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Abstract The XQuery language was initially developed as
an SQL equivalent for XML data, but its roots in func-
tional programming make it also a perfect choice for process-
ing almost any kind of structured and semi-structured data.
Apart from standard XML processing, however, advanced
language features make it hard to efficiently implement the
complete language for large data volumes. This work pro-
poses a novel compilation strategy that provides both flex-
ibility and efficiency to unleash XQuery’s potential as data
programming language. It combines the simplicity and ver-
satility of a storage-independent data abstraction with the
scalability advantages of set-oriented processing. Expensive
iterative sections in a query are unrolled to a pipeline of
relational-style operators, which is open for optimized join
processing, index use, and parallelization. The remaining as-
pects of the language are processed in a standard fashion,
yet can be compiled anytime to more efficient native oper-
ations of the actual runtime environment. This hybrid com-
pilation mechanism yields an efficient and highly flexible
query engine that is able to drive any computation from sim-
ple XML transformation to complex data analysis, even on
non-XML data. Experiments with our prototype and state-
of-the-art competitors in classic XML query processing and
business analytics over relational data attest the generality
and efficiency of the design.
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1 Introduction

The initiators of XQuery equipped the “query language” with
many ingredients of a general-purpose functional program-
ming language: side-effect-free, composable expressions,
variable bindings, recursion, and higher-order functions.1

For data processing, however, the by far most interesting
part is the widely-used for loop construct. It iterates over a
sequence of data items, which itself is a basic concept of the
underlying data model. Such iterative processing is a core
task in data-intensive applications to filter, transform, ag-
gregate, and sort the input data. Accordingly, XQuery can
be considered as an XML-enabled data programmming lan-
guage rather than a declarative query language for XML.

In practice, XQuery engines are typically designed and
optimized for specific usage scenarios. Most of them focus on
fast XML transformation and data extraction in main mem-
ory, while others aim for large data volumes and XML index
support in database systems, or offer special features for full-
text search, streaming applications, etc. As usual, such spe-
cialization comes along with limitations for more general
use cases. Quick, feature-complete main-memory engines
usually cannot handle large amounts of data, whereas pow-
erful XML-enabled database backends need to convert all
data into their specialized internal layout and often also lack
support for certain language features.

This paper presents a novel compiler that bridges the gap
between these extremes and allows to use XQuery as general-
purpose language for data processing. We aim for an exten-
sible infrastructure that offers full language support, high
performance, and scalability for a great variety of systems,
use cases, and data formats.

1 New in XQuery 3.0: http://www.w3.org/TR/xquery-30/

http://www.w3.org/TR/xquery-30/
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The basis is a separation of language concepts like vari-
able bindings and explicit looping from the concerns of data
representation and data access. We extract expressions with
looping semantics – the scalability bottleneck in most pro-
cessors – from a query, convert them to a relational-style
operator pipeline and apply set-oriented algorithms and op-
timizations to scale with large data volumes. By operating
on an abstraction of item sequences, the system is capable to
map queries seamlessly to various XML storages, but also to
other data formats (e.g., relational tables, flat files, or JSON)
which can be interpreted as tree structures.

Relational standard optimizations like join rewriting are
already built-in, but the concept is explicitly designed to be
easily extended for parallelism and platform-specific opti-
mizations, e.g., XML path matching, indexes and native bulk
data access. As a result, we get a powerful tool to carry
out XML transformation, data-base-backed query evalua-
tion, and complex data processing tasks within a single lan-
guage.

Next, Sect. 2, introduces our processing model and Sect.
3, presents the basics of unrolled FLWOR expressions in
a set-oriented operator pipeline. The compilation process is
described in detail in Sect. 4, and Sects. 5 and 6 present
techniques for join optimization and for XML and general
data processing. Section 7 testifies competitiveness of our
prototype called Brackit in several experiments. Finally, we
discuss related approaches in Sect. 8, and Sect. 9 concludes
the paper.

2 Processing Models

Essentially, a query can be represented as a tree of expres-
sions that is evaluated to a sequence of items, i.e., XML
nodes, atomic values, and function items. For illustration,
consider the sample query and the corresponding expression
tree shown in Fig. 1.

The query consists of two nested FLWOR expressions
with for loop clauses. The outer loop binds the values 1, 2,
and 3 successively to a variable $a and evaluates for each
binding the nested FLWOR expression, which itself loops
with a run variable $b over the sequence (2,3,4) to compute
{$a,$b} pairs fulfilling the predicate of the where clause.
Finally, the return clause produces the output $a+$b for each
pair. Accordingly, we obtain the result (4,6).

2.1 Dynamic Context

Within a loop, individual subexpressions like the compar-
ison and the summation are evaluated multiple times, but
each time within a different dynamic context, i.e., iteration.
The context consists of explicitly-bound variables and an
implicitly-bound context item, its position in a context se-

Fig. 1 Nested for loops

quence, and the size of the latter. As we will show, modelling
of the dynamic context is key to scalable query processing.

In general, one distinguishes between simple expressions
like literals, arithmetics or comparisons, and expressions that
modify the dynamic context visible to their subexpressions.
The for clauses and let clauses of FLWOR expressions are the
most prominent ones. They explicitly bind values to variables
in the dynamic context that can be referenced in the expres-
sions of subsequent clauses. Similarly, each step in a path
expression, which is used to navigate XML trees, provides
implicit context nodes to the next step.

For the evaluation, there are now two options. One option
is to treat the dynamic context like a set of variables, which is
accessible to each expression and updated whenever neces-
sary, e.g., when a new value is bound to a variable. The sec-
ond option is to model each specific state during processing
as a separate and immutable dynamic context. Accordingly,
each binding of a value to a variable and also each path step
creates a new dynamic context.

In the following, we will primarily focus on how to or-
ganize the dynamic context and how to evaluate context-
dependent expressions. We will not delve into XML path
processing or any other XML-related aspect of the language,
because this complicates the discussion, but does not influ-
ence the general design. Later in Sect. 6, we will show how to
map a query efficiently to the actual data format (e.g., XML
or relational tables) and properties of the data store. At the
moment, however, it is adequate to treat path expressions
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just like any other expression which evaluate to a sequence
of items.

2.2 Iterative Processing

Most XQuery processors evaluate queries in a sequential
fashion according to the XQuery Core semantics [1]. The
expression tree is evaluated recursively, i.e., subexpressions
are evaluated before the actual result sequence is built. In-
termediate results are usually not materialized to save main
memory. Instead, expressions evaluate to a lazy sequence,
which employs a pull-based iterator concept to compute in-
dividual result items on demand [2]. In general, this makes
iterative processing very space efficient.

With such lazy evaluation, the result of the expression
in Fig. 1 is an iterator over the outer for loop, which flat-
tens the results of the lazy result iterators of the three nested
evaluations of the inner loop.

The dynamic context is usually represented as a mutable
set of variables, because it is simpler and naturally fits the pro-
cessing model. Some implementations use a global context
object, whereas others split the context and store parts of it
locally in the scope of the corresponding iterator. An iterator
over a FLWOR sequence, for example, may hold the values
of variables, which are bound by its local for and let clauses.
In this case, the local scopes must be recursively passed to
subexpressions and the entire dynamic context turns into a
hierarchical leaf-to-root composite.

By representing data closely to the XQuery standard as
sequences of items and modeling XML fragments as trees of
node items, suitable abstraction layers allow iterative proces-
sors to run on top of various data stores. The straightforward
design makes it also simple to integrate the new program-
ming features like function items and partial function appli-
cation.

The disadvantage of the mutable dynamic context is an
implied sequential evaluation order of context-dependent ex-
pressions. It requires special treatment in individual situa-
tions to perform common optimizations like parallel com-
putation of (partial) results or application of an efficient join
algorithm instead of computing and filtering the Cartesian
product. As a result, processors often suffer from nested-
loops semantics and poor scalability. Because of its sim-
plicity, it is, nevertheless, the most common design used in
XQuery processors for main memory [2–5].

2.3 Set-Oriented Processing

Set-oriented processors compute independent subexpres-
sions and multiple iterations with more efficient operations,
in a different order, or even in parallel. Therefore, the expres-
sion tree must be translated into a more general plan repre-
sentation or algebra [6–8]. Then, rewrite operations break

up all nestings and loop constructs, which allows to lever-
age the performance of well-known set-oriented algorithms.
Various kinds of heuristics-based and cost-based optimiza-
tion provide additional performance gains.

Set-orientation requires the explicit representation of each
individual state of the dynamic context to compute the result
of an expression for all iterations at once. This implies some
overhead to materialize the dynamic contexts, but usually
the performance and scalability advantages outweigh.

Compilers for relational target platforms use here elab-
orate concepts to map queries and data to relational algo-
rithms and data layouts. Strict relational processing, how-
ever, requires to radically rewrite the entire query, which
severely complicates the realization of language concepts be-
yond plain “Select-Project-Join” and requires an advanced
optimizer to compile efficient plans. Even many compilers
for native XML storages face similar problems. To exploit
a particular data representation, e.g., node labeling or other
properties of proprietary data stores, the optimizer has to
cope with many special operators, ill-shaped query plans or
sophisticated dependencies between operators.

In both types of systems, the programming language as-
pects of XQuery like user-defined functions, recursion, and,
recently, also higher-order functions usually fall behind.
They just do not fit into the picture of database-style process-
ing. This disqualifies such systems as runtime environment
for general data programming tasks.

Nevertheless, users often accept partial language confor-
mance as long as a system meets their compatibility and
performance needs. On the flip side, they cannot take ad-
vantage of one of XQuery’s biggest strengths–the ability to
represent, interpret, and process different kinds of informa-
tion from diverse sources [9].

2.4 Hybrid Processing

We chose a third way for our compiler. We restructure only
those parts in a query, where we can profit from set-oriented
processing: FLWORs and nestings of them appearing in the
binding expressions of for clauses and let clauses or in re-
turn clauses. We extract these parts from the expression tree
to form a pipeline of relational-style operators. The rest is
left intact. At the top of a pipeline, a special pipe expression
mediates between the iterative and the set-oriented process-
ing model. Consequently, a query is still an expression tree
that is evaluated recursively, but now it may also contain
one or more operator pipelines, which are evaluated in a set-
oriented fashion. Figure 2 shows the rewritten expression
tree of Fig. 1. The nested FLWOR expressions have been
replaced by a pipe expression with a right-deep top-down
pipeline of operators (starting in uppercase letters).

The dynamic context is stored in context tuples which
are passed between expressions and operators. A tuple [1,2],
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Fig. 2 Expression tree with operator pipeline

for example, represents a dynamic context with the variable
bindings $a=1 and $b=2. The fundamental difference be-
tween expressions and operators is that the former are eval-
uated only for a single context tuple at a time and produce
an item sequence as result, whereas the latter consume and
produce streams of tuples.

With this hybrid design, we are now able to extract ex-
pensive iterative sections from queries and process them in a
set-oriented fashion. At the same time, we can independently
optimize and compile the remaining expression parts like
arithmetics, path expressions, and (recursive) function calls.
The concept presented is fully composable, i.e., nestings may
be arbitrarily deep and rewriting rules are independent of the
surrounding expression. Furthermore, the approach is not
limited to certain query constructs. It supports extensions
like the XQuery Update Facility and all aspects of XQuery
3.0 like group-by clauses and window clauses.

3 FLWOR Pipelines

A FLWOR pipeline produces a stream of context tuples for
the final return clause of a FLWOR expression. Essen-
tially, the operators produce, filter, reorder, and aggregate the
tuples as specified by the FLWOR clauses. For each clause
type, there exists one corresponding operator type. Accord-
ingly, it can be considered as a straightforward realization of
the tuple stream semantics as defined in the language [9].

A pipeline begins with an artificial Start operator, which
serves as input for a ForBind or LetBind operator that is intro-
duced for the initial for clause or let clause, respectively. The
process is the same for all intermediate clauses. Each opera-
tor consumes the input from the previously created operator
and serves as input for the following. The End terminator at
the bottom evaluates the return clause expression.

Fig. 3 Expression tree with join operator

3.1 Data Flow

The data flow in a pipeline is easily explained with the help
of the rewritten sample query of Fig. 2. First, the current con-
text, in our case, the empty tuple [], is passed to the pipe ex-
pression, which initializes and returns a lazy result sequence
for this context. When this sequence is iterated, the result
items will be computed by evaluating the expression $a+$b
for each [$a,$b] tuple returned from operator pipeline. The
pipeline itself is processed with cursors2 following the open-
next-close principle [10]. The Start cursor feeds the single
context tuple [] to the pipeline. Then, for each input tuple,
the ForBind cursors evaluate and bind all items of their bind-
ing sequences, which may be arbitrary XQuery expressions.
Binding means that the input tuples are extended by the value
to be bound. The first ForBind produces the tuples [1], [2],
[3], which are consumed by the second ForBind to produce
the tuples [1,2],[1,3], . . . , [3,4]. Finally, Select evaluates the
comparison expression to filter the tuple stream.

Obviously, the rewriting does not improve a query at all.
However, it opens the door to apply various well-known op-
timizations from the relational world to the operator tree. As
long as the final stream of output tuples is not affected, oper-
ators can be reordered, merged, or replaced to obtain a better
performing pipeline.

We can easily determine whether a Select can be pulled
up to reduce the number of intermediate tuples or not. Sorts,
which are introduced for order by clauses, might be merged
to a single one or determined to be superfluous. We might also
choose to process multiple stages in parallel. In fact, various
kinds of parallelism are possible because the context tuples
decouple the intermediate state from the actual computation.

The most effective optimization for the sample query is
shown in Fig. 3. The input pipeline is split into two indepen-

2 Note, we explicitly distinguish between iterators to iterate over the
items of an XQuery sequence, and cursors to iterate over streams of
context tuples.
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dent sections to form a join. The first two child branches of
the join node receive both the input stream and produce the
join input relations with the respective join keys. The join
result is passed on to the output pipeline at the right-most
node. The equi join could be computed with a hash join such
that the initially nested binding sequence (2,3,4) has to be
processed only once to build the hash table.

3.2 Pipe Lifting

So far, we only considered for-bound variables, which hold
the single items of a binding sequence. However, XQuery
also allows to bind whole item sequences to variables, e.g.,
with let bindings as exemplified by the query in Fig. 4. After
rewriting the corresponding expression tree, we obtain the
tree depicted at the bottom. The LetBind operator evaluates
for each incoming context tuple a pipe expression for the
rewritten FLWOR of the initial binding sequence and binds
the entire result to variable $c. Accordingly, it produces the
tuples [1,(2,3,4)], [2,(3,4)], and [3,4].

Technically, tuples containing sequences instead of single
items are rarely a problem. Remember, it is always possible
to evaluate intermediate sequences eagerly or to bind just
a lazy sequence that will compute its items on demand. In
many cases, it is reasonable to compute let-bound sequences
directly within the pipeline, e.g., because it offers better op-
tions for optimizations such as joins. As another example,
cheap lazy sequences that flow through the pipeline can cause
load skew in parallel processing, because the consuming pro-
cess at the end does the actual work. Therefore, we perform
pipe lifting: We “lift” pipelines nested in LetBind operators
and integrate them as artificial left join into the higher-level
pipeline as shown in Fig. 5.

The first child branch, i.e., the outer relation of the left
join is empty and just passes through the input stream from
above. The second child branch (inner relation) consists of
the lifted pipeline and a let-bound help variable $ok. Both
branches are terminated by End operators which contribute
both the same constant join key. Effectively, this turns the
left join into a loop over the nested pipeline.

Because lifting breaks the visibility scope of lifted vari-
able bindings, a Count operator is introduced after the outer
ForBind of variable $a to keep track of the iteration a spe-
cific context tuple belongs to. It produces the [$a,$grp] tuples
[1,1], [2,2], and [3,3] as input for the lifted pipeline. Note,
this is equivalent to a standard count clause in XQuery 3.0.
The output of the left join is fed to a Concat operator, which
resembles a guarded evaluation of the lifted return expres-
sion. The subsequent GroupBy uses the count variable to
restore the semantics of the let binding.

Within lifted parts, it may happen that we do not produce a
result for a specific context, e.g., when the binding sequence
of a ForBind is empty or when a Select filters all tuples.

Fig. 4 Nested FLWOR in let binding

In this case, the left join semantics keeps the outer iteration
alive to preserve the nesting semantics. The Concat opera-
tor expresses the conditional evaluation of a lifted pipeline
section by referring to the help variable $ok. Optionally, the
explicit Concat operator can be compiled to cheap condition
checks within the affected operators. They must only ensure
to emit at least one tuple for each distinct $grp, i.e., each
outer iteration. Whenever an operator, e.g., a Select, is about
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Fig. 5 Lifted operator pipeline

to discard the last tuple of the current iteration, it unbinds
$grp and emits it as “dead” tuple instead. This signals sub-
sequent operators to simply pass-through the tuple as a dead
iteration.

The key $grp also identifies all [$a,$grp,$b,$c] tuples that
belong to the same iteration of the outer loop. For each group,
the GroupBy operator3 outputs a single tuple, where $c is
re-bound to the ordered sequence of all incoming $c’s. The
variable bindings from outside of the lifted part are reduced
to a single representative by simply copying them from the
first group tuple to the output tuple. Note, it actually does not
matter from which input tuple they are copied, because the
outer variables are necessarily bound to the same values in
each tuple of the group. Variable bindings from within the
lifted part like $b are semantically out of scope and can be
discarded. As a result, we obtain the same output tuples as in
the nested version.

As the major difference to the unlifted version, we com-
pute the single items of let-bound sequences now directly
within the operator tree and not isolated in a lazy sequence.
Obviously, this is an advantage for parallel processing and
improves chances for other optimizations like join rewrit-
ing. In Fig. 5, e.g., it is much easier to identify and exploit
formerly hidden join semantics which can be leveraged as
shown in Fig. 6.

3 The aggregation specification for non-grouping variables of a
GroupBy operator is represented as comma-separated list of XQuery-
like expressions in the subscript. The specification $c:($c), for example,
says that variable $c is aggregated using the sequence constructor ().
The asterisk serves as wildcard for specifying a default aggregation
expression.

Fig. 6 Join in lifted pipeline

4 Compilation Process

The compilation phase consists of several rewriting stages
and the final assembly of the executable plan. An overview
of the rewriting process is given in Fig. 7.

4.1 Rewriting and Optimization

At first, the initial expression tree created by the parser is nor-
malized. In contrast to other compilers, however, we do not
normalize everything to language constructs of the XQuery
Core model, because this would also break up all path ex-
pressions into sequences of FLWOR expressions. As we will
see in Sect. 6, it is benefical to preserve them in the first place.
Thereafter, the query is checked for static typing errors and
annotated with typing information, which can be used for
data-type-specific optimizations in subsequent steps.

Fig. 7 Query rewriting
pipeline



Unleashing XQuery for Data-independent Programming 141

Fig. 8 Pull-out of nested FLWOR’s

The simplification stage performs standard pruning op-
erations like the removal of unused variables and constant
folding. Furthermore, the expression tree is prepared to sim-
plify data access and pipeline rewritings in the following
stages. For example, deeply nested FLWORs are extracted
into let clauses of superordinate FLWOR as exemplified in
Fig. 8. This increases chances for pipe lifting. Similarly, one
can extract shared prefixes from path expressions to avoid
multiple evaluation of the same paths at runtime.

Note, we perform here rule-based optimization and some
of these rewritings might be sub-optimal in some queries
or for a particular data set. Currently, we leave this field
explicitly open for more elaborate cost-based optimization,
which exploits statistical information [11].

In following stages, we transform FLWOR expressions
into operator pipelines as explained in Sect. 3 and perform
optimizations like predicate (i.e., Select operators) pullup,
predicate combination, and sort elimination. Whenever pos-
sible, we also defer binding operators, i.e., push them down in
the tree. This reduces the size of intermediate context tuples
and saves CPU time if context tuples are filtered before the
bound variable is referenced the first time. The same ratio-
nale applies to GroupBy and OrderBy operators. Generally,
optimization is similar to relational systems; we only have
to observe variable dependencies between operators.

Another promising source for efficiency gains is the anal-
ysis of the surrounding expressions of variable references.As
example, aggregates of variables can be computed directly
in GroupBy operations to save the memory for buffering the
grouped values (see Fig. 9).

Fig. 9 Inlining of aggregation functions

The sketched list of possible rewritings is certainly not
exhaustive, but it illustrates the manifold dimensions for
pipeline improvements.

Next, we perform pipe lifting as presented in Sect. 3. In
the join rewriting stage, we identify joins as explained in
detail in Sect. 5 and re-arrange the linear pipeline to a more
efficient join tree.

The following two stages take care of the physical data
access operations (see Sect. 6 for details) and calls to user-
defined functions (see Sect. 4.3). These are the central stages
for platform-specific optimizations. For example, the frame-
work allows to insert specialized operators to efficiently han-
dle certain operator combinations at once. A typical class of
such operators are tailored twig operators for XML process-
ing [12].

Finally, we envision two additional stages to introduce
data and operator parallelism in the pipelines and to take
care of data partitioning and query processing in distributed
environments.

4.2 Plan Generation

The final expression tree is compiled into an executable query
plan in a single pass. The compilation process is straightfor-
ward, because expressions do not depend on their ancestors
except for variable references. Necessarily, subexpressions
have to be compiled first. Only local variables in the visibility
scope of a subexpression must be declared beforehand and
undeclared again when they go out of scope in the declar-
ing expression. External variables are visible throughout the
query unless they are shadowed by local declarations.

The context item, context size, and context position are
special kinds of variables. They are either referenced implic-
itly by an expression or explicitly via ., last() and position().
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We treat them consistently like ordinary variables, i.e., ex-
pressions that modify theseparts of the dynamic context (e.g.,
filter expressions), declare them as special variables, which
are resolved during compilation of expressions referring to
these elements.

A variable table keeps track of all declared variables and
their corresponding scopes. At the end of the compilation
pass, we use this table to resolve all variable references to
positions in the context tuples. Accordingly, a variable ref-
erence translates at runtime into a constant array lookup in a
context tuple.

Pipelines are compiled equally simple. Beginning at the
Start operator of the corresponding pipe expression, the
pipeline is translated in a recursive top-down pass along the
output edges.The binding and resolution mechanism for vari-
ables is also identical.

Note that the actual realization of an operator pipe-line
is independent of the compilation process. The system can
either employ a pull-based or a push-based operator model.
The pull-based model is widely used in all kinds of database
systems, because it matches the bottom-up perspective of
conventional query plans. The push-based model is almost
identical, but better suits to the top-down perspective.

4.3 Functions

Functions turn XQuery into a real programming language.
There are two types: built-in functions and declared func-
tions. Built-in functions are (native) operations provided by
the runtime. The standard already defines a substantial li-
brary for various purposes, e.g., aggregation, string manipu-
lation, and access to external resources. Declared functions
are user-defined subqueries which can be directly or indi-
rectly recursive.

Function parameters are handled like external variables
in a query that are bound as arguments by the caller. To call
a function, we evaluate the argument expressions, perform
dynamic type checking if necessary, and pass the arguments
as a context tuple to the function. In some situations, we
must perform dynamic type-checking for result sequence,
too. This is the standard way to handle a function call; and
also the only way how to invoke a built-in function.

In contrast to already optimized built-in functions, opti-
mization of declared functions is a task for the query compiler
itself. Non-recursive functions, for example, can be inlined
to avoid the overhead of function invocation and to increase
chances for further optimization.The function call is replaced
in the expression tree by the function body and references
to function arguments are replaced by the corresponding ar-
gument expressions. Again, special care has to be taken to
discover typing errors at runtime.

Recursive functions can benefit from well-known com-
piler techniques like tail-call optimization [13], and higher-

Fig. 10 General join pattern

order functions and partial function application can draw
from the compilation of functional languages [14].

5 Join Processing

Efficient join support is the most important way to fight the
data explosion of a Cartesian product. In contrast to SQL,
however, joins in XQuery are sometimes non-trivial to de-
tect and to compute. For simplicity, we split therefore the
discussion of join detection and the actual join processing.

5.1 Join Recognition

Fortunately, it is most of the time relatively easy to identify
join semantics in a pipeline. One has to look for a Select op-
erator with a comparison predicate Θ ∈ {=, <, >, <=, . . . }
over two loop-independent operand expressions. We speak
of loop independency, when all variable references in one
operand and all variables they transitively depend on are in-
dependent of the variables referenced in the other operand
and bound after the latest-bound variable referenced by the
latter. In other words, there are two consecutive sections of
binding operators followed by a Select, in which all variable
bindings of the second section are independent of variables
bindings of the first section, and the operand expressions
of the predicate disjointly refer to one of them. Figure 10
illustrates the situation. Section 2 does not reference a vari-
able of section 1 and the operand expression e1 refers only
to variables bound in section 1 or above, whereas operand
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expression e2 refers only to variables bound in section 2 or
before section 1.

When we find this pattern in a query, we can rewrite the
linear pipeline to the form shown at the bottom of Fig. 10. The
Select is replaced by a Join operator with the two independent
sections 1 and 2 as outer input and inner input, respectively.
The operand expressions of the predicate provide the join
keys.

Recall the first join rewriting for the pipeline in Fig. 2. The
left-hand operator expression of the equality comparison is
the variable reference $a, the right-hand operator expression
is $b. Obviously, $b is bound in the pipeline after $a and
the binding expression (2,3,4) is independent of $a, too. This
allows us to replace the Select with a join and to move the
ForBind of $b to the right join branch as shown in Fig. 3.

Figure 11 shows a more difficult example. In the upper
expression tree, the predicate refers disjointly to the consec-
utive, independent variables $a and $b. However, the right-
hand operand of the predicate expression also references
variable $c, which depends on $a and is bound after vari-
able $b. Accordingly, the predicate must be rearranged and
the respective LetBind operator must be moved up as shown
at the bottom of Fig. 11 to build the join.

Obviously, reshaping of a pipeline to match the join pat-
tern can become arbitrarily complex. Especially, if the join
predicate has to be adjusted as in the example above.Accord-
ingly, there is no guarantee that a potential join will always be
detected. In practice, however, it seems reasonable to assume
that predicates with join semantics are rather simple.

Join semantics may also occur in filter expressions of the
general form s2[e2Θe1], where e2 is a predicate over the
current context provided by s2 and where e1 is a predicate
over the context of a surrounding loop over a sequence s1.
In this situation, we can rewrite the filter expression to an
equivalent FLWOR [1] and compute the join in the pipeline.

5.2 Algorithms

Some aspects of XQuery make join processing a little bit
more complex than in SQL. First, there is the strong emphasis
on order. All operations must preserve the input order unless
reordering is explicitly required (e.g., in orderBy clauses) or
if the requirement is overidden (e.g., by fn:unordered()). Sec-
ond, comparisons in XQuery follow subtle typing and type
conversion rules – a concession to work smoothly with un-
typed and semi-structered data. In consequence, a join oper-
ator has to cope with untyped data and mixed-type sequences
if the types of the operands cannot be statically determined.

As a result of the above restrictions, a sort-merge join is
only useful if the operands can be determined to be of a single
type and if output order can be ignored or is compensated by
an explicit sort afterwards. More typically, join algorithms
will keep one input (the inner) in a memory table, e.g., a hash

Fig. 11 Join pattern extraction

table or a sorted lookup table and probe it with the other input
(the outer). We refer to [15] for implementation details.

At this point, we come back to the discussion of variable
dependencies of the two join branches1 and 2 illustrated in
Fig. 10. Conceptually, both branches must be re-evaluated
for every incoming context tuple. This is particularly unde-
sirable for the table-based join algorithms mentioned above,
because a re-init-ialization of the right input translates to
costly clearing and re-building of the lookup table.

In the best case, both sections and both operand expres-
sions are free of external variable references so that the entire
join must be computed only once. This reflects the common
situation in relational settings. In the general case, however,
both input sections and operand expressions have dependen-
cies to variables bound upstream. Naively, one could try to
resolve this situation by duplicating and prepending the com-
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Fig. 12 Join group demarcation

mon input pipeline to both join branches. Both inputs could
then be processed once and completely independent of each
other. Depending on the size and complexity of the copied
section, however, this may perform even worse than before.
Therefore, one will in practice rather need to find a middle
way between both extremes.

For our prototype we developed a special technique called
join group demarcation, which minimizes the number of (re-)
initializations for the inner join table.As depicted in Fig. 12, it
introduces an artificial Count operator just after the closest
variable binding on which the inner join branch depends.
By checking for changes of this variable, the join operator
can easily decide if the already built join table can be reused
for an incoming context tuple or if it must be discarded. As
the experiments in Sect. 7 show, this strategy can lead to
substantial performance gains. Further details can be found
in [16].

6 XML and Data Abstraction

XQuery knows two different kinds of data:Atomic types like
strings, numerics, and date types, and XML for modeling
structured and semi-structured data. The language provides
convenient primitives for navigating, constructing and up-
dating of XML structures. Because the compiler does not
presume a specific physical data layout, each aspect is open
for platform-optimized code. In fact, the seamless support of
storage-specific compilation is one of the biggest strengths
of the compiler. For brevity, we focus the discussion on nav-
igation because it is the most performance-critical part.

XPath is the XQuery language subset for navigating XML
trees. It describes path patterns and content predicates as se-
quences of path steps that evaluate to sorted, duplicate-free
sequences of nodes. Each path starts from a sequence of con-
text nodes, which are either bound to a variable or part of the
current context sequence. Typically evaluated through itera-
tive traversals of the XML tree, we can assume that a respec-
tive navigational solution can be realized in every system.

The performance penalty of generic navigation routines,
however, varies considerably between different storages. The
main source of inefficiency is the overhead of translating op-
erations between different abstractions. For example, con-
sider a path step operation, which returns the right sibling
of an XML node in the tree. It will translate to a cheap
pointer dereference operation for a linked tree structure in
main memory, but translates to an expensive scan if the XML
tree is stored in a relational table on external memory.

The second source of inefficiency is indirectly caused by
a mismatch in the granularity of operations used by the com-
piler and supported by the storage layer. While node-wise
tree traversal is for instance quite efficient in main mem-
ory, it is usually prohibitively expensive to navigate data on
external storage.

The third source of inefficiency results from locality ef-
fects. The order and volume in which data is accessed by a
query will considerably affect on performance. Again, this is
particularly true for data on external storage, but even oper-
ations on in-memory data will be penalized by poor locality.

6.1 Platform-Specific Compilation

The clear separation of set-oriented data flow aspects and
data representation in the compiler makes it easy to replace
generic path expressions with platform-specific equivalents.
In the following, we sketch some of the optimization strate-
gies for leveraging efficient bulk methods in favor of costly
node-wise traversals. A detailed discussion of data access
optimization be found in [16].

Figure 13 gives an example of a typical situation in a
native XML database system [5, 17]. Assume static typing
can resolve that variable $n is bound to XML nodes in the
native XML store, which supports both random access and
efficient XPath-like scan access. The compiler can make use
of the native operations by replacing the path expression,
e.g., with a call of a built-in scan() function. Depending on
the storage and the size of the data, this can easily affect query
time by orders of magnitude. The fs:ddo function (distinct

Fig. 13 Platform-specific path processing
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document order) is used to enforce the correct ordering of
the output and to guard against duplicates if $n is bound to a
sequence of nodes.

As the example shows, the core principle of platform-
specific compilation is relatively simple. Static typing and
resolution of the starting sequences of path expressions (vari-
able $n in the example) help to identify all data sources in-
volved in the query. With respect to the capabilities of the
actual store, the compiler can then select the most efficient,
logically equivalent evaluation strategy.

Besides the mentioned bulk access and scan operations,
index-support is crucial for most database applications. In
the literature, many different types and variations of XML in-
dexes have been proposed. There are typed and untyped con-
text indexes, indexing schemes for elements and attributes
with varying clusterings, path indexes, and combined struc-
ture and content (CAS) indexes. Whatever is available in
a system to deliver the data as specified in the query is an
appropriate replacement for potentially slower navigational
access.

Of course, the optimizer must not be restricted to a sin-
gle path expression at a time only. In most applications, e.g.,
it is wise to apply filtering by content very early because
it drastically reduces the amount of data to be processed.
For this reason, focused CAS indexes that index content of
nodes on specified paths are often ideal in XML databases
[17]. The availability of a CAS index for the pattern //prod-
uct/price[xs:double], e.g., is ideal to speed-up the following
query:

for $p in //product
where $p/price > 100.00
return $p/name

A lot of research has also been done in the field of path and
twig matching algorithms for XML [12]. This class of algo-
rithms mainly implements specialized XML-aware join vari-
ants to match structural patterns in a document. As desired,
these algorithms may be provided as operators or expressions
to the compiler.

Clearly, further discussion of specific XML storage tech-
niques is out of scope of this paper. However, the above
nicely exemplifies the wide range of possibilities available
for improving a query with platform-specific operations.

Of course, the search space for the optimizer quickly
grows with the number of alternatives to evaluate a path
expression. However, the general complexity of a query, i.e.,
the number of intermediate results, the join ordering, etc. is
usually not affected by the choice for the physical data ac-
cess and can be determined in the pipeline rewriting stages.
A feedback loop or a subsequent reshaping of the pipeline is
advisable if physical properties like, e.g., access locality or
sort orders can be exploited.

Fig. 14 Mapping of a relational table

6.2 Non-XML Data

Conceptually, the focus on XML is not a limitation because
any kind of data can also be encoded as XML. In practice,
however, it is often desirable to process also non-XML data
(e.g., tabular data or records) without prior conversion. In
fact, we can easily make use of XQuery’s bulk processing
and programming capabilities by abstracting from its data
model as sequences of semi-structured values.

For illustration, consider the simple mapping of a rela-
tional table like in Fig. 14. Each row of the table can be
considered as a tree structure of height 3. For this mapping,
the XQuery

for $e in io:table(’emp.tbl’)/Employee
where $e/Lastname = ’Adams’
return $e/ID

is equivalent to the SQL query

SELECT ID
FROM Employee
WHERE Lastname = ’Adams’

whereby the function io:table returns the table data from a
file emp.tbl logically as navigatable tree.

The compiler can derive that the io:table function actually
returns a sequence of tuples, for which it must not perform the
standard navigation routines to evaluate the path expressions.
Instead, it can completely bypass the navigation and translate
it directly into tuple field accesses. Accordingly, the sample
query can be processed without the need to convert or wrap
the base data and it runs as efficient as a table scan in a
relational database.

In general, such logical mapping works for any kind of hi-
erarchical data model – even with deep and complex nestings.
This allows us to make use of the query compiler for process-
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ing any kind of structured or semi-structured data format such
as JSON. With such flexibility we can even address data pro-
cessing tasks beyond classic database scenarios like driving
distributed computations in MapReduce environments [18].

7 Experiments

We realized the presented concepts in our open-source
XQuery engine called Brackit.4 It fully supports XQuery 1.0,
the group by and count clauses of XQuery 3.0, and imple-
ments the XQuery Update Facility.

7.1 Main-Memory Processing

In our first experiment, we compared the main-memory per-
formance of our engine against current state-of-the-art com-
petitors with the widely accepted XMark benchmark. Be-
cause of the spread in runtime and system performance, we
choose the scale factor 0.01, i.e., the benchmark queries were
evaluated on 12 MB documents in main memory. For all
benchmarks, we used a dual Intel Xeon server with 2.66 GHz
and 4 GB main memory running Ubuntu Linux 10.04 64-Bit.
Java-based engines were tested with Oracle Java 1.6 64-Bit
and we ensured to perform a sufficient amount of warmup
runs for optimizations of the JIT compiler before the mea-
surements. The results were serialized to a /dev/null output
stream.

Table 1 shows the fastest runtimes for each query and sys-
tem out of 10 timed runs. Clearly, our prototype shares the
lead with Qizx and delivers high performance for each query
type. The results for the queries Q8-Q12 also reveal that Qizx
is the only other engine for main memory that comes with
join support. All other engines suffer from the nested-loops
semantics in these queries. Saxon achieved slightly better
results than the other engines without join support, because
it creates on-demand indexes at runtime, which help to re-
duce the effects of quadratic scaling. Figure 15 summarizes
the results of the five fastest processors in this experiment
graphically.

7.2 XML Database Processing

In our second experiment, we used the XMark benchmark
with scale factor 1 to assess BrackitDB, a native XML
database (XDBMS) with full ACID support that internally
uses Brackit as compiler. The XML store of BrackitDB is
inspired by the path-oriented storage of the native XDBMS
XTC and supports the same set of advanced CAS, path and

4 Source code available at http://brackit.org Ta
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Fig. 15 Top 5 main-memory performance in ms

content indexes [17]. For the benchmarks, however, we did
not create any indexes.

We tested the system in two configurations. In the first
configuration, queries were compiled in the same manner as
in the main-memory setup, i.e., the XML tree was navigated
and filter predicates were applied within the engine itself.
In the second configuration, we enabled storage-specific op-
timizations and let the compiler push down the node name
filters to the storage layer to speed up child and descendant
navigation.

For comparison, we ran the queries also on other XML
(-enabled) database systems. As in BrackitDB, we did not
perform manual tuning of the systems, e.g., by defining ad-
ditional indexes, but note that some systems (e.g., BaseX)
create indexes per default. We solely adjusted the maximum
heap size for the Java-based systems to 1.5 GB, which was
sufficient for each system to handle the workload.

Table 2 and Fig. 16 show the fastest result out of 5 timed
runs for each system. The ability to recognize and process
joins efficiently again proves to be an advantage over most
competitors. Only MonetDB is also able to perform the join
queries without a drastic decrease in performance. Due to
the different storage designs, the general performance char-
acteristic of each system is less homogeneous than in the
main-memory experiment. Some systems achieve extraor-
dinary fast results for certain queries, but this is often not
the result of superior compilation techniques. The queries
hit a sweet spot of the underlying XML storage or a suitable
(default) index is applicable (e.g., Q1 in BaseX).

The results for BrackitDB draw generally a balanced pic-
ture for each of the 20 queries. It is not a surprise that the
storage-specific compilation outperforms the default config-
uration. The relative speed-up for a query varies between
4 % and 67 %. Note, the difference results solely from the
optimization of physical data access operations. The crucial
set-oriented aspects including correlated nestings have been
optimized in both configurations in the independent rewrit-
ing and join rewriting stages. Ta
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Fig. 16 XDBMS performance in ms

The curve shapes indicate that the quality of our query
plans is competitive throughout all queries. For the simple
queries, however, BrackitDB did not reach the best marks
of the other systems. A closer look at the queries and the
competitors reveals that query plan quality is here not the
decisive factor. Merely, the other systems benefit from faster
storage engines or had additional indexes available.

7.3 Scalability

We repeated the benchmark for the scale factors 0.01-10
(12 MB-11 GB) with the optimized configuration to inves-
tigate the scalability of the system. The results are shown in
Fig. 17.

In general, the system scales well to large data volumes
and does not reveal any unexpected effects. The result size
of Q11 and Q12 grows quadratically with the size of the doc-
ument. Thus, the growth in response times is characteristic
for the workload and does not result from suboptimal query
plans. For the 11 GB document instance, we observed that
the response time for some queries, e.g., Q19, grows a bit
more than before. This effect is caused by additional data
accesses for the result construction in the return clauses.
This is typical for XQuery and leads to poor data locality

Fig. 17 Scalability of BrackitDB in ms

and random I/O, which results in longer response times. To
avoid this, the query engine should “piggy-back” data for the
result construction whenever possible.

7.4 XQuery for Relational Data

Our last experiment showcases the versatility of XQuery
when paired with our compiler. We took the dataset of the
relational decision support benchmark TPC-H and the SQL
queries Q2 and Q6 of the benchmark. The query Q2 is a
complex join query over 5 tables and a correlated subquery
with another join of 4 tables. Query Q6 is a simple filter and
aggregation scan over a single table.

We translated the SQL queries to equivalent queries in
XQuery as exemplified in Sect. 6 and evaluated them over
normal files in which we stored the relational data. We tested
two setups. In the first setup, we ran the queries directly
on the ’|’-separated text files generated by the dbgen tool
of the benchmark. For the correct datatypes, our custom
io:table function loaded the schema information from a sep-
arate XML configuration file. In the second setup, we stored
the table data in files with a simple binary encoding.

For comparison, we report also the response times for the
relational databases PostgreSQL 8.4 and DB2 9.7. To get
comparable results, we did not create indexes. Instead, we
created detailed statistics and configured both systems with
sufficient memory for the database buffer and the queries
to ensure that the systems could perform the computation
completely in memory. The generated database had a size of
1 GB (scale factor 1). Figure 18 shows the fastest results on
hot buffers out of 5 runs for each system.

The pictures of the two queries look very different. In
the complex join query, Brackit is more than one order of
magnitude faster than the relational systems. This clear result
is caused by a better handling of the correlated subquery,
which is performed in all systems using nested loops. Like
both DBMS, our compiler generated a bushy operator tree
with hash joins and a final sort. But in contrast to the relational

Fig. 18 TPC-H queries Q2 and Q6 in sec
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systems, our prototype is able to reuse hash join tables in the
nested query between iterations, as detailed in Sect. 5.2.

The query Q6 scans the lineitem table (726 MB raw data,
∼6 Mio rows) and sums up the revenue of each qualified
row. In this discipline, both relational systems are about 2
times faster than our prototype on binary files. However, this
is again the result of a more efficient scan-and-filter logic in
the database systems than the result of a superior query plan.

In summary, this experiment underlines the great utility of
pairing a versatile language like XQuery with a set-oriented,
storage-independent runtime. With minimal effort, we can
efficiently perform general data processing tasks on top of
different data models and representations.

8 Related Work

Abroad overview of XQuery processing models and the real-
ization of nested, iterator-based evaluation in various prod-
ucts is presented in [2]. In the following, we give a brief
overview of the unnesting techniques employed by other set-
oriented compilers. A more detailed discussion can be found
in [16].

Pathfinder [8] is a compiler for relational database back-
ends, which requires to have all data, i.e., atomic values,
sequences, and entire XML documents, encoded in a ternary
table layout. Variable bindings and iteration scopes are loop-
lifted to turn nested-loops into operations on “unrolled” ta-
bles. A specialized join-operator speeds up XML processing.
Pathfinder has been proven to be very efficient on large data
sets. It is especially successful on top of the MonetDB back-
end [19] because the ternary table layout and the frequent
equi join operations for loop-lifting suit the system’s infras-
tructure. However, the strict relational view complicates the
sometimes subtle semantics of XQuery (e.g., in comparisons)
as well as the functional aspects. Furthermore, loop-lifting
causes query plans to quickly grow in size and complexity
[20].

XQGM is the logical, tuple-based operator graph repre-
sentation of a query in XTC [6]. So-called correlated edges
indicate context dependencies, i.e., nestings, between oper-
ators. Extensive unnesting rules eliminate these correlations
and apply independent join operations instead. A great vari-
ety of physical operator alternatives is available to compile
the resulting XQGM into an executable plan. Query rewriting
and optimization in XQGM is clearly more complex than in
our approach, because the correlated edges turn the operator
tree into a directed graph.

NAL [7] is an algebra of tuple-based operators, which ac-
commodate XQuery’s FLWOR bindings. After transforming
a query to an algebraic form, the compiler uses a set of equiv-
alence rules to rewrite nestings to more efficient set-oriented
constructs. Although the approach is generally portable to

different architectures, it bases on nested tuples, which com-
plicates variable handling during compilation and the imple-
mentation of efficient physical operators.

The Galax compiler [15] features a complete XQuery al-
gebra that distinguishes between XML operators, tuple op-
erators, and a third group of explicit boundary operators,
which connect the two other parts of the algebra. Similar
to our compiler, expression trees are compiled directly and
FLWORs are compiled to tuple operator trees. Nestings are
modeled as dependent join operations. Galax also supports
basic optimizations for unnesting and value-based joins. Fur-
ther optimizations are not mentioned.

9 Conclusions and Outlook

This work prosposes a novel compiler framework that builds
on XQuery’s bulk processing and data abstraction capa-
bilities. The compiler extracts the language-inherent loop-
ing semantics of FLWOR expressions and turns them into
relational-style operator pipelines. The pipelines are then
subject to set-oriented optimization rules and algorithms. The
concept developed is fully composable, i.e., query nestings
may be arbitrarily deep and rewrite rules are independent of
the surrounding expression. Furthermore, the approach is not
limited to certain query constructs and custom functionality
can be plugged in flexibly as functions, custom expression
types and even custom operators.

We also showed how the storage-independent design of
the compiler allows to use the query language even for other
structured and semi-structured data types like relational tu-
ples or JSON. This seamless mapping to other data formats at
the logical level is complemented by the possibility to com-
pile data access operations to efficient native operations of
the underlying data store.

In experiments, we demonstrated the general efficiency
of the concept. Our prototype achieves top performance in
classic XML processing in main memory and yields compet-
itive query plans when compared to the fastest native XML
database systems. In an experiment with XQuery evaluated
on top of relational data, we could also impressively show
that efficiency is not a matter of the query language, but of
the suitable abstraction. Altogether, this brings us one step
closer to our goal – a swiss army knife for processing large
amounts of various kinds of data.

At the logical level, we envision for the future the adap-
tation of state-of-the-art algorithms like join enumeration,
statistics, cost-based query optimization. Likewise interest-
ing is the examination of how structures and idioms of con-
crete data models interact with applicability and effective-
ness of optimization rules. Likely, one will identify sets of
universally applicable and specific optimizations, which can
be bundled to optimization profiles for different targets.



150 S. Bächle, C. Sauer

At the physical level, we scratched so far only at the sur-
face of possible optimizations. Aside smart tracing and map-
ping routines for particular classes of storages, plenty of chal-
lenges are worth to look at. In the days of cache-optimized
storage structures and algorithms, for example, a portable
compiler framework needs to go new ways for augmenting
query plans with additional information for exploiting and
optimizing data locality.
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