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Abstract

Concurrency is an important requirement for database systems, especially
in the light of modern multicore processors. At the same time, concurrent
data access must be properly regulated to achieve transaction isolation in
accordance with the ACID paradigm. In this thesis, a fine-grained locking
mechanism in the context of a native XML database is presented and evaluated
by means of a highly contending benchmark workload. In the end, however,
we will realize that increased concurrency offered by the respective locking
protocol is not always accompanied by improved transaction throughputs.

iii





Contents
1 Motivation and Introduction 1

2 BrackitDB Overview 2
2.1 File Layer and Buffer Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Storage Layer and Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 XQuery engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Locking in BrackitDB 6
3.1 Basics of concurrency control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Serializability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Multi-user phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Isolation levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Introduction to Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Basic RX Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Lock Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Update Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Locking Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Hierarchical Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 taDOM Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Node Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Edge Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Index Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.4 Lock Escalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.1 Lock Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.2 Edge Lock Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3 Deadlock Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Benchmark Architecture and Setup 26
4.1 The Benchmark Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Terminology and Benchmark Layout . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 XML Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 BrackitDB-specific Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4 BenchSuite Architecture and Workflow . . . . . . . . . . . . . . . . . . . . 33

4.2 Benchmark Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Benchmark Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Architectural Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Secondary Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Skewed Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Workload Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.5 Workload Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Hardware/Software Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



5 Benchmark Execution and Evaluation 46
5.1 BrackitDB System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Baseline Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Lock Depth and Lock Escalation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Workload Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 I/O Edge Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Analyzing Throughput Bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusion 60

7 References 62

vi



1 Motivation and Introduction

Concurrency control is one of the cornerstones in every database system aiming for online trans-
actional processing. By focusing on the isolation goal of the well established ACID properties
for transactions, concurrency control has to take measures to prevent any anomalies that can
occur in a multi-user environment where interleaved transaction schedules are allowed. The
most prominent technique to deal with these isolation challenges is locking, which has proven its
feasibility since the rise of relational database systems. Locking database items in compliance
with certain rules ensures that each concurrent transaction is under the impression of being the
only one accessing the data.

Although many of the ideas originating from the relational world can be transferred to XML
databases, new challenges are posed by the increased complexity of XML data and related
access operations. In this thesis, we introduce the locking concept used by BrackitDB, a native
XML database system, which features fine-grained locks and thereby allows for a high degree of
concurrency while still preserving sufficient isolation among transactions. The primary concern
in this thesis is the evaluation of this locking approach in the context of modern computer
hardware, such as multicore CPUs, high amounts of available main memory, and relatively fast
storage devices.

Since processor clockrates have pretty much reached its peak while the number of cores is still
increasing, modern software systems should always aim for adequate multithreading scalability.
However, unrestricted concurrency in database systems leads to breaches in isolation and con-
sistency. Therefore, apart from ensuring correctness, a good locking implementation seeks for
a tradeoff between maximal concurrency offered by fine-grained locks and yet keeping the lock-
ing overhead as small as possible. In order to achieve this balance, BrackitDB’s lock manager
comes with a mechanism known as lock escalation where fine-grained locks can be dynamically
coarsened to reduce future locking overhead. Optimization techniques like these and their ac-
tual impact on performance will also be covered by the benchmarks in this thesis. Ultimately,
we hope to demonstrate the merits of fine-grained locking approaches on modern hardware in
mostly CPU-bound scenarios.

From a rather practical point of view, conducting locking-related experiments involves extending
BrackitDB and the related benchmark software by the necessary means to capture suitable
statistical data that provide insight into the system state during workload processing.

The remainder of this thesis is structured as follows: First, a brief overview of BrackitDB’s
architecture is presented in section 2. Afterwards, section 3 gradually introduces the locking
mechanism employed by BrackitDB, starting with the general tasks and challenges of concur-
rency control and peaking in implementation aspects of lock management. In contrast, section
4 is concerned with theoretical facets of the upcoming benchmarks by outlining how interaction
between the benchmark tool and the database server works on an architectural level, and by
exhibiting details about the test document and the workload transactions. After the required
preparations are made, section 5 specifies the concrete experiments that have been performed
and discusses their results subsequently. Finally, section 6 wraps up this thesis and reveals some
final thoughts about fine-grained locking techniques.
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2 BrackitDB Overview

The object of study in this thesis is BrackitDB [2], a native XML database management sys-
tem aiming for efficient collaboration on shared documents or collections of documents in a
transaction-consistent fashion. It therefore offers fine-grained isolation and full crash recovery
based on a sophisticated native storage with advanced indexing capabilities. With the Brackit
query engine [1] incorporated into the project, BrackitDB features a powerful and descriptive
XQuery [42] interface for applications to jointly interact with data in the native storage or any
other plugged-in storage implementation.

While the Brackit query engine was essentially rewritten from scratch as part of the research
in [10], a large portion of BrackitDB’s codebase originates from the XTC (XML Transaction
Coordinator) project. In particular the file and buffer management, the logging and recovery
infrastructure, the lock manager, and some of the storage-related data structures (such as the B+

tree implementation, path synopsis etc.) were adopted without major changes. Consequently,
most of the concepts that were attempted in XTC and published in scientific papers still apply
to BrackitDB.

This section provides a brief introduction into BrackitDB’s anatomy with special focus on the
relevant locking- and storage-related components. Although the benchmarks are mainly con-
cerned with evaluating various locking strategies, all the underlying system layers (such as the
storage and buffer implementation) implicitly affect the results as well and are therefore also
relevant for this thesis to a certain extent.

In general, BrackitDB’s architecture (depicted in Figure 1) follows the same ideas and concepts
that are well known from relational databases, such as the five layer architecture described in
[22, p. 18 ff.] (although it is not always trivial to precisely identify the border between different
layers). As a matter of fact, the two bottom layers (file and buffer manager) are not even aware
of the employed data model and could easily originate from a relational system. While also
featuring a generic B+-tree implementation (like the one described in [34]), the storage layer
introduces many XML-specific data structures and concepts which are not known to relational
databases.

2.1 File Layer and Buffer Manager

The bottom layer in BrackitDB is responsible for any kind of disk I/O. At this, it offers different
file abstractions from random access files via block-oriented files to segmented log-like files.
In order to fulfill its duty, BrackitDB maintains three classes of files on a persistent storage
medium.

The container file is the primary storage location for the database, retaining all sorts of user data
(XML nodes, BLOBs) and related auxiliary data structures. It is divided into blocks (of 8 KiB
size by default) and is accessible through the buffer interface. In fact, BrackitDB even allows for
several containers, each managed by a dedicated buffer. But if not explicitly configured, only a
single system container is used to hold all collections of documents. This system container also
features the so-called master document, which provides a catalog of all stored collections and
indexes, including necessary hints how to locate them within the container file.
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Figure 1: Simplified Architecture of BrackitDB

In addition, each container comes with its own metadata file which contains essential manage-
ment information, such as the chosen block size and a bitmap indicating which blocks are used
and which can be allocated.

Finally, the transaction log is comprised of a sequence of segment files with a maximal size of
10 MB each. In order to accelerate crash recovery and to prevent these log files from cluttering
the whole disk after some time, BrackitDB supports fuzzy checkpoints [23] where the log is
truncated as much as possible while still maintaining full support for redo and undo recovery.

Sitting on top of the file layer, the buffer manager provides page-based access to the container
file and is in charge of transparently loading requested pages from external storage into main
memory if they are not already kept there. Although it tries to keep as many pages in memory
as possible for faster access, the buffer manager eventually reaches the point where all designated
buffer frames are already occupied by other pages. In this case, it has to select one or more
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pages for eviction, which means either simply discarding the page from its slot, or writing it
back to the persistent storage device if it was modified by then. Furthermore, BrackitDB’s buffer
implementation applies a very basic prefetching approach so that page misses usually trigger the
loading of several continuous pages from external storage in one go.

2.2 Storage Layer and Locking

The next layer on our bottom-up introduction is the storage subsystem which is concerned with
managing XML documents and related index structures, and providing node-oriented access to
them. The primary data structure to store documents (or collections of documents) is commonly
referred to as the document index. In a nutshell, the document index is a B+ tree where each
single XML node is stored as a data record in one of the tree’s leaf pages, while the branch pages
merely serve as a guide to find nodes by their respective ID [31, p. 159].

In order to identify nodes uniquely in BrackitDB, a prefix-based node labeling schema, known as
DeweyIDs [30, 20], is applied. A DeweyID is a sequence of integer divisions, usually containing
odd numbers starting from 1. While the root node of an XML document always carries the simple
DeweyID 1 with only one division, its children are enumerated by the DeweyIDs 1.3, 1.5,
1.7, and so on. More generally, a node carries its parent’s DeweyID appended by an additional
(odd) division. Therefore, DeweyIDs reflect the actual position of the corresponding node in the
original XML trees, which makes them much more useful than just randomly assigned IDs. Even
simple offline inspections of DeweyIDs reveal a good amount of information about their respective
nodes: The number of odd division values makes up their level in the document, DeweyIDs of
ancestors are easy to determine by extracting prefixes, and many relations among nodes, such as
the sibling-sibling or the ancestor-descendent relation, are clearly visible. Moreover, DeweyIDs
are stable over the entire lifetime of the node (i.e., they do not need to be reassigned at some
point). Inserting a new subtree between the nodes 1.3 and 1.5 results in a new DeweyID of
1.4.3 for the subtree root. This overflow mechanism makes sure that the document order is
always preserved, no matter how degenerated the XML tree becomes over time.

It is safe to say that DeweyID labeling is one of the outstanding features of BrackitDB, and
possibly the most important ingredient in the storage layer. DeweyIDs are not only used as
references in secondary indexes, but they also actively support locking. As we will see in later
sections, hierarchical locking protocols require the efficient determination of ancestor IDs for
applying intention locking, which is trivial in case of DeweyIDs due to their prefix-oriented
nature.

Apart from the document index, the storage layer comes with a couple of auxiliary data struc-
tures, such as the path synopsis. Based on the assumption that an XML document usually
contains only a limited set of different paths (compared to the total number of nodes), the path
synopsis indexes every existing path in the document and assigns an ID to it, the so-called path
class reference (or PCR). With the path synopsis in place, it is sufficient for the document index
to merely store the leaf nodes of the XML tree, together with their related PCR. Inner nodes
(i.e., elements), which only include structural information but no actual data value, are fully
reconstructable by the PCR values of their physically stored descendents. Hence, this technique
is also referred to as elementless [21] or path-oriented storage [31, p. 166 ff.].
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Query processing can be substantially accelerated by exploiting the best suited secondary index
for each kind of query. Therefore, the storage layer features a couple of those, such as name
indexes (also referred to as element indexes [31, p. 197]), which are used to query elements by
their name, or CAS indexes [31, p. 201], which allow for content-based lookups (e.g., given a
text or attribute value).

Technically, since BrackitDB applies node-oriented locking rather than logical predicate locking,
the lock service and all related components belong to the storage layer as well. Since locking will
be covered in later sections, it suffices to say that locking-related aspects are encapsulated and
hidden underneath the node interface. Whenever an operation is invoked that returns a node
object (such as a navigation step), all necessary locks to ensure proper isolation are transparently
acquired on demand so that higher layers do not have to concern themselves with locking-related
tasks.

2.3 XQuery engine

The top layer in this simplified architecture is constituted by the Brackit XQuery engine which
is responsible for compiling and executing high-level XQuery expressions, thereby providing a
bridge between set and node orientation. Among others, its task is to determine the most
efficient access plan (i.e., sequence of low-level node operations) for a given expression. Other
challenges are posed by join processing, aggregation and sorting.

Since the benchmarks conducted in this thesis essentially circumvent the query engine to have
more precise control over node operations and locking aspects, the engine is not further discussed
at this point.
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3 Locking in BrackitDB

Locking is the prevalent technique for concurrency control in database systems focusing on online
transactional processing (OLTP). In terms of the well established ACID properties, locking (if
properly implemented) ensures transaction isolation and therefore correctness for every possible
interleaved transaction schedule passing through the system. Since locking requires a transaction
to acquire a suitable lock prior to any data access, the lock manager and the involved locking
protocols are major performance drivers in DBMS with respect to parallelism.

In this section, the reader will be guided through the basic concepts of concurrency control and
the various degrees of isolation achieved by different locking techniques. While these concepts
have been around in the relational database world for a long time, the increased complexity of the
XML data model (compared to flat tables) poses new challenges and considerations regarding
the locking protocol. In response to these, the taDOM locking scheme was introduced [25],
allowing for concurrent document access at the node level. How taDOM works in detail and
how it fits into the BrackitDB architecture will be discussed later in this section.

3.1 Basics of concurrency control

Even though transactions are supposed to be atomic according to the ACID paradigm (i.e., the
transactions’ effects on the database are either entirely persisted, or not at all), they are clearly
not atomic from the processor’s point of view. Each transaction consists of a number of smaller
database operations like read and write operations on certain data objects, which can again be
broken down to plenty of CPU instructions. With this in mind, atomicity is not an instrinsic
property of transactions, but need to be explicitly addressed by the DBMS implementation. But
what are the implications of this (physical) non-atomicity for transaction isolation?

Whenever two or more transactions execute concurrently, their database operations are typically
interleaved, potentially causing the programs to behave incorrectly and to leave an inconsistent
database state behind. The objective of concurrency control is to prevent this kind of interference
[16, p. 11] or, in other words, isolate the transactions from the effects of others.

For a start, let us investigate the naive approach to cope with this situation. If interleaving can
lead to errors and inconsistencies, as stated above, one might come up with the idea to avoid
transaction interleaving (and thus concurrency) altogether. Consequently, the DBMS would
collect incoming transactions in a queue and run them serially, like in batch processing, one
transaction after another. By doing this, we eliminate the need for any concurrency control
mechanisms entirely, because a serial transaction execution is always correct, assuming that the
Correctness Principle [36, p. 879] holds. This basic assumption states, that in absence of other
transactions (i.e., in complete isolation), a transaction always transforms a consistent database
into another consistent state.

Although running transactions in a serial fashion is not practical for real world systems, as
it would make poor use of its resources [16, p. 13] (not to mention on multi-core hardware,
which was not even available at that time), it constitutes a suitable baseline for the notion of
correctness in a concurrent environment, as we shall see later.
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3.1.1 Serializability

On the one hand, concurrency should be allowed in a DBMS to utilize system resources properly.
On the other hand, we claim a certain degree of correctness from the resulting transaction
schedule. As pointed out before, correctness inevitably follows from serial transaction execution,
which leads us promptly to the concept of serializability.

In the database field, serializability is a well known term and, in fact, the definition of correctness
for concurrency control [16, p. 14]. In essence, a (potentially interleaved) transaction schedule
is called serializable, if both of the following requirements are met [16, p. 13]:

1. The transaction schedule has the same effect on the database as some serial execution of
the same set of transactions...

2. ... and also produces the same output.

At this point, let us elaborate on the importance of the unobtrusive keyword “some” in the
foregoing definition. When it comes to serializability, it is irrelevant which serial transaction
execution produces the same output and the same database state as the interleaved execution, as
long as there is one in the first place. Incidentally, the serial order of transactions associated with
the serializable schedule, is not necessarily determined by the order in which the transactions
arrive at the DBMS, start their work, or commit their changes.

In order to refine the terminology a bit more, we denote two transaction schedules equivalent, if
they produce the same database state and the same output (a formal definition of the equivalence
of transaction histories can be found in [16, p. 30]). Applying this term facilitates the definition
of serializability: A transaction schedule is serializable if there is an equivalent serial execution
of the same transactions.

Following this, we need to work out a strategy to detect whether a transaction schedule is
serializable and thus acceptable in terms of isolation, or if it must be discarded by the concurrency
control mechanism in place. Therefore, we simply model a transaction as a sequence of read
and write operations on abstract data objects (labelled as small letters a, b, c, etc.), finalized by
the End of Transaction (EoT , which corresponds to a Commit, or a completed Rollback after
an Abort has been triggered). A read operation on a data object o performed by transaction T1
is denoted by R1(o), a respective write operation by W1(o). For the sake of simplicity, let the
value of a data object be an integer number, although this is by no means a necessity, but useful
for the upcoming examples. As far as validity is concerned, the objects can be of any data type
(relational tuple, XML node, etc.).

Evidently, an update operation can be translated into a read operation, followed by a write
operation on the same object. Even simpler, deletions can be regarded as plain write operations.
Note that we deliberately ignore insert operations for the time being and assume the database
to be static, that is, all data objects are already present. We will examine later why insertions
require special care in the scope of serializability.

After having defined our basic transaction model, we can start to analyze various schedules and
identify possible interferences caused by interleaving. In order to do so, we still need to introduce
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the notion of conflicting operations. Two operations are said to conflict, if they operate on the
same data and if one of them is a write operation [16, p. 28]. Following this definition, we can
distinguish three kinds of conflicts: Read/Write, Write/Read and Write/Write. These conflicts
substantially determine whether a transaction schedule is serializable or not, because the order
of the involved operations affects the transactions’ semantics and the resulting database state.
Hence, swapping conflicting operations (i.e., running them in reverse order) is not acceptable to
find an equivalent serial schedule.

On the other hand, if two operations read the same data (Read/Read situation) or if they operate
on different data objects, changing the order in which they are physically executed in the DBMS
preserves the semantics and the final database state. That means, non-conflicting operations
can be swapped (as long as the internal transaction order is untouched) to generate equivalent
schedules. This way, if it is feasible to find an equivalent schedule, the original schedule must
be serializable and thus correct.

T1

T2
EoT

EoT
W1(a) R1(b)

R2(b)W2(b)

Figure 2: Serializable schedule

Figure 2 depicts a very simple transaction schedule with two transactions T1 and T2 running
concurrently on the database, and at that, performing read and write operations on the data
objects “a” and “b”. The temporal placement of these operations is given by the figure’s x-axis,
i.e., an operation plotted to the right of another operation is said to happen after the latter,
and vice versa.

Regardless of what exactly the operations read from or write into the objects, this transaction
schedule can be shown to be serializable, as it produces the same output and the same database
state as the serial execution T2|T1 (T2 before T1). Hence, the equivalent serial schedule performs
the operation in the following order: W2(b)|R2(b)|W1(a)|R1(b).

The only pair of conflicting operations is connected by an arrow, while its direction indicates
the temporal constraint that needs to be preserved, i.e., in all equivalent schedules, operation
W2(b) is still performed before operation R1(b), which is obviously true for the proposed serial
order.

Analogous to the definition of serializability, we call transaction schedules conflict serializable [16,
p. 40][36, p. 925] (commonly abbreviated as CSR) for which a serial order exists that preserves
the conflict relation as described above. Bear in mind that a schedule can still be serializable
despite not satisfying the criteria for conflict serializability. In fact, the set of conflict serializable
schedules is a subset of the serializable schedules (SR), or as formula: CSR ⊂ SR

Conflict serializability imposes stronger conditions on the contained schedules than serializability
does, thereby reducing the set size. By simplifying transaction schedules to abstract read and
write operations (as done in the CSR model), without further investigating what exactly these
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operations do with the data, a CSR-scheduler tends to discard schedules which are, on closer
examination, serializable and therefore correct. However, due to the simple model and the
easy testing for conflict serializability, most commercial systems implement concurrency control
techniques allowing “only” CSR schedules or even a subset thereof [36, p. 925].

For a formulized and complete description of conflict serializability, I refer to [17], [16, p. 25ff.],
[36, p. 925ff.], and [37].

3.1.2 Multi-user phenomena

Now that the foundation is laid, we will study some prominent phenomena or anomalies arising
from a lack of adequate concurrency control. These multi-user phenomena are particularly
interesting since they form the basis for the various degrees of isolation in a database, as imposed
by ANSI SQL.

T1

T2

EoT

EoT
a = 3 a := 4

a = 3 a := 4

a = 3

R1(a) W1(a)

W2(a)R2(a)

Figure 3: Lost update

The first anomaly we examine is known as lost update, exemplified by Figure 3. In this scenario,
data object “a” initially holds a value of 3, before two transactions concurrently perform an
increment operation on this variable. As noted previously, an update is generally not atomic,
but implies a sequence of three steps: a read access, a phase in which the retrieved value is
processed in some way (in this example, the internally cached value is incremented), and finally
a write operation to manifest the new value. Due to unfortunate scheduling, both transactions
read the initial value of 3 and thus obtain an incremented value of 4 in their caches. Subsequently,
the same value is written back by the two transactions. In the end, “a” was incremented only
once even though two increments were intended by the program. The update operation of T1 is
said to be lost as it leaves no trace in the final database state due to transaction T2 overwriting
T1’s changeset. Analyzing the schedule in terms of conflicting operations confirms that there is
no serial execution order equivalent to the presented schedule.

The multi-user anomaly shown in Figure 4 is referred to as dirty read [36, p. 405] and involves a
transaction T2 reading modified data that has not yet been committed by the writing transaction
T1. Before being finalized by a respective commit, this so-called dirty data is prone to transaction
rollbacks or further modifications by that same transaction.

In the provided example, the value of “a” starts out to be 3 but is soon updated to 5 by
transaction T1, and also perceived as 5 by T2. However, instead of committing this new value, T1
is aborted for some reason (e.g., requested by the user himself) and consequently, “a” is reverted
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T1

T2

EoTAbort

EoT

a = 3

a := 5

a = 5

a := 3

W1(a) W1(a)

R2(a)

Figure 4: Dirty Read

back to its initial value 3 by corresponding recovery mechanisms. Although T1 ultimately had
no effect on the database, T2 was able to catch a glimpse on this (dirty) intermediate value and
might have returned it to the user, thereby exposing an inconsistent database state.

Another prominent anomaly for concurrent transaction workloads is the non-repeatable read
[22, p. 410] where a transaction is able to see two different states of the same object during
its execution, which is caused by a concurrent update transaction. Or in other words, reading
an object repeatedly within one transaction could reveal different values. As a matter of fact,
even if the transaction does not access the same object again after its read operation, it could
perceive an inconsistent picture of the database, such as illustrated by Figure 5.

T1

T2

EoT

EoT

a = 3
b = 5

a := 2

a = 3

b := 6

b = 6

W2(a) W2(b)

R1(b)R1(a)

Figure 5: Inconsistent Analysis

Initially, “a” is set to 3 and “b” to 5. Update transaction T2 modifies the database by decre-
menting “a” and incrementing “b”, accordingly. Hence, in every transaction-consistent database
state, the sum of both objects is 8. However, T1 reads data item “a” before it is modified and “b”
after it has already been updated. As a result, transaction T1 would draw the wrong conclusion
that both values add up to 9. The schedule described here is also referred to as inconsistent
analysis. Take note that T1 does not read dirty data at any time.

The last phenomena we will discuss in this context are called phantoms and are arguably the
hardest interferences to deal with. Up to this point we assumed the database to be static, i.e.,
no new data objects were inserted. In the real world, however, databases are dynamic (i.e., they
shrink and extend from time to time), which is where phantoms start to play a role [16, p. 65].

To demonstrate the effects of phantoms in a database with only three data objects (a = 1, b = 2,
c = 3), consider a schedule in which transaction T1 calculates the average value of these items.
Now let us assume that T1’s algorithm splits this calculation in two separate database scans. In

10



its first scan, T1 sums up the object values, resulting in 6, while in the second iteration, T1 simply
counts the number of objects in the database, which equals to 3. Dividing the first number by the
second yields the average value, which is obiously 2. But think about an unfortunate schedule
where a second transaction T2 inserts a new object d = 4 between the two scans performed by
T1. In this case, T1 still computes a sum of 6 (sum over a, b and c). However, the second pass
suddenly reveals an object count of 4, thereby misleading T1 to the false conclusion that the
average value amounts to 1.5, which is not true for any transaction-consistent database state.

As a matter of fact, the phantom problem exceeds the expressiveness of the simple transaction
model we have used so far. In terms of conflict serializability, phantoms are undetectable,
because they do not introduce any conflicting operations. Our CSR model would infer that
the example schedule from above is equivalent to the serial execution of T2|T1. However, due to
limited knowledge about T1’s algorithm, it ignores the fact that for the suggested serial order, T1
would already have read the inserted object d during its first iteration, leading to a consistent
picture once again. To overcome this issue, the transaction model needs to be extended to
explicitly allow for scan operations, as performed by T1 in the example, which will however not
be discussed within the scope of this thesis.

3.1.3 Isolation levels

The widely-adopted SQL standard for realtional database systems defines four isolation levels or
degrees of consistency which are essentially specified in terms of the multi-user phenomena from
above. The main idea is that every transaction may decide for itself which degree of consistency
is required and which kinds of anomalies are acceptable for the application. By choosing lower
isolation levels, application designers can trade throughput for correctness [15, p. 1]. After all,
reduced consistency implies that more transaction schedules are considered acceptable by the
concurrency controller, which therefore leads to increased parallelism.

From lowest to highest isolation level, READ UNCOMMITTED allows any kind of anomaly dis-
cussed. As the name indicates, the next level READ COMMITTED ensures that data read by
the corresponding transaction is always committed, thus preventing dirty reads. Increasing con-
sistency a step further, the isolation level REPEATABLE READ additionally avoids lost updates
and non-repeatable reads from happening. Only the hightest isolation level, appropriately named
SERIALIZABLE, rules out phantoms.

Despite not an SQL database, BrackitDB offers the same isolation levels, which can be selected
on transaction begin.

As a side note, some database systems provide isolation levels with slightly deviating consis-
tency guarantees. For instance, the level CURSOR STABILITY known from DB2 [7], is situated
between READ COMMITTED and REPEATABLE READ, and was specifically designed to prevent
lost updates [15, p. 6].
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3.2 Introduction to Locking

After discussing the purpose and challenges of concurrency control, we will pursue the question
how locking helps to achieve serializability in a concurrent environment. First of all, locking
is not the only approach for implementing concurrency control. In fact, a variety of different
mechanisms can be found which aim for a proper balance between correctness on the one hand
and high parallelism on the other. Generally, concurrency control techniques can be classified
as either pessimistic or optimistic. While pessimistic (or conservative) schedulers tackle serial-
izability by delaying transaction operations in order to avoid inconsistent schedules in the first
place, optimistic (or aggressive) approaches try to schedule operations immediately. By doing
so, optimistic schedulers take the risk of forcing transactions to rollback if the resulting schedule
turns out to be non-serializable [16, p. 47/48].

3.2.1 Basic RX Locking

According to the previous classification, locking clearly belongs to the pessimistic techniques.
The general requirement in a locking-based system is that a transaction always has to obtain a
lock on the respective data item before it is allowed to work on it (i.e., perform read or write
operations). Since only one lock exists for each data item, it is guaranteed that a particular
object is accessed by at most one transaction at any time. If we further assume that every
transaction can be split up into two phases, while locks are only acquired in the first phase and
only released in the second phase (known as two-phase locking or 2PL), conflict serializability of
the resulting schedule can be proven [16, p. 53 ff.]. Bear in mind that 2PL only works under the
premise that transactions always commit successfully. Otherwise, a stricter protocol (strict 2PL
[22, p. 418]) is required where locks are only released after transaction commit is ensured.

Although locking data objects exclusively in a 2PL fashion achieves (conflict) serializability, it is
by far stricter than it needs to be. For instance, allowing two transactions to read the same data
at the same time would not sacrifice serializability because read operations are not conflicting
in terms of CSR. However, not protecting read accesses at all would introduce read/write and
write/read conflicts and thus permit dirty reads and non-repeatable reads.

Therefore, to enable increased parallelism without renouncing serializability, more sophisticated
locking protocols offer several lock modes. The two modes encountered in almost any locking
scheme are the exclusive mode X and the read mode R (or alternatively S for shared mode).
It lies in the responsibility of the corresponding locking protocol to define the compatibility
among the introduced lock modes, which is usually done in the form of a compatibility matrix.
This matrix has to answer the question whether a lock mode requested by transaction T1 is
compatible with the lock mode already held by T2. If the answer is positive, the lock request
can be granted. Hence, in a multi-mode lock protocol, a data item can be locked multiple times
by different transactions. Depending on the concrete implementation, a lock manager might
even allow a transaction to hold several lock modes on the same object (e.g., both X and R at
the same time). In BrackitDB, however, the underlying assumption applies that any transaction
can only hold at most one lock on each data item.
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3.2.2 Lock Conversion

The previous discussion leads us to the question how the locking manager deals with the situation
where a transaction first reads data and later decides that it needs to modify the same data.
Complying to our simple RX locking protocol, the transaction would first acquire a read lock
prior to the actual read operation, and would later try to obtain an exclusive lock. In this
situation, the lock manager has to perform lock conversion. As a result, the read lock already
held by the transaction is upgraded to an exclusive lock, given that the X lock is compatible with
all the other granted locks on this object. If not, the conversion is delayed until this condition
is met, just like for new requests.

In the previous example, it was quite evident that an R lock followed by an X request would
lead to an X mode after conversion. In general, however, the locking protocol has to explicitly
define how the conversion is performed, i.e., which mode results from which combination of held
and requested lock mode. Again, this relation can be defined in terms of a matrix, namely the
conversion matrix. In a manner of speaking, conversion has to yield a lock mode that covers
both the current and the requested mode or, in other words, conversion generally makes the
acquired lock stronger. Obviously, an obtained X lock is not downgraded to R when an object
is read after being written to, because this would expose uncommitted data to other readers.

3.2.3 Update Locks

Another commonly used lock mode next to the basic RX modes, is the update lock U [36, p.
945 f.]. It gives a transaction the privilege to read an item but not to modify it. At that, the
U mode is pretty similar to the read mode. However, an update lock can both be downgraded
to R or upgraded to X, depending on the value the transaction reads from the object. The
advantage of upgrading an U instead of an R lock, stems from the fact that a U→X upgrade
does not involve the risk of a conversion deadlock. Upgrading an R lock to X, on the other side,
leads to a deadlock whenever this upgrade is performed by two transactions at the same time,
which is a perfectly valid scenario due to the R mode being compatible with itself. In contrast,
an item can only be update-locked once, while a second update transaction would have to wait
until either the first transaction downgrades to R or commits altogether (if it decided to upgrade
and modify the data). In order to avoid indefinite delays for U→X upgrades, i.e., the conversion
is never granted due to continuously incoming readers, the update lock mode is often defined
asymmetrically. As a result, U is compatible to existing R locks but new readers have to wait
for the update transaction to finish or downgrade.

3.2.4 Locking Challenges

Although it was stated earlier that locking techniques avoid incorrect (i.e., non-serializable)
transaction schedules before they even occur, locking does not guarantee liveness. If read or write
operations from the participating transactions arrive at the database system in an unfavorable
order, some (if not all) transactions might end up in a deadlock, waiting for other blocked
transactions to release their locks. As long as transaction are allowed to access data items in
an arbitrary order (i.e., without any protocol), deadlocks are bound to occur in classical 2PL
systems [16, p. 52].
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Another big challenge for locking techniques is phantom prevention. As a matter of fact, the
two-phase RX locking described previously does not solve the phantom problem and hence only
provides REPEATABLE READ isolation at most. Protection against phantoms would technically
involve locking data items that do not exist but might be inserted later [36, p. 961]. As
a consequence, phantom protection requires additional mechanisms on top of a classical lock
manager, e.g., locking based on logical predicates.

3.3 Hierarchical Locking

Up to this point, we modeled a database as a set of generic data items holding some values,
and discussed how appropriately locking these objects achieves serializability. However, we did
not say any words about the granularity of these items. In terms of relational databases, a
lockable object might be a particular column value of a tuple, a whole record, a table, or even
the entire database. The good news is, the serializability considerations and locking techniques
from above apply in any case. Thus, the granularity of data items does not affect correctness
in any way [16, p. 69]. But what it does have an impact on is the system performance. Finer
granularities are more precise and improve parallelism, in that the transactions only lock what
they actually access. On the other side, we have an increased locking overhead due to the higher
amount of involved locks that need to be acquired and managed. Hence, choosing a suitable
lock granularity requires finding a balance between locking overhead and degree of concurrency
[16, p. 70].

But instead of statically deciding on a global lock granularity, we can even allow different
granularities at the same time to achieve an optimal locking behavior for each transaction or
operation. For instance, a transaction scanning through a whole table would ideally request a
shared lock on the table, while a transaction selecting a handful of tuples satisfying a certain
condition, might better only acquire locks on these specific records and therefore enable other
transactions to concurrently modify other tuples of that same table.

The technique that deals with locks of different granularities is called multi-granularity locking
(MGL) and even dates back to the seventies [19]. For a start, let us assume the database is
hierarchically structured in terms of granularities, i.e., each granule is contained in a coarser
granule on the next higher level, so that the database can be regarded as a tree of lockable items
(MGL also works on directed acyclic graphs, but for our purposes, tree structures are sufficient).
In relational systems, this tree is intuitively induced by the database/table/tuple hierarchy.
However, lock granularities can also be defined based on rather physical characteristics, such as
database/container/page/record. In order to decide on lock compatibility on different hierarchy
levels, MGL introduces a new class of lock modes, called intention locks.

Intention locks are acquired for inner (non-leaf) nodes to indicate that the owning transaction
intents to read or modify an item further down the tree, i.e., on a finer granularity level. For
the basic RX locking scheme, its hierarchical generalization therefore includes two new lock
modes: IR (for intention read) and IX (for intention exclusive). An R (or X) request on a
node is processed according to the following algorithm: For each ancestor of said node, starting
from the root, obtain an IR (or IX) lock. Once every ancestor is appropriately intention-locked,
acquire an R (or X) lock on the actual data item. The resulting locking situation might look
like depicted in Figure 6. Note how R/X locks also protect the underlying subtree.
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Figure 6: Possible locking situation for hierarchical RX protocol

Essentially, locking ancestors with intention locks ensures that lock compatibility can always be
verified locally based on a single node. For instance, imagine there were no intention locks and
a transaction requested a read lock on a table, while another transaction held exclusive locks
on some table records below. The lock manager could not decide whether to grant the R lock
on the table without checking compatibility with each record contained in that table, whereas,
with an IX lock present on the table, the lock manager would immediately deny the R request
as long as the other transaction modifies data on record granularity.

Another mode often supplementing the above described hierarchical lock protocol is RIX [22, p.
429], combining the privileges of R and IX locks in one mode. RIX improves the common case
where a transaction reads through a set of data items (e.g., a table) but only modifies a fraction
of these finer-grained objects (e.g., tuples). Without RIX, the transaction would either have to
lock plenty of items on the fine granularity level with R or X modes, or rather lock the whole
subtree exclusively. As a matter of fact, unifying lock modes for frequently encountered locking
scenarios is a cheap way for enhancing concurrency in a system that restricts transactions to
hold at most one lock per item, like in BrackitDB. The compatibility matrix for MGL including
the RIX lock mode is given in Table 1.

R X IR IX RIX
R + - + - -
X - - - - -
IR + - + + +
IX - - + + -
RIX - - + - -

Table 1: Compatibility matrix of RIX protocol

Up to here, we took for granted that transactions magically knew which lock on which granularity
would achieve the best result in terms of both locking overhead and concurrency. In reality,
though, identifying the most appropriate locks for a sequence of data operations is by far not
trivial. Evidently, the more knowledge about the actual transaction we have, the better we
can optimize the lock request pattern. On the one hand, the goal is to acquire enough locks
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to cover all data accesses adequately, but on the other hand, the total amount of locks should
be minimized. However, locks are usually not explicitly requested by the database application
itself, since ensuring correctness in a concurrent environment is the duty of the database system.
Instead, lock acquisition is automatically triggered when the transaction performs read or write
operations on certain data items. Unfortunately, the lock manager does not see the whole picture
and is thus not able to perfectly predict upcoming data accesses. The choice of the appropriate
lock granularity is therefore based on the transaction’s recent access behavior.

A heuristic approach to tackle this challenge is called lock escalation [16, p. 75]. In essence,
the transaction starts out obtaining locks on the finest granularity (e.g., records in a relational
system) until the number of held locks in a particular subtree (e.g., records belonging to the
same table) exceeds a certain threshold. Once this is the case, lock requests are escalated to the
corresponding parent node in anticipation that plenty more data items in that subtree will be
accessed in the future.

It should be noted that hierarchical locking schemes provide phantom protection to some extent,
if the lock granularity is cleverly chosen. For instance, when a transaction scans a table multiple
times, but requires for its correctness that all iterations retrieve the same set of records, read-
locking the entire table instead of every single record avoids unwanted insertions during its
processing.

3.4 taDOM Isolation

So far, the discussed correctness principles and locking approaches are not bound to any par-
ticular data model. Although they were originally invented for relational database systems, the
above-described techniques can be conveyed and adjusted specifically to XML data. In terms of
its structure, access operations, and querying capabilities, the XML data model is undeniably
more flexible and complex than a set of tuples organized in flat tables. Therefore, XML data
requires more sophisticated transaction isolation mechanisms than presented thus far, especially
when it comes to phantom protection.

In order to cope with these challenges, taDOM (transactional DOM) was designed [27, 25, 24, 28].
It extends the well-known DOM API [41] for XML documents by incorporating the core concepts
from hierarchical locking and adding tailor-made, fine-grained lock modes to allow for efficient
transaction isolation on the node interface. DOM itself is an API that represents an XML
document as a tree structure of node objects and defines various operations on these nodes,
such as navigation to related nodes (e.g., next sibling or first child), document manipulation
(inserting, modifying or deleting subtrees) and even basic querying (e.g., retrieve an element by
its ID attribute). However, DOM is designed for single user environments [27]. If multiple users
work on the same XML file, they will merely operate on their local DOM tree constructed in
their respective main memory, rather than collaborating with others. In contrast, taDOM lets
multiple users access the same document tree concurrently while maintaining serializability.
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3.4.1 Node Locks

taDOM establishes a hierarchical locking protocol based on the document tree by mapping XML
nodes to granules in MGL’s terminology. Before a node can be accessed (by means of traversal or
modification), the transaction must obtain an appropriate lock. Apart from the lock modes we
already learned about, taDOM introduces a couple of additional lock modes specifically designed
to increase parallelism. As mentioned earlier, read and write locks in MGL always protect the
entire subtree from concurrent accesses, which is why their taDOM counterparts are denoted
SR (subtree read) and SX (subtree exclusive), respectively.

bookSR1 IR2

titleSR2 author year

... ... ...

bookNR1 IR2 IX3

titleSR2 authorCX3 year

... ...SX3 ...

NRSR

Figure 7: NR lock mode for increased parallelism

In many cases, however, locking the whole subtree when only one node is effectively accessed is
an unnecessary restriction that reduces parallelism noticeably. For this reason, taDOM offers a
new lock mode NR specifically for reading nodes only. Essentially, the NR mode is implicitly
acquired for all nodes returned by any traversal operation (e.g., next sibling) which makes it
the most frequently encountered lock mode in many scenarios. NR grants the transaction the
privilege to read the node’s name (for elements or attributes) and its value (for attributes and
text nodes) and furthermore prevents any of these nodes to be deleted concurrently. In contrast
to SR, this new lock mode does not affect descendent nodes in any way so that modifications
in the underlying subtree are allowed, as demonstrated in Figure 7. For the moment, treat the
CX lock mode like a special variant of IX, which will be explained later.

The second novel lock mode employed by taDOM is LR (level read) which is obtained for
operations like getChildren() or getAttributes(), and prevents concurrent modifications
of the context node itself and its children (but none of its other descendents). With that, LR
behaves similarly to a collection of individual NR locks on the context node and each of its
children, but only has to be issued once on the respective parent. But aside from the reduced
locking overhead, LR features a built-in phantom protection, since child insertions are impossible
as long as LR locks are active. One possible use case of a level read lock is depicted in Figure 8.
Transaction T1 iterates over all book elements in the library document, possibly looking for a
specific book identified by one of its attributes. At the same time, though, another transaction
T2 is allowed to modify a subtree located on a deeper level of this document. Since read locks
are always compatible to each other, another transaction T3 might hold an SR lock on one of
the respective children, thus leading to overlapping lock scopes.
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Figure 8: Demonstration of LR lock mode

As pointed out before, it is essential in a hierarchical locking protocol to be able to decide whether
an incoming lock request can be granted or not, by simply inspecting the locking situation at the
local node. Obviously, the need to examine the underlying subtree leads to unacceptable locking
overhead. With regard to the new LR lock mode, the lock manager has to determine whether
one of the child nodes is exclusively locked by another transaction before it can grant the LR
request. We are already aware of IX locks which are obtained to indicate write activity in one
of the descendent subtrees. However, not allowing LR locks on nodes with granted IX locks is
again too restrictive in terms of parallelism, since chances are that the X-locked node resides
on a deeper level in the corresponding subtree. To this end, taDOM stipulates that the parent
of an exclusively locked node must be locked in CX (child exclusive) mode, while any other
ancestor is still tied to the more generic IX lock mode. By instituting this new intention lock
mode, taDOM can allow LR and IX to be compatible, whereas LR and CX are contending.

Another lock mode not explicitly addressed so far is the SU (subtree update) lock mode. In its
functional principle, SU behaves equivalently to the update lock in the non-hierarchical locking
scheme. SU allows for value-dependent updates and therefore supports downgrades to SR or
upgrades to SX, respectively. It may be interesting to note that SX requests are always preceded
by SU requests in BrackitDB’s current implementation, even if the upcoming lock upgrade is
already decided and imminent. The reason for this seemingly unnecessary SU lock is related to
instant lock granting. Whenever a lock request arrives at some node and this request turns out
to be compatible with the node’s current lock mode, the request is granted without checking
the lock request queue for other pending requests. As a result, an SX lock request may never
be granted in a hotspot region where new SR requests arrive continuously. To compensate
for this “unfair” scheduling behavior, write transactions always start out acquiring an SU lock
that is compatible with existing SR locks but prevents newly requested SR locks to be granted
instantly.

Finally, the compatibility of taDOM’s lock modes discussed up to now is presented in Table 2. It
should be mentioned that this compatibility matrix is only part of the truth. As a matter of fact,
taDOM constitutes a whole family of locking protocols which become increasingly complex in
exchange for improved concurrency characteristics. The lock modes introduced so far make up
the taDOM2 variant which is aimed for fine-granular transaction isolation on top of operations
defined in the DOM Level 2 standard [39]. However, it does not perform well for some of the
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IR NR LR SR IX CX SU SX
IR + + + + + + - -
NR + + + + + + - -
LR + + + + + - - -
SR + + + + - - - -
IX + + + - + + - -
CX + + - - + + - -
SU + + + + - - - -
SX - - - - - - - -

Table 2: Compatibility matrix of taDOM’s core modes

operations specified by DOM Level 3 [40]. For instance, renaming an element node requires the
acquisition of an exclusive lock on the entire subtree due to the lack of better suited lock modes,
which is why outsourcing element names into virtual name nodes is proposed for taDOM2 [25].
In contrast, taDOM3 resolves this matter by establishing new lock modes specifically designed
for single node modifications (NU for node update and NX for node exclusive) which behave just
like the NR mode in terms of their scope.

Moreoever, the basic variants taDOM2 and taDOM3 can quickly end up in coarse-granular lock-
ing conditions whenever lock conversions take place. As explained earlier, conversions become
necessary when a transaction requests different locks on the same node (or subtree) over the
course of its lifetime. Since a transaction can at most hold one lock per node, the obtained and
the requested lock mode need to be merged into a mode strong enough to imply both original
locks. If no appropriate conversion mode is provided by the instantiated protocol, subtrees
rapidly become exclusively locked. For this reason, taDOM2+ and taDOM3+ additionally in-
troduce combinations of the lock modes previously discussed, such as LRIX, SRIX, LRCX and
SRCX. The semantics of these hybrid modes can be interpreted as the logical conjunction of
both, i.e., their row and column entries in the compatibility matrix is simply determined by
applying the AND operator on the row/column of the original lock modes.

Another scenario where these hybrid modes are beneficial is when separate transactions hold
different but compatible lock modes on the same node, such as LR and IX. Since incoming lock
requests are not verified against each individual granted mode from the queue but instead against
the overall lock mode (which sums up to SX for a granted LR and IX lock), further concurrency
is essentially obstructed even if permissible in terms of serializability. Again, hybrid lock modes,
like LRIX in this example, help to maximize parallelism.
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3.4.2 Edge Locks

The locking mechanism addressed so far, however, is not sufficient to ensure serializability.
After all, correct transaction isolation implies that a transaction can read the same data multiple
times and will always yield the same result. Reading data in the context of XML mostly involves
navigation, i.e., stepping from one node to another along one of the axes, such as Next-Sibling
or First-Child. With this in mind, assume a transaction iterates over a node’s children by
first retrieving its first child, and then continuing to traverse along the Next-Sibling axis
until it arrives at its last child. Despite the appropriate acquisition of node locks on every node
passed, as explained above, repeating the same sequence of navigation steps at a later time (but
within the same transaction) could potentially return phantoms which have not been there the
first time. Be aware that in this particular case phantoms can be easily prevented by utilizing the
LR lock mode, but in general there is not a perfect phantom-free lock mode for every conceivable
sequence of navigations.

For this reason, taDOM employs a second layer of locking which functions on top of the node
locking mechanism. These locks are called navigation locks [27, 29], or more commonly edge
locks [25, 12, 11, 13, 14].

next siblingprevious sibling

last childfirst child

R U X
R + - -
U + - -
X - - -

Figure 9: Navigation edges and related lock modes

Figure 9 depicts different edges for which an appropriate lock must be acquired before the
corresponding navigation step (e.g., getNextSibling()) can be performed. Since edge locks
are inherently non-hierarchical, as opposed to node locks, edge locking settles for the basic RUX
lock modes. While R is required to traverse along an edge, the U/X combination allows for
edge modifications. For instance, when a transaction inserts a new node Nnew between nodes
Nleft and Nright, it needs to hold an X lock on both the Next-Sibling edge of Nleft and
the Previous-Sibling edge of Nright because both edges will point to a different node after
the insertion. In consequence, if another (serializable) transaction already traversed over these
edges and has therefore perceived Nleft and Nright as adjacent sibling nodes, then this image
will be preserved until it eventually commits and releases its R edge locks.

3.4.3 Index Locks

With the combination of node and edge locks established so far, taDOM only achieves serializ-
ability if all transactions start executing at the root node and only make use of navigation steps
to perform their workload. However, document entry from any secondary index still involves
the risk of phantoms. For instance, retrieving a list of element nodes with a specified name from
the name index [31, p. 197] causes every returned node to be NR locked. While this protects
the elements from being renamed or deleted, other transactions might still insert new elements
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with matching names. Hence, opening the name index again at a later time with the same query
parameters (i.e., given element name), might fetch an extended list of element nodes, including
phantom elements that have been inserted concurrently.

In order to prevent this kind of anomalies, BrackitDB implements Key-Value Locking (or KVL
[32]) for all B+ trees employed as secondary indexes. In a nutshell, KVL aims not only for
locking single index entries but also protects key ranges traversed by index scans. Therefore,
KVL effectively prevents phantoms resulting from secondary index accesses.

Although the above-mentioned approach on top of node and edge locks finally achieves seri-
alizability, index locks are considered to be too restrictive in the scope of XQuery and DOM
predicates, thereby reducing concurrency more than necessary. For this reason, a different ap-
proach to deal with phantoms in taDOM, called value-based axes locking, was suggested in [26]
but will not be further explored in this thesis.

3.4.4 Lock Escalation

We briefly sketched the purpose of lock escalation in the context of MGL in section 3.3. As a
matter of fact, lock escalation is not a technique specifically designed for taDOM, but constitutes
a general mechanism in hierarchical locking for finding the proper balance between lock overhead
(mainly defined by the number of locks that have to be managed) and level of parallelism
(determined by the lock granularities in use). However, lock escalation is deemed an integral
part for an efficient taDOM implementation, so that a closer look into its concrete realization
in BrackitDB seems appropriate.

The basic problem in MGL and taDOM is indeed the same, namely to figure out which level of
granularity provides the best performance. If no lock escalation takes place, taDOM will always
assign the finest possible granularity for a specific operation. For instance, reading or navigating
over a single node will only acquire a node read (NR) lock on said node, while a subtree scan
(by means of the getSubtree() operation) will instantly lock the whole underlying subtree by
obtaining the SR mode. Hence, the granularity is already determined by the kind of operation
the transaction invokes.

But imagine the case where a transaction accesses thousands of nodes successively in a low-traffic
subtree of the document. Although there is no other transaction present that could interfere, a
lock must be acquired for each single node in compliance with the lock protocol. The result is a
huge locking overhead for no actual benefit. This is a scenario where lock escalation can prove
useful.

In BrackitDB, we can distinguish between two kinds of lock escalations. The first one describes
a static lock depth [27, 29], which determines the maximal level for which locks are obtained
in general. For a lock depth of 0, a transaction will only go for the root node lock, whereas
lock depth 1 involves the root node and its children, and so on. If a node is accessed which
is located deeper in the document tree than the lock depth allows, its corresponding ancestor
will be locked instead. Keep in mind that escalating a lock request to an ancestor potentially
widens the lock mode as well. Escalating mode NR upwards the hierarchy results in an SR of
the related ancestor subtree. Consequently, if it is known for a certain document on which level
the transaction contention usually takes place, the lock depth should be fixed to a value slightly
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higher than the hotspot location. That way, fine granularities are used in these high-traffic
areas, while everything underneath is locked coarsely.

The other kind of lock escalation in BrackitDB works dynamically at runtime. Apparently, the
overwhelming drawback of the lock depth is its inflexibility. Every part in the document is
affected by the same static lock depth, even though some parts might accommodate a hotspot
region deeper down the tree, while other parts might not even be accessed at depth 1. For
this reason, dynamic lock escalation (mostly just called lock escalation as such) only performs
escalation when it detects a high degree of locality in a certain subtree.

Incidentally, tracking locality is a cheap task, since it takes advantage of the fact that ancestor
locks have to be acquired anyway. While performing intention locking, an internal lock request
counter is incremented for the direct parent of the requested node, thereby indicating that one of
its child nodes is accessed. Once this counter exceeds a certain threshold for a node, future lock
requests to one of its children are escalated to this node instead. In this manner, locks are being
escalated upwards one level after another if the transaction turns out to be very busy in the
corresponding subtree. Needless to say, escalation only takes place if the escalated lock mode is
compatible with all the other locks held at the parent node. As a result, only subtrees that are
occupied by a single transaction bear the potential of being coarsely locked due to locks being
escalated, while high-traffic subtrees are totally unaffected by the escalation mechanism.

The above-mentioned threshold is computed from the node’s level in the document tree and
two adjustable system parameters specifying the aggressiveness of the escalation policy, which is
documented in [14]. More specifically, the concrete formula used by BrackitDB has the following
shape:

threshold = maxEscalationCount

2level ∗ escalationGain

Although this formula is primarily a rule of thumb than exact science, the basic underlying
consideration is: The deeper a node is located in the document, the lower is the threshold for
performing lock escalation. The parameter from the numerator, maxEscalationCount, con-
stitutes an absolute basis for the number of locks that need to be held at most before escalation
is applied. This value is not changed throughout different escalation strategies. Whereas the
parameter from the denominator, escalationGain, affects how the threshold changes from
one level to the next, i.e., the higher this value is set, the more aggressive is the escalation policy
for deeper nodes.

Throughout the benchmarks in this thesis, the following escalation policies are applied:

maxEscalationCount escalationGain
moderate 1920 1.0
eager 1920 1.4
aggressive 1920 2.0
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3.5 Implementation Aspects

After we treated the locking mechanisms utilized by BrackitDB in adequate detail, let us have a
brief discussion about some of the challenges that arise when implementing an efficient, taDOM-
aware lock manager. The main obstacles on the way are synchronization issues right up to
sporadic, system-wide deadlocks that are very difficult to track down and fix. Be aware that a
deadlock in this context does not refer to an actual locking-based transaction deadlock which
also occur in flawless lock manager implementations. What is rather meant here are deadlocks
due to a lack of carefulness when synchronizing access on shared data structures among multiple
threads. An ever so minuscule bug in one of the sensitive code sections can cause the system to
crash or halt instantly, or it may work as expected in 99 out of 100 cases, but sooner or later
the consequences of incorrect synchronization eventually come to light.

3.5.1 Lock Table

The most important data structure in terms of locking is undeniably the lock table, which stores
a so-called lock header for every lockable object (in BrackitDB, this is a node). This header
contains locking-related information about the corresponding lock object, such as the currently
granted lock mode (if several modes are granted to different transaction at the same time, this
one describes the “strongest” granted mode). But what is more, the header points to its lock
request queue which is managed as a linked list, as depicted by the solid arrows in Figure 10.

...

...

1.9.3.3

1.7

1.7.13
Header

Mode:  SU

Request

State:  GRANTED
Mode:  SR

Request

State:  WAITING
Mode:  SR

Request

State:  CONVERTING
Mode:  SU → SX

Header

Mode:  IR

Request

State:  GRANTED
Mode:  IR

Request

State:  GRANTED
Mode:  IX

Request

State:  GRANTED
Mode:  IR

Header

Mode:  SR

Request

State:  GRANTED
Mode:  SR

Request

State:  GRANTED
Mode:  NR

TX1 TX2 TX3

h (1.7.13)

Figure 10: Lock table in BrackitDB

While the header contains a reference to the first request in its queue, every subsequent request
again points to the next in the list, accordingly. It should be emphasized that not only pending
requests are kept in this list, but also currently granted requests. Therefore, one of the request’s
attributes reveals its current state (e.g., GRANTED or WAITING). Depending on this status
information, a request includes up to two lock modes: the first lock mode describes the mode
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that is currently granted to the transaction (or null if the transaction does not hold any lock
mode yet). The second one is the lock mode the transaction is trying to obtain. Hence, if both
lock mode fields in a request are given, a lock conversion (from the granted to the requested
mode) is indicated. Note that in BrackitDB’s implementation, a transaction can only issue one
request per header. Requesting a second lock mode on the same object at a later time causes
its old request to be converted accordingly.

On top of the request queue starting from the header object, there is a second chain of requests
connecting all lock requests of a particular transaction in a doubly linked fashion (illustrated
as dashed arrows in Figure 10). That means, a request does not only link to the next request
in the header queue, but it also holds references to the next and previous request of the same
transaction. Evidently, this transaction-oriented chain is useful at commit time for releasing all
acquired locks in one go.

For now, we only talked about the static data structures that make up the lock table. Inciden-
tally, the object structure explained above is not only accessed by one thread at a time. Instead,
for scalability reasons, the lock table is allowed to be traversed and modified by a multitude
of transaction threads at the same time. Therefore, preserving the physical consistency of this
data structure becomes one of the biggest challenges from an implementation viewpoint. As a
matter of fact, a variety of latches and critical sections are involved when performing operations
on the lock table. The implementation of the hash table itself (in Figure 10 portrayed as a set
of buckets on the left) is based on the design of the ConcurrentHashMap class supplied by
OpenJDK, to provide a high degree of parallelism within the lock table.

The second means for synchronization is provided by the header objects, which can be read- or
write-latched. In the database context, a latch denotes a short-lived lock that is used to protect a
data structure from concurrent access. They should not be confused with database locks. While
latches preserve the physical consistency of some data structure, locks ensure transactional
consistency [11]. Latching the header in read mode is needed to get a consistent view of the
header state and the request queue. Therefore, changing header attributes or modifying the
request queue (e.g., when a new request arrives or an old lock is released) requires the thread
to X-latch the header before. Yet another latch that plays a role for the physical consistency
of the lock table is provided per transaction, and protects the (dashed) doubly linked request
chain from concurrent modifications. As a result, in order to be allowed to enqueue a new lock
request, the related thread must first obtain both an X latch on the header and an X latch
for the corresponding transaction request list. Failure to adhere to the concurrency protocol
imposed by the lock table implementation results in deadlocks and inconsistent lock entries.

3.5.2 Edge Lock Internals

One might have noticed that the lock table format previously presented relies on DeweyID hash
values for finding corresponding lock headers. Thus, the question arises how edge locks fit into
this architecture. As a matter of fact, BrackitDB implements a unified lock service that keeps
node and edge locks in the same physical lock table. This is done by introducing an extended
DeweyID format which includes an additional “division”, called a tail. If this tail is set to zero,
the related DeweyID describes a node. If it is non-zero, however, the extended DeweyID denotes
an edge, while every edge specifies its own specific tail value. For instance, the lock header for the
node 1.5.3 is stored under the name 1.5.3#0 where # separates the actual DeweyID from its
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tail. On the other hand, the Next-Sibling edge of the same node is identified by 1.5.3#-4
while -4 is simply the internal value that was arbitrarily chosen for Next-Sibling.

The practical implication of this unified node/edge lock approach is that edge locks must also
adhere to the hierarchical locking protocol, i.e., locking some node’s Next-Sibling edge re-
quires the transaction to obtain the corresponding intention locks on the whole ancestor chain
(including the context node). Or from a different perspective, locking a subtree in the docu-
ment implicitly protects all underlying edges as well. It should be stressed that this hierarchical
dependency between node and edge locks does not restrain parallelism on the edges, since nav-
igation over edges imply that the transaction at least holds a shared lock on the context node
anyway.

3.5.3 Deadlock Detection

Another major component of BrackitDB’s lock management is the deadlock detector. As already
mentioned earlier, partial or even system-wide deadlocks are bound to occur in locking-based
systems. They are caused by unfortunate transaction schedules where two or more transactions
wait for each other in a cyclic manner. For this reason, a deadlock resolution mechanism is
necessary. In BrackitDB, the deadlock detector (DD) runs periodically in a separate thread so
that deadlock resolution is still possible, even when all transaction workers are already blocked.
Every time the DD thread wakes up, its task is to crawl through the lock table and to construct
a wait-for graph on its way. This graph adopts transactions as nodes, and waiting conditions as
edges among them. If the wait-for graph turns out to contain a cycle, one of the participating
transactions is selected to be aborted.

The decision for a suitable abort candidate is determined by the number of obtained locks. In
general, a low number of locks is an indication that the corresponding transaction has not per-
formed too much work yet, so that aborting this transaction does not inflict the same amount
of damage than aborting a long-running transaction that is about to commit. After the trans-
action rollback is triggered, the DD remains active and reevaluates the wait-for graph (possibly
aborting further transactions) until the deadlock is finally resolved.

One of the biggest issues with the DD is however caused by its inconsistent view on the ac-
tual locking condition in the system. While it builds the wait-for graph, it has to comply with
the same latching protocol as every other thread accessing the lock table. As a consequence,
the resulting wait-for graph does not reflect a perfectly consistent snapshot of the actual wait-
relationships in the system. Sometimes false positives are detected so that perfectly alive trans-
actions are aborted to no avail. Moreoever, under rare circumstances, the DD is not able to find
a suitable transaction for rollback in a deadlock cycle because all participating transactions are
already committed or rolled back. In this case, the DD ignores the supposed “deadlock” and
continues its work.

After the theoretical and practical aspects of locking and lock management have been sufficiently
discussed, the remainder of this thesis deals with the preparation and execution of benchmarks
that we need to conduct in order to evaluate the performance and effectiveness of locking-related
techniques introduced in this section.
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4 Benchmark Architecture and Setup

The following section is meant to provide an introduction to the benchmark suite, an extensible
framework for the definition and execution of software benchmarks, and how this tool interacts
with BrackitDB on an architectural level. Subsequently, the benchmark semantics is discussed
by describing the structure and meaning of the actual benchmark document (generated by the
XMark tool), and which kinds of transactions produce the workload on the database during
the test runs. Ultimately, a quick overview over the hardware and software environment is
presented.

4.1 The Benchmark Suite

All experiments conducted as part of this thesis were performed and evaluated by a utility
application written in Java, known as the Benchmark Suite or BenchSuite for short. While
mainly developed as an extensible benchmarking tool for XTC/Brackit, the BenchSuite provides
ambitious benchmark-related features for any kind of project. For a better understanding of the
measurements presented later, this section sheds some light on the BenchSuite’s characteristics,
its architecture, and how it interacts with BrackitDB in the first place.

In essence, the BenchSuite’s features can be summarized as follows:

• XML documents to specify benchmark configurations

• extensibility through custom (e.g., project-specific) actions and work units

• interactive or non-interactive shell for running and managing benchmarks

• basic data browsing capabilities to crawl through the measurements of a stored benchmark

• data aggregation and HTML export

• generation of plots using gnuplot [3]

4.1.1 Terminology and Benchmark Layout

In order to sketch how a benchmark is specified, we need some basic insight into the BechSuite’s
terminology. A benchmark describes the most coarse-grained unit of execution and typically
takes a few hours up to several days, while running workloads repeatedly under varying system
conditions and gathering various measures along the way. In the scope of this tool, a benchmark
consists of one or more series, which are again split up into different scenarios, while each scenario
of each series is run multiple times to smoothen the results and thus gain more accuracy and
stability.

The benchmark layout introduced by the BenchSuite (as illustrated in Figure 11) essentially
allows to compare two variables and their effect on the system. One of these variables can
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Figure 11: Basic benchmark model in the BenchSuite

change from series to series, while the other is modified from scenario to scenario. Although one
might think that the notion of a Run establishes a third dimension in our benchmark model, it
is however not possible nor desirable to vary the system configuration from one run to the next,
as their sole meaning is to yield a larger data sample.

A variable in this terminology is an abstract notion, which might stand for a simple configuration
parameter of the software being benchmarked (e.g., size of the page buffer in the database sys-
tem), or it might even describe distinct software systems altogether. For instance, to compare dif-
ferent relational database systems (e.g., DB2, MySQL, Oracle, etc.) under similar workloads, one
would possibly dedicate one series to each of these competing systems, while the scenarios might
vary the query type. Hence, the effect of two variables (var1 ∈ {DB2,MySQL,Oracle, ...} and
var2 ∈ {query1, query2, ...}) is investigated within one benchmark. Although technically not
necessary, the examined scenarios are similar throughout all series. In terms of comparability, it
would hardly make sense, for instance, to investigate an entirely different set of queries in DB2
and MySQL and eventually put the results next to each other and analyze them. In fact, the
distinction between series and scenarios is non-essential for the benchmarks conducted in this
thesis, as the two confronted variables are always independent from each other, and therefore
the hierarchy imposed by the series/scenario distinction can easily be inverted by assigning the
inner variable to the series and the outer variable to the scenario. In the end, we always ob-
tain a two-dimensional matrix of various measurements, while one axis captures the changes in
one variable (series), and the other axis depicts the changes in the second variable (scenario),
accordingly.
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4.1.2 XML Configuration

Not surprisingly, the described benchmark structure is reflected by the XML format of the
configuration files, as briefly sketched in Listing 1.

<benchmark name="MyBenchmark">
<globalParameters>
<!-- set global benchmark parameters -->
...

</globalParameters>

<!-- define benchmark setup -->
<setup>
<series name="DB2">
<scenario name="query1">
<beforeRun>
<!-- define actions that need to be executed before each scenario run -->

</beforeRun>
<afterRun>
<!-- define actions that are executed after each run -->

</afterRun>
<agentSetup>
<!-- specify which agents run which workload -->

</agentSetup>
</scenario>
<scenario name="query2">
...

</scenario>
</series>
<series name="MySQL">
...

</series>
...

</setup>
</benchmark>

Listing 1: Basic (incomplete) structure of a benchmark configuration file

Up to this point, we introduced the relationship of the terms benchmark, series and scenario.
But in fact, the hierarchy goes much deeper. A scenario is again defined by one or more agents
running potentially different workloads, while a workload is composed of smaller work units
which are either run in sequence, or which are randomly selected according to a predefined
weight distribution. Furthermore, at any level of this hierarchy, actions can be performed (e.g.,
as preparation steps) before or after a series, a scenario, or between single scenario runs.

Considering these numerous layers of composition, one can imagine how deeply nested and con-
fusing the configuration file gets for a fully-fledged benchmark definition. Moreover, redundancy
becomes an issue for this kind of hierarchical specification. Remember the benchmark exam-
ple with different queries executed on different database systems. Conforming to the presented
XML format requires the repeated definition of the exact same scenario workloads (queries) for
each series (database systems).

Fortunately, the BenchSuite features an inheritance mechanism that makes a benchmark config-
uration much more manageable and non-redundant. This mechanism allows us to specify global
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scenario templates, global workloads etc., which are later assembled (or extended) to shape the
complete benchmark definition. A small demonstration of this templating feature is shown in
Listing 2.

<benchmark name="MyBenchmark">
<globalParameters>
...

</globalParameters>

<!-- define global scenario templates -->
<scenarios>
<scenario name="query1">
...

</scenario>
<scenario name="query1">
...

</scenario>
...

</scenarios>

<!-- extend the templates to inherit their properties -->
<setup>
<series name="DB2">
<scenario extends="query1"/>
<scenario extends="query2"/>
...

</series>
<series name="MySQL">
<scenario extends="query1"/>
<scenario extends="query2"/>
...

</series>
...

</setup>
</benchmark>

Listing 2: Templating of benchmark components

The not yet mentioned globalParameters section incorporates the declaration of global
benchmark parameters which can be globally accessed and overwritten at any level. For instance,
one might declare common default values in this section, and later vary these parameters from
scenario to scenario. The scope of a parameter value is determined by the location of its
declaration or alteration. Declaring a parameter on the series level makes its value accessable
from the entire underlying series, including its scenarios and work units, while a modification
of such parameter in one of the scenarios only applies for the duration of the corresponding
scenario. From a technical perspective, parameters are resolved in a bottom-up fashion by
traversing the ancestor chain, until the respective parameter declaration is found. Incidentally,
a parameter is basically untyped and therefore simply defined by an empty XML element with
the two attributes name and value.
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4.1.3 BrackitDB-specific Extensions

Aside from the powerful templating and parameter mechanism, the BenchSuite’s strength orig-
inates from its extensibility in conjunction with Java. In its main development branch, the
BenchSuite only provides very few generic actions and work units, which can be chosen from
to put a benchmark together. Most notably, there is a default work unit that runs an arbi-
trary command as an external process, thus allowing for benchmarks of any kind of executables.
However, the downside of this default work unit is exactly its generality: due to its lack of in-
ternal knowledge about the invoked process, it only measures the work unit duration (timespan
between start and end of triggered process). For more sophisticated insights into BrackitDB,
we therefore rely on custom written actions and work units encouraged by the BenchSuite’s
extendable architecture.

In terms of extensibility, there are two abstract Java classes that can be extended from in
order to tailor the BenchSuite to a specific project. One of them is the Action class, which
simply requires a run() method to be implemented. While this method itself does not pass
any useful configuration parameters, every class extending from Action can access an inherited
variable that allows for lookups of parameters defined in the XML configuration. Although
these parameters are essentially untyped in the configuration file, type checking is eventually
enforced in the lookup mechanism. Hence, if the user assigns incompatible values in the XML
description, he will face an exception during runtime.

Actions are usually employed to perform preparation tasks before the benchmark begins, and to
properly clean up resources afterwards. Within the scope of this thesis, the following BrackitDB-
specific actions were created to support the benchmarks:

StartDB / StopDB: As the name suggests, StartDB and StopDB control the BrackitDB
server lifetime. StartDB causes a server instance to start in a separate process (and
therefore in a different Java VM), whereas StopDB triggers the server to stop. In order
to initiate the server shutdown, a second process is started to establish a TCP connection
to BrackitDB’s management port and to send the proper shutdown message.

RunQuery creates a client connection to BrackitDB and transmits a preconfigured query, which
is then executed on the server. In the context of later benchmarks, this action is mainly
used to warm up the buffer by traversing the data before the actual workload puts stress
on the system.

LoadXML loads an external XML document (from local filesystem or the network) into the
database. In fact, the LoadXML action could be substituted by the more general RunQuery,
as it only adds some convenience for locating documents and URL handling.

BackupDB / RestoreDB: The combination of the BackupDB and RestoreDB actions pro-
vides a simple backup mechanism for BrackitDB’s container files. For the sake of equal
starting conditions, we want all the scenario runs to start their work on a freshly loaded
document instead of taking over the database state from previous runs. Since the bench-
mark workload includes write transactions, thereby causing indexes to split uncontrollably
and thus degenerating the data structures, later scenarios might produce inferior results.
To counter this effect, a freshly loaded XML document is backed up in advance and is
repeatedly restored before a new run begins.
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The second crucial class in terms of customization is called WorkUnit. For more sophisticated
benchmarks that go beyond simple start/end measurements of external processes (offered by the
default RunProcess work unit), it is mandatory to supply the BenchSuite with more project-
specific work units, which is done by extending the WorkUnit class. Once again, the abstract
base class provides access to benchmark parameters so that work units can be configured in the
corresponding XML file. Similarly to action handling, the WorkUnit class specifies an abstract
run(...) method that makes up the actual logic in the benchmark. Unlike the Action class,
however, the run(...) method from WorkUnit passes a Context object as argument, which
allows the work unit to store an arbitrary amount of measurements during its execution.

With regard to the benchmarks presented in this thesis, a RunQuery work unit had to be
implemented in order to put load on the BrackitDB server. Much like the same-titled action class,
RunQuery acts as a database client that acquires a connection, transmits the predefined query
and eventually commits. On top of that, the work unit implementation takes measurements
during query execution and finally stores various transaction-related measures in the designated
Context object. While the query runtime is simply measured on the client side (that is,
inside the RunQuery.run(...) method), most of the measures in the benchmark, like the
lock count or the block time, need to be collected by the server and transmitted to the client.
The RunQuery work unit solves this by adding the function call bdb:tx-stats() to the
actual payload query, so that all transaction-related statistics are conveniently returned as query
result.

In a nutshell, the RunQuery work unit adds the following BrackitDB-related measures to the
BenchSuite, which are all captured per transaction.

Query runtime: The query runtime measures the time needed to execute the specified query
and subsequently commit potential changes. The overhead for establishing a database
connection and for transaction preparation (such as configuring transaction-related settings
like the lock depth), is not included in this measure. What is however covered in the query
runtime, is the cost for local TCP communication. More precisely, two roundtrips are
needed: First, the query is sent to the server, which then returns the gathered transaction
statistics. The second interaction eventually issues the commit. In section 5, where the
experiments are evaluated, this measure is also called total transaction runtime.

Commit value: The commit value is simply a boolean value that equates to 1, if the transaction
committed successfully, while a value of 0 implies a rollback due to a locking induced dead-
lock. This measure is even useful in two respects, as we can derive two interesting numbers
from it by applying different aggregation functions. If we later calculate the average over
these values, we obtain the commit rate (percentage of successful transactions) or more
commonly used, the abort rate (i.e., 1 − commitrate). Additionally, by taking the sum
over the collected commit values, we gain easy access to the transaction throughput,
that is, the number of committed transactions per time interval.

Lock request count: The lock request count denotes the total number of lock requests submit-
ted by the corresponding transaction. It should be noted that lock requests in a hierarchical
locking protocol entail further lock requests along the ancestor chain, which are also clas-
sified as lock request in the context of this measure. Hence, locking a node on the third
document level increases the lock request count by three, even though only one node lock
is explicitly requested.
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Lock request time: The lock request time describes the total time a transaction spends for
any locking-related activities, i.e., lookups in the lock table, requesting locks along the
ancestor chain and in particular waiting for other transactions if the locking situation
makes it necessary. Therefore, this measure provides a good overview of the general costs
of locking in relation to the overall transaction runtime.

Escalation count: This measure sums up the number of performed lock escalations due to high
subtree locality. In general, we would expect more escalations in case of a more aggressive
escalation policy.

Block count: The block count refers to the number of occasions where a transaction needs to be
blocked due to the current locking situation, i.e., when a lock request can not be granted
immediately. Although there are also other parts of the system in which a transaction
thread might be stalled, e.g., waiting for a latch or entering other critical sections in the
system, this measure only counts locking-based waiting conditions.

Block time: The block time tracks the duration a transaction spends in a state waiting for other
transactions to release their locks. If a transaction is required to wait multiple times, the
block time expresses the sum of all individual wait durations within that transaction.

I/O read count: The I/O read count denotes the number of physical hard drive read operations
the buffer manager has to perform in order to make a requested page available in main
memory. Obviously, the larger the buffer or the denser the access pattern on the document
is, the less I/O reads are to be expected. Bear in mind, that the just described I/O
read count is not the same as the number of pages loaded from disk, since the buffer in
BrackitDB incorporates a prefetching mechanism that always leads to multiple page loads
per disk access.

I/O write count: Analogous to the read count, the I/O write count captures the number of
physical disk writes. Whenever the full buffer capacity is reached and another not included
page is requested, the buffer manager determines one or more victim pages for replacement.
If the victim pages have been modified while residing in the buffer, they must be flushed
(i.e., physically written) to disk in order to reflect their changes on a persistent storage.
Only under these circumstances will a page request cause a physical I/O write and thus
increment this measure.

Interaction between the BenchSuite and the database server is accomplished by the BrackitDB
driver, a small Java library implementing the client-side network communication to the server,
based on a simple proprietary TCP protocol. Its main class, the BrackitConnection, features
an API for evaluating XQuery expressions and managing transaction demarcation. While per
default each query is executed in its own transaction (similar to the auto-commit mode in
JDBC), transactions can as well be controlled manually by operations like begin(), commit()
or rollback().

Speaking of TCP interaction, one of the initial benchmark attempts revealed a weakness in
the implementation of the RunQuery work unit. In scenarios with increased thread load, the
benchmark machine’s operating system was apparently not able to allocate enough TCP client
ports to allow for the repeated connection acquisition and termination, as done by the RunQuery
work unit. Although at any point in time, there are at most as many active TCP connections as
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there are threads producing the workload, the operating system (or the Java runtime) refused
to establish new connections after some time during the benchmark run. It turned out that this
issue might have been caused by the 60 seconds interval imposed by the tcp_fin_timeout
kernel parameter [5], which keeps the TCP sockets (and ports) reserved after connection tear-
down. Hence, after some time of execution, the agent threads managed to deplete all available
client ports on the machine, thereby causing exceptions on further attempts to create database
connections.

In order to cope with this issue, a resource pool for instances of BrackitConnection was
introduced, which allows for shared usage among agent threads during the benchmark runs. This
connection pool is built on Apache Commons Pool [8], an open source Java library for object
pooling, and is configured to grow on demand but to reuse old connections whenever feasible.
Hence, when an agent thread executes the RunQuery work unit, it first borrows a database
connection from the shared pool and returns the same connection object after being finished. If
no connection instance is available on request, the pool grows by establishing and returning a
brand-new connection to BrackitDB. Therefore, the connection pool does not block any thread
longer than the time needed to acquire a physical database connection, while it will soon grow
to its maximal size, which clearly coincides with the number of concurrent transactions in the
benchmark. However, in order to completely pull out the connection setup overhead from the
benchmark measurements, the pool is configured to sustain a sufficient number of connections
at all times.

4.1.4 BenchSuite Architecture and Workflow

The revised architecture of the BenchSuite is depicted in Figure 12. When a benchmark is
started, the user-supplied benchmark configuration file is parsed and transformed into an internal
benchmark representation (made of Java objects) which then gets passed to the Coordinator,
the core class to manage the overall benchmark workflow. This component is responsible for
setting up the worker threads, initializing the workload scheduler (which later assigns workunits
to the workers), performing before- and after-actions according to the benchmark description,
starting and stopping the actual scenario runs, and persisting the collected measurements in a
database.

Regarding measurement persistence, the BenchSuite employs Hibernate ORM [35] on top of
Apache Derby [9], an open source relational database. Combining these technologies allows for
easy persisting and retrieval of Java object networks in a flat, relational database. Some sort
of object-relational mapping is in fact required, as the collected benchmark measurements are
again hierarchical in nature, since measurements can be taken on every benchmark level (like
series, scenario or run level). Therefore, the raw measurement data is represented in a tree of
Java objects, which is then mapped to relational tables by the persistence framework in use.

Synchronization of the volatile raw data and the persistent database does not take place while
the benchmark runs are in progress, to prevent the inflicted I/O overhead from distorting the
measurements. Instead, the raw data is cumulated in main memory by simply adding mea-
surement nodes to the afore-mentioned object tree. After the run has been finished, the results
eventually get written to the database. Depending on the achieved transaction throughput,
which mainly determines the amount of collected data, persisting the measurement tree takes
longer than the scenario run itself. For a one minute run duration, storing the results could
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Figure 12: Simplified architecture of the Benchmark Suite

require up to four minutes at worst, thereby exposing the persistence mechanism as the main
cause for prolonged benchmark durations.

What also turned out to be a major downside of the BenchSuite’s persistence strategy, is its
excessive main memory demand. As the benchmark progresses, the heap space continuously gets
cluttered with measurement data, until the benchmark is either finished or the JVM reports an
error due to memory shortage. For that reason, keeping an eye on memory consumption and
regulating the size and amount of measurements posed a constant challenge throughout the
benchmarks. Reducing the number of runs per scenario in exchange for lower accuracy is one
way to shrink the size of gathered data. Another option is to selectively disable tracking of some
of the transaction-related measures. For instance, in a pure main memory scenario, keeping
track of the number of hard drive accesses caused by buffer reads or writes hardly leads to new
insights, as we expect these measures to be zero anyway.

Once a benchmark terminates successfully, the collected data can be aggregated and exported
as an HTML report exhibiting summary and detailed statistics about the benchmark. Again
depending on the number of measures we deem useful for a certain benchmark and the number
of aggregation functions to apply on them (such as average or sum), this post-processing phase
requires a similar amount of main memory and time as the actual benchmark before.
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4.2 Benchmark Document

The XML document utilized for the benchmarks was created by the XMark Benchmark Data
Generator [6]. The corresponding command line tool xmlgen produces documents that model
auction data in a typical e-commerce scenario. Needless to say, the generated documents are
always well-formed and valid according to a certain DTD that can be inspected by running the
command with the -e option appended. The words for text paragraphs are randomly picked
from Shakespear’s plays so that character distribution is fairly representative for the english lan-
guage. Moreover, the XML output includes referential constraints across the document through
respective ID/IDREF pairs, thus providing a basis for secondary index scenarios.

But the most outstanding feature is arguably the scaling factor which is specified on XML
generation and determines the document’s output size. Varying this factor allows for generating
documents from the Kilobyte range up to several Gigabytes. According to claims made by
the authors, the generated documents still preserve their characteristics under scaling so that
bottlenecks found on smaller documents would apply for larger documents proportionally. It is
worth noting that scaling works only horizontally (envisioning the XML as tree). That means,
the document’s depth and complexity remains untouched, while scaling appends new elements
of different types with respect to an underlying probability distribution, and thereby widening
the overall document tree.

The benchmarks in this thesis are based on an XMark document with a scaling factor of 10,
resulting in a file of approximately 1.1 GiB in size. Independent of its scaling factor, the
document exhibits the following layout.

<site>
<!-- items clustered by region/continent -->
<regions>
<africa>
<item id="item0">...</item>
<item id="item1">...</item>
...

</africa>
<asia>
...

</asia>
...

</regions>

<!-- item categories -->
<categories>
<category id="category0">...</category>
...

</categories>

<!-- category graph -->
<catgraph>
<edge from="..." to="..."/>
...

</catgraph>

<!-- registered persons (both bidders and sellers) -->
<people>
<person id="person0">...</person>
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...
</people>

<!-- auctions open for bids -->
<open_auctions>
<open_auction id="open_auction0">...</open_auction>
...

</open_auctions>

<!-- closed auctions -->
<closed_auctions>
<closed_auction id="closed_auction0">...</closed_auction>
...

</closed_auctions>
</site>

Listing 3: XMark document layout

As mentioned earlier, the XMark document models an auction application where items coming
from a certain region are put up for auction. Each item is thereby associated with one or more
categories, which is realized by a sequence of child elements referring to category elements by
their respective ID. Furthermore, every item contains a mailbox element surrounding a list of
mails. Although it might seem odd, but in our fictive auction application mails are primarily
associated with an item instead of the mails’ recipients.

Following on the item declarations, the categories element accumulates the available item cat-
egories in the system which are simply characterized by a name and a description text. Even
though irrelevant for our benchmarks, the catgraph element defines a graph structure on top of
the categories, whereas each edge ties two categories together. However, the meaning of this
category graph is not clearly evident, but it certainly implies some sort of relationship between
connected categories (e.g., similarity). At the end of the day, the exact interpretation is left to
the benchmark designer.

The person elements gathered under the people element act as users of the virtual auction plat-
form. A few personal information like the name or the email address are exposed at this place,
but their main usage is to be referenced by auction elements as bidders or sellers, respectively.

In terms of auctions, XMark distinguishes between open and closed auctions and stores them
separately as either open_auction or closed_auction element in the corresponding subtree. But
in fact, their XML structure is quite similar. Both kinds of auctions contain a description, a
reference to the traded item and its seller. Additionally, an open auction offers information about
the current bidding situation. In this application, each submitted bid on an item is represented
by a bidder element under the related auction. However, a bid does not specify an absolute
price the bidder is willing to pay. Instead, every bid specifies an increase in price relative to
the previous bid, starting out with a fixed initial price (presumably determined by the seller).
Additionally, the auction’s current price is stored subsequent to the list of bidders. In contrast,
a closed auction does not contain the history of bids anymore, but simply links to the eventual
buyer and reveals the final price.
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Ultimately, to provide a better grasp on the document’s fanout and how the above-described ele-
ments compare to each other in terms of quantity, we should have a look at the exact cardinalities
for a document with scaling factor 10:

Items (all regions): 217,500
Categories: 10,000
Catgraph Edges: 10,000
Persons: 250,000
Open auctions: 120,000
Closed auctions: 97,500

4.3 Benchmark Workload

After having introduced the document structure and the meaning of its elements, we can proceed
with describing the benchmark workload itself. In essence, the workload that is putting stress
on BrackitDB is a mix of eight different transactions. Some of these are read-only, others
perform both read and write accesses. Moreover, transactions are picked randomly from this
pool according to predefined weights, which are supposed to reflect a distribution we might find
in a realistic auction-based application.

4.3.1 Architectural Placement

As already mentioned before, the Benchmark Suite interacts with BrackitDB through its Java
driver, which allows for sending queries to be evaluated on the database. However, the work-
load transactions described later are not defined by complex XQuery expressions. Instead, the
BenchSuite agents merely trigger low-level routines to run directly on top of the node interface,
as depicted in Figure 13. Accordingly, in order to call one of the XMark operations, a simple
XQuery function is sent to the server. This workload function takes the operation’s name as
argument, as well as the document name to apply it on. Based on the first argument, the code
for the specified operation is invoked, and with it, the engine’s responsibility ends.

BrackitDB

Node Manager

Lock Service

XQuery Engine

acquire locks
when needed

XMark Operation
Impl.

Storage / Buffer Layer,
...

trigger
corresponding

operation

xmark:workload('PLACEBID', 'xmark.xml')

navigate
insert

subtree
update
value

acquire locks
preemptively

BenchSuite
...

Figure 13: Workload operations as “low-level programs” based on the node interface
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There are a few reasons why the workload is not constructed as a set of XQuery (e.g., FLWOR)
expressions. As a matter of fact, XQuery is powerful and expressive enough to describe equiv-
alent operations on the query level. But for a start, we would rely on the XQuery engine to
determine the best suited access plan, which means we have no direct influence over the node
operations called by the engine to perform the transactions. While on the other hand, a low-
level procedure on top of BrackitDB’s node interface provides the necessary means to control all
locking-related aspects of the workload. For instance, if we are looking for a child node satisfying
a certain condition, we have the power to decide between performing a First-Child, followed
by a sequence of Next-Sibling navigation steps, or rather utilize the stream-based version
getChildren() for this task. Needless to say, the choice of employed node operations can
have a huge impact on the resulting locking situation and ultimately the system performance.
To come back to our previous example, manually iterating over child nodes in a node-by-node
fashion leads to many fine-grained node and edge locks, whereas requesting a children stream
only implies a single lock, namely a level read on the respective parent node (given taDOM is
enabled). On the other hand, if the desired child node is one of the first among its siblings,
locking every single child node up to the matching node might prove to be superior over locking
the whole level through one lock.

At some point, we might even decide to circumvent the node interface as a whole, by preemptively
requesting a lock on a certain node. In general, programs working with the node interface do
not have the obligation to acquire locks at all. In fact, all locking-related tasks are performed
by the node implementation on demand, while higher layers usually do not even have access to
the lock service. But if we know, for instance, that a node we retrieve via the node interface
(which only comes shared-locked), will subsequently be updated anyway, acquiring an update
lock right in the beginning might be beneficial to avoid delicate lock conversions. In other
words, context knowledge about the operation we implement allows us to manage locks more
reasonably in certain situations, compared to the default locking policy pursued by the node
implementation.

The bottom line is that implementing the workload operations as tailor-made XQuery func-
tions, based on the low-level node interface, offers enhanced flexibility and influence compared
to the equivalent XQuery expression. As we will see later, the workload implementation comes
in different variants. One of these makes use of the First-Child/Next-Sibling naviga-
tion pattern whenever child access is necessary, while another employs the children stream in
conjunction with the LR mode provided by taDOM. Yet another variant aims for avoiding con-
version deadlocks by preemptively obtaining the strongest necessary lock mode before any node
is accessed for the first time.

4.3.2 Secondary Indexes

When an XML document is loaded from the file system into BrackitDB, the so-called document
index is created, a B+-tree with DeweyIDs as keys, and the corresponding XML nodes stored
as values in the leaf pages. This document index acts as the primary index, since it provides
a mapping between the unique node labels and the node data itself. Therefore, it can serve
as entry point for document access, whenever the DeweyID of the starting node is known in
advance. Obviously, access to the document’s root node with its statically determined DeweyID
can simply be accomplished by consulting the document index.
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However, for any other kind of document access (e.g., retrieving a node by its name, by its path,
or by its content), a secondary index is required. In general, accessing nodes via secondary
index adds an additional layer of indirection, as this procedure usually implies a two-fold access
pattern:

1. Access secondary index: Restore qualifying node (most importantly its DeweyID).

2. Access document index: Based on the node returned from step one, perform any relevant
navigation steps (e.g., scanning through its subtree).

It should be mentioned that step two can be omitted in certain situations. If, for some reason,
the node retrieved by step one is not used for further navigation steps, the document index can
in fact be bypassed, since the secondary indexes in BrackitDB contain sufficient information to
fully restore the indexed node, but none of its attributes, text values and so on. Hence, further
navigation is very likely.

Considering our benchmark workload, the transactions need a way to randomly jump into the
document to begin their processing. For instance, placing a bid requires the transaction to pick
a random auction element, while another operation might start on a random person element
as context node. Another feature needed by some operations is the possibility to follow ID
references within the document, e.g., jump from the auction to the corresponding item element.
Although both requirements (random entry and navigation via references) could be met without
utilizing any secondary indexes by accessing the root node and scanning for the desired node,
system performance could drastically suffer from this unfavorable access plan. For that reason,
we provide the two following secondary indexes on the XMark document:

Name Index: This index maps from element names to a set of DeweyIDs, from which the
appropriate element node can be reconstructed. It therefore satisfy the requirement of
random entry to an element with a given name.

CAS Index: A CAS index [31, p. 201] allows for content-based node lookups, i.e., attribute and
text nodes can be retrieved based on their string value. Hence, it constitutes the perfect
candidate to deal with IDREF cross jumps.

4.3.3 Skewed Access

When fetching random elements from the name index (which is always the first step for every
benchmark transaction), the elements are selected with respect to some predefined skew. Since
the XMark document is over 1 GB in size, locking-related contention has to be artificially
enforced by making certain parts of the document accessable with a higher likelihood than other
parts, which is referred to as skew in the context of this thesis. A higher skew implies denser
access patterns and increased contention.

From an implementation’s viewpoint, descending a name index is based on normal distributions
[4, 38] laid over the entries of each index page, as depicted in Figure 14. Consequently, pointers
stored in the center of the corresponding page have an increased probability of being chosen
for the next descent. This pattern is continued until arriving on the element level. Although
a normal distribution is assumed for each individual page, the overall element access is not
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necessarily normally distributed. However, this approach succeeds in generating hotspots in the
document, which is sufficient in our context.

<open_auction> <open_auction>

...

... ...

<open_auction> <open_auction>

......

Figure 14: Name index for auction elements. The waveforms reflect the likelihood of a
particular pointer to be selected for the descent.

The skew is now defined as 1−σ, while σ denotes the relative standard deviation of the underlying
normal distributions. Hence, a skew of 99% (or a relative σ of 1%) implies that only 1% of the
records in the page are picked with a probability of approximately 68%, effectively producing a
hotspot in the page’s center.

4.3.4 Workload Transactions

The following part is dedicated to the description of each individual XMark operation that is
performed over the course of the benchmarks.

Place Bid: The first and arguably most important activity on an auction platform is the
bidding process. Putting a bid on an open auction in an XMark document basically implies
two steps which need to be performed atomically, or in other words, within a single database
transaction. First and foremost, a new bidder element has to be inserted, specifying an increase
in price relative to the previous bid. The order in which the bids appear in the auction element
is significant, however. Following the initial price, the timeline of placed bids is defined by the
sequence of bidder elements, while the last of them is the highest bidder at this moment (in the
little from Listing 4, this would be the person with ID “person4711”).
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<open_auction>
<initial>1.07</initial>
<bidder>
<date>...</date>
<time>...</time>
<personref person="person1234"/>
<increase>7.50</increase>

</bidder>
<bidder>
<date>...</date>
<time>...</time>
<personref person="person4711"/>
<increase>16.50</increase>

</bidder>
<current>25.07</current>
<seller person="..."/>
...

</open_auction>

Listing 4: Excerpt from an auction element

The second crucial step in order to regain consistency, is the update of the item’s current
price, which is represented as an element following the latest bidder. From an implementation
viewpoint, there are two options to calculate the current price. One is to read the old (current)
price, add the new bid’s increase to that value, and write the new price back. Unless an update
lock is explicitly requested, this procedure would first acquire a shared lock on the current
element (or rather on its text child node), which is later converted to an exclusive lock to perform
the update. Although this would indeed work if we assumed the old price was consistent to the
previously submitted bids, the bidding transaction pursues a different approach. While iterating
over the auction’s child elements to determine the correct insertion position for the new bid, it
also keeps track of the current price by starting with the initial value and adding the increase
from each traversed bid to its internal price variable. After having inserted its new bid between
the last bidder and the current element, it can instantly set the new price tag along with it.

Read Seller Information: The second operation in our transaction mix first selects a random
auction element and determines the seller ID by iterating over the auction’s children until it
arrives at the seller element. Next, with the appropriate seller ID in mind, the transaction
jumps to the desired person element by accessing the CAS index. From here, it traverses the
seller’s children in order to collect some personal information about him, such as his name, his
email address and his phone number.

Register: In the registration transaction a new person subtree is added to the list of existing
persons in the system. Recalling the XMark document structure, the users of the auction system
are accumulated under the global people element. Therefore, this operation fetches the (only)
people element from the name index and first navigates to its last child. From here, it determines
the latest assigned person ID by reading the last child’s ID attribute, and finally inserts a new
person with an incremented ID after the currently last person, thereby becoming the new last
child of the people element.
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As it turns out, this operation provides a good opportunity for preemptive locking. Since we
first navigate over the Last-Child edge of the people element, thereby locking this edge in
shared mode, the insert operation and the resulting X-upgrade of this edge lock is a recipe for
deadlocks. Hence, it may prove beneficial to exclusively lock the Last-Child edge in the first
place.

Change User Info: The next operation in our mix is concerned with changing user data for
a random person element. In a manner of speaking, this transaction forms the antipole to the
transaction retrieving the seller information. Because otherwise, reading from a person subtree
could never even produce any locking-related clashes.

What this operation does in detail after fetching a random person is to iterate over its children
until it arrives at his email and phone element where it updates both text values. For that
matter, updating an element value involves navigating to its only text child node and updating
the value of this text node accordingly.

Check Mails: As already discussed, the mailing system in the XMark auction application seems
quite unusual, since mailboxes do not belong to persons but are associated with items and are
therefore stored as a subtree under the respective item element. Checking mails thus implies
fetching a random item element to start with. With this item as context node, the transaction
navigates to its last child, which is always the item’s mailbox element according to the schema.
From there, the transaction runs through the single mail elements (i.e., the mailbox’ children
nodes) and reads every mail by scanning through the entire mail’s subtree by means of the
getSubtree() method on the node interface.

Read Item: This operation emulates the behavior of a customer who is interested in a specific,
but randomly picked auction, and who wants to find out details about the item that is put up
for sale. To do so, the transaction traverses the auction element’s children until crossing the
itemref element which points to the respective item by its unique ID. Like for determining the
auction’s seller, the CAS index is consulted to retrieve the referenced item. Once there, the
complete item subtree is scanned (again by calling getSubtree()).

Add Mail: Adding mails to the auction system involves fetching a randommailbox element from
the name index and prepending a new mail element to it. Hence, the resulting mail sequence
is ordered from newest to oldest mail, which is also the common order emails are displayed in
various email clients.

Unfortunately, due to intrinsic characteristics of DeweyIDs, prepending elements is an unfavor-
able operation which eventually requires a reorganization of stored nodes. It is known from
section 2.2 that DeweyIDs are considered stable, i.e., they allow for arbitrary insertions without
ever needing to be changed due to their overflow division approach. While that is undoubtedly
true, certain insertion patterns lead to bulky and ever growing DeweyIDs. If we keep prepend-
ing elements to a non-empty root node, we end up with DeweyIDs of the following structure:
1.2.2.2.2.2.....3

42



In conclusion, DeweyIDs support both prepending and appending operations, but only append-
ing ensures a constant number of divisions for the resulting IDs. With the DeweyID compression
algorithm utilized in BrackitDB, an increased amount of divisions also raises their physical stor-
age size, while higher division values are less of a concern in terms of storage consumption. As a
result, continuously prepending elements leads to a situation at some point, where the physical
page layout of the document index is no longer able to store DeweyIDs in their compressed
binary format.

Since BrackitDB does not support DeweyID reorganizations at this moment, a workaround to
make the constant prepending operations of mail elements possible was therefore introduced.
Before the new mail is inserted, the transaction checks the DeweyID of the currently first mail
in the sequence, and verifies based on the number of divisions whether it is still safe to prepend
further elements to that mailbox. If not, the new mail is appended to the end of the mail
sequence instead.

Add Item: The last operation of our transaction mix adds items to the system. As previously
mentioned, items are clustered by their respective region, as a result of which a random region
needs to be selected as parent element for the new item. To this end, a random item is fetched
from the name index and its parent is chosen as insertion target. The remaining procedure is
similar to the registration transaction. In a first step, the last child of the chosen region element
is read in order to determine the last used item ID, which is then incremented to make up the
new item’s ID. Ultimately, the new item is inserted after the current last child.

Once again, we can reduce the potential for lock conversion deadlocks by preemptively X-locking
the region’s last child edge in preparation of the upcoming append operation.

4.3.5 Workload Variants

Previously, the workload operations were described on a rather semantical level. However, there
is still much room for different implementations which have the same effect on the persistent
data, but deviate in their choice of node operations and acquired locks. Since it is not easy to
predict which strategy leads to the overall best system performance, the workload is configurable
by two parameters with two possible values each, thereby resulting in four different workload
variants. The two mentioned parameters are specified below.

Child Access (navigation-based / stream-based): The first workload parameter determines
whether child traversals in the XMark transactions are performed in a navigation- or stream-
based fashion. While the navigation-based approach makes use of a First-Child followed by
a sequence of Next-Sibling operations, the stream-based strategy requests a child stream
instead by calling getChildren() on the parent. Although this decision might sound like a
minor detail, it produces a completely different locking situation in the respective subtree and
might thus affect system performance noticably.

Navigation-based child access entails a series of fine-granular lock acquisitions (more specifically
NR locks) on the parent as well as on every visited child node. Furthermore, serializability calls
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for shared edge locks on the parent’s First-Child edge and on each passed Next-Sibling
edge. Therefore, it potentially allows for more concurrency in that subtree at the expense of
increased locking overhead. On the other hand, the stream-based child scan brings taDOM’s
LR (level read) mode into operation, which protects the parent, its children and all the gaps in
between (with regard to phantoms) from parallel modifications. Reduced locking costs in return
for coarser granularities is the logical consequence.

Depending on the objective of the corresponding child access, the navigation-based pattern might
benefit from its flexibility to cancel the child scan at any time, e.g., after the desired child node
was retrieved. In this case, locks are only obtained for the nodes and edges that were effectively
visited, while the remaining children remain unaffected. Whereas the LR mode imposed by the
stream-based scan keeps its wide protection range until commit, even if the stream is closed soon
after traversing a handful of children. Another advantage for the navigation-based strategy is its
potential for lock escalation due to the high subtree locality resulting from high the number of
lock requests on the children level. However, what militates again for the stream-based approach
is its more efficient storage-level implementation compared to the equivalent sequence of single
navigation steps.

In the end, it comes down to fine-granular locks and increased concurrency (navigation-based)
versus reduced locking overhead and more efficient storage evaluation (stream-based). The
experiments will reveal which of these aspects prevail in practice.

Preemptive Locking (disabled, enabled): In the context of this thesis, preemptive locking de-
notes a strategy where the strongest necessary lock mode is obtained before any particular node
is accessed for the first time. In general, the main problem when designing transactions on top of
the node interface is the lack of control over the acquired lock modes, since the node implemen-
tation encapsulates any locking-related aspects underneath its public API. Consequently, the
choice over the received lock mode is merely determined by the type of node operation invoked
by the transaction. In the current version, no further knowledge regarding the intention for the
requested node can be passed to the node manager. As a result, traversed nodes are always
returned read-locked unless the concrete need for a stronger lock mode becomes apparent, such
as for insert, update or delete operations. When a node has to be inspected prior to an update
operation, a lock conversion (or more specifically a lock upgrade) is carried out. Unfortunately,
lock upgrades always incur the risk of deadlocks.

Taking context knowledge about the transaction and its purpose into account allows us to
drastically reduce the potential for deadlocks. This is achieved by always obtaining the strictest
lock mode we require in the context of a particular transaction before a node is accessed (and
thereby read-locked) for the first time. In order to do so, however, the node interface needs to
be manually bypassed to get direct control over the lock service in the transaction code.
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For instance, if a transaction requests a child stream with the intention to insert a new subtree
between one of the children, the preemptive locking approach makes sure the corresponding
parent is locked in LRCX mode before getChildren() is called. Otherwise, a later upgrade
from LR to LRCX would be inevitable. If two transactions happened to perform this upgrade
at the same time, a deadlock would occur.

It should be noted that the preemptively acquired locks in the workload implementation are not
necessarily sufficient to guarantee the complete absence of conversion deadlocks, but they aim
for avoiding the most frequently encountered deadlocks that have been observed over time.

4.4 Hardware/Software Environment

If not stated otherwise, all benchmarks performed in the scope of this thesis were executed on
the following machine. Note that the benchmark suite as well as the BrackitDB server were
both running concurrently on the same node during the measurements.

CPU: 2x Intel Xeon E5420 @ 2.5 GHz, totalling in 8 cores

Memory: 16 GiB DDR2 @ 667 MHz

Operating System: Ubuntu 13.04 (GNU/Linux 3.8.0-35 x86-64)

JVM:
java version "1.7.0_51"
OpenJDK Runtime Environment (IcedTea 2.4.4) (7u51-2.4.4-0ubuntu0.13.04.2)
OpenJDK 64-Bit Server VM (build 24.45-b08, mixed mode)
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5 Benchmark Execution and Evaluation

This section is concerned with the actual benchmark executions and the conclusions we can
draw from the collected measurements. As described in the previous section, the benchmark
architecture allows us to vary two system parameters per benchmark, while the others are
constant throughout the run. Needless to say, in a complex database system like BrackitDB
there are tens or hundreds of configuration parameters that affect general system performance.
Therefore, finding pairs of particularly interesting parameters for comparison, while the others
are set to reasonable default values, is a research topic for itself.

In order to provide a clear picture about how BrackitDB’s locking mechanism performs and
scales, we run a sequence of benchmarks in which different locking aspects and their effects
on various performance measures are investigated. After presenting the relevant BrackitDB
system parameters, which either serve as variable or as constant in the following benchmarks,
we first establish a baseline where some coarser-grained locking protocols compete with each
other. Subsequently, taDOM and the effectiveness of related optimization techniques like lock
depth or lock escalation will be studied under the same conditions as the baseline experiments
(i.e., tight access pattern and reduced I/O overhead).

Furthermore, we prepared different but semantically equivalent workload variants which are
evaluated afterwards. Like before, this benchmark relies on taDOM as underlying locking ap-
proach. The last measurements in the scope of this thesis explore the implications of different
I/O setups, such as slow and frequent I/O interactions versus disabled external storage I/O.

5.1 BrackitDB System Parameters

The following set of system parameters defines the framework for each conducted experiment.
Depending on our goal, they are either varied to determine their impact on different measures,
or they are fixed to some constant value throughout the benchmark. The parentheses next to
the parameters’ names contain the available values.

Buffer-ratio (small buffer, large buffer): The buffer-ratio denotes the ratio of available frames
in the page buffer relative to the size of the whole container file. Hence, a value of 0.01
or 1% implies that 1% of the XMark document (incl. secundary indexes) fits into main
memory. When the buffer is full and yet another page is requested, one of the pages in the
buffer is evicted (possibly written back to disk) to make room for the new page. If the ratio
value is greater than 1, no eviction takes place at all, since all pages from the container
fit into the buffer at the same time. Hence, after every page was requested at least once,
no further page-related disk I/O during the scenario run is involved. Incidentally, every
measurement taken below starts on a warm buffer. In the scope of these benchmarks, we
are mainly interested in the two corner cases of a small buffer (with a buffer-ratio of 0.01)
and a large buffer (buffer-ratio > 1).

Log (HDD, Flash, disabled): BrackitDB pursues an ARIES-style logging and recovery approach
[33] which requires it to flush its log buffers to a persistent storage before dirty pages are
evicted from the buffer (for Undo recovery) and when a transaction commits (for Redo
processing). Since BrackitDB does not offer any group commit [18] behavior, the frequent
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log flushes triggered for every commit quickly turned out to be a major system bottleneck
in terms of transaction throughput. For this reason, instead of keeping the persistent log
file on an HDD with disastrous random access performance, the log can also be configured
to reside on flash memory. Due to its low latency characteristics, the I/O bottleneck is
considerably defused. However, for scenarios in which no external storage I/O is desired
at all, log flushes may also be entirely disabled. While this option makes Redo recovery
impossible (which is irrelevant for our benchmarks anyway), transactions can still be rolled
back if aborted by the deadlock detector.

Skew (low, medium, high): The purpose of skew is to artificially create hotspot elements in the
benchmark document which are consequently accessed more frequently than others. How
this skew is realized was already covered in 4.3.3. Suffice it to say that we will only set
this parameter to 50% (low skew), 90% (medium skew) or 99% (high skew). For obvious
reasons, we expect higher skews to produce more locking conflicts and thus a reduced
transaction throughput.

Number of threads: This parameter specifies the number of worker threads supplied by Brackit-
DB to process the workload. Hence, this number determines the maximal amount of
concurrency in the system. As there is currently no intra-transactional parallelization, the
number of worker threads is equivalent to the number of active transactions. We should
keep in mind, however, that the same number of threads are additionally spawned within
the BenchSuite process to generate the workload.

Workload variant: As introduced in section 4.3.5, this parameter specifies which concrete work-
load implementation is utilized for the experiment, i.e., whether child access is performed
via navigation steps or via children stream, and whether preemptive locking is exploited
or not.

Lock protocol (X, RIX, URIX, taDOM): Thanks to BrackitDB’s extensible locking framework
(also referred to as meta-locking [12]), plugging different locking protocols into the system is
an easy task. Every locking protocol merely has to define its lock modes, the compatibility
and conversion relationship among them, and which lock mode must be acquired for which
kind of node operation. Once this is specified, a system parameter (defaulting to taDOM)
determines the lock protocol used by BrackitDB on startup. In the scope of this thesis,
we will have a look at some alternative protocols in addition to taDOM. The first one is
simply named X, and refers to the usage of a single exclusive document lock. Although
many transactions can be active at the same time, only one at a time can access the
XMark document. The next protocol on this list, RIX, is a hierarchical protocol like
taDOM but is restricted in terms of lock modes. Only R, I, and X are available in our
RIX implementation. URIX extends RIX in a two-fold fahsion: it introduces a subtree
update lock mode and additionally distinguishes between IX and IR instead of the single
intention lock offered by RIX. Compared to taDOM, URIX still lacks some more advanced
lock modes, such as node read/update/exclusive or level read locks.

Lock depth: This parameter corresponds to the lock depth described in 3.4.4.

Lock escalation (disabled, moderate, eager, aggressive): As introduced in 3.4.4, this param-
eter specifies the underlying lock escalation policy. From left to right, escalation becomes
increasingly aggressive.
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5.2 Baseline Benchmark

In our first series of experiments, we establish a baseline for taDOM to compete against. In
order to do so, we run the same XMark workload with different lock protocols plugged into
BrackitDB, more specifically X, RIX, and URIX. The number of threads as well as the skew are
chosen to cause as many locking conflicts as possible. As a result, these measurements should
be regarded as the worst case in terms of contention. Furthermore, storage I/O is reduced to
a minimum where crash recovery is still feasible. That way, the investigated lock protocols can
prove their efficiency in a CPU-bound environment.

Variables:
• Lock protocol: X, RIX, URIX

Constants:
• Number of threads: 8
• Skew: high
• Buffer: large
• Log: Flash
• Lock depth: infinite
• Lock escalation: disabled

The results for above-described benchmark setup are presented and interpreted next. The
most important measure in terms of the overall system performance, given by the transaction
throughput (per minute), is shown on the left side of Figure 15. At first glance, the outcome
appears counter-intuitive because the most simplistic and concurrency-pruning lock protocol
X strikingly prevails against the finer-grained tree protocols RIX and URIX. Although the X
setup employs the same number of worker threads, only one of them is effectively accessing the
document at one point in time, while the others have to wait for the global exclusive lock to be
released. In contrast, RIX and URIX allow the transactions to process their work concurrently,
as long as they are accessing different parts of the document. Read-only transactions are even
more favored by RIX/URIX in that they do not impede each other with respect to locking.
Despite all these aspects, however, squeezing the transactions sequentially through the system
achieves a transaction throughput that is roughly three times as high as the throughput provided
by the other contenders.
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Figure 15: Baseline results (Transaction throughput and abort rate)
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Looking at the abort rate (Figure 15, right) delivers at least a slight indication about the merit
of exclusively locking. No deadlock conditions and thus transaction abortions ever occur in our
X scenario, since only one lock exists in the first place. Moreover, by only providing a single
lock mode, lock conversions (essentially the main reason for deadlocks) are avoided entirely.
Although the abort rates for RIX and URIX are less than 3%, which is almost negligible, the
time it takes for the deadlock detector to eventually resolve these deadlocks might be too high
for a CPU-bound benchmark setup. The subtly increased abort rate of URIX compared to RIX
may well be within the margin of error, as there are in fact plausible reasons to support exactly
the opposite. After all, URIX allows for deadlock-reduced upgrades from U to X (which only
results in a deadlock if other locked objects are involved as well). But the original problem
remains in case of R→U upgrades, which are equally as dangerous as classic R→X upgrades.

Further insights about the transaction timings, with focus on locking overhead, is provided by
Figure 16. In terms of the individual query runtimes, the two hierarchical protocols are the
definite winners, whereas RIX and URIX generate almost the same timing values. While a
transaction - from begin to commit - takes nearly seven milliseconds for an exclusively locked
document, this runtime is significantly reduced by the gain in parallelism when utilizing RIX or
URIX, where a transaction only requires slightly over one millisecond in average. The reason
why the X lock protocol takes longer for an individual transaction is consistently reflected by
the block time (rightmost bar). Since all parallel transactions have to wait in the lock request
queue of the document node, they are blocked and remain in this state for slightly less than six
milliseconds until it is finally their turn to access the document. Idle times caused by being stuck
in queue are essentially non-existent with RIX and URIX (50 to 80 microseconds in average).
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Figure 16: Baseline results (Transaction timings)

Another interesting observation from Figure 16 is the constant and miniscule difference between
the block time (rightmost bar) and the total lock request time (bar in the middle). What this
effectively tells us is the neglectable overhead for general lock management (including access to
the lock table and other locking-related data structures). If blocking is required for an issued
lock request (like in the X lock scenario), the block duration substantially dominates the time a
transaction spends for acquiring this lock.

Furthermore, analyzing the deviation between the total transaction runtime (left bar) and the
cumulated lock request time (middle bar) makes clear that the non-locking-related overhead is
almost constant and makes up around one millisecond per transaction, independent from the
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applied locking scheme. This overhead includes TCP interaction between the BenchSuite and
BrackitDB (although no real network traffic is involved), accessing the storage and evaluating
navigation steps, logging every modification, fixing pages at buffer level and much more. For
locking protocols like RIX and URIX, these fixed costs are unavoidable and make up a major
portion of the total query runtime. In fact, less than 20% of the transaction time is spent
for locking-related tasks. Although locking does not seem to be the bottleneck in transaction
execution, the choice of employed locking protocol turns out to have a huge impact on the overall
transaction throughput (with regard to Figure 15).

5.3 Lock Depth and Lock Escalation

After we got over the initial surprises presented by the baseline benchmark, it is time to put
taDOM and its optimization techniques to the test. Since taDOM acts as an extension to URIX,
providing the same set of lock modes plus some new taDOM-specific locks (such as NR, NU, and
NX), we would expect this protocol to behave more similar to URIX than to the deadlock-free
X mechanism.

Variables:
• Lock depth: 0, 1, ..., 8
• Lock escalation: disabled, moderate, eager, aggressive

Constants:
• Lock protocol: taDOM
• Number of threads: 8
• Skew: high
• Buffer: large
• Log: Flash
• Workload variant: navigation-based

To make the following benchmark comparable to the baseline, the starting conditions are pretty
much the same. Though the difference is that we vary the lock depth and lock escalation
strategies to attest their impact on the results. At this, the next benchmark resembles the
experiments that have already been conducted in XTC as part of the research in [14]. However,
the numbers should not be compared one-to-one since the benchmark conditions differ.

The first observation we can make from examining Figure 17 is the huge impact on the transac-
tion throughput when varying the lock depth in the range between 0 and 3. While a lock depth of
0 basically escalates every lock request to the root node and thereby achieves a dreadful result in
terms of system performance, taDOM seems to reach its climax when restricting the lock depth
to 3. Allowing even finer-grained locks by further increasing the lock depth does not result in
higher throughputs anymore. One could even argue that performance first deteriorates for lock
depths higher than 3 but quickly starts to stagnate at lock depth 4 or 5. In fact, this pattern
could be well explained by the structure of the XMark document and the workload. Increasing
throughput values for lock depths up to 3 indicate that most of the transactions clash at the
fourth level of the XML tree, which is where most of the document modifications take place.
Consequently, incrementing the lock depth to 4 does not improve concurrency any further but
entails more locking overhead.
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Figure 17: taDOM with lock depth and lock escalation (Transaction throughput)

Figure 18 confirms our observation regarding increased contention for lock depths less than 3.
In fact, the abort rate is somewhat complementary to the throughput. High locking contention
poses a higher risk of deadlocks which again leads to high abort rates and eventually a drastically
reduced transaction throughput.
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Figure 18: taDOM with lock depth and lock escalation (Abort rate)

The second benchmark variable, the applied lock escalation policy, seems to have no remarkable
effect on the throughput or abort rate whatsoever. All visible fluctuations between the different
strategies could be caused by the random aspects of our workload. Otherwise, there would at
least be a stable pattern where one strategy is always slightly better or worse than another
one. A possible reason for this observation is quickly found in Figure 19. It essentially tells
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us that only aggressive lock escalation leads to actually performed lock escalations, while lock
requests for any other escalation policy never satisfy the conditions it takes for escalating. Hence,
the strategies no escalation, moderate and eager are not only coincidentally producing similar
results, but they literally constitute the same scenario.
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Figure 19: Only aggressive escalation leads to some actual escalations

By showing no notable effect for more aggressive escalation approaches, our findings dissent
from the results in [14], where aggressive escalation constantly proved to be slightly favorable.
We identified the following potential reasons why escalation occurs very infrequently in our
benchmark:

1. The absolute values for the two escalation parameters (explained in 3.4.4) are not chosen
properly. In order to increase the tendency for escalation, the value for maxEscalation-
Count must either be lowered, or escalationGain must be increased for every escala-
tion policy. Only if these parameters are appropriately set up, we create the basis for the
“optimal” amount of performed escalations.

2. If a transaction meets the conditions for escalation in a certain subtree, there is a second
reason why escalation might fail. Independent from the escalation policy, a lock request
will only be escalated if the parent’s granted lock modes are in fact compatible with the
escalated lock mode. Or in simpler terms, a transaction needs to be alone in its current
subtree in order to trigger any escalation. Due to the intentionally high skew in our
benchmark, this condition might not be satisfied often enough.

3. The benchmark transactions are generally too short and thus do not hold enough locks
in a particular subtree for initiating escalation, although the lock escalation parameters
(from point one in this list) are reasonably chosen for “real-world” workloads.

Now that the effects of lock depth and lock escalation have been discussed, we still need to
compare taDOM to alternative locking approaches, such as URIX from the baseline. By exam-
ining the throughput and abort rate, we quickly realize that taDOM plays in the same league as
URIX, even though taDOM offers finer-grained lock modes than URIX does. Maybe the benefits
we anticipate from finer-grained lock modes (such as NR versus SR) do not properly come into
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effect for the workload we have set up. Moreover, without presenting a new diagram, the query
timings (total runtime, lock request time, block time) for taDOM look almost indistinguishable
from the URIX values in Figure 16.

As a short preliminary conclusion, all locking mechanisms which impose deadlocks and therefore
trigger transaction rollbacks (may it be RIX, URIX, or taDOM) can currently not compete with
the deadlock-free exclusive document lock in terms of throughput, but they are more responsive
with respect to individual transaction runtimes.

5.4 Workload Variants

But before we acknowledge defeat, there are still optimizations for taDOM left that we have
not considered yet. As introduced in 4.3.5, we prepared different implementations of the same
XMark transactions. Semantically, these workload variants are equivalent, but they utilize
slightly different node operations to fulfill their task, or explicitly acquire locks here and there
to reduce the risk of deadlocks caused by lock conversions.

For the next benchmark we therefore distinguish between four different workload variants:

Navigation-based:
Navigation-based child access and no preemptive locking

Stream-based:
Stream-based child access and no preemptive locking

Navigation-based + Preemptive:
Navigation-based child access with preemptive locking

Stream-based + Preemptive:
Stream-based child access with preemptive locking

The previous experiment to evaluate the effect of lock depth and lock escalation strategy made
use of the first variant, i.e., the transactions always perform navigation steps like First-Child
and Next-Sibling whenever child traversal is necessary. The other alternative is to call
getChildren() in order to retrieve a child stream and a single LR lock on the context node.
Although stream-based access might sound like the clear winner, there are situations where
single navigation steps make more sense, e.g., when only a few of the first children are actually
accessed.

If indeed the deadlock detection and resolution was the limiting factor for transaction throughput
in the previous benchmark, we should also notice a difference when applying preemptive locking,
since this strategy is meant to drastically reduce deadlocks or even prevent them altogether.

The remaining benchmark conditions are again similar to those in previous measurements to
ensure comparability. However, since the lock escalation strategy did not seem to have a huge
impact on the performance, it is disabled for the following benchmark. As it turned out, applying
lock escalation involves a small risk of conversion deadlocks. In general, locks are only escalated
if the granted mode of the parent node is compatible with the intended escalation mode. But
there is a short time frame between checking the parent’s lock mode and the actual process
of lock escalation, in which another transaction could in fact obtain a lock on the parent and
thereby block the escalation request, ultimately leading to conversion deadlocks on occasion.
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In total, the next benchmark is characterized by:

Variables:
• Workload variant:

– Navigation-based
– Stream-based
– Navigation-based + Preemptive
– Stream-based + Preemptive

Constants:
• Lock protocol: taDOM
• Number of threads: 8
• Skew: high
• Buffer: large
• Log: Flash
• Lock depth: infinite
• Lock escalation: disabled

As ususal, let us first discuss the achieved transaction throughput for each of these taDOM
variants and confront it with the primitive exclusive protocol, as illustrated by Figure 20. Keep
in mind that the first workload variant (navigation-based) corresponds to the configuration of
the previous benchmark but without lock depth and lock escalation tweaks. Accordingly, this
scenario achieves a throughput of slightly more than 20,000 transactions per minute. Modifying
the workload implementation by substituting single navigation steps by child streams (stream-
based) does not have a striking impact on performance either.

X Navigation-based Stream-based Navigation-based
+ Preemptive

Stream-based
+ Preemptive

0

10000

20000

30000

40000

50000

60000

70000

TX throughput

Figure 20: Different workload variants (Transaction throughput)

What improves the throughput significantly, however, is reducing the risk of deadlocks, which
is done in the third and fourth workload variant by exploiting preemptive locking. As a result,
the abort rate could be brought down from 2.8% to literally 0%. In case of the navigation-
based approach, the preemptive locking strategy roughly doubles the throughput, while it also
improves the stream-based implementation considerably, yet not to the same extent.
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The reason why this diagram displays an additional error bar is to emphasize the high standard
deviation for the two measurements involving preemptive locking. No matter how often the
experiment is repeated, these high fluctuations in the transaction throughput remain. Which
means in essence that some benchmark runs with preemptive locking achieve extremely low
throughputs (such as 20,000), and other runs succeed in processing a multitude of transactions
per minute (such as 70,000) under the exact same starting conditions. But what can be observed
regardless of this high jitter is the overall increased throughput by eliminating deadlocks.

Yet again, neither of the provided workload variations comes close to the exclusive document
lock for some reason. As a matter of fact, the two preemptive strategies have the potential to
surpass the X results, but in average, considering all measurements, the preemptive variants
stand only between the classical taDOM variants and the simplistic X lock approach.
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Figure 21: Different workload variants (Transaction timings)

Comparing navigation-based and stream-based child access in terms of their average transaction
timings, as shown in Figure 21, supports some of our previously mentioned ideas. For instance,
the lock manager overhead (i.e., gap between second and third bar) is reduced when obtaining
a single LR lock instead of a multitude of node and edge locks. Although this might appear
as an effect of random fluctuations once again, the results for the non-preemptive workload
variants are pretty stable. In fact, the stream-based strategy consistently exposes lower lock
request times throughout all benchmark repetitions. Also the total query runtime turns out to
be lower if child streams are utilized instead of navigation steps, which might indicate a slight
performance benefit resulting from storage-related aspects (e.g., more efficient sibling traversal
for stream-based access).

More puzzling are again the results for the two preemptive scenarios. Although preemptive
locking merely adds a handful of manual lock acquisitions to the workload implementation, it
has a devastating impact on the transaction timings, in particular the total transaction duration.
We know from the X-lock measurements that higher runtimes do not necessarily imply degraded
system performance in terms of throughput. But up to this point, we considered the gap between
the total runtime and the lock request time (that is, the overhead due to non-locking-related
components) as a fixed quantity of roughly one millisecond per transaction. After several reruns
of the same benchmark configuration, we have to assume that this non-locking overhead is
indeed significantly increased for both workload variants with preemptive locking. It would not

55



be surprising if this phenomenon is somehow related to the unstable throughput measurements
from Figure 20.

Next up, we should discuss the question how preemptive locking can drastically affect the per-
formance of non-locking-related parts of the system, as indicated by the timings in Figure 21.
Although the lock request time is also alarmingly increased for the preemptive navigation-
based scenario, the gain in non-locking overhead clearly dominates the picture. One theory
for this observation might suggest that by eliminating deadlocks through preemptive locking,
the throughput is increased in such a way that the transaction threads run into a new kind of
synchronisation bottleneck, which was not measurable for the non-preemptive scenarios. That
might explain why the transaction throughput for preemptive locking is indeed improved, but
not to the extent we would hope for. Furthermore, the exclusive document lock strategy might
not suffer from the same effect because only one single thread effectively accesses the document
at each point in time.

There are many components in BrackitDB apart from the locking system where thread synchro-
nisation must be performed, for instance at the buffer manager or the log manager. Depending
on the skew, the transaction threads might also be blocked due to the page latching mechanism
in the document index. One last benchmark attempt might give us some more clues about
potential system bottlenecks.

5.5 I/O Edge Cases

In our last series we are going to examine the influence of different I/O setups in combination
with different locking strategies. Intuitively, we would assume that increased I/O delays due to
buffer page loads or log flushes favors a configuration where more parallelism can take place.
While threads waiting for I/O calls could easily be evicted from their CPU core and thereby
make room for active threads, a single-threaded I/O bound system basically leaves the CPU
unutilized during disk interaction.

In order to investigate these effects, the next benchmark again compares the single-threaded
X locking approach and the four different workload variants employing taDOM under different
I/O setups. Up to this point, we only saw results for a medium amount of I/O, accomplished
by frequent log flushes to an SSD device but a sufficiently large page buffer to keep the entire
document in main memory. For our next test, we therefore look at the two edge cases full I/O
(i.e., as much I/O as our benchmark can deliver) and no I/O at all.

On that note, full I/O is achieved by a tiny buffer ratio of 0.01 and rather slow log flushes
to an HDD. No I/O, in contrast, makes use of a large page buffer and disables log flushes
completely. While log records are still kept in memory to allow for transaction rollbacks, they
are never persisted so that potential crash recovery and thus ACID durability is abandoned in
this scenario. Moreover, the skew is lowered to make sure that a larger portion of the document
is accessed, thereby provoking page misses for the small buffer in the full I/O scenario.
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Variables:
• Lock protocol: X, taDOM (+ workload variants)
• I/O setup:

– Full I/O (Buffer: small, Log: HDD)
– No I/O (Buffer: large, Log: disabled)

Constants:
• Number of threads: 8
• Skew: low
• Lock depth: infinite
• Lock escalation: disabled

Following our usual procedure, we begin with an evaluation of the transaction throughput in
reference to Figure 22. Not surprisingly, adding I/O delay cuts back the throughput considerably.
The absolute impact of I/O on performance is particularly evident in the X locking scenario
where disk interaction results in a throughput of roughly 20,000 while removing all I/O costs
almost achieves 120,000 transaction per minute.

X Navigation-based Stream-based Navigation-based
+ Preemptive

Stream-based
+ Preemptive

0

20000

40000

60000

80000

100000

120000

140000

TX throughput

Full I/O

No I/O

Figure 22: I/O edge cases (Transaction throughput)

Unfortunately, the results do not confirm our proposition that the fine-grained, multithreaded
scenarios gain a clear advantage against the sequentially executed baseline in the I/O scenario.
Indeed, the gap between the X lock throughput and the corresponding taDOM throughputs has
shrinked noticeably when I/O is involved, but the baseline still holds the upper hand on average.
It should again be noted that the gathered throughput values were quite jumpy from run to run
despite several repetitions. This is particularly apparent for the full I/O setups. Furthermore,
although the skew is already lowered in this benchmark, there is still potential for increasing
buffer I/O even more, by relying on uniform, random access to the name indexes. Maybe with
just a little more I/O involved, the multithreaded execution outperforms the exclusive strategy
at last.

While the standard taDOM workloads (navigation-based and stream-based) yield rather consis-
tent results with regard to previous measurements, the numbers for their deadlock-free variants
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are once again more puzzling. Instead of improving the throughput values from Figure 20, dis-
abling log-caused SSD interaction even seemed to have degraded performance for preemptive
locking. And this is although we see from the X locking results that removing log I/O generally
has a positive effect on throughput.

Finally, for the sake of completeness, the corresponding transaction timings for both I/O corner
cases are presented in Figure 23. The full I/O timings reveal significantly increased transac-
tion runtimes due to buffer delays (and possibly other effects as well). Looking at the default
navigation-based and stream-based taDOM variants, we observe that adding I/O adds more
than six milliseconds to the total runtime of any individual transaction, while the locking over-
head only slightly increases (by less than 0.2 ms in absolute numbers). This is exactly one of
the benefits we anticipate from fine-grained locking: Waiting times are less dependent from the
duration of other transactions, as opposed to exclusive locking where each transaction has to
wait for over 23 milliseconds in the lock request queue until all preceding transactions finally
commit.
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Figure 23: I/O edge cases (Transaction timings)

The preemptively locked variants again turn out to behave suspiciously in terms of their timing
values. Since we have to assume that every locking variant suffers from roughly the same
I/O overhead, the considerably higher total transaction runtimes of the two preemptive locking
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approaches is hard to comprehend. If they were caused by thread synchronisation bottlenecks
(such as latching issues), as speculated in the previous benchmark discussion, we would rather
expect that additional I/O smoothens these effects out, instead of scaling them up even more.

5.6 Analyzing Throughput Bottlenecks

Without further in-depth experiments, it is difficult to tell why the fine-grained locking ap-
proaches do not achieve comparable transaction throughputs compared to the “one at a time”
strategy of exclusive document locking. We found some indications that the lock manager and
the applied protocol is not the limiting factor, such as implied by the constantly low locking-
related overhead (illustrated as the central bars in the timing diagrams). We could identify the
deadlock detection and resolution mechanism as one of the bottlenecks, since bringing down the
abort rate to zero improved the overall throughput considerably, in exchange for newly arising
questions.

At this point, one might even go so far as to theorize that disabling locking altogether and run-
ning the same amount of worker threads concurrently on the document without any isolation
control would expose the same kind of throughput bottleneck as with taDOM enabled. Unfor-
tunately, running a highly concurrent workload without any locking mechanism in place might
quickly render the benchmark document inconsistent.

What might prove insightful as to finding multithreading issues is a step-by-step concurrency
analysis of every lower layer component that involves any thread synchronisation. For instance,
first check the buffer manager in an isolated testbed by running a multithreaded workload
that excessively fixes, unfixes and allocate pages, then proceed with evaluating the log buffer
implementation appropriately, followed by a benchmark of the page latching mechanism imposed
by the B+ tree implementation, and so on. If all these components turn out to have an adequate
multithreading performance, we should again focus on locking mechanisms.

But until then, it would be premature to blame the applied locking protocol for meager trans-
action throughputs. The prevailing locking mechanism according to the previous benchmarks
(which was simply referred to as X), might only yield the best throughput because it actually
prevents any concurrency issues from occurring in the first place.
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6 Conclusion

In this thesis, we introduced the general architecture of an XML database management system,
exemplified by BrackitDB. Many long-serving, well established techniques and design principles
from relational systems are applied, combined with more XML-specific innovations the higher
we climb up the architectural ladder.

We discussed the purpose of concurrency control which is required whenever transactions are
allowed to access shared data in an interleaved fashion. In this context, the notion of serializ-
ability as the general measure for correctness was brought into play. Locking data items prior to
accessing them, while holding these locks until the transaction commits, is one way of achieving
serializability.

Various locking techniques have been invented for relational database systems, one of them being
multi-granularity locking where the database is arranged as a tree of different granularities, from
the complete database at the top, down to single records at the bottom. It was recognized that
this locking principle can be transferred to XML data as for its hierarchical nature. In fact, the
locking protocol employed by BrackitDB, known as taDOM, extends these ideas considerably by
establishing new lock modes of varying granularity. These lock modes are specifically tailored to
provide minimal and yet sufficient transaction isolation on top of the DOM interface. Depending
on the invoked operation, single nodes up to entire subtrees are transparently locked on demand
to ensure adequate protection. However, node and subtree locks are not quite sufficient to
cope with phantoms that can be encountered by performing navigation steps. For this reason,
edge locks play a vital role for achieving true serializability. If secondary indexes are utilized
to retrieve data, they also need to implement measures against phantoms, which is covered by
index locks.

Evaluating the above described locking concept was the primary concern in this thesis. In order
to set up a suitable benchmark environment, BrackitDB had to be extended by appropriate
statistic-tracking features that needed to be accessible to the benchmark software. Further-
more, many practical issues had to be overcome for BrackitDB to cope with highly concurrent
workloads without ending up in unexpected deadlock situations.

Eventually, taDOM was put to the test against alternative locking protocols, such as RIX,
URIX, and a simple exclusive document lock. Since taDOM offers finer-grained locks compared
to its competitors, more concurrency within the document should result from it. Ultimately, the
question is whether this increased potential for concurrency compensates for the higher locking
overhead that is entailed by finer-grained locks.

We observed that techniques for dynamically coarsening the lock granularity (known as lock
escalation) to reduce the overhead of managing plenty of fine-grained locks do not impact trans-
action throughput noticeably in our benchmark setup. However, according to the measurements,
lock escalation was rarely applied at all during the runs. This issue might be fixed by making
the escalation strategy more aggressive or adding some long-running transaction to the workload
mix. Another taDOM-related parameter, the statically fixed lock depth, has a major influence
on system performance, especially when set to very low values. It might have a slight positive
impact compared to infinite lock depth, but the optimal value heavily depends on the document
structure and workload (for our benchmark, the optimum was roughly on lock depth 3).
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Unfortunately, with reference to the baseline experiments, neither of the taDOM setups was
able to surpass the incredibly simple X lock approach that essentially reduced the database to a
sequential transaction processor. We tried to overcome this issue by providing different workload
variants, two of which even offered deadlock-free execution. By eliminating deadlock resolution
overhead we could indeed observe an increased transaction throughput that is, however, still
exceeded by the global exclusive lock strategy. Besides, some of the measurements taken from
the deadlock-free workload variants raised more questions than they answered.

Considering all facts from the benchmark, it appears the general problem with respect to trans-
action throughput is not related to taDOM in particular, as the effect was evident for every
locking protocol that allowed for concurrency in the document to a certain extent (e.g., RIX
and URIX). Furthermore, the individual transaction timings (between one and two milliseconds
per transaction) looked quite reasonable. Especially the rather short duration that a transaction
usually spends in locking-related code is an indication to not blame the locking technique for
low throughputs.

In its current state, multithreading in general seems to be the cause for the limited throughput,
even though the benchmark CPU features several cores for truely parallel thread execution.
While linear scalability in parallel programming is of course unrealistic, we should at least see
slight benefits when allowing an increased amount of threads accessing the data at the same
time. Therefore, the next step would be to further investigate the observed synchronization
bottleneck.

In the light of the multicore era, there is no doubt that today’s software should aim for ad-
equate multithreading scalability in order to be competitive. Another trend emanates from
advancements in storage media which become progressively larger, cheaper, and faster. Con-
sequently, database systems will be increasingly restrained by the CPU and the efficiency of
their algorithms. In the end, it thus comes down to how much concurrency the database allows
while minimzing the CPU overhead inflicted by appropriate concurrency control mechanisms.
Fine-grained lock protection with the potential to dynamically adjust lock granularity, such as
offered by taDOM, therefore poses a promising candidate for this challenge. However, presum-
ably caused by a synchronization bottleneck that has yet to be identified, the experiments were
unable to provide the practical evidence for this assumption.
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