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Abstract Due to their narrow power spectrum between

idle and full utilization [2], satisfactory energy e�ciency

of servers can only be reached in the peak-performance

range, whereas energy e�ciency obtained for lower ac-

tivity levels is far from being optimal. Hence, this hard-

ware property obviates a desired energy proportional-

ity or minimal energy use for the entire range of sys-

tem utilization. To approximate energy proportional-

ity for all activity levels, we developed various versions

of WattDB, a distributed DBMS, which runs on a dy-

namic cluster of wimpy computing nodes. In this survey,

we sketch important design decisions and implementa-

tion steps towards the �nal state of WattDB. For these

reasons, we discuss our �ndings on a cluster with ded-

icated storage nodes and static data allocation, on dy-

namic data repartitioning and allocation, and on a dy-

namic cluster where each node can serve as storage and

processing node in a symmetric way. Our experiments

show that WattDB dynamically adjusts to the work-

load present and recon�gures itself to satisfy perfor-

mance demands while keeping its energy consumption

at a minimum. Finally, we compare the performance

and energy results of the WattDB software running on

the cluster of wimpy nodes with that of a brawny server.
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1 Introduction

The need for more energy e�ciency in all areas of IT

is not debatable. Besides reducing the energy consump-

tion of servers, other ideas like improving the cooling

infrastructure and lowering its power consumption help

reducing the energy footprint of data centers. In the

area of DB management, initial research towards en-

ergy e�ciency primarily focused on the use of �ash

memory or solid-state disks (SSDs) as a disruptive stor-

age technology. However, solely replacing conventional

disks (HDDs), provided only limited gain, because the

main energy consumers of a computing system�main

memory and CPU�were hardly considered in such en-

ergy saving approaches. On the other hand, Tsirogian-

nis et. al. [19] observed in an extended study using em-

pirical experiments that the most energy-e�cient con-

�guration of a single-server DBMS is the highest per-

forming one. But this is only true, if we exclusively

focus on performance benchmarks or on speci�c ap-

plications where the DBMS steadily runs in the peak-

performance range. Typical DBMS activity levels, or

their average system utilization, are much lower and

their peak utilization may be only touched for some

minutes or at most a few hours per day. For those com-

puting demands, energy use of a single-server DBMS is

suboptimal and far from being energy proportional.

Due to their narrow power spectrum between idle

and full utilization of single-node servers [2], the goal

of satisfactory energy e�ciency cannot be reached us-

ing today's (server) hardware. Reducing energy usage of

servers to a su�cient level leads to a demand for energy-

proportional hardware. Because such a goal seems im-

practical, we should at least aim at an emulation of the

appropriate outcome at the system level.
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Fig. 1 Power use over single-node system utilization

In contrast to centralized, brawny servers, a scale-

out cluster of lightweight (wimpy) servers is able to

shutdown single nodes independently. At an abstract

level, this enables the cluster to dynamically add stor-

age and processing power based on the cluster's utiliza-

tion. Similar to cloud-based solutions, we hypothesized

that a cluster of nodes can adjust the number of active

nodes to the current demand and, thus, approximate

energy proportionality. Based on these observations, we

developed WattDB running on lightweight, Amdahl-

balanced nodes using commodity hardware. The cluster

can dynamically shrink and expand its size, dependent

on the workload. Recon�guring a cluster to dynamically

match the workload requires data to be redistributed

among the active nodes to balance the utilization. Yet,

copying data is time-consuming and adds overhead to

the already loaded cluster. Therefore, reducing both,

time and overhead, was a crucial objective to achieve

an elastic DBMS. Although the cluster is not be as

powerful as a monolithic server, our system consumes

signi�cantly less energy for typical workloads.

We will use the term power (or power consumption)

to denote the current consumption of electricity; hence,

the unit of power is Watt. The power consumption of a

server/component over time is called energy (or energy

consumption), which is expressed in Joule (Watt * sec).

In the DB community, and for the TPC-* benchmarks

as well, the number of transactions � de�ned as spe-

ci�c units of work addressed by the TPC-* workloads

� has prevailed as an application-related measure for

the quantity of computations: transactions per second

(tps). To express how e�ciently a certain set of queries

can be processed using a given amount of energy, we

use the term energy e�ciency (EE):

EE =
# of transactions

energy consumption
=

tps

Watt

Recently, power consumption of (DB) servers and

energy e�ciency became important factors too. A study

revealed, that the average server consumes about as

much power to draw energy cost to level with its acqui-

sition cost in a �ve year period [11]. Therefore, energy-

e�cient solutions are drawing more and more attention.

Barroso et. al. examined the power pro�le of typical

servers at Google in [2] and concluded, that the typi-

cal server is mostly running between 10% and 50 % of

its peak utilization, often idle and hardly runs at 100%

load. Other studies suggest similar usage patterns [15].

In Figure 1, the power consumption of a server is

plotted against its utilization from idle to highest. Here,

utilization refers to the system load, i. e., 100% utiliza-

tion correspond to a system fully utilized, at maximum

CPU and disk use. While the server needs the most

power at high utilization, it already consumes ∼50% of

its peak power. With increasing workloads, power con-

sumption quickly converges to its peak. Even low work-

loads require a disproportional high amount of power.

The �ndings of Barroso et. al. are representative

for all of today's server systems, with small variations

based on individual con�gurations. Because today's hard-

ware components exhibit similar power/performance �g-

ures, building a more energy-e�cient, monolithic sys-

tem seems impossible. In summary, (DB) servers are

typically working on moderately sized workloads, far

from peak utilization, but require an unproportional

share of power for such workloads. Therefore, research

began looking for optimizations of the observed e�ects

and focus shifted from a purely performance-centric

view to include energy-related aspects as well.

First, existing solutions were optimized to adjust to

workloads and to better utilize the given hardware in-

frastructure. In [1], Albers studied energy savings by

explicitly powering down components. Similarly, Wang

et. al. examined techniques for reducing power con-

sumption of stand-alone servers, like DFVS (Dyn. Fre-

quency and Voltage Scaling) in modern processors for

their saving potential in [20]. Although performance can

be traded for power consumption, no "big leaps" could

be identi�ed [10]. Tsirogiannis et. al. [19] observed in

an empirical study that within a single node intended

for use in scale-out (shared-nothing) architectures, the

most energy-e�cient con�guration is typically the high-

est performing one.

Based on previous observations, Lang et. al. [9] ran

experiments on a cluster of lightweight nodes, conclud-

ing that the cluster's size can adjust to performance

needs (with "friction losses") and that it is indeed possi-

ble to achieve better energy e�ciency by taking a clus-

tered approach. Other approaches, featuring DB sys-

tems running on the cloud, were also promising lower

energy consumption by dynamically scaling to more or

fewer nodes. Yet, when our research began, no publicly
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available, distributed DBMS was able to run on a dy-

namically changing number of nodes and autonomously

adjusting itself to a given workload.

In this paper, Sect. 2 explains our measurement

equipment and sketches a new energy-centric bench-

marking paradigm, which we have proposed to extend

TPC-Energy. In Sect. 3, we have summarized design

considerations and implementation aspects of WattDB,

before we outline the historic development steps of WattDB.

Sect. 4 concentrates on the storage layer and gives an

overview of I/O-related experiments using simple read/write

requests. We focus on the query layer (Sect. 5), where

we explore the performance impact of distributing op-

erators among cluster nodes. Using the lessons learnt

so far, we extended WattDB to handle a truly dynamic

cluster where data and queries were dynamically allo-

cated (Sect. 6) Since data repartitioning turned out to

be costly, we explored in Sect. 7 the performance e�ects

of partitioning schemes. Finally, Sect. 8 compares our

cluster with a big server w. r. t. performance and energy

consumption, before Sect. 9 concludes our work and �n-

ishes WattDB's journey towards energy e�ciency.

2 Quantifying Energy Consumption

Traditionally, standard server hardware does not pro-

vide integrated probes to measure energy use. Recently,

Intel updated the speci�cations of their Performance

Counter Monitors (PCM) to include energy-related mea-

sures for CPU and memory as well [21]. Yet, other com-

ponents are not monitored. Hence, an external solution

is needed to accurately measure power use of the system

under test (SUT). We have developed a framework for

a single DB server, able to assess power consumption

per component, and to measure the power consumption

of each DB server in a cluster of nodes.

2.1 Measuring Equipment

The measurement framework consists of three key com-

ponents: First, probes are inserted into the electric ca-

bles of the device, to measure current and voltage. The

measured data is converted by an A/D converter to dig-

ital signals. The signals are then sent via USB to a con-

nected PC, logging and displaying the readings. This

PC is also running a benchmark to drive workloads on

the cluster and is able to correlate power �gures with

performance results from the benchmark. This setup is

able to meter both performance and energy consump-

tion of the SUT running a multitude of workloads.

The �rst device for measuring the power use of a sin-

gle server intercepts the power rails of an ATX power

supply to measure voltage and current. We are able to

track the power draw of the mainboard, including CPU

and main memory, and attached HDDs/SSDs. By us-

ing current transducers for measuring, the device can

deliver measurements with 1% accuracy. More impor-

tantly, the measurements do not interfere with the run-

ning SUT. With current transducers, we can also mea-

sure alternating current, i. e., the power consumption of

a node cluster. For this, a second measurement device

was built, able to track up to 10 nodes with maximally

250 Watts each. This device is also monitoring voltage

and apparent power of the setup. By replacing the �rst

measurement device with the second, we can re-use the

A/D converter and connected PC to now log and ana-

lyze power consumption and performance of a cluster.

2.2 A New Benchmarking Paradigm

Traditional DB benchmarks, e. g., TPC-C and TPC-H,

are purely performance centric. In addition, the pric-

ing speci�cations denote acquisition and support costs

for the systems under test. With the emerge of TPC-

Energy, requiring to report idle power and energy use

under full load, energy-related aspects arrived in bench-

marking. Yet, TPC-Energy is only an addition to per-

formance benchmarks and does not report power con-

sumption for realistic workloads. So far, benchmarks

only determine peak performance. Using TPC-Energy,

peak power consumption is also measurable. Yet, as

illustrated earlier, realistic workloads do not steadily

use the full hardware potential. Typically, peak perfor-

mance is only required for short periods of time.

Since power consumption does not scale linearly with

the workload, energy consumption for a typical work-

load cannot be deduced from idle and peak consump-

tions. Therefore, more detailed measurements are nec-

essary. In [15], we developed a benchmarking paradigm

to cover the full range of a given DB server and measure

its energy consumption at all workloads. We proposed

measurements running static workloads (at fractions of

the server's peak capacity) to assess each utilization

level with its power consumption. Further, we suggested

dynamically changing patterns to identify the system's

ability to react to changing loads. With this approach,

energy e�ciency can be quanti�ed and compared.

3 WattDB

Based on the insight, that a single server will not be-

come energy-proportional, we started working on our

idea of a distributed DBMS running on a cluster of

lightweight nodes. At the time the project started, no
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state-of-the-art DBMS was able to dynamically adjust

to a workload by scaling-out and back in, respectively.

3.1 Architectural Design Considerations

Our fundamental design requirements�primarily dic-

tated by the goal to save energy as much as possible, but

still providing acceptable performance�can be summa-

rized as follows:

� The distributed DBMS should run on a cluster of

wimpy nodes for which commodity hardware should

be used, i. e., we wanted to compose our cluster with

out-of-the-shelf, low-energy components.

� All nodes (except a dedicated one) should be able

to enter or leave the cluster at any time.

� All DB data must be accessible from every active

node at any time.

� High degrees of parallelism among read/write trans-

actions should be facilitated, where ACID quality

has to be guaranteed.

� Parallel and distributed work for single transactions

should be enabled, where load balancing among the

active nodes in the cluster should be achieved.

Given these objectives, we brie�y want to �gure out

the base architecture for our cluster using the conven-

tional classi�cation of distributed DBMS architectures

well-known since the 1980s. Shared Everything can be

immediately excluded as a conceivable solution�mainly

because of the required cluster elasticity, the specialized

hardware needed, and the lesser stability/resiliency in

case of failures [7]. The operating principle of Shared

Disk is to fetch all data referenced directly to the node

where the transaction code is handled just like a local

execution within a centralized DBMS, thereby prohibit-

ing parallelism and distribution of the transactions's

work. But such an architecture would perfectly satisfy

the data accessibility demands, greatly assist all scala-

bility aspects of computing power and data volume, and

facilitate failure recovery. However, direct connectivity

of the shared disks to a growing number of computing

nodes would become very complex, require specialized

connectivity hardware, and force DB bu�er coherence

control among the computing nodes.

Shared Nothing relies on distributed execution of

all transactions, because (in its purest form) data is

processed at the node where it is stored, i. e., the load

follows the data. All cooperation/communication tasks

among the cluster nodes are handled by messages, which

makes scalability of computing power very simple. In

turn, scalability of data volume is not for free. But data

allocation has to follow the cluster dynamics anyway,
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Fig. 2 Power use over system utilization

such that sophisticated data partitioning and move-

ment facilities are necessary in any case. For these rea-

sons, the base principle of WattDB is Shared Nothing

[7]. Nevertheless, the entire database must be accessible

by all active computing nodes. As a consequence, we

need to emulate an I/O architecture, where�at each

point in time and each cluster con�guration�all DB

data stored on external devices (SSDs or HDDs) can be

dynamically shared by all active nodes, i. e., the shared-

nothing processing architecture of the cluster has to be

supported by some properties of a shared-disk I/O ar-

chitecture. This is mainly achieved by dynamic repar-

titioning/data movement among the external storage

devices and transferring record sets among the nodes�

thereby acting as record servers.

3.2 Architecture Overview

A cluster of lightweight nodes, capable of dynamically

powering up and down to scale to the required size,

promises better energy e�ciency by approximating energy-

proportional processing. Fig. 2 tries to explain how a

cluster of �ve nodes could replace a brawny server thereby

better approximating energy-proportional processing be-

havior. Assume the monolithic server runs at a utiliza-

tion level of 20% (40%) and consumes 85% (95%) of its

maximal power. If one (two) cluster node(s) running

in peak could take over this load, we could reduce the

power consumption to process this load to 25% (45%)

and, in turn, emulate better energy proportionality of

a brawny server. Of course, the relationships shown in

Fig. 2 are idealized, because power consumption of the

big server and the full cluster may di�er to a certain

amount. Furthermore, transaction throughput and run-

time achieved by the dynamic cluster may no perfectly

match the server's performance at the various utiliza-

tion levels. Nevertheless, a cluster, automatically ad-
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justing its size to the workload, may come closer to the

ideal of energy proportionality (see also Fig. 12(b)).

To verify our hypothesis and quantify conceivable

di�erences of performance and power/energy consump-

tion, we use an experimental cluster, consisting of 10

identical nodes. Each node in the cluster is equipped

with 2GB of DRAM, an Intel Atom D510 CPU and up

to four storage devices. By choosing lightweight, com-

modity hardware, Gigabit-Ethernet is su�cient to con-

nect the nodes and consider the whole cluster Amdahl-

balanced, i. e., its CPU power, memory capacity, and

I/O bandwidth reasonably match. With more powerful

hardware, faster interconnects and more storage disks

would be necessary, driving up cost without giving ad-

ditional insights. In theory, the same approaches ver-

i�ed on a lightweight cluster can be applied to more

heavy-weight nodes.

Each of the nodes in the cluster consumes about

20 Watts when idle, another 3 Watts per storage disk

(depending on the model) and up to 35 Watts with

all four disks and CPU at full utilization. When pow-

ered down in standby, a node only consumes about 2.5

Watts.1 The connecting Ethernet switch, adding an-

other 20 Watts, is included in all measurements.

WattDB2 is a newly developed DBMS research pro-

totype, written in C/C++. It accepts SQL queries, but

has only a limited set of supported features, e. g., selec-

tion, projections, and joins are implemented, as well as

sorting, group-by and aggregation operators. Not sup-

ported are, for example, sub-queries, multi-statement

transactions and conditional expressions. This limita-

tion is not architecture-intrinsic, it is merely by choice,

since we did not need to implement fully SQL99-compliant

code to verify our ideas.

In WattDB, a dedicated node ("master" node) acts

as coordinator for the whole cluster. This is the only

node accepting client connections. The master node

keeps information about all other nodes, e. g., table par-

titioning and performance data. Because of its holistic

knowledge, this node is performing query optimization

and triggers redistribution in the cluster to scale out

(or in, respectively). All nodes (including the master)

can process queries and store DB data.

To support elastic scale-out and -in, all nodes in the

cluster are able to access the entire storage space (by

requesting remote pages) and may participate in query

processing. Figure 3 depicts a high-level view on a clus-

1 It is also possible to turn nodes completely o�, resulting
in about 0.5 Watt of power use. But then, start-up times are
much higher than just waking up from suspend-to-RAM.
2 The initial version of the core engine was developed for

the 2010 SIGMOD Programming Contest, where it won the
second prize [5].

Node 2 Node 3Node 1

...

Storage distribution

Query processing

Fig. 3 Conceptual view of the cluster

ter of three nodes, sharing disk space and query eval-

uation. By dynamically adding and removing (unused)

nodes from the cluster, storage space and IOPS, as well

as memory capacity and query processing performance

can be tuned. To support dynamic reorganization, all

tables in WattDB are subdivided into partitions as illus-

trated in Fig. 4. Tables are purely logical constructs,

keeping meta-data de�nitions in place and are stored

on the master node. Each table is composed of k hor-

izontal partitions, each belonging to a speci�c node,

responsible for query evaluation, data integrity (log-

ging) and access synchronization (locking). The parti-

tioning scheme used is application-dependent, as some

applications may bene�t from distinct key ranges, while

others may prefer scattered data. Partitions contain

1 to m segments, which are physical units of storage.

Each segment is located on a speci�c disk on a node in

the cluster. Partitions are by default index-organized

w. r. t. the primary key and support additional, sec-

ondary indexes. Indexes are realized using B*-trees

and span only one partition at a time. Hence, indexes

are stored on the same partition as the data and do

not contain cross-references to other partitions. Seg-

ments consist of 4096 blocks or pages, which are con-

secutively stored on disk. They have a �xed size of 32

MB and are the unit of distribution in the storage sub-

system. Hence, all pages belonging to the same segment

are copied/moved to other nodes in one batch.

Cost of reorganization Moving data is an expen-

sive task, in terms of energy consumption and perfor-

mance impact on concurrently running queries. Data

reorganization binds some computing resources, which

would be needed to optimally process the query work-

load. This resource contention leads to fewer resources

for the workload and, in turn, reduces query through-

put. However, the reorganization cost should amortize

by reducing the energy consumption of subsequent queries.

Though it is di�cult to calculate the exact energy con-

sumption of a data move operation w. r. t. the impact

of running queries, the energy cost can be estimated by

the duration of the move operation and the (additional)

power consumption. Hence, moving 1 GByte of data to
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Fig. 4 Database schema

a dedicated node with 25 Watts power consumption will

require approximately 10 seconds and 250 Joules.

In order to save energy, recon�guration overhead

needs to pay o� by reducing future query runtimes.

Likewise, scale-in must trigger when the cluster is able

to handle the workload with less nodes. To estimate the

impact of reorganization, WattDB relies on a simpli�ed

cost model where upcoming workload predictions and

maintenance costs are calculated.

In the following, we present key experiments using

WattDB, starting from tests on the storage layer up to

a fully dynamic, query-processing cluster.

3.3 Experimental Setup

Fig. 5 explains the setup used in all experiments. The

bottom right depicts the cluster, currently consisting

of 10 nodes. On the left, the measurement device, in-

tercepting the power lines of the servers, is shown. All

readings are sent to a dedicated computer, responsible

for orchestrating benchmarks. This computer is send-

ing queries to the cluster, measuring response times and

throughput and correlates the data with power read-

ings. All results are logged to a �le for later analysis.

In the course of experimenting on the various WattDB

layers, we varied the benchmarks and queries utilized

to stress the system. To set experiments up to evalu-

ate the cluster elasticity, we ran tests to determine the

maximum workload the system was able to process. We

refer to the workload intensity as utilization, which can

be, for example, page requests per second or number

of parallel queries. Hence, utilization will always be be-

tween 0%, i. e., no workload present, and 100%, i. e., the

(prede�ned) maximum workload.

4 Dynamic Storage Allocation

In the course of examining the DB layers for their en-

ergy saving potential, we started with the bottom-most

tier [13]. While the storage space of the cluster is phys-

ically accessible by all nodes and DB pages can be

AC
10 nodes

Energy data

Cfg + Benchmark

Queries

Log data

Fig. 5 Experimental measurement environment

shipped over the network to remote nodes, logical re-

strictions, controlled by the master node, impose access

limitations to de�ned areas of storage for each node.

Hence, data placement can be easily altered and logi-

cal ownership of data can be dynamically reassigned to

nodes, enabling �exible adaptation.

4.1 Experiments

These following experiments were conducted in 2012.

At that time, we focused on the storage layer andWattDB

did not yet have powerful query processing abilities.

Therefore, we ran traces of OLTP page access patterns

against the storage layer to test its performance.

The master node is responsible for power manage-

ment by monitoring the IOPS of all disks in the clus-

ter and triggering distribution of data blocks, when

thresholds are crossed. Hence, if a storage node is over-

stressed with read/write requests, the data on disks is

distributed to additional nodes, boosting total IOPS

and bandwidth, but also increasing overall power use.

Likewise, when disk IOPS fall below a threshold, the

process is reversed and data is consolidated on fewer

disks/nodes, reducing overall performance and energy.

To make experiments on a dynamically adapting

cluster comparable, we have repeated the same traces

on six con�gurations: First, we distributed the data on

two disks on a single storage node and disabled the

power management to statically �x data distribution

and number of nodes. The cluster consisted of the bare

minimum of three nodes: one master, one processing

node, and one storage node. Hence, this is the base-

line as the least power-consuming, lowest performing

con�guration. Next, we repeated the trace on a cluster

with the maximum number of nodes, one master, one

processing node and �ve storage nodes. All data was

statically allocated to all HDDs (10 in the cluster) and

power management was again o�. This run will deter-

mine peak performance and power use of our system.

After the baseline runs, we set up an unrestricted

cluster, with power management on the master in full

control of data distribution and nodes. We expect the
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Fig. 6 Benchmark results for an HDD cluster con�guration
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Fig. 7 Benchmark results for an SSD cluster con�guration

cluster to adapt to the current workload as the bench-

mark run proceeds. Finally, we replaced the �ve storage

nodes having two storage disks each, with four storage

nodes, each equipped with a single SSD, and repeated

all three runs. Since SSDs promise much higher IOPS

than HDDs, we increased the workload in these runs by

a factor of 10 and still got decent response times.

4.2 Results

Fig. 6 and 7 summarize and compare our results for

HDD- and SSD-based clusters, where the X-axis depicts

the progress of the benchmark over time. Each graph

consisting of three curves represent the two static clus-

ters, small and big, and the dynamic cluster in between.

At the bottom of all �gures, we visualized the bench-

mark intensity varying between 0 and 100% of system

utilization to facilitate the result interpretation.

Fig. 6(a) and Fig. 7(a) show the performance graphs

for all runs, where IOPS are plotted on the Y-axis.

As expected, the big HDD-based cluster delivers the

most IOPS whereas the small cluster's IOPS is limited.

At low utilization, hardly any di�erence is present; the

small cluster falls behind only under high workloads,

The dynamic cluster's performance is more or less iden-

tical to the big cluster. Only at peak utilization, max-

imum IOPS are reduced due to recon�guration over-

head.

Compared to HDDs, performance was better in all

con�gurations for the SSD-based cluster. Yet, peak per-

formance seems to be limited, even for the big static

cluster, which may indicate another bottleneck in the

system, e. g., CPU or network. Still, relative to each

other, the three runs exhibit the same results as the

�rst runs on HDDs and the dynamic cluster was able

to almost match the big cluster's potential.

In Fig. 6(b) and 7(b), the power use in the course

of the benchmark runs is plotted. As expected, the

�xed con�gurations constantly draw the same amount

of power, regardless of utilization. The dynamic cluster

varies its size and, thus, exhibits changing power use be-

tween the baselines. As compared to HDDs, a variance

of about 10 Watts is visible for the SSD-based clus-

ter, even in the static con�gurations. For this reason,

we conclude that SSDs seem to have a higher span be-

tween idle and full utilization. Further, the power con-

sumption results reveal that not all nodes have been

powered on automatically, even under high utilization

(Fig. 7(b)). Because the SSDs were not fully utilized,

there was no need to power-up additional nodes.

Combining performance and power consumption mea-

surements, we can compute the energy e�ciency (in

terms of energy use per query) for all runs. Our re-

sults in Fig. 6(c) and 7(c) are expressed in pages per

Joule. As expected, during low utilization, the small-

est cluster exhibits the best energy e�ciency. For more

intense workloads, the small cluster is undersized and,

with growing performance needs, energy e�ciency de-

clines. Therefore, at full utilization, the situation turns

in favor of the big cluster.

The dynamic cluster automatically adjusts to the

workload. Therefore, it delivers the same energy e�-

ciency as the small cluster under low utilization. With

rising workload, the cluster increases its size and, thus,

starts to behave like the big cluster. Due to transition

costs, its energy e�ciency is slightly lower than that of

the static cluster. The same observations hold, when re-

placing HDDs with SSDs, as plotted on Fig. 7(c). The

small cluster handles low utilization well, whereas the
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big cluster is suited for heavy workloads; the dynamic

cluster combines the advantages of both.

Summary: With these experiments, we were able

to verify our vision of a dynamic, energy-proportional

storage layer that automatically adjusts to the workload

by distributing DB pages. We identi�ed the potential

of SSDs to replace HDDs, because they provide more

IOPS while consuming less power. Yet, redistributing

data among nodes is a time-consuming task that can-

not occur frequently. Instead, preparation for upcoming

workloads might promise better adaptivity and bigger

energy saving. Here, our scope was only the storage

layer, acting as a page server to ship data to a pro-

cessing node, where queries were evaluated. Such an

approach heavily relies on the interconnecting network

and storage nodes do only provide IOPS, not additional

processing power to the cluster.

5 Dynamic Query Allocation

After evaluating the energy saving potential of a purely

storage-centric approach, we have focused on WattDB's

query layer in [12]. In the following experiments, we ex-

plore its energy saving potential. To test our hypothe-

sis, we have implemented basic query optimization and

evaluation techniques in WattDB, e. g., DB operators

such as IndexScan, HashJoin, Sort, and Aggregate. Us-

ing these, we are able to answer OLAP queries on a

pre-allocated dataset.

First, we ran simple query plans consisting of a few

operators on di�erent cluster con�gurations to estimate

performance and power saving potential on the query

layer. Our key idea was to o�oad query operators to

remote nodes to free resources on the originating node

and to distribute system utilization among more nodes

to speed-up query processing. While rebalancing data

is a time-consuming process, due to the cost of copy-

ing/moving pages, changing the mapping of query oper-

ators to nodes can be altered very quickly with immedi-

ate e�ects. On the downside, o�oading introduces net-

work delays, which might prevent better performance.

Therefore, we conducted a series of experiments, quan-

tifying the impacts of o�oading.

Besides data access operators requiring local access

to DB records, all other query operators can be placed

on arbitrary nodes. To mitigate the negative e�ects of

distribution, WattDB is using vectorized volcano-style

query operators [6,4]; hence, operators ship a set of

records on each call, instead of only passing a single

record. This reduces the number of calls between op-

erators and, in turn, network latencies. To further de-

crease network latencies, bu�ering operators are used to

prefetch records from remote nodes, similar to bu�ering

operators introduced by Zhou and Ross [22]. Bu�ering

operators act as proxies between two (regular) opera-

tors; they asynchronously prefetch records, thereby hid-

ing the delay of fetching the next set of records.

In WattDB, the query optimizer tries to put pipelin-

ing operators3 on the same node to minimize latencies.

O�oading pipeline operators to a remote node has lit-

tle e�ect on workload balancing and, thus, does not

pay o�. In contrast, blocking operators, aka pipeline

breakers4, may be placed on remote nodes to equally

distribute query processing. Blocking operators gener-

ally consume more resources (CPU, main memory) and

are therefore good candidates for o�oading and, hence,

balancing utilization in the cluster.

5.1 Examining the E�ects of Distribution

In Fig. 8, we show results of a micro-benchmark demon-

strating the performance impact of distributing opera-

tors among nodes. The �rst (leftmost) run is a query

containing a table scan locally running on a single node.

The maximum throughput is slightly more than 40,000

records per second. In the next run, we added a local

projection operator on top of the table scan, running

on the same node. Although classic volcano-style oper-

ators ship only one record at a time, throughput is still

high (approx. 34,000 records per second). To identify

the in�uence of distribution, we ran the same operator

combination on remote nodes. In this setting, through-

put drops to less than 1,000 records per second, because

each call to next() involves network delays. Next, we

run the same operators on remote nodes with vectorized

operators, where each call to next() returns a set of

records at once. As a result, the operators need less calls

to fetch all records and throughput increases to 24,000

records per second. In the last experiment, we included

a bu�ering operator, which runs on the remote node

and prefetches results from the underlying table scan-

ner. While the projection operator is still processing a

set of records, the bu�er operator can asynchronously

prefetch new records to further minimize network de-

lays. In this constellation, throughput further increases

to ∼30,000 records per second.

Hence, with vectorized, volcano-style operators, net-

work delays can be minimized to allow almost arbitrary

operator placement in the cluster. Looking at these re-

sults, it is quite evident that distributing queries, in-

stead of running all operators locally, is always a per-

3 Pipelining operators can process one record at a time and
emit the result, e. g., projection operators.
4 Blocking operators need to fetch all records from the un-

derlying operators, before emitting the �rst result record.
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formance burden. Although we could reduce the nega-

tive impact, local query processing is still faster, com-

pared to all other measurements. This is true for iso-

lated queries, running on an underutilized node.

In a typical DBMS, multiple queries compete for

resources like bu�er space and CPU cycles. In these

cases, o�oading parts of the query plan to another node

and, in turn, reducing the node's utilization may even

improve performance. To verify that o�oading query

operators can increase overall query throughput, we

have designed another micro-benchmark. For this ex-

periment, we have run multiple queries concurrently,

each consisting of a table scan with a subsequent sorting

phase. In Fig. 9, throughput is shown for varying num-

bers of concurrent queries. The left (blue) bars plot it

for a query plan, where both operators run on the same

node. With increasing parallelism, throughput drops,

because the node is overloaded and the queries com-

pete for CPU and bu�er. It increases when the sort op-

erator is o�loaded to another node (right (red) bars).

Because of additional network communication, query

throughput is initially lower than in the all-local case.

With more concurrent queries, the additional bu�er

space and CPU power pay o�, and throughput becomes

substantially higher, compared to the single-node case.

These experiments validate that distributing queries

among nodes may increase overall performance, despite

the additional network delays. Still, careful considera-

tions have to be made regarding the network bandwidth

and the nodes' utilization to estimate whether o�oad-

ing will pay o�. Also, o�oading queries at low utiliza-

tion levels is inferior to centralized processing.

5.2 Load-aware scheduler

We have implemented a cost-based scheduler to esti-

mate operator costs during query optimization. With

an additional framework, monitoring utilization of all

nodes, we are able to dynamically place query opera-

tors on underutilized nodes and determine the number

of processing nodes needed for the current workload.

The power management component of WattDB is using

this information to scale the cluster accordingly. In the

following experiments, storage nodes were �xed, only

the number of processing nodes was variable. Hence,

the cluster was able to quickly power-up nodes, which

were immediately able to participate in query process-

ing. Also, powering-down was quickly possible, as soon

as the last query on the node in question committed.

5.3 Experiments

We have generated the TPC-H dataset with a scale fac-

tor of 1 on a �xed number of storage nodes (between

1 and 7). The tables LINEITEM and ORDERS were

partitioned and equally distributed among the storage

nodes, whereas the smaller tables were replicated on

all nodes. Because query capabilities were limited, we

chose queries Q1 and Q4 for our benchmark.

Q1: This is an I/O- and CPU-intensive query, scan-

ning through the LINEITEM table to select records

predicated by date range. All matching records are then

sorted, grouped, and aggregated. To leverage paralleliza-

tion in our cluster, we split up the query into sev-

eral parts. First, records are selected on the storage

nodes and sorted locally. Results from all nodes are

then forwarded to a processing node, where the pre-

sorted records are merged and aggregated.

Q4: This query requests records from ORDERS

and LINEITEM, based on data ranges. Results are then

joined and again sorted, grouped, and aggregated. As

for Q1, evaluation is split among nodes. Storage nodes

gather records from disk and pre-sort them, before a

dedicated processing node runs the join, sort, group,

and aggregation operators. In case of high utilization,

some or even all of the last three steps in the query

pipeline can also be o�oaded to additional processing

nodes.

First, we have run measurements on a �xed num-

ber of nodes to verify, whether or not performance and

power use can be scaled as needed. We have run both

queries (Q1 and Q4) separately at various intensities to

generate several workloads between near-idle and full

utilization. We have used the number of parallel DB

clients to scale the workload in this experiments, hence,

the more parallel queries, the higher the load.

After experimenting with �xed-sized clusters, we have

enabled automatic load balancing on the master node

and submitted a long-running benchmark with variable
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Fig. 10 Varying query load on 5 storage nodes and up to 5
processing nodes, using TPC-H Q1 (a) and Q4 (b)

intensities. The benchmark uses a Q1/Q4 mix, stress-

ing the DBMS with varying workloads. In this test, the

number of storage nodes was �xed to �ve, while the ac-

tive processing nodes could scale between one and �ve.

5.4 Results

In Fig. 10, we plot energy consumption and perfor-

mance of the static runs of Q1 and Q4 respectively.

On the X-axis, utilization is plotted, ranging from 5 to

100 %. The solid bars in the �gure illustrate average

energy consumption per query on the primary Y-axis,

while the framed bars plot average runtime per query on

the secondary Y-axis. For each speci�c utilization, we

have run the same workload on di�erent cluster con�g-

urations, varying the number of storage and processing

nodes to reveal the dependency between cluster size,

performance, and energy consumption.

As the results indicate, the best con�guration in

terms of energy use and performance depends on uti-

lization: Lightweight workloads can be processed on a

small cluster, while more intense loads require more

powerful con�gurations. The small cluster in the pre-

vious experiments with Q1 was not even able to pro-

cess bigger workloads, i. e., handle a higher number of

parallel DB clients. Further, the right balance between

processing and storage nodes is important. With too

many storage nodes, which cannot be simply turned o�,

idle power use is high, while too few storage nodes do

not provide enough IOPS and, in turn, reduce query re-

sponse times. Likewise, the number of processing nodes

determines the system behavior. Because processing nodes

do not hold persistent data, they can be turned on/o�
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Fig. 11 Experiments on three cluster con�gurations

very quickly and, hence, it is not crucial to preselect

the best-�tting amount for all workloads beforehand.

In Sect. 5.1, we have examined the performance im-

pact of distributing query operators to remote nodes.

With these results in mind, it is comprehensible how

query processing bene�ts from adding processing nodes.

Though these nodes have to request all data from stor-

age nodes, they add main memory and CPU power to

the cluster, thus relieving some load from the storage

nodes, which, in turn, can focus on basic IO tasks. Espe-

cially OLAP applications require much analytical pro-

cessing and bene�t from pure processing nodes. Yet, as

our experiments in the next sections suggest, a combi-

nation of storage and processing on the same node may

be preferable to keep queries close to the data.

With insights from the �xed-size cluster benchmarks,

we have set up a test with a variable number of DB

clients over time. Thus, the workload changes between

high and low utilizations. We have enabled WattDB's

power management component to tune the number of

processing nodes to the current needs. This component

monitors query throughput and node utilization and

scales the cluster out or in, respectively. Workloads in

the experiment change every 600 seconds.

Fig. 11 plots the results in sequence. The X-axis de-

picts the number of parallel DB clients sending Q1 and

Q4. On the Y-axis, performance, power consumption

(and thus, cluster size), and energy e�ciency are visu-

alized. For comparison with the dynamic run, results

include two static con�gurations with one and �ve pro-

cessing nodes. These �xed runs mark the bounding box

in which the dynamic cluster can adjust. The number of

storage nodes for all three runs was �xed to �ve, since

our previous experiments deemed this a good choice.

As the results show, the cluster is able to quickly

adapt to changing workloads and exhibits almost the
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same performance as the biggest static cluster. Yet, it

consumes signi�cantly less power at low and moderate

workloads, because it powers down super�uous nodes.

Summary: With the previous experiments, we

were able to test our implementation of a dynamic query

processing layer for read-only workloads, on top of a

static storage layer.

6 Dynamic Cluster

Previous research revealed power saving potential for

a DBMS in both, storage and processing. Yet, combin-

ing both approaches to form a truly dynamic cluster,

where the minimal con�guration is a single node and

the database can scale out based on the workload, may

bring even more bene�ts. Therefore, we have redesigned

our cluster to support scaling on both layers, storage

and processing, simultaneously.

As our experiments on the storage layer revealed,

data shipping is costly and, therefore, needs careful

planning. At the same time, processing needs to run

close to the data to mitigate remote data access. While

previous experiments decoupled storage and process-

ing to optimize their ensemble separately, we have re-

engineered the nodes to support query execution and

data storage in the following benchmarks. With this

approach, data has to be partitioned logically to allow

query optimizations like partition pruning and to keep

processing close to the data. Further, we have included

updating transactions to our workload mix to get an-

other step closer to a fully-functional DBMS.

To integrate update transactions into WattDB with-

out severely impacting query execution, we have im-

plemented multi-version concurrency control (MVCC).

With MVCC, updates create a new version of records,

while older versions are still accessible for older transac-

tions [3]. As another bene�t compared to Multi-Granularity

Locking with RX lock modes (MGL-RX), MVCC in-

teroperates nicely with rebalancing on a logically par-

titioned database. To resize a partition, primary-key

ranges are simply removed from the source and inserted

into the target partition with a new version identi�er.

The whole process works under MVCC and therefore

guarantees atomicity and isolation [14].

6.1 Experiments

To test both, OLTP and OLAP on our cluster, we have

deployed the TPC-H dataset (scale factor 100) on the

cluster and run two workloads on the data. For OLAP,

we have used standard TPC-H queries on the dataset.

For OLTP, we have created TPC-C-like queries to run
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Fig. 12 Increasing load on a dynamic cluster

on the TPC-H dataset, enabling to run both, OLTP and

OLAP in parallel on the same data. With both query

types, we were able to run a realistic workload mix.

First, we have run a workload with steadily rising

intensity to test the adaptivity (scale-out) of our clus-

ter to all utilizations, from low to high. During each of

the runs, a single DB client was sending OLAP queries

to the database and reported their response time. The

number of parallel OLTP clients was variable and used

as a workload driver to trigger utilization.

Next, to test the elasticity of our implementation,

we have generated a workload with variable utiliza-

tion as described earlier and benchmarked the cluster

against it. Again, one DB client sent OLAP queries

while the number of OLTP clients was variable.

6.2 Results

We have run the scale-out benchmark on an unprepared

cluster. Hence, as soon as query workload increased, the

DBMS had to scale out and redistribute data. Fig. 12

visualizes response time and energy e�ciency, where

the X-axis indicates the number of OLTP DB clients,

ranging from 0 to 200 and stressing the database. We

plot response times for OLAP on the primary Y-axis

and for OLTP on the secondary Y-axis (Fig. 12(a)).
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Fig. 13 Dynamic cluster supported by forecasting

Fig. 12(b) shows power consumption and OLTP query

energy e�ciency for each utilization level.

Starting with a low utilization, the database is run-

ning on a single node only, keeping the other 9 nodes

suspended. As a consequence, (all partitions of) the en-

tire dataset had to be allocated on the node's disks.

Power use, as plotted in Figure 12(b), is initially low

(about 45 Watts for the whole cluster). With increasing

utilization, WattDB dynamically wakes up nodes and

assigns DB partitions to them. Hence, re-partitioning,

as previously described, needs to physically move records

among nodes. Therefore, in parallel to the query work-

load, the movement takes up additional system resources.

While the database is re-con�guring, avg. query run-

times increase by 3 seconds for OLTP workloads and up

to 6 seconds for OLAP workloads because of the extra

work. Moving data among nodes takes approximately

30 to 120 seconds, depending on the amount of data

to be moved. The spikes in Figure 12(a) visualize the

degraded performance while moving data partitions.

Because repartitioning is costly and a cluster al-

ready under high utilization performs worse when repar-

titioning [14], we implemented a simple forecasting ap-

proach to give the cluster time to react before work-

loads change. Therefore, we have run the workload mix

on a "proactive" cluster, which we have continuously

informed about the three following workloads, i. e., the

requesting DB clients in the next minutes. This knowl-

edge is used by the master to proactively partition data

to the needs of the future workloads.

Fig. 13 plots the results from the runs on a proactive

cluster. One one hand, query response times are more

�uctuating, compared to our scale-out experiment, since

the DBMS has to constantly adjust its size to the work-

load. Therefore, power consumption is also higher, be-

cause nodes are turned on in anticipation of the work-

loads. But the cluster is adjusting quite well to workload

changes and scales in and out as expected. Yet, overall

response times are higher due to rebalancing overhead.

A more �exible, easier to alter partitioning scheme may

better support our dynamic approach.

Furthermore, running OLAP in parallel to OLTP

queries takes a huge toll on our system. Query response

times for OLTP are very high (up to 4 seconds per

query) when running in parallel with OLAP. Therefore,

we have decided to separate workloads in the future to

examine e�ects on both query types separately.

7 Partitioning

Our �rst experiments, examining the storage layer, were

shipping data segments to remote nodes to balance work-

loads. Since this approach operates on physical data

blocks with no interaction on the query execution layer,

we call it physical partitioning. It has proven to be an

easy to manage and simply to achieve way of reparti-

tioning data in our cluster. Yet, the approach is limited

to a storage-centric view without leveraging knowledge

about the data stored inside the segments.

Therefore, we have implemented MVCC and a more

sophisticated partitioning scheme, supporting the trans-

fer of logical ownership of the data among nodes. With

MVCC, records are moved between logical DB parti-

tions, which involves updating mapping information in

the query execution layer. Therefore, we call this ap-

proach logical partitioning. While logical partitioning

integrates well with dynamic balancing, and both, stor-

age and query workloads can be tuned with this ap-

proach, look-up overhead for records to be moved is

very high, compared to physical partitioning. Since the

query execution layer is involved, a lot of e�ort has

to be done to guarantee ACID-compliant movement of

records, including locking and proper version control.

As mentioned, both approaches exhibit bene�ts, but

also show serious drawbacks. Therefore, a combined

approach, balancing storage and processing is needed,

leveraged by a �exible and dynamic partitioning scheme.

We have extended physiological partitioning [18] to par-

tition data among nodes, not CPU cores (as in the orig-

inal design). Similar to the original approach, we encap-
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sulate key ranges in partitions and assign them exclu-

sively to eliminate contention. In our implementation,

partitions still consist of segments, but each segment

now keeps a primary-key index for all records within

it, forming a self-contained sub-partition. The partition

only contains a small index on top, keeping information

about key ranges in all segments attached.

Rebalancing data is easy with physiological parti-

tioning, similar to physical partitioning: Before moving

a segment, some meta-data on the partition needs to

be updated to inform queries of the imminent rebalanc-

ing. Next, the segment is locked read-only and updat-

ing transaction need to �nish their changes. Now, the

whole segment can be moved to another node, followed

by another meta-data update. Finally, query optimiza-

tion can regard the changed partitioning and queries

can access the records on the new node [16]. To miti-

gate overhead, additional nodes can support the cluster

while data movement is in progress. These helper nodes

are powered on for a short time to provide additional

DB bu�er pages over rDMA5 and handle logging for the

nodes involved in the move. Though additional nodes

increase power use, their extra performance will sup-

port the cluster and reduce query runtimes.

7.1 Experiments

To compare all three partitioning schemes, we have

measured query response times and energy consump-

tion while rebalancing using each of the approaches.

We have deployed a TPC-C dataset with a scale factor

of 1,000, hence, about 200 GB of raw data was stored

on the cluster. Similar to previous experiments, we have

deployed a number of parallel DB clients, querying the

database, while we triggered repartitioning.

7.2 Results

In Fig. 14, we depict results from four runs of reparti-

tioning. The vertical line in the graphs marks the start

of repartitioning, the X-axis denotes the time relative to

that. The upper graph plots query throughput per sec-

ond, while the lower graph shows energy consumption

per query. All runs, regardless of partitioning scheme

initially exhibit the same performance and power con-

sumption, as they are running on identical cluster con-

�gurations. After triggering a scale-out from two to four

nodes at t = 0, results reveal di�erences.

All approaches exhibit decreased performance right

after rebalancing kicks in. Throughput under Physical

5 rDMA = remote direct memory access
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Fig. 14 Benchmark results for various partitioning schemes

partitioning declines slightly from ∼600 tps to 400 tps

and never recovers. Likewise, energy use per query gets

higher. Because physical partitioning only moves data

segments to remote nodes, page accesses to remote seg-

ments now involves network communication overhead,

which severely impacts query performance.

Logical partitioning shows an initially strong decline

in throughput, but after a few minutes, query through-

put increases signi�cantly. Similarly, energy e�ciency

improves. With logical partitioning, records, based on

primary key ranges, are moved to nodes, which requires

look-up overhead. This explains the initial decline in

performance. With more and more records now stay-

ing in another partition, the additional nodes will take

over evaluating queries on these and thus, add process-

ing power, which increases throughput.

Finally, physiological partitioning combines both ap-

proaches and only su�ers from a smaller initial per-

formance decline like physical partitioning, but quickly

recovers to gain performance like logical partitioning.

With two additional helper nodes, supporting the nodes

under rebalancing as previously described, the perfor-

mance impact of repartitioning can be further miti-

gated, with the cost of higher power consumption and,

therefore, worse energy e�ciency. After the rebalancing

completed, the helper nodes were switched o� again.

8 Comparison with a Brawny Server

Our �ndings reveal potential for saving energy by de-

ploying a scale-out cluster of lightweight nodes. Yet, a

distributed DBMS needs coordination and may exhibit
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Fig. 15 Power consumption and performance �gures for both systems

serious performance drawbacks, compared to a central-

ized server. In the following, results from our bench-

marks compare the cluster to a brawny server [17]. To

make a fair comparison, we have selected a server with

two Intel Xeon X5670 processors, 24 GB of DRAM. Fur-

ther, we have reduced the storage disks in the cluster to

10 SSDs, to match the maximum number of disks the

brawny server can handle. The two con�gurations pro-

vide roughly the same number of GFLOPS, L2 cache

sizes, and memory bandwidth as depicted in Fig. 15(a).

Fig. 15(c) plots both systems' power consumption. The

cluster draws about 280 Watts at maximum, whereas

the big server consumes over 400 Watts.6 In Fig. 15(b),

power consumption relative to their maximum is shown.

It is already obvious that the cluster is more energy pro-

portional than the big server.

8.1 Experiments

To compare performance and elasticity of both systems,

we have run a series of benchmarks on both systems.

First, we have run performance-centric benchmarks to

estimate the peak load both systems can handle. We

repeated the tests with varying DB clients to establish

a saturation point, i. e., how many parallel queries the

systems can handle. Second, we have chosen a workload

mix of variable intensities as already described. We have

run separate OLTP and OLAP workloads to dissect the

systems' behavior on both individually.

8.2 Results

In Fig. 16, results from performance-centric runs are

depicted. The �rst �gure plots both systems' OLAP

query runtime (X-axis) versus energy use per query (Y-

axis). The numbers on the data points annotate the

number of parallel DB clients. From the �gure, we can

6 Note that 100% utilization is not equivalent in both sys-
tems, the big server is possibly much faster than the cluster.
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Fig. 16 Peak Performance and energy consumption

conclude that the big server handles queries generally

faster than the cluster, while exhibiting better energy

e�ciency. The cluster handles medium-sized workloads

almost as well as the big server, yet more than 220 par-

allel clients seem to overload the cluster as runtimes

and energy consumption quickly increase.7 In the next

�gure, the same experiments using OLTP workloads are

shown. Here, the big server exhibits far better perfor-

mance and energy e�ciency than the cluster. Further,

query response times on the brawny server increase only

slightly with the number of DB clients and the system

does not show any signs of saturation. Consequently,

energy e�ciency improves continuously. The cluster is

saturated with 160 clients; heavier workloads result in

even higher runtimes and energy consumption.

7 We also noticed, that OLTP runtimes are signi�cantly
lower compared to our experiments with OLAP in parallel.
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Fig. 17 Dynamic OLAP workload on the big server and the cluster

These results reveal that the cluster seems to be bet-

ter �tted for OLAP workloads. Considering the access

patterns of both query types, the di�erences are ex-

plainable: OLAP queries read huge amounts of records,

join and aggregate them to satisfy analytical inquiries.

Hence, this type of query can be parallelized very eas-

ily, leveraged by the high number of independent nodes

in the cluster. Further, OLAP does not need synchro-

nization, since analytics are read-only. In turn, OLTP

queries are very selective, touching a few records fre-

quently. Since a lot of these transactions update records,

concurrency control is needed, requiring synchroniza-

tion among all cluster nodes to keep data consistent.

After evaluating peak performance, we ran experi-

ments with real-world usage patterns to test both sys-

tems's behavior under average conditions. We expect

the big server to exhibit far less elasticity than the clus-

ter, since it cannot rebalance. Yet, the limiting factor

for dynamic repartitioning is migration cost, i. e., the

performance impact and time it takes to move data

between nodes. Workloads in the dynamic experiment

change every 5 minutes, and�based on our previous

�ndings about the importance of preparation�we no-

ti�ed the systems in advance of the 6 upcoming work-

loads. As stated by Kramer et. al. [8], workloads are

often repetitive and, therefore, quite easy to forecast.

In Fig. 17, results from OLAP runs on both sys-

tems are graphed. The �rst graphs plot response times

of both systems. As expected, the big server does not

exhibit much variance in runtimes, since it is instantly

ready and does not need recon�guration. Query run-

times are therefore fast and always beat the target re-

sponse times. Yet, power consumption is always high,

resulting in relatively high energy use per query.

The plots on the right side of Fig. 17 illustrate re-

sults from the same workload on a dynamic cluster us-

ing forecasting. While query runtimes are a bit worse

compared to the big server, target response times are

met mostly. The second sub�gure shows the number of

running nodes. For the big server, we omitted the �gure

for obvious reasons. The cluster is permanently rebal-

ancing to match the worst-case expected workload in

the near future, which results in constant node �uctua-

tion. In comparison with the brawny server, the cluster

is a little slower, but consumes far less energy, making

it the more energy-e�cient choice.

We repeated similar OLTP experiments [17] and re-

vealed that the cluster is less suited for such workloads.

9 Conclusion

In this article, we have summarized our �ndings over

the last years. We started our explorations on the stor-

age layer, where we implemented a dynamically bal-

ancing, storage-centric DB cluster. Although we have

shown that optimizations on the storage lead to better

energy e�ciency, high access latencies and limited scal-

ability prevent bigger savings. Next, we implemented

a dynamic query execution layer, where the number of

nodes participating in query processing scales with the

workload. By running a varying number of nodes, we

could show that it is also possible to save energy at this

database layer. By combining both approaches, data

storage and query execution, in WattDB to form a truly
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dynamic cluster, scaling out and back in as needed, our

vision of an energy-proportional DBMS has come true.
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