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Abstract Next-generation business intelligence (BI) en-
ables enterprises to quickly react in changing business en-
vironments. Increasingly, data integration pipelines need to
be merged with query pipelines for real-time analytics from
operational data. Newly emerging hybrid analytic flows have
been becoming attractive which consist of a set of extract-
transform-load (ETL) jobs together with analytic jobs run-
ning over multiple platforms with different functionality.

In traditional databases, materialized views are used to op-
timize query performance. In cross-platform, large-scale data
transformation environments, similar challenges (e.g. view
selection) arise when using materialized views. In this work,
we propose an approach that generates materialized views in
hybrid flows and maintains these views in a query-driven, in-
cremental manner. To accelerate data integration processes,
the location of a materialization point in a transformation
flow varies dynamically based on metrics like source up-
date rates and maintenance cost in terms of flow operations.
Besides, by picking up the most suitable platform for accom-
modating views, for example, materializing and maintaining
intermediate results of Hadoop jobs in relational databases,
better performance has been shown.

Keywords Real-time data management · Hybrid analytic
flows · Incremental view maintenance

W. Qu (�) · S. Dessloch
Heterogeneous Information Systems Group, University of
Kaiserslautern, Kaiserslautern, Germany
e-mail: qu@informatik.uni-kl.de

S. Dessloch
e-mail: dessloch@informatik.uni-kl.de

1 Introduction

Modern cloud infrastructure (e.g. Amazon EC2) aims at
key features like performance, resiliency, and scalability.
By leveraging NoSQL databases and public cloud infras-
tructure, business intelligence (BI) vendors are providing
cost-effective tools in the cloud for users to gain more ben-
efits from increasingly growing log or text files. Hadoop
clusters are normally deployed to process large amounts
of files. Derived information would be further combined
with the results of processing operational data in traditional
databases to reflect more valuable, real-time business trends
and facts.

In traditional BI systems, operational data is first extracted
from sources, cleansed, transformed, integrated and further
loaded into a centralized database as a materialized copy for
reporting or analytics. This process is referred to as a data
integration pipeline and usually contains extract-transform-
load (ETL) jobs. To maintain the copy in the warehouse, ETL
processes are triggered to run periodically (e.g. daily) in a
batch-oriented manner. In addition, another variant called
incremental ETL [1] can be used, which propagates only
the change data captured from the source to the target ta-
bles in a warehouse. As the size of change data is normally
smaller than the original data set, incremental ETL is some-
times much more efficient than fully reloading the whole
source data set. Thus, incremental ETL jobs are allowed to
be scheduled in a mini-/micro-batch (i.e. hourly/in several
minutes) fashion.

With the advent of next-generation operational BI, how-
ever, existing data integration pipelines cannot meet the in-
creasing need of real-time analytics because complex ETL
jobs are usually time-consuming. Dayal et al. mentioned
in [2] that more light-weight data integration pipelines are
expected so that a back-end integration pipeline could be
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merged with a front-end query pipeline and run together as
generic flows for operational BI. In [3], Simitsis et al. de-
scribed their end-to-end optimization techniques for such
generic flows to alleviate the impact of cumbersome ETL
processes. Generic flows can be deployed to a cluster of exe-
cution engines and one logical flow operation can be executed
in the most appropriate execution engine according to spe-
cific objectives, e.g. performance, freshness. These generic
flows are referred to as hybrid flows.

On one hand, in traditional BI, offline ETL processes
push and materialize operational source data into a dedicated
warehouse where analytic queries do not have to compete
with OLTP queries for resources. Therefore, query latency is
low, whereas data might get stale. On the other hand, hybrid
flows use data federation techniques to pull operational data
directly from data sources on demand for online, real-time
analytics. However, due to on-the-fly execution of complex
ETL jobs, analytic results might be delivered with poor re-
sponse times. A trade-off exists here between query latency
and data freshness.

Incremental ETL could be exploited instead of fully
re-executing ETL jobs in hybrid flows. A relatively small
amount of change data is used as input for incremental ETL
instead of the original datasets. For some flow operations, for
example, filter or projection, incremental implementations
outperform full reloads. However, for certain operations (e.g.
join), the cost of increment variants varies on metrics (e.g.
change data size) and sometimes could be worse than that of
original implementation.

Therefore, we argue that just using incremental loading to
maintain warehouse tables is not enough for real-time analyt-
ics. Usually, there is a long way (complex, time-consuming
ETL jobs) from data sources through ETL processes to the
warehouse. As ETL processes consist of different types of
operations, incremental loading does not always perform
stably. The location of the target tables (i.e. in data ware-
house) has become a restriction on view maintenance at
runtime using incremental loading techniques. Therefore,
new thinking has emerged to relieve the materializations (in
virtual/materialized integration) from their locations (data
sources or the warehouse).

In this work, we propose a real-time materialized view
approach in hybrid flows to optimize performance and mean-
while guarantee data freshness using on-demand incremen-
tal loading techniques. Depending on several metrics like
source update rate and original/incremental operation cost
from different platforms, we define a metric called perfor-
mance gain for us to decide where the materialization point
would be in the flow and which flow operators are supposed to
be executed in which way, i.e. incrementally or purely. Fur-
thermore, we explore various platform support for accom-
modating derived materialized views. In Sect. 2 we expose
the problem that incremental recomputations do not always

perform stably and the performance of certain operations
changes from platform to platform. In Sect. 3 we present our
main approach of real-time materialized view approach in
hybrid flows. By defining the performance gain metric, we
are able to meet the challenge of view selection and view
deployment. The results of the experiments will be shown in
Sect. 4.

2 Related Work

Hybrid Flows. Dayal et al. analyzed the requirements of
new generation BI in [2] and proposed that data transforma-
tion flows should be merged into general analytic flows for
online, real-time analytics. They also mentioned about using
materialized views to increase performance. In [3], Simitsis
et al. introduced optimization techniques in hybrid flows that
run in a multiple-engine environment for specific objectives
(e.g. performance, data freshness, fault tolerance, etc.). But
they did not describe in detail how views should be selected
and managed in hybrid flows. In this work, we introduce view
selection and view deployment methods in hybrid flows and
consider not only the performance characteristics of opera-
tions on different platforms but also the source update rates
to find the sweet spots in hybrid flows as materialization
points.

Real-time Data Warehousing. In [4], Oracle proposed
their real-time data integration approach which provides a
real-time copy of the transactional data in staging area for
real-time reporting and maintains it incrementally. Besides, a
real-time ETL solution called Morse [5] is proposed at Face-
book for real-time analytics. HBase is used as underlying
storage for incrementally updated table for batch processing
in Hadoop/Hive. In contrast, our work treats the challenge at
a fine-gained operation level and compares the operational
performance with observed source update rates.

Incremental View Maintenance. In the database research
community, incremental view maintenance has been exten-
sively studied [6–8]. Furthermore, there is related work of
view selection approaches concerning update cost [9, 10].
However, in ETL pipelines, certain complex transformation
jobs cannot always be extended to incremental variants for
efficient view maintenance at runtime. In contrast to a single
database, in cross-platform environment, the main challenge
we addressed in this work is to characterize the operations
on multiple platforms in terms of performance and incre-
mental implementations. In particular, choosing appropriate
platforms for accommodating derived views also plays an
important role in our approach.
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Fig. 1 Incremental join (left)
and performance comparison on
etl and rdb (right)

3 Incremental Recomputation in Materialized
Integration

In this section, we discuss incremental recomputation tech-
niques used in materialized views and ETL processes. We
argue that incremental recomputations do not always bring
low latency and the case changes from platform to platform.

Griffin et al. [11] proposed delta rules based on relational
algebra expressions to propagate the changes/deltas captured
from base tables to materialized views. For example, the
delta rules of a selection σp(S) and a natural join S �� T are
σp(�(S)) and [Snew �� �(T )] ∪ [�(S) �� Tnew], respectively
(S, T denote two relations, � denotes change data). Given
source deltas as input, new deltas are calculated at each oper-
ational level in the view query plan until the final view deltas
are derived (called incremental view maintenance). In data
warehouse environments, warehouse tables are populated by
(daily) ETL processes. Similar to maintaining materialized
view incrementally, Griffin’s delta rules can be also applied
to certain logical representations (like Operator Hub Model
[12]) of ETL processes to propagate only deltas from source
tables to warehouse tables.

An incremental join variant is illustrated on the left side
of Fig. 1. As shown, to calculate the delta �JOIN for an old
result of table orders joining table lineitem, new insertions
�O on table orders are first joined with the new state of table
lineitem, i.e. Lnew, and further put together with the join result
of �L and Onew as a union. Afterwards, the rows of �L ��
�O have to be subtracted from the union result to eliminate
duplicates. We ran a small test to observe the latencies of
joining lineitem and orders (scale factor 2) in a relational
database rdb (Postgresql1) and an ETL tool etl (Pentaho
Kettle2) on a single-node machine (2 Quad-Core Intel Xeon
Processor E5335, 4 × 2.00 GHz, 8 GB RAM, 1 TB SATA-II
disk) using both incremental and original implementations.

1 http://www.postgresql.org.
2 http://kettle.pentaho.com/.

During the test, we steadily increased the size of delta inputs
which simulates the source update rates.

We found (shown on the right side of Fig. 1) that, in rdb,
incremental join outperforms original join only with up to
50 % update rate (sql vs. sql-incre). With continuously
increased update rates, the performance of incremental join
degrades dramatically. We observed that when the delta in-
put is small enough to fit into memory, an efficient hash join
can be used with an in-memory hash table. If not, a slower
sort-merge join instead will be used which contains an addi-
tional pre-sort step. The performance of two hash joins, each
of which has a small join table (� < 50 %), can be more
efficient than one sort-merge join on two big tables. How-
ever, with the same input size, performing two sort-merge
joins (� > 50 %) is definitely slower than one sort-merg
join. Surprisingly, in etl case (etl vs. etl-incre), the
performance of incremental join could never compete with
that of original one. Since the version of Pentaho Kettle we
used does not support hash join, merge join was used which
introduces additional sort stages. With limited support on
join, the number of join dominates the overall performance
and the performance of incremental join is always lower than
the original one.

From the experimental results, we see that the perfor-
mance of incremental recomputations depends on several
metrics. Source update rates are important as they decide
the size of input deltas which further affects the execution
cost. In addition, platform support and execution capabilities
play important roles as well. Furthermore, the delta rules of
certain operations can also restrict efficient incremental im-
plementations. In next section, we will describe our real-time
materialized view approach for hybrid flows based on a run-
ning example.

4 Real-time Materialized Views in Hybrid Flows

Throughout this paper, we will use a running example to il-
lustrate our real-time materialized view approach in hybrid
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Fig. 2 An example flow checking states of incomplete orders

flows proposed in the following. Consider the sample ana-
lytic flow depicted in Fig. 2. It enables a business manager
to check the state of incomplete orders in a specific branch,
nation or region. Here can he prioritize the tasks with impor-
tant metrics (e.g. the earliest order, the longest delay, total
amount of revenues, and the number of orders) shown in the
flow results and assign them to regional managers. In partic-
ular, real-time trend of buying and logistics can be captured
by running analytic flow over source datasets and reactions
will be immediately taken in case of emergency.

The sample flow extracts data from the orders table
and the line item files and captures incomplete orders
whose order date is earlier than the current date and at least
one item of which has ship date later than the current date.
One Lookup stage is first used to append customers’
nation/region to the order stream. Line items are joined
with orders after duplicate elimination and revenue calcu-
lation. Aggregation functions min, max, sum, count
are then applied to the join results with group keysbranch,
nation, region. The insight is at last shown to a busi-
ness manager with results sorted on important attributes (e.g.
max(shipDelay)).

This logical flow describes the transformation and op-
eration semantic on each stage. At flow runtime, multiple
platforms can get involved. For example, large amounts of
line item files with structure information can be loaded into
a relational database where indexes and efficient processing
are provided. They can be also quickly loaded into a dis-
tributed file system and processed by Hadoop jobs in par-
allel. Besides, order table and customer table may reside
in different databases and an ETL tool is needed to com-
bine information from multiple sources together. Depending
on the overlap in functionality among different platforms, a

single logical stage operation can be deployed to different
engines. The challenge of optimizing analytic flows span-
ning multiple platforms (referred to as hybrid flows) has
already been addressed in [3]. Optimizing approaches like
data/function shipping can cut back to techniques used in
distributed query processing [13]. The main idea is to ship
operation to the platform which has its most efficient imple-
mentation. If the required datasets are stored on another re-
mote platform, datasets will be shipped from remote to local
only on the condition that local execution still outperforms
remote one with additional data moving cost. Otherwise, this
operation will be executed remotely.

To keep the business manager informed of real-time in-
sight on incomplete orders, this hybrid flow needs to be exe-
cuted repeatedly. However, even if there are relatively small
changes (e.g. insertions, updates, deletions) on the source
side, the old portion of source datasets still needs to get in-
volved in the flow execution again to recompute new re-
sults. Such repeating work slows down the flow execution
and meanwhile introduces large interferences and high loads
to individual source systems. Furthermore, we observed that
when executing flow on Hadoop platform, in many cases, the
output of a chain of MapReduce(MR)/Hadoop jobs that pro-
cess a large amount of unstructured data is well structured
and significantly smaller than the original input. Such an in-
termediate result suits better in a relational database instead
of subsequent execution in Hadoop.

Many ad-hoc hybrid analytic flows have overlap in flow
operations especially those in data integration pipeline which
provides consolidated data. The observations above expose
improvement potential of setting up materialized views in
overlapping fragments of hybrid flows. To ensure the data
consistency at flow runtime, which means providing the
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Fig. 3 Original flow

Fig. 4 Optimized flow with materialized views before join

same view of sources as executing the flow against origi-
nal datasets, view maintenance has to take place on demand.
This process can benefit from incremental recomputations
through which only the deltas on source datasets are taken as
inputs. The logical hybrid flow discussed above is now de-
picted by an ETL design tool and the original flow instance
is shown in Fig. 3. Each logical operation is mapped to a
corresponding step supported by this tool. For example, join

is explicitly implemented as sort merge join in the flow for
fast processing. Note that this is just a representation of the
logical flow and some flow fragments are still allowed to be
deployed to more efficient platforms other than ETL tool. To
pick up a boundary in the flow for a materialized view, the
cost of incremental implementations of flow operations will
be taken into account. Recall that, as we showed in Sect. 3, in-
cremental recomputations of specific operations (e.g. joins)
sometimes perform worse than original execution and per-
formance varies on different platforms. Assuming that the
system is capable of capturing change data from sources, the
flow instance shown in Fig. 4 has two materialized views set
up on the boundaries (M1, M2) in logical flow. Intermediate
results are materialized from previous execution of the two
fragments and maintained with the deltas of the order table
and the line item files in an incremental manner by the oper-
ations before the boundary at next runtime. Meanwhile, the
subsequent join operator accesses the data from these two
views for further execution using original join implemen-
tation. As we see from the experimental results in Sect. 3,
the ETL tool etl can be used as the execution platform for
this flow since the incremental join variant does not have ad-
vantage on etl, whereas another flow instance which has
incremental join for maintaining view on the boundary M3
(see Fig. 5) can only be deployed to the relational database
rdb where the join performance can be guaranteed if the
source update rates are lower than 50 %.

4.1 Performance Gain

With on-demand view maintenance at runtime, data freshness
is guaranteed. In order to reduce the flow latency, the cost of
each operator needs to be concerned into view selection step
in terms of incremental and original execution. Let uorg de-
note operation u of original type, uinc represent incremental
type and c(ut ) be latency of single operator. uinc is different
from uorg in terms of the size of input (delta vs. original)
and the implementation according to delta rules mentioned
in Sect. 3. Thus, the latency difference d(u) between incre-

Fig. 5 Optimized flow with
materialized views after join
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mental and original implementations of single operator is
given by the formula:

d(u) = c(uorg) − c(uinc). (1)

To simplify representing the latency of flow execution, here
we only consider the flow with operation running in se-
quence. For specific platforms providing parallelism for sub-
flow execution, for example, executing two fragments of a
join in parallel, the cost of parallelism here is the latency of
the fragment with the maximum cost. The execution latency
of original flow is the sum of latency of uorg as follows:

c(Forg) =
n∑

i=1

ci(uorg). (2)

With our approach, an original flow is cut into two fragments
by a materialized view V . The preceding fragment consists
of operations of incremental type and the following fragment
has the rest of operations of original type. As we let the ma-
terialized view to be maintained at runtime, extra overhead
conline(V ) is introduced to load calculated deltas into the old
view and read data from the new view for subsequent opera-
tions. Therefore, the latency of view-optimized flow is shown
in the following

c(FV ) =
m∑

i=1

ci(uinc) + conline(V ) +
n∑

i=m+1

ci(uorg). (3)

To have a feeling about how many benefits a materialized
view on a certain boundary in a hybrid flow can bring, we
define the performance gain g(V ) for each created view V . In
following formula, coff line(V ) represents the cost of building
up a materialized view offline, e.g. the storage waste on the
platform accommodating this view. A weight σ is used here
to make coff line(V ) comparable to flow latency. As one-off
view generation could benefit multiple future hybrid flow,
we put another variable λ as a weight to enhance view effect
on performance gain. Based on the Formulae 1, 2, 3 defined
above, we give the formula of the performance gain of the
materialized view as follows:

g(V ) = λ × (c(Forg) − c(FV )) − σ × coffline(V )

c(Forg)

= λ × (∑m
i=1 di(u) − conline(V )

) − σ × coffline(V )

c(Forg)
(4)

Performance gain represents the rate of the improvement
achieved from view-optimized flows as compared to the per-
formance of original flow. As the latency of view-optimized
flow increases, the performance gain decreases. In case FV

contains operations of incremental type which dramatically
degrades the whole performance and leads to c(Forg) ≤
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c(FV ), no performance gain exists. Furthermore, even if
c(Forg) − c(FV ) is positive, significant cost in creating views
coffline(V ) can also affect g(V ).

4.2 View Selection and Deployment

In this section, we will discuss how to implement our real-
time materialized view approach in a hybrid flow. Two main
challenges, i.e. view selection and view deployment, are in-
volved. View selection is referred to as the process of finding
out a position to insert a materialized view in the flow. This
will be discussed only in a single-platform environment. In a
cross-platform environment, hybrid flow spans multiple plat-
forms with different functionality. One problem left is which
platform should be chosen to accommodate the view for the
highest execution efficiency. This will be considered as view
deployment problem.

View Selection is described in the following. Figure 6 shows
a selection table with a list of flow operations which are sorted
according to their positions in the input flow.

To initialize this table, during previous flow execution, the
latency of each operation with original implementation has
been recorded as c(uorg). Meanwhile, the size of its intermedi-
ate result is stored into coffline(Vi) as extra storage cost. Based
on the change data capture mechanism, update rate on each
source is allowed to be captured, which implies that c(uinc)
can be simulated with the size of given deltas. According to
the formulae defined in previous section, the latency differ-
ence d(u) can be derived and further used to calculate the
performance gain. In this example, symbols +/− are sim-
plified values for d(u) instead of real values. They indicate
whether the difference is positive or negative and whether
incremental variant outperforms original one or not. At last,
the performance gain g(Vi) for each flow operation ui is cal-
culated based on a simulated, view-optimized flow FVi

where
a materialized view Vi is supposed to be inserted right after
operation ui . All preceding operations (including ui) before
Vi would run incrementally and subsequent operations after
ui would be executed as uorg . Thus, g(Vi) is the comparison
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result between the latency of this flow (c(FVi
)) and that of

original flow (c(Forg)).
After initial phase, we consider the potential of optimizing

performance with flow transition techniques. In [14], Simi-
tisis et al. introduced a set of logical transitions (e.g. swap,
factorize, distribute, merge, split, etc.) that can be applied to
ETL workflow optimization under certain condition. In this
example, we only use the SWAP transition to interchange the
sequence of adjacent operations in the flow. Starting from
the first operation row in the selection table, we probe the
values in the latency difference column d(u) until we reach
an operation row which has its c(uinc) value as ∞ (u6 in this
example). This means that this operation is not able to sup-
port incremental recomputation, for example, sort operation
and some user-defined functions. In the probe phase, u6 is the
first occurring operation which cannot be executed incremen-
tally, which indicates that materialized view can only be set
in front of it for executable incremental view maintenance.
We record u6 and probe further.

For the rest of the operations, we try to push the ones that
have positive d(u) in front of u6 using multiple swap tran-
sitions since it is likely that certain operations (e.g. filter)
could increase the performance gain. Two candidates u7, u8

have been found and u8 failed as the movement of u8 can-
not lead to an identical state of original flow. Until this step,
we have a sequence of operations (u1−5, u7) as candidates of
view boundary. Operation u3 has the maximal performance
gain 0.5 estimated and u7 has only 0.2 since there are two
operations u4, u5 sitting in front of it. Their incremental per-
formance is lower than that of original implementations thus
degrades u7’s gain. Therefore, we try to swap them with u7

again and now u7 achieves higher rank (due to the same state
reason, u7 cannot be pushed in front of u4). The g(V ) of u7

turns to 0.6 as the position of u7 in the flow affect can affect
the performance gain. After recomputing the performance
gain, u7 becomes the winner as materialization boundary in
the flow, even if there is u4 in front of it. This means u7 brings
significant benefit with its incremental variant, which offsets
the negative impact from u4. Using this method, we are able
to find out an appropriate boundary for materialized views
in a single-platform flow.

View Deployment Recall that the execution of hybrid flow
spans multiple platforms with overlap in processing func-
tionality. Logical flow operations can be deployed to dif-
ferent platforms for the highest efficiency. Introducing ma-
terialized views in hybrid flows and maintaining them on
the fly can achieve additional improvement. For example, it
may be effective for a Hadoop cluster to produce analytic
results on terabytes of unstructured files as compared to a
relational database. However, by caching small size of an-
alytic results in this relational database, it would be much

more efficient for it to maintain these views with smaller
update files.

By extending the view selection table in a multiple-
platform environment, the cost of original and incremental
operations will be compared across platforms. Those plat-
forms that support incremental recomputations better are
preferred for on-demand view maintenance. However, one
problem occurs that which platform should be used for ac-
commodating generated views.

Suppose that a materialized view is supposed to be in-
serted between two consecutive operations ui and ui+1 (ui

run incrementally and ui+1 run with original impl.). If both
operations are deployed to the same platform Px , a simple
way is to materialize the intermediate results directly in this
platform. If ui run on Px and ui+1 on Py , the situation be-
comes whether to maintain views on Px and move views
onto Py or move deltas onto Py and maintain the views there.
In order to answer this question, we extend the formula of
placement rate defined in [3] as follows:

p(V ) =
σ × c

Px

off line(V ) + λ ×
(
ci→i+1

view + c
(

u
Py

i+1

))

σ × c
Py

off line(V ) + λ ×
(
ci→i+1
delta + c

(
u

Py

i+1

)) . (5)

cP
off line(V ) denotes the cost of initial loading of materialized

view in platform P . ci→i+1
view/delta indicates whether to transfer

the new views or the deltas onto platform Py where ui+1 takes
place. As we can see, if both platforms have no problem of
initializing this view, it should be placed onto the platform
Py since the latency of transferring deltas is definitely lower.
In case there is no more free space for view V on platform
Py , this view may be stored in another platform Pz where

ci→i+1
delta + c

(
uPz

i+1

)
is lower than ci→i+1

view + c
(

u
Py

i+1

)
.

5 Experimental Results

Test Setup To validate our approach, we measured perfor-
mance of three flow variants in our running example de-
scribed in Sect. 4. In this example exist three flows: f1 has
flow operations running with their original implementations
over source datasets; f2 contains two materialized views
(M1, M2) derived from previous execution results for the
flow fragments before join. The inputs are source change
data captured in idle time and used to maintain two views at
runtime; f3: has a materialized view (M3) set after join opera-
tion. The incremental join variant runs on the fly to calculate
the deltas for the view.

Three data stores are involved in the experiment,
namely orders, customer and lineitem files
using TPC-H benchmark. Experimental platforms comprises
a relational database (rdb), an open source ETL tool (etl)
and a M/R Hadoop engine (mr). The experiment consists of
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Fig. 7 Data size comparison

two parts. In the first part, flow f1, f2 and f3 are tested on
two single platforms rdb and etl, respectively. The goal
is to prove that our view selection method can be used to
find the best materialization points in transformation flows
on a single platform. The second part takes flow f2 as ex-
ample to show the benefits of view deployment method. The
flow fragment for processing lineitem files is either
deployed to mr or first materialized and further maintained
by rdb at runtime.

We ran our experiments in rdb and etl both running on
a single-node machine (2 Quad-Core Intel Xeon Processor
E5335, 4 × 2.00 GHz, 8 GB RAM, 1 TB SATA-II disk).
Hadoop runs on a 6-node cluster (2 Quad-Core Intel Xeon
Processor X3440, 4 × 2.53 GHz, 4 GB RAM, 1 TB SATA-II
disk, Gigabit Ethernet).

View Selection on Single Platform We ran flow f1, f2 and
f3 in rdb and etl, respectively with input datasets of scale
factor 1 (i.e. 1G). For f2 and f3, the update rates of orders
and lineitems are 0.1, 1, 10, 30 and 50 %. Figure 7 com-
pares the number of rows among input sources (orders,
lineitems), derived views (M1, 2, 3) and the deltas
with 10 % source update rate. The source table orders has
1.4M rows and lineitem files have 5.7M rows which
are accessed directly by flow f1. As compared to f1, the num-
ber of the rows in the input (M1 + M2 + deltas) for
flow f2 is 1.6M and flow f3 reads the smallest view (M3 +
deltas, 60 K rows).

Fig. 8 Running flows (1, 2, 3) in rdb

In Fig. 8, there are 5 groups each of which represents the
results of running 3 flows in rdb with different source up-
date rate. In each group, the result of flow f2 consists of three
portions. The underlying two values represent the latency of
maintaining and reading M1,2 at runtime using incremental
variants, respectively. The value on top is the runtime of run-
ning subsequent operations with original implementations
after reading data out of M1,2. Flow f3 has only one view to
maintain, thus consists of two values: maintenance time and
execution time.

The results show that with increasing update rates, inrdb,
flow f2 always outperforms f1. The incremental variants of
the operations group, filter, lookup that maintain M1,2 in
f1 have lower latency than their original implementations,
thus show high performance gain. Deltas can be calculated
through each operator without accessing source data. In par-
ticular, as common group, filter operations have smaller out-
put size than their input size, the size of derived materialized
views is much smaller. The impact of online delta-loading
and view-reading is reduced. In contrast to f2, flow f3 shows
worse performance and has higher latency than f1 when the
source update rate is higher than 10 %. Even if f3 has the
smallest overhead of view-reading, the impact of incremen-
tal join dominates the runtime since large-size of source data
needs to be accessed for calculating deltas.

As shown in Fig. 9, the results change in etl. The per-
formance gain of views in f2 can only be guaranteed with up
to 30 % update rate. Since etl does not has its own storage
system, derived views are stored in rdb. The cost of mov-
ing data through network highly reduces the performance
gain.

In this part of experiments, we show that the performance
varies from platform to platform. It depends not only on the
operations supported by specific platforms but also on the
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Fig. 9 Running flows (1, 2, 3) in etl

source update rate. Using our view selection method, the
performance gain of materialized views can be calculated in
a cross-platform environment with different source update
rates. Thereby, the best materialization points can be sug-
gested in the flows.

View Deployment in Hybrid Flows The second part val-
idates the view deployment method in a hybrid flow. Data
stores have scale factor 10 (i.e. 10G) in this part. Two variants
of flow f2 are used here. The first flow f2-1 has lineitem
files that are stored in the Hadoop distributed file system
(HDFS) of mr and processed by Hadoop jobs before join
operation. The ETL tool etl tool joins the results from rdb
and mr and performs the subsequent operations. In the sec-
ond variant f2-2, a materialized view V is created from the
intermediate results of Hadoop jobs and cached in rdb. At
runtime, view V is maintained by first loading update data
of the lineitem files into rdb and running the incre-
mental variants of dedup, filter, and group to calculate deltas
for V.

The results are depicted in Fig. 10. The runtime of f2-
1 is composed of the time of executing Hadoop jobs over
lineitems and the time of running subsequent operations
in etl. For f2-2, the time is captured in load, maintenance
and execution phases. With 0.1 % update rate, the load phase
and maintenace phase of f2-2 have lower latency as the delta
size is small. Therefore, overall performance is significantly
better than f2-1.As the delta size raises up to 10 %, the perfor-
mance of load operations in rdb degrades drastrically and
the overall performance is worse than that of f2-1.

The results give the suggestions that the overall per-
formance can benefit from creating materialized views for
Hadoop jobs in rdb only if the lineitems contain update

Fig. 10 Running flows 2 as hybrid flow

rates lower than 5 %. This suits better in the case where f2-2
runs continuously. Otherwise, mr performs better if the delta
size exceeds 5 %.

6 Conclusion

In this work, we proposed a real-time materialized view ap-
proach for data flows which span multiple platforms like
Hadoop, ETL and relational databases. Materialized views
are maintained by incremental recomputation techniques at
runtime. As the performance of certain incremental imple-
mentations (e.g. join) varies on the operations supported by
specific platforms and the source update rates, we first de-
fined a metric called performance gain to identify the benefit
of a materialized view in any possible point of a flow. Based
on the performance gain, the flow operations that can achieve
efficient incremental execution performance are pushed near
sources using view selection method. The operations that
have worse performance or are not even supported in an in-
cremental way are pushed after materialized views and ex-
ecuted with original implementations. This solution works
better in a heterogeneous environment where ETL flows ex-
tract data from sources with different update rates. With vary-
ing source update rates, the suggested materialization point
moves in the flow dynamically. Furthermore, by using view
deployment method, derived views can be deployed to ap-
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propriate platforms for efficient maintenance at runtime. This
method exploits the platforms with different support on in-
cremental recomputations in hybrid flows.

The results showed that our real-time materialized view
approach is able to give suggestions of using materialized
views in a sequential flow execution environment where data
consistency is guaranteed. In a concurrent flow execution
environment, multiple flows can access the views at the same
time thus skew data can read by certain flows. View update
anomaly and query anomaly can take place in such case. This
would be our future work.
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