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Abstract. PCM can be used to overcome the capacity limit and energy
issues of conventional DRAM-based main memory. This paper explores
how the database buffer manager can deal with the write endurance
problem, which is unique to PCM-based buffer pools and not considered
by conventional buffer algorithms. We introduce a range of novel buffer
algorithms addressing this problem, called wear-aware buffer algorithms,
and study their behavior using trace-driven simulations.

1 Introduction

Phase Change Memory (PCM) is a promising next-generation memory technol-
ogy with a range of interesting properties: it is non-volatile, bit alterable, and
byte addressable. Instead of being used as an external storage solution (like flash
memory), PCM is more likely to be used in the main memory system, for two
major reasons. First, similar to DRAM, bytes on PCM are directly addressable
by the processor. Second, the read latency of PCM is close to that of DRAM.
PCM has the potential to greatly impact core database technologies in the near
future.

Similar to flash memory, PCM can endure only a limited number of writes
(i. e., limited write endurance) and writes have a higher latency than read ac-
cesses (i. e., read-write asymmetry). However, PCM can endure about 107–108

writes per cell [12] (even up to 1012 by projection [7]), whereas flash memory
can only endure about 105–106 erase cycles per block [5]. Furthermore, PCM
allows in-place update and does not have the erase-before-write constraint of
flash memory, which further negatively and significantly impacts performance
and lifespan of flash devices [11]. In terms of access latency, PCM is two to three
orders of magnitude faster than flash memory.

Compared with DRAM, PCM offers higher density and, therefore, poten-
tially much lower cost per gigabyte. PCM is also more energy-efficient than
DRAM in idle mode3. However, PCM suffers from two critical problems: higher

3 DRAM consumes, independent of its utilization, the lion’s share of energy for a
typical computer system and, with growing memory capacities, this situation gets
even worse.
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Fig. 1: Architectural variants of a hybrid main memory system based on DRAM
and PCM, based on [2]

write latency and limited write endurance. Especially for data-intensive DBMS
applications, it is therefore reasonable to consider a hybrid main memory system
which consists of both PCM and (a relatively small amount of) DRAM, because
such a design can overcome the capacity limit and energy issues of a conventional
DRAM-based main memory without significant performance degradation.

1.1 Architectural consideration

There are two architectural variants of such a hybrid main memory system,
shown in Figure 1. The first variant places PCM directly on the memory bus,
side-by-side with DRAM [3]. The second variant places PCM below DRAM, as
another layer in the memory hierarchy [12]. Their difference is that the first
variant gives software explicit control over both types of memory (volatile and
non-volatile), whereas the second variant manages DRAM as a hardware cache
transparent to software developers [2].

The first architectural variant is more attractive for DBMS designers, because
it allows the database software to take advantage of PCM’s byte addressability
and non-volatility. Our study follows such an architectural design and studies
the management of a PCM-based database buffer pool, where the high-traffic,
dynamic buffer management data structures, e. g., for indexing the buffer pool
and for supporting efficient page replacement, are maintained in DRAM and
the buffer pages are stored in PCM. By combining a relatively small amount of
DRAM4 with a large PCM buffer pool in such a way, the higher (write) latency
can be partially hidden from the processor.

Although PCM’s write endurance as compared to flash memory is improved
by about two orders of magnitude, the write traffic to a buffer pool is expected to
be significantly higher than to a secondary storage (e. g., based on flash memory).

4 The DRAM can even accommodate a small number of hottest pages, depending on
its available capacity.



Furthermore, page replacements also generate a substantial amount of write
traffic to PCM. Therefore, special care has to be taken to prevent high-traffic
writes (back from the processor’s cache hierarchy) to the same PCM locations
in the buffer pool. Minimizing such write traffic and distributing it uniformly
across the PCM area may extend its lifetime long enough for practical DB use.

1.2 Goals

Conventional buffer algorithms are designed for DRAM-based buffer pools, which
do not have the write endurance problem. Our study has three important goals:

1. Examine whether this problem can be effectively addressed by the database
buffer manager.

2. Design buffer algorithms that address the endurance problem using wear-
leveling techniques.

3. Study the behavior of such wear-aware buffer algorithms.

Our goals imply that, in addition to the hit ratio as the classical buffer pool
metric, we shall be able to quantify (count or measure) the wear status of the
PCM where the buffer pages are accommodated. Although PCM is managed by
the buffer manager at a page level, other components of the DBMS can write to
a page at a much smaller granule. Such writes can cause some parts of a page
(more accurately, of the underlying PCM partition) to be worn out sooner than
the other parts, unless the writes are uniformly distributed inside a page, which
is a rare case. Therefore, studying the wear status at the page level, e. g., number
of writes endured by each page, is not sufficient.

2 Wear-aware buffer management

In this work, the smallest unit for which the wear is quantified is referred to as
the wear unit. A candidate for the wear unit size is the lowest-level cache line
size (e. g., 64 B), because that is the data transfer unit between CPU and the
memory controller. For a page size of 8 KB and a wear-unit size of 64 B, we
would have 128 wear units per page.

To stay with the conventional terminology when discussing DB buffer man-
agement, we denote the buffer replacement units as pages. For brevity, the term
page either refers to a logical page or to a buffer page. A buffer page is a PCM
partition having the size of a logical page, i. e., a buffer pool of B pages consists
of B such partitions. Where it is unclear from context, we use the explicit terms
logical page and buffer page to avoid ambiguity.

Considering the distinguished properties of PCM, some hardware optimiza-
tions have already been proposed, e. g., data comparison writes [14] or partial
writes [7], to reduce the number of bits written to PCM. These hardware opti-
mizations would be integrated into the conventional memory controller or even
implemented in a dedicated memory controller for PCM. In both cases, the



unit of data transfer between memory controller and PCM can be as small as a
word (4 B) [7]. Due to these hardware optimizations, software optimizations at
a granule smaller than the cache line size, e. g., those of [2], can also significantly
improve wear leveling and performance. Therefore, we choose to examine the
wear of PCM at the word level, i. e., the wear unit size is 4 B in our study. The
wear unit size is a parameter for some of the algorithms that we will discuss.
However, the logic of those algorithms are not specific to the parameter value.

2.1 Problem analysis

For a wear unit u, we denote its wear count as w(u), which is the number of
times u was written. A wear unit u is worn out (i. e., it fails), if w(u) = L, where
L is the (wear) endurance limit. Furthermore, we define page wear as the total
wear count of all wear units of a buffer page and total wear as the total page
wear of all buffer pages.

Assuming the wear count follows the normal distribution, we have w(u) =
µ+ σ · Z, where µ is the expected value of w(u), σ the standard deviation, and
Z the standard normal random variable. After a large number of writes to the
PCM, the probability that u is not worn out is:

P [w(u) < L] = P [
L− µ
σ

> Z] (1)

If a PCM device with M wear units is considered worn out (i. e., the device
fails) as long as one of its wear units fails, the probability of no device failure is
(assuming that the wear units fail independently):

P [no device failure] =

(
P [
L− µ
σ

> Z]

)M

(2)

There are two cases where the wear count increases. In both cases, we say
that the corresponding buffer page is modified :

Page replacement When a buffer fault occurs, the buffer manager has to evict
a victim page from the buffer pool to make room for the missing logical page,
which will then be written to the buffer page where the victim resided. This
means the wear count for all the wear units of that buffer page will be
potentially increased by one.

Page update Update operations on the buffer page (insert, delete, and update
of its records). Updating a record will only increase the wear count for the
related wear units (instead of for the entire buffer page).

These two cases correspond to the two sources of write skew to the PCM
used for a buffer pool: inter-page skew and intra-page skew. Although a buffer
algorithm can only directly influence inter-page skew through its page replace-
ment decisions, its page replacement strategy shall consider the page wear status
for an effective wear leveling. Note, the page wear status is co-influenced by page
replacement and page update.



2.2 Replacement strategies

Formula (2) implies that to extend the device lifespan, two options are possible.
The first one is to reduce the number of writes to PCM. This impacts µ. This
option is taken by the LWD algorithm introduced in the following. The second
one, taken by the remaining algorithms to be introduced, is to distribute the
writes uniformly across the wear units. This reduces σ.

LWD algorithm The LWD (least wear-unit difference) algorithm is our first
attempt to address the write endurance problem. On a buffer fault, the algorithm
compares the page p waiting to enter the buffer pool with each page q in the
buffer pool and chooses the one that has the smallest wear-unit difference (WD)
to p as the victim. If multiple pages have the smallest WD to p, the least recently
used (LRU) one among them is selected as the victim.

The wear-unit difference of a page q to page p, denoted as d(p, q), is computed
by comparing each corresponding pair of wear units (i. e., the two wear units at
the same offset in both pages) and count the number of pairs that differ. In other
words, d(p, q) describes the physical similarity between p and q at the granule
of a wear unit.

LWD assumes that to replace q by p in the buffer pool, instead of writing an
entire page to the PCM, only the wear units that differ in both pages need to
be written. This kind of optimization can be easily implemented in the buffer
manager and it is also offered by the afore-mentioned hardware approach (data
comparison write [14]). Therefore, LWD can potentially reduce the total wear.

However, LWD has a few problems. First, although the algorithm considers
the WD, it does not consider the current wear status, e. g., how often is a buffer
page already written or how are the writes distributed on its wear units. Con-
sequently, a nearly worn-out page can still be selected as the victim (and thus
to be written again) as long as it is the most similar one compared with the
page entering the buffer pool. Therefore, it could not effectively achieve wear
leveling. Second, the probability that two pages are highly similar is very small.
Considering a wear unit size of 4 B, the probability that two wear units are iden-
tical is 1/232, if the binary value of a wear unit follows a uniform distribution.
Therefore, it can not substantially reduce the total wear.

LPW algorithm The LPW (least page wear) algorithm addresses the first
problem of LWD. Instead of considering the physical similarity, LPW always
selects the page having the smallest page wear as victim. Page wear can only
approximately represent the wear status of a page, because it does not capture
the distribution of the wear count inside the page. This means, even if a few
wear units of a page have high wear counts (e. g., due to skewed updates), the
page can still can have a low page wear relative to other pages and, therefore,
be (repeatedly) selected as victim. However, this is a trade-off for simplicity,
because the buffer manager only has to maintain a counter for each buffer page.
For a page replacement, the counter is incremented by the number of wear units



the page contains. For a page update, the counter is incremented by the number
of wear units that are updated.

Heuristic algorithms The LFM (least frequently modified) algorithm further
simplifies the LPW approach by using page modification (i. e., page replacement
or page update) frequency as the heuristic for the page wear status. As the name
suggests, LFM selects the least frequently modified page as the victim, similar
to the classical LFU (least frequently used) algorithm. However, LFU typically
maintains, for each logical page currently in the buffer pool, an access frequency
counter, which is reset at each page replacement. In contrast, the modification-
frequency counter in LFM is maintained for each buffer page and the value of
the counter survives page replacements.

Similarly, the LRM (least recently modified) algorithm resembles the classical
LRU (least recently used) algorithm, but uses the modification recency as victim
selection criterion. Similar to LRU, LRM can be implemented using a linked list
of buffer page pointers. Page update or page replacement moves the modified
page pointer to the MRM (most recently modified) position. On page hits, in
contrast to LRU, LRM does not change the page (pointer) position in the list.

2.3 Complexity

The LWD algorithm has the highest time complexity, which is O(B · P ) in our
current implementation, where B is the buffer pool size and P the page size.
Both LPW and LFM have a complexity of O(B). The LRM algorithm has a
complexity of O(1).

In terms of space overhead, LRM is similar to LRU: the only overhead is
introduced by the linked list structure. The LWD algorithm does not introduce
any space overhead, because it compares the content of the wear units on the fly.
Both LPW and LFM maintain a counter (of 8 B) for each buffer page. But this
space overhead is ignorable, e. g., it is 0.1% for a page of 8 KB. Note, all these data
structures and management information are maintained in DRAM, based on the
architectural assumption given in Section 1.1. If, for practical considerations,
these small amount of meta data need to survive a DB server restart or crash, it
is sufficient to propagate them to a persistent storage in appropriate intervals,
e. g., hours or even days are acceptable.

3 Experiments

We used trace-driven simulations to evaluate the afore-mentioned algorithms.
As explained in Section 1.2, we are primarily interested in two aspects of the
algorithms: wear-leveling effectiveness and hit ratio. To study the wear-leveling
effectiveness, we have to use record-oriented traces, instead of the page-oriented
workloads (i. e., page reference strings) typically used by the studies on conven-
tional buffer management [4].



3.1 Workload

Most experiments reported in this section used a synthetic trace which simulates
a typical workload for a database buffer pool. The trace is generated as follows.
Each tuple of the trace is a record request, which consists of a page identifier
∈ [0, 131072), a record identifier ∈ [0, 64), and a type identifier ∈ {R,U}. The
type identifier describes the operation to be performed on the record: read (R) or
update (U). For a U record request, the tuple additionally contains a randomly
generated record of 128 B. A trace contains one million such record requests.
The workload follows the 80–20 rule: both the page identifier and the record
identifier follow a 80–20 self-similar distribution within their respective ranges
to simulate skewed accesses (particularly skewed updates). Moreover, the update
ratio is 20%, i. e., 80% of the requests are R requests and the remaining 20% are
U requests. Our experiments used a typical database page size of 8 KB. The page
layout follows a simplified N -ary storage model (NSM) [1]: each page consists of
N equi-length records (N = 64).

3.2 Methodology

We implemented a database storage manager supporting all the algorithms under
examination. The traces are processed by the storage manager as follows. Prior
to each trace execution, the database file (1 GB) is initialized with 131072 pages
and each page contains 64 randomly generated records. An R record request is
processed by getting the corresponding page via the buffer pool and reading the
record. A U record request additionally overwrites the corresponding record in
place using the generated modification pattern (sequence of bytes) contained in
the request.

In addition, we implemented a PCM simulator, which maintains a wear
counter for each wear unit of the buffer pool. The wear counters are all re-
set prior to each experiment. For each buffer page modification during the trace
execution, the simulator increments the wear counters of the affected wear units.
The wear-leveling effectiveness of the algorithms is expressed by the standard de-
viation σ of the wear count after each trace execution. The hit ratio h achieved
by the algorithms are also compared. For a simulated PCM of n wear units
{ui, for 0 <= i < n}, the wear count standard deviation σ is computed as:

σ =

√∑n−1
i=0 (w(ui)− w)2

n− 1

where w is the mean of w(ui).
We included LPW, LFM, and LRM in the comparison. Additionally, LRU

and RND (random) are used as baselines for hit ratio (LRU) and wear-leveling
effectiveness (RND). We did not include LWD in the comparison due to its prob-
lems discussed in Section 2.2, which are confirmed by our experiments (omitted
due to space limitations). To facilitate visual comparison, we present the normal-
ized performance figures, i. e., their ratios relative to the corresponding figures
of RND.
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Fig. 2: Normalized σ and h, buffer pool size scaled from 100 to 6400 pages,
typical workload

3.3 Typical workload

Figure 2 compares the σ (wear count standard deviation) and h (hit ratio) of our
algorithms (relative to RND) for the traces described above. Figure 2a confirms
that buffer algorithms can have a great impact on wear leveling. For example,
for a buffer pool of 100 pages, LRM improves the σ by nearly a factor of five
compared with LRU.

To our surprise, the wear-leveling effectiveness of LFM is even worse than
LRU for all buffer pool sizes. Our explanation is that the page modification
frequency used by LFM is not a good approximation for the page wear status,
because it can not distinguish between page replacement and page update. In
contrast, this difference is captured by the page wear metric used by LPW,
which, as a consequence, delivered the best σ for all buffer pool sizes. For a
buffer pool of 400 pages, LPW reduced the σ by 24.2% even compared with
RND. The performance of LPW reveals that, although a buffer algorithm can
primarily influence only the inter-page skew, considering the intra-page skew in
the victim selection can help to improve wear-leveling effectiveness.

The hit ratios of LFM, LRM, and LPW are lower than that of LRU. LPW
is even close to RND in terms of h. However, this is expected, because page
reference statistics are not considered by LPW at all, while LFM (LRM) only
partially considers the frequency (recency) of page updates in their victim selec-
tion decision. This implies that, if the workload is read-only, i. e., there is only
page replacement and no page update, LFM and LRM would have no advantage
over LPW in terms of h.

3.4 Read-only workload

This is confirmed by our experiment using a read-only trace, which shares all the
parameters with the afore-mentioned trace except for the update ratio, i. e., the
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Fig. 3: Normalized σ and h, buffer pool size scaled from 100 to 6400 pages,
read-only workload

read-only trace contains only R requests, which only trigger page replacements.
The results of this experiment are shown in Figure 3.

Under the read-only workload, all algorithms compared—LRM, LFM, and
LPW—achieved nearly a perfect wear leveling (Figure 3a), because there is no
intra-page write skew (i. e., no record-level writes), but only a (inter-page) refer-
ence skew. In other words, the write is uniform within a page, but non-uniform
among pages. The latter, inter-page write skew, can be effectively handled by
our algorithms. This implies that if the write skew inside a page is less signif-
icant than the page reference skew, our algorithms are more effective in wear
leveling. After all, the buffer algorithms have no direct influence on the update
locations inside a page. This further implies that our algorithms would be even
more effective in terms of wear leveling for a smaller page size. The price to pay
for a nearly perfect wear leveling is a very low hit ratio which is close to that of
RND, as shown in Figure 3b.

3.5 Total wear

Figure 4 reports the total wear for the experiments corresponding to Figure 2
and Figure 3. The curves in Figure 4b look (reversely) similar to the h curves
in Figure 3b. The same relation exists between Figure 4a and Figure 2b. This
results from the fact that the total wear is dominated by the number of page
faults. Each page fault requires a page replacement, which has a much greater
impact on the total wear than a page update: the former overwrites an entire
buffer page, whereas the latter only updates a record. Therefore, the total wear
has a strong correlation with h.
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Fig. 4: Normalized total wear, buffer pool size scaled from 100 to 6400 pages

4 Related work

Qureshi et al. analyzed the write traffic to pages for two database applications
and found that for both applications there is significant non-uniformity in which
lines (i. e., page partitions of cache line size) in the page are written back [13].
Their analysis confirmed the significance of the intra-page skew. As solution, the
authors proposed a fine-grained wear-leveling technique, which randomly shuffles
the lines when writing a page to PCM and restores the page layout when the
page is written back to disk. Our approach to wear leveling is complementary
to theirs, because our software approach manipulates the write traffic at a page
level, whereas their hardware approach does this at the line level.

There have been some pioneer works on the use of PCM in database systems.
For example, Chen et al. advocate that database algorithms should be adapted
to PCM technology to improve performance, energy efficiency, and PCM’s write
endurance. For this purpose, they presented PCM-friendly algorithms for two
core database techniques: B+-tree index and hash joins [2]. Gao et al. presented
a novel logging scheme that exploits the non-volatility and bit alterability of
PCM for efficient transaction logging in disk-based databases [6]. However, the
issues of using PCM for database buffer pool, i. e., the focus of our work, are not
covered by these works.

Ou et al. identified the cold-page migration (CPM) problem related to the
indirect use of flash memory for mid-tier buffer pool and proposed two effective
solutions [11]. Our study has one thing in common with theirs: one of our goals is
to address the write endurance problem and extend the device lifespan. However,
the CPM problem studied by them is specific to flash memory, because it is
rooted in the flash memory erase-before-write limitation, which is not present
for PCM. Furthermore, wear-leveling techniques are not the focus of their study.



5 Conclusion and future work

In this work, we studied the write endurance problem of PCM-based database
buffer pools. To attack this problem, we identified and classified the sources
of write skew in such an environment and introduced a range of novel buffer
algorithms, which examine page content or consider page wear status for their
replacement decisions, to minimize and uniformly distribute the write traffic.

Using these algorithms, the database buffer manager can effectively address
the endurance problem, as confirmed by our experiments. The experiments reveal
that, although a buffer algorithm can primarily influence only the inter-page
skew, precise page-wear status information can be used to improve its wear-
leveling effectiveness.

Among the algorithms compared, LRM and LPW can effectively achieve
wear leveling (e. g., up to factor five in one of the experiments or even a nearly
perfect wear leveling for read-only workloads). However, they had a lower hit
ratio compared to the conventional buffer algorithms represented by LRU. This
suggests that wear leveling and hit ratio are two conflicting goals that must be
considered by the buffer algorithm in a well-balanced fashion. Nevertheless, for
a workload with lower page-level locality, e. g., 70–30 (or even 60–40) instead of
80–20, their penalty in terms of hit ratio would be smaller. For a hybrid main
memory system, where the hottest pages are retained in the smaller DRAM, we
can assume that the locality of page reference to the PCM would be lower than
the 80–20 one.

Under the read-only workload, the wear-aware algorithms achieved the best
wear-leveling effect but the lowest hit ratios. This is an issue requiring further
algorithmic improvements. A possible approach is to dynamically adjust the
behavior of the buffer manager based on workload statistics, similar to the ap-
proaches of [8–10].
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