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Abstract
Today, database management systems are highly complex, ubiquitous
pieces of software. Traditionally, the main focus in DBMS development
was perfomance-centric, hence, heavy-weight systems with peak perfor-
mance were developed.
In the last years, electricity prices have increased significantly, and

hence, the motivation to save power came into focus of datacenters
and into the DBMS community. Recent ventures on increasing energy
efficiency of databases did contribute only marginal improvements.
In this thesis, we present our findings on an elastic cluster of

lightweight nodes, that is able to dynamically adapt to the workload
by scaling out and back in. By powering down unused nodes, we avoid
high idle power consumption of today’s hardware. Our contribution
can be summarized as follows:

• We present a newly developed benchmarking paradigm for evalu-
ating energy-efficiency, since existing DB benchmarks do not in-
clude the whole power spectrum in their measurements.

• We describe our work on measuring and benchmarking energy effi-
ciency of commodity hardware with a custom-made measurement
track, capable of metering power and energy consumption of an
entire server cluster and correlating the readings with benchmark
results.

• We studied and improved our theories on our own database man-
agement system, called WattDB, which we also present in de-
tail in this thesis. WattDB is a distributed DBMS, running on
lightweight, commodity hardware, with energy efficiency as prime
optimization goal. Since the database is distributed among all
nodes in the cluster, we also introduce techniques necessary for
repartitioning to keep data available at all times. Finally, we
compare our approach to a traditional server in terms of power
and performance.
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1 Introduction
Traditionally, database systems have been evaluated regarding their
performance in terms of throughput and response times and the cor-
responding cost. Yet, with increasing energy prices and higher energy
density in datacenters, leading to problems supplying electricity and
removing waste heat efficiently, energy efficiency became another opti-
mization goal. Therefore, techniques to measure, evaluate, and improve
energy efficiency have been published in the last years. In this work,
we give an overview over our research (and related approaches) on an
energy efficient database system.

1.1 Motivation
Power consumption and energy savings are concerns in all areas of IT.
Recently, a study revealed that IT—including not only datacenters, but
also communication facilities, cellular devices, phones, home entertain-
ment systems, and basically all computerized machines—is responsible
for 10% of the world’s electricity consumption: 1,500 terawatt hours of
energy per year [Mil13].
Datacenters in turn, are responsible for a fraction (∼12%) of the whole

IT’s power consumption. In 2006, US datacenters and servers consumed
61 billion kWh, costing 4.5 billion USD [LP09]. As of 2007, US datacen-
ters consume about 1.5% of the country’s total electricity generation,
projected to 3% in the next years [EPA07].
While energy consumption is steadily rising, prices for electricity are

also increasing. Due to the increasing power consumption of computers,
electricity cost of datacenters is a dominant factor in the total cost of
ownership [BH07]. Each watt converted into heat in the servers needs
to be cooled off again; hence, cooling expenses draw level with power
cost [BH07]. For an average utilization period (∼5 years), energy costs
have now drawn level with the server’s acquisition cost [PN08].

1



1 Introduction

             
           

           
             

           
    
          

           
       

        
 

 
        

      

Figure 1.1: Worldwide server cost between 1996 and 2010, from [PN08]

Until recently, energy efficiency was only a hot topic in embedded
and mobile environments, but neglected in datacenter and server de-
sign. In recent years, several proposals have been published to reduce
overall energy consumption of database servers and to improve energy
efficiency of such systems. As consequence of such efforts, only marginal
improvements on simplified problems were achieved.

1.2 Objective
In order to substanitally improve energy efficiency of database servers,
the limitations of non-energy-proportional hardware have to be over-
come. While single-server-based approaches have already provided
small advances in energy efficiency, at idle, 50% of the peak power
consumption is still wasted.
Therefore, we have worked on a distributed solution, implementing an

elastic database management system on a cluster of lightweight nodes.
By dynamically scaling the size of the cluster to the workload demands,
we are able to tune the power consumption and performance on a per
server basis.

2



1.3 Overview

1.3 Overview
In this work, we present our work on an energy-proportional database
management system. First, we give an overview of related work in all
nearby fields of research, covered by this thesis. We outline efforts on
improving energy efficiency of components and servers, up to distributed
systems. Further, we present performance optimization techniques for
distributed database systems leading to better energy efficiency.
Afterwards, we summarize the metrological foundations, how to mea-

sure power and energy consumption of servers, give an overview on cur-
rent power measurement devices, and—since no existing solution fits
our purpose of monitoring a database cluster—explain the development
of our own measurement track in detail. Next, we compare different
system benchmarks, both performance-centric and energy-related, and
introduce our proposal for an energy-centric benchmarking paradigm.
In Chapter 5, we present our core contribution, WattDB, an energy-

proportional database system. We describe the system’s architecture
and design rationale behind it, analyze its power consumption, and
outline imporant implementation aspects.
Later, we work through the database layers from storage to process-

ing and outline techniques to gain better energy efficiency on each layer.
In Chapter 7, we present our work at the DB’s storage layer, work our
way up through the processing layer in Chapter 8, and combine our
approaches to form a fully elastic database system in Chapter 9. Next,
we compare the performance and energy consumption of our implemen-
tation to a big server, running the same version of our DBMS.
Finally, we give a conclusion and an outlook on future work.

1.4 Disclaimer
WattDB is an ever-changing research project and has undergone some
remarkable evolution from the first implementation for the SIGMOD
programming contest [Gen+10]. Starting with very limited query eva-
lutation capabilites, it later supported analytical queries, multi-version
concurrency control and ACID-compliant updates.
In this work, we refer to WattDB at various development stages in

chronological order. As we proceed in the text, more features were im-
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plemented, design principles were reviewed and architectural changes
were made. For example, in Chapter 8, we implemented the function-
ality to process updates and, thus, our DBMS turned from read-only
to write-supported. Therefore, some statements about our DBMS seem
contradictory when read ouf of context.
We tried to clearly note the current state of development in each chap-

ter, but we also encourage the reader to keep the evolution of WattDB
in mind when reading. In Appendix A.1, we give a short chronology of
WattDB’s evolution as a quick reference.
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2 Related Work
Gaining better energy efficiency has been a hot topic lately. Since the
research area is still emerging and focus has just recently shifted to
improving energy efficiency in database servers, the amount of publica-
tions is countable. Yet, efforts on reducing power consumption started
very early, although with another focus.
In the following, we give an overview over related work in the fields

of energy efficiency in general and efforts in the DBMS community to
lower power consumption. More related research specialized to topics
covered in this thesis can be found in the respective chapters.

2.1 Energy Efficiency
Improving energy efficiency has been an effort in many areas of IT.
In the following, approaches on various “granularities”, from chip-level
over entire machines up to datacenter-grade solutions, are presented.

2.1.1 Components
At the small scale, microchip manufacturers have to carefully design
their chips with respect to power consumption. First, with shrinking
die1 sizes, the area for heat dissipation became smaller and, thus, cooling
the chip became more difficult. Second, smaller structures need reduced
voltages to function properly.
With the emergence of more powerful processors, running at higher

frequencies, the wattage of computer systems steadily increased. In
the late 2000s, microchips hit the so-called “power wall” [Kur01], when
chip frequencies could no longer increase as before, because they would
consume too much electricity and, thus, generate too much heat. Now
thermal constraints prevented systems from clocking higher and higher

1The area of the chip is called die [Aye03, p. 31].
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Figure 2.1: Clock rate and power for the last Intel processor generations,
from [PH13, p. 40, Fig. 1.16]

as in the years before and the heat generated in the CPUs just could
not get cooled down efficiently any more.
In recent CPU generations, improvements have not been made in

terms of higher clock rates, as observed before, but in the number of par-
allel cores on each die, as Figure 2.1 exemplifies. Since power consump-
tion scales quadratically with the supplied voltage (P = U2

R ), raising the
voltage dramatically increases the power draw of an integrated circuit.
Therefore, higher clock rates (which require higher voltages) were no
longer desirable. Instead, parallelization and dynamic frequency con-
trol came to play, e. g., processors were designed to power down when
underutilized [Int04] [Kim+08].
Especially in notebooks, mobile devices and sensors, energy efficiency

was a critical property from the very start of these technologies. On
the opposite, server and datacenter operators did not care much about
reducing power consumption. Power and heat were merely technical
constraints that had to be taken into account when planning large dat-
acenters as well as single systems.
As already mentioned in the introduction, views changed with the

increase of electricity prices and the growing installation base of servers
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Figure 2.2: Power consumption range of various main memory modules

[EPA07]. Also, trends from portable computers were introduced into
server-grade hardware, for example, Dynamic Voltage and Frequency
Scaling.
Although these techniques greatly improve operation time on battery

in mobile devices and notebooks, the effects in server hardware are
less dramatic, mainly because of different utilization patterns. End-
user devices are used infrequently with long periods of idleness between
utilizations. Therefore, suspending components, primarily CPU, hard
disk, and LCD screen, has great impact on battery time.
While CPUs have shown improvements in energy efficiency, other

computer components did not improve at all in the last decades. Main
memory, for example, is a big energy consumer in every system. While
there have been improvements in overall energy consumption of main
memory, especially for mobile, battery-powered systems, the power con-
sumption of server-grade main memory did not reduce much.
Typical DDR2 SO-DRAM (for notebooks) requires approx. 2 to

3 watts per 1GB module [Mic04]. Comparable DDR2 DRAM (for desk-
top computers) already consumes 3 to 5 watts for the same size [Zhe12].
Fully-buffered DDR2 ECC RAM (for servers) needs 13 W for a single
2GB module and, thus, requires far more power [Fis12].
While DDR3 RAM modules in general promise lower power consump-

tion than DDR2 modules, they still do not offer dynamic power savings
mechanisms and, thus, are still static power consumers [Mic07]. An 8GB
DDR3 RDIMM ECC module, for example, still consumes over 6 watts
[Fis12]; yet it is an improvement compared to the previous generation.
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Figure 2.3: Power by component at different activity levels, from [Spe08]

Figure 2.2 depicts the power consumption of different types of main
memory. Main-memory modules cannot be selectively turned off or
suspended to reduce energy consumption. Therefore, main memory is
a big, constant power consumer in today’s servers.
The fact, that there is little literature about the power consumption

of commodity memory modules, speaks for itself.
Hard disk drives are used to store data persistently. Traditional drives

have mechanical parts (rotating magnetic platters, moving arm with
read/write heads) that consume electricity. Additionally, the drive’s
platters are constantly spinning, consuming energy regardless of uti-
lization. As of 2013, disks feature storage sizes of 1 TB per platter and
up to 4 platters per device.
With the emergence of SSDs, a new storage technology was compet-

ing with traditional HDDs. While SSDs offer higher IOPS and lower
access latencies, the price per Gigabyte storage is still about a mag-
nitude higher compared to hard disks. Energy consumption of SSDs
largely varies, depending on the model and flash chips used [HS11b].

2.1.2 Single machine
Several studies measured the energy consumption of a single server and
analyzed energy efficiency under various workloads. In 2008, Spector
showed a typical power breakdown of server components under various
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Figure 2.4: Average CPU utilization, from [BH07]

load levels [Spe08], see Figure 2.3. As the graph exhibits, computers
consume the most power at full utilization, but still require about 50%
of peak power consumption at idle. With increasing workload, power
consumption quickly rises to its peak.
Lots of similar studies confirmed the same relationship between

utilization and power consumption, varying only in details [HS11a;
Lan+12]. As main conclusion, a server consumes about half its peak
power at idle and super-linearly increases when utilized.
Based on similar findings, Louis Barroso and Urs Hölzle published

a study that shows performance data of Google’s MapReduce server
cluster [BH07] in 2007. Figure 2.4 charts the aggregate histogram for
the CPU utilization of 5,000 servers hosted at Google, while Figure
2.5 plots their power consumption and energy efficiency. According to
this study, the servers are typically operating at 10% to 50% of their
maximum performance. That way, servers are barely idle but, as well,
barely fully utilized.
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Figure 2.5: Power consumption and energy efficiency, from [BH07]

Meisner, Gold, and Wenisch examined production workloads of 120
enterprise-servers. They identified the CPU and I/O subsystem as the
major power consumers, as plotted in Figure 2.7. The servers’ average
utilization is graphed in Figure 2.6. Similar to the previously presented
experiments, these studies indicate that typical workloads do not keep
the servers busy for significant periods of time.
In 2011, we conducted a study similar to the one perfomed by Google

and monitored SQL and business intelligence (BI) servers of SPH AG
[SHK12]. SPH is a mid-sized ERP-developing company that specializes
in the branches mail order and direct marketing. Its ERP products
are based on IBM System i5 or (in the considered case) on Microsoft
Dynamics AX. For some of its customers, SPH AG is hosting the ERP
servers in-house, including SQL servers and BI servers. The SQL servers
are used to store the ERP data, such as customer, sales order, and in-
voice information. For the ERP system, 24/7 availability is also needed,
because on-line shops are connected to the ERP systems. The BI servers
are used to process data of the SQL servers for the preparation of re-

10



2.1 Energy Efficiency

Figure 2.6: Server utilization histogram, from [MGW09]

ports for company management. This data is updated by a nightly job.
On all servers, thorough performance and load monitoring is installed.
We analyzed the performance-monitoring log files from SPH and

charted the servers’ CPU and disk utilization for some customer. In
Figure 2.8, the histograms of overall CPU and disk utilization for both
types of systems are plotted. While the SQL servers primarily act as
a backend for the ERP software and, thus, handle OLTP workloads,
the BI servers were used to generate executive reports on a daily basis
(OLAP). Figures 2.9 plot hourly CPU utilization over a period of one
week. As the graphs indicate, the servers spend most of their time idle
(below 20% CPU load) and are usually underutilized. Yet, at a few time
intervals, peak performance is needed to fulfill all incoming request.
Overall, it gets obvious that the claims made by Barroso and Hölzle

apply to these servers as well. Hence, typical servers are underutilized
most of the time and waste huge amounts of energy due to their non-
proportional power profiles.
Optimizing the energy consumption of server was therefore a recent

hot topic in research and many different ideas were checked in order to
reduce the power consumption of (database) workloads.
In [LP09], Lang and Patel present two techniques for a DBMS to

trade performance for lower energy consumption: First, they took ad-
vantage of existing frequency and voltage scaling in modern processors,
called Dynamic Voltage and Frequency Scaling (DVFS), and explicitly

11



2 Related Work

Figure 2.7: Server power breakdown, from [MGW09]

managed the speed of the CPU in order to save energy. With this tech-
nique, the authors were able to reduced energy consumption by ∼5%
while increasing runtimes by ∼3%.
In the same publication, the authors delayed queries by collecting sim-

ilar requests and bundling them into a single query plan, thus consoli-
dating light workloads into a single, heavy-weight query. This technique,
called Query Energy-efficient by Introducing Explicit Delays (QED), al-
lowed energy savings of up ∼50%, but also increased query response
times by ∼43%. By leveraging common access paths, the overall work-
load was reduced, which, in turn, reduced runtime and, thus, energy
consumption. With these two techniques, the authors exemplify the
possibility of trading energy efficiency for performance and vice versa.
While these experiments reveal some potential, overall energy savings
were marginal.
In [XTW10], the authors also explored power-performance tradeoffs

in database systems. They tried to find query plans with lower power
consumption by incorporating a power model into the optimizer. They
found alternative plans with less energy consumption at the expense of
higher query runtimes. By saving 10 – 20% of energy, query runtimes
were prolonged over-proportionally. Hence, the authors conclude that
no power reduction comes free of charge.
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[SHK12]

In [Wan+11], Wang, Feng, Xue, and Song examined the possibili-
ties to improve energy efficiency of a single server. They emphasize
the need for more energy-efficient hardware and better power manage-
ment controls. Also, they suggest creating power models to support
“energy optimizers” that actively configure the system for energy effi-
ciency. Their work is an exploration of probable options, divided into
hardware- and software-based approaches. At the hardware side, they
focus on the CPU as the main consumer of power—an assumption, that
does not hold for database servers. They acknowledge the fact that
current hardware has only limited potential to save power; thus, they
emphasize the need for additional software-based approaches. As ex-
amples, they envision energy-aware optimizers and automatic resource
consolidation.
In [LKP11], Lang, Kandhan, and Patel present a framework consid-

ering performance service-level agreements (SLAs) as well as energy-
efficiency goals. In their work, they implement a DBMS optimizer that
tries to meet performance goals while reducing the energy needed by
explicitly controlling power and performance states of the underlying
hardware, thus, overriding the kernel’s power management. Hence, with
their system, they are able to trade performance for energy savings,
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Figure 2.9: Hourly CPU utilization of two servers, from [Sch11]

while satisfying given performance SLAs. In times of underutilization,
the system was able to slow down and, thus, save energy.
To dynamically adjust a system to the current workload and, thus,

reduce power consumption in idle times, Meisner, Gold, and Wenisch
envision a system of blade servers, powered by a shared PSU [MGW09],
called RAILS (Redundant Array for Inexpensive Load Sharing). They
argue, in a shared-disk cluster of identical blades, the number of running
blades can be fit to the workload and surplus nodes can be suspended
to reduce overall energy consumption. While they simulated a workload
of stateless, short running jobs and did not consider data management
issues that naturally arise in such a cluster, this approach is a step in
the right direction away from centralized systems exhibiting bad energy
proportionality to a clustered solution with more fine-granular control.
In [PN08], Poess and Nambiar compare power consumption figures

for recent TPC-C results. They identify power-intensive components
and discover trends in power consumption over the last seven years
of TPC-C runs. Further, they outline potential approaches to better
energy efficiency. Since the TCP-C results were published without dis-
closure of power consumption data—a constraint first introduced by
TPC-Energy [TPC10c]—the authors had to estimate power consump-
tion of each of the components. They verified their model by comparing
it with measurements on exemplary server setups.
The authors found out that peak power consumption of the sys-

tem under test is steadily rising, from 2,000 watts in the year 2001 to
15,000 watts in late 2007. Likewise, energy efficiency—i. e., performance
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per watt—increased from 10 tpmC per watt to 30 tpmC per watt. Stor-
age is the main power consumer in database systems, consuming about
2
3 of the total power. The authors’ investigation of power models and
ways to integrate power-related measures into the TPC-* benchmarks
ultimately resulted in the publication of TCP-Energy [TPC10c]. This
benchmark is described in Section 4.1.4.
In [WTA13], Woods, Alonso, and Teubner demonstrated Ibex, an

FPGA-accelerated query processing engine. They placed FPGAs be-
tween the storage layer and the database engine, enabling fast prepro-
cessing on FPGAs to offload query operators from the main engine.
While performance was their primary goal, they also reduced overall
energy consumption per query.
Yi-Cheng Tu published various results from their work on energy ef-

ficiency in DBMSs [Tu+14; TWX11]. Their research prototype Energy-
Efficient Database Management System (E2DBMS) annotates query
plans with power cost to select the most energy-efficient alternative.
Thus, the database optimizer is made energy-aware. To leverage the
effects on query plan selection, additional ideas were proposed, e. g.,
consolidating workload on disk in order to reduce overall power con-
sumption and to actively control power modes of hardware components
(CPU, HDD) to trade performance for energy efficiency whenever pos-
sible. Yet, these suggestions are visions based on simulations, an actual
implementation and evaluation is yet to come.
In our work[OHS10], we illustrated the close linkage of execution

times and energy efficiency with his experiments with a single-server
DBMS. All experiments were conducted in an identical system setting,
i. e., mainboard, including processor and DRAM, IDE disk drive, mem-
ory size, OS, DBMS (except buffer management), and workload were
left unchanged. For this reason, the details are not important in this
context. The goal was to reveal the relationship concerning perfor-
mance and energy use for different external storage media—magnetic
disks (HDD1: 7.200 rpm, 70 IOPS; HDD2: 10.000 rpm, 210 IOPS;
HDD3: 15.000 rpm, 500 IOPS) and flash storage (read/write IOPS)
(SSD1: 2.700/50, SSD2: 12.000/130, SSD3: 35.000/3.300)—and buffer
management algorithms2.

2CFDC [OHJ09] optimizes page caching for SSDs. Here, we cross-compared CFDC
to LRU, CFLRU [Par+06], LRU-WSR [Jun+08], and REF [SS08], some of which
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(a) Execution times (ms) (b) Energy use (J)

Figure 2.10: Performance and energy consumption running the TPC-C
trace, from [OHS10]

Our primary goal was to study DB buffer management and to reveal
the role of the external storage used and the influence of algorithmic
optimizations. We implemented the DBMS storage system with a num-
ber of known algorithms for the DB buffer. Our main concern was to
examine how well these algorithms perform on conventional magnetic
disks and on SSDs. Yet, we also evaluated, how much energy is used
for buffer management in either case, i. e., how energy efficient are these
algorithms in differing environments?
Here, we want to repeat these answers given in [OHS10], thereby

preparing our arguments for energy-proportional DBMS management.
To represent a realistic application for our empirical measurements, we
recorded an OLTP trace (a buffer reference string using a relational
DBMS) of a 20-minutes TPC-C workload with a scaling factor of 50
warehouses. As test environment, we used an Intel Core2 Duo pro-
cessor and 2 GB of main memory (denoted as ATX). Both the OS
(Ubuntu Linux, version 2.6.31) and the DB engine were installed on an
IDE magnetic disk (system disk). The test data (as a DB file) resided on
a separate magnetic disk/SSD (data disk, denoted as SATA). The data
disks represent low-end (HDD1/SSD1), middle-class (HDD2/SSD2),
and high-end (HDD3/SSD3) devices. They were connected to the sys-

are also tailor-made for SSD use.
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tem one at a time. We ran the TPC-C trace for each of the five algo-
rithms under identical conditions and repeated it for each of the devices
under test. Using a buffer size of 8000 pages (64 MB), we minimized
the influence of the device caches. However, not the absolute but the
relative differences are most expressive. Execution times and related
energy use in Figure 2.10 are indicative for what we can expect for
single-server DBMSs by varying the storage system configurations. The
storage device type dominantly determines execution time improvement
and, in turn, reduction of energy use. In our experiment, the algorith-
mic optimizations and their relative influence to energy efficiency are
noticeable, but less drastic.3 If we compare the results among devices
of the same class, CFDC turns out to be the best performing algorithm,
i. e., it also provides superior performance when used for HDDs or sets
of heterogeneous devices.
The key effect identified by Figure 2.10 is further explained by Fig-

ure 2.11, where the breakdown of the average working power of hardware
components of interest is compared with their idle power values. The
figures shown for HDD3 and SSD3 are indicative for all configurations;
they are similar for all devices, because ATX—consuming the lion’s
share of the energy—and IDE remained unchanged. Ideally, utilization
should determine the power usage of a component. But, no significant
power variation could be observed when the system state changes from
idle to working or even to full utilization. Because the time needed
to run the trace is proportional to the energy consumption, the fastest
algorithm is also the most energy-efficient one. This key observation
was complemented by [THS10] with a similar conclusion that “within a
single node intended for use in scale-out (shared-nothing) architectures,
the most energy-efficient configuration is typically the highest perform-
ing one”. Furthermore, no clear difference can be observed between the
various algorithms, although they have different complexities and, in
fact, also generate different I/O patterns. This is due to the fact that,
independent of the workload, the processor and the other units of the
mainboard consume most of the power (the ATX part in the figure)
and these components are not energy proportional, i. e., their power use

3The difference between the execution times of the algorithms becomes smaller on
SSD3, (see Figure 2.10), because its I/O is much faster than on other devices,
yielding the buffer layer optimization less significant, and SSD3 has supposedly
the largest device cache, since it is the newest product among the devices tested.
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(a) HDD3 (b) SSD3

Figure 2.11: Breakdown of average power (watts)

is not proportional to the system utilization caused by the workload.4
Main-memory power usage is more or less independent of system uti-
lization and increases linearly with the memory size, i. e., the number
of RAM modules. In our case, we only had a single 2GB module. In-
creasing the main-memory size by adding more RAM modules would
rapidly shift in our scenario the relative power use close to 100%, even
in the idle case. The breakdown of the average working power in Fig-
ure 2.11 reflects the average system utilization obtained for individual
trace executions. If we evaluate how energy consumption depends on
system utilization, we roughly get for our configuration—with a single
computing node—the characteristics sketched in Figure 2.12.5
As indicated, the scope for optimizing the relative energy efficiency

by software means is limited and would almost disappear when a large
memory is present. But this scope could be widened, if hardware op-
timizations could be invented (e. g., reduction of RAM’s energy con-
sumption). Using a single computing node, we would never come close
to the ideal characteristics of energy proportionality. Note, we cannot
just switch off RAM chips, especially in the course of DBMS process-

4The elapsed time T of the workload almost completely determines its energy con-
sumption E (note, E = P̄ · T , where P̄ is the average power measured).

5Memory of enterprise server quality consumes ∼10 W per 4GB DIMMS [THS10].
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ing, because they have to keep large portions of DB data close to the
processor. Preserving this reference locality is the key objective of each
DBMS buffer.
With our current flash-based optimizations, we do not obtain any no-

ticeable effect on overall energy saving – except for continuous peak load
situations. Given normal load patterns and arrival times, an average re-
quest is processed more efficiently, i. e., system resources are allocated
for shorter intervals, thereby reducing system utilization even further.
In summary, energy saving is impressive, if we consider the exper-

iment in isolation where system utilization is steadily kept very high,
i. e., > 90%.
In his PhD thesis [Ou12], Yi Ou examined the performance and en-

ergy saving potential of SSD-optimized buffer algorithms. By replacing
traditional storage disks (HDDs) with SSDs, performance and energy
efficiency can already be increased. Optimized, SSD-aware algorithms
leverage internal properties of SSDs and deliver even more performance,
which results in turn in better energy efficiency. Yet, Yi Ou concludes
that his algorithms would exhibit even more power savings when run
on more energy-proportional devices.
In summary, all studies based on single servers either trade perfor-

mance for power savings or exhibit that the best performing configura-
tion is also the most energy-efficient one, as discovered by Tsirogiannis,
Harizopoulos, and Shah [THS10].
In Figure 2.12, the power consumption of a server is plotted against

its utilization from idle to highest. Here, utilization refers to the system
load, i. e., 100% utilization correspond to a system fully utilized, at
maximum CPU and disk use. Of course, the server needs the most power
at high utilization, but it already consumes ∼50% of its peak power when
idle. With increasing workloads, power consumption quickly converges
to its peak. Even low workloads require a disproportional high amount
of power.
As outlined, about half the power of today’s hardware is consumed

statically and there is no way to eliminate or reduce this using software
solutions. By optimizing the hardware configuration to fit a certain task,
power consumption can be reduced, by the price of becoming inflexible
to changing workloads. As revealed earlier, typical utilization patterns
cover a broad range of workloads and (DB) servers need to be laid out
to handle even peak utilization.
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Figure 2.12: Power use over single-node system utilization

For all other workloads, this requirement will result in bad energy
efficiency. Therefore, all single-server-based solutions can only be energy
efficient when fully utilized.

2.1.3 Amdahl-balanced components
Amdahl observed that the overall performance of a computer system
is determined by its slowest component [Amd13; Sza+10]. Therefore,
it is necessary to carefully select all components to match each others
throughput. The best configuration is dependent on the workload, but,
in general, throughput of the I/O subsystem must match the system’s
processing power. Further, for distributed systems, the interconnecting
fabric must handle the desired throughput produced by the nodes in
the cluster. Replacing a single component with a faster one can only
yield throughput improvements, if the other components do not form
a bottleneck. For example, replacing the CPU with a faster one will
only increase overall performance if the original CPU was the slowest
component in the system. Other factors, as network bandwidth and disk
latency, may quickly impose constrictions and slow down data transport
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to the processing unit. Hence, overall speedup is best if all components
are carefully selected. Especially in terms of energy efficiency, it is
important to balance a system. Faster components usually come with
higher (static) power consumption, which needs to amortize by faster
query runtimes.

2.2 Distributed Systems
Studies on centralized systems did not reveal any huge energy saving
potentials, mostly due to the fact, that today’s hardware is still not
energy proportional and the variable operating modes of components do
not impact overall energy consumption much. Therefore, focus shifted
from single servers to distributed systems, where each system can be
seen as a component of the cluster and turned on and off independently.
In [And+09], the authors introduced a key-value store, running on

a cluster of lightweight nodes, called FAWN (Fast Array of Wimpy
Nodes). By choosing SSDs as storage and low-power components, each
node consumes little energy. FAWN implements a ring architecture,
using chain replication [RS04] to increase fault tolerance. Their imple-
mentation support transaction-less put/get operations on small values
and performance scales very well with the number of nodes in the sys-
tem. Yet, dynamic aspects are not implemented.
In [Pin+01], the authors examined a cluster of WWW servers, an-

swering stateless, read-only requests. Each request was handled by a
single server and no coordination was necessary, due to the simplicity
of the workload. To adjust the size of the cluster to a given load, the
authors implemented a way to automatically scale out by adding addi-
tional servers and to scale back in respectively, by removing servers from
the cluster and shutting them down. This is an interesting approach,
applied to a non-database related field, which delivered promising re-
sults and quick reaction times to workload shifts. Yet, the main concern
in databases—data migration—is not addressed with this solution and
remains an open issue.
Lang, Patel, and Naughton introduced a similar, data-centric ap-

proach in [LPN10a]. They replicated data in a cluster along a chain
of nodes using a technique called Chained Declustering [HD90]. With
this technique, one node holds the primary copy of a partition, while
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the node next in the chain (arbitrary ordering) holds a hot copy. Hence,
both copies can serve read-only requests. To enable energy management
in a cluster of nodes, they selectively shut down superfluous nodes at
low utilization, reducing overall energy consumption while concentrat-
ing query evaluation on the remaining nodes. Yet, their technique is
limited to scale down to 50% of the initial nodes at max, otherwise,
partitions start to get inaccessible. Other open questions are the re-
balancing of partitions in case of skewed workloads and the support of
updates, especially when an update of an offline replica is considered.
Parts of the latter question are answered in [LPN10b].
After evaluating read-only workloads, Lang, Patel, and Shankar ex-

amined wimpy, e. g., lightweight nodes in [LPS10] and analyzed a cluster
similar to the FAWN cluster introduced in [And+09]. In the original
publication, the cluster was benchmarked with lightweight workloads.
The authors posed the question, whether a cluster, consisting of wimpy
nodes, is able to process complex workloads, too. Therefore, they sim-
ulated runs of heavy-weight queries on different kinds of nodes and
compared performance and energy efficiency. They conclude that, due
to friction losses and coordination overhead, performance does not scale
linearly with the number of nodes and challenging workloads better run
on smaller clusters of brawny servers, instead of a large cluster of wimpy
ones.
Based on these conclusions, the authors ran more experiments on

clusters of mixed-size nodes to determine the best configuration for var-
ious workloads [Lan+12]. They could show that careful selection of the
hardware makes a big difference in performance and energy consump-
tion, with respect to the query. In their work, they also examined the
scalability of parallel DBMSs and concluded that easily partitionable
workloads exhibit almost linear performance improvement on scale-out
architectures. On the other hand, partition-incompatible access pat-
terns exhibit very bad performance in a distributed environment. Non-
scalable workloads therefore prefer beefy servers, instead of multiple
wimpy nodes. Yet, the most interesting finding in this work is, that
the best-performing configuration is not always the most energy-efficient
one—a conclusion contradictory to the findings on centralized machines
in [THS10].
While the work of Lang, Patel, and Shankar compares statically con-

figured clusters and does not tackle the issue of automatically adapting
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to the current workload, their findings are valuable for our research.
They show that the optimal size of the cluster depends on the workload
and that energy efficiency and performance can be traded against each
other.

2.2.1 Distributed and energy-efficient storage
With the emergence of distributed computing, underlying storage archi-
tectures became distributed as well. In shared-nothing databases, disks
are attached directly to the nodes, which can locally process queries as-
signed to them. Hence, storage distribution is predefined, but the right
partitioning is an open question.
On the opposite, shared-disk DBMSs have different distribution net-

works for processing and storage. Yet, centralized storage solutions
cannot serve the plethora of I/O requests coming from a multitude of
servers. Hence, storage scale-out is a necessity for modern, distributed
database systems.
Placement of data in a shared environment is a performance-critical

issue. [MD97] analyzes data placement issues in a shared-nothing
DBMS cluster. The authors develop a new placement strategy by
employing simulation of access patterns. They analyzed the impact
of workload shifts and determined the right degree of declustering to
maximize performance. Further, the authors analyzed the placement
of partitions among nodes and the effects on the system’s behavior.
In [Ver+10], the authors implement a storage virtualization layer on

a single server to transparently migrate data blocks among disks, called
SRCmap, which stands for Sample, Replicate, Consolidate Mapping.
By dynamically placing blocks on an optimal configuration of disks, the
number of disks required to satisfy a given workload could be mini-
mized, reducing overall power consumption. To reduce the impact of
updates, write offloading is used, redirecting write operations to spare
disks. Their experimental evaluation reveals near-energy-proportional
behavior under static workloads.
You, Hwang, and Jain have published their work on data partitioning

in [YHJ11]. Similar to SRCmap, they implemented a framework that
divides the dataset into hot and cold data and tries to optimize the
placement on disks, called Ursa. Their focus did not lie on energy
efficiency, but rather on dynamic migration of data to react to shifting
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workloads. Their framework was managing a large scale (1000s) of
nodes, dynamically moving ownership of objects among them. Their
aim was to minimize the number of nodes while keeping performance
goals. Yet, their approach migrates self-contained logical objects, with
no interactions among them.

2.2.2 Dynamic clustering
Traditional clustered DBMSs do not dynamically adjust their size (in
terms of the number of active nodes) to their workload. Hence, scale-
out to additional nodes is typically supported, whereas the opposite
functionality, shrinking the cluster and centralizing the processing—the
so-called scale-in—, is not. Recently, with the emergence of clouds, a
change of thinking occurred and dynamic solutions became a research
topic.
In his PhD thesis [Das11], Sudipto Das implemented an elastic data

storage, called Elastras, able to dynamically grow and shrink on a
cloud. As common in generic clouds, his work is based on decoupled
storage where all I/O involves network communication. Key Groups,
application-defined sets of records frequently accessed together, can be
seen as dynamic partitions that are often formed and dissolved. By dis-
tributing the partitions among nodes in the cluster, both performance
and cost can be controlled.
A lot more data management systems working on a cloud have

been proposed. In [Bra+08], Brantner, Florescu, Graf, Kossmann, and
Kraska designed a DBMS using Amazon S3 as storage and running on
top. Lomet, Fekete, Weikum, and Zwilling divided the database into
two layers, one transactional and one persistence component that can
run independently [Lom+09].
In [Arm+09], Armbrust, Fox, Patterson, Lanham, Trushkowsky,

Trutna, and Oh proposed a scalable storage layer supporting consis-
tency and dynamic scale-out/in called SCADS. Objects in SCADS
are stored in logical order. Hot, i. e., frequently accessed objects are
distributed among disks to improve access latencies and mitigate
bottlenecks. The system was also extended to automatically adjust to
workload changes and autonomously redistribute data.
Besides relational approaches, other implementations relax tradi-

tional DBMS properties to gain performance and simplify partitioning.
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Yahoo PNUTS [Coo+08], Bigtable [Cha+06], and Cassandra6, are
examples of systems sacrificing transaction or schema support and
query power [Arm+09]. Instead of arbitrary access patterns on the
data, only primary key accesses to a single record are supported
[VCO10].
As an improvement, Amazon’s SimpleDB7 allows transactions to ac-

cess multiple records, but limits accesses to single tables. Moreover,
most current scalable data storage systems lack the rich data model
of an RDBMS, which burdens application developers with data man-
agement tasks. Yet, no fully autonomous, clustered DBMS exists which
can provide ACID properties for transactions and SQL-like queries while
dynamically adjusting its size to the current workload.

2.2.3 Database partitioning
Partitioning a table is an old concept and widely used. Splitting tables
into multiple partitions has mainly two advantages:
First, by dividing the table into smaller logical groups—either by key

ranges, hash, or based on time intervals—the amount of data necessary
to access for a particular query can be reduced. All major DBMSs use
techniques like partition pruning or partition-wise joins to reduce the
amount of data to be read for a query [Ora07]. DB partitioning also
enables parallelization and, thus, better utilization of the hardware and
higher performance by parallelizing data accesses. This is especially
true for a distributed DBMS, where partitions can be allocated to vari-
ous nodes, enabling processing on more CPU cores and—in contrast to
single-node databases—also bringing in more MMUs8, main memory,
and storage disks to support query processing.
Second, partitions can be used as units of logical control over the

data contained, i. e., the node owning a partition is responsible for its
integrity and concurrency control. By dividing a large table into smaller
partitions, the resulting control overhead can be shared among nodes.
Hence, instead of a single node having to manage an entire table with

6http://cassandra.apache.org/
7http://aws.amazon.com/simpledb/
8MMU = Memory Management Unit, providing additional bandwidth to resolve
the bottleneck between CPU and main memory.
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long request queues waiting for locks, to perform a variety of integrity
checks, and to serialize processing due to log writes, all tasks can be
split up into partitions and maintained by a group of nodes.
Partitions provide a logical encapsulation over a group of records, i. e.,

records do not span multiple (horizontal) partitions. Hence, moving a
partition from one node to another does not affect other parts of the
table. For this reason, DB partitioning is an ideal candidate to provide
the building block for dynamic reorganization in our DBMS.
In his dissertation [Das11], Sudipto Das implemented a distributed

DBMS as introduced earlier. To partition the data among nodes, he
introduced Key Groups, a temporary set of data items that are jointly
accessed, also forming transactional boundaries. Key groups are formed
dynamically upon client request and predefine access patterns and con-
sistency rules. Yet, grouping does not affect physical storage of items;
underneath, a shared-disk system is providing all data.
Pandis, Tözün, Johnson, and Ailamaki proposed a physiological par-

titioning scheme in the context of a multi-threaded DBMS ([Pan+11]).
They identified two existing techniques, physical and logical partition-
ing. Logical partitioning corresponds to a shared-everything approach
(as classified by the authors [Töz+13]9), whereas physical partitioning
is equivalent to the data distribution of a shared-nothing DBMS. In
their work, they introduced multi-rooted B*-trees, each identifying a
partition of a DB table. By allowing only a single thread at a time to
access such a tree, they eliminated contention and locking overhead.
In [Töz+13], the authors introduced a dynamical load balanc-

ing mechanism (DBL) that detects and resolves load imbalances.
Imbalances require changes in the partitioning scheme, which are
automatically performed in the system and partitions can be split
up and merged to spread out and consolidate load. Their algorithm
tries to minimize change operations to reduce interference with query
evaluation. While they focused on a single node with multiple CPU
cores to assign partitions to and do not focus on energy efficiency, their
concept of dynamically reassigning partitions in order to load-balance
the system looks promising and can be transferred to shared-nothing
database nodes.

9Using the traditional classification [Rah93], it is rather a shared-disk approach.
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Figure 2.13: Database schema

2.2.4 Partitioning examined
Related publications concerning dynamic partitioning aspects have al-
ready been outlined earlier in 2.2.3. To clarify the concepts and to put
them into perspective with this work, we are distinguishing between
three implementations: Physical, logical and physiological partitioning.
Each of the three approaches exhibits certain advantages and disad-

vantages in data partitioning, which we will outline shortly. Especially
in the context of an elastic DBMS, where the partitioning scheme is
subject to change over time, each of them offers different potential.

Definitions

Before discussing different partitioning schemes, we need to clarify the
terms used, starting from storage structures and moving upward the
database layers. Figure 2.13 clarifies these terms and their relationships.

Node Every machine in the cluster is called a node, typically attached
with one or more storages and able to evaluate queries.

Storage A storage is providing persistent, online storage space to the
DBMS. Hence, storage may either refer to HDDs or SSDs. Other forms
of persistent storage, e. g., tapes or PCM are not considered here. Nodes
maintain exclusive access to storages directly connected, but may allow
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remote nodes to access their data. Yet, the nodes directly connected are
responsible for coordinating read and write accesses to their storages.

Block A block is the smallest addressable unit of data on a storage.
In our implementation, the block size is 8 KB (8192 Bytes). All I/O
operations are carried out at this granule, even if only parts of the data
are required to be read/written. At the storage level, each block can be
identified by its address, consisting of three parts: NodeID, StorageID
and BlockID (NSB). This identifier is unique in the entire cluster and
specifies exactly one storage block.

Segment A segment consists of 4096 blocks, stored consecutively on
disk, thus having the size of 32 MB. Segments are used for bookkeeping
and maintenance to abstract from a fine-grained block-based mapping.
Segments are the building block of bigger, logical database entities in
WattDB, i. e., partitions. They describe large-grained units of storage
that can be used to map from logical to physical addresses. A more
flexible mapping from logical pages to physical blocks in a 1:1 manner
would require much more main memory to represent such a mapping.

Page The data granularity inside the database buffer is a page. It has
the same size as a storage block, 8 KB. To differentiate between logical
pages and physical data blocks, the two terms are used respectively.
Pages are also the unit of data transfer between nodes. By defining all

pages and blocks of equal size, buffer management and page propagation
are very simple to implement.

Partition A partition is the mapping between logical records and their
physical representation in WattDB.
It consists of at least one segment, denoting the storage location of all

records within the partition. A partition holds the mapping of logical
pages to physical segments (and blocks within). Each segment is located
on a specific disk on a node in the cluster. Segments stored on the
same node as the partition do not require network access to fetch data,
but accessing only local disks may impose an I/O bottleneck for the
partition. Therefore, it is also possible to remotely address segments,
stored on other nodes. Assignment policies of segments to partitions
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depend on the partitioning scheme used, i. e., whether to allow access to
segments stored on remote nodes (shared disk) or not (shared nothing).
Based on their assignment to nodes and disks, access costs to segments
vary.
Partitions hold logical records of data. By default, they are index-

organized [Sri+00] w. r. t. the primary key with support for additional,
secondary indexes.
Nodes have exclusive ownership of partitions, making them responsi-

ble for query evaluation, integrity control, and access synchronization.

Index In WattDB, indexes are realized using B*-trees [BM70; Bay71]
and span only one partition at a time. Hence, indexes are stored on the
same partition as the data and do not contain cross-references to other
partitions. For each partition, a primary-key index is automatically
created, allowing index-organized data access. Secondary indexes can
be created manually to support query evaluation.
Primary indexes are always stored in the same partition as the data

they are indexing. For specialized partitioning schemes, introduced later
in this thesis, placement of indexes may be narrowed down further.

Table A DB table is a purely logical construct in WattDB. Its meta-
data (column definitions, partitioning scheme) is maintained on the
master node. Each table is composed of k horizontal partitions10, each
belonging to a specific node, responsible for query evaluation, data in-
tegrity (logging), and access synchronization (locking). The partitioning
scheme used to divide tables into partitions is application-dependent,
as some applications may benefit from distinct key ranges, while oth-
ers may prefer scattered data. In the following, we introduce three
partitioning schemes we are going to use in this thesis, based on the
concepts on physiological partitioning from Tözün, Pandis, Johnson,
and Ailamaki in [Töz+13]. While the basic concepts are explained in
this Section, an evaluation of all three schemes and their use for elastic
clustering is examined in Chapter 9.

10http://dev.mysql.com/tech-resources/articles/
partitioning.html outlines horizontal partitioning.
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Physical partitioning

Physical partitioning is the most straightforward partitioning scheme.
It operates at the data access layer and does not involve logical access
paths. The optimization layer is therefore oblivious of the segment
distribution at the storage layer. To implement physical partitioning,
the database (storage) is divided into partitions, and each partition is
stored on specific disk(s). Partitions are not segmented into distinct key
ranges, records may be stored in any partition.
As the name suggests, physical partitioning does not segment data

based on logical properties, but rather divides the storage space into
segments, stored in distinct locations, to parallelize access to database
pages.
Physical partitioning already offers load balancing and parallel query

evaluation, but without knowledge of the data stored inside, further
optimizations by higher DB layers, e. g., partition pruning and partition-
wise joins, are thwarted.

Logical partitioning

Logical partitioning divides the dataspace into units by logical predi-
cates. Hence, instead of blindly chopping tables into parts as with phys-
ical partitioning, logical partitioning splits data by its intrinsic proper-
ties, i. e., the record’s attribute values. In WattDB, data is partitioned
by primary-key value ranges.
Since partitioning is performed by logical attributes, higher database

layers may exploit the partitioning scheme to optimize query evaluation.
Figure 2.15 sketches a logically partitioned table with two partitions,

consisting of segments, possibly allocated on remote nodes. Each parti-
tion holds records from distinct primary-key ranges. Hence, the query
optimizer may utilize this information to direct point queries to the
respective partition.

Physiological partitioning

Physiological partitioning was introduced in [Töz+13] to assign data
partitions exclusively to CPU threads, thus eliminating locking and re-
ducing contention. Their approach is explained earlier. With this ap-
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proach, logical allocation (ownership) and physical storage of records
are separated, hence physio-logically partitioned.
Similar to the original approach, physiological partitioning among

nodes encapsulates key ranges in partitions and assigns them exclusively.
While physiological partitioning originally assigns partitions to CPU
cores to eliminate contention, we assign partitions to nodes for the same
reason.
Partitions consist of segments, like in the previous approaches.
In contrast to logical partitioning, each single segment keeps a

primary-key index for all records within it. Hence, partitions only
contain a meta-index on top, keeping information about key ranges in
the attached segments. This top index is very small compared to an
index containing all records from all segments.
Figure 2.16 sketches the design of physiological partitioning. Two

partitions on different nodes are shown, both consisting of several sub-
partitions, contained in segments. Primary-key ranges for each of the
mini-partitions are outlined.
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3 Measuring Energy
Consumption

All computer devices require electricity to function. To quantify their
energy consumption, the measurement units and the basics of measuring
energy and power consumption have to be clarified first. Since the terms
power and energy have similar, but ambiguous meaning, it is important
to define both.
Exactly measuring energy consumption of a database cluster over

long time periods is non-trivial. Existing energy measurement devices,
are first explained and evaluated for their applicability to our use-case.
Afterwards, a custom-made monitoring framework is presented, since
existing measurement solutions did non quite cover our needs.

3.1 Metrological Background
Here, basics about measuring electrical power and related units are
given.

3.1.1 Charge
Electrical charge is a fundamental physical unit. Its formula sign is Q
(lat. “quantity”). Charge is expressed in units of coulombs (C), where
1 coulomb is equal to the charge of approximately 6.241∗ 1018 electrons
(or protons for positive charges, respectively) [BIP06]. All electrical
effects stem from the movement of charges.

3.1.2 Voltage
Voltage, or electrical potential difference, is measured in units of volts
(V). It quantifies the difference in electrical potential of two points.
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Since the English notation is ambiguous and uses the symbol V for
both, the unit and the formula symbol of voltage, this work adheres to
the German convention and denotes U for the formula symbol and V
for the unit of voltage [DIN94]. Based on SI-units, voltage is defined as
follows [BIP06]:

1V = 1 Joule

Coulomb
= kg ∗m2

s2 ∗ C
Voltage is always measured between two points, therefore, a reference

point called ground is used to act as a null-potential for all measure-
ments. By definition, voltage of any other point is then expressed as
potential difference against ground.
Voltage alone does not describe electricity appropriately, but it is a

prerequisite for electrical charges to move and do work.

3.1.3 Current
Electrical current describes the flow of electrical charges between two
points. An electrical current will only flow between points with potential
difference (voltage difference). The formula symbol for current is I, the
unit ampere A [BIP06]. 1 ampere equals 1 coulomb per second, hence:

1A = 1C
1s

3.1.4 Alternating current
The previous definition of current assumes an unidirectional flow of
electrical charges, called direct current; Negative charges (electrons)
move from anode (denoted with a minus sign: -) to cathode (denoted
with a plus sign: +).
In alternating currents, charges are periodically reversing the direc-

tion of flow. Special care must be taken when calculating derived values,
e. g., power and work from alternating current, since the momentary
current is changing rapidly.

3.1.5 Resistance
Connecting two points with potential difference will lead to a current
flow. In theory, without any electrical resistance between the points,
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Figure 3.1: Analogy between water and electric circuit

the current flow will go towards infinity and the potential difference will
shortly be cleared. In practice, all connecting wires and every every
electrical device provide resistance and reduce the current flow.
Electrical resistance is denoted by the symbol R and defined as the

quotient between current and voltage:

R = U

I

Resistance is measured in units of ohms denoted by the symbol Ω:

1Ω = 1V
A

3.1.6 Water circuit analogy
The connection between the measures introduced earlier can be clarified
easily with an analogy between an electrical circuit and a water circuit
as sketched in Figure 3.1 [Nav14]. Both, electrical and water circuits
have a reference point towards all water/charge flows in the diagram.
For the water circuit, it is sea level, for the electrical circuit, it is ground.
The definition is arbitrary, water/current can also flow down from the
reference point to another (deeper/lower voltage) point.
In the water circuit, a pump presses water upwards to a higher level,

giving it potential energy. The higher the water is pumped, the more
potential energy it contains. A power source, e. g., a battery, can simi-
larly induce potential differences to electrical charges. As a result, there
is a potential difference before and after the pump/battery.
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That difference in (electrical) potential is the reason for the following
flow of water/charges down to the ground, which can perform work
while flowing. An intermediate consumer, transforming the energy of
the water/electricity into other forms, will slow down the flow due to
its resistance.

3.1.7 Power
Power (consumption) is the rate, at which energy is transferred, its
formula symbol is P . Electrical power is linearly dependent on the
potential difference and the electrical current flow [HRW10]:

P = U ∗ I

Power is measured in units of watts (W ). In electrical engineering, 1
watt expresses a current flow of 1 ampere through an electrical potential
of 1 volt:

1W = 1V ∗A

Since current can be expressed by voltage and resistance, the formula
can be rearranged to:

1W = 1V
2

Ω
When measuring power consumption under alternating currents, the

momentary voltage and current flow need to be multiplied. Simply aver-
aging voltage and current over a measurement period will lead to invalid
results, as illustrated in Figure 3.2, depicting the course of some alter-
nating current, voltage and the results (absolute) power consumption.
The averages of current and voltage over time equal zero, hence, the
resulting power would be incorrectly calculated as 0V ∗ 0A = 0W . In
the appropriate calculation, momentary values of current and voltage
need to be multiplied, resulting in a power consumption 6= 0.

3.1.8 Work
Work, or energy consumption, is defined as power consumption over
time:

W = P ∗ t
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Figure 3.2: Voltage, current, and real power in AC

The formula symbol of (electrical) work is W , its unit is joules (J),
defined as follows [ABS06]:

1J = 1W ∗ 1s

The formula above is valid for constant power consumption during the
time interval t. For variable consumption, an integral over time is
needed:

W =
∫
Ptdt

The energy consumption of any device can thus be calculated by
measuring current and voltage during a given period.

3.2 Consumption of Electricity
In recent years, electricity consumption has strongly increased in the
US and worldwide: As of 2007, US datacenters consumed about 1.5%
of the country’s total electricity generation, projected to 3% in the next
years [EPA07]. For 2010, datacenters in the US used between 1.7% and
2.2%—varying from study to study. Worldwide, datacenters currently
consume about 1.1% to 1.5% of all electricity generated [Koo11]. Figure
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3.3 plots historic and projected energy consumption of US datacenters
from 2001 to 2030. From 2000 to 2005, worldwide datacenter electric-
ity consumption doubled. Contrary to older projections, from 2005 to
2010, the rate of growth slowed down due to the economic crisis (start-
ing 2008). Additionally, the emergence of cloud computing and efforts
to improve energy efficiency since 2005 further diminished the growth.
In contrast to earlier projections, the main reason for this stagnation
were not improvements in energy efficiency, but rather less new server
installations than predicted [Koo11].

Although the consumption figures (historical and projected) are edu-
cated guesses, all estimates predict electricity consumption to rise con-
tinuously. With the rapid increase in datacenter numbers and sizes,
electricity consumption will go up, even with better energy-efficient
hardware [Koo11].
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Figure 3.4: US industry-sector electricity price per kWh. Historical
prices [EIA13] and projected development [EIA14]

3.3 Cost of Electricity
While the demand for electricity has steadily risen, the cost of electrical
energy has increased as well: According to EIA, electricity price per
kilowatt-hour for industrial use has risen from 4.73 US¢ in 2001 to 6.53
US¢ by the end of 2011 and 6.62 US¢ by the end of 2013. Hence, in
10 years, the price increased by almost 40%. Although price increases
after 2011 were not as steep any more, again, due to the economic
crisis, future projections expect the cost of electricity to go steadily up
[Koo11]. Figure 3.4 plots historical prices as listed in EIA’s Annual
Energy Outlook 2013 [EIA13] and projected price trends in the next
years, as predicted by EIA’s Annual Energy Outlook 2014. As the
graphs suggest, electric power is expected to become more and more
expensive within the next years.
Similar trends are noticeable in the european union, where prices for

electrical power have constantly risen over the last years—for example
from 0.101 €/kWh in 2008 to 0.126 €/kWh in 2013, an increase of almost
25% in five years [Eur14].
The rising consumption and prices of energy led to various approaches

to reducing overall energy consumption and to better utilize electricity.
For example, new datacenters are placed in environmentally advanta-
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geous regions, i. e., Microsoft opened a new center in Finland, Facebook
built a new datacenter in Sweden, and the NSA invested in a complex
in Utah’s mountain-side [Kon13]. To put the waste heat, generated by
cooling the servers, to good use, lots of datacenter operators have put
them to good use to heat nearby buildings or facilities.
Yet, reducing overall energy consumption in the first place became a

major goal in all areas of IT.

3.4 Energy Efficiency
The Oxford Dictionary defines efficient in a technical sense as “[..]
achieving maximum productivity with minimum wasted effort or ex-
pense” [Ste10]. Hence, for computer systems, efficiency describes the
ratio of processed data to total resources needed for processing. There
exist several efficiency metrics, which systems can be tailored to. The
two most common are time efficiency, which requires the system to
take a minimal amount of time for processing, andmemory efficiency,
which rates efficiency based on the algorithms’ memory needs [BM99].
Therefore, energy efficiency describes the ratio of a system’s useful work
to its total energy consumption taken in. A system’s energy efficiency is
higher, if either the same task is achieved with less energy consumption
(fixed work budget) or by achieving more work with the same amount
of energy (fixed energy budget). In databases, efficiency is rated in
transactions per joule:

energy efficiency = # of transactions
energy consumption

which can be transformed to the amount of work done per time unit
when a certain amount of power is given:

energy efficiency = tps
watt

The higher the energy efficiency, the better a given system transforms
electricity into “work”. Note, this is the inverse of the formula used in
TPC-Energy which applies watts per tps as its metrics. The rationale
of the TPC for choosing the inverse was the desire to be similar to the
traditional TPC metrics price per throughput and, furthermore, to allow
a secondary metrics for each of the subsystems [SHK12].
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3.5 Energy Proportionality

3.5 Energy Proportionality
Energy efficiency is a measure to rate either the efficiency of a single
server performing various tasks at different configurations or to bench-
mark competing systems with a given energy budget. Efficiency is al-
ways relative, since there is no absolute way of telling, whether a task
is done efficiently without comparison to other systems, performing the
same task.
In addition to that absolute measure, Barroso and Hölzle introduced

the term energy proportionality [BH07]. Energy proportionality is de-
fined as the ratio of a system’s energy efficiency to it’s peak efficiency (at
100% utilization). Ideally, the power consumption of a system should
be determined by its utilization [Här+11]. Energy proportionality de-
scribes the ability of a system to scale its power consumption linearly
with its utilization.
Therefore, energy proportionality can not be expressed using a scalar

value. Instead, a function or graph is needed to display the characteris-
tics of a system. For each level x, 0 ≤ x ≤ 1, of system utilization1, we
can measure the power used and denote this value as the actual power
consumption at load level x . To facilitate comparison, we use relative
figures and normalize the actual power consumption at peak load (x =
1) to 1, i.e., PC act(x = 1) = 1. Using this notation, we can characterize
a system whose power consumption is constant and independent of the
actual load by PC act(x) = 1.
Note, we obtain by definition true energy proportionality at peak

load, i.e., PC ideal(x = 1) = 1. In turn, a truly energy-proportional
system would consume no energy when it is idle (zero energy needs),
i.e., PC ideal(x = 0) = 0. Due to the linear relationship of energy pro-
portionality to the level of system utilization, we can express the ideal
power consumption at load level x by PC ideal(x) = x.
With these definitions, we can express the energy proportionality

EP(x) of a system as function of the load level x:

EP (x) = PC ideal(x)
PC act(x) = x

PC act(x) (3.1)

This formula delivers EP values ranging from 0 to 1. Note, for x < 1
in a real system, PC act(x) > x. According to our definition, each system

1By multiplying x by 100%, the percentage of system utilization can be obtained.

41



3 Measuring Energy Consumption
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Figure 3.5: Measuring voltage and current

is perfectly energy proportional at x = 1. If a system reaches EP(x) = 1,
it is perfectly energy proportional for all load levels x. In turn, the more
EP(x) deviates from 1, the more it loses its ideal characteristics.
Obviously, assessing energy proportionality is a lot more expressive

than mere energy consumption. While the latter only captures a sin-
gle point of the system’s energy characteristics, the former reveals the
ability of the system to adapt the power consumption to the current
load.

3.6 Measuring Power & Energy Consumption

In order to measure energy consumption, both voltage and current need
to be measured over time. Especially, alternating current (AC) requires
detailed measurements, with a sampling rate higher than twice the fre-
quency (50 Hz)2, hence more than 100 Hz.
Figure 3.5 depicts a system under test (labeled Load), whose energy

consumption shall get measured with attached voltage and current mea-
surements. As the figure shows, voltage measurements are performed
in parallel to the load, while current is measured in series. Hence, both
measurements distort each other when performed simultaneously.

2Known as the Nyquist–Shannon sampling theorem [Sha49]
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3.6.1 Voltage

Measuring voltage—more precisely, the voltage drop on the system un-
der test (short SUT)—must be done in parallel to the load. The internal
resistance of the instrument must ideally be infinite to not induce energy
consumption and temper the current measurement. In practice, the in-
ternal resistance of the voltage measurement instrument is sufficiently
high, i. e. > 1MΩ.

3.6.2 Current

Measuring the current flow trought the SUT must be done in series to
the load. Hence, the internal resistance of the instrument must be as
small as possible to prevent voltage drops, which affect the measure-
ment. Other, non-intrusive instruments are wrapped around the live
wire, measuring the flowing current by secondary effects. Consumer
grade current measurement devices use the Hall effect, i. e., a voltage
difference in a conductor placed perpendicularly into the magnetic field
of another current, relative to the intensity of the current, to calculate
the current flow [Hal79]. An example of such instruments are Current
Transducers, a combination of a Current Transformer with a Converter
[Gui77]. The first transforms the current to a defined scale, while the
second component converts the AC flow to a DC potential difference
(voltage). The whole measurement is contact-less and its influence on
the measurement is negligible.

3.6.3 Power

Since power is a product of voltage and current, both must be measured
with sufficient accuracy to keep the total measurement error as small
as possible. Special care must be taken for alternating currents, to
differentiate between apparent and effective power.
More details about how to measure voltage, current, and power as well

as descriptions of the instruments’ internals can be found in [BEO10].
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3.7 Measurement Device
In order to optimize and improve energy efficiency of a system, the first
step is to exactly measure its energy consumption. An autonomous
measurement track, allowing for long-running experiments and auto-
matically correlating performance benchmark results with energy fig-
ures is necessary for repeatability of all experiments and to eliminate
human error factors in measurements.

3.7.1 Problem description
A fast and accurate way to measure the power and energy consumption
of servers and their components is required. For server components,
individual power consumption should be assignable; hence, separate
measures are needed for mainboard and storage disks. Further division
in CPU and memory power consumption is desirable.
The measurements must be available digitally, to enable easy

computer-aided processing and analysis. Moreover, the measurements
should also include performance data of the SUT, e. g., CPU utilization,
memory consumption, and disk and network load. It should be possible
to relate measured data with performance measurements, either by
annotating the data with exact timestamps or—preferably—by directly
correlating energy and performance data. Since measurements are
running over extended periods of time, up to several days, lots of
measurements must be stored, while being able to aggregate and
analyze them.
In summary, the measurement device should meet the following re-

quirements:

Fast Data acquisition needs to be fast, i. e., done with high frequency
to capture quick changes in power consumption.

Accurate The measurement error should be kept below 3% to be able
to detect even small differences in power consumption.

Digital All measurements must be digitally recorded to automatically
process, analyze, and summarize them.

Live Measurements should be instantaneously available for live moni-
toring or debugging.
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Detailed Individual power rails should be independently and simultane-
ously measurable to enable measurements of different components
separately.

Longevity Measurement must run for extended periods of time (hours
to days), while the captured values need to be logged in high
resolution for later analysis.

Correlated Data of different power lines and different types of measure-
ments (power, performance) should be immediately correlated to
simplify later analysis.

Compatibility The measurement device should support different
systems-under-test, i. e., different hardware or components.

Portability The measurement device should support different analysis
platforms, i. e., operating systems and software tools, to be able
to do the analysis with various tools and helpers.

3.7.2 Existing measurement solutions
There exist various appliances to measure energy consumption of com-
puters. In the following, well-known approaches are evaluated for their
use in continuously monitoring servers and components as laid out pre-
viously.

Energy Meters For home users interested in power consumption of
their devices, Energy Meters are available. These meters are plugged
into the wall socket between the socket and the device and display cur-
rent power and historic energy consumption on an LCD display. Some
models also provide logging capabilities using storage cards.
While these meters are easy to use, they only provide coarse-grained

measurements for all consumers plugged into the socket. Power con-
sumption of individual components cannot be assessed separately. Ac-
curacy of these devices is often questionable [Sti09].
Energy meters do not provide high-frequency measurements, typi-

cally, they show update rates of 1 Hz or below. The use case for these
devices is short to mid-term evaluation of power consumers to evaluate
possible energy savings. Therefore, typical measurement durations are
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between hours up to weeks. Since the devices are already connected to
power, they take their operating power out of the measured wires. Au-
tomated live monitoring is possible, whereas live correlation with other
data is not viable, because measurement data have to be manually ex-
tracted from an attached storage card. Energy meters are compatible
with all kinds of computers and devices, as long as they have a wall
socket connector. Since all data extraction has to be done manually,
the setup is portable across different analysis platforms, but requires
lots of manual intervention.

Specialized meters The interest in measuring energy consumption ar-
rived in datacenters as well. Therefore, specialized energy meters were
developed to better suit the needs of datacenter operators. While the
working principle stays the same as for traditional, multi-purpose energy
meters, they offer various improvements to support their deployment in
datacenters. First, a single meter is able to measure multiple connected
servers, thus reducing the need of acquiring a multitude of energy me-
ters and reducing space consumption in the server racks. Second, the
measurements are available online, to allow integration in existing dat-
acenter management solutions. Typically, they offer network interfaces
(RJ45) to integrate directly into the datacenter’s management network.
Lastly, they provide additional features as monitoring the load balance
in three-phase four-wire installations and alarm functions.3
While specialized meters offer some advantages compared to con-

sumer energy meters, they still only measure the power consumption
of entire servers. Measurements at component level are not intended.
The target audience for these meters are datacenter administrators,

who are usually not interested in high-frequency power consumption
data. Typically, hour-to-hour measurements and greater intervals are
of interest here. Therefore, these meters still measure at rather low
frequencies of 1 Hz or above.
While these specialized meters provide interfaces and APIs to inte-

grate their readings into other monitoring solutions, portability comes
with the high price of software customization. There is a broad range
of specialized meters, each with different features. Therefore, a general
statement regarding portability, compatibility, and other features is im-

3http://www.powerleiste.de/smart-power-monitor.html
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possible to make. Yet, with these devices, the price usually determines
the feature set, and suitable solutions are very expensive.

Current Clamps It is possible to manually measure the current flow
of a single rail using a current clamp and a connected multimeter. The
current clamp is wrapped around the electrical wire without physical
contact. By measuring electromagnetic fields of the conductor (Hall
effect), the flowing current can be estimated with sufficient precision
(see below). The change in the electromagnetic field induces a voltage
in the current clamps, which can be read out by an attached multimeter.
The total measurement error is a combination of the current clamp’s
error and the multimeter’s error.
While this combination makes it possible to measure with sufficient

accuracy, standard multimeters only display the measured values but do
not log them. More expensive logging multimeters are needed, which
digitally save the measurements on a storage card4. Hence, live logging
is possible, but measurements must be correlated manually with per-
formance data. Detailed logging of additional rails requires the same
setup multiple times, with no automatic correlation between the mea-
surements. In theory, the measurement duration is only limited by the
storage space for log data and the battery capacity of the devices. Ac-
cording to our experience, current clamps quickly drain batteries, espe-
cially with continuous measurements. Therefore, measurement duration
is usually limited to a few hours.
This setup is compatible with almost all hardware and components,

as long as the power rails can be clamped into the measurement device.
Since all data extraction has to be done manually, the setup is portable
across different analysis platforms.
Another option in connection with current clamps is the use of digital

oscilloscopes for displaying and logging data. High-end oscilloscopes
offer data logging and also interfaces to connect to computers for data
analysis, e. g., over USB. Yet, the setup is complex.
In summary, using current clamps to measure power consumption is

viable only for one-time, non-continuous, manual measurements. This
setup is not qualified for continuously monitoring power consumption
of servers or components.

4http://www.fluke.com
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Figure 3.6: Measurement track and required peripherals

Custom power meter Since none off-the-shelf available solutions did
satisfy the specified requirements, a custom development was needed.
As previously described, current transducers are able to quickly and
accurately measure current and can easily packed in groups to measure
multiple rails simultaneously. To digitize the output voltages, an A/D
converter is needed.

To satisfy all requirements listed above, we decided to develop the
whole measurement track ourselves, starting with measuring the cur-
rent and voltages of the SUT, converting them to digital readings, and
analyzing and storing them using custom software. Figure 3.6 sketches
a draft of the measuring track. On top, the system under test is shown.
System under test can be a single computer, measuring each component
individually, or a cluster of servers, measuring power consumption of
each node. To track power consumption, current transducers and volt-
meters are intercepting the electric wires powering the SUT. An A/D
converter polls the instruments’ readings and makes them digitally avail-
able to a connected analysis computer. The analysis computer, running
the benchmark suite described in Section 4.5, also receives performance
readings from the SUT and correlates both sources. For immediate
analysis, the measurements can be shown on a display. Additionally, all
results are logged to disk for later evaluation.
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Pin Voltage Currentmax

ATX Connector
1 3.3 V 19 A
2 5 V 19 A
3 12 V 20 A
4 3.3 V 2.5 A
5 -12 V 0.3 A

HDD Connector
6 12 V 2 A
7 5 V 2 A

SATA Connector
8 3.3 V 2 A
9 5 V 2 A
10 12 V 2 A

Table 3.1: Points of measurement to determine component-wise power
consumption of a single machine

3.7.3 Single-server measurement device

A first implementation of the analysis software and the measurement
device was introduced 2009 in [Sch09]. This initial version was designed
to monitor performance and energy consumption of XTC, a native XML
DBMS5. To assess power consumption of various components, 10 current
transducers were used. Table 3.1 lists all measurement points monitored
by the device. Each point represents a power rail with a specific voltage.
To measure power consumption of a rail, it is fed through a current
transducer.
With this first device, power consumption of the system board and

two attached disks can be measured in parallel. All measurements were
read by an A/D-converter (Labjack UE9 [Lab08]) and transferred to a
connected monitoring PC, running a Java-based analysis software.

5http://xtc-project.de
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Voltage Currentmax Powermax Comment
1 x 230 VAC 50 A 2,500 VA Apparent Power
1 x 230 VAC - - Voltage
12 x 230 VAC 5 A 250 W

- or -
10 x 230 VAC 5 A 250 W
2 x 230 VAC 10 A 500 W

Table 3.2: Points of measurement to determine server-wise power con-
sumption in a cluster of nodes

3.7.4 Cluster measurement device
To extend the monitoring capabilities to a cluster of nodes, a new mea-
surement device was needed. Instead of monitoring individual power
rails of a single computer, the overall power consumption of up to 10
nodes can be measured with this device. Further, the supply voltage
(230 V AC) and the apparent power are available. The device outputs
all readings as analog voltages between 0 and 5 volts, to be able to be
read by a connected analog/digital converter. The remaining part of
the monitoring infrastructure did not need to be changed.
Table 3.2 lists the measurement points with their maximum power

range. To support a wider range of hardware, one of the plug-in-modules
was enhanced to support loads of up to 500 Watts. All readings are
translated into output voltages between 0 and 5 volts—the input range
of the connected analog/digital converter.
The measurement device, built by the electronics workshop of the

University of Kaiserslautern, is modularly structured: A backplane is
connecting all components and distributes supply voltages inside the
device. Connected to the plane, 7 plug-in modules are connected; 6 for
power measurement of individual nodes and one to measure apparent
power and the AC voltage.
Figure 3.7 sketches the plug-in module power measurements. On

each module, this circuit was repeated twice to be able to measure
two consumers with each card. On the left, the two inputs are illus-
trated: Supply voltage and the 230V rail under measurement. The
current transducer measures the current flow, which needs to be mul-
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Figure 3.7: Plug-in module for measuring power consumption
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Figure 3.8: Labjack overview

tiplied with the instantaneous voltage to get the instantaneous power
consumption of the connected system. On the right, the out-connector
for the component-under-test and the connector for reading the mea-
sured values are shown.
A more detailed explanation of the measurement device, including

circuit diagrams, can be found in [Rit11].

Labjack Labjack is a data acquisition device (DAQ), which we used
as an analog/digital converter (ADC) to convert voltage/current/power
consumption readings to digital data. The used Labjack UE9 device6

can read the voltage of up to 14 discrete analog input ports and supports
additional multiplexers to split each input into 8 additional channels.
Labjack measures voltages between 0 and 5 V with 12 to 16 bit accu-
racy. Dependent on the number of channels as well as the resolution
and multiplexing used, measurement frequency can go up to 1,000 Hz.

6http://labjack.com/ue9
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Figure 3.9: Software overview

Labjack also supports output channels, digital I/O and timers, which
was unused in our measurements. Readings can either be queried by
USB or Ethernet in streaming mode, i. e., Labjack will send a continu-
ous stream of measurements to the requester. In Figure 3.8, an overview
about Labjack’s mode of operation is given.

Analysis software After converting the analog values to digital read-
ings, an analysis software can read them from Labjack and correlate the
power measurements with performance data, as sketched in Figure 3.9.
The software, written in C#, is also hosting a benchmark component,
able to send predefined sequences of queries to the SUT, and correlat-
ing each step in the benchmark with respective performance and power
consumption figures.

3.7.5 Accuracy estimation
To estimate the measurement error, the error of the whole measure-
ment track needs to be assessed and compared to a reference measure-
ment. The resulting error accuracy cannot exceed the reference accu-
racy; therefore, a calibrated device with sufficient precision must be
used. For the following measurements, a Fluke 702 Calibrator was used
as reference point. This device is calibrated to a measurement error
below 0.25% in the operating range [Flu94].
First, we have estimated the error for the Labjack ADC and the mea-

surement device separately. Since the software component running on
the analysis computer processes the raw input values from the Labjack,
we did not estimate accuracy for this component.
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Figure 3.10: Setup for accuracy estimation of the Labjack UE9
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Figure 3.11: Results from Labjack UE9’s accuracy estimation

Labjack To estimate the measurement error of the Labjack ACD, we
have connected the calibrator to one of Labjack’s analog input channels
(AIN0) as depicted in Figure 3.10. The calibrator was set to output
fixed voltages between 0 and 5 V. By comparing the voltages set and
Labjack’s readings, we can directly see the measurement error of the
DAQ. In Figure 3.11, the results of the measurements are visualized.
The measurements were performed using Labjack’s streaming mode,
sampling the input at 100 Hz; hence, the entire measurement took about
25 seconds and resulted in 2,500 samples. The red line denotes the values
read from Labjack (primary Y-axis), while the blue bars depict the
deviation to the Fluke 702 reference voltages on the secondary Y-axis.
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Figure 3.12: Accuracy estimation of the measurement device

For simplicity, the reference voltages are not shown, as they are more
or less identical to Labjack’s readings. As the results show, Labjack
measures the supplied voltages with high accuracy, where the error is
less than ±0.01 volt.

Measurement Device To analyze the error of the measurement device,
we compared its output with the measurements of a reference current
clamp as depicted in Figure 3.12. The measurement device provides
“maintenance ports” to access the output voltages sent to Labjack with
a voltmeter directly. We used the Fluke 702 Calibrator again to read the
output voltages from the device with high accuracy. Yet, the current
clamp used (an ESI #695 80A Current Probe) is not calibrated and has
an unknown error margin of 3% and more [Ele03]. Error estimation of
the measurement device is therefore tainted with high uncertainty.
Since we did not have any load generators available to simulate elec-

tric loads between 0 and 200 watts, we have connected various electric
consumers to the device, providing static power consumption, e. g., a
series of 40 W light bulbs. Figure 3.13 compares readings of the mea-
surement device and the current clamps. The X-axis denotes the reading
from the clamps in watts, while the bars plot the absolute deviation of
the measurement device. The absolute error varies between 0.1 and
3 watts, resulting in a relative error of 3% in average. This error mar-
gin is identical to the accuracy of the clamps. Therefore, using this
experiment, we are unable to tell whether the device has an even lower
error margin. Yet, an error of 3% would be acceptable for the whole
measurement track.
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Figure 3.13: Results from the device’s accuracy estimation

Software The analysis software running on a dedicated computer reads
the values from the Labjack device via USB and translates the raw volt-
age readings into power consumption (watts). This is done by fixed
factor multiplication. To measure energy consumption over time, a
pseudo-integral is formed by summarizing the product of the power
consumption with elapsed time since the last measurement. A (theoret-
ical) rounding error while processing the digital readings seems possible,
but would be far too small to measure. Therefore, we did not conduct
a separate accuracy estimation for the software components.

Measurement track Finally, to estimate the error of the whole setup,
we assembled the measurement track and started to collect power con-
sumption values. Again, we connected various electrical consumers to
the track and compared the track’s readings to reference readings from
parallel attached current clamps, depicted in Figure 3.14. Since the
current clamps, as explained earlier, are not very accurate themselves,
we have added an energy cost measuring device (Voltcraft Energy Log-
ger 3500) to track energy consumption directly at the power outlet.
According to the documentation, this device has a measurement error
below 1% for loads from 5 to 3.500 watts [Vol08]. Unfortunately, be-
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Figure 3.14: Accuracy estimation of the measurement track
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time Energy Logger Measurement Track deviation
[ s ] [ Wh ] [ Wh ] [ Wh ] [ % ]
7628 7.16 7.54 0.38 0.89
7762 26.30 27.03 0.73 1.17
7607 99.28 101.89 2.61 1.93
7498 195.23 199.88 4.65 2.02
7666 335.61 336.52 0.91 0.24

Table 3.3: Long-running accuracy estimation measurement

low 5 W, accuracy drops to ± 5%. Since the measurement device itself
consumes power, we have to adjust all readings from the energy logger
by subtracting 16.8 watts (determined in previous experiments). In the
following paragraphs, these corrections have been made without explicit
notice.
In Figure 3.15, we have compared the readings of the logger to the

readings of the other two devices. The X-axis plots the readings from
the logger, while the line graph shows absolute deviation of the mea-
surement track from these readings (primary Y-axis). The solid bars
depict relative deviation on the secondary Y-axis.
As the results indicate, the measurement track exhibits a maximum

deviation of 2.5%. Mostly, measurement error is below 1%, compared
to the energy logger.

Long-time measurement With the energy logger, we are able to con-
duct long-running energy consumption analysis of connected devices.
We have set up a long-time measurement, running for approximately
2 hours to estimate the measurement bias in a longer running experi-
ment. The measurement set-up is the same as in the previous exper-
iment. Again, some electric consumers are connected to the measure-
ment track. The power cord is plugged into the energy logger. We
turned on the energy logger and the measurement track to continuously
read the power consumption (watts) and automatically integrate the
readings to output energy consumption (watt hours).
In Table 3.3, the results of the long-running measurement are shown.

Figure 3.16 visualizes these results. We have connected various devices,
steadily consuming between 3 and watts. After two hours, we compared
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Figure 3.16: Long-time accuracy estimation

the readings from the logger with the measurements of our track. As the
results show, our measurement track deviates from the energy logger by
less than 3%, which is perfectly acceptable. Especially the long-term
abberation in the typical working region of a single server—between 20
and 40 watts—is with less than 2% perfectly fine.
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4 Benchmarking for Energy
Efficiency

In the past, benchmarking (database) servers was primarily focused
on performance. Since database machines are tailored to high query
throughput and fast response times, traditional benchmarks rank sys-
tems by these two measures.
With growing energy concerns, the view has broadened to energy-

related aspects as well. Recently, well-known benchmark standardiza-
tion committees like TPC and SPEC have included energy aspects in
their benchmarks.
Because electricity prices are rising and operating costs draw close to

acquisition cost [PN08], performance per watt as an additional indicator
gained growing interest in recent years.

4.1 Related Work
Before introducing new benchmarking paradigms, existing benchmarks
are presented. First, this work lists classical benchmarks, with focus
on performance and costs (not energy costs). Next, more recent pro-
posals and extensions are presented, which include an energy-related
component.

4.1.1 TPC-C
The Transaction Processing Performance Council (TPC)1 is a non-
profit organization with the “objective to define transaction process-
ing and database benchmarks and to disseminate objective, verifiable
TPC performance data to the industry” [TPC10a]. TPC is composed of

1http://tpc.org/
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members of networking and database companies, e. g., Cisco Systems,
HP, IBM, Microsoft, and Oracle (as of January 2014).
TPC-C is an On-Line Transaction Processing (OLTP) benchmark,

proposed by TPC in 1992. It simulates an environment with a number of
users submitting concurrent queries against a database. The database is
simulating an on-line warehouse, enabling the users to query the stock,
enter and deliver orders, update payment information, and check the
orders’ status.
Performance is measured in new-order transactions per minute. The

transaction rate (tpmC) is expressing the performance of the system,
whereas the associated price per transaction ($/tpmC) denotes the price
of the SUT in relation to its performance.
A representative system, as of 2011, running the TPC-C benchmark

consists of multiple nodes, each equipped with multiple CPUs and up
to 512 GB of DRAM. Additionally, the persistent storage is consisting
of several thousand disk drives [SHK12].

4.1.2 TPC-E
TPC-E is another On-Line Transaction Processing (OLTP) benchmark,
proposed by TPC in 2007. In contrast to TPC-C, this benchmark simu-
lates an on-line brokerage firm [TPC10b]. Customers place orders, query
accounts, and perform market research by submitting queries to the bro-
kerage database. The broker submits queries to the market and updates
order information. Customers and market are part of the test driver,
while the brokerage firm—and the containing database—represents the
SUT.
Performance is measured in transactions per second (tps), specifically,

in Trade-Result transactions per second.
A single-server-based system placed in the top ten results of the TPC-

E benchmark (as of 2011) requires about 4,500 watts of electricity to
supply its hardware, consisting of 8 multi-core processors, about 800
hard disk drives, and 2 TB of DRAM [SHK12] .

4.1.3 TPC-H
Besides OLTP benchmarks, TPC has also standardized On-Line An-
alytical Processing (OTLP) benchmarks. Currently in use is TPC-H,
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an OLTP benchmark proposed in 1999 [TPC13]. It is designed as a
decision-support benchmark, simulating ad-hoc queries with concurrent
data modification on large volumes of data. Compared to OLTP, the
queries are more complex and involve large amounts of data, simulat-
ing typical data-mining business questions. The size of the warehouse
(scaling factor) and the number of parallel clients (called streams), sub-
mitting queries, determine the database utilization.
TPC-H measures performance using a complex metric called the

TPC-H Composite Query-per-Hour Performance Metric (QphH@Size).
It includes several aspects of the system, e. g., database size and
query throughput using a single client and throughput using multiple
concurrent clients. Additionally, the price (acquisition + mainte-
nance cost over a fixed period of time) is included in the TPC-H
Price/Performance metric, expressed as $/QphH@Size.

4.1.4 TPC-Energy
The three previously presented benchmarks do not include electricity
cost in their metrics. Although the benchmarks mention maintenance
costs for a typical usage period (5 years), they do not include energy
costs for that duration.
TPC noticed the rising demand for energy-related figures and re-

leased a benchmark add-on in Dec. 2007, called TPC-Energy [TPC10c].
This benchmark is an enhancement of the existing TPC-C, TPC-H, and
TPC-E benchmarks. It introduces energy measurement specifications
and metrics to extend all three benchmarks.
TPC-Energy’s primary metric is watts per performance, with perfor-

mance defined by the respective underlying benchmarks, e. g., tps for
TPC-E or QphH@Size for TPC-H. The metric is defined using the total
energy consumed by the SUT and dividing it by the normalized work
performed in the same measurement interval.
Supplemental, secondary metrics are defined to further characterize

the system’s energy consumption: Power consumption of the system
can be broken down to assess power/performance metrics for subsys-
tems, e. g., storage system or application layer. Further, the idle power
consumption of the SUT is reported.
In addition to these metrics, the benchmark introduces a software

package helping to facilitate the implemention of the TPC-Energy
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Figure 4.1: TPC-Energy Measurement System, from [TPC10c]

specifications, called TPC-Energy Measurement System (EMS). EMS
is providing power instrumentation interfaces and logging facilities for
power and temperature. Furthermore, it enables easy report generation.
Figure 4.1 depicts the experimental setup for TPC-Energy benchmarks,
including the EMS Controller for correlating readings with benchmark
steps and a number of Power and Temperature Daemons (PTD), that
report power consumption and temperature of the connected part of
the SUT to the controller.

4.1.5 SPECpower_ssj2008
The Standard Performance Evaluation Corporation (SPEC), founded
in 1988, is a consortium of over 60 hard- and software manufacturers
with the aim to define standardized, realistic performance tests [Sta95].
SPEC has published a broad variety of benchmarks for different kinds
of SUTs, e. g., SPECjvm2008 for measuring the performance of a Java
Runtime Environment (JRE) on different platforms, SPEC CPU2006
for evaluating CPU performance with compute-intensive workloads, and
SPECsfs2008 for benchmarking speed and throughput of network file
system servers.
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Figure 4.2: SERT design overview, from [Sta13]

In December 2007, SPEC released a new benchmark measuring sys-
tem performance and power consumption, called SPECpower_ssj2008.
Unlike previous energy benchmarks, SPECpower_ssj2008 measures per-
formance and power at various utilization levels between idle and 100%
load. Hence, this benchmark does not only report power consumption
for performance-oriented workloads, but also identifies energy charac-
teristics of systems under variable utilization. To simulate a non-peak
load, the benchmark driver introduces random pauses between sending
requests to the SUT. For example, to simulate a 30% utilization, the
benchmark pauses for an average of 70% of the time during the mea-
surement interval. Hence, after the measurement period, the SUT was
only stressed with 30% of the requests, compared to peak utilization.
After measuring 11 load levels from idle to 100% in steps of 10%, the
geometric mean of them is used to calculate a single result, denoting
the overall energy efficiency of the SUT.
SPECpower_ssj2008 is Java-based and therefore compatible with a

broad range of systems and operating systems.

4.1.6 Server efficiency rating tool
SPEC has also published a tool called Server Efficiency Rating Tool
(SERT), which can be used—similar to TPC-Energy—to estimate a
system’s power and energy consumption. While previous SPEC bench-
marks focused on isolated components and performance indicators, the
design rationale behind SERT was to rate the overall efficiency of all
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kinds of servers, from centralized systems to distributed clusters. There-
fore, a highly scalable workload is needed to adjust the benchmark to
the size of the SUT. Like all other of SPEC’s benchmarks, SERT is Java-
based, running micro-benchmarks like sorting, encryption, compression,
and hashing.
Figure 4.2 sketches SERT’s system design. Similar to TPC-Energy,

so-called “Power and Temperature Daemons” (PTDs) monitor power
consumption and temperature of all parts of the SUT. A controller is
coordinating the benchmark and collecting all readings from PTDs.
Workloads in SERT consist of warmup, measurement and post-

measurement phases, in alternation with idle phases. Therefore, a
system’s ability to quickly power down in idle times is an important
aspect of its overall energy efficiency.
Each of the micro-benchmarks grades the system in three metrics:

Power consumption, performance and efficiency. While power consump-
tion is depicting the overall wattage of the SUT, performance and effi-
ciency are dimensionless score points.

4.2 JouleSort
A common task in all software, especially databases, is to sort data sets.
Typical benchmarks focused on sorting do only report performance,
hence, how fast a data set can get sorted, using various algorithms on
different hardware. The idea of JouleSort is to benchmark, how much
data a SUT can sort in relation to it’s energy consumption [Riv+07].
Hence, instead of the metric sorted records per second, this benchmark
has chosen sorted records per joule.
Unfortunately, JouleSort is only focused on peak-load sorting, hence,

at full system utilization. The workload is also very limited (sorting
only). Yet, JouleSort is one of the first benchmarks on energy efficiency.

4.3 Benchmark Requirements
Based on previous observations about typical database server utiliza-
tion, existing benchmarks do not represent realistic workloads. This is
not an issue when measuring performance, since only peak performance
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is of interest, but when it comes to energy, a more detailed look at the
workloads is necessary to be able to reproduce real-world utilization in
a benchmarking environment and to truly estimate energy consumption
of a system.
In order to report detailed energy characteristics of a system and to

compare them to others, a new benchmarking paradigm is needed. With
TPC-Energy and SPECpower_ssj2008, first steps have been taken in
assessing energy consumption while benchmarking, yet both specifica-
tions have shortcomings.
TPC-Energy measures power consumption only in conjunction with

performance benchmarks and at idle. Hence, it only covers two single
points of utilization of the SUT.
SPECpower_ssj2008 defines 10% intervals of utilization, where power

consumption is measured. Although SPEC presented a more detailed
specification than any energy benchmark before, it is still measuring a
limited subset of the whole utilization spectrum under static workloads.
Since all benchmarks rely on measurements of static workloads, with

no variance in utilization over time, they do not reflect the dynamics
of the SUT and its ability to adapt to workload changes. Traditional
servers did not implement sophisticated energy-saving mechanisms and,
therefore, did not exhibit prolonged setup times to change from near-idle
to full processing power. Therefore, existing benchmarks were adequate
for those systems.
With the emergence of new technologies and more advanced energy-

saving approaches, systems do need additional time to change between
their usage states. Hence, existing benchmarks do not model adequate
usage patterns with dynamically changing workloads and are therefore
unable to estimate energy consumption and performance characteristics
of these new systems in realistic scenarios.

4.4 Benchmark Proposal
Based on the observations in the previous section, it is easy to see that
current server installations do not behave like the systems measured in
traditional benchmarks. While benchmarks usually measure peak per-
formance, typical servers operate far away from that point during most
of the time. Nevertheless, benchmark results are comparable and mean-
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Figure 4.3: TPC-* vs. the real world, from [SHK12]

ingful when it comes to performance only. As long as attention is not
turned to energy consumption, the mismatch between benchmarking
and real usage of servers does not carry weight. Performance measure-
ments under peak utilization can be easily broken down to lower load
situations. Hence, a system, able to process x tps per second at peak,
can also process 0.5x tps per second.
In contrast, energy-related measurements obtained at some point of

utilization are not transferable to other load situations because of the
non-linear scaling of energy consumption of today’s computer hardware.
Therefore, the whole span of different load situations should be mea-
sured separately to obtain meaningful energy data for customers.
As an analogy from a well-known field, automobiles are benchmarked

similarly with additional “energy-related” measures. Hence, the power
of a car is estimated by its horse power and its top speed, like database
servers are classified by their hardware and their peak tpmC / QphH /
tpsE. On the other hand, the gas consumption of a car, estimated at top
speed, is meaningless for the average driver, because the measurement
does not indicate the gas consumption for average usages. Therefore, a
car’s mileage is measured by driving the car through a set of standard-
ized usage profiles which reflect the typical use of the vehicle. The same
paradigm should be applied to database benchmarks as well, where en-

66



4.4 Benchmark Proposal

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00 load

rel. Perf. &
Power

Figure 4.4: Static energy-efficiency measurement, from [SHK12]

ergy consumption measured at peak utilization is no indicator for the
average use case.
Figure 4.3 depicts performance and energy efficiency of an exemplary

server. The performance-oriented TPC-* benchmarks cover the light-
blue region of the server’s power/performance spectrum, while the typ-
ical working region—colored in light-red—is not examined. The per-
formance difference is not problematic, but there exists a large discrep-
ancy in energy efficiency between both regions. With the TPC-(C/E/H)
benchmarks, even in conjunction with TPC-Energy, energy efficiency of
the typical working region of a server is not analyzed.
To cope with the limitations we have outlined previously and to keep

the TPC benchmarking suite up to date, we propose a new paradigm
in benchmarking.

4.4.1 Static weighted energy proportionality
Nowadays, the measurement paradigm for the TPC benchmarks strictly
focuses on performance results, i.e., to get the most (in terms of units of
work) out of the SUT. Hence, this methodology collides with the desire
to get a meaningful energy-efficiency metrics for the system. Therefore,
we propose a sequence of small benchmarks that utilize the SUT at
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different load levels, instead of a single run at peak load. Figure 4.4
depicts a feasible set of benchmark runs at different utilization ratios.
First, a traditional TPC-* run will be performed, i.e., at full utilization.
That run is used as a baseline to get the maximum possible performance
the SUT can handle. Next, based on the results from the first run, the
number of queries per second issued for the other runs is calculated using
the follwing equation, where x denotes the system utilization between
0 and 100%:

baseline := transactions

second
@100%

transactions

second
@x := baseline · x

Depending on the type of benchmark, the characteristics and knobs
for throttling can differ, e.g., for TPC-C increasing the think time
seems reasonable while for TPC-H a reduction of concurrent streams
is the only meaningful option. We call this a static weighted energy-
proportionality benchmark, because the workload does not change in
between and, therefore, the system does not have to adapt to new load
situations. To allow the system adapting to the current workload, a
preparation phase of a certain time span is preceding each run. During
the preparation time, the SUT can identify the workload and adapt its
configuration accordingly. It is up to the system, whether and how to
adapt to the workload, e.g., the system can power down unused CPU
cores or consolidate the workload on fewer nodes in order to save energy.
After the preparation phase, the overall energy consumption during the
run is measured. In other words, instead of measuring the performance
of the SUT, we are now measuring the power consumption for a certain
system usage.
At each load level, the system’s energy proportionality (according to

equation 3.1) is calculated. By multiplying each result with the relative
amount of time the system is running at that load level, we can estimate
overall energy proportionality for arbitrary workloads.

Formula

Let EPi be the energy proportionality at load level i, and let Ti be
the relative time, the system is at that level. Then the static weighted
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(a) Typical, real-world system

load rel. time rel. PC EP EP · time rel.
idle 0.11 0.47 0.00 0.00
0.1 0.08 0.7 0.14 0.01
0.2 0.19 0.78 0.26 0.05
0.3 0.23 0.84 0.36 0.08
0.4 0.18 0.88 0.45 0.08
0.5 0.10 0.91 0.55 0.05
0.6 0.05 0.93 0.65 0.03
0.7 0.02 0.94 0.74 0.01
0.8 0.01 0.98 0.82 0.01
0.9 0.01 0.99 0.91 0.01
1.0 0.02 1.00 1.00 0.02

SWEP ( =
∑

) 0.37
(b) Energy-proportional system

load rel. time rel. PC EP EP · time rel.
idle 0.11 0.0 1.0 0.11
0.1 0.08 0.1 1.0 0.08
0.2 0.19 0.2 1.0 0.19
0.3 0.23 0.3 1.0 0.23
0.4 0.18 0.4 1.0 0.18
0.5 0.10 0.5 1.0 0.10
0.6 0.05 0.6 1.0 0.05
0.7 0.02 0.7 1.0 0.02
0.8 0.01 0.8 1.0 0.01
0.9 0.01 0.9 1.0 0.01
1.0 0.02 1.0 1.0 0.02

SWEP ( =
∑

) 1.00

Table 4.1: Example calculation of the SWEP
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energy proportionality of the system ( = SWEP) can be calculated as:

SWEP =
1.0∫

i=0.0

EPi · Ti di

In this formula, relative time is used to denote the fraction of time
in a certain load interval. By integrating, i. e., summing up, over all
time intervals, the power consumption over the total runtime (100%) is
calculated.
We can estimate the power consumption ( = PC ) of the SUT during

the measured interval by multiplying the (absolute) power consumption
in each interval (PC i) with the relative time, the system is in that load
interval:

PC =
1.0∫

i=0.0

PC i · Ti di [watts]

Again, time is expressed relative to the total runtime, hence, the unit
of this forumla is watts, not watt seconds.
Further, by adding the system’s performance to the formula (denoted

as tps in the following), we can estimate the overall energy efficiency.

EE =
1.0∫

i=0.0

PC i

tpsi
· Ti di

[
watts
tps

]

In reality, the integral is approximated by the sum of load situations
measured, e. g., by eleven measurements at loads from 0% to 100% at
10% increments.
This formula puts power consumption in relation to transaction

throughput, and thus, enables energy efficiency comparison of different
systems running the same workload. The higher the energy efficiency,
the better a given system transforms electricity into work. This formula
uses the same unit as the TPC-Energy benchmark, which also applies
power consumption over throughput as its metrics. The rationale of
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the TPC for choosing this metric was the desire to be similar to the
traditional TPC metrics price over throughput and, furthermore, to
allow a secondary metrics for each of the subsystems.

Example

To clarify the calculation of the weighted average, we will give an exam-
ple using the load and energy measurements provided by Google (see
Figures 2.3 and 2.4). Table 4.1 shows the average power consumption
and time fractions of a hypothetical server for 11 utilization levels. The
data is derived from the two studies done by Google. Additionally, a
perfectly energy-proportional system is shown.
This static approach has certain drawbacks: First, the measurements

are rather coarse-grained in practical applications, i.e., “reasonable”
static measurements will be employed at 0, 10, 20, . . . , 100% load,
but not in greater detail. And second, this calculation does not take
transition times from one load/power level to another into account.

4.4.2 Dynamic weighted energy efficiency
To design an energy-related benchmark that overcomes the drawbacks
of the static approach, we are proposing a refinement of the previ-
ous benchmark, called dynamic weighted energy-efficiency benchmark
(DWEE). In order to simulate an even more realistic workload on the
SUT, the static measurements at various load levels of the SWEP bench-
mark are replaced by continuous sequences of different length and dif-
ferent load situations (so-called scenes), followed by each other without
interruption or preparation times. In contrast to the static approach,
all scenes run consecutively, thus transition times are measured as well
using this benchmark. That enables us to test the system’s ability to
dynamically adapt (if possible) while running.
Every scene will run for a defined time span T , as sketched in Figure

4.5. A time span is always a cardinal multiple of a constant time slice
t, thus, all scenes run for a multiple of that time slice.
The dynamic energy-efficiency benchmark should simulate a typical

workload pattern, hence, the sequence of load levels should reflect the
intended usage pattern of the SUT.
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Figure 4.5: Dynamic weighted energy-efficiency benchmark – sample
load pattern

Influence of the length of the time slice t

By adjusting the cardinal time slice t to smaller values, all benchmarking
scenes will be shorter, hence, the system must react faster to changing
loads. Such a course of action enables testing the SUT’s ability to
quickly react to changes. Of course, benchmark results can only be
compared by choosing the same time slice t and the same sequence of
scenes.
The minimum length of the time slice should not go below 10 minutes,

because real-world utilization usually does not change faster than that.

Formula

Calculating the result of the DWEE benchmark is simpler than cal-
culating the SWEP results, because the weighting of the utilization is
determined by the selection of scenes. Since we are measuring the over-
all throughput and energy consumption, we do not have to aggregate
several measurements. To obtain comparable benchmarks, the resulting
measure of a run will be expressed in watts per tps. The result of the
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dynamic weighted energy-efficiency benchmark, short DWEE , is:

DWEE = overall Energy Consumption
overall # of Transactions

= joules
transactions

= W

tps

Hence, by employing the same sequence of scenes and the same length
of t, the energy efficiency of different systems can be compared to each
other. Since the benchmark simulates a daily workload, the average en-
ergy consumption of the SUT in a real-world scenario can be estimated.

4.4.3 Energy delay product

The product of energy consumption (joules) and runtime (seconds) is
called Energy Delay Product (EDP), a metric originally stemming from
chip and microprocessor design [GH96]. EDP is defined as follows:

EDP = execution time× energy consumption or
EDP = execution time2 × power consumption

The rationale behind this product is, that a system, running twice as
fast and with twice the power consumption, exhibits the same EDP,
hence, it is not better or worse than the original system. Another sys-
tem, consuming the same amount of energy but delivering results faster
will have a lower EDP. Likewise, lowering energy consumption while
keeping runtimes unchanged results in a better EDP. Therefore, the
Energy Delay Product is a good measure to compare the energy con-
sumption/performance of heterogeneus systems, given the same task.
The lower the EDP, the more energy efficent a system is.
Yet, EDP values are only comparable when measured using the same

workload.
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Figure 4.6: Architecture of the benchmark software

4.5 Benchmark Software
To run the proposed benchmark against our database cluster, we have
developed a benchmark suite, based on an earlier implementation for
Brackit [Bäc13]. The benchmark suite is XML-based and allows to
define long series of benchmark runs, consisting of variable intensities to
realistically utilize a system. The suite can be integrated into the energy
measurement track introduced earlier (see Section 3.7.4), to correlate
benchmark results with energy readings.
Figure 4.6 depicts the hierarchical architecture of the benchmark. The

coordinator is reading the XML benchmark definition file and sends out
workload definitions to its clients, which are remotely connected to the
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coordinator. Each level in the benchmark may consist of several sub-
level instances, each modifying a variety of parameters to run the same
or slightly modified workloads repeatedly. Hence, the top node bench-
mark usually contains a number of series, each consisting of several
scenarios with different parameters, e. g., number of parallel DB clients.
Likewise, scenario and scene are sub-level instances, able to modify
other factors, influencing the workload. A scene contains several set-
tings, each evaluated in parallel on a dedicated remote client. Hence, by
controlling the composition of settings and scences, workloads variations
can easily be created.
As Figure 4.6 indicated, settings are evaluated at the client side, dis-

tributing workloads among worker threads. The worker threads finally
execute workunits, consisting of a series of actions, which can be Linux
commands to be issued, queries to be sent to the cluster, or scripts to
be executed. After executing all workunits, workloads, and settings,
the clients report back to the coordinator, where benchmark results are
collected.
With this implementation, it is possible to submit repeatable, com-

plex workloads and automatically process results. Since the benchmark
definition file is highly customizable, the effect of workload changes can
easily be tested against the SUT.
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5 The WattDB Framework
In this chapter, we present WattDB, our research prototype of an
energy-proportional DBMS. First, we give an overview of the leading
design principles, the cluster hardware and the software implemen-
tation. Then, we explain some tailor-made optimization techniques,
allowing efficient query processing in a cluster of distributed nodes.

5.1 Design Principles
At the beginning of our project, no DBMS existed that met the desired
energy-efficiency requirements. Although several matured, open-source
DBMS projects were available that could have been extended for energy
efficiency, all of them suffered from major drawbacks that would have
made it very complicated to rely on them.
Since it would have required an excessive amount of work to imple-

ment mechanisms for energy efficiency, we have opted for developing a
new system from scratch, tailor-made for our needs.
To gain low-level access to the underlying hardware and reducing

runtime overhead, we have chosen C/C++ as the main programming
language for our DBMS. Since WattDB is designed to running solely
under Linux, platform independence is not an issue. We are using GCC
4.x for compiling.

5.2 Cluster Hardware
The experimental cluster, on which we ran WattDB, consists of 10
identical nodes. Each node is made of a 1U Supermicro SuperChas-
sis 813MTQ-350CB1 with a 350 watts, 80+gold-certified power supply

1http://www.supermicro.com/products/chassis/1U/813/
SC813MTQ-350C.cfm
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and four 3.5" drive bays. The chassis contain a Supermicro X7SPE-HF2

main board with Intel Atom D510 CPU and 2GB of DDR2 SO-DIMM
RAM.
To connect all nodes, the cluster contains a Gigabit switch (3Com

Baseline Switch 29283), with a forwarding rate of 41.7 Mpps, i. e., the
switch is capable of processing 41.7 million packets per second. As-
suming ethernet packets with 1.500 bytes in size, the switch is able to
transfer 56 Gbit/s between distinct nodes. Hence, it should be powerful
enough to allow all nodes to pair up and exchange data at wire speed,
i. e., 5 pairs of nodes, each sending and receiving 2 Gbit/s of data at full
duplex.
Each node in the cluster can be equipped with up to four storage

disks. Depending on the experiment, several choices are available to be
installed:

Qty Model Size
40 x Western Digital WD2500BEKT 250 GB
10 x Samsung SSD 830 128 GB
14 x Samsung SSD 840 PRO 256 GB

5.2.1 Power consumption

The components of the cluster were selected, having their performance
and power consumption in mind. To reduce overall idle power con-
sumption, components designed for mobile (battery-operated) use seem
favorable. Therefore, we have selected an Intel Atom CPU with low
power consumption. At the bare minimum, with no disk drives at-
tached, a single node consumes about 22 watt when idle. With four
hard disk drives attached and at full CPU utilization, each node con-
sumes ∼41 watt. Table 5.1 gives an overview over the components’
power consumption.

2http://www.supermicro.com/products/motherboard/ATOM/
ICH9/X7SPE.cfm?typ=H&IPMI=Y

3http://www.andovercg.com/datasheets/
3Com-3CRBSG5293-2900-switches.pdf
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Device Power Consumption
Switch

19 - 22 watts

Node
off 0.5 watts
suspended 2.5 watts
idle 22 watts
100% CPU 26 watts

Storage Disk
idle 1 - 2 watts
active 2 - 4 watts

Table 5.1: Power consumption per component

5.2.2 GPU
The nodes in the cluster do not have a dedicated GPU attached for
two reasons: First, the on-board GPU—integrated into the CPU— is
more than sufficient to display the text console occasionally. Second, the
servers are operated mostly headless, i. e., without a display connected.
Vítor Uwe Reus has examined the use of General Purpose Graphics

Processing Units (GPGPU) in WattDB in his bachelor thesis [Reu12].
He developed a framework, depicted in Figure 5.1 to execute database
query operators on the GPU, and compared performance and energy
consumption to traditional execution on the CPU. To integrate GPU
operators into the execution pipeline, copies of the records in main
memory need to be transferred to the GPU memory for processing.
Likewise, results need to be copied back to main memory to let CPU
operators consume them. Reus has implemented automatic handling
of data transfers to transparently switch from CPU to GPU and back,
denoted as Copy Operator in Figure 5.1.
In his experimental evaluation, using an NVIDIA GeForce GT430

with 1GB of DDR3 RAM, he compared sorting operators running on
CPU and GPU. Reus observed lower query runtimes when sorting on
the GPU, especially for large quantities of records, where the query plan
using CPU-sort was 3.3 times slower than using GPU-sort.
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5 The WattDB Framework

Figure 5.1: GPU framework in WattDB, from [Reu12]

Yet, the addition performance comes at the cost of increased power
consumption. Installing a GPU on the node increases its idle power
consumption by 11 watts. When utilized, the GPU consumes about
26 watts, practically doubling the node’s peak power consumption when
running at full CPU load.

While at peak utilization, GPUs exhibit better energy efficiency than
the installed CPUs, copying data back and forth is time consuming, and
realistic DB workload will leave the GPU underutilized for most of the
time. Therefore, their high idle power consumption will drag down the
cluster’s overall efficiency. As a consequence, we did not include GPUs
in all future experiments on WattDB.
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5.2.3 Amdahl-balance
The hardware used to build our cluster are commodity components
with moderate performance. Especially, when compared to high-end
database machines, as presented in TPC-* results, our nodes are wimpy.
An important aspect is the Amdahl-balance (see Section 2.1.3) of the

nodes and the cluster. Hence, IOPS, processing power, and network
bandwidth need to be tailored to avoid introducing a bottleneck, while
other components are oversized. While Amdahl originally defined a
specific I/O to CPU frequency ratio, we believe that the task defines
the exact requirements for both. For example, in the field of databases,
a huge difference exists between OLTP and OLAP workloads. While
the former require random I/Os on disk to update records, the latter
relies more on sequential reads. Thus, the exact ratio between (random
and sequential) IOPS to CPU frequency vary.
Therefore, we argue that our cluster of lightweight nodes, equipped

with max. 40 storage disks and connected by a moderately fast network,
is Amdahl-balanced.
On one hand, this limits the peak performance we may achieve with

our cluster, but it likewise limits peak power consumption. Therefore,
overall acquisition costs are lower, electrical measurements are easier
to implement, and a suitable high-end machine with comparable per-
formance to the 10-node cluster is affordable. Further, by installing
components with limited data bandwidth, GB-ethernet wiring is suffi-
cient for interconnecting the node.
On the other hand, we argue that all techniques introduced in this

work can be applied to upscale clusters of larger machines, given an
adequate interconnect, e. g., InfiniBand. Given a limited budget, a com-
promise on cluster hardware and size was necessary.

5.3 Software Design
The nodes in the cluster are all running the same version of the database
software—WattDB. As explained in Section A.1, our implementation
was gradually improved to include more and more features. In the
following, a few key points, relevant to all experiments in this thesis,
are outlined.
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5.3.1 Master node
One of the nodes is manually selected to become the master node, co-
ordinating all activities in the cluster. This server is the only non-
suspendable node in the cluster, responsible for accepting client con-
nections, optimizing queries and managing the cluster’s elasticity. On
the master node, all monitoring results from nodes are collected and
aggregated (see Section 5.4). The master has a holistic view of the clus-
ter, all metadata, and the state of all nodes. Further, the master is
coordinating transaction commit and resolving distributed deadlocks.

5.3.2 Communication
All nodes are assigned to the same IP sub-net, allowing them to commu-
nicate directly. TCP is used to send messages reliably without having
to implement custom packet order and delivery checks. Standard TCP
uses Nagle’s algorithm [Nag84] to reduce the number of small packets
by delaying the send operation until either enough data for a full IP
packet accumulated, a timer expired (around 200 ms), or the receiving
node acknowledged the reception of the previous packet [PD07]. While
this approach is well-suited for most applications, it led to significant
delays in WattDB. Therefore, we disabled Nagle’s algorithm and uti-
lized TCP_CORK to suspend and resume putting packets on the wire,
as desired.
All nodes in the cluster connect to the master after start-up to receive

metadata, queries, and control commands, e. g., shutdown requests. The
connection to the master is only closed when the node goes down and is
immediately re-established after restart. Through this connection, the
nodes receive a list of all nodes in the cluster, allowing them to contact
the other nodes directly. The master also informs the nodes about
metadata changes, i. e., database configuration, storage assignments,
etc. Further, the nodes send information about their configuration to
the master, and performance data is periodically reported.
To communicate among one another, all nodes may maintain connec-

tions to arbitrary nodes. With these secondary connections, queries are
handled and records (or storage pages) are exchanged. Typically, these
connections are established on demand, whenever one node desires to
communicate with another, and never disconnected.
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Figure 5.2: WattDB’s monitoring framework

Likewise, all nodes may accept connections from database clients to
deliver query results, thus bypassing the master node as the final hop
for all records. Yet, queries have to be submitted to the master node,
which then instructs the client to pick up results from one of the other
nodes. These connections are cut when the client disconnects from the
database.

5.4 Performance Monitoring
The centralized master node of the cluster needs up-to-date information
about the current utilization of all nodes’ relevant components. For
example, detailed statistics about disk utilization and the share of I/O
for each partition are necessary to efficiently distribute data among
the nodes. Performance data are also required to detect and react to
performance bottlenecks. A monitoring solution needs to run on all
(active) nodes in the cluster and non-intrusively measure relevant points
frequently.

5.4.1 Physical probes
Physical probes, i. e., hardware-related performance probes, reflect uti-
lization of hardware components of the cluster. This type of probes
periodically report the components’ load to the master, to determine,
whether or not the devices’ utilization is balanced. For each component,
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separate probes and readings are sent to the master. Each component
is identified by a unique ID, composed of the node ID the component
is connected to and the name of the component. Since the nodes are
running Ubuntu Linux, common names for hardware devices are eth0
for ethernet cards and sda, sdb, sdc, ... for disk drives. Hence, a typ-
ical identifier for a probe is node3/sdb, referencing the second disk of
the third node in the cluster. Further relevant probes reflect network
and disk load—both storage and IOPS—, and CPU and main memory
utilization.

5.4.2 Logical probes
To identify the source of the hardware’s utilization, software-related per-
formance probes are necessary. Logical probes, also known as database
tracing probes, monitor utilization of database objects, e. g., tables, par-
titions, index structures, and buffer statistics.
Similar to physical probes, each logical meter is referred to by a unique

identifier. Since placement of logical entities may change over time,
identifiers do not carry a node prefix. Instead, they form a hierarchy
starting with the table name, followed by the partition identifier, e. g.,
CUSTOMERS/p4/ix1 refers to the first index of the fourth partition of
the CUSTOMERS table.
Further important logical probes measure buffer hit rate, reference

count and I/O-rate of partitions, CPU cycles of query operators, and
network usage of queries.
By correlating data from both kinds of probes at the master node,

WattDB can detect, whether hardware components are running out-
side their operating window and further, what database components
are causing this.
All probes periodically reporting recent figures to the master node are

called counters. To facilitate quick response times, events are sent aperi-
odically, when certain situations are detected to immediately inform the
master node. For example, out-of-memory exceptions and transaction
deadlocks need to be resolved promptly.
Readings are stored in an embedded database on the master node

for trend analysis and prediction (see next section). Since storing each
single measurement—which are performed on a 10-second basis—for
extended periods of time would require an immense amount of storage
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time -60 -50 -40 -30 -20 -10 -0
value 50 60 50 40 40 80 60
min 50 60 50 40 40 80 60
max 50 60 50 40 40 80 60

time -480 -420 -360 -300 -240 -180 -120 -0
value 15 25 20 25 30 30 20 55
min 10 20 20 10 20 10 20 40
max 30 30 20 40 50 40 20 80

Table 5.2: Sample round-robin database

space, data is aggregated as it ages. Without aggregation, measure-
ments from a single node produce around 2 GB of data per year [Dus12].
Predictions and extrapolations add up even more storage space. Besides
storage requirements, processing times on large amounts of data slow
down workload estimation. Hence, consolidating old data is necessary
to reduce the overall amount of information.
Therefore, WattDB uses a round-robin database (RRD) [Oet98] to

store monitoring data. In an RRD, measurements are stored with a
timestamp. While newer data is kept at higher resolution, older mea-
surements are consolidated and stored in more extended intervals. Since
aggregation of monitoring results blurs individual data spikes, the min-
imum and maximum values of all data points inside a consolidated in-
terval are preserved as well. Table 5.2 prints an example RRD with 6
recent measurement values (from time -60 to time 0), where min and
max are identical to the value itself, and 6 consolidated values cover-
ing larger time spans (-480 to -120), where min and max differ from
the (average) value. The latest 7 monitoring results will be aggregated
shortly to form the lower-right consolidated value—enclosed in dashed
lines—in the RRD file.

5.4.3 Initial implementation
In 2012, Dusso introduced the first version of a monitoring framework
for WattDB, sketched in Figure 5.3. In his thesis, he implemented the
initial database on the master node to store all measurements. His im-
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Figure 5.3: Architecture of WattDB’s monitoring, from [Dus12]

plementation, presented in [Dus12], is capable of monitoring hardware
probes in the cluster, i. e., CPU, main memory, disk, and network uti-
lization by parsing the proc filesystem [Ngu04] on the nodes periodically.
When enabled, monitoring consumes less than 5% of the cluster’s per-
formance (at moderate workloads). Especially under high utilization,
effects are negligible.

5.5 Forecasting
Monitoring database workloads gives a detailed picture of current uti-
lization. By archiving the readings, we are able to tell the historic load
of the cluster. These data can be used to reactively adjust the cluster to
the current workload. Increasing the size of the cluster after detecting
an increase in utilization puts additional stress on the nodes. Hence, it
is counterproductive to scale-out, when nodes are already overloaded.
Therefore, to be able to proactively configure the cluster, i. e., to

foresee workload changes and to prepare for them in time, a dedicated
component is needed to forecast upcoming loads by extrapolating from
historic data.
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5.5 Forecasting

Figure 5.4: WattDB’s monitoring & forecasting, from [Dus12]

In his thesis, Kramer presented a forecasting framework integrated in
WattDB [KHH12]. His implementation build upon Dusso’s implemen-
tation of a performance database. Kramer’s prediction system reads
historical monitoring data and extrapolates expected future patterns,
as depicted in Figure 5.4.
Database usage (in productive systems) exhibits certain usage pat-

terns, based on human interactions. Therefore, these patterns are repet-
itive on a daily, weekly, monthly, or yearly cycle. Furthermore, floating
holidays and vacation times typically influence the formation of pat-
terns.
To address these influential factors, Kramer’s prediction component

performs linear regression on historic data of various granularities, e. g.,
daily, monthly, and yearly. Each linear regression run generates a dis-
tinct usage prediction profile. All results are then combined to form a
weighted average usage profile. By correlating final results with actual
utilization, the prediction can adjust the weights in the future, thus, it
is self-adapting.
The prediction component of WattDB increases the size of the moni-

toring database, depending on the time frame to predict. Typically, for
short-term preparation of the cluster, forecasting over the upcoming 60
minutes is sufficient, thus requiring very little additional storage space
for predictions.
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Prediction, i. e., running linear regression over a plethora of moni-
toring data, is time-consuming. Since forecasts over long time periods
are not required to prepare the database for the near future, we have
limited the amount of regression profiles, and excluded monthly, yearly,
and all variable holiday patterns from WattDB. Thus, we were able to
reduce the runtime of the prediction algorithm, running every minute,
to a few seconds on the master node.

5.6 Query Optimizations
Distributed databases with records scattered among multiple machines
require distributed query execution to keep processing close to the data.
Besides the need for distribution, offloading database operators to a
larger number of nodes and, thus, parallelizing query evaluation will
also potentially improve throughput and processing time. Although
query optimization is not the main focus of this thesis, improving energy
efficiency of a badly performing system is futile. Therefore, we present
several techniques for improving query execution using multiple nodes
in this chapter.

5.6.1 Operator optimizations
In Online Analytical Processing (OLAP) and Map/Reduce, large frac-
tions of data are typically scanned to generate aggregated key indicators,
grouped by some attributes. Figure 5.5 shows an exemplary operator
tree of an OLAP query. First, records are read from disk and selection
and projection operators (σ & π) filter records by predicates. Next,
records from different tables are joined using another predicate and re-
sults are sorted (<), grouped by column (γ), and aggregated (α).
In this example, records read from disk can pass through the first

operators (selection and projection) one-by-one, becoming immediately
available for the next operator in line. Since selection and projection
are able to process records without needing outside knowledge, they can
pass on each single record as soon as they finish processing it. Hence,
these are called streaming operators [Bäc13].
Operators like sorting, on the other hand, need to read all records

from the underlying operator before they can emit the first, sorted
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αo_orderpriority

γo_orderpriority

<o_orderpriority

./l_orderkey=o_orderkey

σ
πa<=o_orderdate<=b

ORDERS

σ
πl_commitdate<l_receiptdate

LINEITEM

Figure 5.5: Example operator tree for TPC-H query 4

record. Therefore, these are called blocking operators or pipeline break-
ers [Neu11].
To speed up query evaluation, distinction between these two types

of operators is crucial. Streaming operators can be stacked to form
a pipeline, where each record is passed from the bottom through all
operators until the top—if not discarded on the way. Their memory re-
quirement is constant. However, blocking operators need to cache large
amounts of records, requiring temporary (main) memory to store inter-
mediate results, scaling linearly with the number of records to process.
As Bächle points out in his thesis [Bäc13], the placement of blocking

operators heavily influences overall performance. Therefore, WattDB
tries to put blocking operators on top of a sequence of streaming opera-
tors to reduce temporary memory requirements. Further, in distributed
query plans, blocking operators are usually the last operators on a node,
results are picked up by the next sequence of blocking/streaming oper-
ators on the next node to distribute temporary memory demand evenly
across the cluster.
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void open();
bool next(record_t& record);
void close();

Figure 5.6: Iterator model

void open();
bool next(record_t[]& record, int& num_records);
void close();

Figure 5.7: Vectorization

Volcano-style operators

In [Gra94], Graefe introduced a query operator model based on an iter-
ator model, depicted in Figure 5.6. Every operator provides the same
interface to callers, exposing the methods open(), next(), and close().
The method next() returns a single record on each call, allowing the
caller to consume the result and move on to the next record. This ap-
proach provides great flexibility in implementing operators and encap-
sulates the details of each operator from the outside. Yet, the standard
iterator model causes a lot of call overhead as, for every single record
read from the underlying operator, a new call to next() is necessary.

Vectorization

To mitigate the call overhead in the standard iterator model, Boncz,
Zukowski, and Nes implemented an improved calling convention, re-
turning a set of records on each call to next() instead of a single one
[BZN05], depicted in Figure 5.7.
Although this approach requires more intermediate memory to store

records and makes query evaluation more complex, it significantly re-
duces the number of calls while still providing a uniform interface among
all query operators.
To control static memory allocation, we extend the method signature

by passing an integer value, denoting the maximum number of results to
return when calling next(). This integer denotes the maximum number
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Figure 5.8: Comparison of vectorized and non-vectorized query operator
performance

of records returned, but the callee is free to pass less than the maximum
for any reason, e. g., if there are no more records to return or if processing
ends on a page boundary, making it useful to return earlier to release
resources. By selecting a higher number to the callee, more memory
will be consumed for intermediate records returned, but call overhead
will be reduced, since less calls are needed. Likewise, a small maximum
of return values will save memory but increase the number of calls.
Typically, big chunks of records—up but not limited to 10,000—are

passed on each call, effectively reducing the number of calls needed by
orders of magnitudes.

Offloading

Vectorized query operators are especially useful when distributing query
plans on remote nodes, since high network latencies (compared to local
call cost), make reducing the number of calls even more important.
In Figure 5.8, a comparison of non-vectorized iterator-based and vec-

torized iterator-based query execution is plotted. The first bar (from left
to right) depicts throughput (records per second) of a non-vectorized
iterator-based query operator emitting records.4 The next bar shows
throughput of a vectorized operator, emitting the same set of records.

4Records were artificially generated by the operator to mask disk access times or
other latencies.
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Both operators were running on a single node, hence, imposed by local
function call overhead.
The next two operators, again, non-vectorized and vectorized, were

running on a remote node, and each call involved network communi-
cation (RMI) to fetch records. Here, call overhead is much higher,
since typical network round-trip times are orders of magnitude bigger
compared to local calls, and throughput is therefore lower. Yet, the vec-
torized operator performs significantly better than the non-vectorized
version. The last bar introduces buffering to the query pipeline, de-
scribed in the next section.
In comparison, the advantages of vectorization are obvious, especially

in distributed environments.

Buffering

Traditionally, operators block while fetching results from their underly-
ing operator and wait for new records to arrive, then process the results
(and emit records on their own) before requesting the next batch of
records. Thus, calling is synchronous and blocking.
For local query processing, with only a single CPU to run operators,

blocking does not hurt overall performance, since either the parent or the
child operator are running and occupying the processor. For multi-core
architectures, parallel intra-query processing of operators may increase
response times. Yet, a typical workload, consisting of a few queries
running in parallel, occupies all processor cores using inter-query paral-
lelization and, thus, supersedes the need for intra-query parallelism to
keep all cores utilized.
When distributing query plans on remote nodes, another aspect comes

into play, when considering asynchronous, non-blocking processing of
intra-query operators. Using synchronous calls, each step requires net-
work communication and, thus, impacts processing far worse compared
to local call overhead. Even vectorization cannot hide latencies entirely,
as the results in Figure 5.7 reveal.
In the left four settings, all calls were blocking and, thus, waiting

for new records to become available before processing in the projection
operator continued. When remotely distributing operators, throughput
declines because of network latencies and bandwidth limits.
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To overcome latencies, buffering can be used, asynchronously
prefetching records from an underlying operator while the parent is still
processing another batch. In the rightmost bar, a buffering operator is
placed between the original ones, running on the same node, enabling
parallel processing on both nodes without blocking. Compared to the
vectorized, non-buffered query plan, throughput is noticeably higher.

5.6.2 Plan optimizations

Distributing data—and query plans—enables parallelization of concur-
rent operators in the plans on different machines. In theory, super-linear
speedup is possible, by running operators independently on separate
nodes without synchronization and by exploiting cache effects. For ex-
ample, reading all records from a table of size T , where T > BufferSize
in main memory, requires frequent paging of relevant DB pages. By
partitioning data into p partitions of size P , where P ∗ p = T , and dis-
tributing the partitions among p nodes, the whole data may fit into the
respective buffers on the nodes and, thus, eliminate the need for paging,
which speeds up processing.
In practice, even linear or sub-linear speedup is desirable when dis-

tributing queries, at least for performance-centric approaches. Yet, from
an energy-centric point of view, distributing queries on n nodes must
yield a runtime reduction by the same factor n to be energetically equal.
Sub-linear speedup with the cost of linearly increased power consump-
tion results in sub-linear energy efficiency: Let Ri denote the runtime
of a query when running on i nodes. We assume identical power con-
sumption for all nodes utilized for query processing, where Pi denotes
the overall power consumption of i nodes. Then, energy consumption
(EC) of a query running on i nodes is expressed as EC i = Ri∗Pi. Since
Pi = P1 ∗ i, the power consumption scales linearly with the number of
nodes. Now if runtime scales sub-linearly, hence, Ri >

R1
i , in result,

EC i > EC 1, i. e., energy consumption for a query running on a cluster
of i > 1 nodes is higher than the same query running on a single node.
Besides speedup by parallelizing operators, knowledge of the under-

lying partitioning scheme can be exploited to optimize query plans. In
the following, a few of the techniques used in WattDB are explained.
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Figure 5.9: Partition pruning

Partition pruning

Horizontally partitioning large tables by attribute ranges splits the data
into smaller parts. Each record stored in one of the partitions satisfies
the partitioning attribute of said partition [Ora08]. Hence, when query-
ing records by partitioning attributes, large fractions of the data can be
ruled out immediately, because the range of the partitioning attribute
does not match the query’s predicate.
To enable partition pruning at query optimization, the query must

contain an equals- or range-predicate on the partitioning attribute of
the table. The optimizer will then replace all data access operators
with a subset of operators, probing only required partitions, that may
contain records satisfying the attribute. In Figure 5.9, an abstract ex-
ample query plan before and after partition pruning is plotted. On
the latter, partitions not containing eligible records are automatically
removed from the query plan.
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Partition-wise join

Similar to partition pruning, joining two tables on their partitioning key
calls for reducing the overal amount of intermediate results, by joining
matching partitions only. For example, this technique, called partition-
wise join, is implemented in Oracle’s DBMS [Dij10]. Figure 5.10 depicts
a exemplary join plan with and without using partition-wise joins. The
tables in this example are both (non-overlapping) partitioned by the
join key, hence, matching partitions can be identified easily. The naïve,
partition-unaware implementation joins all partitions of both relations
with each other. Assuming n partitions for the first relation and m
partitions for the second, this results in a total of n ∗m joins.
An optimized approach, aware of the key ranges in each partition,

can eliminate joins of two partitions with non-overlapping key ranges.
Hence, in the worst case—when the key ranges of all partitions in the
two relations overlap—each partition can have two join partners at max-
imum. A single partition is left over with only one join partner, resulting
in an upper bound of 2 ∗max(m,n)− 1 joins.

Parallel merge-Sort

Analytical queries often require sorting of results, either explicitly by
requesting a specific sort order in the query, or implicitly by utilizing
sorting to simplify subsequent evaluation, e. g., grouping records by sort
attribute. A naïve approach, as depicted in Figure 5.11(a) first gathers
records from all partitions and then sorts the results. Since sorting,
at best, exhibits a complexity of O(n ∗ log(n))—proof can be found in
[OW11, p. 154]—, with n denoting the total number of records, sorting
huge arrays of records is inefficient. Figure 5.11(b) shows an optimized
version, were records from each partition are pre-sorted and then merged
to produce the final result. By partitioning n records into p partitions,
each containing n

p records, complexity for each part is O( n
p ∗ log( n

p )).
Merging the records from all partitions exhibits a complexity of O(n)
again. In total, the optimized version with O(p ∗ n

p ∗ log( n
p ) + n) =

O(n ∗ log( n
p ) + n) is comparably complex, but sorting individual runs

can be done in parallel. Hence, assuming all p partitions are stored on
distinct nodes, pre-sorting can be speeded up by p, reducing runtime
complexity to O(p ∗ n

p ∗
log( n

p )
p + n) = O( n

p ∗ log( n
p ) + n).
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Figure 5.10: Partition-wise join
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Figure 5.11: Iterator model

Partitioned aggregation

Similar to parallelizing merge-sort, aggregation and grouping opera-
tors can also benefit from data partitioning. During query evaluation,
records are usually first grouped, before each group is aggregated, inde-
pendently of other groups. Aggregation drastically reduces the number
of records returned to one per group, regardless of the number of input
records. In a distributed environment, the standard approach would re-
quire shipping all records to a central instance, where they are grouped
and aggregated. The overhead of this approach in terms of network
communication and bandwidth usage is obvious.
Therefore, an alternative is to first group and aggregate local records

and only ship results for final aggregation, similar to Combine operators
in Map/Reduce [Gat+09].
After evaluating remote execution of operators, we conclude that,

for linear (non-parallel) operators, execution on a single machine yields
the fastest results. In this configuration, network communication with
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Figure 5.12: Offloading operators: Performance comparison

high delays and low throughput are not present, as records are copied
in-memory only. While the best performing configuration for a single
query is non-distributed, typical DBMS workloads stress the system
with multiple parallel queries. Here, other effects come into play and
concentrating query evaluation on a single node may not provide best
results.

Operator offloading

A single, lightweight machine is quickly overcharged when a lot of par-
allel queries arrive simultaneously, as depicted in Figure 5.12. On the
X-axis, the number of parallel queries is plotted, increasing from left
to right. The Y-axis denotes query throughput per second. All queries
consist of an access operator, fetching some records by predicate and a
subsequent aggregation. While the access operator needs to run where
the data is stored, the aggregation can be offloaded to another node
to relieve some workload from the first node. The red indicators show
performance for a single node, where a single query plan is evaluated
without distribution. Throughput drops quickly as the workload inten-
sifies, since a single node is overwhelmed with the number of queries.
As tested earlier, distributing queries in a cluster reduces record

throughput compared to local evaluation. Yet, these experiments were
conducted using isolated queries with no contention.
When offloading the higher operators (aggregation, sorting) from the

aforementioned queries to remote machines, the local node is relieved of
some parts of the workload. In Figure 5.12, the blue and green markers
indicate performance for the same query workload, running on a cluster
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of 2 and 4 nodes. As the results show, adding more nodes to help in
query execution, query throughput can be kept higher, compared to a
single node.
In conclusion, as long as a single node is not overloaded, local query

execution will yield the highest performance and, thus, distribution is
not necessary. As soon as a single node gets overloaded (in terms of
processing power or main-memory throughput), distributing queries re-
leases stress from the first node and leads to higher overall performance.
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6 Shared Disk vs. Shared
Nothing

In the following, we are giving a short overview about the traditional
definitions of shared disk and shared nothing. Then, we are going to
comment on recent developments in DBMS design and how the meaning
of these terms changed. Lastly, we define the terms in the context of
our research.

6.1 Traditional Definitions
In [Rah94], Rahm classified distributed DBMS by the criteria external
storage allocation, spatial location, andmachine coupling, see Figure 6.1.
External storage allocation: Rahm distinguishes between shared

external memory, where all machines may access the entire database,
and partitioned access, where each disk is assigned to exactly one ma-
chine. Using shared persistent storage, access control is needed to syn-
chronize access to database pages among nodes. When using parti-
tioned access, each node is responsible for managing a dedicated part
of the data set. Queries spanning multiple partitions require support
for distributed transactions. Partitioned storage allocation implies run-
ning a shared-nothing DBMS. Database systems utilizing shared exter-
nal memory are at least sharing disks, hence, the architecture is either
shared disk or even shared everything.
Spatial location: Shared storage allocation implies, database ma-

chines are running closely to each other, hence, in the same room, and
are connected to the same network segment. Shared-nothing architec-
tures, however, may run spatially distributed, in distant locations.
For our research, we are focusing on machines running closely to-

gether, in immediate vicinity. Therefore, we are not going to get into
details of spatially separated databases.

101



6 Shared Disk vs. Shared Nothing

Distributed DBMS

shared partitioned

local local distributed

tight looseclose (close) loose loose
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machine 
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Shared‐
Everything Shared‐Disk Shared‐Nothing

Figure 6.1: Classification of distributed DBMS, according to [Rah94, p.
29]

Machine coupling: Machine coupling describes the way the nodes
in the database cluster are coupled and what resources, besides persis-
tent storage, they share. Tightly coupled machines are even sharing
processors and main memory among each other. Therefore, only a sin-
gle instance of operating system and DBMS is running on the nodes; the
architecture is called shared everything. Traditional shared everything
consists of a fixed number of tightly coupled nodes, running a carefully
tuned DBMS instance to support the specific cluster configuration.
For the purpose of an energy-efficient DBMS, this architecture is not

well-suited, as it does neither offer scale-out support, nor does this ar-
chitecture allow a fast scale-in to minimize energy consumption at low
utilizations.
Loose coupling describes several DBMS instances running on dedi-

cated nodes, without shared memory or processors. Each instance is
running on its own, which increases fault tolerance and also simplifies
cluster expansion. Since each node comes with its own hardware, the
size of the cluster can easily be adjusted by adding and removing nodes.
On the downside, communication among nodes requires expensive mes-
sage passing, which is, compared to shared main memory, slower.
Close coupling tries to mitigate the drawbacks of loose coupling by

introducing some shared memory into a loosely coupled system. This
memory can be used for global states and synchronization information,
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(a) Shared-nothing (b) Shared-disk

Figure 6.2: Shared-disk and shared-nothing architectures compared

thus reducing communication latencies. Yet, with reintroducing shared
hardware, the scaling and fault-tolerance issues of the tight coupling
come back.
Based on the definitions by Rahm, shared disk corresponds to an ar-

chitecture, where each node in a DBMS cluster has access to all database
pages. Since two nodes may alter the same database page, special care
must be taken to ensure cache coherence among all machines.
Contrary, an implementation where disks belong to dedicated nodes,

is called shared nothing. In this architecture, nodes may still access
remote pages, but the hosting node has ultimate control over access
and write-back of the page to disk. Since pages are shipped by explicit
messages, the controlling node may decline or delay page requests. Fur-
ther, a single instance is responsible for integrity control over the owned
pages.
Figure 6.2 exhibits both architectures. As the Figure shows, shared-

disk approaches feature a communication network between the nodes
and the disks, to enable direct access to all DB pages. In shared-nothing
architectures, this communication network is missing, and messages are
exchanged between nodes; hence, the communication layer resides above
(or between) the nodes.
Hence, the distinction between shared disk and shared nothing be-

comes blurry when considering recent changes in DBMS architecture.
Hybrid approaches, where only parts of disks are shared by nodes, are
not covered by these definitions.
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virtual storage‐area network

Figure 6.3: WattDB’s virtual storage-area network

6.2 Shared-* in WattDB

Shared everything is obviously not well suited for an elastic DBMS, since
its tight coupling of resources prevents dynamic scale-out. Therefore,
we did not explore this architecture type at all.

Traditional definitions of shared disk and shared nothing do not ac-
count for recent developments, therefore, we have to clarify the terms
at different layers of the access path.

WattDB is a database cluster of independent nodes, each equipped
with storage devices. Nodes may communicate via Ethernet packets, as
described in 5.2. Therefore, no communication network between nodes
and disks exists, enabling access of all nodes to arbitrary disks. From
that perspective, according to the definitions of Rahm [Rah94], this
represents a classical shared-nothing architecture.

Although the physical hardware configuration implies a shared-
nothing approach, the software implementation of WattDB ultimately
defines possible access paths. Even with no storage-area network, it is
possible to allow all nodes access to all disks by creating appropriate
access mechanisms in software. By implementing a virtual storage
network, running distributedly on the nodes, as depicted in Figure 6.3,
a shared-disk system can be emulated.

104



6.2 Shared-* in WattDB

6.2.1 Virtual storage network
To enable shared disk on a shared-nothing cluster, all nodes must be
able to access every page on every disk in the system. The address of a
physical database page is a composite of three components: First, the
node ID, the page is stored on, next, the corresponding disk ID, and,
last, a page offset on the disk:

PhysicalPageID := NodeID •DiskID • PageOffset

With this addressing scheme, each page in the cluster is uniquely iden-
tifiable.
Each node in WattDB has direct access to its attached disks. Access-

ing pages on remote nodes involves network communication. First, a
request is sent to the (home) node, including the page identifier. Then,
the receiving node loads the page from disk and sends it to the request-
ing machine. Because this approach simulates a shared-disk solution,
the remote node does not cache the page it just read from disk (via its
home node). Caching is performed at the requesting node, as sketched
in Figure 6.4.
Virtualizing shared disk on a shared-nothing cluster does no longer

adhere to the definitions by Rahm [Rah94]. Therefore, we are referring
to our solution as a hybrid storage model, combining shared disk and
shared nothing. By eliminating the previously needed, dedicated storage
network to share disks and integrating this function into the nodes, we
can reduce the overall energy footprint of a shared-disk DBMS. Further,
our approach brings storage closer to the cluster, especially reducing
access latencies to disks attached directly to the node. Yet, reading and
writing remote pages involves network communication.

6.2.2 Storage segmentation
As with traditional shared-disk systems, the problem of cache coherence
among multiple nodes, sharing the same database page, exists in our
hybrid storage architecture. In traditional shared-disk implementations,
access to pages is not constrained, therefore, every node may access
any page. Expensive latching protocols are necessary to prevent chaos
during parallel update operations. Further, to keep a page’s copies in all
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virtual storage‐area network
Cache Cache Cache

Figure 6.4: WattDB’s disk segmentation

caches coherent, a signaling protocol is needed to inform all respective
nodes of changes [Rah94].
The advantage of each node having access to the whole database in

shared-disk architectures are shadowed by these limitations. For our
requirements, unrestricted access is not necessary.
To eliminate the need for latching and cache coherence, we have seg-

mented the virtual storage space into smaller parts, assigned exclusively
to nodes, as depicted in Figure 6.4. The differently colored nodes have
exclusive control over the data pages stored on the accordingly colored
segments on disk. A centralized instance acts as bookkeeper, issuing
dedicated segments to nodes upon request. This instance keeps a list of
all segments in the cluster and tracks assignment of nodes to segments.
Prior to reading pages from disk, a node first has to request access

from the bookkeeper. Access grants do not have to be renewed, hence,
the overhead for this approach is minimal. Only when needing addi-
tional storage space, nodes need to contact the central instance, asking
for additional segments. Likewise, nodes have to inform the bookkeeper
of segments no longer needed, to make them available again.
This restriction prevents nodes from accessing arbitrary pages, yet

still allows to reassign storage for elasticity.1
By virtualizing segment allocation on disks and centralizing access

control, we are also able to dynamically move segments among nodes.

1Technically, we convert our virtual shared-disk system back to shared nothing.
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To migrate a segment from one node (and disk) to another one, the
bookkeeper has to inform the node currently accessing the segment
about the pending change in order to suppress updates. By submit-
ting a copy request to the receiving node, all pages in the segment are
copied to the new location. Afterwards, the node currently accessing the
segment is informed of the change, its mapping is updated and pending
writes can continue.
This technique allows the cluster to dynamically distribute data

among available nodes and to react to workload changes, as we can
scale-out and back scale-in without disrupting page access operations.
The bookkeeper can implement various segment assignment strate-

gies. In order to keep latencies low, assignment of segments local to
the requesting node is favorable. Yet, to increase IOPS, striping seg-
ments among multiple disks on multiple nodes may also seem viable.
Ultimately, storage space restrictions have to be respected.

6.2.3 Conclusion
Stonebraker analyzed various aspects of the the three architectures
(shared everything—which he called shared memory—, shared disk, and
shared nothing) and concluded, that shared nothing is the preferred ap-
proach for large-scale, distributed databases [Sto86].
With our hybrid storage architecture, we are able to implement

an elastic storage system in a cluster of nodes without additional
storage-area network hardware. By abstracting from traditional
shared-disk/shared-nothing architectures, advantages from both ap-
proaches can be combined in our solution. This is one major building
block in implementing a fully elastic, energy-proportional database
cluster.
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7 Elastic Storage
Dynamically adjusting the size of the underlying DB storage to fit work-
load demands is the first step on the way to an energy-proportional
DBMS. Here, we present our first naïve implementation of an elastic
cluster, mainly operating on the storage layer; focus lies on storage elas-
ticity, hence, the number of active nodes providing storage space will be
dynamic, while the number of nodes processing queries is disregarded.

7.1 Elasticity in the Storage Layer
We decoupled storage from processing, by introducing an indirection
between logical database page addresses and their physical storage, as
depicted in Figure 7.1. Hence, the physical storage location of pages
may change transparently to upper DB layers.
By separating storage and query processing, as implied by the 5-

layer model [Här05], data storage is decoupled from data ownership,

Partition

Page Block

Disk Node

Mapping Layer

1

*

1

*
1 1

*      1

Figure 7.1: Decoupled storage by mapping logical pages to storage
blocks
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Figure 7.2: 5-layer database architecture

see Figure 7.2. Therefore, both layers can scale independently without
impacting each other. First, we have focused on energy efficiency in
the storage layer by optimizing page placement w. r. t. storage and I/O
requirements [SH13b].

7.2 Design Overview
Database pages are aggregated into segments of size 32MB (4096 pages),
which are then mapped to storage blocks. The mapping can be arbi-
trary, hence, every node in the cluster may access every block on any
disk of all other nodes.
In a traditional shared-disk DBMS, all nodes may access any database

page at any time, hence, heavy-weight synchronization and locking is
required to prevent race conditions. Further, a synchronization pro-
tocol must ensure that all nodes have the most recent page version
in their buffers. With an increasing number of nodes, this approach
requires very fast interconnects and excessively suffers from lock con-
tention [Rah94].
In our implementation, we refrained from this fully-shared approach

and set up an allocation instance on a single node to control assignment
of blocks to nodes. Though it is still possible for every node to access
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Figure 7.3: Shared-disk design overview

any part of the physical storage, access to blocks is now controlled in
order to exclusively assign (parts of) storage to nodes.
By abstracting from a traditional shared-disk solution, we have elim-

inated the need for locking and synchronization among the nodes, with-
out sacrificing flexibility, as explained in Section 6.1.
The DBMS design is sketched in Figure 7.3: Dedicated machines,

called storage nodes provide DB storage to the cluster. So-called process-
ing nodes perform query processing and fetch required pages remotely
from storage nodes, which act as page servers [Här+95].
Elasticity is achieved by dynamically redistributing storage blocks to

optimize utilization among all storage nodes while minimizing the total
number of nodes running. A management component is monitoring disk
utilization of all nodes and adjusts the assignment of segments to nodes
if I/O thresholds are exceeded.
Listing 1 sketches this process in pseudo-code. First, all active storage

devices in the cluster are examined and the current IOPS are compared
to the threshold of max. allowed IOPS for this device (line 7 of the
listing).1
If the current utilization of a device exceeds the threshold for more

than three consecutive measurements, it is considered overloaded and
the data is distributed to other storage devices. Isolated peaks in uti-
lization are discarded and do not lead to redistribution. Not depicted
in this listing is the selection of the distribution targets (line 14): The
algorithm tries to move blocks to active, non-overloaded storage devices

1The threshold is set to 90% of the peak IOPS for the drive, which was determined
beforehand.
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Listing 1 Power-management pseudo code
1 ForEach(Storage storage in Cluster.Storages) {
2
3 If(!storage.PoweredOn) {
4 continue;
5 }
6
7 If(storage.IOPS > MAX_IOPS_PER_DISK) {
8 // Storage overloaded,
9 // acquire new storage and distribute data

10
11 Storage storageNew = PowerUpAnotherStorage();
12 Storage storageOld = GetStorageWithHighestLoad();
13
14 distributeBlocks(storageOld, storageNew);
15 }
16
17 If(storage.IOPS < MIN_IOPS_PER_DISK) {
18 // Storage underutilized,
19 // consolidate data to other active storages
20
21 consolidateStorage(storage);
22 storage.Suspend();
23 }
24 }
25 // Suspend unused nodes
26 ForEach(Node node in Cluster.Nodes) {
27 If(node.ActiveStorages == 0 &&
28 node.Partitions == 0 &&
29 !node.IsMaster) {
30 node.Suspend();
31 }
32 }

attached to the same node first, to minimize network traffic. In case
these storage devices are already utilized too much, additional disks on
the same node are powered up and used as a target, if possible. Lastly,
when all the storage devices identified above are not sufficient to handle
the load, other nodes are taken into account as well, and data blocks
are shipped over the network to re-distribute the load. In case no other
eligible nodes are found, additional storage nodes have to be powered
up first.
After analyzing overutilized storage disks and distributing their load,

the algorithm now examines underutilized storage devices and tries to
consolidate data blocks to other storage devices (line 17). This step
performs the opposite work as sketched above and aims to reduce the
number of storage disks, while still maintaining sufficiently high IOPS.
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Consolidating storage disks (line 21) follows a similar logic as before:
First, disks on the same node are selected as target devices, if they
are not overloaded already. Second, remote locations are involved and
blocks have to be sent via the network. In both cases, all blocks are
moved to other locations in order to shutdown the originating disk.
After redistributing the disk load, the algorithm takes a final step and
suspends all nodes, which do currently not serve a purpose (line 26–32).

7.3 Experimental Evaluation
To estimate energy savings and performance impact, we have run a se-
ries of benchmarks on our hybrid shared-disk/shared-nothing implemen-
tation of WattDB. Complex query capabilities are not yet implemented,
therefore, OLTP queries cannot be used to benchmark the database. In-
stead, the benchmark consists of a set of threads, executing an OLTP
simulation.

7.3.1 Simulating OLTP queries
Each thread is representing one database client, running a series of
OLTP queries.
Each query consists of a series of page reads, (artificial) processing

steps and writes to simulate an OLTP query trace and to generate
load at the storage layer; the processing nodes are not utilized much.
Hence, this benchmark is heavily I/O-intensive to empirically evaluate
especially the storage layer and its energy-efficiency potential.
The benchmark operates on a 128GB database with a primary-key

index stored as a B*-tree. The database is preallocated on a single
storage node which also contains the index. To circumvent the OS file
system buffers and minimize the management overhead, no file system
is used; instead, WattDB operates on raw disk devices. The database
pages contain multiple records (which currently consist of an ID column
and additional columns, filled with junk data to increase size). The
inner leaves of the index fit into 2GB of main memory, hence, after
warming up, the buffer should contain a large fraction of the index.
The (simulated) OLTP clients randomly select IDs for reading records.
By default, 80% of requests are falling within a 20% range of the data.
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For each request, the DBMS traverses the primary-key index to fetch
the respective leaf page and locates the requested record inside the page.
To emulate data processing, the threads generate CPU load by spin-
locking. Finally, with a 1:4 chance, the page gets marked dirty in the
buffer and, hence, has to be written back to the storage node at some
time.2 Afterwards, the benchmark thread goes to sleep for a speci-
fied time interval, before commencing the next read-process-write cycle.
Such breaks are necessary when running an energy benchmark—as op-
posed to a performance benchmark. The SUT utilization can be tuned
by adjusting the number of concurrently running clients, i. e., threads.

7.3.2 Initial test run
We have deployed the WattDB software with an energy management
component in the cluster, connected to an energy measurement device.
By running the benchmark against a cluster configuration, we expect
the software to react to the changing workloads and power up/down
nodes as needed. To make results comparable, we have run the identical
load profile (as explained by Figure 4.4) three times. For the first cluster
configuration, we distributed the DB pages to 2 storage disks (HDDs) on
1 node and disabled the power management algorithm. Therefore, the
number of nodes was fixed to the bare minimum of 3 (master, processing
node and storage node) and the cluster was fixed to its most power-
saving configuration delivering the lowest performance.
As second cluster configuration, we distributed the DB pages to 10

disks on five nodes, and started the same benchmark, again with dis-
abled power management. This time, all nodes (the master, one pro-
cessing node and five storage nodes) were active and the cluster was able
to work with maximum performance and, as a consequence, maximum
power consumption.
The results of these two cluster configurations were used as baselines

to estimate the performance and power coverage the cluster can achieve.
Finally, we set up an unrestricted cluster configuration, with the power
management component in full control of the cluster and its current
workloads. We expected the cluster to adapt to the current workloads,
as the benchmark runs proceeded.

2The buffer decides which pages and when to write back.
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During each of the runs, we measured the runtime and the energy
consumption of the query phase from the start of the first query until
the last query finished. Initially, the benchmarks were run on a clus-
ter of seven nodes with 10 magnetic disks attached. Five nodes were
acting as storage nodes, each having two disks attached, one was used
as processing node and the remaining one was the coordinating master
node.

7.3.3 Results
While running the benchmark against the three cluster configurations,
power consumption and runtime were reported to file.
Results from the three initial test runs are graphed in Figure 7.4. In

the lower part of each subfigure, the benchmark’s workload intensity is
depicted.

Performance

Figure 7.4(a) plots the DBMS’ performance while running OLTP simu-
lation traces. The X-axis denotes the time line of the benchmark, while
the Y-axis illustrates pages per second. As expected, the big cluster
delivered the best performance and was even able to handle the high-
est utilization. The small cluster’s performance broke down, due to it’s
constrained number of storage disks and the limited maximum IOPS.
Finally, the dynamic cluster showed more or less identical performance
to the big one, with small limitations in a case where dynamic adap-
tation caused some blocks to be moved between storage devices, which
decreased the maximum performance. (It took only a few minutes to
redistribute several Gigabyte of storage via Gigabit-Ethernet. By using
compression, we were able to further reduce network traffic.) Com-
pared to the total runtime of at least 30 minutes, redistribution cost
was acceptable.

Power consumption

Figure 7.4(b) depicts the system’s power consumption during the bench-
mark runs in watts. Both fixed configurations exhibit a mainly static
power consumption, because the number of nodes was fixed. The big
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Figure 7.4: OLTP trace on a dynamic cluster
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cluster delivers no measurable difference for the HDD configuration be-
tween idle and full utilization.3 The dynamic configuration oscillates be-
tween the lowest and highest power consumption, as the cluster adapts
to the workload.

Energy efficiency

If we relate performance to energy consumption (which is power con-
sumption times benchmark duration), we can calculate the energy ef-
ficiency for each of the runs, which is shown in Figure 7.4(c). Energy
efficiency is expressed in pages per joule, i. e., how many pages can
be processed by consuming one joule of energy. Not surprisingly, the
small cluster exhibits the best energy efficiency during low utilizations.
The big cluster is simply overprovisioned to satisfy the workload and
consumes more energy to process the same amount of work, hence, its
energy efficiency is worse.
At full utilization, the situation turns in favor of the big cluster. The

small cluster is not suited to handle the high utilization and needs almost
3 times as long as the big cluster to process the workload (not depicted
here). As a consequence, the energy consumption of the small cluster
is much higher and the energy efficiency accordingly lower.
The dynamic cluster powers storage nodes up and down according

to the current workload. Therefore, under low utilization, its energy
efficiency is identical to the small cluster. With rising load, the dynamic
cluster powers up additional storage devices; hence, its energy efficiency
gets comparable to that of the big cluster. Again, transition costs to
move storage blocks decrease the energy efficiency in the dynamic case.

Energy delay product

Figure 7.4(d) shows the EDP for the three benchmark runs. The small
cluster exhibits the lowest EDP under low utilization, but does not
perform well under heavy load. Starting at 50% utilization, the EDP
of the small cluster outgrows the big cluster’s EDP, because the load
is too high for the small cluster and the execution time nearly triples.
The big cluster shows a stable EDP, regardless of the workload. In most
cases, the cluster is underutilized and, thus, more energy is consumed

3CPU-bound benchmarks might reveal different power characteristics.
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Figure 7.5: Effects of access-pattern variations

and the EDP is higher, compared to the small cluster. Only in peak-
load situations, the additional performance of the big cluster pays off.
The dynamic cluster shows the best overall EDP, with a similar score
to the small cluster when not fully utilized and a slightly higher EDP
in the peak-performance benchmarks.

7.4 Skewed Access Patterns
In the initial runs, we have employed an 80/20 access pattern, hence,
80% of all requests go to a set of 20% of the pages. An adversary
access pattern, with a higher concentration of requests to even fewer
pages might disrupt the cluster’s elasticity. Therefore, we have repeated
the benchmark on a dynamically adjusting cluster, with skewed access
patterns, focusing 80% of requests to 10% (5% respectively) of pages.
Condensed results are plotted as orange data points in Figure 7.5. The
reference point with 100% energy consumption and 100% performance is
the dynamic cluster from the previous experiments. Altering the access
pattern to focus on less pages does not have an noteworthy effect on
energy and performance.
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Energy Performance
Consumption

[ joules ] [ pages/s ]
big static cluster 1,470,930 189
small static cluster 777,095 159
dynamic cluster 925,113 187
skewed access patterns
80/20 925,113 189
80/10 952,866 196
80/5 915,862 191
workload shifts
hot spot not changing 925,113 187
..changing every 20 min 934,364 187
..changing every 10 min 952,866 180
..changing every 5 min 1,230,400 159
..changing every 1 min 1,517,185 155

Table 7.1: Effects of access-pattern variations

7.5 Workload Shifts
The previous experiments randomly selected pages to read—adhering
to the defined 80/20 distribution. The hot set, i. e., the 20% of fre-
quently accessed of pages, did not change over time. In the following
experiments, we altered the hot set over time, to examine the effect
of workload shifts on the cluster. We have varied the speed of change
to investigate the cluster’s ability to adapt to changing workloads. In
Figure 7.5, results are depicted in light-blue.
Contrary to skewed access patterns, workload shifts do influence the

cluster’s elasticity. As the results indicate, the faster the hot set changes,
the more energy is consumed by the cluster to adjust itself to the work-
load and the less performance is achieved. Yet, even a highly fluctuating
workload, where the set of most frequently accessed pages completely
changes every minute, the cluster delivers 84% of performance, com-
pared to non-changing workloads, while consuming 164% of energy.
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Table 7.1 summarized the results from the last benchmarks on skewed
access patterns and workload shifts. The first column lists overall energy
consumption in joules for each benchmark run, while the latter column
plots average performance in pages per second. Since the workload
contained alternating phases of high and low utilization, performance
figures only exhibit moderate values.

7.6 Optimizations
Building on the initial page server, we have implemented several op-
timizations to speed up query processing. Performance of the storage
layer is mainly dependent of two components. First, the I/O bandwidth
and latency of the connected disks. This parameter can be tuned by
modifying models used and the overall number of disks. Second, the
connecting network plays a major role in quickly delivering pages to the
processing subsystem. Again, bandwidth and latency are crucial fac-
tors. While switching from one technology, i. e., Ethernet, to another,
faster one, e. g., InfiniBand, is out of the question, configuration of the
existing network can be improved.

7.6.1 SSDs
By trading HDDs with SSDs, access latency to storage blocks should
drop from about 8 ms on disks to « 1 ms on flash. Yet, overall latencies
have to include the software stack of processing and storage nodes, and
the interconnecting network. Hence, to assess the total benefit, we
have repeated the initial measurements and replaced the HDDs with
SSDs. Also, after evaluating the performance of the SSD-based cluster,
we have reduced the number of storage nodes to 4, to limit overall
performance gains from replacing HDDs to a factor of 10. Figure 7.6
illustrates benchmark results on an SSD-based cluster. The resemblance
to previous benchmarks on an HDD-based cluster are obvious.

Performance

Performance using SSDs was much better, compared to magnetic disks.
Still, the relative results are comparable, except for the dynamic con-
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Figure 7.6: OLTP trace on a dynamic SSD-based cluster
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figuration, which did not deliver the same peak performance as the pre-
configured big cluster. When stressing the SSD cluster with heavy load,
the performance of the cluster did not increase as expected. This might
indicate optimization potential in the power management component or
a bottleneck which was not monitored, e. g., CPU or network.

Power consumption

Using HDDs, the power management decided for our benchmark to use
all available storage devices to share the load. For SSD configurations,
however, not all storage devices were used, possibly because the storage
was not overutilized and some other component of the cluster was the
bottleneck. Our power management decided to distribute the load to
two storage disks on two separate nodes, instead of two disks on the
same node. This is another indicator that the network was the limiting
factor in the benchmarks, and not the IOPS of the SSDs.

EDP

Running the benchmark on SSDs, even the big cluster seems to have
trouble handling the heavy workloads, hence, the rising EDP. The dy-
namic cluster is also unable to adjust the configuration to score a low
EDP. As previously mentioned, this indicates a bottleneck beyond the
reach of the current monitoring.
Overall, replacing HDDs with SSDs seems like a promising option to

increase performance while keeping power consumption steady. Yet, the
results indicate that demanding workloads seem to run into a bottleneck,
when switching to SSDs.

7.6.2 Page compression
The initial implementation, where processing nodes fetch pages from
remote nodes, generates high network traffic. To reduce the band-
width requirements, page compression seems a viable option. Yet,
(de)compression requires additional CPU resources to deflate and in-
flate data and increases main memory needs. In WattDB, we are using
the LZO library4, which delivers moderate compression rates and fast

4http://www.oberhumer.com/opensource/lzo/
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compression: none
storage processing pages / sec CPU utilization
nodes nodes on processing node
1 1 8,161 5%
2 1 14,855 7%
4 1 26,939 9%
8 1 27,107 10%

compression: lzo
storage processing pages / sec CPU utilization
nodes nodes on processing node
1 1 7,902 9%
2 1 14,383 15%
4 1 28,974 26%
8 1 39,481 33%

Table 7.2: Effects of compression on performance

decompression. Compared to other compression libraries, e. g., zlib5,
LZO delivers sightly worse compression ratios, but does require less
CPU and memory [Gil02]. Further, LZO offers fastest decompression
times. Since database pages are often sparsely filled, a not-so-complex
compression algorithm should be sufficient to significantly reduce net-
work overhead.
Table 7.2 lists results from micro-benchmarks, sending pages back and

forth between storage and processing nodes. In the first runs, no page
compression algorithm was used to create the baseline case. To stress
the cluster, we have connected up to 8 storage nodes, each equipped
with two SSDs and a single processing node, requesting and receiving
pages from all storage nodes. Since randomly reading from SSDs might
already impose a performance bottleneck, as revealed in [HS11b]), the
processing node is requesting pages sequentially from disks. Yet, the
results indicate, a single storage node can only provide ∼8,000 pages per
second. By adding more storage nodes, throughput can be increased up
to 27,000 pages/second, transmitting ∼850 MBit/s over the network.
This seems to be the throughput limit for a single processing node.

5http://www.zlib.net/
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In the lower half of Table 7.2, the same benchmark is run with LZO
compression enabled. Hence, storage nodes compress pages prior to
sending, and the processing node is decompressing the page after re-
ceiving. Now, with compression enabled, CPU utilization on the pro-
cessing node rises significantly higher, due to the additional overhead of
decompressing each page. Yet, more pages can be sent per second, up
to 39,000 in peak, improving total bandwidth by 44%. In theory, 1,250
MBit/s are sent to the processing node, exceeding raw Gigabit-Ethernet
speed by 25%.
Yet, to gain this much throughput, the storage subsystem needs to

supply sufficient IOPS from disks. With 8 SSDs, each reading sequen-
tially, throughput requirements are met in this benchmark, but are un-
likely to appear in realistic workloads. Further, I/O concentration on a
single processing node is implausible for a well-configured cluster.
Although these micro-benchmarks exhibit impressive throughput

gains by using compression, the additional CPU overhead and the
unrealistic requirements to pay off kept us from including this technique
in WattDB.

7.7 Summary
All experiments presented in this chapter focus on elasticity in the stor-
age layer, one important building block of a fully elastic DBMS.
In summary, the measurements clearly illustrate that no fixed cluster

configuration, neither a small one, nor a big one, is able to process the
given workload in the most energy-efficient way. Hence, the results of
the dynamic cluster can be considered as a proof of existence that, in
specific cases, energy proportionality can be approximated for DBMS
processing and that the increased effort pays off in terms of energy
saving—without sacrificing too much performance. Replacing tradi-
tional hard disks with SSDs does provide better energy efficiency and
allows to reduce the number of storage nodes. Yet, fluctuating work-
loads require elastic cluster adjustment to balance energy consumption
and performance.
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8 Elastic Query Processing
After evaluating possible energy savings in the storage layer, we have
focused on making query processing more energy efficient. Since each
single node in our cluster is lightweight, it does not offer many resources
for executing sophisticated queries. Distributing the query workload
to multiple nodes, potentially scaling the number of machines to the
current demand, seems a promising approach.

8.1 Elasticity in the Query Processing Layer
As concluded in the previous sections, elasticity in the storage layer can
be achieved by distributing database pages transparently to the upper
layers to balance power consumption and performance. Yet, processing
in the previous experiments was simulated by OLTP traces, running on
a single node, acting as the processing layer of the entire DBMS.
By applying similar design principles as before to the query execution

layer, the number of machines involved in query processing may also
adapt to the workload, and we may be able to implement elastic query
processing in our DBMS.
Using this approach, we do not shift storage pages, but dynamically

place queries on an elastic cluster of nodes.

8.1.1 Design overview
In Figure 8.1 our initial design of an elastic query processing layer on a
shared-disk storage architecture is sketched. The storage layer, at the
bottom, consists of a fixed number of nodes, acting as page servers to
the upper query processing layer.
Processing nodes do not hold database pages on local disks, instead,

they need to fetch all data from storage nodes. Hence, all processing
nodes share all data of the storage nodes.
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Figure 8.1: Elastic query processing on shared disk

8.1.2 Distributing queries

In our initial design, database objects are partitioned and distributed
among a fixed number of nodes. To be able to determine the correct
pages to access, the fixed partitioning scheme is known to all processing
nodes. Further, to eliminate cache-coherence issues, we are running
read-only OLAP workloads.
In this first implementation, a single node (master node) accepts

queries from DB clients and selects a node to forward the query to.
This node processes the query entirely, by fetching appropriate pages,
reading records, and running necessary operations (sorting, grouping,
aggregation).
The master node monitors utilization of all processing nodes and dis-

tributes incoming queries to the node with the lowest load. In case all
processing nodes are running at full utilization, additional machines are
powered up to assist in query processing. Likewise, underutilized nodes
are excluded from receiving new queries, and can be suspended, after
the last query finishes.
Processing nodes do not require any setup times, immediately after

starting up, they are ready to evaluate queries. Likewise, shutting down
superfluous nodes is fast, because no data needs to be transferred to
other nodes.
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Figure 8.2: Experimental setup

Experiments

For these experiments, we are using an adapted TPC-H dataset1 for
the cluster. Some data types of the TPC-H specification are yet un-
supported by WattDB and therefore replaced by equivalent types. For
example, the DATE type was replaced by an INTEGER, storing the
date as YYYYMMDD, which is functionally identical. Key constraints
were not enforced because of the same reason. We have run a set of
queries to test the abilities of WattDB to react to shifting workloads
by distributing queries among processing nodes. In Figure 8.2, the ex-
perimental setup is depicted. Since query evaluation abilities of our
implementation were limited at the time of these experiments, we have
selected a subset of TPC-H queries—Q1 and Q4—to be run on the
cluster.
While Q1 is an I/O-intensive query, sorting and aggregating a set of

records, Q4 contains a JOIN operator and is therefore more computa-
tionally intense. Details about both queries, including SQL and query
plans, are listed in Appendix A.2.
All queries are sent to the master node by a single computer, coordi-

nating the benchmark and correlating query response times with power
and energy figures from the measurement device.

1http://www.tpc.org/tpch/
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storage processing response time power EDP
nodes nodes [ sec ] [ watts ] [ Js ]

1 1 110.13 72.6 880,538.00
1 3 71.12 119.2 602,920.00
1 5 60.44 165.9 606,032.00
1 7 55.41 210.6 646,598.00
1 9 55.13 254.6 773,810.00
3 1 80.45 130.1 842,034.00
3 3 52.55 176.7 487,957.00
3 5 46.33 223.1 478,877.00
3 7 45 269.3 545,333.00
5 1 69.78 188.5 917,853.00
5 3 40.39 235.7 384,510.00
5 5 38.21 278.8 407,049.00
7 1 64.09 245.2 1,007,166.00
7 3 39.23 293 450,925.00
9 1 64.47 302.8 1,258,552.00

Table 8.1: Experimental results from distributing queries

On the storage nodes—equipped with 4 HDDs and 1 SSD—, we have
generated the TPC-H dataset with a scale factor of 100, occupying
approximately 200 GB (with additional indexes and storage overhead).
The benchmark client is submitting 10 streams of mixed queries (Q1

and Q4) in parallel to the database. Once a query result is returned,
the next query is being submitted without delay. Hence, the cluster will
have to process a highly concurrent workload.

Results

We have run the same workload on various, statically defined cluster
sizes to estimate power/performance tradeoffs. Table 8.1 summarizes
the average runtime and power consumption for all cluster sizes. As the
results show, performance and power consumption increase with the
number of nodes in the system. Yet, the right balance between storage
and processing nodes is necessary to get optimal results. Running a large
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Figure 8.3: Energy and performance of distributing queries.
Both graphs show the same results; in the upper chart, data
points with the same number of processing nodes are con-
nected, while in the lower chart, results with the same num-
ber of storage nodes are lined up.
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number of processing nodes on top of few storage nodes does not boost
performance and, hence, is a waste of energy. Likewise, overprovisioning
the storage layer to serve a thin processing layer is equally futile.
In the smallest configuration, consisting of a single storage node and

one processing node (also acting as the master node), the cluster con-
sumes approximately 73 Watts, yet, the query runtime is very high (110
seconds). The best performing configuration is made of 5 storage nodes
and 5 processing nodes, delivering queries in 38 seconds, while consum-
ing 279 watts. Replacing processing nodes with storage nodes results in
higher power consumption without significant performance gains. Ap-
parently, the 5-node storage layer is sufficient to supply pages to the
processing layer.
To visualize the effects of scaling on both layers, Figures 8.3(a) and

8.3(b) plot performance and power consumption for all examined cluster
sizes.
From these results, we conclude that it is possible to elastically scale

the processing layer similar to the storage layer. Our experiments in-
dicate, that read-only OLAP workloads seem to be good candidates to
be processed on a shared-disk scale-out cluster of nodes.
Yet, query runtimes in our experiments were long and queries as the

unit of distribution are rather coarse-grained. In preliminary tests, the
master node had trouble determining underutilized nodes and placing
queries accordingly.
Clearly, page servers come to their limits when dealing with complex

queries. As we pointed out, it is inefficient to ship pages over the network
and process them in remote nodes. Yet, the clear separation between
processing and storage layer allows for easy reconfiguration and quick
adaption to workloads without impacting data placement.
In [SH13a], we have further improved our DBMS to support query

evaluation on storage nodes and enhanced the query evaluation power
of WattDB to distribute query operators among nodes, instead of whole
queries. While the storage nodes still primarily manage storage data,
we have given them the ability to process simple query operators, i. e.,
projection and selection, on their underlying data, to preselect records
for the processing layer. Further, we have enabled simple query pro-
cessing capabilities on the storage nodes to mitigate the high latency
of remote page shipping. Projection and selection operators are now
running on the storage nodes, filtering the amount of records to send to
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processing nodes. This little change turns the whole architecture from
page servers to record servers.
Now instead of requesting pages from storage servers, processing

nodes request sets of records, by pushing down database access op-
erators to storage nodes. Hence, the bottom-most operators from the
previous experiments, responsible for fetching records and for selection
and projection processing, are now running in the storage nodes them-
selves.

8.1.3 Experiments

To verify performance, energy consumption and the overall elasticity of
our approach, we have run a number of benchmarks on our record-server
cluster.

Benchmarks on static clusters

First, we have repeated the previous tests, running TPC-H queries on
statically configured clusters of various sizes. To test the influence of
storage and processing on query performance and energy consumption,
we have run the same workloads over and over again while varying the
number of storage and processing nodes.
We generated the dataset on the storage nodes with a scale factor of 1

and provided indexes for the most important attributes. Data was dis-
tributed evenly among all storage nodes, hence, in case of a single stor-
age node, all data was stored on hard disks attached to that node; and
in case of 7 storage nodes, the larger tables (LINEITEM and ORDERS)
were divided into equal-sized partitions and uniformly assigned among
all storage nodes. The smaller tables (PART, SUPPLIER, PARTSUPP,
CUSTOMER, NATION, REGION) are not partitioned and assigned to
a single storage node. For our workload, we have selected TPC-H queries
Q1 and Q4 as already described earlier.
After having generated the data, we evaluated a series of queries

concurrently issued by a number of DB clients. Each test was running
for 600 seconds.
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(a) (b)

Figure 8.4: (a) Varying query load (from 10% to 100%) using TPC-H
query Q1 on 3 storage nodes and 0 to 7 processing nodes. (b)
Same query load on 5 storage nodes with up to 5 processing
nodes.

Static cluster

First, we present measurements run on a fixed number of nodes to
demonstrate that energy consumption and performance can be tuned to
our needs. For this reason, we select the most energy-efficient configura-
tion for each workload beforehand. To carve out the differences between
the two queries, Q1 and Q4, we have run them separately on the cluster.
Each workload in our experiments has a differing number of parallel DB
clients running on the benchmark/monitoring PC. The number of active
DB clients, continuously sending queries to the database, is controlled
by the benchmark specification. Thus, the utilization of the database
changes with the amount of DB clients.
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(a) (b)

Figure 8.5: (a) Varying query load of TPC-H query Q4 using 3 storage
nodes and up to 7 processing nodes. (b) Same query load
on 5 storage nodes with 0 to 5 processing nodes.

Figures 8.4 (a) and (b) plot the energy consumption and performance
runningQ1 on a cluster of nodes. Depending primarily on the number of
nodes, the power consumption of a given cluster is more or less constant
and, therefore, not shown in the graphs. The X-axis depicts the load
of the cluster—starting with a very low load on the left and increasing
it to the right. To characterize how the cluster is utilized, we define
its load level x% by the number x of the DB clients. Hence, a load
of 100% represents 100 DB clients. To enable better comparability, we
normalized all results to quantity per query. The solid bars in the graphs
illustrate the energy consumption per query (Y-axis on the left), whereas
the framed (unfilled) bars report the runtimes per query (Y-axis on the
right). The (up to) three bars (belonging to experiments characterizing
the same utilization) represent clusters, where the number of nodes
increase going from left to right.
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We have evaluated identical workloads on different cluster sizes to
demonstrate the dependency between energy consumption and perfor-
mance. The smallest cluster, running the benchmark only on 3 storage
nodes, has the lowest power consumption (∼114 W), but also the low-
est performance (compare the left-most bars in Figure 8.4(a)). For low
utilizations (see X-axis), the energy consumption per query is there-
fore minimal, although the runtime per query is higher, compared to
larger cluster configurations. With an increasing number of DB clients,
the small cluster comes to its limits and is unable to handle the work-
load, i. e., the available main memory is exhausted. Therefore, more
powerful—yet more power-consuming—configurations take over. The
next, larger configuration includes two more processing nodes (one of
them is the already present master node). This configuration has a
higher energy consumption under low utilization, but is able to pro-
cess bigger workloads. Finally, we have combined 3 storage nodes with
7 processing nodes, creating an even more power-consuming configu-
ration (∼246 W). Of course, its high number of active nodes leads to
a waste of energy under low utilization, as the query processing time
stays almost the same. The (3 +7 nodes) configuration is the only one
powerful enough to handle all the workloads. Still, the query runtimes
increased under high utilization, possibly due to a bottleneck in the I/O
subsystem.
We have repeated the same benchmark on different cluster configura-

tions having 5 storage nodes, depicted in Figure 8.4(b). Although the
idle power consumption is higher and low-utilization workloads result in
worse energy efficiency, the 5-storage-node cluster exhibits better energy
efficiency under high loads. Increasing the number of processing nodes
results in the same behavior as previously described, although the query
runtimes at 50% load are further decreasing. On one hand, adding two
more storage nodes instead of processing nodes and therefore increasing
the I/O bandwidth pays off at high load. On the other hand, as the
two additional nodes increase the lowest possible power consumption,
energy efficiency at low utilization is worse. Therefore, we can already
conclude that performance does not necessarily correlate with energy
efficiency.
Next, we have executed the same benchmark for query Q4. The six

cluster configurations were identical to the previous experiments. Fig-
ures 8.5 (a) and (b) illustrate the results for query Q4, where a utiliza-
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tion of 100% represents 200 DB clients. The left figure depicts measure-
ments on the cluster using 3 storage nodes ((3 + x) cluster), whereas
the right figure shows those for the cluster with 5 storage nodes. All
configurations are able to process the workloads, but with rising load,
the query runtime gets worse. With a higher number of processing
nodes, query performance is improved, whereas, however, energy con-
sumption is increased. This result indicates that I/O bandwidth in the
Q4 experiments is sufficient. Now, the number of processing nodes is a
performance-critical factor, as the cluster with (3 + 7) nodes exhibits
a better performance than the 5-storage-node cluster, having only 5
processing nodes.
To further explore the influence of the I/O bandwidth in the cluster,

we have measured the performance/energy outcome for the (1 + x)-
nodes and (7 + x)-nodes cluster similar to the experiments in Figures
8.4 and 8.5. All results, including experiments on (1 + x)- and (7 +
x)-node clusters can be found in Appendix A.3. In the (1 + x)-nodes
cluster, bandwidth to disks is too low, thus, I/O latency for the individ-
ual tasks and, in turn, the entire processing times are strongly increased.
As a consequence, query response times, throughput, and energy effi-
ciency are impaired. Hence, we may not reach given performance goals,
while we unnecessarily waste energy due to prolonged query runtimes.
In the (7 + x)-nodes cluster, I/O bandwidth is not in short supply.
Obviously, its static fraction of power consumption is higher, because
storage nodes can’t be turned off. As a result, the energy efficiency of
this configuration at low utilization is worse, compared to smaller clus-
ters. Although the 7 storage nodes provide enough disk bandwidth for
all benchmarks, i. e., queries are not slowed down by I/O latencies, the
overall energy efficiency suffers from the steadily high power consump-
tion. Additionally, high workloads of Q4 are afflicted with the limited
availability of processing nodes.
These experiments clarify the importance of an adequate I/O sub-

system. Because the two latter configurations (1 and 7 storage nodes)
do not provide more insights, we have focused on the two middle-sized
configurations presented here. For each query workload, an optimal
configuration w.r.t. energy efficiency exists: The lower utilizations are
handled best by the smallest cluster, as its performance is sufficient and
it consumes the least power. With rising load, the next bigger clus-
ter shows better energy efficiency. Finally, at full utilization, the most
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powerful cluster offers the best efficiency, although it needs the most
power.
These experiments on a statically configured cluster already reveal the

opportunity of trading performance for energy savings. Yet, manually
configuring the database to fit the expected workload is not optimal.
For highly varying workloads, it is not even possible to select a single,
fixed configuration with balanced performance and power consumption.
Hence, we have exposed the opportunity to trade performance for

energy savings by manually selecting an adequate number of nodes to
process the workloads. We have also shown that the best perform-
ing configuration is not always the most energy-efficient one. Instead,
performance and energy efficiency are competing goals to be balanced.
Static configurations require prior knowledge of the upcoming work-
loads and exhibit drawbacks under varying workloads, as a predefined
configuration cannot exhibit ideal behavior for all load situations. By
scaling the number of active nodes to the current need, we are able to
dynamically adjust power consumption and performance. Therefore, we
can select the best configuration, either in terms of power consumption,
energy efficiency, or performance.

Dynamic cluster

After having evaluated the energy/performance behavior of static clus-
ters, we wanted the cluster to dynamically adjust to a given workload,
without needing predefined configurations. The cluster should tune the
number of active processing nodes to fit the current load, and power
up/down such nodes when the workload changes. To reach this goal,
we use our power management component (EnergyController), running
on the master node. This component is monitoring the current state of
the cluster and is able to startup and shutdown (suspend) nodes. We al-
ready introduced and explained power management for storage nodes in
[SH13b], where we experienced prolonged provisioning times due to the
physical re-assignment of data segments and the resulting copy times.
In this work, power management involves processing nodes, which do
not have any additional startup cost and can come online in a matter
of seconds. Similarly, suspending an underutilized processing node can
occur immediately after finishing the last running query on it.
By running benchmarks on static configurations (see previous sec-
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Figure 8.6: Experiments on three cluster configurations

tion), we have determined the maximum number of parallel queries per
node and other limiting factors like CPU and memory bottlenecks. We
are feeding this data to the EnergyController to improve the quality of
its decisions, whether utilization in the cluster is evenly distributed.
After setting up the cluster, we are running a series of benchmarks

with an increasing number of parallel queries of both, Q1 and Q4. In this
experiment, we have run queries of both types in parallel, to generate a
more complex workload with I/O- and CPU-intensive parts. Figure 8.6
plots the results in sequence. Each data point represents a number of
DB clients running in parallel and sending either Q1 or Q4 queries to
the cluster. The X-axis depicts the number of concurrent queries of each
kind. The upper part of Figure 8.6 consists of three graphs, plotting
performance as query throughput, power consumption of the cluster,
and energy efficiency expressed in number of queries per 10 watts. To
compare the measurements using a dynamically adjusting cluster, we
have re-run the same benchmark on a fixed number of nodes, and also
included the results in this graph. The short-dashed (blue) line repre-

137



8 Elastic Query Processing

sents the dynamic cluster, the long-dashed (red) line the fixed cluster
with 5 processing nodes, and the dotted (black) line the (5 + 1)-nodes
cluster.
The fixed cluster configurations mark the bounding box in which the

dynamic cluster can adjust. While the small cluster shows the lowest
power consumption, its query capabilities are limited. Therefore, it is
unable to exceed a certain performance, even at high system utiliza-
tion. The big cluster has the highest power consumption of all three
configurations and, naturally, the highest performance. But under low
system load, this performance potential lays waste and energy efficiency
is impaired.
The dynamic cluster is able to adjust between both extremes and

quickly adapts to the current workload. Therefore, its power consump-
tion and performance covers the entire range between the two static
configurations. Note, however, it more or less matches the performance
of the big cluster, while it saves a substantial amount of energy. Gain
in energy efficiency is particularly high for moderate cluster utilization,
where maximum performance can be achieved with much less power
consumption (see middle part of the benchmark in Figure 8.6). This
last experiment proves that our cluster is capable of dynamically ad-
justing to a give workload. Yet, we have considered read-only OLAP
queries here.

8.2 OLTP Workloads
In the previous experiments, we have run read-only workloads on a
dynamically adjusting cluster. This restriction helped us understand
the behavior of our system and allowed us to establish performance and
energy-efficiency baselines. Yet, a typical DBMS also has to deal with
creation, modification, and deletion of records. Further, transactions
performing these operations still need to be ACID-compliant [HR83].
Introducing updates to a read-only system is a complex exercise, es-

pecially in a distributed environment. Not only do transactions need
to be synchronized on each machine to prevent deadlocks, dirty reads,
lost updates, and many more; global synchronization among all nodes
is also necessary to detect wait-for cycles spanning multiple nodes and
other anomalies [Rah94].
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Figure 8.7: Lock hierarchy in WattDB

8.2.1 Implementation

In the previously introduced record-server version of WattDB, storage
nodes are keeping the most recent version of records on disk. Naturally,
storage nodes should thus be responsible for updating the data and
making the changes persistent.

Our first implementation relies on a pessimistic, hierarchical lock pro-
tocol [Gra+76] to synchronize record accesses among transactions: Ac-
cess granularities are (from small to big): Single records, B-tree ranges,
partitions, tables, and (for metadata updates) the whole database as
depicted in Figure 8.7. While smaller locks (record locks, B-tree range
locks, and partition locks) are maintained on the respective storage
nodes holding the data individually, the master node is responsible for
synchronizing access to coarse-grained locks (table and database locks).

To synchronize individual wait-for graphs of each node, all machines
exchange lock information periodically with the master node, where a
global wait-for graph is maintained. Deadlocks are resolved by aborting
and restarting the younger transaction, transparent to the database
client.
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8.2.2 Experiments
For our experiments with OLTP workloads, we have generated the TPC-
C dataset with a scale factor of 100, resulting in approximately 10 GB of
records stored on disk. With additional indexes and storage overhead,
the dataset occupies 18 GB of data. Data is distributed among storage
nodes using horizontal partitioning by Warehouse, as suggested by the
TPC-C benchmark specification.
Because query evaluation capabilites of WattDB is still limited, we do

not comply with the exact TPC-C benchmark specifications. To test the
scalability and elasticity of our database, it was unnecessary to adhere to
all requirements. For example, because our research prototype does not
support multi-statement transactions with user interaction, we modified
all queries to exclude (emulated) user interaction and to execute in “a
single run” on the database. Further, our benchmark deviates from
other specifications, e. g., wait time and response time constraints, 60-
day space requirements, and transactions mix definitions.
We have set up a workload of multiple DB clients, all sending TPC-

C queries to the master node, where requests are then routed to the
processing/storage nodes. To test the scaleability of our cluster, we have
set up numerous static configurations with varying numbers of storage
and processing nodes. Each setup was benchmarked for performance in
terms of query throughput and power consumption.

8.2.3 Results
Figure 8.8 plots performance and power consumption of all configura-
tions from our experiments with OLAP workloads. In the upper subfig-
ure, results are lined up by the same number of processing nodes, while,
in the lower subfigure, results using the same number of storage nodes
are connected.
While overall performance and power consumption increases with the

number of storage nodes, surprisingly, the cluster does not benefit from
adding processing nodes. This outcome is comprehensible, when con-
sidering the nature of TPC-C’s OLTP queries: The majority of trans-
actions is short-running and only touches a single Warehouse record.
Typical operations running on processing nodes, like aggregations or
grouping operators involving multi partitions, i. e., storage nodes, are
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Figure 8.8: Energy and Performance of distributing TPC-C
query operators. Both graphs show the same results; in
the upper chart, data points with the same number of pro-
cessing nodes are connected, while in the lower chart, results
with the same number of storage nodes are lined up.
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storage processing throughput resp. time power EDP
nodes nodes [ q / sec ] [ sec ] [ watts ] [ Js ]

1 1 4.27 2.34 71.59 39
1 3 4.72 2.33 118.58 59
1 5 4.76 2.31 166.2 81
1 7 4.76 2.31 210.52 102
1 9 4.74 2.32 255.53 125
3 1 11.39 2.37 128.99 27
3 3 11.76 2.38 177.52 36
3 5 11.86 2.36 225.07 45
3 7 12.29 2.36 269.44 52
5 1 16.06 2.74 190.72 33
5 3 16.36 2.75 236.73 40
5 5 16.06 2.74 279.02 48
7 1 21.45 2.89 245.93 33
7 3 21.38 2.9 295.05 40
9 1 26.4 3.03 303.73 35

Table 8.2: Experimental results from distributing OLTP operators

non-existent in TPC-C. Therefore, with this workload, there is no ben-
efit in increasing the number of processing nodes.
Table 8.2 lists throughput, response times and power consumption in

detail for each cluster configuration. As these results show, scaling-out
on storage nodes (with query evaluation capabilities) slightly increases
response times, due to the distribution overhead, but supports higher
throughput, i. e., more parallel DB clients. Hence, a small cluster is best
suited for lightweight utilization, whereas more intense, highly parallel
workloads require larger clusters. The last column of Table 8.2 lists the
Energy Delay Product for each configuration. To make a fair compari-
son, total energy consumption of the cluster is divided by the number
of parallel queries. We observed comparable EDP results for all clusters
with one processing node, hence, with the number of storage nodes,
throughput increased linearly with energy consumption. Therefore, the
cluster can be considered energy proportional.

142



8.3 Summary

8.3 Summary
The experiments conducted in this Chapter emphasize the importance
of an adequate I/O-subsystem. As we have shown in Chapter 7, adapt-
ing the storage to changing workloads—although possible and energy-
saving—is a cumbersome and slow task. Because of the time span
needed to copy and move data, adjustments cannot be made every few
seconds; hence, pre-selecting a robust storage configuration for the ex-
pected workload is essential. Changing the number of processing nodes
as done in these experiments is a far more lightweight operation, as it
does not require to restart queries or change data placement. WattDB
is therefore able to react to workload variations within a few seconds.
By distributing queries among a dynamically adjusting number of

nodes, energy consumption and performance can be tuned at a coarse-
grained level. More sophisticated query operator placement strategies
result in better node utilization and, thus, bigger energy savings. Also,
with these experiments, we have shown that record servers are clearly
superior to page-server-based clusters.
Yet, a cluster with separated storage and processing layers is inflexible

and not very well fit for OLTP workloads. While OLAP queries can be
spread over additional processing nodes, OLTP does not profit from a
flexible processing layer, as query operators require close access to the
data.
Combining both approaches (elastic storage and processing) to form

a fully dynamic cluster is the logical next step to take.
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9 Elastic DBMS
Our research indicates that elasticity is the key to an energy-
proportional DBMS. Yet, previous experiments were focused on either
the storage or processing layer and, thus, overall flexibility was limited.
To study the behaviour of a fully elastic DBMS, able to scale the num-

ber of storage nodes as well as the number of processing nodes, we have
combined the concepts from both system versions in [SH14a]. In this
work, we substantially extended the processing supported by WattDB
to complex OLAP / OLTP workloads consisting of read-write transac-
tions. For this purpose, we redefined and combined both approaches to
get one step closer to a fully-featured DBMS.
Because the combination of (pre-)processing and storage on a single

node deemed fruitful in our previous work, we treat all nodes identical
now; hence, all nodes will act as storage and processing nodes simulta-
neously.

9.1 Architecture
In our previous solution (see Chapter 7), we migrated physical storage
blocks among nodes to balance the cluster, and processing nodes had
to request pages from storage nodes in order to process them. Hence,
storage and processing were strictly separated. Later, we combined
processing and storage (in Chapter 8), and dynamically adjusted the
number of purely processing-centric nodes for elasticity. By introducing
a record server, we have mitigated the latency issues of a page server.
Yet, in both approaches, data was exclusively assigned to nodes and

transfer of ownership over data among nodes was not tackled.
To fully support elasticity, both the physical storage location and the

logical ownership over data need to be dynamically assignable. Hence,
instead of only moving storage blocks, logical data paths need to be
flexibly adjusted.
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Therefore, we have implemented a dynamic, logical partitioning
scheme, that allows for flexible data migration. Additionally, the
cluster is self-tuning to scale-out and -in according to the workload.
As in the previous implementation, the master node accepts client

connections, distributes incoming queries, and administrates metadata
for all cluster nodes. This node is also responsible for controlling the
power consumption of the cluster by turning nodes on and off. However,
the master does not differ from the rest of the nodes; it is also able to
process queries and manage its own storage disks.

9.1.1 Storage structures and indexes
In this implementation, data is stored in tables, which are subdivided
into partitions. Each partition is organized as a heap and consists of a
set of segments, where a segment specifies a range of pages on a hard
drive. Physical clustering of pages is guaranteed inside each segment.
To preserve locality of data, segments are always assigned to disks on
the same node managing the partition.
Indexes are implemented as B*-trees, by default, a primary-key index

is always present. Additional indexes can be defined to speed up query
processing.

9.1.2 Dynamic partitioning scheme
From a logical point of view, database tables in WattDB are horizon-
tally sliced into partitions by primary-key ranges. Each partition is
assigned to a single node, possibly using several local hard disks. This
node is responsible for the partition, i. e., for reading pages, performing
projections and selections, and for propagating modified pages while
maintaining isolation and consistency. Hence, we are employing logical
partitioning, as described in 2.2.4.
To support dynamic reorganization, the partitioning scheme is not

static. Primary-key ranges for partitions can be changed and data can
migrate among partitions on different nodes to reflect the new scheme.
Partitions can also be split up into smaller units, thereby distributing
the data access cost among nodes, and can be consolidated to reduce
its storage and energy needs.
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Figure 9.1: Three steps of a split in the partition tree

Partitioning information is kept on the master node in an ordered,
unbalanced tree to quickly identify partitions needed for specific queries.
Pointers reference either inner nodes with further fragmentation of the
primary-key range or point to a partition where the data is stored. Note,
while moving or restructuring of a partition is in progress, its old and
new state must be reachable. Therefore, each pointer field in the tree
can hold two pointers. While a partition is reorganized (split or merged),
the pointers may point to two different partitions: In case of a split, the
first pointer refers to the new partition to which a writing transaction
copies the corresponding records, whereas the second pointer references
the old partition where non-moved records still remain (and vice versa
in case a merge is in progress). An appropriate concurrency control
scheme should enable reads and updates of the new and old partition
while such a reorganization is in progress.
Figure 9.1 plots three stages of an exemplary partition tree while a

split is processed. The first stage shows (a fraction of) the initial key
distribution. In the second stage, the key range between 0 and 100 is
split into two partitions, where a new partition has to be created. A
transaction scans the old partition and moves records with keys between
51 and 100 to the new partition. Records with primary keys below 51
stay in the old partition.
While repartitioning is in progress, queries requesting records in the

range from 51 to 100 need to scan both, the old and new partition, to
ensure, all required records are read. Thus, reading transactions will
access both, the new and old partition to look for records. The write
pointer already references the new partition, redirecting all updates with
primary key between 51 and 100 to the new location. In the last stage,
the move operation is assumed to have succeeded, and read and write
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pointer both reference the new partition. Moving an entire partition
can be considered as a special case of such a split.
By keeping records logically clustered, the query optimizer on the

master node can quickly determine eligible partitions and distribute
query plan operators to run in parallel. At query execution time, no
additional look-ups have to go through the master node.

9.1.3 Concurrency control
As every other DBMS,WattDB needs to implement mechanisms for con-
currency control to ensure ACID properties [HR83]. Therefore, access
to records needs to be coordinated to isolate read/write transactions.
When changing the partitioning schema and moving records among

partitions, concurrency control must also coordinate access to the
records in transit. Classical pessimistic locking protocols block trans-
actions from accessing these records until the moving transaction
commits. This leads to high transaction latency, since even readers
need to wait for the move to succeed. Furthermore, writers must
postpone their updates to wait for the move to terminate.
Multiversion Concurrency Control (MVCC) allows multiple versions

of database objects to exist. Each modification of data creates a new ver-
sion of it. Hence, readers can still access old versions, even if new trans-
actions changed the data. Each data element keeps a version counter
of its creation and deletion date to enable transactions to decide which
records to read by comparing the version information with the trans-
action’s own version counter. While concurrent writers still need to
synchronize access to records, readers will always have the correct ver-
sion and will not get blocked by writers [BG83]. The obsolete versions
of the records need to be removed from the database from time to time
by a process we call garbage collection (GC).1
This property is especially useful for dynamic partitioning techniques,

where records are frequently moved, i. e., deleted and inserted in an-
other partition. In Figure 9.2, we have compared the performance of
pessimistic locking (RX) with MVCC, while moving 50% of the records
to another partition. To get an impression of MVCC’s potential for our
application, we have measured the performance and storage require-

1PostgreSQL calls it vacuum.
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Figure 9.2: MVCC vs. locking: Performance and storage space con-
sumption of different workloads while moving records

ments for different ratios of read-only and write-intensive transactions.
The X-axis shows the percentage of update transactions, the remaining
transactions are read-only. The graph bars depict the query through-
put using MVCC and locking, respectively. The lines show the storage
requirements for both mechanisms.

The experiment shows that MVCC can increase transaction through-
put between 15% and almost 90%, while the affected partition is moved.
Storage requirements for MVCC are naturally higher, as multiple ver-
sions of records have to be kept. Traditional locking also requires addi-
tional storage space to hold pending changes, which are applied to the
data after the move finishes.

While MVCC allows multiple readers lock-free access to records, writ-
ing transactions still need to synchronize access with locks. Hence,
deadlocks can arise where two or more transactions wait for each other
and none can make any progress. Therefore, each node has a deadlock
detection component that keeps track of locally waiting transactions in
a wait-for graph (see [Elm86]). To detect deadlocks spanning multiple
nodes, a centralized detector on the master aggregates information of
the individual nodes to create a global wait-for graph.
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9.1.4 Move semantics
Transactions need to be ACID compliant; hence, moving records among
partitions must also adhere to these properties. Therefore, it is vital to
move the records inside a dedicated transaction acting as follows:

1. Update the partition tree information with pending changes
2. Read records from the source partition
3. Insert the records into the target partition
4. Delete the records from the source2

5. Update the partition tree information with final changes
6. Commit

Because the movement is covered by a transaction, it is guaranteed that
concurrent accesses to the records will not harm data consistency. Let
Tmove be the move transaction stated above, Told any older, concur-
rently running transaction, and Tnew any newer, concurrently running
transaction. Told can read all records deleted by Tmove in the old par-
tition until it commits and the records are finally removed by GC. Told
will not see the records newly created in the target partition, as the
creation timestamp/version of the record is higher than its own. Tnew
will also read the records in the source partition, as the deletion version
info of those records is older, but refers to a concurrently running trans-
action. Tnew will not read the records in the target partition, as they
were created by a concurrently running transaction. Any transactions
starting after the commit of Tmove will only see the records in the target
partition. These properties follow directly from the use of MVCC.
Using traditional MVCC, writers still need to synchronize access to

avoid blind overwrites. For the move transaction, we know that it will
not alter the data. Therefore, blindly overwriting the newly created
version in the target partition would be acceptable. We have modified
the MVCC algorithm in WattDB to allow an exception from the tradi-
tional MVCC approach: Records that were moved to another partition
can be immediately overwritten, i. e., they have a new version, without
waiting for the move to commit.

2Note that the order of Insert and Delete is not important.

150



9.1 Architecture

Control Action

partitioning

number of nodes

move tuples

scale out/in

node assignment distribute queries

Monitoring

CPU load

buffer hit rate

disk utilization

Figure 9.3: Monitoring & controlling the cluster

9.1.5 Cost of reorganization
In the following experiments, data is migrated in order to shutdown
nodes, thus, reducing the power consumption of the cluster, or data
is distributed in order to reduce query response times, which, in turn,
also reduces the queries’ energy consumption. Moving data is an expen-
sive task, in terms of energy consumption and performance impact on
concurrently running queries. We have observed data transfer rates of
∼80 Mbit/s in parallel to the OLTP/OLAP workload, hence, it takes less
than 2 minutes to move 1 GByte of data from one node to another. The
overhead of the move operations should amortize by reducing the energy
consumption of subsequent queries. Though it is difficult to calculate
the exact energy consumption of a data move operation with respect to
the impact of running queries, the energy cost can be estimated with
the duration of the move operation and the (additional) power con-
sumption. Hence, moving 1 GByte of data to a dedicated node with
25 watts power consumption will require approximately 2.600 joules.

9.1.6 Monitoring & control
The previously described techniques allow WattDB to dynamically ad-
just the size of partitions on each node by moving records among them.
Thus, we can control the utilization of each of the nodes.
Figure 9.3 sketches the feedback control loop in WattDB that moni-

tors the cluster, processes the measurements, and takes actions to keep
up performance at minimal energy cost. First, CPU utilization, buffer
hit rate, and disk utilization on each node is measured and sent to
the master node. On the master node, the measurements are evalu-
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ated, i. e., each performance indicator is compared to a predefined high
and low threshold. If the master detects a workload change and a re-
sulting imbalance in performance or energy consumption, the cluster
configuration is examined and actions are evaluated to resolve the is-
sue. Adjustment steps include the re-distribution of partitions among
nodes to reduce disk utilization, re-distributing query plans to lower the
CPU utilization of nodes, and powering up/down nodes in the cluster
to adjust the number of available nodes. For example, the upper limit
for CPU utilization is at 85%, hence, exceeding that value will induce
the need for another node to help processing queries. Likewise, a disk
utilization below 20 IOPS will mark this disk as underutilized and eli-
gible for shutdown. The master node sends out change requests to the
cluster nodes, which execute the desired configuration changes, e. g.,
re-partitioning transactions are started and nodes are powered up and
down. Because the master controls transaction execution and query
processing, it can rewrite query plans of incoming queries to execute
operators on designated, underutilized nodes.
The master node is also handling incoming queries and coordinating

the cluster. On the master node, a dedicated component, called Ener-
gyController, monitors and controls the cluster’s energy consumption.
This component monitors the performance of all nodes in the cluster.
Depending on the current query workload and node utilization, the En-
ergyController activates and suspends nodes to guarantee a sufficiently
high node utilization depending on the workload demand. Suspended
nodes do only consume a fraction of the idle power, but can be brought
back online in a matter of seconds. It also modifies query plans to dy-
namically distribute the current workload on all running nodes thereby
achieving balanced utilization of the active processing nodes.

9.2 Experimental Setup
The 10 nodes running WattDB and the Ethernet switch are connected
to a measurement box which logs the power consumption of each de-
vice, as described in detail in Section 3.7.4. To submit workloads to
the master node, a dedicated DB-client machine, running a predefined
benchmark, is used. That machine also aggregates the power measure-
ments and the benchmark results, e. g., throughput and response time,
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to file. Therefore, we are able to identify the energy consumption of
each benchmark run, even of each query.
We pre-created the TPC-H dataset with a scale factor of 100; hence,

the DB holds 100 GB of raw data initially. Data distribution strongly
depends on the partitioning scheme and the number of nodes online,
e. g., with 10 nodes, each node would store ∼10 GB of data. Therefore,
the amount of data shipped among nodes under reorganization typically
ranges from 100 MB to a few GB.
The OLAP part of the benchmark is running TPC-H-like queries

that access most of the records in a single query. These queries heavily
rely on grouping and aggregation and are therefore memory intensive
compared to OLTP queries. TPC-H is a decision-support benchmark,
hence, we were able to use its queries as analytical workloads. OLAP
clients will select one query at a time to run from a list of queries
by round-robin. For OLTP, we have taken queries from the TPC-H
data generator. In addition, we created corresponding DELETE and
UPDATE queries, because the generator is only using INSERT for cre-
ating the dataset. Typical OLTP queries are adding/updating/deleting
customers and warehouse items; furthermore, they are submitting and
updating orders.
A workload consists of a single DB client submitting one OLAP query

per minute and a given number of DB clients sending OLTP queries.
OLTP clients will wait for the query to finish, sleep for 3 seconds of
“think time”, and start over by submitting a new query. Every 120
seconds, a differing workload is initiated where the number of DB clients
may change. Thus, WattDB will have to adjust its configuration to
satisfy the changing workloads while keeping energy consumption low.
Altogether, a single benchmark run consists of 63 workloads, resulting
in a total duration of ∼2 hours.

9.3 Experimental Results
We have executed four different benchmarks on the cluster. First, we
used the benchmark BENCH 1 which spawns an increasing number of
DB clients sending queries to a fixed 10-node cluster without dynamic
reconfiguration. The DB data was uniformly distributed to the disks
of all nodes. This experiment serves as the baseline for all future mea-

153



9 Elastic DBMS

surements. Next, we ran the same benchmark against a fully dynamic
cluster, where WattDB will adjust itself to fit the number of nodes and
data distribution to the current workload (BENCH 2). Hence, initially
all DB data was allocated to the disks of the master node. With grow-
ing number of DB clients, the dynamic partitioning scheme initiated
a redistribution of the DB data with each additional node activated3,
such that the data was uniformly allocated to all disks of all nodes at
the end of BENCH 2. In the third experiment, we shuffled the workload
intensities by growing and shrinking the number of (OLTP) DB clients
to provide a more realistic, variable workload and, in turn, to provoke
more sophisticated partitioning patterns. The cluster was able to react
based on the current utilization only, as it did not have any knowledge
of upcoming workloads (BENCH 3). Finally, we re-ran the benchmark
from our third experiment but provided forecasting data to the cluster.
Thus, in the last experiment, the cluster could use that information to
pre-configure itself for upcoming workloads (BENCH 4).

Results of BENCH1

Figure 9.4(a) plots the performance of a static database cluster with 10
nodes. All nodes were constantly online and data was uniformly dis-
tributed on them. The number of DB clients is increasing over time
(X-axis from left to right). Every client is sending OLTP queries se-
quentially, thus, the number of DB clients defines the number of paral-
lel queries WattDB has to handle. With no OLTP queries in parallel,
the cluster takes about 10.5 seconds for an OLAP query. With ris-
ing workload, i. e., more parallel queries, response times for OLTP and
OLAP queries increase. With 200 clients, the OLAP queries take 16
seconds to finish while OLTP response times increased from 0.2 to 3.3
seconds.4 Figure 9.4(a) depicts the response times for both query types.
While the performance of the static cluster is unmatched in all other
experiments, its power consumption is the highest. Figure 9.4(b) shows
the power consumption of the cluster (primary Y-axis in watts) and
the energy consumption per query (secondary Y-axis in joules). Obvi-
ously, a static configuration will yield higher performance at the price of

3As far as repartitioning overhead is concerned, frequency and volume of data
movement in BENCH2 can be considered as a kind of worst case.

4All reported query response times are averages over 120 seconds.
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Figure 9.4: Increasing load on a static cluster

worse energy efficiency, especially at low utilization levels. As the plots
indicate, energy consumption per query is very high at low utilization.

Results of BENCH2

Next, in order to test dynamic reconfiguration ability of WattDB, we
have re-run the same benchmark on a dynamic cluster. Figure 9.5(a) de-
picts the performance while increasing the number of DB clients. Start-
ing with a low utilization, the database is running on a single node only,
keeping the other 9 nodes suspended. As a consequence, (all partitions
of) the entire dataset had to be allocated on the node’s disks. Power
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Figure 9.5: Increasing load on a dynamic cluster

consumption, as plotted in Figure 9.5(b), is initially low (about 45 W
for the whole cluster). By calculating the integral over the differing
courses of energy consumption in Figures 9.4(b) and 9.5(b), one can get
an impression of the absolute energy saving possible (in joules), which
is obviously substantial in this experiment.
With increasing utilization, WattDB dynamically wakes up nodes and

assigns database partitions to them. Hence, re-partitioning, as previ-
ously described, needs to physically move records among nodes. There-
fore, in parallel to the query workload, the movement takes up addi-
tional system resources. While the database is re-configuring, average
query runtimes increase by 3 seconds for OLTP workloads and up to 6
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seconds for OLAP workloads because of the extra work. Moving data
among nodes takes approximately 30 to 120 seconds, depending on the
amount of data to be moved. The spikes in Figure 9.5(a) visualize the
degraded performance while moving data partitions. Likewise, the en-
ergy consumption per query increases for a short period of time. Still,
no query is halted completely, higher runtimes are a result of increased
disk/CPU utilization and wait times because of locked records.
This experiment demonstrates that WattDB is able to dynamically

adjust its configuration to varying needs. While minimizing the energy
consumption at low utilization, the master node re-actively switches
on more nodes as the workload rises. As a result, energy efficiency
of the dynamic cluster is better than the static 10-node configuration,
especially at low load levels. Query response times are not as predictable
as in a static cluster, because the dynamic reconfiguration places an
additional burden on the nodes. Still, the experiment shows that it is
possible to trade performance for energy savings.

Results of BENCH3

The previous experiments spawned an increasing number of DB clients
to submit queries, providing a steadily increasing utilization of the clus-
ter. Thus, the workload was rising slightly over time. Realistic bench-
marks require more variance in load changes, in addition with quickly
rising and falling demands. Hence, the next experiment employs a more
complex pattern of utilization.
In Figure 9.6(a), the X-axis exhibits the number of DB clients over

time. This experiment starts with a moderate utilization of 30 parallel
clients, climbs up to 300, then quickly drops to idle. Afterwards, two
more cycles are starting between low and high utilization levels. This
figure plots the performance for both OLTP and OLAP queries, while
the cluster is adjusting to the changing workloads. As the graphs indi-
cate, WattDB is heavily reconfiguring and, thus, query response times
vary a lot, especially when workloads are shifting.
Figure 9.6(b) illustrates the power consumption of the cluster char-

acterized also by high fluctuations as nodes come online and go offline
again. WattDB is reacting to changes in the workloads based on its mea-
surements of the nodes’ utilization. Therefore, reconfiguration happens
re-actively to the specific workload changes. In this experiment with
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(a) Response time

(b) Power/energy consumption

Figure 9.6: Varying load on a dynamic cluster

dynamic and extreme workload changes, the reaction time of WattDB
is too high to maintain proper query response times. Consequently, en-
ergy consumption is also high, mainly due to the overhead of cluster
reconfiguration.

This experiment shows that WattDB is able to react to quickly chang-
ing workloads, but with less satisfying results. As reconfiguration takes
time and consumes resources, a purely reactive adaptation to workloads
is not sufficient.
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Figure 9.7: Varying load on a dynamic cluster supported by forecasting

Results of BENCH4

To overcome the limitations of a purely reactive database cluster,
WattDB should have some knowledge of the “future” in order to appro-
priately pre-configure the cluster for upcoming workloads. To test this
hypothesis, we have run the same experiment as before (see BENCH 3),
while WattDB was continuously informed about the following three
workloads, i. e., the number of DB clients in the next six minutes. This
information can be used by the master node to proactively partition
data to match the worst-case demands of the current and the expected
future workload. Figure 9.7(a) shows the results for this experiment.
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The workload on the X-axis was unchanged, but the query response
times are more stable compared to those shown in Figure 9.6(a). On
one hand, power and energy consumption, depicted in Figure 9.7(b),
are higher under low utilization levels than on a purely reactive cluster
(Figure 9.6(b)), because WattDB powers up nodes in advance. On the
other hand, average energy consumption per query is more predictable,
as the query runtimes contain less variance. Furthermore, energy
consumption at high utilization levels and at workload shifts is lower,
compared to the cluster operated without forecasting data.

9.4 Summary
After exploring opportunities for energy proportionality in the stor-
age and query execution layer separately, we have combined both ap-
proaches in the previously presented experiments. We have exemplified
that we can trade energy consumption for query performance and vice
versa by controlling the amount of data distribution and number of
nodes available to process incoming queries. At the same time, we ex-
hibited that a dynamic cluster is more energy efficient than a statically
configured one, where nodes are underutilized—particularly at low load
levels.
By keeping data in logical units, partitioned by primary key, WattDB

is suited for OLTP queries, where records are typically accessed by key.
The dynamic partitioning enables quick and coherent re-distribution of
the data without interrupting data access or putting high overhead on
look-up structures. Moving data among nodes is a time-consuming task
and cannot be done very frequently, i. e., on a per-second base. As our
experiments indicate, it is crucial for query response times to proactively
adjust the cluster to the anticipated workload.
Therefore, a better suited partitioning scheme may better support

elastic query processing than our initial implementation using MVCC.

9.5 Dynamic Aspects of Partitioning Revisited
Earlier, we have already explained the three different partitioning
schemes (physical, logical and physiological partitionining). Here,

160



9.5 Dynamic Aspects of Partitioning Revisited

we give an overview of dynamic repartitioning aspects in all three
approaches to motivate the need for physiological partitioning in our
elastic DBMS.

9.5.1 Physical partitioning

Balancing under physical partitioning moves whole storage segments
among nodes, without altering the data stored inside. Since the logical
DB layer is oblivious of the segment distribution at the storage layer,
logical access paths remain unchanged and keep pointing to the same
(logical) page addresses while repartitioning, even when the physical
placement of segments (and, thus, pages) changes.
A shared-disk architecture for the storage layer is needed to support

physical partitioning among nodes, hence, every server needs to be able
to access every segment, local and remote.
At the logical layer, all DB segments are exclusively assigned to nodes,

independent of their disk placement to ensure integrity and eliminate
the need for coordination. For this reason, cluster nodes will not share
data stored in segments; regarding logical data accesses, it behaves like
a shared-nothing architecture.
Because physical partitioning affects only the storage layer by dis-

tributing segments to disks/nodes, the query execution layer does not
benefit from additional nodes hosting the data, because the logical con-
trol remains at the original node. Therefore, the query optimizer is
unaware of the changes at the physical layer. Also, placing segments on
remote nodes induces network access latencies, multitudes higher than
local-disk access latencies. The intermediate network may also induce
a bandwidth bottleneck.
Physical repartitioning does not require transactions, because logical

records are not accessed; a lightweight latching/synchronization mech-
anism, locking segments on the move for a short time, is sufficient.
From an energy-concerned perspective, spreading data out to ad-

ditional disks on remote nodes increases power consumption without
adding much query performance.
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9.5.2 Logical partitioning
In contrast to physical partitioning, logical partitioning moves records
from one partition to another and, hence, affects the logical DB layer.
To balance the workload among partitions, records within key ranges
are moved between nodes. This requires the use of transactions to
guarantee ACID properties: Records are removed from one partition
and inserted into another; transactions need to ensure that concurrent
transactions read either copy, but not both.
While rebalancing, dedicated transactions delete records in one par-

tition and insert them into another. Hence, data movement alters the
key ranges of the partitions. The query optimizer can take the new
partition distribution into account for future query optimization.
Spreading data over multiple partitions, stored on separate nodes,

reduces latency and increases bandwidth at the physical layer due to the
increased number of disks—as with physical partitioning. Further, by
logically dividing the data into key ranges, stored separately, the query
optimizer can prune unneeded partitions. Additionally, using logical
partitioning, ownership of the records changes and all nodes holding
segments can access partitions in parallel and, thus, speed up query
processing.
Yet, to remove records with a specific key range from a partition,

a large part of the data must be read and updated, possibly scattered
among physical pages. Hence, logical partitioning is more IO-heavy than
physical partitioning. Since transactions are needed, queries running in
parallel may get delayed due to locking conflicts.

9.5.3 Physiological partitioning
Since physiological partitioning encapsulates small groups of records
into self-contained mini-partitions, each stored in a single segment),
moving a segment from one partition to another does not invalidate the
primary-key index of the segment.
To repartition a table, it is sufficient to move whole segments, con-

taining mini-partitions, to another node. The receiving node can imme-
diately resume query processing, while old transactions may still finish
reading from the old segment on the sending node. New queries will
already access the segment on the new node. To reflect changes in the
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partitioned DB, only an update to both of the meta-indexes (of the new
and old partition) is required.

Like physical partitioning, physiological partitioning copies data al-
most at raw-disk speed. Additionally, the logical layer is aware of the
new data distribution and can participate in query processing as with
logical partitioning, e. g., the query optimizer can perform segment prun-
ing, allowing a query to quickly identify unnecessary segments, having
no interesting data. Also, buffering, synchronization, and integrity con-
trol for the segment are now transferable to another node—not possible
with physical partitioning. Using physiological partitioning, we can still
apply MVCC for concurrency control.

Repartitioning details

Rebalancing the DB cluster, exemplified by the movement of a single
segment, works as follows: First, the partition is marked for reparti-
tioning at the master node and the partition tree at the source node is
updated with a pointer to the new location of the partition. Next, at
the source node, a read lock is acquired on the source partition, wait-
ing for pre-existing queries to finish updating the partition. Updating
transactions need to commit before the lock is granted. By ensuring
that all changes to the partition are committed, no UNDO information
needs to be shipped to another node. After the lock is granted, the par-
tition is copied to the target node and inserted into the node’s partition
tree. At this point, the new partition is unlocked and records in it can
be accessed by readers and writers again. The master node is informed
of the successful movement operation, and the global partition table is
updated accordingly. New transactions will now access the new node
directly. The partition information at the source node still points to
the target node, redirecting all queries trying to access the old partition
to the new one. Finally, after all old transactions no longer want to
access the old partition, the master informs the old node to unlock the
partition. At that time, the pointer to the new node is removed from
the source node and the old partition can safely be removed.
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Logging

For durability reasons, write-ahead logs must be maintained at all times.
When repartitioning, although record ownership changes, log files re-
main at the original node and are not transferred to the node hosting
the partition. In case of DB failures, the log file is needed to reconstruct
partitions and to perform appropriate UNDO and REDO operations.
Since moving a partition involves read-locking the entire partition, this
operation acts as a checkpoint. All transactions before the movement
will have their actions recorded in the old log file. While moving the par-
tition, copies of the records still remain until the movement is finished.
Hence, additional logging is not required. After successfully moving a
partition to another node, the partition will be in a consistent state
and flushed to disk. Hence, the old copies and log files are no longer
required. Now, updates to the partition can be logged at the new node.

Housekeeping at the master

Query optimization is done at the master node. To identify all partitions
relevant to a query, the master keeps a tree with the primary-key ranges
of all partitions. While repartitioning, both the sending and receiving
node need to be accessed by queries to determine which node currently
claims ownership over the data. Therefore, when repartitioning starts,
the master is updated first, keeping pointers to both, the old and new
node. After repartitioning, the old pointer is deleted.

Correctness

Dynamic data migration must not alter the result of concurrent queries;
therefore, ACID properties must be maintained at all times. Due to the
copying/moving of records among partitions, transactions may access
both copies or none of the copies by mistake. In contrast to logical
partitioning, rebalancing physiological partitions requires some modifi-
cations to MVCC to ensure correctness. To show that transactions will
behave correctly, we must provide a proof of correctness for transactions
at different starting times and distinguish between reading and writing
accesses.
First, transactions started prior to rebalancing must be able

to access old versions of the records. Since the copies are kept until

164



9.6 Experiments

all old readers are finished, these transactions will always be able to
read. During rebalancing, a read lock is acquired on the old partition,
ensuring that all writing transactions will finish until the partition is
moved. Newer transactions, arriving after locking the old partition, are
either arriving at the new location and may write immediately, or are
forced to wait for the copying to finish and are then redirected to the
new partition.
Second, transactions started after rebalancing must not access

old copies. After updating the partition tree at the master node, new
transactions will be redirected automatically to the new partition. Be-
fore the update, transactions will behave identical to the first case and
potential updates will be redirected to the new partition, where proper
synchronization is enforced.
There is a small time window, where the partition tree on the master

is not up to date and transactions may get routed to the old partition
instead of the new one. Therefore, partitions on the move have over-
lapping primary-key ranges on the master (as depicted in Figure 2.16)
and queries are advised to visit both, determining the correct location
to use during execution.
Reading transactions will have to touch both partitions, potentially

reading the same record twice. Yet, MVCC will ensure, that only one
version of the record is deemed eligible for the query, while the sec-
ond one is silently discarded. Likewise, writing transactions will only
overwrite the newer version of the record.
Therefore, we conclude that moving partitions works correctly if

the utilized MVCC protocol is correct, which—despite programming
errors—was already proven in the original publication on multiversion
concurrency control [BG83].

9.6 Experiments
To compare energy consumption and performance impact of various
partitioning schemes, we have evaluated all three implementations on
our cluster with an OLTP workload in [SH15]. In the following, we
first describe the experimental setup, before we present results from our
work.
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9.6.1 Experimental setup
For all experiments, we are using the dataset from the well-known TPC-
C benchmark with a scale factor of 1,000. Hence, a thousand warehouses
were generated on the cluster, consisting of about 100 GB of data. Due
to additional indexes and storage overhead, the final DB had approx.
200 GByte of raw data.

Queries

We use queries from the TPC-C benchmark as workload drivers for
our experiment. Because we do not compare our results with other
TPC-C results, we do not comply with the exact TPC-C benchmark
specifications which are unessential to reveal differences of partitioning
schemes, as already mentioned in Section 8.2.2.

Workload mix

In each experiment, we spawned a number of OLTP clients, sending
queries to the DBMS. Each client submits a randomly selected query at
specified intervals. If the query is answered, the next query is delayed
until the subsequent interval similar to defined think times in the TPC-
C specification. Hence, the more OLTP clients and the lower the think
time, the more utilization is generated.
By limiting the maximum throughput at the client side, this experi-

ment differs from traditional benchmarking. While established bench-
marks such as TPC-C use maximum throughput as the metric, we are
interested in the DBMS fitness to adjust to a given workload by keeping
throughput acceptable and optimize the number of nodes the DBMS is
running on, and, thus, improve energy efficiency.

Partitioning

As previously described, the limiting factor for dynamic repartitioning
is migration cost, i. e., the performance impact and time to move data
among nodes. To estimate its impact on the cluster’s elasticity, we have
conducted a simple experiment: Starting with two nodes, hosting the
data and processing queries, we instruct WattDB to perform a reparti-
tioning of all tables and migrate 50% of the records to two additional

166



9.6 Experiments

(a) Throughput of the cluster

(b) Avg. response time per query

Figure 9.8: Performance-related benchmark results for different parti-
tioning schemes under a TPC-C query mix

nodes. We measure response time, throughput, and power consumption
of the cluster before, during, and after the repartitioning. We repeated
the experiment on all three types of partitioning schemes, physical, log-
ical, and physiological and compared the results.

9.6.2 Results
In this section, we present results from our experiments on clusters us-
ing logical, physical, and physiological clustering. Figures 9.8 and 9.9
illustrate how—under the experiment sketched—query throughput, re-
sponse time, power consumption, and energy use per query for the three
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(a) Power consumption of the cluster

(b) Energy consumption per query

Figure 9.9: Energy-related benchmark results for different partitioning
schemes under a TPC-C query mix

benchmark runs evolve over time. In each graph, the X-axis indicates
the time measured since initiating rebalancing in seconds. At time t±0,
the cluster was instructed to rebalance as previously described. For
t < 0, the results are more or less identical, because the initial configu-
rations were identical for all experiments. After starting repartitioning,
measurements begin to differ based on the selected partitioning scheme.
Because the same number of machines was used, power consumption is
almost identical in all cases.
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Physical partitioning

Immediately after initiating rebalancing, query response time slightly
increases and throughput reduces from about 600 to 400 qps, due to
the network overhead of copying segments and the increased latency to
access the now remote pages. After moving 50% of segments to new
nodes (around t + 270), query response time decreases, but does not
recover to its old level.
With physical partitioning, segments are moved to another node, but

are still “owned” by the original node. Therefore, the partition can
benefit from higher IOPS, due to the distribution, but suffers from in-
creased network latency, because segment access now requires a remote
call.
Referring to the measurements, we reason that physical partitioning—

although easy to implement—is not usable for a dynamic cluster of
DBMS nodes. Applying this technique, we can distribute data among
multiple disks, but the logical control of the data is stuck at the original
node. For this reason, storage segments have to be fetched from that
node to access their records, which imposes additional latency. Fur-
thermore, without additional CPUs and main memory to help evaluat-
ing queries, scale-out can only be achieved at the storage layer. Thus,
physical partitioning is not useful for a fully dynamic DB cluster. This
observation is consistent with our experiments on the physical storage
layer in Chapter 7.

Logical partitioning

Using logical partitioning, the control over a key range—together with
the records—is transferred to another node. Hence, moving records of a
key range [a− b) to another node requires the node to evaluate queries
for that key range from now on.
The benchmark results on a logically partitioned cluster indicate an

initial decline in query throughput (Figure 9.8(a), at t± 0). Compared
to the other schemes, logical partitioning exhibits the highest query
response times when rebalancing (Figure 9.8(b)). After a significant
amount of records has been relocated to other nodes, throughput and
response times start to improve (at t+170) and quickly pass performance
before repartitioning.
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Figure 9.10: Impact factors on query runtime when rebalancing

We explain the initial performance setback with the additional high
system load due to table scan(s) and the network load for finding and
moving records. With parts of the data moved to another node, the
original node does only have to manage the remainder of the data and
the additional node takes part in query processing, doubling the number
of CPUs and main memory available.
Hence, with logical partitioning, it is possible to add storage and pro-

cessing power to the system, making it a better candidate for a dynam-
ically adjusting cluster. Yet, moving key ranges and scanning for data
is time-consuming, compared to raw movement of physical segments.

Physiological partitioning

The corresponding results for our benchmark on a physiologically parti-
tioned cluster exhibit an initial decline in query performance (through-
put and response times) similar to physical partitioning. Similar to log-
ical partitioning, performance quickly recovers and soon outperforms
physical partitioning (around t + 250), as soon as the majority of seg-
ments is transferred to the new nodes. At this point, response times
start to get lower than before, because all nodes can now participate in
query processing.
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In our experiments, physiological partitioning exhibited the lowest
query runtimes and handles repartitioning events well, compared to the
other approaches. It provides fast adaptation of data partitioning in
a dynamic cluster and quickly compensates data migration overhead.
Overall, physiological partitioning delivers best energy efficiency and
quickest adaptivity. With this approach, we are combining the speed of
data movement with the ability of transferring ownership of data. The
DBMS moves segments among nodes at the same speed as with physi-
cal partitioning. As soon as segments arrive at the new node, they are
incorporated in its index and the new node overtakes query processing.
Yet, immediately after the beginning of repartitioning, performance de-
clines, further slowing down query processing. Therefore, physiological
partitioning still shows drawbacks that need to be tackled.

Physiological partitioning improved

From our first experiment on a cluster using physiological partition-
ing, we experienced slow query response times during repartitioning.
We analyzed the performance setback and identified bottlenecks in the
cluster. In Figure 9.10, the major impact factors on query runtime are
illustrated for a physiologically partitioned cluster. On the left side, the
graph shows a breakdown of time spent in various DBMS components
when running queries. On the right side, the same queries are running
while the data is rebalanced to other nodes. From the increase in run-
times, we can deduce that critical sections are disk I/O and locking.
Surprisingly, although repartitioning ships big chunks of data across the
network, the time spent for network communication remains unchanged.
The findings indicate several bottlenecks: First, locking partitions keeps
queries waiting and, thus, increases runtime. In our implementation of
the rebalancing operation, the lock is essential for data integrity. There-
fore, there is nothing we can do to mitigate locking overhead.
Second, rebalancing involves heavy I/O, competing with disk accesses

of regular queries. Reducing accesses to hard disk would therefore speed
up query processing while repartitioning. Additionally, we noticed more
contention in the DB buffer due to a pile of waiting queries with latched
pages and occupied pages needed for rebalancing (not shown in the fig-
ure). More DRAM might reduce page thrashing and relieve the storage
subsystem.
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(a) Throughput of the cluster

(b) Avg. response time per query

Figure 9.11: Improving the benchmark results for physiological parti-
tioning; performance and throughput

Lastly, as shown in Figure 9.10, logging takes significantly longer when
rebalancing. Since logging writes to disk as well, we conclude that the
main bottleneck for repartitioning seems to be the bandwidth to the
storage subsystem.
To mitigate excessive load on the cluster while rebalancing, we con-

ducted a final experiment, where we powered up additional nodes to
assist the present ones. Since offloading OLTP query operators to re-
mote nodes is not reasonable, we used the helper nodes for log shipping
and provision of additional buffer space using rDMA5. Accessing buffer

5rDMA = remote direct memory access. A node’s buffer size is increased by in-
cluding main memory from remote nodes.
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(a) Power consumption of the cluster

(b) Energy consumption per query

Figure 9.12: Improving the benchmark results for physiological parti-
tioning; energy and power

pages from a remote memory includes network latency, but is still faster
than flushing a page from the buffer and reading it back from disk when
needed. Especially warm data, that is not accessed frequently in the
buffer (but frequently enough to justify keeping the page in memory),
is a good candidate for rDMA buffering. The graphs in Figures 9.11
and 9.12 plot the results in comparison with “standard” physiological
partitioning. At time t ± 0, when repartitioning started, two addi-
tional nodes were fired up to support the cluster. After repartitioning
was finished, the helper nodes were brought down again (around time
t + 370). As the results confirm, including additional nodes increases
power consumption (Figure 9.12(b)), but improves query response times

173



9 Elastic DBMS

(Figure 9.11(b)). Overall, energy efficiency gets worse (more energy
consumption per query, see Figure 9.12(b)), but, in turn, performance
increases (Figure 9.11(a)).
We conclude that adding nodes during rebalancing helps mitigate

data shipment overhead at the cost of higher power consumption.
Therefore, after rebalancing, the additional nodes should be turned off
again to improve energy efficiency of the cluster.

9.7 Summary
With these experiments, we have evaluated different partitioning ap-
proaches to be used in a distributed DBMS, which approximates energy
proportionality by dynamically adjusting the cluster size to the work-
load present. Our experiments identified drawbacks with physical and
logical partitioning schemes and recommended physiological partition-
ing as best choice for dynamically repartitioning a database under load.
Physical partitioning is the easiest to implement and offers quick repar-
titioning. Yet, due to its physical nature, query processing does not
benefit from rebalancing, which is a huge drawback in an elastic envi-
ronment.
Logical partitioning seems to be the cleanest way of balancing, as

it changes logical key ranges and their assignment to nodes. Yet, a
straightforward implementation suffers from high repartitioning cost
which makes dynamic adaption time intensive.
Finally, our proposed physiological repartitioning, a combination of

both approaches, offers short rebalancing times with the benefit of
changing logical data ownership. Hence, data and processing can be
dynamically redistributed among a cluster of nodes, allowing to form
an elastic, energy-proportional cluster.
Yet, the experiments indicated that repartitioning an already stressed

cluster imposes additional load and slows down query evaluation. By
activating additional nodes to support query processing, we were able to
relieve some of the stress and to improve responsiveness of the system.
In conclusion, we were able to trade energy efficiency for performance.
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Server

After exploring and implementing techniques to form an elastic, energy-
proportional cluster of nodes, the question remains, whether the sys-
tem is comparable to a centralized, heavy-weight server (also called big
server).
The comparison of a cluster and a big server is threefold. First, we

provide a lineup of two theoretical systems and compare their perfor-
mance, energy efficiency, and total cost. Next, we run benchmarks on
our cluster and another, centralized system to get actual performance
and energy consumption figures. Finally, we propose a system to com-
bine the advantages of both approaches.

10.1 Total Cost-of-Ownership Analysis
In [Sch11], Scherer analyzed the total cost of ownership for two hard-
ware platforms: A single, heavy-weight machine and a cluster of ten
nodes, capable of individually powering on and suspending to match
the workload. Both systems were tested with the same workload traces,
provided by SPH AG, a mid-sized ERP-developer [SHK12].

10.1.1 TCO model
The term Total Cost of Ownership (TCO) was developed by Gartner in
1987 for its customer Microsoft, to compare Microsoft-based infrastruc-
tures to Linux-based ones [MK05]. They defined TCO as follows: “A
comprehensive assessment of information technology (IT) or other costs
across enterprise boundaries over time. For IT, TCO includes hardware
and software acquisition, management and support, communications,
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end-user expenses, and the opportunity cost of downtime, training. and
other productivity losses” [Inc12].
Koomey, Brill, Turner, Stanley, and Taylor extended Gartner’s TCO

approach in [Koo+07], to tailor calculation for datacenters. In their ap-
proach, called True TCO, irrelevant costs were excluded, e. g., software
and license acquisition costs, and, instead, energy-related cost factors
were included. They distinguish between Capital Expenses, i. e., one-
time investments for hardware acquisition, and Operational Expenses,
which are recurring spendings for running costs, e. g., energy.
Today, there exist many different definitions of TCO—basically each

consulting company developed their own. Therefore, we need to clarify
the model used and define all cost factors that are included. In his work,
Scherer adapts the concept of Koomey’s True TCO and simplifies it to
be able to quickly compare the two platforms. While True TCO includes
estate costs and taxes—factors which are relevant for datacenters—,
Scherer derives costs estimates from server housing prices. He argues
that rental prices include proportions of all relevant costs, e. g., mainte-
nance, housing, cabling, etc, plus a profit margin and, therefore, justify
a square comparisons, despite the simplification. Additionally, Scherer
compares only two dedicated platforms and results are not intended to
be used for datacenter comparison.
Similar to the other TCO approaches, to distribute capital expenses

over the lifetime, they are converted into annual write-offs. Hence,
acquisition costs for servers, networking, and storage are split among
the years of their supposed life cycle.

10.1.2 Hardware selection

Comparing two hardware platforms is not as trivial as it may seem.
There are several requirements for two platforms to be considered com-
parable. Both systems should exhibit similar performance figures, e. g.,
processor, disk, and main memory (at least) should be comparable.
Especially two different architectures, i. e., a centralized system and a
distributed cluster, exhibit very different performance characteristics.
As Lang, Patel, and Shankar have demonstrated in [LPS10], clusters
suffer from friction losses, further complicating the selection of a proper
big server.
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Cluster Big Server
# of processors 10 2
Processor type Intel Atom D510 Intel Xeon L5630
# of cores 10 x 2 2 x 4
# of threads 10 x 4 2 x 8
Frequency 1,66 GHz 2,13 GHz
Cache 10 x 1 MB 2 x 12 MB
Main memory 10 x 2 GB DRAM 24 GB DRAM
Power consumption idle 1 x 24,425 watts 110,9 watts
Power consumption peak 10 x 29,825 watts 221,8 watts
Switch HP 1810G-24 (not needed)
Hard disks 10 x WD Scorpio Black (250 GB)

Table 10.1: Hardware components, according to [Sch11]

Cluster

Since development on WattDB started prior to the work of Scherer, the
hardware for the cluster was already selected. Table 10.1 gives a quick
overview of the components, while the details were already explained in
Section 5.2.

Big server

Based on the cluster hardware, a centralized system was needed, that
delivered comparable performance. To ensure technological compara-
bility, the system should have been rolled out to market at the same
time as the cluster hardware.
Scherer selected a server with two Intel Xeon L5630 processors and

24 GB of DRAM for comparison. While these CPUs offer higher fre-
quencies (2.33 GHz, instead of 1.66 GHz), the total number of threads
is reduced from 40 in the cluster to 16 in the big server. The big server
scores about 12 times higher in the Passmark benchmark, hence, per-
formance should be comparable to the cluster, if not slightly higher.
Both platforms share the same external storage configuration, con-

sisting of ten hard disk drives. Since the distributed nodes require an
additional communication infrastructure, Scherer included the network-
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ing switch into the TCO calculation of the cluster. The power consump-
tion of the big server rougly equals the plot from Figure 2.12, i. e., at
20% utilization, the server already consumes 80% of its peak power.

10.1.3 Workload profile

To calculate the TCO of the systems, typical workload patterns are re-
quired to estimate average energy consumption of the lifetime. SPH
AG provided CPU and disk utilization patterns as described in Sec-
tion 2.1.2, which Scherer used as input traces to estimate performance,
reaction times, and power consumption of both systems. By correlating
workloads with the expected server utilization, power consumption can
be estimated.

10.1.4 Scale-out policy

The cluster is designed to elastically scale-out and -in, based on the
current workload. Since at the time of Scherer’s publication, WattDB
was not yet ready to automatically adapt. Therefore, policies defining
reaction thresholds and reconfiguration times are needed to simulate the
cluster’s behavior.
Scherer developed a policy to model the behavior of WattDB under

variable workloads. He assumed, the master node checks the current
utilization every 10 seconds and in case imbalances are discovered, re-
balancing is triggered. Reconfiguration times to power on an additional
node were set to 60 seconds, while time to shutting down was defined
to take 10 seconds. Workloads that were not processed in one period
were piling up and passed to the next one.
To grasp the differences between energy saving and high-throughput

policies, Scherer varied reaction and scheduling times on the master to
either eagerly switch on additional nodes or to reduce overall power
consumption during workload spikes.
To mitigate the effect of sudden workload shifts, scale-out is triggered

manually, before the workloads hit the cluster. In reality, these man-
ual triggers can be replaced by appropriate forecasting, as discussed in
Section 5.5.
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OLTP OLAP
Big Server Cluster Big Server Cluster

Capital Expenses
Server hardware 640 € 654 € 640 € 654 €
Disk drives 104.87 €
Network switch 88 € 88 €

Operational Expenses
Housing 72 € 264 € 72 € 264 €
Electricity 211 € 156 € 239 € 82 €
Cooling 211 € 156 € 239 € 82 €

Total 1,239 € 1,422 € 1,296 € 1,273 €

Table 10.2: TCO comparison at 0.20 € / kWh electricity, from [Sch11]

10.1.5 Results
Scherer calculated the TCO for both systems using workloads from SPH
AG and his simulation policies, depicted in Table 10.2. He discovered
that cluster and big server deliver comparable costs, yet overall, the big
server’s TCO might be a little lower. Especially for OLAP workloads,
the cluster’s TCO is 11% lower, which indicates potential to save costs
when replacing a single OLAP server with a cluster of nodes.
His work was a pessimistic analysis of both architectures, includ-

ing high friction losses for distributing operations and moderately low
energy prices. The results provided in this simulation provided first
approaches to compare the performance of both platforms and indicate
areas, where the cluster might be better suited than the big server. Yet,
as Scherer concludes, switching to a distributed architecture is only pos-
sible if potential delays in queries—due to reconfiguration overhead—are
bearable.
In his work, Scherer proposes forecasting as a viable mechanism to

prepare the cluster for upcoming workloads. Further, he proposed het-
erogeneous architectures, combining both approaches, e. g., to process
OLTP workloads on a big server while offloading analytical queries to an
elastic cluster. Although Scherer’s TCO analysis was based on many as-
sumptions and not backed with benchmarks, his findings are conclusive
to our experimental results.
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Figure 10.1: The 10-node cluster compared with the brawny server

10.2 Experimental Examination
After analyzing the efficiency and total costs of a dynamic cluster by
simulation and estimation, we have implemented WattDB and ran com-
parison benchmarks on the cluster and a big server to verify the results
provided in [Sch11]. In [SH14b], we have published our results of an
experimental comparison of both platforms.
We compared a single, brawny server with a cluster of wimpy nodes

under OLTP and OLAP workloads, running TPC-H and TPC-C, re-
spectively. We ran several empirical experiments and compared energy
use and performance of our cluster to those of a brawny server.

10.2.1 Hardware
Our cluster hardware consists of the 10 well-known nodes, intercon-
nected by a Gigabit-ethernet switch. Each node is equipped with an
Intel Atom D510 CPU (with two threads using HyperThreading) run-
ning at 1.66 GHz, 2 GB of DRAM and an SSD for data storage. All
nodes can communicate directly.
To compare performance and energy savings, we ran the same ex-

periments again on a single, brawny server. This server has two Intel
Xeon X5670 processors with 24 GB of RAM and 10 SSDs. For a fair
comparison with the wimpy nodes, we have reduced the RAM to 24GB,
although the server can handle much more. Yet, with more main mem-
ory, the power consumption of the server would also be much higher.
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Figure 10.2: Power consumption for both systems

Each CPU has 12 cores and 24 threads (using HyperThreading), run-
ning at 2.93 GHz.
Figure 10.1 sketches the cluster with 10 nodes and the big server.

For comparison, we have highlighted the main components (CPU cores,
main memory and disk) inside the nodes as well as the communication
network.
Each wimpy node consumes ∼22 – 26 watts when active (based on

utilization) and ∼2.5 watts in standby. The interconnecting network
switch consumes ∼20 watts and is included in all measurements.
In its minimal configuration—with only one node and the switch

running and all other nodes in standby—the cluster consumes approx.
65 watts. This configuration does not include any disk drives, hence,
a more realistic minimal configuration requires about 70 watts. In this
state, a single node is serving the entire DBMS functionality (storage,
processing, and cluster coordination). With all nodes running at full
utilization, the cluster will consume ∼260 to 280 W, depending on the
number of disk drives installed.
This is another reason for choosing commodity hardware which uses

much less energy compared to server-grade components. For example,
main memory consumes ∼2.5 watts per DIMM module, whereas ECC
memory, used in the brawny server, consumes ∼10 W per DIMM.
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Figure 10.3: Theoretical performance figures for both systems

The power consumption of the big server (with 10 SSDs) ranges from
∼200 watts when idle to ∼430 watts at full utilization.1 In theory,
the systems should show similar performance. All nodes in the cluster
come with 16.6 (10x1.66) GFLOPS, whereas the performance of the
big server is rated with 17.6 GFLOPS. Furthermore, L2 caches and
memory bandwidth of both systems are similar and the same number
of disks is installed. Figure 10.2 visualizes power consumption for both
systems. Of course, the relationships shown for the power consumption
are idealized, because power consumption of the big server and the full
cluster may differ to a certain amount. Figure 10.2(a) shows how energy
proportionality drawn for the big server is much better approximated
by the cluster where at least 1 and—depending on the workload—up
to 10 nodes are active. Figure 10.2(b) gives an impression about the
power consumption of both systems when running at a specific activity
level.
In Figure 10.3, theoretical performance of big server and cluster, as

given in the product sheets, is compared. CPU power, cache size and
bandwidth are almost identical for both systems.

1These measurements include only 24 GB of DRAM as previously explained.
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10.3 Experiments
To compare the energy consumption of our cluster to that of a tradi-
tional DB server, we have processed OLAP and OLTP workloads on
both platforms. We have run performance-centric benchmarks first,
to assess peak performance of both systems. Next, we have evaluated
energy-centric benchmarks to identify the energy-efficiency potential of
the big server and the cluster. In the following, we first describe the
experimental setup, before we present our results.

10.3.1 Experimental setup
For all experiments, using OLTP and OLAP, we have set up the sys-
tems as previously described. A separate server, directly connected to
the master node and the big server, respectively, is used as the bench-
mark driver, submitting queries to the cluster as well as monitoring
response time and throughput. The previously introduced power mea-
surement device is also hooked up to the benchmark driver to correlate
all measurements with energy consumption.

OLAP workloads For measuring OLAP performance and energy ef-
ficiency, we are using the well-known TPC-H benchmark with a scale
factor of 300; hence, 300 GB of records are generated. Due to additional
indexes and storage overhead, the final DB has approx. 460 GByte of
raw data. On the centralized server, small tables are stored on a single
disk, whereas larger ones, e. g., the LINEITEM and ORDERS tables,
are partitioned and distributed among all disks to increase access band-
width and to parallelize processing on partitions.
On the cluster, the REGION and NATION tables are replicated to

all nodes, while the other tables are partitioned and distributed equally
among the nodes. In static benchmarks, no repartitioning occurs, even
if the initial distribution leads to hotspots in the data, that impact the
node’s performance. If dynamic features of WattDB are enabled, the
DBMS will automatically repartition as previously described.

OLTP workloads For online transaction processing, we are running the
TPC-C benchmark on the systems with a scale factor of 1000. Hence, a
thousand warehouses were generated on the cluster, consisting of about

183



10 Comparison with a Brawny Server

100 GB of data. Due to indexes and storage overhead, the final DB’s
size is ∼200 GB in the beginning of the experiments.

10.3.2 Performance-centric benchmark
First, to evaluate the peak performance of both systems, we run
performance-centric benchmarks similar to TPC-C and TPC-H on the
cluster and the big server. We repeated the experiments with a varying
number of parallel DB clients in order to estimate a saturation point,
i. e., how many parallel queries the systems can process—without
entering an overload state. In Figure 10.4(a), the OLAP benchmark
results are depicted. The X-axis shows response time in seconds, while
the Y-axis illustrates energy consumption per query. The numbers on
the individual graphs annotate the number of parallel DB clients for
this curve progression.
Compared to the cluster, we can conclude that the big server handles

queries for the same number of clients generally faster than the cluster,
it also exhibits better energy efficiency. Up to 340 DB clients, the
response times on the big server increase only slightly. Then, the server
seems saturated and runtimes start to build up. Consequently, energy
consumption per query rises.
Even for medium-sized workloads (up to 220 clients), the cluster can-

not meet the energy and performance figures of the big server. Already
220 clients seem to overload the cluster, where runtimes and energy con-
sumption for the same number of clients start to increase faster than for
the big server. When stressing the cluster with more than 340 clients,
WattDB crashes due to shortage of main memory.
Figure 10.4(b) illustrates the results of the same experiments repeated

using OLTP queries. The results reveal that the big server is much
better suited for OLTP than the cluster, as is exhibits lower query
response times and also less energy consumption. Query response times
on the brawny server increase only slightly with the number of DB
clients and the system does not show saturation at all. Consequently,
energy consumption per query improves continuously. In contrast, the
cluster is saturated with 160 clients; when further increasing the number
of parallel queries, response times start to increase faster.
Analyzing the access patterns of both, OLTP and OLAP queries,

the different performance figures are explainable: OLAP queries read
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Figure 10.4: Peak performance and energy consumption for both sys-
tems

huge amounts of records, join them with (small) fact tables, and then
group and aggregate the results to satisfy analytical inquiries. Hence,
the reading part of these queries can run in parallel on all partitions,
speeding up the query linearly with the number of disks, CPUs, and/or
nodes. After having fetched the qualified records, the joins with the fact
tables can also run concurrently. The final grouping and aggregation
steps can be pre-processed locally for each of the parallel streams and
quickly aggregated into a final result. Hence, this kind of access pattern
seems to well fit both, a single, multi-core machine with lots of disks
and memory but also a cluster of independent nodes, exchanging query
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results via network. In Section 9, we have already analyzed the abilities
of a cluster—with an emphasis on dynamic repartitioning of DB data—
to process that kind of workloads in greater detail.
In contrast, OLTP queries touch very little data, but update records

frequently. Since writers need to synchronize to avoid inconsistencies,
lock information must be shared among all nodes involved. A single
server with a main-memory-resident lock table can synchronize trans-
actions much faster than a cluster, needing to exchange lock tables
among nodes. Further, OLTP query operators modifying records cannot
be offloaded to other nodes. Therefore, a query plan for transactional
workloads is much more rigid than of OLAP queries.
In summary, it is comprehensible that a cluster of nodes is better

suited for OLAP kinds of workloads than for typical transaction pro-
cessing with ACID guarantees.

10.3.3 Energy-centric benchmark
After evaluating the peak performance of both configurations, we ran
experiments representing average, real-world workloads. Because DB
servers are often heavily underutilized, as mentioned earlier, we modified
the benchmark driver to submit queries at timed intervals [SHK12].

Workload scaling In each experiment, we have spawned the number
of OLTP or OLAP clients between 20 and 320, sending queries to the
database. Each client sends a query in a specified interval. If the query
is answered within the interval, the next query is not initiated imme-
diately, but at the start of the subsequent interval. If the query is not
finished within the interval, the client waits for the answer until send-
ing the next query. In this way, each DB client generates its share of
utilization. The DBMS has to answer queries quickly enough to satisfy
the DB clients, but there is no reward for even faster query evaluation.
It is important to delay query submission of the clients, since we are not
interested in maximizing throughput, but want to adjust the DBMS to
a given workload instead, using an optimal number of nodes.2

2Otherwise, the whole benchmark would degenerate to a simple performance-centric
evaluation, which is not what we intended.
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Figure 10.5: Performance and energy consumption for varying OLAP
utilizations

Before each workload changes, the cluster is manually reconfigured
to best match the expected workload. We let the benchmarks run for
a short warm-up time prior to measuring energy efficiency and per-
formance to eliminate start-up cost and to identify maximum energy
savings potential.

OLAP In this experiment, we vary the number of parallel clients be-
tween 20 and 320. As before, we are using TPC-H queries on a SF300
dataset. To control utilization, the clients send queries at an interval of
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at least 20 seconds. Whatever comes last, the query result or the end
of the interval, is the trigger for the next query.
Figure 10.5 illustrates the results for the energy-centric OLAP bench-

mark. The left side depicts query response times of the brawny server
and the wimpy cluster. As expected, the centralized machine handles
queries faster than the cluster, even faster than the (pre-specified) tar-
get response time of 20 seconds per query. Therefore, the server is idle
for longer time periods, still consuming energy.
The cluster is meeting the target response times quite well, except for

higher utilization, as observed earlier. After about 220 parallel clients,
query performance starts to drop and runtimes build up. Comparing
energy consumption per query of both systems, the cluster delivers far
better results for average utilization. Due to the cluster’s scale-out and
adaptation to the necessary number of nodes, its energy consumption
per query stays at the same level almost the entire time, regardless
of utilization. Only at high workloads, energy consumption increases
because of lengthy query runtimes.
The big server, with more or less static power consumption over the

whole utilization spectrum, delivers bad energy efficiency for low and
moderate workloads. Only at high utilization, when all the processing
power of the server is needed, its energy consumption per query pushes
below that of the cluster. From this experiment, we conclude that the
cluster seems to be better fit for moderate OLAP workloads than the
big server.

OLTP We repeated the same experiment using OLTP queries from the
TPC-C benchmark. Prior, the corresponding dataset was generated
with a scale factor of 1,000. Identical to the OLAP benchmark, we
scaled the DB clients between 20 and 320. Each client was waiting 40
ms between queries to simulate low and moderate workloads too.
Figure 10.6 plots the results of the energy-centric OLTP benchmark

run. Whereas the big server exhibits query response times between 30
and 50 milliseconds, the cluster performs with processing times between
50 and 450 ms much worse. Apparently, the cluster is not well suited
to process update-intensive OLTP workloads.
Likewise, energy efficiency of the cluster is only better at very low

workloads, below 50 parallel DB clients. While the big server consumes
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Figure 10.6: Performance and energy consumption for varying OLTP
utilizations

between ∼100 and ∼800 mJoule/query, the cluster needs between ∼200
and ∼400 mJoule/query. The big server’s energy efficiency is much bet-
ter at more challenging workloads, unlike OLAP workloads, where the
cluster was more efficient for most scenarios. In conclusion, we have
constituted a tradeoff between performance and energy consumption on
the cluster. By reducing the number of nodes, both power consump-
tion and peak performance are lowered. For moderate workloads, lower
performance is tolerable and, thus, energy efficiency can be improved.
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10.3.4 Dynamic workloads
As previously described, the limiting factor for dynamic repartitioning
is the migration cost, i. e., the performance impact and time it takes
to move data between nodes. To estimate its impact on the cluster’s
elasticity, we have run experiments on a dynamically adapting cluster.
Similar to the previous tests, we are running a mix of workloads against
the cluster, ranging from low utilization up to heavy workloads. In
this experiment, the cluster is given no warm-up times to adjust itself
to a given task; instead, we are monitoring performance and energy
consumption continuously.
Workloads change every 5 minutes, starting with a moderate workload

of 20 DB clients, sending OLTP or OLAP queries respectively. The
workload pattern is depicted underneath all result figures.
To quantify the importance of forecastable workloads, we have run

the same workloads on the cluster twice—and once on the big server for
comparison. The first run on the cluster hits the system unprepared;
WattDB has to reactively adjust to the changing workload. After that,
the same benchmark is run again, this time informing the DBMS of
upcoming workloads (30 minutes in advance). Hence, the DBMS may
use this information to proactively adjust to such a situation.
In [KHH12], we have developed a load forecasting framework to pre-

dict upcoming database workloads based on historic performance data.
We observed that workloads are often repetitive and, therefore, quite
easy to forecast.

OLAP and OLTP processing

In the following, results of the benchmark runs are discussed separately
for OLAP and OLTP. Results for the big server are depicted on the
left-hand side of figures 10.8 and 10.7. In the middle part, the plots
represent benchmark results measured on the cluster without workload
forecasting. The right-hand side illustrates results of the same experi-
ment using forecasting. The top-most plot in every column draws the
average query response time. The target response time of 20 seconds
is included to expose the load-dependent response time deviations in
the various experiments. To characterize the varying size of the cluster,
the number of active nodes is visualized. Underneath, the course of the
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overall power consumption is shown for all three experiments. The re-
sulting average energy consumption per query is plotted in the graphs
below—to contrast it to the power consumption of the corresponding
system. The last charts in each column visualizes the workload mix
(which was the same for all three experiments).

OLAP (big server) Figure 10.7, leftmost column, shows the results for
TPC-H queries on the big server. The big server does not exhibit transi-
tion times between workload changes, since reconfiguration is not needed
on this single-node system. Query runtimes are fast, always beating the
target response time. Yet power consumption is constantly high, regard-
less of utilization, as already observed in earlier experiments. Average
energy consumption per query is comparably high, although query run-
times are low. Because this benchmark is energy-centric, faster query
runtimes do not lead to better results.

OLAP (cluster) The middle column of Figure 10.7, depicts the TPC-
H results for the cluster without workload forecasting. The number of
nodes in the cluster jitters heavily, as the system tries to adjust itself
to the current workload. Reconfiguration takes time, e. g., migrating
from 2 to 4 nodes requires each of the two source nodes to ship about
100 GB of data to one of the targets, hence, it takes up to 20 min-
utes to complete repartitioning. Therefore, query response times in this
benchmark experiment are highly fluctuating and, in turn, often missing
the predefined deadline (target response time). Yet, as we have shown
in previous experiments, the cluster, in theory, should be able to han-
dle most of the workloads within the deadline. Due to high additional
reconfiguration overhead, the nodes are overloaded. Therefore, query
runtimes and average energy consumption per query remain high.

OLAP (cluster with forecasting) In this benchmark, we inform the
cluster of workload changes occurring in the next 30 minutes. Hence,
instead of only reacting to load changes, WattDB can now prepare for
upcoming load. The plots on the rightmost column of Figure 10.7 illus-
trate the results. In comparison to the first run on the cluster, response
times are generally lower and pass the deadline more often. Because
the cluster prepares for heavy workloads in advance by scaling out to
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more nodes, the number of nodes is also larger in average, resulting
in increased average power consumption. The energy consumption per
query, however, shows a mixed picture. For low utilizations, but more
nodes running to prepare for upcoming events, energy consumption is
higher compared to the version without forecasting. On the other hand,
for higher utilization, thanks to in-advance preparations related to the
forecasting approach, query runtimes are lower and exhibit better over-
all energy efficiency.
When comparing the big server with the cluster, we can conclude

that the server is performing better, i. e., it exhibits lower query re-
sponse times. On the other hand, the cluster is more energy efficient,
especially during low and moderate utilization, due to its adaptation to
the workload. The cluster benefits from scale-in, when performance is
not needed. This translates to a steadily varying power consumption
(according to the cluster size), whereas the server displays a more or less
constant one. For OLAP workloads, the cluster seems like an eligible
alternative to a big server.

OLTP (big server) After running OLAP benchmarks, we have re-
peated the same dynamic workload with OLTP clients on the TPC-C
dataset. Figure 10.8 illustrates our results for experiments based on the
energy-centric OLTP benchmark. As before, the left column character-
izes the behavior of the big server, which exhibits low query runtimes,
but also high power consumption.

OLTP (cluster) The middle column of Figure 10.8 summarizes our
results for the benchmark run on a non-forecasting cluster. Obviously,
the response times shown are high. Because the cluster is forced to
permanently repartition, response times and, in turn, energy efficiency
are further worsened. Because the cluster can only react to the current
workload, rebalancing starts after a sufficient change of the workload is
detected. As discussed for the OLAP benchmark, this puts too much
stress on the nodes and notably slows down query processing. Compared
to the big server, query response times are much longer for high activity
levels of the cluster. Yet, power and energy consumption are lower.
Therefore, the cluster delivers better energy efficiency overall—if longer
query response times are deemed acceptable.
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OLTP (cluster with forecasting) The right-most column of Fig-
ure 10.8 plots the OLTP benchmark results on the cluster using
forecasting. Compared to the previous benchmark, the average number
of nodes is higher, because WattDB is preparing for workloads in
advance. As a result, query runtimes are more stable and more often
pass the deadline. However, power consumption is often higher. Again,
overall energy efficiency is characterized by a mixed picture: Due
to preparations related to the forcasting approach, lower workloads
have worse energy efficiency, but more intense workloads benefit by
achieving lower energy consumption per query.

Summary Reviewing the results from all benchmarks, we want to ex-
tract some condensed numbers to facilitate high-level comparison and
to gain a few key observations. For this reason, we have separately
computed indicative numbers for the dynamic OLAP and OLTP exper-
iments: Total energy consumed (in watt hours), overall query through-
put in units of 103 resp. 106, and average energy consumption in joules
resp. millijoules per query. These condensed numbers are visualized in
Figure 10.9, where the logarithmic Y-axis should be regarded.
First, the cluster is no match for the big server considering pure per-

formance. The centralized system does not require network communi-
cation or synchronization among nodes. Therefore, it can deliver much
better query throughput than the cluster, where queries have to be dis-
tributed, results have to be collected, and the overall execution of con-
current queries on multiple nodes needs some form of synchronization
to ensure ACID properties.
Second, the cluster handles low and moderate workloads quite well,

although the big server is still faster. Yet, the cluster requires less than
half of the server’s power (left-most bars in the figures). Therefore,
the cluster needs less energy per query and is more energy efficient, as
depicted by the right-most bars in the figures.
Third, dynamic workloads with varying utilization require prepara-

tion to adjust the number of nodes to the needs. If workloads are
predictable, the cluster exhibits better energy efficiency than the sin-
gle server while delivering comparable performance. Although, energy
consumption of a forecasting cluster is higher, its query performance
outweighs the additional wattage.
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Figure 10.9: Overall energy consumption, throughput, and average en-
ergy consumption per query

Energy delay product

Despite different hardware platforms and power consumption figures,
by calculating the EDP, we can make a square comparison of the big
server and the cluster. In Figure 10.10, we have summarized the EDP
results from our dynamic experiments on OLTP and OLAP workloads
for all three configurations. To illustrate the differences, all values are
relative to the EDP of the big server. Hence, the forecasting cluster’s
EDP is about half of that of the big server, regardless of OLTP or
OLAP workloads. For OLTP workloads, the non-forecasting cluster
exhibits nearly the same EDP as the big server, obviously, forecasting
really payed off here. In contrast, the non-forecasting cluster shows
the lowest EDP under OLAP queries, even lower than the forecasting
version. Apparently, preparing the cluster for upcoming workloads was

196



10.4 Summary

100% 100%92%

50%
58% 55%

0%
20%
40%
60%
80%
100%

OLTP OLAP

BigServer
Cluster
Cluster (forecasting)

Figure 10.10: EDP of OLAP & OLTP workloads

a (little) waste of time and energy here. However, the cluster’s EDP is
lower than that of the big server; hence, with the same energy budget,
we should be able to perform more work—although it might take some
extra time.

10.4 Summary
Here, we have examined the energy-saving potential of a clustered
DBMS compared to a traditional DBMS based on a single server. An
important goal of this work was to compare performance and energy
efficiency of our WattDB cluster to those of a big server. Of course, if
peak DBMS performance is required during almost the entire operating
time, a single-server approach has no alternative as our performance-
centric benchmarks clearly reveal. However, as stated in various studies
[BH09; SHK12], average utilization figures are far from continuous
peak loads. A large share of database or data-intensive applications
runs less than an hour close to peak utilization on workdays and is
resilient w.r.t. somewhat slower response times. During the remaining
time, their activity level is typically in the range of 20–50% and often
lower. Therefore, from low- to mid-range workloads, a dynamically
adjusting cluster of nodes will consume significantly less power without
sacrificing too much performance. Hence, their throughput/response
time requirements could be conveniently satisfied by the performance
characteristics of our cluster with much less energy consumption, as
confirmed by Figure 10.7. Hence, the application range, where the
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cluster’s energy efficiency largely dominates that of a single server, has
quite some practical benefit.
Especially for OLAP workloads, where lots of records need to be read

and aggregated without much coordination effort, a cluster seems to
be a viable alternative to a single server. On the other hand, when
processing OLTP workloads, where transactions need to synchronize
continuously, a cluster suffers from significant friction losses and handles
heavy workloads a magnitude slower than the centralized approach.
As shown, predictability of workloads and data elasticity are cru-

cial for our approach. Fortunately, typical usage patterns are pre-
dictable and a cluster can therefore prepare for upcoming workloads.
Thus, dynamically adjusting a cluster to the workload—although time-
consuming—is possible.
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11 Summary and Future Work
On the final pages of this dissertation, it is time to look back upon the
recent years of research and the outcome, represented and summarized
in this work. Here, we summarize our findings and give an outlook on
related questions, that we had to leave open.

11.1 Conclusion
Energy efficiency is an emerging concern in all areas of IT. Starting with
mobile, battery-driven equipment like mobile phones and autonomous
sensors, approaches to reduce power and energy consumption has ar-
rived in datacenters.
In this thesis, we have summarized our findings over the past years of

research on energy efficiency in databases. We started our exploration
by developing a measurement framework to quantify power consump-
tion, developed new benchmarking paradigms reflecting more realistic
usage patterns, and finally started to work on our own implementation
of an energy-proportional DBMS.
First, we examined the storage layer, where we implemented a dynam-

ically balancing, storage-centric DB cluster. Although we have shown
that optimizations on the storage lead to better energy efficiency, high
access latencies and limited scalability prevent bigger savings. Next,
we implemented a dynamic query execution layer, where the number of
nodes participating in query processing is dependent on the workload.
By running a varying number of nodes, we could show that it is also
possible to save energy at this database layer. By combining both ap-
proaches, data storage and query execution, in WattDB to form a truly
dynamic cluster, scaling out and scaling in as needed, our vision of an
energy-proportional DBMS has come true.
In this work, we have proven the possibility to save energy with a

distributed, elastic DBMS running on dedicated, lightweight nodes. Yet,
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we had to leave many stones unturned for the sake of developing a
proof-of-concept prototype. In the end, our goal to develop an energy-
proportional DBMS can be deemed a success.

11.2 Outlook
As already indicated, is it not possible to completely cover all aspects of
energy efficiency in a single thesis. Many questions worth examining are
left untouched, due to time and budget constraints. In the following,
some unresolved topics open for future research are presented.

Complex queries and transactions
Our DBMS supports basic query operators, various aggregation, and
arbitrary join operations. These features are sufficient to run OLTP
and OLAP experiments very similar to TPC-C and TPC-H.
To support more advanced queries, e. g., EXISTS predicates, or other

subqueries, and partial joins, appropriate query operators need to be
implemented. Integrating more operators should be straightforward and
not require much effort.
At the transaction level, WattDB currently supports single-query

transactions. Again, this choice was merely to reduce implementation
cost and can be easily extended to full transactional support.

Advanced schema support
WattDB supports simple schema definitions, e. g., column types and
foreign-key references. Yet, the latter are only indicators for the query
optimizer, how tables relate to each other, and are not checked while
executing transactions.
Implementing more advanced features like fully-enforced foreign-key

restrictions or assertions would require more implementational over-
head.
Again, we argue that our goal was not to design and develop a robust,

fully-features DBMS.
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Data replication
In our research, we have omitted data replication aspects at all. For one
reason, because replicating data increases power consumption and stor-
age cost, which contradicted our goal of reducing energy consumption.
Second, replication increases fault tolerance, an aspect we were able to
ignore in a small-scale cluster.
Yet, sophisticated replication might increase the system’s perfor-

mance by parallelizing queries and, thus, reduce energy consumption—
an aspect we did not explore. Here, we are referring to other
publications that examined similar problems, e. g., [Lam+02], [HHS05],
and of course [ÖV11].

Scalability
The size of our experimental cluster, consisting of 10 nodes at maximum,
can be considered rather small, especially when comparing our system
to potentially thousands of nodes in a Map/Reduce cluster [Yan+07].
Scaling our cluster to a larger number of nodes has serious implications
on hardware failure rates, therefore, replication and other means of
fault tolerance are needed. Also, in our implementation, all nodes were
communicating in a single broadcasting domain, connected to the same
switch. Network bottlenecks were never an issue in our experiments, but
an increasing number of nodes needs more sophisticated access and par-
titioning patterns to mitigate the limited bandwidth of a single network
switch. A hierarchical approach seems promising, where query evalu-
ation and data placement algorithms have to take the network layout
into account. Yet, this question is open for further investigation.

Cloud computing
During our research, interesting, parallel development in the community
started out, as colleagues began porting database functionality into the
cloud. While our work focused on a distributed DBMS running on ded-
icated, physically present machines, we were influenced by techniques
stemming from the cloud community. Likewise, our implementation
could run atop IAAS clouds [FK03], eliminating the need to explicitly
suspend and wake-up nodes. The cloud management layer could provide
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theses services for WattDB, while the master node only needs to request
and release machines. As pointed out, related approaches on cloud ar-
chitectures exist, e. g., [Das11], that are very similar to our approach
taken.
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A.1 WattDB’s Evolution
WattDB is a research prototype of a distributed, energy-efficient DBMS.
As with every large software project, it has undergone many changes
and evolved over time. Therefore, our initial experiments are based on
an implementation of WattDB that is very different from later revisions.
Work on WattDB started with a prototype used for the SIGMOD

Programming Contest 2010 [Gen+10] back in 2009. The goal was to
implement a distributed query engine running read-only queries on a
cluster of nodes. After participating in the contest, we gradually added
new features to our prototype, giving it more and more query evalu-
ation functionalities and introducing energy-related aspects. We also
developed an energy measurement framework, capable of assessing the
power and energy consumption of each node in the cluster individually.
In the following, we give an overview of various aspects and features

of the system and it’s surrounding eco-system, that have been imple-
mented over time and were introduced into WattDB at later stages. The
two time lines on the following pages sketch the evolution of WattDB
over time. On top, the years are shown from the very first start of our
work on WattDB’s predecessor for the SIGMOD Programming Contest
2010 in the year 2009, to the latest publications in 2015. Below, our
contributions and publications are listed in chronological order. Each
publication is linked with a version of WattDB, that was used to gen-
erate the respective results.
The individual features and their approximate time of developemt is

also plotted underneath. The time of implementation into WattDB is
depicted as a link between the feature and the corresponding version.
Some features are incremental improvements or replacements, imple-
mented earlier and, thus, are linked to show their connection.
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Figure A.1: Evolution of WattDB, 2009 to 2012
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Figure A.2: Evolution of WattDB, 2012 to 2015
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Listing A.1: TPC-H Q1: Pricing Summary Report Query
SELECT

l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax))

as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

FROM
lineitem

WHERE
l_shipdate <= ’1998-12-01’ - interval ’[DELTA]’ day (3)

GROUP BY
l_returnflag, l_linestatus

ORDER BY
l_returnflag, l_linestatus;

A.2 TPC-H Queries

A.2.1 TPC-H Q1

Q1, the Pricing Summary Report Query, is an I/O- and CPU-intensive
query, scanning all data in the LINEITEM relation and selecting some
records. The records are then sorted and aggregated. To leverage the
high number of CPU cores in the cluster, sorting is split into two phases:
First, all records are pre-sorted on the originating storage node. This
done using an external sort algorithm, spilling the intermediate sort
runs to a Solid-State Disk. Second, the pre-sorted records are streamed
to a processing node, where all runs from the partitions are sorted us-
ing merge sort. Additionally, the now sorted records are grouped and
aggregated. Listing A.1 shows the SQL query as defined in [TPC13, p.
28].
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Listing A.2: TPC-H Q4: Order Priority Checking Query
select

o_orderpriority, count(*) as order_count
from

orders
where

o_orderdate >= date ’[DATE]’
and o_orderdate < date ’[DATE]’ + interval ’3’ month
and exists (

select

*
from

lineitem
where

l_orderkey = o_orderkey
and l_commitdate < l_receiptdate)

order by o_orderpriority
group by

o_orderpriority;

A.2.2 TPC-H Q4
Query 4 is called Order Priority Checking Query. In the TPC-H
specifications, it contains an EXISTS subquery, which is unnested by
WattDB’s optimizer and replaced by an equi-join, which produces
identical results with superior performance. The records of the inner
(ORDERS) and outer (LINEITEM) relation are accessed via an index
range scan. We have chosen a hash join, because the inner relation is
fitting well into main memory. Using the result of the join, the records
are aggregated as defined by TPC-H. Listing A.2 plots the nested SQL
query as defined in the specification [TPC13, p. 34].

A.3 Record Server
Here, additional results on different storage configurations are pre-
sented, that were not included in the main section, discussing query
operator distribution.
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Figure A.3: TPC-H Q1 on a 1-node storage cluster

Figure A.4: TPC-H Q1 on a 3-node storage cluster
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Figure A.5: TPC-H Q1 on a 5-node storage cluster

Figure A.6: TPC-H Q1 on a 7-node storage cluster
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