tuples are grouped
and aggregated.

4.2 Q4
Figure 2(b) sketches the query plan for Q4. In the TPC-

H specifications, Q4 contains an EXISTS subquery, which
is unnested by the optimizer and replaced by an equi-join,
which produces identical results with superior performance.
The tuples of the inner (ORDERS) and outer (LINEITEM)
relation are accessed via an index range scan. We have cho-
sen a hash join, because the inner relation fits well into main
memory. Using the result of the join, the tuples are aggre-
gated as defined by TPC-H. Both queries are parameterized
according to the specifications.

 ‐

 5

 10

 15

 20

 25

 30

 35

 ‐

 500

 1.000

 1.500

 2.000

 2.500

 3.000

 3.500

10% 25% 50% 100%

EC / runtime per Query (Q1)

[3 + 0 nodes] joules / query

[3 + 2 nodes] joules / query

[3 + 7 nodes] joules / query

Load

Joules Sec.

(a)

 ‐

 5

 10

 15

 20

 25

 30

 35

 ‐

 500

 1.000

 1.500

 2.000

 2.500

 3.000

 3.500

10% 25% 50% 100%

EC / runtime per Query (Q1)

[5 + 0 nodes] joule / query

[5 + 2 nodes] joule / query

[5 + 5 nodes] joule / query

Load

Joules Sec.

(b)

Figure 3: (a) Varying query load (from 10% to
100%) using TPC-H query Q1 on 3 storage nodes
and 0 to 7 processing nodes. (b) Same query load
on 5 storage nodes with up to 5 processing nodes.

5. EXPERIMENTAL RESULTS
After having generated the data, we evaluate a series of

queries concurrently issued by a number of DB clients. Each
test runs for 600 seconds.

5.1 Static Cluster
First, we present measurements run on a fixed number

of nodes to demonstrate that energy consumption and per-
formance can be tuned to our needs. For this reason, we
select the most energy-efficient configuration for each work-
load beforehand. To carve out the differences between the
two queries, Q1 and Q4, we have run them separately on
the cluster. Each workload in our experiments has a dif-
fering number of parallel DB clients running on the bench-
mark/monitoring PC. The number of active DB clients, con-
tinuously sending queries to the database, is controlled by
the benchmark specification. Thus, the utilization of the
database changes with the amount of DB clients.

Figures 3 (a) and (b) plot the energy consumption and
performance running Q1 on a cluster of nodes. Depending
primarily on the number of nodes, the power consumption
of a given cluster is more or less constant and, therefore,
not shown in the graphs. The X-axis depicts the load of
the cluster—starting with a very low load on the left and
increasing it to the right. To characterize how the cluster
is utilized, we define its load level x% by the number x of
the DB clients. Hence, a load of 100% represents 100 DB
clients. To enable better comparability, we normalized all
results to quantity per query. The solid bars in the graphs
illustrate the average energy consumption per query (Y-axis
on the left), whereas the framed (unfilled) bars report the
average runtimes per query (Y-axis on the right). The (up
to) three bars (belonging to experiments characterizing the
same utilization) represent clusters, where the number of
nodes increase going from left to right.

We have evaluated identical workloads on different cluster
sizes to demonstrate the dependency between energy con-
sumption and performance. The smallest cluster, running
the benchmark only on 3 storage nodes, has the lowest power

 ‐

 5

 10

 15

 20

 25

 30

 35

0

500

1.000

1.500

2.000

2.500

5% 13% 25% 50% 100%

EC / runtime per Query (Q4)

[3 + 0 nodes] joule / query
[3 + 2 nodes] joule / query
[3 + 7 nodes] joule / query

Load

Joules Sec.

(a)

 ‐

 5

 10

 15

 20

 25

 30

 35

0

500

1.000

1.500

2.000

2.500

5% 13% 25% 50% 100%

EC / runtime per Query (Q4)

[5 + 0 nodes] joules / query
[5 + 2 nodes] joules / query
[5 + 5 nodes] joules / query

Load

Joules Sec.

(b)

Figure 4: (a) Varying query load of TPC-H query
Q4 using 3 storage nodes and up to 7 processing
nodes. (b) Same query load on 5 storage nodes with
0 to 5 processing nodes.

consumption (∼114 Watts), but also the lowest performance
(compare the left-most bars in Figure 3(a)).

For low utilizations (see X-axis), the energy consumption
per query is therefore minimal, although the runtime per
query is higher, compared to larger cluster configurations.
With an increasing number of DB clients, the small cluster
comes to its limits and is unable to handle the workload,
i. e., the available main memory is exhausted. Therefore,
more powerful—yet more power-consuming—configurations
take over.

The next, larger configuration includes two more process-
ing nodes (one of them is the already present master node).
This configuration has a higher energy consumption under
low utilization, but is able to process bigger workloads.

Finally, we have combined 3 storage nodes with 7 process-
ing nodes, creating an even more power-consuming configu-
ration (∼246 Watts). Of course, its high number of active
nodes leads to a waste of energy under low utilization, as
the query processing time stays almost the same. The (3
+7 nodes) configuration is the only one powerful enough to
handle all the workloads. Still, the query runtimes increased
under high utilization, possibly due to a bottleneck in the
I/O subsystem.

We have repeated the same benchmark on different clus-
ter configurations having 5 storage nodes, depicted in Figure
3(b). Although the idle power consumption is higher and
low-utilization workloads result in worse energy efficiency,
the 5-storage-node cluster exhibits better energy efficiency
under high loads. Increasing the number of processing nodes
results in the same behavior as previously described, al-
though the query runtimes at 50% load are further decreas-
ing.

On one hand, adding two more storage nodes instead of
processing nodes and therefore increasing the I/O band-
width pays off at high load. On the other hand, as the
two additional nodes increase the lowest possible power con-
sumption, the energy efficiency at low utilization is worse.
Therefore, we can already conclude that performance does
not necessarily correlate with energy efficiency.

Next, we have executed the same benchmark for query
Q4. The six cluster configurations were identical to the pre-
vious experiments. Figures 4 (a) and (b) illustrate the re-
sults for query Q4, where a utilization of 100% represents
200 DB clients. The left figure depicts measurements on
the cluster using 3 storage nodes ((3 + x) cluster), whereas
the right figure shows those for the cluster with 5 storage
nodes. All configurations are able to process the workloads,
but with rising load, the query runtime gets worse. With a
higher number of processing nodes, query performance is im-
proved, whereas, however, energy consumption is increased.
This result indicates that I/O bandwidth in the Q4 exper-
iments is sufficient. Now, the number of processing nodes
is a performance-critical factor, as the cluster with (3 + 7)
nodes exhibits a better performance than the 5-storage-node
cluster, having only 5 processing nodes.

To further explore the influence of the I/O bandwidth
in the cluster, we have measured the performance/energy
outcome for the (1 + x)-nodes and (7 + x)-nodes cluster
similar to the experiments in Figures 3 and 4. Due to space
limitations, the graphs cannot be shown here. In the (1
+ x)-nodes cluster, bandwidth to disks is too low, thus,
I/O latency for the individual tasks and, in turn, the entire
processing times are strongly increased. As a consequence,
query response times, throughput, and energy efficiency are
impaired. Hence, we may not reach given performance goals,
while we unnecessarily waste energy due to prolonged query
runtimes.

In the (7 + x)-nodes cluster, I/O bandwidth is not in short
supply. Obviously, its static fraction of power consumption
is higher, because storage nodes can’t be turned off. As a
result, the energy efficiency of this configuration at low uti-
lization is worse, compared to smaller clusters. Although
the 7 storage nodes provide enough disk bandwidth for all
benchmarks, i. e., queries are not slowed down by I/O laten-
cies, the overall energy efficiency suffers from the steadily
high power consumption. Additionally, high workloads of
Q4 are afflicted with the limited availability of processing
nodes.

These experiments clarify the importance of an adequate
I/O subsystem. Because the two latter configurations (1
and 7 storage nodes) do not provide more insights, we have
focused on the two middle-sized configurations to present in
this paper. For each query workload, an optimal configu-
ration w.r.t. energy efficiency exists: The lower utilizations
are handled best by the smallest cluster, as its performance
is sufficient and it consumes the least power. With rising
load, the next bigger cluster shows better energy efficiency.
Finally, at full utilization, the most powerful cluster offers
the best efficiency, although it needs the most power.

These experiments on a statically configured cluster al-
ready reveal the opportunity of trading performance for en-
ergy savings. Yet, manually configuring the database to fit
the expected workload is not optimal. For highly varying
workloads, it is not even possible to select a single, fixed con-
figuration with balanced performance and power consump-
tion.

5.2 Dynamic Cluster
After having evaluated the energy/performance behavior

of static clusters, we wanted the cluster to dynamically ad-
just to a given workload, without needing predefined con-
figurations. The cluster should tune the number of active

processing nodes to fit the current load, and power up/down
such nodes when the workload changes. To reach this goal,
we use our power management component (EnergyController),
running on the master node.

This component monitors the current state of the clus-
ter and is able to startup and shutdown (suspend) nodes.
We already introduced and explained power management
for storage nodes in [5], where we experienced prolonged
provisioning times due to the physical re-assignment of data
segments and the resulting copy times. In this work, power
management involves processing nodes, which do not have
any additional startup cost and can come online in a mat-
ter of seconds. Similarly, suspending an underutilized pro-
cessing node can occur immediately after finishing the last
running query on it.

By running benchmarks on static configurations (see pre-
vious section), we have determined the maximum number of
parallel queries per node and other limiting factors like CPU
and memory bottlenecks. We feed this data to the Energy-
Controller to improve the quality of its decisions, whether
the cluster is over- or underutilized.

After setting up the cluster, we run a series of workloads
with a varying number of parallel queries of both, Q1 and
Q4. In this experiment, we have run queries of both types in
parallel, to generate a more complex workload with I/O- and
CPU-intensive parts. Each workload, with a fixed number
of DB clients, runs for 10 minutes; hence, the database load
changes every 600 seconds. The DB cluster adjusts itself to
satisfy the current workload by powering up/down nodes.

Figure 5 plots the results in sequence. Each data point
represents a number of DB clients running in parallel and
sending either Q1 or Q4 queries to the cluster. The X-
axis depicts the number of concurrent queries of each kind.
The upper part of Figure 5 consists of three graphs, plotting
performance as query throughput, power consumption of the
cluster, and energy efficiency expressed in number of queries
per 10 Watts.

To compare the measurements using a dynamically ad-
justing cluster, we have re-run the same benchmark on a
fixed number of nodes, and also included the results in this
graph. The small-dashed (blue) line represents the dynamic
cluster, the large-dashed (red) line the fixed cluster with 5
processing nodes, and the dotted (black) line the (5 + 1)-
nodes cluster.

The fixed cluster configurations mark the bounding box
in which the dynamic cluster can adjust. While the small
cluster shows the lowest power consumption, its query ca-
pabilities are limited. Therefore, it is unable to exceed a
certain performance, even at high system utilization. The
big cluster has the highest power consumption of all three
configurations and, naturally, the highest performance. But
under low system load, that performance lays waste and the
energy efficiency is impaired.

The dynamic cluster is able to adjust between both ex-
tremes and quickly adapts to the current workload. There-
fore, its power consumption and performance covers the en-
tire range between the two static configurations. Note, how-
ever, it more or less matches the performance of the big
cluster, while it saves a substantial amount of energy. Gain
in energy efficiency is particularly high for moderate clus-
ter utilization where maximum performance can be achieved
with much less power consumption (see middle part of the
benchmark in Figure 5).

0

100

200

300Performance (Queries)

130

180

230

280Power Consumption (Watt)

0

5

10

15

0 50 10 100 25 0 50 10 100 25 0 50 10 100 25 0 50 10 100 25 0 50 10 100 25

0 0 0 0 0 50 50 50 50 50 10 10 10 10 10 100 100 100 100 100 25 25 25 25 25

5 Storage, 1 Processing Node
5 Storage, 5 Processing Nodes
5 Storage Nodes with dynamic allocation of Processing Nodes

Queries per 10 Watts

Q4

Q1

Figure 5: Experiments on three cluster configurations

6. CONCLUSION AND FUTURE WORK
In this paper, we have exposed the opportunity to trade

performance for energy savings by manually selecting an
adequate number of nodes to process the workloads. We
have also shown that the best performing configuration is
not always the most energy-efficient one. Instead, perfor-
mance and energy efficiency are competing goals to be bal-
anced. Static configurations require prior knowledge of the
upcoming workloads and exhibit drawbacks under varying
workloads, as a predefined configuration cannot exhibit ideal
behavior for all load situations. By scaling the number of
active nodes to the current need, we are able to dynamically
adjust power consumption and performance. Therefore, we
can select the best configuration, either in terms of power
consumption, energy efficiency, or performance.

These experiments also emphasize the importance of an
adequate I/O-subsystem. As we have shown in [5], adapting
the storage to changing workloads—although possible and
energy-saving—is a cumbersome and slow task. Because of
the timespan needed to copy and move data, adjustments
cannot be made every few seconds; hence, pre-selecting a
robust storage configuration for the expected workload is
essential. Changing the number of processing nodes as done
in these experiments is a far more lightweight operation, as it
does not require to restart queries or change data placement.
WattDB is therefore able to react to workload variations
within a few seconds. Combining both approaches to form
a dynamically adjusting storage and processing layer seems
promising for future work.

7. REFERENCES
[1] L. A. Barroso and U. Hölzle. The case for

energy-proportional computing. IEEE Computer,
40(12):33–37, 2007.

[2] T. Härder, V. Hudlet, Y. Ou, and D. Schall. Energy
efficiency is not enough, energy proportionality is
needed! In DASFAA Workshops, 1st Int. Workshop on
FlashDB, LNCS 6637, pages 226–239, 2011.

[3] V. Hudlet and D. Schall. Measuring energy
consumption of a database cluster. In BTW, LNI 180,
pages 734–737, 2011.

[4] W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah,
and D. Tsirogiannis. Towards energy-efficient database
cluster design. PVLDB, 5(11):1684–1695, 2012.

[5] D. Schall and T. Härder. Towards an
energy-proportional storage system using a cluster of
wimpy nodes. In BTW, LNI 214, pages 311–325, 2013.

[6] D. Schall, V. Höfner, and M. Kern. Towards an
enhanced benchmark advocating energy-efficient
systems. In TPCTC, LNCS 7144, pages 31–45, 2012.

[7] A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and
A. White. Low-power Amdahl-balanced blades for
data-intensive computing. SIGOPS Oper. Syst. Rev.,
44(1):71–75, 2010.

[8] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the energy efficiency of a database server. In
SIGMOD Conference, pages 231–242, 2010.

