
Marimba: A Framework for Making MapReduce Jobs Incremental

Johannes Schildgen∗, Thomas Jörg†, Manuel Hoffmann∗, Stefan Deßloch∗
∗University of Kaiserslautern, Germany, {schildgen, m hoffmann09, dessloch}@cs.uni-kl.de

†Google, Munich, Germany, tjoerg@google.com

Abstract—Many MapReduce jobs for analyzing Big Data
require many hours and have to be repeated again and again
because the base data changes continuously. In this paper we
propose Marimba, a framework for making MapReduce jobs
incremental. Thus, a recomputation of a job only needs to
process the changes since the last computation. This accelerates
the execution and enables more frequent recomputations, which
leads to results which are more up-to-date. Our approach is
based on concepts that are popular in the area of materialized
views in relational database systems where a view can be
updated only by aggregating changes in base data upon the
previous result.

Keywords-MapReduce; Hadoop; incremental; framework

I. INTRODUCTION

In the past few years, the MapReduce paradigm [5] and its
open-source implementation Hadoop [1] gained popularity
for analyzing Big Data. Soon high-level languages like Pig
Latin or Hive in order to query large amounts of structured
data were established. This way, commonly-used tasks like
joins and filters need not be implemented manually. Instead,
a declarative language similar to SQL is used to describe
the problem. Furthermore, many optimizations like index
support had been added to Hadoop, but these modifications
only make MapReduce faster and easier to use when dealing
with structured data. In this paper, we will go back to the
roots of MapReduce, namely processing unstructured data
like websites, blog posts and other large amounts of text or
graph data.

As the amount of input data is very large, MapReduce
jobs often take many minutes or hours. Moreover, this
input data changes permanently, which is why these jobs
have to be repeated again and again. This is similar to
materialized views in relational databases: A long-running
query is executed periodically to update a materialized view.
In that area many optimizations exist. The main idea is
to just analyze deltas in the base data, which is data that
has changed since the last computation. Along with the
previous result, the new result is produced. When this kind of
incremental computation is possible, we call the materialized
view self-maintainable.

The main difference is defining a materialized view by
a declarative query, opposed to a MapReduce job that is
implemented by the two functions Map and Reduce in a
specific programming language. Additionally, a MapReduce
job can process any data (unstructured text, graph data, ...).

Materialized views can benefit from statistics and indexes
on tables which are not available in MapReduce. A NOSQL
database like Google’s Big Table or its open-source im-
plementation HBase is often used as an input and output
for MapReduce jobs. They differ from relational databases
not only in the lack of a well-defined schema and a non-
declarative query language. Big Table does also not support
secondary indexes. Thus, data can only be read and written
via primary-key access or a full scan. When not using a
database but the Google File System (GFS) or the open-
source Hadoop Distributed File System (HDFS), text files
can only be read sequentially and written in an append-only
mode.

In the next chapter, we introduce some related work and
in chapter III we present our idea to make MapReduce jobs
self-maintainable. Based on these findings, in chapter IV
we introduce Marimba[10], a framework for incremental
MapReduce jobs, and some example jobs in chapter V. We
will test the performance of incremental Marimba jobs in
chapter VI. In chapter VII, the conclusion of this paper is
drawn.

II. RELATED WORK

There is some research for making MapReduce jobs
incremental. At Google, they modified the MapReduce pro-
gramming model and created Perlocator [12] which replaces
the former MapReduce-based web-indexing system. Instead
of doing full recomputations, Perlocator processes data by
using so-called observers which are similar to database
triggers.

Another approach which introduces a new programming
model for continuous bulk processing (CBP) is presented
in [9]. A CBP computation generates a continuous output
based on continuously arriving input data. This approach
as well as Perlocator are far apart of materialized views.
They both use a new programming model to describe the
reaction on changes in the input data. This forces the user
to use this new programming model which is different from
the functions Map and Reduce, so existing MapReduce jobs
cannot be reused.

In [3], Incoop is presented, an approach for incremental
data processing which executes a normal MapReduce job in
an incremental way by caching Map and Reduce outputs and
re-executing the map phase only for splits that changed and
the reduce phase only for changed intermediate key-values.

Similar to the caching in Incoop is IncMR [15]. Hadoop
jobs can be ran incrementally without changing the code
by mapping only the new data and executing the Reduce
function not only on the current Map output but also on the
Map output of the previous computation. The latter data is
called state data in IncMR.

On the one hand, the benefit of Incoop and IncMR is
the possibility of making many existing MapReduce jobs
incremental simply by caching intermediate results from
former computations. On the other hand, caching needs to
write a huge overhead.

i2MapReduce [16] is one different idea which fo-
cuses on iterative computations. These computations—like
PageRank— have to be computed multiple times in a row
until the result converges. i2MapReduce remains the state
of a MapReduce job beyond the runtime of the job so
that computed values can be reused. This approach is not
applicable to non-iterative MapReduce jobs.

DryadInc [13] also caches intermediate data for reuse in
recomputations. However it only supports insertions but no
deletions or updates.

Our idea is to benefit from these caching and non-caching
approaches. For one thing the MapReduce programming
model is modified just in a minimal way so existing jobs can
easily be made incremental. For another thing, intermediate
results are not being cached so there is no large overhead.

III. HOW TO MAKE MAPREDUCE JOBS
SELF-MAINTAINABLE

A. Detecting Deltas

An incremental computation means that only the changes
since the previous computations will be analyzed. So, first
of all those changes have to be determined. Generally, one
can specifying three input sources—one for inserted, one
for preserved and one for deleted data—or the changes can
be detected automatically by use of change-data capture
(CDC). In [6], CDC approaches for wide-column stores
like HBase or Cassandra are compared. We developed one
input format for timestamp-based CDC in HBase which
reads only those cells of an input table that did change since
the previous job execution. This approach is very efficient
because HBase provides a history of each cell value together
with timestamps, and a time-range scan is supported.

One other CDC approach would be the usage of a log
file. This can be used if the storage systems logs insertions,
deletions and updates. On systems which support triggers
or ECA rules, trigger-based CDC can be used, so that after
every change operation on the base data a specific action
is performed (flagging a record or building sets of inserted
and deleted items). If triggers are not supported, one can
manually set an audit column whenever base data is written.
This is an annotation for a change in an item. At analysis
time, items with an empty audit column can be skipped, the
others are treated as inserted, deleted or changed. Another

possibility to capture changes is the snapshot-differentials
approach in which the current snapshot of the base data
is compared to the state of the previous computation com-
pletely.

B. Incremental WordCount

The textbook example WordCount is often used to explain
the usage of MapReduce: A Map function reads a line of
text and emits for each word w in it a key-value pair (w, 1).
For each key, all values are added in a Reduce function, so
that the output of this task is a list of all words together with
their occurrences. When we want to make WordCount self-
maintainable [7], first of all the input of the job is not the
whole text data, but only the deltas together with the result
of the former computation. The Map function distinguishes
between inserted data, deleted data and old results. Lines
which are updated are treated as if they would be deleted
and inserted again. In case of inserted data, the algorithm
behaves as usual: it emits a 1 for each word. Is the line
deleted, −1 is emitted. Old rows are just passed on to the
Reduce function.

An example: We already counted all the words in a long
text and now a line ”That’s all” is removed. The reducers for
the keys ”That’s” and ”all” now receive two values each: A
−1 and the number from the previous result. Both are added,
so that the numbers of ”That’s” and ”all” are now decreased
by one. For all other words from the old result, the mappers
just have to pass them to the reducers, and the reducers put
them out again. As the output usually overwrites the old
result, this approach is called Overwrite Installation (see
figure 1).

In this example, the amount of changes is very low, but
we had to read the complete previous result. An alterna-
tive to Overwrite Installation is the Increment Installation,
which avoids reading the previous result (see figure 2).
So in our example, there is only one input line for the
Map function (”That’s all”) and two intermediate key-value
pairs ((”That’s”, −1), (”all”, −1)). In this approach, the
reducer must not overwrite the old result but increment it
so the current value has to be read and updated by adding
the calculated value (here: −1). This kind of increment
operation is supported by HBase [2]. As a result, only the
inserted and deleted lines have to be read. A disadvantage
is the expensiveness of this increment operation because the
corresponding line has to be fetched in a non-sequential way.

As explained further below, it will be shown that the
Increment strategy is useful when there are only few data
changes. In case of many changes, the Overwrite strategy is
faster.

C. Formalization

Evident from previous examples, it is possible to use
the Overwrite and Increment strategy in MapReduce jobs.
We developed further jobs and noticed that they all follow

Map Reduce

Δ

Forme
r

Resul
t

Figure 1. Incremental MapReduce - Overwrite Installation

Map ReduceΔ
+=

Figure 2. Incremental MapReduce - Incremental Installation

a common pattern: A Map function has to read deltas as
well as the previous result and distinguish between deleted,
inserted, preserved values and old results. A Reduce function
has to aggregate all the values and write them either in an
overwriting or in an incremental way. We realized that all of
our implemented incremental MapReduce jobs belong to a
common class. This class of self-maintainable MapReduce
jobs we now want to define by modifying the MapReduce
paradigm. Given the following two functions:

Map : K × V → List < K ′ × V ′ >

Reduce : K ′ × List < V ′ >→ (K ′′ × V ′′)

The Map function produces intermediate key-values and
the Reduce function generates an output by aggregating all
intermediate values for one key. Let ◦ be an aggregation
function and v1, ..., vn ∈ V ′ a set of intermediate values,
then the aggregated value a ∈ V ′ can be computed as a =
v1 ◦ v2 ◦ ... ◦ vn.

Now the Map function will only be applied on the
insertions and deletions instead of the full input data. Every
intermediate value v ∈ V ′ which originates from a deleted
input will be inverted by a function ∗ so that v ◦ v∗ = e,
with e being the identity element w.r.t the function ◦.

We call a MapReduce job self-maintainable if it can be
recomputed only by reading deltas (inserted and deleted
values) and the result of the previous computation. Let
∆ = {vn+1, ..., vm} be the inserted values and ∇ =
{vi, ..., vk}, 1 ≤ i < k ≤ n be the deleted values. Then
the latest result a′ can be computed as a′ = v1 ◦ ... ◦ vi−1 ◦
vk+1 ◦ ... ◦ vm. This full recomputation can be avoided by
computing the new result a′ by reusing the previous result
a: a′ = a ◦ vn+1 ◦ ... ◦ vm ◦ v∗i ◦ ... ◦ v∗k.

In summary, we define the Abelian group (V ′, ◦) as
follows:

V’ (Abelian group)
◦ V ′ × V ′ → V ′ – aggregates two map-output values

– associative and commutative
∗ V ′ → V ′ – inverse element
e ∅ → V ′ – identity element

In the WordCount example we have:

Map : N× Text→ List < Text× Z >

:= ∀word : emit(word, 1)

Z (Abelian group)
◦ Z× Z→ Z := +Z – addition of two numbers
∗ Z→ Z := ·(−1)Z – additive inverse
e ∅ → Z := 0Z – zero

The input data for the map function now are the deltas. In
case of a deletion, the Map-output values will be inverted
by the function ∗. A Reduce function is not needed here.
All the values for one specific key (i.e., normal Map-output
values, inverted Map-output values and old results) are
automatically aggregated to one final output value by the
function ◦.

Algorithm 1 shows how a job that follows our mod-
ified programming model can be mapped to incremental
MapReduce using Incremental Installation. The user-defined
Map function MAP’ is called on inserted and deleted data,
the user-defined Reduce function REDUCE’ (if defined) is
called to handle the aggregated value. A generic Combine
function aggregates values to decrease the amount of data
which is transferred from the Map to the Reduce function.
For Overwrite Installation, the Map functions has to distin-
guish not only between inserted and deleted data, but also
between old results. These will simply be passed on the the
Reduce function which aggregates the changes on it.

IV. MARIMBA FRAMEWORK

Based on the ideas of incremental recomputations with
Overwrite and Incremental Installation and the formalization
seen in the previous chapter, we created a framework named
Marimba[14]. It is based on Hadoop and can be used for
implementing self-maintainable MapReduce jobs. We did
not change the underlying Hadoop system, so Marimba can
be run on top of any Hadoop version. A Marimba job
basically consists of the two functions Map and Reduce
which are exactly the same as in Hadoop. Furthermore the
user has to define how to deserialize results from a former
computation and how to invert and aggregate intermediate
values.

A. How to Write a Marimba Job

Writing a Marimba job is very similar to writing a Hadoop
job. You start implementing a Tool class and create a new
MarimbaJob. This is used to configure input and output
format, types and so on. Then you create a Mapper class
as usual. One thing to keep in mind is to use a so-called

Algorithm 1 Mapping of user-defined Map and Reduce
functions (MAP’, REDUCE’) to incremental MapReduce
with Increment Installation

1: function MAP(K key, V value) . Reads deltas only
2: (k, v) = MAP’(key, value) . Call user-def. Map
3: if key is inserted then
4: emit(k, v)
5: else if key is deleted then
6: emit(k, v*)
7: end if
8: end function
9: function COMBINE(K’ key, List〈V’〉 values)

10: a← e
11: for all v ∈ values do
12: a← a ◦ v
13: end for
14: emit(key, a)
15: end function
16: function REDUCE(K’ key, List〈V’〉 values)
17: a← e
18: for all v ∈ values do
19: a← a ◦ v
20: end for
21: emit(REDUCE’(key, {a})) . Call user-def. Reduce
22: end function

Abelian type as map-output-value class this time. This is a
type you create individually for example by extending an
existing Writable type from Hadoop and implementing the
methods aggregate, invert and neutral.

Starting your Marimba job, the map function will be
called for every inserted and deleted item. Map-output values
of the user-defined Abelian type get inverted when the
item is a deleted one. Eventually, in the Reduce phase all
the values for one key along with the previous result get
aggregated and form the output. The user can optionally
define a Reducer when there are additional steps needed to
write the final output, for example building a Put object to
write the aggregated value into an HBase table.

When using the Overwrite strategy, one has to define
a Deserializer which converts results from the previous
computation into an Abelian object, so that it can later be
aggregated upon the Map-output values.

B. Marimba Internals: Job Execution

Instead of the user-defined mapper, in the underlying
Hadoop job a generic MarimbaMapper is set (see figure
3). This distinguishes between the different kinds of input
data. Old results will be deserialized using the user-defined
Deserializer. Inserted and deleted values will be translated
into key-value pairs by the user-defined Mapper. Mind that
the Map-output values are Abelian objects and will be
inverted if the input was a deletion. Preserved values (these

Map

MarimbaMapper

Deserialize

Inserted

Deleted

Preserved

Former

Results

invert

MarimbaReducer

Aggregate Reduce

Figure 3. MarimbaMapper and -Reducer. Dotted arrows are UDFs.

are values which have already been processed in a former
computation) can simply be skipped.

Depending on the strategy, a specific Reducer will be
chosen, MarimbaIncDecReducer or MarimbaOverwriteRe-
ducer. In all cases, the (Abelian) intermediate values will be
aggregated to one value. Next, the user-defined reducer will
be invoked with both a key and a list, though the list only
contains the one aggregated value, so that the user-defined
reducer just needs to write the value and not to aggregate it.
In case of Increment Installation the reducer’s output will be
converted into Increment objects which results in updates of
column values in HBase. This Increment operation is similar
to a Put operation but HBase has to read the current column
value, increment it and write it back again. The HBase
HRegionPartitioner distributes the intermediate data to the
machines which are responsible for the given key. Thus, all
reads and writes happen locally. Nevertheless, the Increment
operation is still much slower than the Put operation because
an HBase row has to be randomly accessed, whereas Put
objects can be written in a sequential way. In the overwrite
case the result gets written unless it is neutral. For example
in WordCount neutral output values can occur if after a
deletion the new number of occurrences of a word is zero
now. The user can choose a NeutralOutputStrategy to define
the behavior of the MarimbaOverwriteReducer:

• PUT (default case): The value will be written although
it is neutral (in the WordCount example there would be
zeros in the output).

• IGNORE: The value is not written. Overwriting an
HBase table will make the old values stay in the table
but one can distinguish between old and new values by
their timestamps.

• DELETE: The value gets deleted in HBase.

The PUT strategy was chosen as the default case because it
is the same behavior as in Increment Installation. There it is
not possible to detect if a value gets neutral, it will always
be written.

C. Realization Details

Marimba can be seen as a layer between Hadoop jobs and
the Hadoop Framework. On the one hand, this means that
an existing Hadoop job can be executed with Marimba with
just a few modifications. On the other hand, every Marimba
job will be mapped to a Hadoop job, so it can be executed
through the Hadoop engine.

MarimbaJob vs. Hadoop’s Job class: The MarimbaJob
class is a subtype of Job and inherits methods to configure a
MapReduce job (types, classes, formats, . . .). One additional
method setStrategy is used to choose the desired strategy.
It can be set to FULL RECOMPUTATION, INCDEC or
OVERWRITE. A job that uses the first one is equivalent to a
non-incremental Hadoop job. The latter strategy can only be
used when a Deserializer class is defined. This class can be
set like Mapper, Reducer and Combiner classes in Hadoop.
Another new method, namely setNeutralOutputStrategy is
used to set the behavior of overwrite jobs when the output
is the identity element (PUT, IGNORE, DELETE).

Map-Input-Value Types: In Hadoop, the input-value
type of the function Map depends on the input format. When
using HDFS text files it is Text; when using HBase it is
Result. In Marimba it is similar, but also the origin of each
map-input value matters. So there are three Java interfaces
InsertedValue, DeletedValue and PreservedValue which are
used to flag the input-format types. As an example, we
developed a TextWindowInputFormat which reads HDFS
text files and treats each line as deleted, preserved or inserted
depending on whether the line lies in a new or old window
or their intersection. The begin and end of each window are
given by the user before job execution. This input format
was used to test the runtimes on Marimba jobs depending
on the amount of changes in the input data (see chapter
VI). The InputFormat produces InsertedText objects for each
line which is in the new window and not in the old one
and DeletedText objects for the opposite. Both are subtypes
of Text, so the Map-input type is still Text. But as these
classes implement the interfaces InsertedValue respectively
DeletedValue, the MarimbaMapper can distinguish them.

When an HBase table is used as input, a change-data-
capture input format can be used to deliver InsertedResult
or DeletedResult objects to the Map function, e.g. based on
their timestamps.

Additionally to the inserted, deleted and preserved data,
the MarimbaMapper has to read the former results. For
that we developed an OverwriteInputFormat that is the
combination of the input format which is set by the user
in the job configuration, and an input format to read the
former results. In the latter one the values will be wrapped
to OverwriteResult objects, so that the MarimbaMapper can
forwand them to the user-defined Deserializer.

V. EXAMPLE JOBS

A. Text Processing

In most cases, Hadoop code can simply be reused for
writing a Marimba job. To make the non-incremental Word-
Count job incremental, the mapper can remain unchanged.
The lines in the reducer where the sum of the values
is calculated can be removed and the Map-output-value
class has to be changed to LongAbelian, a new subtype
of LongWritable with the methods aggregate (sum), invert
(*=-1) and neutral (0). Figure 4 shows the WordCount
algorithm using the Overwrite installation and DELETE as
NeutralOutputStrategy.

 Map
 (+ invert)

Reduce
(aggregate)

Deseria
liz

e

Inserted

i got rhythm

i got music

Deleted

rhythm of life

Former Result

got, 8

life, 1

melody 1

of, 5

rhythm 12

got, 10

i, 2

melody 1

music, 1

of, 4

rhythm 12

i, 1

got, 1

rhythm, 1

i, 1

got, 1,

music, 1

rhythm, -1

of, -1

life, -1

got, 8

life, 1

melody 1

of, 5

rhythm 12

Figure 4. WordCount with Marimba - Overwrite Installation

We developed a more complex text-processing task which
calculates probabilities for word sequences by generating
bigrams. After analyzing large amounts of texts, the algo-
rithm can tell you that the phrase ”Wednesday night” is
more probable than ”Wednesday light”. This can be used
in voice-recognition systems or auto-completion tools. This
Bigrams algorithm consists of two chained Marimba jobs.
The first one is very similar to WordCount, but it doesn’t
count the individual words, but word pairs. So the output
can look like this: (”I got”, 1), (”got rhythm”, 1). In the
second job all successors of one word are collected together
with their count value. Therefore a TextLongMapAbelian
:= List < Text× Z > is used.

Map : Text× Z→ Text× List < Text× Z >

Map splits a word pair into two words, the first one forms
the key, the second one forms together with the count value
the value.

TextLongMapAbelian := List < (Text× Z)∗

◦ List < Text× Z > ×List < Text× Z >
→ List < Text× Z >:= ∪

– union of successors; addition of their count values
∗ List < Text× Z >→ List < Text× Z >:= ·(−1)Z

– additive inverse of each count value
e ∅ → List < Text× Z >:= ∅

– empty list

The result is one word as a key and a set of words
together with a number of occurrences which follow on
that first word.

B. Graph Processing

MapReduce jobs can be used for many graph algorithms.
The input data is either structured data, such as an adjacency
list of a large graph or semi-structured data like a set of
websites with HTML links in it. In the latter case, the map
function needs to parse the websites to find all the links. A
simple graph algorithm is reversing a web-link graph, i.e.
generating a list which displays the incoming links from
another website for every site.

In this algorithm, the TextLongMapAbelian is used as
map-output value type again. It collects all the sites which
link to a specific website. As this type can be reused from the
Bigrams example, the operations ◦, ∗ and e are exactly the
same. So when doing a recomputation of this algorithm, the
map function produces (link, {(url, 1)}) for each link on
an added website with the given URL. For deleted websites
it is the same but the output gets inverted, so it will be
(link, {(url,−1)}). After the map phase all values for one
key will be aggregated to one list, which is the union of
all map outputs and the previous result. If one URL occurs
twice (for example once with a 5 from the old result and
once with a −1 because of a link deletion), the numbers will
be added (here: 4).

Another graph algorithm called Friends of Friends [8]
reads an adjacency list of a social network. An edge in this
network stands for: person A is a friend of person B. The
algorithm produces another graph of indirect friends. So if
A has got another friend C, then there will be an edge from
B to C in the output graph. The map-output-value type is
TextLongMapAbelian again.

Algorithm 2 Friends of Friends
1: function MAP(String personA, String friends)
2: for all personB ∈ friends 6= personC ∈ friends do
3: emit(personB, {(personC, 1)})
4: end for
5: end function

The Map function in algorithm 2 computes for each
person the cross product of his or her friends (skipping
the reflexive relationships). The rest of the algorithm is
completed by the aggregate and invert methods of the
TextLongMapAbelian and the Marimba framework. If some
persons or friendships are added or deleted, the output
will be recomputed in an incremental way. As the Text-
LongMapAbelian can be seen as a kind of multiset data
structure, some friend-of-friend relationships can be in the
map multiple times. The amount indicates the number of
common friends between two persons. This information

can for example be used for ordering people in a social-
network search function. When searching for people, your
own friends are displayed first and then friends of friends
(ordered by the number of common friends).

Figure 5. Friends-Of-Friends Algorithm

Figure 5 shows an example where one edge in a graph
was added and one was removed. The added one produces
two more friends-of-friends relationships, the removed one
deletes two.

One iterative graph algorithm is PageRank [11]. The
PageRank of a website A is determined by the PageRank
of every other website that includes a link to A:

PR(A) = (1− d) · 1

N
+ d ·

∑
B∈•A

PR(B)

|B • |

In this formular, N is the size of the web graph, •X are
the incoming links to X, X• the outgoing links, and d a
damping factor. In order to compute the PageRank for a
given network, the value of every node is initialized with
1
N and then more exact PageRank values are computed
iteratively with the upper formula until the changes of
PageRank values are below a given threshold. The input
and output is an adjacency list.

Algorithm 3 PageRank
1: function MAP(String url, (double pagerank, String[]

links))
2: for all link ∈ links do
3: emit(link,(pagerank / links.length, ∅))
4: end for
5: emit(url, (0, links)) . To reconstruct the graph
6: end function

The Map function in algorithm 3 reads a line of the
adjacency list which consists of the URL of the website,
the pagerank of the last iteration (initially 1

N), and links to
other websites. This function emits for every link its own
pagerank devided by its outdegree. Furthermore the set of

adjacent nodes is emitted to keep up the graph structure.
As map output a PageRankAbelian is being used, which is
defined as follows:

PageRankAbelian (pagerank, links)
:= (R× TextLongMapAbelian)
c = a ◦ b pagerankc = pageranka + pagerankb

linksc = linksa ◦ linksb
c = a∗ pagerankc = (−1) · pageranka

linksc = linksa∗
c = e pagerankc = 0

linksc = TextLongMapAbelian.e

The map-output key class is a Text, thus all emitted
PageRankAbelians for the same URL are aggregated by
adding the pagerank fraction. This corresponds to the sum
over all incoming links in the formula above.

The TextLongMapAbelian is then used to add new edges.
For example, if there is a new link from website A to B and
a removed link from website A to C, the PageRankAbelians
(A, (0, {(B, 1)})) and (A, (0, {(C, 1)})) are emitted. The
latter one will be inverted due to the deletion.

In the next iteration, the output of the map function is
based on the new links on every website and the job is
repeated until a convergence criterion is met.

C. Other Algorithms and Limitations

There are nearly unlimited MapReduce jobs which can be
made incremental by using Marimba. Whenever values have
to be aggregated, e.g., summed up, counted, or unified, it is
easy to implement an Abelian type or use the predefined
LongAbelian or TextLongMapAbelian. But when an algo-
rithm needs aggregation functions like average, minimum,
or maximum, it is hard to make it self-maintainable as they
do not an Abelian group but a monoid.

When a MapReduce job should compute an average price
for each product in a shop, the result cannot be reused for
computing a new averages, when the base data changes. To
fix this, the job has to store the count value in addition to
the average.

Implementing this in Marimba leads to the following
Abelian class:

AvgAbelian
c = a ◦ b countc = counta + countb

avgc = avga·counta+avgb·countb
countc

c = a∗ countc = −1 · counta, avgc = avga
c = e countc = avgc = 0

As you can see, there is a little overhead because the
count value has to be stored. But at the same time it enables
updates of the average in an incremental way.

If the task would be calculating the lowest price for every
product, it is not possible to make it self-maintainable, unless
all the possible prices would be remembered. Otherwise
there would be no chance to detect the lowest price when the

currently lowest price is being deleted. It can be optimized
by storing just for example the lowest three values for each
key by using a so-called mincache of size three (like in
[4]). Then the job only fails if the mincache gets empty.
Another possibility would be not to allow deletions, then
computations of minima and maxima is not a problem.

Disallowing deletions makes it also possible to implement
a shortest-path algorithm using breath-first search. There a
Reduce function chooses the smallest distance to a start node
and throws away the others.

VI. EVALUATION

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

0% 10% 20% 30% 40% 50% 60% 70%

Ti
m

e
 [

h
h

:m
m

]

Changed Data

FULL INCDEC OVERWRITE

Figure 6. WordCount execution time with Marimba

First we implemented the algorithms WordCount, Reverse
Web-Link Graph, Friends-Of-Friends and PageRank both
natively in Hadoop and with Marimba and executed the jobs
on a six-node cluster (Xeon Quadcore CPU at 2.53GHz,
4GB RAM, 1TB SATA-II disk, Gigabit Ethernet). In all tests
the number of map and reduce tasks stays the same. The
number of map tasks is determined by the number of splits
of size 64MB (480 map tasks for an 30GB input file), the
number of reduce tasks was 18. Performance tests showed
that the execution times of Hadoop jobs correspond roughly
to the times for the Full-Recomputation strategy in Marimba.
Then we compared the three Marimba strategies depending
on the percentage of input data which changed since the
previous computation. Figure 6 shows that for WordCount
on a 30GB text file the Incremental Installation is only faster
than Overwrite when there are less than two percent of
changes. At a change amount of 40% a full recomputation
is faster than using the Overwrite strategy.

Figure 7 shows another test, namely the execution time
of computing the Reverse Web-Link Graph on a 30GB web
graph. As you can see, here the Overwrite strategy is always
slower than a full recomputation. The reason for this is
that reading the previous result is very time-consuming.
Different from WordCount where the multiple count values
are summed up to one single value, here the aggregation is
a union operation which doesn’t compact the data.

00:00

00:20

00:40

01:00

01:20

01:40

02:00

02:20

0% 10% 20% 30% 40%

Ti
m

e
 [

h
h

:m
m

]

Changed Data

FULL INCDEC OVERWRITE

Figure 7. Reverse Web-Link Graph execution time with Marimba

VII. CONCLUSION

In this paper we presented Marimba, a framework for
incremental MapReduce jobs based on Hadoop and Abelian
groups. The idea behind Marimba is to use the Increment
and Overwrite Installation strategies for self-maintainability
that are well-known in the area in materialized views in re-
lational databases. We defined the class of self-maintainable
MapReduce jobs by modifying the MapReduce program-
ming model. Nevertheless, the new programming model is
very similar to standard MapReduce, so existing MapReduce
jobs can be easily reused. One main variation is that the
intermediate values have to form an Abelian group, so that
they can be aggregated and inverted.

When developing a Marimba job, one has just to imple-
ment a Map and Reduce function as well as one Deseri-
alizer and one Abelian type. Instead of developing an own
Abelian type, we saw that in many use cases two simple
predefined types can be reused, namely LongAbelian and
TextLongMapAbelian. We developed some text analysis and
graph algorithms with Marimba and showed that executing
jobs in an incremental way is much faster than a full re-
computation. In some cases, the Overwrite strategy is faster
than Increment Installation, or vice versa. We are currently
searching for heuristics to decide which strategy is the best.
This can either be done before a job is executed or even
during the execution. Another goal is to implement more
algorithms with Marimba like recommendation systems or
spacial algorithms.

As another approach for accelerating incremental recom-
putations, intermediate results can be cached [3] (see chapter
II). We wanted to compare the performance of this approach
with Marimba but its code is not publicly available yet. In
the future we plan to combine both techniques.

REFERENCES

[1] Apache Hadoop project. http://hadoop.apache.org/.

[2] Apache HBase. http://hbase.apache.org/.

[3] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues,
Umut A. Acar, and Rafael Pasquin. Incoop: Mapreduce for
incremental computations. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, pages 7:1–7:14,
New York, NY, USA, 2011. ACM.

[4] Miranda Chan. Incremental update to aggregated information
for data warehouses over internet. In In: 3rd ACM Interna-
tional Workshop on Data Warehousing and OLAP (DOLAP
’00). McLean, Virginia, United States, pages 57–64, 2000.

[5] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. OSDI, pages 137–150,
2004.

[6] Yong Hu and Stefan Dessloch. Extracting deltas from
column oriented nosql databases for different incremental
applications and diverse data targets. In Barbara Catania,
Giovanna Guerrini, and Jaroslav Pokorný, editors, Advances
in Databases and Information Systems, volume 8133 of
Lecture Notes in Computer Science, pages 372–387. Springer
Berlin Heidelberg, 2013.

[7] Thomas Jörg, Roya Parvizi, Hu Yong, and Stefan Dessloch.
Incremental recomputations in mapreduce. In CloudDB 2011,
October 2011.

[8] Steve Krenzel. MapReduce: Finding Friends. 2010. http:
//stevekrenzel.com/finding-friends-with-mapreduce.

[9] Dionysios Logothetis, Christopher Olston, Benjamin Reed,
Kevin C. Webb, and Ken Yocum. Stateful bulk processing
for incremental analytics. In Proceedings of the 1st ACM
symposium on Cloud computing, SoCC ’10, pages 51–62,
New York, NY, USA, 2010. ACM.

[10] Marimba framework.
http://code.google.com/p/marimba-framework.

[11] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing order
to the web. Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-0120.

[12] Daniel Peng and Frank Dabek. Large-scale Incremental
Processing Using Distributed Transactions and Notifications.
In OSDI, 2010.

[13] Lucian Popa et al. DryadInc: Reusing work in large-scale
computations. In HotCloud, 2009.

[14] Johannes Schildgen, Thomas Jörg, and Stefan Deßloch.
Inkrementelle Neuberechnungen in MapReduce. Datenbank-
Spektrum, 2012.

[15] Cairong Yan, Xin Yang, Ze Yu, Min Li, and Xiaolin Li.
Incmr: Incremental data processing based on mapreduce. In
Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on, pages 534–541. IEEE, 2012.

[16] Yanfeng Zhang and Shimin Chen. i 2 mapreduce: incremental
iterative mapreduce. In Proceedings of the 2nd International
Workshop on Cloud Intelligence, page 3. ACM, 2013.

