
An empirical analysis of database recovery costs

Caetano Sauer
University of Kaiserslautern

Germany
csauer@cs.uni-kl.de

Goetz Graefe
Hewlett-Packard Laboratories

Palo Alto, CA, USA
goetz.graefe@hp.com

Theo Härder
University of Kaiserslautern

Germany
haerder@cs.uni-kl.de

ABSTRACT
The time required for recovery from a failure is heavily in-
fluenced by hardware setup and workload characteristics.
In bad but still realistic cases, the recovery required dur-
ing restart can take hours. For a database system based
on write-ahead logging, we performed a qualitative study
of how hardware and software configurations affect the be-
havior of the database and, consequently, how this behavior
affects recovery time after a system crash. With the relevant
parameters identified in the qualitative study, we performed
an empirical quantitative analysis of recovery costs in multi-
ple scenarios. We show that recovery costs tend to get worse
as hardware and software improve in efficiency, and we dis-
cuss possible approaches to make recovery time independent
of system configurations and workload characteristics.

Categories and Subject Descriptors
H.2.2 [Physical design]: Recovery and restart

General Terms
Databases, transactions, failure, recovery, availability

Keywords
Write-ahead logging, log analysis, redo, undo, rollback

1. INTRODUCTION
The standard approach for providing transaction atom-

icity and durability in database systems is based on write-
ahead logging, in many cases following the ARIES design [7].
During restart after a system failure (e.g., a crash of the op-
erating system), the recovery procedure involves scanning
the log three times: log analysis, REDO pass, and UNDO

pass. Each of these phases has different cost factors, but a
common characteristic is that all tend to increase with the
efficiency of both hardware and software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RDSS’14 June 22-27 2014, Snowbird, UT, USA
ACM Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2014 ACM 978-1-4503-2996-5/14/07. . . $15.00.
http://dx.doi.org/10.1145/2632308.2632312.

Figure 1: Recovery times vs. dirty data in buffer

As shown in Figure 1, a typical transactional workload
such as TPC-C may incur crash recovery times close to
thirty minutes even for relatively small working sets. In
larger production systems, it is thus required to take hours
or even days into account. To obtain a detailed picture of
the behavior observed in this experiment, this paper inves-
tigates the main factors that determine recovery times. To
understand what such factors may be in the first place, a
brief review of the restart procedure in ARIES is required.

During restart, log analysis scans the log from the last
checkpoint onwards in order to determine which pages need
to be redone (i.e., database pages possibly dirty in the buffer
pool at the time of failure) and which transactions need to
be undone (i.e., active transactions at the time of failure,
also known as “loser” transactions).

During the REDO pass, the log is scanned forward from
the oldest log record affecting a page identified during log
analysis. All log records affecting dirty pages are redone
unless the database page is already up-to-date. The goal
is to restore, at least in the buffer pool, the physical state
of all database pages immediately before the crash, i.e., en-
suring durability by repeating history [7]. To apply the up-
dates of a log record, the page must first be fetched into the
buffer pool, which incurs a random page read. The number
of dirty pages cannot exceed the capacity of the pre-crash
buffer pool, as dirty pages selected for eviction must first
be written back to persistent storage. Therefore, we may
assume that there is one random read for each dirty page,
and thus the dominating cost of the REDO pass is the num-
ber of dirty pages at the time of crash. The time required
for REDO after a system failure can be reduced by flushing
dirty pages during transaction processing, i.e., prior to any
crash.

During the UNDO pass, each loser transaction is rolled
back starting from its most recent log record. This can be

done with a single backward log scan, undoing (or at least
queuing for UNDO) each log record of active transactions
in reverse chronological order. The goal is to restore the
logical consistency of the database, ensuring the atomicity
property. Pages touched by loser transactions must first be
redone during REDO, even if they do not contain any update
from committed transactions. Hence, they are very likely
to remain in the buffer pool after REDO, assuming loser
transactions were not long-running and that page replace-
ment avoids evicting pages recently referenced (e.g., LRU
or CLOCK [1]). Therefore, the UNDO pass is expected to
incur very little, if any, I/O cost on database pages. On the
other hand, the time required for UNDO cannot be shortened
by any kind of checkpoint, because all updates of aborted
transactions must be undone, including any extremely long
transactions. Therefore, UNDO time depends solely on the
amount as well as the duration of user transactions.

In this paper, we investigate the hardware, software, and
workload parameters that affect the recovery costs sketched
above. Having established, for instance, that REDO time
depends mostly on the number of dirty pages, we further
investigate what system parameters most heavily influence
the number of dirty pages. Section 2 performs a qualitative
analysis of the parameters that affect crash recovery. In Sec-
tion 3, we perform a series of experiments that quantify the
influence of such parameters in a running system. Finally,
Section 4 concludes our findings and presents opportunities
for future research.

2. CRASH RECOVERY
The factors that influence recovery time can be classified

into three categories: (i) workload characteristics, such as
intensity (i.e., demand for throughput), duration of trans-
actions, and skew in the distribution of page and record
accesses; (ii) software and system parameters, such as fre-
quency and type of checkpoints, page cleaning activity, and
size of the log buffer (to allow the relevant portion of the log
to remain in main memory during recovery); and (iii) hard-
ware parameters, such as amount of main memory, capacity
of persistent storage devices, level of parallelism, and device
latency.

For the first category, we assume the workload charac-
teristics of a typical transaction-processing scenario (e.g.,
TPC-C). In terms of throughput, we assume optimal uti-
lization, meaning that as many transactions per second will
be processed as the system can deliver (neither backlogs nor
idle time). As common in OLTP scenarios, we also assume
that transactions are very short, which implies that REDO

costs dominate UNDO costs during crash recovery. Lastly,
we assume that page access is not highly skewed, in which
case the REDO time would be much shorter, because the ra-
tio of dirty pages in the buffer pool is then much lower than
non-skewed scenarios.

Our study focuses on software and hardware parameters.
The former includes most importantly checkpoints and page
cleaning activity. By experimenting with these, a system
administrator can achieve an optimal trade-off between per-
formance during normal transaction processing and time re-
quired for recovery. The key factor to analyze in our study
is how intensively the system flushes dirty pages during nor-
mal processing, and what effect that has on performance
and recovery time. We discuss this in Section 2.1 below.

Among hardware parameters, we consider three factors:
the number of CPU cores, the size of main memory, and stor-
age media. To deliver high transaction throughput, database
servers usually run on multi-core machines with large mem-
ories and flash devices to store the log. High throughput, on
the other hand, increases the time required for recovery in
case of failures, because clean pages tend to get dirty faster
(assuming non-skewed updates) and more active transac-
tions must be rolled back. The media used to store the
database pages also plays a key role in recovery time, be-
cause random page reads are the limiting factor for REDO

performance. These issues are discussed in Sections 2.2 and
2.3.

2.1 Page Flushing Policy
Flushing dirty pages in the buffer pool back to disk during

normal processing lowers the amount of REDO necessary
during recovery, because only updates not reflected in the
persistent database must be redone. Pages are flushed in
the following three cases:

Buffer replacement: When the buffer pool is full and
a page must be fetched from disk, an existing buffered page
must first be evicted. Replacement algorithms usually try
to pick clean pages, but if a dirty page must be evicted, then
it must first be flushed to disk.

Page cleaner: Typical database system implementations
employ a page cleaning service that runs as a background
thread, periodically flushing dirty pages. The page cleaner
sweeps through the buffer pool, selecting pages to be flushed
based on various criteria. One possibility is to collect pages
that are “too old”. Old, in this case, can be measured either
as a time threshold or as an amount of log records inserted in
the log. It is also possible to flush pages in a particular order,
such as “oldest first”. Such measures are important because
they not only reduce REDO time, but also the length of the
log scan required for recovery. Flushing old pages also allows
portions of the log to be discarded, and thus this kind of
page cleaning can also be enforced when available log space
gets critical. Another possibility is to flush pages considered
“hot”, i.e., those with a high update frequency and thus a
large amount of related log records. The various policies
can also be combined with different schedules and priorities,
depending on system state and configuration parameters,
making the page cleaner a very flexible tool.

Checkpoints: One important technique to limit recov-
ery time is the use of checkpoints. They are typically of the
fuzzy type [3], which means that the checkpoint process is
carried on without disrupting normal transaction process-
ing, generating multiple log records enclosed by “begin” and
“end” marks1. A checkpoint is then only considered com-
plete if its “end” log record is flushed to the persistent log.

In order to establish boundaries for the log scans required
during recovery, checkpoints usually record information about
which pages are dirty in the buffer pool and which trans-
actions are active at the moment. Because checkpointing
does not disrupt transaction processing, this information is

1This definition of fuzzy checkpoints is from Gray and
Reuter [2]. The survey paper by Härder and Reuter [3]
defines fuzzy checkpoints as those that only record informa-
tion about dirty pages in the buffer pool and active transac-
tions (also called indirect checkpoints), as opposed to flush-
ing pages back to persistent storage. In practice, both def-
initions capture the characteristics of the basic checkpoint
technique used by the vast majority of implementations.

(as the name suggests) fuzzy, and the actual state of the
database at the time of crash can only be determined by ex-
amining the logged operations since the checkpoint started,
hence the need for the log analysis pass.

During checkpoints, pages can be flushed to establish a
fixed boundary to the REDO pass. A common technique is
to flush all the pages that became dirty before the last check-
point. The checkpoint “end” record is then only generated
once the flushing process completes. This measure provides
a guarantee that only two consecutive checkpoint intervals
worth of log are needed in order to REDO all outstanding
updates. This technique, sometimes referred to as second
chance, can further be generalized by considering the last k
checkpoints.

2.2 Transaction Throughput
The effect of transaction throughput on recovery time is

quite obvious: the more updates the system is able to apply
in a fixed amount of time, the higher the required recovery
effort will be to restore the changes of that time window.
The effort, in this case, translates to the number of random
reads during recovery—one for each dirty page in the buffer
pool between the last checkpoint and the crash. If no dirty
pages are flushed during normal processing, the ratio of dirty
pages steadily increases, perhaps even approaching 100% (al-
though slowly for highly skewed accesses). The higher the
transaction throughput, the faster the ratio grows.

More aggressive page flushing policies may slow down the
growth of the dirty ratio, or even manage to lower it over
time, but this depends on a delicate balance between trans-
action throughput and disk bandwidth. To better under-
stand this, we assume two extreme scenarios, relying for now
on intuitive interpolation to interpret the cases in between.

First, we assume that the buffer pool is large enough to
fit the complete database. This is the ideal case for flushing
policies, because they can then fully exploit the device write
bandwidth to flush pages back to the persistent database.
In this case, the behavior of the dirty page ratio depends on
a race between transaction throughput and I/O flushes. As
we empirically demonstrate in Section 3, the I/O bandwidth
eventually saturates due to pages being dirtied more quickly
as the number of worker threads increases. After saturation,
a backlog of dirty pages may accumulate over time, and
hence page flushing policies would not contribute to lowering
the recovery time in case of a crash.

One may argue that employing disk arrays may solve this
problem, but, as we argue in Section 2.3, this adds a new
set of drawbacks. Moreover, it is debatable whether adding
extra disks to keep up with CPU bandwidth is a reasonable
solution, because the historic trend is that this gap increases
over time.

For the second extreme scenario, consider a large database
(and a large working set), such that only 1% of the pages can
be kept in the buffer pool. In this case, throughput will most
likely be limited by I/O latency, as most transactions must
wait for pages to be replaced. Thus, page flushing must now
compete for the same resource (disk I/O) rather than trying
to keep up with the in-memory transaction throughput. In
this scenario, the dirty page ratio can only be kept low by
lowering transaction throughput, a compromise that must
be considered if acceptable restart performance is desired.

We conclude that increasing transaction throughput un-
avoidably hurts recovery time. A modern database system

design should be able to exploit the low disk latencies of
flash devices for log storage as well as the high amount of
cores in modern CPUs [4, 5], delivering higher throughput
and better scalability, which makes recovery time a greater
concern.

2.3 Storage Media
Hardware influences the costs of recovery by the kind of

media device used for both the database contents and the
log. Because flash drives have a latency up to 100 times
faster than traditional disk drives, it is highly recommended
to use it as log device, as the throughput is improved signif-
icantly due to faster log flushes at commit time. Therefore,
our study will assume flash devices for the log on all exper-
iments.

For database storage, we assume traditional magnetic disks.
If the database is small enough to fit in a not-too-expensive
flash device, as well as a large portion of it in main mem-
ory, then indeed the time required for crash recovery will be
less of an issue (although still critical in the case of recovery
from media failures). As discussed earlier, large buffer pools
and database media with high bandwidth allow aggressive
page flushing to keep a very small dirty page ratio, thus par-
tially mitigating the problem of restart time. Our study, on
the other hand, focuses on cases where it becomes an issue,
namely when large magnetic disks are used.

Another important but less obvious aspect of storage me-
dia is the capacity of individual devices. Given that the total
database size is fixed by the workload, a system administra-
tor is faced with the choice between few large devices or
many smaller ones. During crash recovery, smaller devices
allow the REDO pass to fetch pages in parallel, which seems
like a good idea at first. However, the mean time to a me-
dia failure also decreases as the number of devices increases,
and thus media recovery is expected to be invoked more fre-
quently. One may argue that the net effect on the system is
the same, because media recovery will be also shorter for a
smaller device. However, the disadvantages manifest as in-
creased administrative overhead incurred by frequent media
failures, higher frequency of outages, and costly maintenance
of servers with many drives.

The principal advantage of larger devices, nevertheless,
is from the economic perspective. At the time of writing,
the cost per byte of a 4TB desktop hard disk is about 60%
as that of an equivalent 1TB disk. Furthermore, because
energy consumption does not depend on the device capacity,
the 4TB drive would have only a quarter of the energy costs
of four 1TB drives. Lastly, because large devices have higher
density and usually employ more recent technology, they
either provide faster transfer rates or allow the same transfer
rate at a lower rotational speed (which has a positive effect
on energy consumption and mean time to failure). Larger
devices, therefore, tend to be more cost-effective in server
infrastructures.

One last argument against large devices is that smaller
devices on disk arrays deliver higher I/O bandwidth. How-
ever, because we focus on transaction processing and not on
analytical processing, the bandwidth of the storage media
is not of crucial importance, as I/O operations are mostly
random single page accesses. In this case, the determinant
factor for I/O performance is device latency, which is inde-
pendent of the level of device parallelism. Therefore, our
analysis focuses on the case of a single device.

Figure 2: Number of dirty pages vs. REDO time

3. EXPERIMENTS

3.1 Environment
We performed the experiments using the Shore-MT stor-

age manager [4], which implements the basic ARIES algo-
rithm for logging and recovery. We used the TPC-C bench-
mark as implemented in the Shore-Kits component released
with Shore-MT2. Our hardware is a 64-bit Linux 3.11.0
server with dual Intel Xeon X5670 CPUs, providing a to-
tal of 24 thread contexts. In all experiments, we use a flash
device to store the database log, namely a 256GB Samsung
SSD 840 Pro. As the database device, we use a Seagate
ST1000VX000 hard disk, which has a capacity of 1TB. The
page size is 8KB.

3.2 Results
Dirty pages vs. REDO time. To confirm our hypothe-

sis that REDO time is determined almost exclusively by the
number of dirty pages in the buffer pool at the time of the
crash, we performed various TPC-C benchmark runs with
different configurations. After a random amount of time be-
tween 1 and 5 minutes, a crash is simulated by killing the
process and we count the number of dirty pages as computed
by log analysis, as well as the duration of recovery. Figure
2, which is a detailed version of Figure 1, shows the result
of each run as a point in the graph, with dirty page count
in the x-axis and recovery time—divided into log analysis,
UNDO, and REDO—in the y-axis. Because our goal is simply
to study the correlation between dirty pages and recovery
time, the configurations of individual runs is irrelevant.

The graph shows that REDO costs dominate recovery time,
at least in typical short-transaction workloads such as TPC-
C. In such scenarios, the UNDO costs are negligible, as shown
in our experiment. Given the large amounts of log generated
in high-throughput scenarios, it turns out that the cost of
log analysis becomes significant, or at least more so than
that of the UNDO phase. To keep the log analysis cost un-
der control, it is enough to increase checkpoint frequency.
Nevertheless, the most important result of this experiment
is the strong correlation between the number of dirty pages
in the buffer pool at the time of crash and the REDO time.
The line represents a best fit for the data points collected,
computed with least-squares linear regression. It gives us a
cost of 4–6ms per dirty page, which is what one would expect
for a random read on a modern hard disk. Note that this
experiment does not write any pages, which means that the

2https://sites.google.com/site/shoremt

Figure 3: Effect of throughput on cleaning behavior

buffer pool is large enough to absorb all updates. If writes
are required, the recovery cost per dirty page is expected
to raise. Given the results obtained here, the following ex-
periments consider the number of dirty pages as the sole
determinant of crash recovery time.

Maximum throughput. As discussed in Section 2.2,
if the buffer pool (or at least the working set of the appli-
cation) fits completely in main memory, then the database
storage device can be fully exploited for flushing dirty pages
using the page cleaner. Since copies of pages are taken into
a separate write buffer prior to flushing, only the minimal
overhead of latching a page for the duration of a copy is in-
curred. In this scenario, there is a“race”between in-memory
transaction processing, which turns clean pages into dirty,
and the page cleaner, which performs the opposite transfor-
mation. As the transaction throughput increases, the page
cleaner is expected to hit a“saturation point”, which is when
pages get dirty faster (assuming non-skewed updates) than
disk bandwidth allows them to get cleaned. To demonstrate
this effect, we perform five-minute TPC-C benchmark runs
on a warm buffer, varying the number of worker threads
from 1 to 24.

Figure 3 shows the measurements of this experiment. On
the x-axis, the number of worker threads is shown. The
graph at the top shows the transaction throughput, which
reaches about 13,000 transactions per second at 24 threads.
On the bottom graph, we compute the average number of
dirty pages in each run for two different scenarios: one for
a hard disk with a write latency of ∼4ms; and a second one
which uses a ramdisk, meaning that pages can be flushed
as fast as a DRAM copy operation. The total database
size is ∼8GB (1 million pages), which is given by a TPC-
C scale factor of 64. As we can see, the amount of dirty
pages increases with the throughput. At the best performing
scenario, 60% of the pages are dirty on average, which means
that recovery would have to perform 600 thousand random
I/Os. In a single-disk scenario, this amounts to 40 minutes of
REDO time. Notice, however, that the database used in the
experiment is relatively small (∼8GB). For a 1TB database
(125 million pages), the expected REDO time under such
high throughput would be about 90 hours!

We also ran the experiment with all database pages in a
ramdisk, shown by the “DRAM” data series in Figure 3. In
this scenario, the dirty page ratio stays always at about 55%,

https://sites.google.com/site/shoremt

Figure 4: Dirty page ratio during experiment

with a curious increase for low-throughput configurations.
The reason for that is the policy used by the cleaner, which
is driven by log space reclamation and by checkpoints. Since
we use a fairly large log (80GB), checkpoints are the main
trigger for the cleaner, which means it is invoked at regular
time intervals (30s), instead of eagerly collecting dirty pages
for cleaning. Therefore, we conclude that the cleaner service
should employ various policies depending on the workload
and on I/O setup. We believe the implementation and eval-
uation of such policies would be a valuable contribution for
future work.

To better understand what happens to the dirty page ratio
in a single benchmark run, we collected the number of dirty
pages at regular intervals and plotted it on a graph, shown
in Figure 4. The x-axis shows a timescale in terms of log
activity (data points are collected at every ten thousand log
records). The data here was collected from the 24-thread
experiment of Figure 3. The data points show the count of
dirty pages as computed by log analysis. This means that,
for each point, the y-axis value is the dirty page count that
would be fetched from disk if a crash were to happen at the
point in time given by the x-axis value. On the top graph, we
plot the actual dirty page count, computed by inspecting the
log file produced by the experiment. On the bottom graph,
we plot the amount computed by log analysis following the
original ARIES algorithm. The difference between them will
be explained later on.

As the plot shows, the amount of dirty pages oscillates as
the page cleaner is triggered. Once activated, the cleaner
sweeps through the buffer pool to collect copies of dirty
pages (not necessarily all of them), flushes them to disk,
and goes back to idle. The points where such sweeps hap-
pen can be identified in Figure 4 by the decrease in the
number of dirty pages. If the crash happens shortly after a
sweep is completed, recovery time will be slightly shorter.
On the other hand, if it happens right before the cleaner is
triggered—i.e., when the graph is at a peak—longer recovery
times are expected.

Logging page flushes. So far, our analysis emphasized
the strong relationship between the number of dirty pages
and REDO time. However, it is important to note that the

ARIES design cannot precisely determine at restart time
which pages were actually dirty and which not. The con-
sequence is that some pages which are thought to be dirty
after log analysis may be fetched only to realize that they do
not require any REDO, i.e., they were clean at the time of
crash. This happens because the dirty page set is computed
by log analysis in two phases: first, a list of dirty pages is
extracted from the checkpoint log records, and then this list
is updated as the analysis moves forward and finds updates
to pages which were so far considered clean. The inaccu-
racy comes from false positives in the list—pages which are
cleaned but not removed from the dirty page list afterwards.

A simple technique to achieve significantly higher accu-
racy in computing the dirty page set is to log page flushes.
The idea is to introduce a special log record that contains
a list of page identifiers that were recently flushed. When
log analysis finds such log records, false positives can be re-
moved from the list of dirty pages, whereas without them
the list can only grow. A concern with this technique, which
was mentioned in the original ARIES design [7], is the in-
crease in log volume. However, modern storage technology
makes log volume less of a problem, especially if we consider
a high-throughput scenario, where the number of page-flush
log records is expected to be negligible relative to the amount
of data-related log records. Furthermore, because these log
records are not required for transaction consistency, they
can be held aside and placed on fragmented space inside log
pages. In this case, there is no increase in log volume at all.

To demonstrate the effect of page-flush logging, we refer
back to Figure 4. The data points labeled “original ARIES”
in the bottom graph correspond to the standard method of
computing the dirty page set in ARIES, while the “actual”
series shows the amount computed by taking page-flush log
records into account. These points are the same as in the
top graph, plotted again for visual comparison. To better
understand the differences, we also plot the values computed
by each checkpoint. Note that the set of dirty pages in the
original ARIES procedure, as expected, increases monoton-
ically from the starting amount computed by a checkpoint,
while the optimized method allows the set to decrease along
with page flushing activity.

Note that when the page cleaner is triggered, only the op-
timized method takes the decrease in the dirty page ratio
into account. If a crash were to happen during these flush
periods, many pages in the dirty set computed by ARIES
can be false positives. Also note that the value is corrected
when a checkpoint occurs, which means that the likelihood
of higher false-positive ratios is increased as checkpoints be-
come less frequent. As the bottom plot of Figure 4 shows,
there are certain points in time (e.g., shortly after 60M on
the x-axis) where about 150 thousand pages in the ARIES
dirty set are actually false positives, resulting in many un-
necessary random I/O reads and further worsening the prob-
lem of REDO time.

One last remark on page-flush logging is relevant for sce-
narios in which rarely-updated pages tend to linger in the
buffer pool. If such pages occur as false positives in the
dirty page set, the length of the REDO log scan will likely
be larger than necessary, because isolated old updates may
be found to already be reflected on the persistent database.
In such scenarios, logging page flushes makes the length of
REDO scan much closer to the minimum necessary.

Figure 5: Average dirty page count vs. buffer size

Limited buffer pool. The maximum throughput sce-
nario discussed above represents one extreme of the spec-
trum of available main memory for the buffer pool, namely
when it is large enough to fit the entire database (or the com-
plete working set). The next experiment analyzes the prob-
lem of recovery time on the other extreme, namely when
a very small portion of the database pages can be cached
in the buffer pool. Because this scenario involves intensive
buffer replacement, a visible effect on transaction through-
put is expected. This means that pages will get dirtied much
less frequently than observed in the experiment of Figure 3,
but at the same time, page replacement is likely to keep the
database device busy, which limits opportunities for page
cleaning. Therefore, even in such low throughput scenarios,
it is safe to assume that recovery time is still an issue.

Figure 5 shows the results of an experiment involving one-
minute TPC-C runs with varying buffer sizes on a dataset
of 8GB (1 million pages). Along the x-axis (not to scale),
we have different buffer sizes expressed as percentages of
the total database size. On the left y-axis, whose values are
plotted in bars, we show the average number of dirty pages
throughout the experiment, computed with page-flush log-
ging. The right y-axis, whose values are plotted as a line,
shows the transaction throughput. We observe that smaller
buffer sizes indeed require less recovery effort, since the abso-
lute number of dirty pages is lower, but this obviously comes
at the cost of a significantly lower transaction throughput.

4. CONCLUSION
The results presented in this paper clearly demonstrate

that recovery time represents an important issue for database
systems expected to deliver high availability. Even though
many techniques can be employed to remedy that situation,
the only way to guarantee fast recovery times is to trade
it for transaction processing performance, a measure that
goes against the historic trend that led to write-ahead log-
ging and the omnipresent ARIES design. An even greater
concern, as we demonstrated in our study, is that the prob-
lem is aggravated by hardware improvements such as larger
memories and disk drives as well as multi-core CPUs. In
other words, without new software techniques, the problem
will continue to get worse, not better.

To solve this problem, we believe that logging and recov-
ery algorithms must be designed to allow recovery work to
happen concurrently with normal transaction processing and
incur minimal overhead. Ideally, such an algorithm would
make the time required for the system to be ready for new
transactions independent of the amount of UNDO and REDO

work necessary to restore a consistent database state. We
hope that this can be achieved requiring only moderate mod-

ifications to the ARIES design already implemented by the
majority of transactional systems.

Some improvements on that direction are already pro-
posed within the context of ARIES itself. The original de-
sign [7] suggests the admission of new transactions as soon
as the REDO phase is completed. This can be achieved if
loser transactions reacquire their locks during REDO, which
allows the UNDO phase to be performed by means of trans-
action rollbacks, i.e., concurrently with other transactions.
As we established in our study, REDO costs dominate typ-
ical workloads, and thus a noticeable improvement is only
expected if there are many long-lived transactions. Further
improvements in ARIES [6] allow new transactions to be
processed concurrently with the REDO phase, but with se-
vere limitations. First, new transactions may not touch in-
doubt pages. These are pages with an LSN value greater
than the global commit LSN, which is the lowest LSN value
produced by all active transactions. Furthermore, locks re-
quested by new transactions may not conflict with those of
loser transactions. These limitations imply that new trans-
actions may not touch the working set of the application.
Such transactions are, by the definition of working set, un-
likely to occur. Therefore, new techniques must be proposed
to achieve the goals laid out by our study.

Acknlowledgments
Pinar Tözün generously answered our questions about Shore-
MT and Shore-Kits, which we appreciate very much. We are
also grateful to Vitor Uwe Reus for his dedicated assistance
in running the experiments.

References
[1] Effelsberg W, Härder T (1984) Principles of Database

Buffer Management. ACM TODS 9(4):560–595

[2] Gray J, Reuter A (1993) Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann

[3] Härder T, Reuter A (1983) Principles of transaction-
oriented database recovery. ACM Computing Surveys
(CSUR) 15(4):287–317

[4] Johnson R, Pandis I, Hardavellas N, Ailamaki A, Falsafi
B (2009) Shore-MT: a scalable storage manager for the
multicore era. In: Proc. EDBT, ACM, pp 24–35

[5] Kuno H, Graefe G, Kimura H (2013) Making Transaction
Execution the Bottleneck. In: Databases in Networked
Information Systems, Springer, pp 71–85

[6] Mohan C (1993) A Cost-Effective Method for Provid-
ing Improved Data Availability During DBMS Restart
Recovery After a Failure. In: Proc. VLDB, pp 368–379

[7] Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P
(1992) ARIES: a transaction recovery method support-
ing fine-granularity locking and partial rollbacks using
write-ahead logging. ACM TODS 17(1):94–162

	Introduction
	Crash Recovery
	Page Flushing Policy
	Transaction Throughput
	Storage Media

	Experiments
	Environment
	Results

	Conclusion

