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by Pedro Martins Dusso

This thesis implements and evaluates an alternative sorting component for Hadoop based

on the replacement-selection algorithm. Hadoop is an open source implementation of the

MapReduce framework. MapReduce’s popularity arises from the fact that it provides

distribution transparency, linear scalability, and fault tolerance. This work proposes an

alternative to the existing load-sort-store solution which can generate a small number

of longer runs, resulting in a faster merge phase. The replacement selection algorithm

usually produces runs that are larger than available memory, which in turn reduces the

overall sorting time. This thesis first describes different sorting algorithms for in-memory

sorting and external sorting; secondly, it describes Hadoop and Hadoop’s map tasks and

output buffer strategies; thirdly, it describes four sorting implementation alternatives,

which are presented from the most simple to the most complex. Furthermore, this work

analyzes the performance of these four alternatives in terms of execution time for run

generation and merging, and the number of intermediate files produced. Finally, we

provide a critical analysis with respect to Hadoop’s default implementation.
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Chapter 1

Introduction

1.1 Motivation

It has being a decade since the first papers about the so called MapReduce framework

were published [1–3] by Google. During this period, data management research on big

data moved from the laboratories to the reality of working clusters with thousands of

machines, where a volume of data in the order of petabytes is processed daily running

some implementation of the MapReduce framework. Most of this popularity can be

credited to MapReduce’s open source version, called Hadoop, released by Yahoo! and

today supported by the Apache Foundation. Hadoop runs on commodity hardware,

making it easy and cheap to deploy; it provides both a programming model and a soft-

ware framework for analysis of distributed datasets, which frees the developers (or, using

a modern term, the data scientists) from the technical aspects of distributed execution

over a cluster, fault tolerance, process communication, and data sharing, letting them

focus on the analytical algorithms needed to solve the existing problems.

During the last years, Hadoop is evolving thanks to the contribution of its users —

which are not only persons but also companies like Cloudera, Yahoo, Facebook, IBM, and

others. Nevertheless, there is a lot of room for improvement in two main landscapes: the

first is the development of additional tools that enhance the abstraction of the framework

in different levels and integrate it with other data management tools. In [4], J. Kobielus

anticipates that massively parallel data processing systems will not make traditional

warehousing architectures obsolete; instead, they will supplement and extend the data

warehouse in strategic roles such as extract/transform/load (ETL), data staging, and

preprocessing of unstructured content. Working in this direction, the data management

community can achieve an integrated (but diverse) platform for multi-structured data.

1



Introduction 2

Approaches like [5, 6] try to address these issues with a higher-level data-processing

system on top of Hadoop.

The second landscape where one can improve Hadoop is by modifying or customizing

the middleware itself. The framework itself is not hard to install and use, but it presents

challenges for developers of extensions and customizations. Changes are slow, and many

of the new features are implemented by third-party entities (a customization due a

particular necessity) and integrated into the main branch. This highly heterogeneous

and decoupled development environment makes the code hard to understand and modify,

which was one of the main challenges in this thesis. Hadoop was first released in 2007 and

in 2012 its second (alpha) version became public, with major features such as federation

of the underlying distributed file system, a dedicated resource negotiator, and many

performance improvements.

1.2 Contribution

This thesis implements and evaluates an alternative sorting component for Hadoop based

on the replacement-selection algorithm [7]. Sorting is used in Hadoop to group the map

outputs by key and deliver them to the reduce function. The original implementation is

based on quicksort, which is simple to implement and very efficient in terms of RAM and

CPU. However, data management research has shown that replacement selection may

deliver higher I/O performance for large datasets [8, 9]. Sorting performance is critical in

MapReduce, because it is essentially the only non-parallelizable part of the computation.

The sort stage of a MapReduce job is very network- and disk-intensive, and thus the

superiority of quicksort for in-memory processing may not be directly manifested in this

scenario. Our goal in this thesis is to evaluate replacement selection for sorting inside

Hadoop jobs. To the best of our knowledge, this is the first approach in that direction,

both in academia and in the open-source community.

The remainder of this thesis is organized as follows. Chapter 2 reviews algorithms for

in-memory and disk-based sorting, focusing on the replacement-selection algorithm. In

chapter 3, we present the internals of job execution in Hadoop, focusing on the algorithms

and data structures used to implement external sorting using quicksort. The infrastruc-

ture presented will serve as basis for our implementation of replacement selection, which

will be discussed in Chapter 4. We implemented four versions of the algorithm using

different mechanisms for internal memory management and sort processing. Our goal

was to start from a simple naive implementation and gradually improve it to deliver the

best possible performance. An experimental evaluation of each alternative in compar-

ison with Hadoop’s original method is also presented. In Chapter 5, we compare our
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replacement-selection method against original Hadoop, using a wide range of scenarios

representative of real-world usage. The experiments in this chapter are executed at the

level of whole MapReduce jobs, instead of the micro-benchmarks performed in Chapter

4. Finally, chapter 6 concludes this thesis, providing a brief overview of the pros and

cons of our solution, as well as discussing numerous open challenges for future research.



Chapter 2

Sorting

Sort algorithms can be classified into two main categories. When the input data set fits

in main memory, an internal sort can be executed. If not, an external sort algorithm

is needed. We sort in-memory using sorting algorithms such as quicksort, heapsort,

mergesort, and others.

It is necessary to rethink the sorting procedure when the input data set is bigger than

the available main memory. Memory devices slower than the computer main memory

(e.g., hard disk) must work together to bring the records in the desired ordering. The

combination of sorting input subsets in memory followed by an external merge process

is the basic recipe of an external sorting algorithm.

A record is a basic unit for grouping and handling data. It can represent one single

integer number or a more complex data structure, such as a personal address book

composed by name, telephone number and address fields. A key is a special field (or

subset of fields) used as criterion for the sort order. A value is the data associated to a

specific key, i.e., the rest of the record. Whether key and value are disjoint or one is a

subset of the other is irrelevant for our discussion.

2.1 In-memory sorting

In-memory sorting algorithms present different strategies and consequently different

complexities, which in turn influence their efficiency. When deciding which in-memory

sorting algorithm to use we consider the number of records in the input: for less than

one hundred records any algorithm is equally efficient because the input is too small;

but when dealing with a number of records between one hundred and the maximum

number of records that still fit in main memory an O(nlog(n)) algorithm is preferrable

4
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[10]. Before discussing the three main O(nlog(n)) sorting algorithms (namely quicksort,

heapsort, and mergesort) we introduce some concepts to classify these algorithms. This

categorization will help us later to decide which algorithm to use.

A stable sort is a sort algorithm which preserves the input order of equal elements in the

sorted output; i.e., if whenever there are two records r and s with the same key and with

r appearing before s in the original list, r will appear before s in the final sorted output.

An in-place algorithm is an algorithm which transforms input using a data structure

with a constant amount of extra storage space. The input is usually overwritten by the

output as the algorithm executes.

We can further classify sorting algorithms with respect to its general operational method.

These methods are:

1. Insertion: when examining record j assume all previously records 1 . . . j − 1 are

already sorted. Then, move the actual record to the correct position, shifting

higher ranked records up as necessary.

2. Exchanging : systematically interchange pairs of records that are out-of-order until

no more such pairs exist.

3. Selection: repeatedly select the smallest (or biggest) record from the input. One

by one we move the selected record to an output data structure, until the input is

empty.

4. Merging : combine two or more sorted inputs into a single ordered one.

5. Distribution: records are distributed from their input to multiple intermediate

structures which are then gathered and placed on the output.

The first algorithm we discuss is quicksort, which is an unstable, in-place, and exchanging

sort. Perhaps quicksort is the most used sort algorithm in general, given that it is

the algorithm used in the Microsoft .NET Framework [11] and in Oracle Java 7 [12].

Furthermore, it is the sort algorithm used by the Hadoop MapReduce framework. We

also discuss heapsort, an unstable, in-place, selection sort, because its selective strategy

backed by a heap will be useful when we talk about replacement selection. Finally,

we introduce mergesort, a stable, non-in-place, merging sort. Its sort strategy based

on merging sorted inputs is used in external sorting algorithms, thus reviewing the

mergesort algorithm provides a good background to work on in the next section. A

comprehensive study of sorting algorithms and techniques is found in [7].
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Figure 2.1: Quicksort procedure: white boxes represent the current pivot; grey boxes
represent the records smaller than the pivot and the black boxes the records bigger

than the pivot. Records outside any box are already in their final ordered position.

2.1.1 Quicksort

Quicksort is an exchanging sort algorithm that, on average, makes O(nlog(n)) compar-

isons to sort n records. It has a O(n2) complexity in the worst case, but it is usually

faster than other O(nlog(n)) algorithms in practice [10]. Furthermore, quicksort’s se-

quential and localized memory references exhibit superior address locality, which allows

exploiting processor caching [13]. Quicksort implementations are usually unstable, but

stable versions exist [14].

Quicksort work as follows: given an input of n records, we take a record r (called pivot)

and move it to the final position p it should occupy in the output. To determine p,

we rearrange the other records so that all records with a key value greater than that

of r are “to the right” of p (i.e., their positions are greater that p) and the rest to the

left. At this point, we have partitioned the input into two smaller sets: the set of values

smaller than r, and the set of values greater than r. Now the original sorting problem is

reduced to these two smaller problems, namely sorting the two smaller partitions. This

is a typical application of the divide and conquer strategy, and we show an example in

Figure 2.1. The algorithm is applied recursively to each subset, until all records are in

their final position.
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2.1.2 Heapsort

The heapsort algorithm is based on the heap data structure. The heap is usually placed

in an array with the layout of a complete binary tree, which is “a binary tree in which

every level, except possibly the deepest, is completely filled; at depth n, the height of

the tree, all nodes must be as far left as possible” [15]. The binary tree structure is

mapped to array indices: for a zero-based array, the root of the tree is stored at index

0. The left and right children of a node in position i are given by 2i + 1 and 2i + 2,

respectively. Similarly, the parent of i is found b(i − 1)/2c. During the construction

of the heap structure, the data in the array is in an arbitrary ordered. The positions

are then rearranged to preserve the heap property : the key of a node i is greater (or

less) than or equal to that of its children. To restore the property, the heapify operation

is invoked to rearrange the array elements. The heapify process can be thought of as

building a heap from the bottom up, successively shifting nodes downward to establish

the heap property. More details in building the heap structure are found in [7] and [10].

In Figure 2.2 we show a heap (constructed over an array) and its corresponding binary

tree.

If we can transform an input set into a heap, we can sort the input simply by always

selecting the root element for output until the heap is empty. This makes heapsort

a selection-based algorithm. Differently from quicksort, heapsort has an O(nlog(n))

average case complexity, regardless of the order of the input dataset. However, it is

slower than a tuned quicksort in practice [10].

The algorithm is divided into two parts: first, a heap is built out of the input data;

and second, a sorted array is built by repeatedly removing the largest (or the smallest)

record from the heap and inserting it into the sorted output. After each removal, the

heap is reconstructed, i.e., a heapify is invoked.

Once all records from the input are inserted into the heap, we can start selecting the

largest record. This record at the root of the tree is swapped with the last leaf node,

which is located at the end of the array. The array is then heapified again, excluding

the last position of the array. This process is repeated for all records in the heap until

only the root node remains in the tree. At this point, the records are sorted. This

process is illustrated in Figure 2.3, where circle nodes represent records to be sorted,

square nodes represent already sorted records, shaded nodes represent the start of a new

heapify operation, and finally dashed arrows represent a shift operation (used during

the heapify process to rearrange the nodes to keep the heap property).
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Figure 2.2: Array and equivalent complete binary tree

2.1.3 Mergesort

Mergesort is a merging-based sort algorithm where most implementations are stable,

differently from quicksort. Mergesort has an average and worst-case performance of

θ(nlog(n)), however it demands θ(n) auxiliary space. In-place versions also exist but,

due to the constant factors involved, they are only of theoretical interest [16].

Mergesort has two phases: first, we divide the unsorted input set into n subsets of size

1, which are obviously sorted. Second, we combine two or more ordered subsets into a

single ordered one. This is called the merge phase. In the second step, we repeatedly

compare the smallest remaining record from one subset with the smallest remaining

record from the other input subset. The smallest of these two (assuming a two-way

merge, where only two subsets are merged at a time) records is moved to the output.

The process repeats until one of the subsets becomes empty. Figure 2.4 shows both of

these steps. The output of a merge step can be an intermediary output, which will be

further merged with other intermediary outputs or a final output, when all n subsets

divided into the first step have been merged into one last sorted set of size n.

We can cover many possible sorting scenarios with these three sorting algorithms in our

tool set. When auxiliary space is not an issue and we desire a tight upper bound for our

worst case complexity, we shall use mergesort. When we need to sort in-place or we have

knowledge about the unsorted input to explore cache locality, we shall use the quicksort.

Heapsort will be of special interest when we detail the replacement selection algorithm
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Figure 2.3: Heapsort procedure

in the following section, because it borrows the heap and the selection strategy from

heapsort.

2.2 External memory sorting

We use external sort when the input dataset does not fit in the available main memory.

From now on, we should use the terms disk, hard disk, and external memory indistinctly.

The same is valid for memory, main memory, and internal memory. Nowadays, hard

disks are the most common form of external memory device. If we compare them to

main memory, hard disks present the following properties, as seen in [17]:
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Figure 2.4: Mergesort procedure first dividing the input until subsets of size 1 and
then merging the subsets into one single ordered output.

Parameter DRAM NAND Flash Hard Disk PCM

Density 1X 4X N/A 2-4X

Read latency
(granularity)

20-50ns (64B) ∼25µs (4KB) ∼5ms (512B) ∼50ns (64B)

Write latency
(granularity)

20-50ns (64B) ∼500µs (4KB) ∼5ms (512B) ∼1µs (64B)

Endurance N/A 104 ∼ 105 ∞ 106 ∼ 108

Table 2.1: Comparison of Storage Technologies. Adapted from [18].

• The amount of such storage on hard disks often exceeds the amount of main

memory by at least two orders of magnitude;

• Hard disks are much slower (up to five orders of magnitude) because they have

moving mechanical parts;

• It is beneficial to access more than one item at a time to amortize this time gap

between main memory and hard disk.

Often, reading a page from the hard disk takes longer than the time to process it. Thus,

CPU instructions stop being the unit to measure cost in the context of external sorting,

and we replace it by the number of disk accesses—or I/O operations—performed. This

difference makes algorithms designed only to minimize CPU instructions perform not

so efficiently when analyzed from the I/O point of view. External memory algorithms

must aim to minimize the number of I/O operations. In Table 2.1, we see that reading a

4KB page takes ∼25µs on flash memory, while reading a 64B page from main memory
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takes about 20-50ns. For disk reads, a 512B page takes ∼5ms. For comparison with

CPU access speeds, in 5ms an average modern CPU can execute ∼ 105 instructions.

Suppose we must sort a file of 5 million records residing on disk, but only 1 million

can fit into internal memory at a time. A common solution is to bring each of the five

subfiles to main memory, sort it using an internal sort algorithm, and store it back into

disk. We call a sorted subfile of records a run. These runs are then merged by reading

records of each run sequentially into a merge buffer, in a way that guarantees that the

buffer contains at least one record of each run at all times. Once the buffer is full, the

smallest record is moved to the output file. This process is repeated until there are no

records left in all input runs and the buffer is empty. To allow for fast selection of the

smallest record in the buffer, a heap data structure is used.

The above process is similar to the mergesort algorithm, but instead of occurring all

at the same time in main memory, the input is consumed in chunks that fit in main

memory. For a given input file f of size s records and main memory which accommodates

m records, where s > m, a multiway merging sort can be described in two phases: run

generation, where intermediary sorted subfiles, i.e., runs, are produced, and merge, where

multiple runs are merged into a single ordered one. With respect to run generation,

two strategies are worth discussing: one using quicksort and another using replacement

selection as the in-memory sort algorithm.

2.2.1 Run generation with quicksort

Run generation based on the quicksort algorithm is a simple, nevertheless effective,

strategy to create the sorted subfiles. We repeat the following steps until the input file

is empty:

1. Read records from f into main memory until the available main-memory buffer is

full;

2. Sort the records in main memory using quicksort;

3. Write them into a new temporary file (run).

If we assume fixed-length records such that m records fit in main memory, this process

is repeated s
m times, resulting in r := s

m runs of size m stored in the disk.
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2.2.2 Run generation with Replacement Selection

The replacement selection technique is of special interest because the expected length of

the runs produced is two times the size of available main memory (2m in the example

above). This estimation was first proposed by E.H. Friend in [19] and later described

by E.F. Moore in [20], and is also described in [7]. In real world applications, input

data is usually not random (i.e., it often exhibits some degree of pre-sortedness). In

such cases, the runs generated by replacement selection tend to contain even more than

2m records. In fact, for the best case scenario, namely when the input data is already

sorted, replacement selection produces only one run.

Given a set of tuples 〈record, status〉, where record is a record read from the unsorted

input and status is a Boolean flag indicating whether the record is active or inactive.

Active records are candidates for the current run, while inactive records are saved for

the next run. The idea behind the algorithm is as follows: assuming a main memory

of size m, we read m records from the unsorted input data, setting its status to active.

Then, the tuple with the smallest key and active status is selected and moved to an

output file. When a tuple is moved to the output (selection), its place is occupied by

another tuple from the input data (replacement). If the record recently read is smaller

than the one just written, its status is set to inactive, which means it will be written to

the next run. Once all tuples are in the inactive state, the current run file is closed, a

new output file is created, and the status of all tuples is reset to active.

Step Memory contents Output

1 503 087 512 061 061
2 503 087 512 908 087
3 503 170 512 908 170
4 503 897 512 908 503
5 (275) 897 512 908 512
6 (275) 897 653 908 653
7 (275) 897 (426) 908 897
8 (275) (154) (426) 908 908
9 (275) (154) (426) (509) (end of run)
10 275 154 426 509 154
11 275 612 426 509 275

Table 2.2: Run generation with replacement selection

We introduce another example from [7] in Table 2.2 to explain in detail the replacement

selection algorithm. Assume an input dataset consisting of twelve records with the

following values: 061, 512, 087, 503, 908, 170, 897, 275, 653, 426, 154, 509 and

612. We represent the inactive records in parentheses. A discussion of efficient ways of

selecting the smallest record (e.g., using a heap) is postponed to Chapter 4.
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In step 1, we load the first four records from the input data into the memory. We select

061 as the smallest then output and replace it for 908. The smallest now is 087, which we

move to the output and replace with 170. The just-added record is also the smallest in

step 3, so we move it out and replace it with 897. Now we have an interesting situation:

when we replace the record 503, the record read from the input is 275, which is smaller

than 503. Thus, since we cannot output 275 in the current run, we set it as inactive—a

state which will be kept until the end of the current run. Steps 6, 7, and 8 proceed

normally until we move out record 908, which is replaced by 509. At this point, in step

9, all records in memory are inactive. We close the current run, revert the status of all

records to active, and continue the algorithm normally.

In this small example, we produce a first run with twice the size of the available memory

and a second smaller one. In Table 2.2, steps 12, 13, and 14 will output 426, 509, and

612. We calculate this by (tr)modulo(2m) = (12)modulo(2× 4) = 5.

2.2.3 Comparison

Replacement selection is a desirable alternative for run generation for two main reasons:

first, it generates longer runs than a normal external-sort run-generation procedure. As

Knuth remarks in [7] “the time required for external merge sorting is largely governed

by the number of runs produced by the initial distribution phase”. A second advantage

of this algorithm is that reads and writes are performed in a continuous record-by-record

process, and as such can be carried out in parallel. This is particularly advantageous if a

different disk device is used for writing runs. In this case, the I/O cost of run generation

is half of that observed when using quicksort. Furthermore, heap operations can be

interleaved with I/O reads and writes asynchronously.

A potential disadvantage of replacement selection compared to quicksort is that it re-

quires memory management for variable-length records. When a record is removed from

the sort workspace, the free space it leaves must be tracked for use by following input

records. If a new input record does not fit in the free space left by the last selection,

more records must be selected until there is enough space. On the other hand, the

smallest records generate fragmented space. In quicksort, such memory management is

not necessary, because the sort procedure is carried out in-place and one memory-sized

chunk at a time.

These characteristics will be evaluated empirically in detail in Chapter 4.
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Figure 2.5: Merging four runs into one output file.

2.2.4 Merge

We turn our attention now to the second phase of external sorting, namely the merge

phase. The objective of this phase is to create a final sorted file from the existing runs.

Figure 2.5 shows a possible execution of the merge phase. In this example, four runs

are generated from the initial unsorted input file. These runs are being read, record by

record, into a merging buffer in main memory. The smallest record in the buffer is the

one with key value 5, and is the next one moved to the output file, which in turn is a new

run. Then, we move a new record from the top of run 4 into the place where record 5

was located. The execution repeats until only one run is left, which is the sorted output.

In order to select the smallest current record, at least r comparisons must be performed,

since this is the number of runs produced. In [7], Knuth advises making this selection by

comparing the records against each other (in r−1 comparisons) only for a small number

of runs. When the number of records is larger than a certain threshold (Knuth says 8 in

[7]), the smallest record can be determined with fewer comparisons by using a selection

tree. In this case, a heap data structure can be employed, in the exact same way as

done in run generation with replacement selection. With a selection tree we need only

log(r) comparisons, i.e., the height of the tree. Consider now an example of a four-way

merging with a two-level selection tree in Figure 2.6 (adapted from [7]). We replace the

smallest record by its successor record in its run at every step after this, and update the

tree accordingly.
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Figure 2.6: Four-way merging with a two-level selection tree

Complete the tree by executing the necessary comparisons in the first step. Replace the

smallest record by its successor record in its run at every step after this, and update

the tree accordingly. This two-level selection tree yields 087 as the smallest record in

the first step. Move the record to the output and update the three positions where

it appears in the tree. Step 2 outputs 154 as smallest record, and the three positions

containing 154 are updated. We repeat this process of selecting and replacing while the

runs are not empty.

A second improvement over the näıve procedure presented is to take advantage of read

and write buffers. Given r runs and a main memory of size m, one read buffer of size m
r+1

can be used for each input run. This way, there is still m− ( m
r+1)r space left for a write

buffer. Figure 2.7 shows an example of this idea: the main memory can hold 20 records

at time; there are four reading buffers (one for each produced run) of 4 records each and

one writing buffer capable of holding also 4 records at time. Select the smallest record

in memory from the top of the reading buffers (represented by the hexagons) and move

it to the write buffer (represented by the shaded rectangles inside the main memory).

When a read buffer is empty read the next top four records from the corresponding run.

When the write buffer is full, all records contained in it are written to the output file.

The second phase of the external sort executes only θ(n) I/O operations. Despite this

good result, the algorithm cannot sort inputs of arbitrary size as it is. If the first phase
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Figure 2.7: Merging four runs into one output file using read and write buffers.

of the algorithm produces more than m − 1 runs ( s
m > m − 1), then we cannot merge

these runs in a single step. A natural solution for this limitation is to repeat the merging

procedure on the merged runs, producing a merge tree. At each iteration we merge m−1

runs into a new sorted run. The result is s
m−(m−1)+1 runs for the next iteration—the

total number of runs minus the merged runs in this turn plus the new merged run.

At each iteration, we call the total number of possible merges at the same time the

merge factor. It is constrained by the size of available main memory: given by s
m − 1.

For a total number of runs r and assuming that r > factor, the first iteration should

attempt to bring r to be divisible by the factor, to minimize the number of merges. The

goal is to reduce the number of runs from r to factor, and then to 1 (the final output).

In [21], the number of merges executed in the first iteration is:

factor0 = ((r − factor − 1)modulo(factor − 1)) + 21 (2.1)

Figure 2.8 show this merging strategy in practice for r = 12 and factor = 6. In the

first iteration we should merge ((12− 6− 1)modulo(6− 1)) + 2 = (5)modulo(5) + 2 = 2

1The author distinguishes between final factor and normal factor. In the query processing context,
some operations may consume the output of other operations, and memory must be divided among
multiple final merges. We shall not make such distinction in this text.
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Figure 2.8: Merging twelve runs into one with merging factor of six.

runs. Other merging strategies, such as cascade and polyphase merges, exist and can be

found in [7].

The analysis and implementation presented in Chapters 4 and 5 will focus exclusively

on the run generation phase. Since the algorithm used for merging is independent of

what is used for run generation, we evaluate sort performance using the same merge

algorithm, namely the one implemented by the Hadoop framework.



Chapter 3

Hadoop

3.1 Motivation

According to a 2008 study by International Data Corp [22], since 2007 we produce

more data than we can store. This huge amount of data was conventionally named big

data. Thus the challenge nowadays is not the complexity of the problems to process,

but the amount of information to take into account when doing so. In order to solve

these data-problems while addressing the inherent problems of distributed computing

at the same time, a radical new programming model for processing large data sets with

a parallel, distributed algorithm on a cluster—called MapReduce [23]—was conceived.

A MapReduce program is defined by two functions: a map and a reduce function. The

map function emits records as intermediate key-value pairs, where normally one key is

associated to a list of values. The reduce function merges all related intermediate values

with the same key to an output value. The MapReduce framework addresses issues as

parallel execution, data distribution, and fault-tolerance transparently.

Hadoop is an open source and widely used implementation of MapReduce. It is a soft-

ware framework for storing, processing, and analyzing big data. Hadoop partitions large

data files across the cluster using HDFS (Hadoop Distributed File System). Data repli-

cation increases availability and reliability: if one machine goes down, another machine

has a copy of the required data available. The distinction between processing nodes

and data nodes tends to disappear as approximately all nodes in the cluster can store

and process data. Distributed programs are simpler to write because remote procedure

calls are transparently handled by Hadoop. The programmer only writes code for the

high-level map and reduce functions. Fault tolerance is achieved by re-assigning failed

executions to a different node; nodes which recover can rejoin the cluster automatically.

18
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3.2 Running a MapReduce job

In this section, we overview Hadoop’s architecture and present the entities involved

during the execution of a MapReduce job in Hadoop. This overview will provide the

basis for a detailed analysis of map and reduce tasks in the following sections.

Figure 3.1 (adapted from [24]) shows the whole process. A Client submits a MapReduce

job to the JobTracker, which is responsible for coordinating job execution. The map

and reduce functions are spawned as tasks to each computing nodes in the cluster, each

one running the TaskTracker service. The numbered arrows correspond to the following

steps:

1. Run job: creates a new instance of the JobClient class;

2. Get new job ID: asks the JobTracker for a new ID for the current job;

3. Copy job resources: resources include the job JAR file (a Java package containing

the program to be run), a configuration file, and the computed input splits1. An

input split is a part of the input that is processed by a single map [24]. They are

copied to a directory named after the job ID on the JobTracker’s file system;

4. Submit job: after the JobClient finished all preparation steps, it tells the

JobTracker that the job is ready for execution;

5. Initialize job: the JobTracker will enqueue the incoming job, and schedule it

according to its current load;

6. Retrieve job splits: this step is necessary so the JobTracker can determine the

number of map tasks it should create (one for each split). Reduce tasks are created

conform configured;

7. Heartbeat: more than just telling the TaskTracker is alive, the heartbeat messages

tell the JobTracker whether the TaskTracker is ready to execute more tasks. If so,

the JobTracker communicates that through a special return value in the message;

8. Retrieve job resources: the TaskTracker brings configuration file and the job JAR

file and creates a new TaskRunner object;

9. Launch: the new TaskRunner launches a new JVM;

10. Run: the child process keeps the TaskTracker updated about the task status until

its execution finishes.
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Figure 3.1: How Hadoop runs a MapReduce job.

After the job starts to run, the TaskTracker’s child process will keep consuming input

splits to feed map tasks. When these tasks are finished, their results are stored locally,

on the node’s hard disk and not on HDFS. These results are intermediary key-value

records which the reduce phase will bring together.

3.3 Map and Reduce tasks

We now zoom inside the MapTask and ReduceTask components in the TaskTracker

node of Figure 3.2. Internally, a map task is responsible for more than only running the

map function specified by the programmer. In order to make its intermediary results

available for the reduce phase, it must organize and prepare these temporary results in

a format that can be consumed by reduce tasks.

1T. White states in [24] that “If the splits cannot be computed, because the input paths don’t exist,
for example, then the job is not submitted and an error is thrown to the MapReduce program”.
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Figure 3.2: Map and reduce tasks in detail.

The following process happens pipelined, i.e., as soon as one step finishes the next can

start using the output emitted by the former. The map function emits records (key-value

pairs) while it is processing its input split, and this records are separated into partitions

corresponding to the reducers that they will ultimately be sent to. However, the map

task does not directly write the intermediary results to the disk. The records stay in a

memory buffer until they accumulate up to a certain minimum threshold, measured as

the total bytes occupied in the kvbuffer ; this threshold is default configured as 80% of

the kvbuffer size. When the buffer reaches this threshold, before the map task flushes the

records to disk, it sorts them by partition and by key. When the records are sorted, the

map task finally writes them to the disk in a file—called spill. Every time the memory



Hadoop 22

buffer reaches the threshold and the map task flushes it to the disk a new spill is created.

Because the input split normally is bigger than the memory buffer, when the map task

has written the last key-value, there could be several spill files. Naturally, the map task

merges these spills into one single file. Just like the spill files, this final output file is

ordered by partition and within each partition by key.

MapReduce ensures that the same reducer receives all output records containing the

same key. Figure 3.2 represents this by the dashed arrows going from map to reduce

tasks. The attentious reader may ask how do reducers know which TaskTrackers to

fetch map output from? The answer is in the heartbeat communication system. As soon

as a task finishes, it informs its parent TaskTracker, which will forward the notification

to the JobTracker. After the completion of a map task, each reduce tasks will copy

its assigned slice into its local memory. However, as long as this copy phase is not

finished, the reduce function may not be executed, since it must wait for the complete

map output.

Normally, the copied portion does not fit into the reduce task’s local memory, and it

must be written to disk. Once all map outputs are copied, the merge phase begins. As

we noted in Section 2.2.4, if we have more than m − 1 map task outputs, the reduce

cannot merge the intermediary results of all maps at the same time. The natural solution

is to iteratively merge these spills, as we illustrated in Figure 2.8. We shall give more

details about the Hadoop merging strategies in the following sections. Once we have a

single merged file, the reduce function is finally called for each key-value of this file and

outputted to the shared file system, HDFS.

This whole infrastructure is necessary to accomplish the design goals of MapReduce:

distribution, parallelism, scalability and fault tolerance. The user code (map and reduce

functions) is a small part in the whole process. Since this work is focused on run

generation for external sorting, we shall concentrate on the map task, which is where

sorted runs are initially produced.

3.3.1 The Map Side

While a map task is running, its map function is emitting key-value records to an in-

memory buffer class called MapOutputBuffer2. If not explicit specified, all the entities

discussed during this section are located inside this class. In the previous section we

stated that these records are separated into partitions corresponding to the reducers

2This is true when the MapReduce job has at least one reducer. When there is no reduce phase,
a DirectMapOutputCollector is used which directly writes the records to the disk as the job’s final
output.
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that they will ultimately be sent to. This is done by a partitioner component, which

assigns records output by the map tasks to reducers based on a partitioning function.

This function can be customized by a user-defined partitioning function, but T. White

states in [24] that “normally the default partitioner—which buckets keys using a hash

function—works very well”.

After the record receives a partition, the collector adds the record to an in-memory

buffer: an unordered key-value buffer (kvbuffer). Hadoop keeps track of the records in

the key-value buffer in two metadata buffers for accounting (kvindices and kvoffsets).

Kvbuffer is a byte array that works as the main output buffer: the keys and values of the

records are serialized into this buffer. The amount of memory reserved for the kvbuffer

is calculated by:

io.sort.mb− (
io.sort.mb× io.sort.record.percent

16
) (3.1)

Hadoop’s default value for the io.sort.mb property is 100MB and for the

io.sort.record.percent is 0.05%. This configuration yields a kvbuffer of 104, 529, 920

bytes. The accounting buffers (or metadata buffers) are auxiliary data structures used

by Hadoop to efficiently manipulate the key-value records without actually having to

move then in the kvbuffer. They are composed of two integer arrays. The first array,

kvindices, has three integer values (4 bytes each): partition, key start (a pointer to where

the key starts in the kvbuffer), and val start (a pointer to where the value starts in the

kvbuffer). The second array, kvoffsets, manages a further level of indirection pointing

to where each 〈partition, keystart, valstart〉 tuple starts in the kvindices (also 4 bytes

integer pointer). An illustration of how these buffers are used is given in Figure 3.3,

which shows 4 key-value pairs already serialized in the kvbuffer, where each key is 8

bytes long and each value is 11 bytes long. The kvindices buffer keeps track of where

each record’s key and value starts and also to which partition that record belongs to.

Finally in the kvoffsets buffer there is second round of pointers indicating where each

of the 〈partition, keystart, valstart〉 tuples are located in the kvindices. The number of

records in the metadata buffers is calculated by:

io.sort.mb× io.sort.record.percent
16

(3.2)

The default configuration values result in a capacity to store metadata of 327, 680

records, i.e., 5% of the reserved space. We call attention for the obvious although impor-

tant difference between the buffers: the kvbuffer is measured in bytes, while accouting

buffers are measured in records. As we shall see in the following paragraphs, the spill

procedure is triggered when one of these buffers—the kvbuffer or the kvindices—reaches
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Figure 3.3: In-memory buffers: key-value (kvbuffer) and metadata (kvindices and
kvoffsets).

a configurable threshold. The default configuration expects a record with average size

around 320 bytes. However, if the average size is much smaller than the originally ex-

pected, the kvbuffer will never get full enough to trigger the spill procedure. But because

the metadata buffer threshold is measured in number of records, and now more records

fit in the kvbuffer at the same time (because they are smaller), kvindices will trigger

the spill all the time. This is a waste of resources: we have an approximately empty

byte buffer and a full accounting buffer to track the records in it. In order to avoid this

misuse of the available space, given by the io.sort.mb property, we can simply increase

io.sort.record.percent. To optimize this value, Hadoop provides useful statistics gener-

ated during job execution by means of counters. Two counters are useful here: map

output bytes, the total bytes of uncompressed output produced by all maps in the job;

and map output records, the number of map output records produced by all the maps

in the job. Thus we can calculate the average size of a record by MapOutputBytes
MapOutputRecords .

The collector serializes the key-value records in the kvbuffer. It also adds metadata (the

position where the key and value start in the serialized buffer) about kvbuffer to kvin-

dices and adds metadata (where each metadata tuple 〈partition, keystart, valstart〉)
about kvindices to kvoffsets. When the threshold of accounting buffers or record buffer
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Figure 3.4: Kvoffsets buffer sorted by partition.

is reached, the buffers are spilled to disk. The io.sort.spill.percent configuration prop-

erty determines the threshold usage proportion for both the key-value buffer and the

accounting buffers to start the process of spilling to disk [24]. The default value of this

property is 80%, which is used as a soft limit. The collector will continue to serialize and

keep track of new records emitted by the map function while a spill thread is working

until the buffers are full, when the hard limit is reached. The collector then suspends

its activity then until the spill thread has finished.

The purpose of the second accounting buffer is to improve CPU performance. We

mention in section 3.3 that records should be ordered by partition and, within each

partition, by key. For the run generation inside map tasks, Hadoop uses quicksort. C.

Nyberg et al. explore optimization techniques with respect to sorting in [13]. Two of

these techniques include the minimization of cache misses and the sorting of only pointers

to records rather than the whole records. They adopted quicksort in [13] because “it is

faster because it is simpler, makes fewer exchanges on average, and has superior address

locality to exploit processor caching”. These techniques are also employed by Hadoop—

the second accounting buffer holds the pointer values exchanged by the sort algorithm.

This so-called pointer sort technique is better than a traditional record sort because it

moves less data. When sorting kvoffsets, quicksort’s compare function determines the

ordering of the records accessing directly the partition value in kvindices through index

arithmetic. But quicksort’s swap function only moves data in the kvoffsets.

We return to Figure 3.3 as an example. The records in the kvindices buffer are not

ordered by partition: these are 0, 3, 2 and finally 1. Initially, kvoffsets is sorted with

respect to the order which the records where inserted into kvindices. Sorting it results

in the state shown in Figure 3.4.
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After sorting the in-memory buffer, as shown in Figure 3.4, the spill thread writes the

buffer contents to disk. A new spill file is written every time the spill threshold is

reached.

When the map function completes processing the input split and finished emitting the

key-value records, one last spill is executed to flush the buffers. The map task then has

several spill files in its local disk, which must be merged into a final output file that

becomes available for the reducers. Hadoop implements an iterative merging procedure,

where the property io.sort.factor specifies how many of those spill files can merged into

one file at a time.

The map side merge work as follows: first an array with all spill files is obtained. In

the case where there is only one spill file, that spill is the final output; otherwise, two

final output files are created: one for the serialized key-value records (final.out), and

another for pointing where each partition starts in the former (final.out.index ). As a

header, numberOfPartitions × headerLenght bytes are reserved in the beginning of

both files. The numberOfPartitions is equal to the number of reducers configured for

the job; the headerLenght is a constant value set in 150 bytes. First, an output stream

is created to write the final file. Then, for each partition, a list of segments to be merged

is created and, for each spill, a new segment is added to the segment list. Each segment

correspond to a “zone” in each spill file corresponding to the current partition. Figure

3.5 illustrates the idea. We now call the merge method in the Merge.class, passing the

segment list. Note: we are still inside the loop over partitions. This means that as many

mergings as the number of partitions will be executed.

The merge procedure calculates the number of segments to merge in the first pass using

equation 2.1. We reintroduce the term factor (abbreviated to f), now in the context

of Hadoop. Its value is configured through the io.sort.f property, and it corresponds

to the maximum number of streams to merge at once. Assuming we have more than f

segments, the first merge pass brings the total number of runs to an amount divisible by

f − 1 (each pass transforms f runs into one) to minimize the number of merges which,

in turn, minimizes disk access. We refer to the number of runs to be merged in the first

pas as the first factor. All the subsequently passes will then merge f streams.

First-factor segments are copied from the original segment list to an auxiliary list (called

segments-to-consider). Then, all segments in this list are added to a priority queue.

The heap which implements the priority queue sort the segments ascending by size,

thus smaller segments sort first. All records from the priority queue are written into a

temporary file, and the heap is cleaned afterwards. This temporary file is a new, merged

segment, which is added to the list of segments to be merged. After some clean-up

routines are executed, the second round of merge starts.
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Figure 3.5: Two spill files and the resulting segments for each partition.

At some point, there will be fewer segments than f , wich means the merge reached the

last merge level. When this occurs, the segments are already in the heap and, instead

of creating another temporary file, we simply return the priority queue back to the

MapTask.class. Each segment is pulled from the priority queue and is written to the

final file. Here, the loop around the partitions finally ends. Some housekeeping functions

are executed, and the next iteration —with the next partition— can begin.

We show one example of a merge tree in Figure 3.6. Assume for a given partition

(say 0) we built a segment list of size 20 (we have at least 20 spill files with records

that belong to partition 0) and an io.sort.factor of 10. Equation 2.1 yields ((20− 10−
1)modulo(10− 1)) + 2 ∴ (9modulo9) + 2 ∴ 2, which means we must merge two segments

in the first round. Given the (sorted ascending by file length) segments list, we get the

first two and merge them. Then, we merge the next 10 segments. At this point, we have

8 segments from the original list and 2 temporary ones, resulting from the previously

merged segments. As expected, this sums exactly to 10 segments, which are now merged

in the final file.
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Figure 3.6: Merge tree with 20 segments and merge factor 10.

This concludes the map task, after which the TaskTracker sends a heartbeat informing

the JobTracker. Next time a reducer consults the JobTracker, it will be informed that

in a given TaskTracker there are map outputs ready to be copied. We close this chapter

presenting figure 3.7, which summarizes the map-side processing we have discussed so

far.

3.4 Pluggable Sort

The MapOutputBuffer class is Hadoop’s default implementation of in-memory sort and

run generation, which was fixed since its first version. However, the second stable ver-

sion of Hadoop (2.x) enables the customization of this procedure through an interface

called pluggable sort. It allows replacing the built-in run generation logic with alterna-

tive implementations. This means not only having the possibility to customize which

data structures and buffer implementations to use, but also which sort algorithm. The

pluggable sort was proposed by SyncSort [25] and discussed and develop in Apache’s

JIRA issue tracker under codename MAPREDUCE-2454 [26].

A custom sort implementation requires a MapOutputCollector implementation class,

configured through the property mapreduce.job.map.output.collector.class. Since all

pluggable components run inside job tasks, they can be configured on a per-job ba-

sis [27]. Likewise, custom external merge plugins can also be customized for reduce

tasks.
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Figure 3.7: The map task execution.
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Implementing the MapOutputCollector interface demands the implementation of three

methods: collect, flush, and close. The collect method receives a key, a value, and

a partition and is responsible for storing it into an internal buffer. The flush method

is called when the map function finishes processing its input split and there are no more

key-value pairs to emit. When the map task calls this method, it is giving the output

buffer a chance to spill any record left in the buffer, and telling the buffer to merge all

spill files (or, in the case there is only one spill, rename it). The close method simply

performs some housekeeping procedures, closing streams and freeing class fields.

Using this extensibility mechanism, we implement run generation using the replacement-

selection algorithm, as an alternative to the original quicksort. Because of Hadoop’s

own big data nature, having multiple spill files is the rule and not an exception. Thus,

not only an alternative output buffer has to take care of sorting in-memory keys and

partitions but also merging these multiples sorted spills into one single, locally-ordered

file. It has to carefully consider data structures to store the records and algorithms to

manage and reorder these records. It should be clear that this merge is only a local

merge (performed by each map task). A second, cluster-wide merge performed in the

reduce side will merge the locally-ordered files that each map task has processed. This

global merge, however, is beyond the scope of this work, where we focus exclusively

in the map side task sorting and merging. In the next chapter, we introduce our own

replacement-selection-based implementation of MapOutputBuffer
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Implementation

This Chapter describes four implementation approaches for run generation in Hadoop

using replacement selection. Starting with a näıve approach, where memory manage-

ment is left under complete control of the Java virtual machine, each implementation

introduces an addition in complexity in order to improve performance

During the discussion, we compare the current algorithm with Hadoop’s original output

buffer. Our objective in this Chapter is to construct an output buffer which can generate

a small number of larger runs if comparable to Hadoop as fast as possible. The lesser

number of spills created by replacement selection leads to a faster merger phase [28].

This suggests that if we decrease the difference in the run generation phase, possibly the

total execution time of our custom buffer will be shorter than Hadoop’s buffer execution

time. The best trade-off between generating faster runs or generating less spill files is

one of the questions this work tries to solve.

4.1 Development and experiment environment

The tests in this Chapter were executed in a machine with the following configuration:

• Architecture: Intel(R) Xeon(R) 64bits CPU X3350 @ 2.66GHz with 4GB of main

memory and 465GiB hard disk;

• Operating System: Ubuntu 12.04 LTS Linux (3.0.0-12-generic-pae) i386

GNU/Linux

• Java Version: 1.7.0 25 OpenJDK

31
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Figure 4.1: The setup of the tests performed in this Chapter. We feed the output
buffer with records directly from the input reader.

In order to isolate the performance analysis to the run generation phase, we perform

micro-benchmarks instead of complete Hadoop jobs. We show an example of the set up

in Figure 4.1, only replacing the random strings for some pleasant text. Records are

read directly from an input file and fed into Hadoop’s collect method, simulating the

output of the Map phase. The collect method triggers run generation and the merge of

local output files, after which the Reduce phase starts. In our experiments, the process

stops when runs are generated and timestamps are collected to measure run generation

execution time.

The input is a 9GB file with randomly generated strings varying length between 80 and

160 bytes (one string per line). The in-memory buffer is 16MB, which yields a ratio

of 562.5 between input and buffer size. The keys in our experimental job are the full

strings, and the values are 1.

4.2 Record Heap

The Record Heap implementation is characterized by a simplistic and direct implemen-

tation of replacement selection, fully relying on the Java Virtual Machine (JVM) to

perform memory management and on container classes of the Java Standard library.

The RecordHeap class implents the MapOutputCollector interface, and is the class

plugged into the Hadoop’s job. Besides it, there are other two important classes: the

HeapEntry class and the NaiveReplacementSelection class. The first class encapsu-

lates the record’s key, value, partition and current status (a Boolean flag). The former

class implements the replacement selection algorithm and has the following main fields:

• A priority queue of HeapEntry objects: each 〈key, value, partition〉 tuple is en-

capsulated in a HeapEntry object and put into PriorityQueue instance, which is

Java’s default priority queue. In this implementation, both the record buffer and
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the selection tree entities are implemented into one single object — this queue. As

the priority queue is supported by a heap, we shall use both terms indistinctly;

• A HeapEntry comparator: records are sorted by status (active < inactive), parti-

tion, and key within the heap.

• A HeapEntry extra object: where we save the last output record, used to compare

and decide if the incoming record belongs to the current run or not;

• A Boolean flag for the current active status: we detected that all the records are

inactive when the status of the top element pulled from the PriorityQueue is

different from the current status flag. If so, we simply set the current active status

to the top element’s status. This saves the work of iterating through the heap to

flip all statuses.

• A writer: this is a synchronous writer to output the records as spill files. We open

a stream when we create a new run and keep appending key and values into it.

Hadoop creates index objects of where each partition begins and ends (begin plus

length) in the spills (as shown in Figure 3.5). We made sure to mimic Hadoop’s

file format to be able to use the same merger later.

The process works as follows: as the map function emits new key/value pairs, the map

task pushes them into the output buffer through the collect method. The collect method

calls an add method in the NaiveReplacementSelection object which encapsulates the

key, the value, and the partition in a new HeapEntry object and puts it into the heap.

Java’s default PriorityQueue implementation does not limit the number of elements it

can contain1, thus we control the maximum number of HeapEnty objects in the heap

with a variable max buffer size. The priority queue will have a constant number of

elements from the moment the buffer is full (i.e., the number of elements in the heap

is equal to the buffer maximum size) for the first time until the moment when the map

tasks call the flush method.

Once the heap is full, we have to make space for the incoming records. Pulling the

priority queue yields the lowest possible record, which is written out. Then, the incoming

record is compared to the saved record: if the new record is bigger than the saved record,

it still belongs to the current run. Then, its status is set to active and the record is added

to the heap. Otherwise, add it with inactive status. At any time, if the pulled record’s

status is not equal to the current active status, close the run, flip the current active

status and start a new run.

1The PriorityQueue grows as needed, doubling it size when it is has less than 64 elements and
increasing its size in 50% otherwise. It is bounded only by the heap size of JVM.
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Figure 4.2: Comparison between Hadoop’s
MapOutputBuffer and our custom RecordHeap

buffer.

This process repeats while the map func-

tion emits new key/value pairs to the col-

lect method. Once the input is finished,

the MapTasks calls RecordHeap’s flush

method. The process to flush the priority

queue is similar to the previous one. The

just pulled record is compared to the saved

record to decide if it belongs to the current

run or not. If so, the record is outputted

and the saved record is updated. If not,

the run is closed and a new one is started.

This executes while the priority queue is

not empty. Figure 4.2 shows a comparison

between Hadoop’s default output buffer

and the RecordHeap implementation, as

we can see Hadoop’s run generation is 60% faster, which is approximately 300 seconds.

We shall now investigate what is the cause of this difference.

Both the key and the value in Hadoop are generic objects which may assume any of the

job’s configurable types, like Text, LongWritable2, and IntWritable. Hadoop reuses

this pair of objects when feeding the map function with data from the input split. The

RecordReader class provides a record iterator with some extra capabilities, like parsing

a CSV input for example. The map task uses a RecordReader to generate record key-

value pairs, which it passes to the map function. The RecordReader instantiates a key

object and a value object when the mapper function first asks for records. Writable

types, in general, are backed up by a byte array and provide a set method, which copies

the received set method’s argument into the byte array. When these objects arrive to

the collect method in the MapOutputBuffer class, they are serialized into the kvbuffer

(i.e., their bytes are copied to the MapOutputBuffer’s byte array). When the mapper

asks for more records from the RecordReader, the existing key and value objects are

reused — the data read from the input is set into these objects. This saves Hadoop

from creating new objects for each record read, which is not true for the RecordHeap

implementation.

Recall that the buffer and the selection tree of the RecordHeap are one single object, an

instance of Java’s PriorityQueue class strongly typed with HeapEntry objects. Adding

these recycled key and value objects to the buffer provokes an erroneous behavior: since

2Writable is the interface created to handle data serialization in Hadoop. It has two methods: one
for writing to a DataOutput binary stream and one for reading from a DataInput binary stream [24].
We shall discuss serialization in more detail in a further Section.
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(a) Memory monitor during execution
of MapOutputBuffer.

(b) Memory monitor during execution
of RecordHeap.

Figure 4.3: Java’s heap space in two different scenarios. In foreground at the lower
part of the figure there is the used heap, and the background there is the heap size.

the key and the value are instantiated in the RecordReader only once, their objects hold

the same reference during the whole execution (until they are destroyed). Thus, every

“new” record key-value pair added to our buffer points to the same object. This results

in all HeapEntry instances in the PriorityQueue having the same key and value as the

last added one. The natural solution to this problem is to create new objects every time

the RecordReader reads data from the input. It turns out that the price to pay in terms

of performance for creating so many objects is expensive.

In these tests we decrease the input file to 2GB and used the VisualVM 1.3.7 profiler

tool [29] with the Visual Garbage Collection Monitoring Tool plugin [30] to monitor the

execution. Figure 4.3 compares the JVM heap space during the execution of a test with

Hadoop’s MapOutputBuffer class and our RecordHeap output buffer.

The right side of the figure (4.3b) shows the RecordHeap executing over the same input,

but having an entirely different memory footprint. The used Java’s heap space constantly

reaches 600MB, in contrast with left side of the figure (4.3a) where the used heap is

stable at 50MB. It is not the high memory consumption which overloads the system

and brings performance down, but instead the high volume of memory allocations and

deallocations in JVM’s heap of short-time objects. One can wonder that each memory

peak correspond to one run and, when a spill finishes, a lot of memory is freed at once.

However, we recall that the number of records in the buffer stays approximately constant

during all the collection phase. For every incoming record only one existing record is

selected and replaced in the buffer. What happens in fact is that every time we replace a

record (appending it to the current open run) it is polled from the priority queue; since

we are constantly inserting new records in the buffer, we are also constantly removing
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other records. This constantly removal of objects leaves a thousand of objects allocated

in the heap, but without any reference to them. At some point3 the garbage collector

runs and, due to the high amount of orphaned objects in the heap, it has a lot of work.

Despite the overall bad results of this näıve implementation, the adopted strategy seems

promising: we have already saved some time in the merging phase. In the next Section,

we try to solve the excess of garbage collection by splitting the buffer from the selection

tree. The first will be responsible only for storing records, while the former will provide

access to the records as well information about the current run, the current partition

and other necessary fields to execute the algorithm.

4.3 Pointer Heap

Hadoop reuses the same key-value pair4 to send the data from the input to the buffer.

It does not have to create a new pair for each record it emits because the key and the

value are serialized into the buffer. This means the records are read, turned into a byte

array, and copied to the buffer. To follow this strategy and avoid creating a massive

number of objects, we split the solution from the previous Section: a new byte array will

mimic MapOutputBuffer’s kvbuffer behavior, being a placeholder for the serialized keys

and values, while in a priority queue we insert only metadata about the current record

and current spill. This metadata includes the current run number, the record partition,

and pointers to where the values are located in the buffer — which lead us to name this

solution PointerHeap buffer.

Replacement selection is based on the premise that when we select the smallest record

from the buffer, we can replace it with the incoming record. However, this is only valid

if all the records have the same size, i.e., they are fixed-length. This is not true for

our experiments and often not true in real world jobs, specially when dealing with text.

Manage efficiently the space in the buffer when records are of variable length becomes

a necessity. To address this issue, we implemented a memory manager entity based on

the design proposed by P. Larson in [9]. This memory management is not an issue in

MapOutputBuffer’s quicksort strategy because the records are appended in the end of

the buffer as they come and, when they are removed, they are all remove at once (when

a spill is triggered). Thus, Hadoop is free from this extra overhead we shall detail now.

3The Java’s garbage collector is multi-strategy, complex entity based on the concept of generations.
GC runs first in young generations, and objects that survive (i.e., another object still holds a reference
to them) are promoted to older generations. A common strategy to trigger garbage collection is to run
the collector when memory allocation memory fails. Further references can be found in [31–33].

4In a real world job, where the map function is actually executed, there is one key-value pair transmit-
ting data between the RecordReader and the map function and another pair between the map function
and the in-memory buffer.
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4.3.1 Memory Manager

The buffer is divided into extents, and the extents are divided in blocks of a predetermined

size. The block sizes are spaced 32 bytes apart, which result in blocks of 32, 64, 96, 128,

and so on. The extent size is the largest possible block size. In our implementation, we

used extents of 8KB. For each block size we keep a list containing all the free blocks

referent to that size. The number of free lists is given by the extent size divided by the

block size, thus 8 × 1024/32 = 256. The memory manager provide two main methods:

one to grab a memory block big enough to hold a record of a given size, and one to

restore a block which is not in use anymore (the record in that address was spilled).

Grabbing a memory block big enough to hold a given record means to locate the

smallest (we want to avoid waste at maximum) free block larger than the record size.

The grab method work as follows: round up the record size to next multiple of 32

(drecordSize/blockSizee ∗ blockSize). Find the index of the resulting rounded size in

the free lists (roundedSize/blockSize − 1). Check if the list at the calculated index

has a free block: if it does, return it. Otherwise, increment the index and look in the

next list (which will be 32 bytes bigger). If we only find a free block bigger than the

rounded record size, we take only what is needed and immediately return the excess to

its appropriate list. For instance, in the initial case where there is only one free block

of 8192 bytes (the extent size), suppose the memory manager must grab a block for a

record of size 170. The rounded size of 170 is 192; because all other lists are empty,

the manager gets the 8192 block from its list. To avoid a major wasting, the 192 first

bytes of the 8192 block are returned, and the other 8000 are placed in its appropriate

list. When the record is spilled from the buffer and its memory block becomes free, we

return the block to the appropriate list.

We illustrate the concepts of the memory manager in Figure 4.4, which shows a buffer

of 8K with some restored blocks. All lists start initially empty except the one referent

to the extent size. As the blocks are grabbed and restored, the lists are populated with

smaller blocks. In this example we have 10 blocks of variable sizes. The block sizes

are written inside the blocks in the memory buffer (lower part of Figure) and over the

list they belong in the memory manager (upper part of Figure). As smaller records are

restored, the whole manager tends to become faster, having the lists of block size closer

to the record average size more populated.

However, this can lead to an exceptional situation. Without lost of generality, imagine

that the memory manager is continuously being asked for records of 32 bytes. After 256

block requests, the amount of blocks with 32 bytes in a 8KB extent, say 4 contiguous

(i.e., they are physically located one after the other) blocks are restored. At this point,
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Figure 4.4: A possible state of a memory buffer with its corresponded memory man-
ager.

the memory manager has 128 bytes of free memory fragmented in four blocks of 32

bytes. If this stream of small records is interrupted by a bigger record with 96 bytes,

the memory manager will not find any block sufficiently large for that record — despite

having free memory enough to answer the request.

This situation can be generalized for the whole buffer (across extents), and is provoked

because we do not coalesce free neighbor blocks. This is not a trivial task since neighbor

blocks can be located in different lists, and we skipped it in the implementation of our

buffer for simplicity. In our implementation, we detect this situation when the selection

tree has flushed all its records (trying to free enough space in the buffer), but there

still no space large engough for the incoming record. When this happens, we restart

the memory manager. This forced flush breaks the continuous behavior of the run

generation, creating smaller runs. Implementing block coalescing is a feature which

should be addressed in a future work.

4.3.2 Selecting and replacing

With a memory manager, we can now serialize the key-value pairs into the buffer and con-

trol the selection and the replacement of records with the selection tree. The HeapEntry

class from the previous implementation evolved into a LightHeapEntry, a new class that
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Figure 4.5: The loop executes until it has successfully added the current key-value
pair into the buffer. It may be necessary to flush a lot of records from the buffer until

we can add the current one.

contains four integers (run, partition, key length, and record length) and a (also new)

Block object, which encapsulates the information from allocated slot in the memory

manager in three integers (addres, list index, and rounded record length). This results

in only 28 bytes of information, plus the Java object overhead. We also change how the

current run is controled. Instead of having a Boolean flag and changing the current ac-

tive status when creating a new run, we simply control it with natural numbers, starting

in 0. If a record should not belong to the current run, its run value is equal to the current

run plus one. When the selection tree returns as its smallest record a LightHeapEntry

with run value bigger than the current run, we reset the run, i.e., properly close the

current run file and create a new one.

Figure 4.5 introduces the new collect strategy in a flowchart. The key-value pair is

serialized first in a temporary buffer because we must know the length in bytes of the

record (key length plus value length) to grab a memory block for that size, knowledge

which is not available a priori. The process works as follows: Ask the memory manager

for a block and check if the returned result is not null. If not, copy the temporary buffer

to the main buffer, construct the record’s light heap entry and add the entry to the

selection tree. Otherwise, the buffer is full and one record must be removed. Flush one

record (flush process is detailed in Figure 4.6) and ask the memory manager again. The

loop runs until it has created a free slot of sufficient size to add the record to the buffer

(or the selection tree become empty and the memory manager is restarted). When

flushing a record, select the top record from the selection tree. If the tree is empty,

restart the memory manager and return. Otherwise, check if the selected record’s run
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Figure 4.6: Whenever the collect method fails to find memory space for an incoming
record, it calls this record flush method.

is bigger than the current run: if it is, reset the spill file, update the current run and

continue. If the selected record still belongs to the current run, save it as last spilled

record and send it to the file writer.
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Figure 4.7: Comparison between Hadoop’s
MapOutputBuffer and our custom PointerHeap

buffer.

PointerHeap results already show some

improvement over RecordHeap. Fig-

ure 4.7 compares the PointerHeap with

the original Hadoop. We decreased

the run generation execution time to

695 seconds (from the 750 seconds of

RecordHeap), but we are still too far from

MapOutputBuffer’s time: 464 seconds.

The use of such a data structure to control

the record allocation in the buffer such

as the memory manager implies in an in-

herent percentage of wasted space in the

buffer. Because there is a minimum block

size (in our main experiments 32 bytes),

any record smaller than that will have at

least the size of this minimum block available and, because it is smaller, the difference

between block size and record size is wasted — what we refer as fragmentation hereafter.
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4.3.3 Memory Fragmentation

We now introduce other two inputs used specificaly to test the effects of memory frag-

mentation. The EnglishWords input has about 3000 different words in English, repeated

in order to build an input file with 14 million records (approximately 100MB). The Ran-

domStrings input contains 6.5 million distinct random-generated records varying from

8 to 16 bytes, repeated in order to build an intput file with also 14 million records. The

former input has approximately 180MB, and it is bigger than the EnglishWords because

the records are in average bigger: English words that span 12 bytes or more are not

common. We show a sample of both inputs in Table 4.1. The RandomStrings differ

from the main input used on the other tests of this Chapter only in the length of the

strings, which here are 10 times smaller.

EnglishWords RandomStrings

affect 0OfSweAIIpaDAieg

anything 1mZFGt7c

beyond 2cJjZKtB7Zi8

classic bu7wj0Rl3dz1

cover CkFBuAF5K87EI8gM

final dUMrhuK5Usi

junior dWwOsvA9q3

lift EMrwn4BDtygq

mix JAAOpqcNj

pick jjotMUcJE

Table 4.1: Sample from EnglishWords and RandomStrings input files.

In Figure 4.8 we present the fragmented memory in two scenarios: in Figure 4.8a using

the EnglishWords input and in Figure 4.8b using the RandomStrings input. In the left

Figure, we can observe that the bigger the minimum size of the memory blocks, the

bigger the fragmentation is. Indeed, as Table 4.1 shows, real words are commonly small.

In the right Figure, we see that 32 bytes are also too long: recall the strings’ length vary

from 8-16 bytes. However, using block sizes of 16 bytes did not bring the best results,

as one would expect. The reason behind this is the serialization strategy employed.

Hadoop’s Text type serializes also the length of the string right before it to be able to

deserialize it correctly later on. We also added a zero-byte at the end, to ensure correct

lexicographic order in binary string comparison.
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(b) Memory fragmentation for random
strings as key.

Figure 4.8: Different choices for the minimum block size used in the memory manager
reflect different fragmentation levels depending on the input data.

4.3.4 Comparing Records

Logically speaking, the replacement selection algorithm does not need a priority queue

— recall we can select the smallest record in the buffer by linearly comparing a tem-

porary record with the other records, and updating it in the case we found a smaller

one. We use a priority queue to support the selection tree strategy, which yields the

smallest record at the cost of the logarithm of the number of records. However, once we

decided for it, an important characteristic of our priority queue-based solutions is how

to compare the entries residing on it. From Section 3.3 we know the key-value pairs

must be sorted first by partition and, within each partition by key. In the näıve solu-

tion, the key is available in the HeapEntry class, but as a generic object. It is the job’s

programmer responsibility to provide a comparator for the keys when creating the job.

This comparator is configurable and available via the MapTask class. Because Java’s

priority queue accepts a custom comparator object, our only job is to instantiate the

configured comparator and pass it as an argument at the moment we create the priority

queue.

In the PointerHeap class we adopted a different strategy to compare two records. The

LightHeapEntry implements the Comparable interface, which forces the class to imple-

ment a compareTo method. Here we first compare the runs of the records and, if they

are equal, the partition and, if still equal, finally we compare the keys. But because the

entries in the selection tree do not contain keys anymore, the compare method must uses

the memory block address and key length field to access the real value of key in the main

buffer. To allow this access, we moved the LightHeapEntry class inside PointerHeap

as an inner class. Because the keys are already serialized, the comparison between them
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is realized at the byte level. However, when dealing with large keys this can be cumber-

some. Our next alternative implementation tries to address this issue bringing a small

part of the key to the heap entry, aiming to speed up the comparison between records.

4.4 Prefix Pointer Heap
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Figure 4.9: Comparison between Hadoop’s
MapOutputBuffer and our custom PointerHeap

buffer.

We start this Section quoting Nyberg et

al. [13]: “Pointer sort has poor reference-

locality because it accesses records to re-

solve key comparisons”. All selection tree

should fit in the on-chip data cache (D-

cache) in an ideal scenario. But access-

ing the whole keys from the buffer to re-

solve record comparisons provoke a lot of

cache misses, because the heap entry ob-

jects keep being replaced by the keys. Ny-

berg et al. suggest the use of a prefix of the

key rather than the full key. In our imple-

mentation, we create an extra 8 bytes field

in the LightHeapEntry class contained in

the PrefixPointerHeap class to store the

key prefix. We present the results in Figure 4.9. Comparing keys using only the first

eight bytes makes the execution time of the run generation phase decrease again; the

PrefixPointerHeap only needs 614 seconds, which is 81 seconds, or 12%, less than

PointerHeap.

All the implementation logic described in the previous section is still valid for the

PrefixPointerHeap, and we just changed the methods which compare the records.

The comparators now (after comparing the run and the partition value) check if the

prefix of the keys are equal — which means byte-comparing only 8 bytes. If the records

can be distinguished at that point, then the compare method will not have to access the

keys residing in the buffer. Otherwise, the comparator access them like in the pointer

version. One issue associated to the use of key-prefix is that it may not be a good dis-

criminator of the key [13]. This means that the comparator will have to access the keys

to decide (Nyberg et al. use the expression “degenerate to pointer sort”) but with the

overhead of calling lower-level comparison methods for the first eight bytes. In Figure

4.10 we show the percentage of comparisons decided using only the key prefix and the

percentage of comparisons which had to read the full key. The results are clear: for
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Figure 4.10: Percentage of comparisons decided with key prefix and full key for
random strings and English words.

artificial keys (possibly not only our random strings but also Table ids, log time stamps,

etc.) the key prefix can solve all comparisons without recurring to the full key in the

buffer. In smaller and more natural inputs like words (which appear not only in word

count jobs but also in inverted index and grep jobs for instance), the key prefix enhances

the comparison, but for some keys only eight bytes are not enough to solve ties. For

instance, the words beautiful and beautifully are only distinct at the tenth and eleventh

byte.

4.5 Prefix Pointer with Custom Heap

A review of our path up to this point shows that at first we let the JVM manage all our

data structures: because there is no distinction between the buffer and the selection tree

in the RecordHeap, everything was managed by Java’s PriorityQueue. The excessive

time (over 5 times greater than the original output buffer) garbage collecting heap-entry

objects lead us to split the buffer and the selection tree in two different data structures.

Our second approach — the PointerHeap — custom managed the memory buffer where

the records are serialized but still left the management of the selection tree for the JVM.

The PrefixPointerHeap class brought back a small part of the key to the heap entries,

but did not advance in any aspect related to memory management. We now present our

fourth and last output buffer implementation, which takes control over the heap where
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Figure 4.11: In the MetadataHeap, each record correspond to 32 bytes in the byte
array.

the selection tree is based. We shall call it PrefixPointerWithCustomHeap, and refer

to it by its abbreviation: PPCustomHeap.

Our objective is to eliminate at maximum the creation of objects in JVM’s heap space

during run time, and allocate every needed array or object as soon as possible. One of

the main advantages of PointerHeap over RecordHeap was the serialization of keys and

values in a byte buffer of fixed sized. To achieve the same result but for the selection tree,

we implemented a custom heap (called MetadataHeap hereafter) which employs a byte

array as the placeholder for the heap entries. We could stretch the serialization strategy

and serialize LightHeapEntry objects in the byte array; but due the design decision to

avoid allocating objects, we removed the LightHeapEntry and the Block classes and

moved its fields inside the MetadataHeap in the form of offsets. We illustrate the idea

in Figure 4.11. We use Java’s ByteBuffer class to wrap the byte array, which provides

methods such putInt and getInt, as well similar methods to set and get byte arrays,

longs, and other data types. Now, when we add a key-value pair to the kvbuffer, we

add its metadata “heap entry object” by directly writing the run, partition, key prefix,

key length, record length, block address, and block length into the MetadataHeap byte

array. With this design we can directly control how much memory the selection tree will

consume, and allocate all of it right in the begin.

Figure 4.12 shows the results from all previous output buffers plus the result for the prefix

pointer with custom heap (PPCustomHeap). We also abbreviate the PrefixPointerHeap

to PPHeap. Because the difference between these two looks negligible, we decided to run

another round of tests only with PPHeap and PPCustomHeap.

We executed a paired observation with 20 experiments on each of the two algorithms.

With a 90% confidence interval the PPCustomHeap is faster than PrefixPointerHeap for

the given input, with a synchronous writer reading and writing to the same HDD. Figure

4.13 show the comparison between run generation (figure 4.13a) and merge (figure 4.13b).

However, due to the small difference in these results, we probed again both output

buffers. We changed from our artificil random-generated string file to the lineitem table

from TPCH benchmark [34], which we explain and use extensively in the next chapter.

For now, suffices to say that the lineitem table aims to mimic real world workloads. We
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Figure 4.12: Comparison between all output buffers.

present the results in Figure 4.14, where we can observe that the PrefixPointerHeap

(represented as PPHeap in the figure) performed better than the PPCustomHeap. The

small advantage in artificial input, the worst result in a real input, and the relatively

inflexibility of the MetadataHeap class may suggest that the PPCustomHeap is not worth

it. However, under strictly memory constraints having an output buffer class which can

be rigid controlled may be a necessity. A deeper study comparing how both classes

perform in a myriad of inputs remains as an open question to be addressed in future

research.

The evolutionary aspect of this Chapter aimed to show a progression from the most näıve

to a fully customized implementation of replacement selection as the main algorithm to

handle the in-memory output buffer of the map side task in Hadoop. In the next Chapter,

we continue experimenting only with PPCustomHeap class and probe it against Hadoop’s

MapOutputBuffer. We address different scenarios, closer to the workloads Hadoop jobs

perform on a daily basis.
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Figure 4.13: Comparison between PrefixPointerHeap and PPCustomHeap. Although
statistically different, both systems present approximately the same performance.
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Figure 4.14: Comparison between PrefixPointerHeap (PPHeap) and
PrefixPointerCustomHeap (PPCustomHeap) using the lineitem table as input.



Chapter 5

Experiments

This chapter evalautes the performance of replacement selection on the broader context

of real-world Hadoop jobs. In the first section, we introduce and discuss an asyn-

chronous writer, which can achieve I/O overlapping when two hard disks are used. In

the second section we experiment with inputs ordered, partially ordered, and sorted in

reverse order. Finally, in the last section, we execute MapReduce programs represen-

tative of problems solved in real-world deployments. We run experiments for Hadoop

using its default output buffer (MapOutputBufer) and for replacement selection using

the PrefixPointerCustomHeap class. We shall refer to them by its main algorithm:

quicksort in the first and replacement selection in the former.

5.1 Asynchronous Writer

Recall from section 3.3.1 that Hadoop’s MapOutputBufer triggers its spill thread when

its key-value buffer or the accounting buffer reaches a determined threshold (default set

at 80% of buffer occupation). When triggered, the spill thread starts consuming records

from the buffer. Two situations may occur here: the spill thread writes the records fast

enough so that when the collect method reaches the end of the buffer, it can continue

writing in the begin of it, because the beginning records were already written out. On

the other hand, if the map function emits key-value pairs faster than the spill thread

writes the ones in the buffer out, we reach the hard limit of the buffer. If this happens,

the collection process is suspended until the spill thread finishes.

In the previous chapter, all output buffers used a synchronous writer. The synchronous

writer opens a file when the run starts, and when the output buffer needs to spill one

record to create a free slot in the buffer, it calls an append method from the writer.

48
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Figure 5.1: The circular buffer and the writer thread.

The caller then has to wait until the writer has finished appending the record and

have returned. This design, however, does not exploit one of the good characteristics of

replacement selection, which is that the run generation process is continuous, alternately

consuming input records and producing run files [28]. Thus we abstracted the writer into

a single Writer interface and implemented two writer classes: SynchronousWriter and

AsynchronousWriter. This allows us to switch between writers with ease, configuring

it at job creation time.

Our asynchronous writer follows the producer-consumer pattern, where the output buffer

class is the producer and new class called WriterThread is the consumer. When the

output buffer wants to spill a record, it calls the writer method. In the asynchronous

object, however, the writer method does not directly append the key-value pair to an

open data stream, but instead it adds this pair to a circular buffer. The circular buffer

is a virtually infinite data structure with two pointers: one at the begin and one at the

end. The producer (the asynchronous object) adds new records to the circular buffer at

the end of it, while the consumer (the writer thread) consumes records from the begin

of the buffer. We illustrate this process in Figure 5.1. We create two experiments to test

the asynchronous writer: the first uses the same hard disk to read the input and write

the output folder, while the second reads from one disk and writes in another one. The

setups are illustrated in Figure 5.2, which we adapted from [28].

5.1.1 Single disk

This experiment, which uses one single disk as source and destination, aims to test if

the run generation becomes faster simply by using an asynchronous writer. Indeed, we

can observe a small improvement in two cases (PointerHeap and PPCustomHeap), but
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Figure 5.2: Run generation with a single disk or dual disks.
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Figure 5.3: Comparison between output buffers using synchronous and asynchronous
writer with one hard disk.

in PrefixPointerHeap the synchronous writer performed better. Due to hard-disk’s

physical-constraints (as arm movement and seek time), writing at the same time as

reading is impossible. At some point, either the read or the write will have to wait fore

the other to finish. Thus, we conclude that when there is only one disk available, using

an asynchronous writer does not bring any significant benefit.

5.1.2 Dual disks

This experiment, which uses one disk as source and another disk as destination, aims

to exploit the continuous run generation characteristic of replacement selection and



Experiments 51

  0

  500

  1,000

  1,500

  2,000

  2,500

S
y
n
c

A
sy

n
c

S
y
n
c

A
sy

n
c

S
y
n
c

A
sy

n
c

S
y
n
c

A
sy

n
c

E
x
ec

u
ti

o
n
 t

im
e 

(i
n
 s

ec
o
n
d
s)

Buffer algorithm

PointerHeap PrefixPointerHeap PPCustomHeap Hadoop

 Merge

Run Generation

Figure 5.4: Comparison between output buffer using synchronous and asynchronous
writer with two hard disks.

described in [28], where reads and writes overlap as the input is consumed and the out-

put is produced. Using this configuration, PPCustomHeap performs faster than Hadoop

because of the savings in the merge phase resulted from the smaller number of spill

records, even with the run generation being slightly longer. Because the number of

spills are smaller than the merge factor, no further intermediary files were necessary

during the merge phase. With two disks, all output buffers performed better using a

separate writer thread than using the synchronous writer. Hadoop, however, does not

take any advantage of this configuration, because the quicksort algorithm exhibits a

fixed read-process-write cycle that does not allow I/O overlapping.

5.2 Ordered, Partially Ordered and Reverse Ordered

In this section, we explore the impact of preexisting sort order in the input file and

how replacement selection reacts with respect to that. We used as input the lineitem

table from the TPC-H benchmark [34]. From the columns of lineitem table, three are of

special interest for this work: orderkey, shipdate, and receiptdate. The buffer size used

in these experiments was 50MB, and for our custom output buffers we also discounted

10% of that space for auxiliary data structures. First we present a comparison between

Hadoop and PrefixPointerCustomHeap. This experiment was executed over a random

version lineitem table, i.e., we sorted the table by another field and them used as key
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Figure 5.5: Baseline experiment, executed over a random version of lineitem table.

the orderkey column. Results are presented in Figure 5.5. We can see Hadoop performs

slightly better because its run generation phase was faster, and its merge phase was only

10 seconds (4%) slower than replacement selection.

V. Estivill-Castro and D. Wood confirmed mathematically in [35] that the length of the

runs created by replacement selection increases as the order in the input file increases.

In the best case, i.e., where the input file is already sorted, replacement selection is

guaranteed to produce only one run. Indeed, Figure 5.6 confirms this expectation,

showing the results of processing the lineitem table sorted by the orderkey column.

Quicksort typically does not benefit much from incidental ordering in the input [28]. It

may seem that such scenario has no practical value, because sorting an already-sorted

file is a waste of resources. However, in fact, the input order for large datasets cannot be

determined beforehand, especially in big-data scenarios—even if a previous exploratory

analysis shows all records in a certain order, it cannot be guaranteed that the ordering

indeed holds for the complete (unknown) dataset. Replacement selection offers more

robustness in this scenario because it significantly reduces the overhead of sorting.

A scenario which is more common in practice is partial sortedness. When an input

file has little disorder, the lengths of the generated runs will be longer [35]. In the

first experiment, we use as input the lineitem table sorted by shipdate, using the column

receiptdate as new sorting key. The two columns have high correlation, since the dates of

receipt and of shipment are likely close to one another. Results are presented in Figure

5.7. If the records are distant by an offset smaller than the total number of records
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Figure 5.6: Replacement selection presents its best case scenario for already sorted
inputs, when it produces only one run.

the buffer holds, replacement selection will act like a sorting slide-window. However,

defining the sortedness degree of an input on real time and the optimal ratio between

this degree and the size of the output buffer remains as an open question.

For completeness, we present the second experiment with partially orderness, where the

input is ordered by the receiptdate column and shipdate is used as key (the opposite of

the previous experiment). The results were similar, and we present them in Figure 5.8.

Finally, we present the last and perhaps the most interesting ordering experiment. We

sorted in reverse order the lineitem table by the orderkey column. This is the worst

case for replacement selection, where it produces as many runs as a quicksort-based run

generation.

Suppose we have a buffer which can hold n records and an input file sorted in reverse

order where there are no duplicated records. After the first n records are inserted into

the buffer, there will be no space for the n + 1th record, which triggers the selection

process. We selected the smallest record which, in this case, is the record n. Because

the file is reversed, we know a priori that the record n+ 1 is smaller than the record n,

which means that the position of the latter is less than the position of the former in the

final output. But because record n has just been written out, record n+ 1 must belong

to the next run. When we flush all n records from the buffer, the n + 1 record will be

the current smallest. At this time, the record 2n + 1 must be inserted into the buffer
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Figure 5.7: Partially ordered file by shipdate results.
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Figure 5.8: Partially ordered file by receiptdate results.
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Figure 5.9: Partially ordered file by receiptdate results.

and the process repeats. Thus, for each n records (the buffer size) we will have one spill

file.

Nevertheless, this is not what we see in Figure 5.9, where in the right (Figure 5.9a) we

can see a huge number of spill files created by PPCustomHeap. When we analyzed the

spills, we noticed that, after an initial normal behavior, their size (i.e., the number of

records in each run) decreased rapidly until a certain average value and stagnated there.

This leaded us to plot the graph of Figure 5.10, where the number of records in the

heap, normally fluctuating during the selection and replacement, suddenly drops. At

the same time, the number of free blocks (of 128 and 160 bytes) in the memory manager

increases. Figure 5.11 shows another perspective of this situation, namely the amount

of occupied blocks during the run generation.

One possible cause for this behavior is the fragmentation of the memory as described in

Section 4.3.1. During the run generation phase, after the buffer is full for the first time

we need to select one record and replace it for the incoming record. Records residing in

the buffer will be spilled as long as a memory block big enough to hold the incoming

record cannot be found. In this case, after a flush of more than twenty thousand records,

enough memory was freed, and thus we can allocate the incoming record. If the next

record is as big as the previously one, all those blocks freed in the last flush are not

useful, and we will have to flush records until another block with the same size as the

incoming block is selected (which here, in the worst case, is the previously record). This

results in a decrease of the usable space of the buffer: despite having multiple free blocks,
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Figure 5.10: The total number of records in the buffer reaches 300 thousand when
the buffer gets full, but after approximately 8 thousand steps it drops to bellow 10

thousand records.

all of them are too small to contain the new records except a few large ones. If all the

next incoming records are large, the buffer is constrained by the number of large blocks.

One possible explanation to the Figure 5.10 and Figure 5.11 is that, when ordered in

reverse order, the average size of the lines in the lineitem table tends to grow as the

orderkey decreases, i.e., we have bigger records in the end of input if compared to the

records from the beginning. But this is not true, as we can see in Figure 5.12, where

we plot the raw size (key length plus the value length) of the records with the dots and

crossed them with their rounded block size (black horizontal lines). The figure shows

a homogeneous distribution of the line sizes in the lineitem table, which disproves the

hypothesis.

We could not explain this erroneous behavior, which only occurs when the input is in

reverse order. Therefore, we leave it for future work to investigate the problem and find

further possible causes. Because the problem also occurs with PrefixPointerHeap, we

excluded the possibility of a bug in the PPCustomHeap implementation. The problem

is likely caused by our simplified implementation of the memory manager. The reset

mechanism proved to be a reasonable alternative to the coalescence of free blocks in

the circumstances described in Section 4.3.1. However, cases like this indicate that

the robustness of a proper memory-management implementation are crucial to achieve

sorting performance.
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Figure 5.11: A split from the records line in Figure 5.10 shows the majority of
occupied blocks are 160 bytes long, just followed by 128 bytes blocks.

Figure 5.12: Length of raw records and rounded records from lineitem table.
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Figure 5.13: Join of lineitem and order tables, using a buffer size of 100MB.

5.3 Real World Jobs

To conclude the experiments, we created a test scenario where a join of two tables must

be performed. Joins are a common operation in data management systems, but in the

MapReduce programming model they are a clumsy task to do. The table which are

being joined are the already described lineitem together with a orders table, also from

the TPCH benchmark. The lineitem table size is 1GB, and the order table size is 600MB.

The tables are being joined by the orderkey field, present in both tables.

This experiments were performed in a small cluster running Hadoop 2.4.0 with six

nodes: one master, running the NameNode and the ResourceManager, and five slaves,

where the DataNode and TaskTracker were being executed. The master has a hardware

configuration identical to the machined used in the experiments of Chapter Section 4.1,

while the slave machines are composed of an Intel(R) Xeon(R) CPU X3440 @ 2.53GHz

with 4GB of main memory and 750GiB hard disk. The operating system and java

version are also identical to the ones described in Section 4.1. We measured only the

total execution time (end time minus start time) of the jobs, in order to interfere the

least as possible with the execution.

First, Figure 5.13 present the execution time of Hadoop and PPCustomHeap with a buffer

size of 100MB. Hadoop performance was faster in average, because the ratio between the

table sizes and the buffer size (10 for lineitem table and 6 for order table) is low. This

results in fewer spills than the merge factor for both systems, and the total execution

time ends being determined by the run generation time.
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Figure 5.14: Join of lineitem and order tables, using a buffer size of 16MB.

For the second test, we decreased the buffer size to 16MB, which yields a 62.5 with

the lineitem table and a 37.5 ratio with the order table. The results are presented in

Figure 5.14, where the PPCustomHeap was faster, because even with the small buffer, the

total number of runs produced are not bigger than the merge factor. Despite a small

apparently small difference, the replacement selection advantaged of minimizing the

number of runs if combined with a proper buffer size configuration, can be significantly

for massive data sets.



Chapter 6

Conclusions

This thesis described the implementation and evaluation of an alternative sorting com-

ponent for Hadoop based on the replacement-selection algorithm. Sorting performance

is critical in MapReduce, because it is essentially the only non-parallelizable part of the

computation. Thus, every second one could save reflect across the whole cluster.

Our goal with this thesis was to evaluate replacement selection for sorting inside Hadoop

jobs, specifically in the map task side. The new versions of Hadoop allow permit an

alternative sorting implementation to be plugged to the framework’s code, and we took

advantage of that during our work.

We first described different in-memory sorting alternatives, as quicksort, mergersort,

and heapsort. After that, we introduced external sorting, because Hadoop produces

several small sorted files which it has to merge. We explained that the external sorting

is divided in two phases: the first phase, called run generation, creates this small sorted

files from some input; the second phase, called merge, merges this files into one single

ordered file.

The original implementation, based on quicksort, is simple to implement and very ef-

ficient in terms of RAM and CPU. During this work, the original implementation was

always faster in the run generation phase. However, we demonstrated that under cer-

tain conditions, the replacement-selection alternative performs faster in the merge phase,

which, depending on the savings’ size, can lead to a smaller total execution time com-

pared to the original solution. The main conditions studied during this work were the

follow:

60
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• Ratio between input size and buffer size: the major savings in the merge phase

occur when replacement selection produces fewer runs than the merge factor. Re-

placement selection normally produces runs twice as large as the available memory,

which results in fewer longer runs.

• Orderness: when an input file has little disorder, replacement selection generates

runs with even longer lengths. Quicksort, in turn, does not benefit much from

incidental ordering in the input.

Despite the stimulating results, there still a lot to be done. The following tasks are only

a small sample of all the possible future work:

• Coalescing of memory blocks: promote coalescing of small adjacent free memory

blocks into one larger block. The police of when this should happen also should

be studied. An eager coalescing would ignore the fact that the block fragments

converge to the average size of the records. A lazy coalescing, triggered only after

some iterations of record flushes, perhaps could avoid the fragmentation problem

we discussed before while not affecting the performance of the memory manager.

• Memory manager: avoid high fragmentation levels by probing the input in order

to decide the best minimum size for the memory blocks;

• Run control: in the RecordHeap we use a Boolean flag to keep track of the current

active status, which we changed in the following implementations to an integer.

Bring back the flag but as a single byte (specially for the MetadataHeap case) saves

3 bytes for each entry;

• Partition: the same logic from the run control applies to the partition field in the

heap entries. It is uncommon to have a high number of partitions, and one single

byte could address up to 128 of them. This yields another 3 bytes saving;

• Sort the heap in the last flush: in the PointerHeap and PrefixPointerHeap

classes, when the flush method is called and we must poll all records from the

heap, we get the LightHeapEntry array from the priority queue, sort it and send

each record to the writer. Because the array behinds the MetadataHeap is not an

array of objects but simply a byte array, apply this optimization is not a trivial

task. One could, however, customize a quick sort which would swap groups of 32

bytes as records.

• Map side merge: to have an honest comparison, we made sure our writer used the

same codification as Hadoop uses. This made possible to reuse all the mergeParts

method from the original buffer. But we believe its possible to write a more efficient
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merger which would take advantage of the smaller-in-quantity but longer-in-size

spill files, exploiting different merge strategies as show in [7, 21, 28].

Work in low-level Hadoop components is a fruitful and rewarding experience. Nowadays,

hundreds of companies base their solutions in Hadoop to address problems in fields

like artificial intelligence, machine learning, information retrieval, speech processing,

data management, natural language processing, machine translation, and others. Every

change made in the core of the framework is reflected across many clients. After some

code polishing and further testing, we are confident that the work presented in this

thesis may be integrated in the framework, adding a handful tool to be used in terms of

sorting.
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