HBelt: Integrating an Incremental ETL Pipeline
with a Big Data Store for Real-Time Analytics

Weiping Qu(®?, Sahana Shankar, Sandy Ganza, and Stefan Dessloch

Heterogeneous Information Systems Group,
University of Kaiserslautern, Kaiserslautern, Germany
{qu, s_shankarl12,s_ganza, dessloch}@informatik .uni-kl.de

Abstract. This paper demonstrates a system called HBelt which tightly
integrates a distributed, key-value data store HBase with an extended
ETL engine Kettle. The objective is to provide HBase tables with real-
time data freshness in an efficient manner. A distributed ETL engine is
extended and integrated as an overlay of HBase. Meanwhile, we extend
this ETL engine with the capability of processing incremental ETL flows
in a pipelined fashion. Delta batches are defined by the MVCC compo-
nent in HBase to flush the incremental ETL pipeline for multiple concur-
rent read requests.Experimental results show that high query throughput
can be achieved in HBelt for real-time analytics.

1 Introduction

Nowadays, many scalable, distributed data stores have been developed to deliver
large scale data analytics over high volume of structured/unstructured data for
valuable results. Data is first extracted, transformed and loaded (ETL) from
heterogeneous sources into a centralized data store using ETL tools.

In order to meanwhile keep track of updates happening at the sources side,
incremental ETL [9,10] has been widely used to propagate only deltas to the
analytical systems instead of re-loading source data from scratch. Incremental
ETL normally runs the maintenance flows periodically, i.e. hourly, or in micro-
batches (minutes). However, for time-critical decision making, it is desirable to
have real-time databases which provide queries with up-to-date state of touched
tables. This forces ETL engines to propagate deltas to the target system in a
very fast pace even with high update ratio in the external sources.

Background and Motivation. In our previous work [1], we introduced a
demand-driven bulk loading scheme to allow early uptime for analytical sys-
tems by first offloading large amounts of cold data into a distributed, scalable,
big data store HBase [2]. Data resides in HBase initially and becomes incremen-
tally available in the target system according to the access priorities. Meanwhile,
there are more and more updates collected from a variety of external sources. To
achieve data freshness for time-critical decision making, an efficient maintenance
mechanism is needed to refresh the data that are still buffered in HBase.

© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 123-137, 2015.
DOI: 10.1007/978-3-319-23135-8_9

124 W. Qu et al.

In this work, we propose our HBelt system which tightly integrates HBase
with a pipelined data integration engine extended by an open-source ETL tool
(Pentaho Data Integration (Kettle) [3], shortly Kettle) for real-time analytics.
HBelt enables HBase tables to keep track of concurrent data changes in external
data sources and provides each analytical query with a consistent view of both
the base data and the latest deltas preceding the submission of the query. Data
changes are propagated to HBase in a query-driven manner. The contributions
of this paper are as follows:

— We deploy a Kettle environment directly in the same cluster shared by HBase.
A copy of an ETL flow instance runs on each HBase working node. Besides,
a HBase-specific partitioner is implemented in Kettle to distribute captured
deltas to the correct HBase working nodes.

— We define our consistency model in HBelt and embed the Multi-Version Con-
sistency Control (MVCC) component of HBase into Kettle. The MVCC com-
ponent is used to define delta batches that need to be propagated to the target
HBase tables for answering specific query requests.

— We propose a pipelined Kettle engine to process different delta batches in
parallel. Kettle is geared towards data pipelining for high throughput of an
ETL flow.

The remainder of this paper is as follows. We relate our work to several recent
attractive work in different domains in Sect. 2. We give a brief introduction of
key components in HBase and Kettle in Sect.3. In Sect.4, we introduce our
HBelt system which integrates HBase with Kettle in terms of consistency and
performance. Experiments are conducted and discussed in Sect. 5.

2 Related Work

PigLatin [7] is a script language developed in the Pig project. Pig scripts can be
used to perform batch ETL jobs that run as MapReduce [8] jobs and thereby can
be seen as a distributed ETL engine. Map/Reduce tasks are executed remotely
directly over data stored in cluster nodes, thus delivering high scalability and
parallelism. Furthermore, Pig also supports loading data into HBase through
its pre-defined HBaseStorage class. Regarding function shipping, HBelt is sim-
ilar to Pig which executes ETL flows directly on remote data nodes. However,
HBelt allows each query/request to access up-to-date state of data by integrating
MVCC component into Kettle. Meanwhile, we implemented pipelined version of
ETL flows to enable HBase to efficiently react to trickle-feeding updates instead
of batch processing.

Real-time databases result from the trend of merging OLTP & OLAP work-
loads, also known as one-size-fits-all databases. Hyper [13] is a typical example of
these databases and is designed as an in-memory database. In Hyper, updates in
OLTP workloads are performed in sequence in a single thread while each OLAP
query session will see a snapshot of the current table state in a child thread
forked from the parent update thread. Another example related to our work is

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 125

R-Store [6] which stores both real-time data and historical cubes in HBase. His-
torical cubes are used for OLAP queries and get incrementally maintained with
the updates captured from real-time OLTP data by a streaming MapReduce
called HStreaming. One difference between HBelt and R-Store is the location
of OLTP data. Real-time data resides in R-Store while HBelt assumes a more
general situation that real-time deltas are captured from external OLTP sources
using the extract component in ETL.

Golab et al. proposed temporal consistency and scheduling algorithms in
their real-time stream warehouse [11,12]. Each real-time query always accesses
the latest value preceding the submission time of the query. In their stream
warehouse, data is divided into multiple partitions based on consecutive time
windows. Each partition represents data in a certain time window and there are
three consistency levels defined for queries, i.e. open, closed and complete. A
partition is marked as open if data currently exists in or is expected to exist
in the partition. From the query perspective, a closed partition implies that
the scope of pending data has been fixed, whereas data is expected to arrive
in a limited time window. This means that the query can be executed over
base data that might be incomplete. The complete level is the strongest query
consistency and all the data has arrived in the partition. We reuse this notion
of temporal consistency in our work for consistency control by extending the
MVCC component in HBase.

3 Background

In this section, we give a brief introduction of HBase and Kettle as background
and describe only the components which are relevant to our work.

3.1 HBase

HBase [2] is a scalable, distributed key-value store that is widely used to deliver
real-time access to big data. It follows a master/slave architecture. In HBase, a
table is horizontally partitioned into a set of regions with non-overlapping key
ranges. Each region contains a set of in-memory key-value lists called memsStore
and multiple on-disk storeF'iles. Once a memStore fills up, it is flushed onto disk
as a new storeFile. All data (regions) reside only in slave nodes called HRegion-
Servers while the master node has only meta-data information which specifies
how the regions with different key ranges are partitioned across HRegionServers.

As a data store, it provides only primitive operations (i.e. put, get and
scan) based on a given row key. Based on the meta-data information (row key-
HRegionServer mappings), a master node delegates all the put/get operations to
corresponding HRegionServers where the actual operations take place. For large
scale data analytics over HBase, there have already been efforts that implements
an extra SQL layer over HBase which accesses tables stored in HBase through
these primitive operations [4,5].

126 W. Qu et al.

In HBase, only two transaction isolation levels are guaranteed, i.e. read
uncommitted and read committed. In order to achieve consistency between con-
current reads and writes, a component called Multi-Version Consistency Control
(MVCC) is used. Each region contains a MVCC instance which maintains an
internal write queue. A write queue is a list of Write Entry (we) elements which is
used to assign a unique write number to an individual write or a batch of writes.
Writes are not allowed to commit until their preceding writes have committed in
this write queue. In this way, sequential writes are guaranteed in HBase. When
a get/scan operation is issued with read committed as the transaction isolation
level, the MVCC component returns the latest committed write number to this
thread as read point readPt for fetching key-values whose write numbers are
lower than or equal to this value in this region.

3.2 Kettle

Kettle [3] (or PDI) is an open-source ETL tool that has been widely used in the
research community and provides a full-fledged set of transformation operations
(called step in Kettle). A stream or batch of files are taken as input and processed
row by row in each step. During flow execution, each step is running as an
individual thread. Step threads are connected with each other through an in-
memory queue called RowSet. The results of a preceding step are put in its
output rowset which in turn is the input rowset of its subsequent step where
rows get fetched. Step threads kill themselves once they are finished with their
batch of files.

Kettle also enables a cluster execution mode in which multiple copies of the
same flow instance can run in parallel over distributed nodes for better perfor-
mance. The cluster environment follows a master/slave architecture. The input
files of the flows running on the slave nodes are constructed by partitioning and
distributing rows in master node according to a user-defined partition schema.

4 HBelt System

In this Section, we introduce our HBelt system, which integrates a distributed,
HBase big data store with an extended, pipelined data integration engine based
on Kettle for real-time analytics. Analytical queries are issued to a relational
database layer over HBase in which actual target tables reside. In order to keep
track of concurrent data changes at the source side, the internal consistency in
HBase is maintained by multiple Kettle pipeline instances before each query is
executed. A single query sees a consistent view which consists of the base data
and the latest deltas preceding the submission time of this query. Furthermore,
we try to reduce the synchronization delay by introducing two kinds of paral-
lel computing techniques: data partitioning and data pipelining. Therefore, the
objective of HBelt is to ensure both consistency and performance. The architec-
ture is illustrated in Fig. 1.

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 127

4.1 Architecture Overview

As described in Sect. 3, a table stored in HBase are horizontally partitioned to
a set of regions with non-overlapping key ranges and distributed over multiple
HRegionServers. Current Kettle implementation (since Version 5.1) has provided
a so-called HBase Output step to maintain a HBase table by using a single flow
instance. All calculated deltas have to go through this step to arrive in target
HRegionServers. However, since both HBase and Kettle follow the master/slave
architecture, it is desirable to utilize the essence of distributed processing from
both systems in terms of integration. In HBelt, the same number of the flow
instance copies are constructed as the number of HRegionServers and further
executed directly on each single HRegionServer node.

Delta input streams |

1
1 1
1 1
! purchases :
1 1
1
1
Ilneltems
I

PDI Kettle

lm

Delta output strea

StoreFile MemStore /

wee| PV

Change
data

capture
(CDCQ)

Master

Partitioner

HRegionServer

| Delta input streams

|

0 1

1

{ﬁ
1

Ilneltems

PDI Kettle

Delta output streal

StoreFile

MemStore /

MVCC

HRegionServer
Fig. 1. HBelt architecture

Take a logical ETL flow as an example, which processes data changes cap-
tured from external purchases and lineitems sources to maintain the target sales
table in HBase. In the master node (at the left side of Fig. 1), a change data cap-
ture (CDC) step uses methods like log-sniffing [14] or timestamps to capture the
source deltas. In order to forward source deltas to the right HRegionServers for
further flow execution, both the keys in the deltas and the key ranges of regions
stored in HBase tables need to be considered. This is done by a component
called Partitioner. In this example, purchase rows have purc_id as key and both
lineitems rows and the sales table have compound keys (purc_id, item_id). The
partitioner component fetches cached meta-data of the sales table from HBase in

128 W. Qu et al.

the same master node and forms a user-defined partition schema in Kettle. This
meta-data shows the mapping from row keys to HRegionServers, based on which
the lineitems deltas can be distributed to server nodes correctly. For a purchases
row whose purc_id might span across regions in multiple HRegionServers, copies
of this purchases row are sent to HRegionServers along with lineitems. In this
way, we guarantee that calculated deltas for the target sales table should reside
on the correct HRegionServer.

So far, we have introduced a sub-flow which consists of two steps: CDC and
Partitioner. This sub-flow runs independently of query requests on HBase tables
and feeds source deltas continuously to the delta input streams in HRegion-
Servers to reflect the concurrent updates on the source side.

4.2 Consistency Model

In this subsection, we define our consistency model in HBelt for real-time analyt-
ics over HBase. Take an example shown in Fig. 2. At the upper left side, there is
a traditional transaction log file recording five transactions (T1~T5) committed
from t; to ts, respectively. The CDC process mentioned in previous subsection
is continuously extracting these changes from the log file and sending corre-
sponding deltas to the delta input streams of both of the Kettle flow instances
(in this case only two flow instance copies are running on two individual HRe-
gionServers).

PDI Kettle R, (t,)

StoreFile
HRegionServer
\ ‘ ‘ m PDI Kettle

5] [4]

StoreFile

HRegionServer

Fig. 2. Consistency model

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 129

Meanwhile, four distinct requests have been issued to HBase to perform
scan operations over regions stored in these two HRegionServers. The first scan
request Ry occurs at timestamp t; which forces HBelt to refresh existing HBase
table using changes (e.g. insertions, updates and deletions) derived from the first
transaction T; which is committed at t;. Once these changes have been success-
fully propagated and stored into the memStores in these two HRegionServers,
R; is triggered to started immediately. Although the second scan request Rg
is issued at later time t; 5, it still precedes the committing time of the second
transaction To (at to). Hence, it shares the same state of the HBase table as
Ri. The third scan request R3 has its occurring time to 5 which succeeds the
committing time of Ty and precedes the committing time of T3. Since the deltas
from Ts are only available in the first HRegionServer, R3 first completes the
scan operation over regions in the first HRegionServer and waits for the regions
in the second HRegionServer to be refreshed by Ts’s committed changes. To
answer the fourth request Ry, relevant regions stored in both HRegionServers
need to be upgraded by the deltas from Ty to Ty4. Since neither of Kettle flows
has finished propagated these deltas to HBase, R4 is suspended until the HBase
table is refreshed with correct deltas.

4.3 MVCC Integration for Delta Batches

In this subsection, we show how maintenance flows and query requests are sched-
uled in each HRegionServer to achieve the consistency we defined in previous
subsection. Recall that in HBase the consistency in each region is maintained by
a Multi-Version Consistency Control instance (see Sect.3) where a local write
queue is used to ensure sequential writes. A write queue maintains a list of open
Write Entries we for assigning unique write numbers to batches of writes during
insertions. Writes are only visible after they are committed and corresponding
wes are marked as complete. However, in order to make each query request see
a consistent view of base data and deltas, the current MVCC implementation in
HBase has to be extended to meet our needs.

At any time, there is always one and only one open write entry we in the write
queue. While source deltas continuously arrive in each HRegionServer, instead of
triggering the maintenance flow to start immediately, deltas are first buffered in
input streams and all of them are assigned the write number of this open we. We
define that all the deltas sharing the same write number belong to a delta batch
with a batch id. Once a read request is issued by an analytical query, this we is
first marked as closed instead of complete (Here we embedded the temporal
consistency described in Sect.2 in our work). The closed state indicates that
the maintenance flow now gets started to digest this delta batch with we’s write
number as batch id and the final calculated deltas with this batch id have not yet
completely arrived in HBase. Therefore, the read request awaits the completion
of its maintenance flow and gets pushed into a waiting list read queue. Meanwhile,
a new write entry we’ is created and inserted into write queue to paint newly
incoming deltas with we”’s write number.

130 W. Qu et al.

At the time the last row with (we’s) batch id gets successfully inserted into
HBase memStore by the final maintenance step, we is finally marked as complete
and gets removed. All waiting reads in the read queue are notified of this event
and check whether the complete batch id matches their local ones. The read
request which waits for exactly this event gets started to continue with either a
get or scan operation. Even though during the scan operation more new delta
batches are inserted into the same regions, this read request would not be inter-
fered with since it has an older batch id which restricts the access of rows with
newer batch ids. In this way, we guarantee that each read request always sees
the latest value of a consistent view of base data and deltas preceding its sub-
mission time.

ol PDI Kettle —
) o
6| Lol
59|
35 Q
© [5 5
|l 2 |
S B
12| StoreFile 2|
1 _I gE2
— I 1
MVCC _ ged% read
queue

HRegionServer

Fig. 3. MVCC integration for delta batches on HRegionServer

Figure 3 illustrates a snapshot taken at the time nine read requests have
been issued by analytical queries. The arrival of these requests forces MVCC to
group the corresponding deltas into nine batches which were once buffered in
the streams before each occurrence of request. These read requests are waiting
in the read queue until their delta batches get finished through the maintenance
flow. Meanwhile, nine pending batches are denoted by the write entries stored
in the write queue of MVCC component. They are all marked as closed except
the first one since the first delta batch has been successfully moved to HBase
memStore and can be made accessible to the first request. Thus, the first request
is reactivated by the final maintenance step and continues with the get/scan
operation. The second and third batches have already been put into the output
streams and their requests are about to start. Note that, due to high request rate,
delta batches 5-9 are still buffered in the input streams since the maintenance
flow is still processing previous batches.

4.4 Pipelining Delta Batches in Kettle

As we can see from the previous subsection, the maintenance flow could be busy
with processing different batches issued by multiple requests, especially with a
high request rate. Hence, there is a need to speed up the performance of the
maintenance flow. For each read request, in order to keep track of concurrent

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 131

updates at the source side, the synchronization latency incurred by the mainte-
nance flow is fixed. However, another potential optimization opportunity is to
increase the throughput of the system. To address this, a pipelined flow engine
based on Kettle is proposed.

As described in Sect. 3, the original Kettle implementation simply takes a
stream/batch of data as input with no comprehension of different consecutive
batches. It is important to distinguish different batches for specific transforma-
tion operations e.g. sort, aggregation, etc. in our work. Otherwise a maintenance
flow could generate incorrect deltas for each read request, leading to inconsis-
tent analytical results. For example, if a sort operation would receive rows from
two delta batches and process them at the same time, the results coming out of
this operation would be totally different from the results of sorting two batches
separately. This also holds for aggregation operations like sum() or avg().

Algorithm 1. Step Implementation in Pipelined Kettle

Input: r¢ // read queue which bufferes waiting read requests.
in // intput rowsets
out // output rowsets

Init: readPt // local read point
index // index used to iterate read queue.

while true do

=

2 if rq is empty || in is empty then

3 | wait();

4 readPt — rq[index—++];

5 init(); // clear local caches, counters, etc.
6 while in.getRow().batchID == readPt do

7 r «—processRow();

8 out.add(r);

9 out.notify();

10 | depose();

In this work, we extended Kettle to a pipeline flow engine which is able to
react to different mini-batch jobs at the same time while still guaranteeing con-
sistency. The extension of a single step thread is given above (see Algorithm 1).
All steps in the maintenance flow share the same read queue which holds a list
of pending read requests mentioned in previous subsection. Furthermore, each
step maintains a local index which points at certain read request in the queue
as a local read point readPt. This readPt is actually the batch id of the delta
batch that needs to be processed. Once a step successfully fetches a batch id
that matches the id of the rows in its input rowset, this step first initializes
itself by clearing local caches and counters. After a row is processed, in addition
to putting the result into the output rowset, it notifies its subsequent step of
the existence of the output. When the batch is finished, instead of killing itself

132 W. Qu et al.

19| [6]5] [3]2]1]read queue
A i »I* X

- 7 \

N IIHEH
J_L V" join 2 E agg.
16

513

Fig. 4. Pipelined Kettle

as in the original implementation, it deposes itself (e.g. release used database
connections) and tries to fetch the next read request in the queue.

As shown in Fig. 4, a pipelined Kettle flow is being flushed by nine delta
batches. Due to diverse operational costs, the lookup step in the upper branch
of the join step has already started to work on the ninth batch while another
lookup step in the lower branch is still working on the sixth one. However, the
join step would not continue with processing the rows in subsequent (e.g. fifth
or sixth) batches until it makes sure that there is no more row of batch id 3
existing in neither of its input rowsets. Even though the fifth and sixth batches
are already available, they are still invisible to the join step since the current
readPt is still three. Data pipelining is introduced here to increase the throughput
of the maintenance flow. However, the synchronization latency for each request
is not improved or sometimes even increased, for example, the fifth batch cannot
start until the join step finished with all the deltas in the third batch. We will
examine it in the experiments.

5 Experimental Results

The objective of HBelt is to provide get/scan operations in HBase with real-
time data access to the latest version of HBase’s tables by tightly integrating
an ETL engine, i.e. Kettle, with HBase. Though current Kettle (since Version
5.1) has implemented “HBase Output” step towards Big Data Integration, in
our scenario, sequential execution of a single Kettle flow at once to maintain
target HBase tables for time-critical analytics could lead to long data main-
tenance delay at high request rate. In this section, we show the advantages of
our HBelt system by comparing its performance in terms of maintenance latency
and request throughput with the sequential execution mode. We mainly examine
the performance improvements by using data partitioning and data pipelining
techniques in HBelt.

In the experiments, our HBelt ran on a 6-node cluster where a node (2 Quad-
Core Intel Xeon Processor E5335, 4x2.00 GHz, 8 GB RAM, 1TB SATA-II disk)
served as the master and the rest five nodes (2 Quad-Core Intel Xeon Processor
X3440, 4x2.53 GHz, 4 GB RAM, 1TB SATA-II disk, Gigabit Ethernet) were the

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 133

slave nodes running HRegionServer and Kettle threads (see Subsect.4.1). Mean-
while, the same cluster was used to accommodate an original version (0.94.4) of
HBase connected with a Kettle engine (Version 5.1) running on a client node
(Intel Core 17-4600U Processor, 2x2.10 GHz, 12 GB RAM, 500GB SATA-II disk)
to simulate the sequential execution mode.

We used TPC-DS benchmark [15] in our test. A store_sales table (with SF
10) resided in HBase and was maintained by a Kettle flow with the update files
purchases (f: 10K) and lineitems (§: 100K) generated by TPC-DS dsdgen. The
maintenance flow is depicted in Fig. 5. Purchases and lineitems are the delta files
and are joined together in an incremental fashion after applying several surrogate
key lookup steps. The intermediate join results are further aggregated as the
final delta rows for the target store sales table. In sequential execution mode,
the source delta files (purchases & lineitems) resided in the client node and were
used as input for the Kettle flow to populate the store sales table in the 6-node
HBase cluster using HBase Output. However, in HBelt mode, these source delta
files were initially stored in the master node and later continuously distributed
and fed to the five slave nodes where two input rowsets were used to buffer
delta rows as delta input streams (instead of CSV Input steps). Furthermore, in
contrast to sequential execution mode, each region was the target output instead
of “HBase Output” step.

Purchase deftafssy] [
projection(purc)

Time lookup type conversion(purc)
HBase Output
Select valuesssv]

Sort rows 3 Calculatorfss]

Purchase lineitem delta[ssv] J
2] =
X

column alignment
R j0in mater purc

Promotion lookup[ssy] type conversion(plin)

update mater plin

Fig. 5. Test maintenance flow in kettle

Data Pipelining: We first examined the performance improvement associated
with the data pipelining technique implemented in the Pipelined Kettle compo-
nent of our HBelt. The store sales table was not split in HBase and had only
one region. Thus, only one HRegionServer was activated to serve issued request
load and only one pipelined Kettle instance was dedicated to refresh the target
table with purchases and lineitems delta files. Moreover, the delta files were split
evenly to 210 chunks to emulate the input deltas to maintain the target table
for 210 read requests occurring consecutively in a small time window.

The maintenance latency for each request is shown in Fig.6. In sequential
execution mode (SEQ), the same Kettle flow ran 210 times at the client side one
flow at once to refresh target HBase table with 210 delta chunks. The latency
difference between two adjacent requests is the duration of one flow execution.

134 W. Qu et al.

700

600
B HBelt

M SEQ

500

400

latency(s)

|
T
\

g

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

7777777777777777777777

requests

Fig. 6. Maintenance latencies of 210 consecutive read requests on single node

Since each flow execution took the same size of delta chunk as input, the main-
tenance latency grows linearly. The last request has to wait for the completions
of preceding 210 flow executions (~10.5min). Using HBelt, the flow pipeline
shown in Fig. 5 was flushed by 210 delta batches at the same time. The latency
difference between two adjacent requests depends on the slowest step in the
pipeline rather than one complete flow execution. In summary, HBelt outper-
forms SEQ in terms of maintenance latency even though only one region existed
in the HBase cluster, i.e. no data partitioning parallelism. Each request started
earlier than in SEQ. The synchronization delay for the last request is 400s, thus
increasing the performance by ~30 %. This proves that HBelt is able to deliver
high throughput at a high request rate or in case of “hotspot” issue in HBase,
i.e. a single HRegionServer has a higher load than others.

Data Partitioning: We show another advantage of HBelt here: running one
pipelined Kettle instance directly on each individual HRegionServer. Firstly, the
store sales tables were evenly pre-split to 10 regions with non-overlapping row
key ranges over 5 HRegionServers, thus each HRegionServer was active and man-
aged 2 regions. Secondly, the request load consisted of a thousand scan operations
in which each individual Region[1—10] was scanned by 50 scan operations, sub-
sequent 100 operations scanned Regions (1~3), 100 operations scanned Regions
(4~6), 100 operations scanned Regions (6~8), 100 operations scanned Regions
(8~10) and the rest 100 operations scanned the entire table. Hence, each request
required in average only 2/7 portion of the table to become up-to-date before it
was executed. Finally, we generated a set of delta files purchases and lineitems
of ten sizes {#: (10K & 120K), (20K & 240K), ..., (100K & 1200K)} each of
which were further split to 1000 chunks to simulate the delta inputs for the 1000
scan requests. In each chunk only 2/7 portion in average is needed to refresh the
necessary regions for one request.

The request throughputs with different delta size settings are shown in Fig. 7.
As the baseline, the request throughput in SEQ decreases steadily from 2.78
(frequests/s) to 0.46 (frequests/s) with increasing delta sizes, which indicates
growing maintenance overhead. The throughput in SEQ mode is much lower
than that in HBelt since two scan operations have to be executed sequentially

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 135

-+ HBelt
i SEQ

throughput (#requests/s)

o N 2 o ®

(10K& (0K& (30K& (40K& (SOK& (60K& (FOK& (B0K& (90K & (100K &
100K) 200€) 300K) 400K) 500K) 600K) 700K) 8OOK) 900K) 1000K)

delta sizes

Fig. 7. Request throughput after issuing 1000 requests using diverse delta sizes

no matter how many deltas are really needed to answer certain request. HBelt
provides much higher throughput (19.28 to 4.35 frequests/s). The efficiency is
two fold. Due to data partitioning, HBelt is able to propagate deltas for concur-
rent requests with non-overlapping key ranges at the same time. For example,
a scan operation which accesses Region(1~3) has no conflict with another scan
operation which touches Region(4~6). Separate ETL pipeline can refresh inde-
pendent regions at the same time. Meanwhile, since deltas were split and dis-
tributed over multiple ETL pipeline instances, the size of input deltas dropped
drastically and the latency became less as well. In addition to data partitioning,
pipelined Kettle still provides data pipelining parallelism for multiple concurrent
requests arriving at the same HRegionServer.

—+—HBelt ——HBelt
Original

6 SEQ

Original
© SEQ

throughput (#requests/s)
throughput (#requests/s)

0 2

10 10 W

0 S0 100 150 200 250 300 350 400 450 S0 S50 600 650 700 750 800 850 900 950 1000 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
number of requests number of requests

Fig. 8. Request throughput with Fig. 9. Request throughput with
small deltas (10K purchases & large deltas (50K purchases &
100 K lineitems) 500 K lineitems)

Figures 8 and 9 compare the throughput with increasing requests among three
settings: HBelt, sequential execution mode and an original HBase setting which
does not have maintenance overhead incurred by our ETL pipelines. With small
delta sizes (10 K purchases & 100 K lineitems), HBelt achieves performance much
similar to original HBase which does not guarantee data freshnees. However, as

136 W. Qu et al.

the size of delta grows, the request throughput of HBelt dropped significantly
while it still outperforms the sequential execution mode.

6 Conclusion

In this work, we introduced our HBelt system which integrates an ETL engine
Kettle with a big data store HBase to achieve real-time analytics over tables
stored in HBase. The integration utilized the architectural essence of both sys-
tems, i.e. master/slave architecture. A copy of the Kettle flow instance runs
directly on each HBase data node. File inputs are partitioned using our HBase-
specific partitioner and further distributed over these data nodes, thus allow-
ing multiple Kettle flow instances to work synchronously for concurrent non-
conflicting requests. In this way, we provide data partitioning parallelism in
HBelt. Furthermore, we defined the notion of our consistency model to enable
each request to see the latest version of tables preceding the request submission
time. The consistency component in HBase is embedded in Kettle to identify cor-
rect delta batches for answering specific HBase requests. Moreover, we extended
Kettle to a pipelined version which is able to work on multiple distinct delta
batches at the same time. A pipelined Kettle flow can be flushed by a large
number of delta batches, thus increasing request throughput. Finally, the exper-
imental results show that HBelt is able to reduce maintenance overhead and
raise request throughput for real-time analytics in HBase.

References

1. Qu, W., Dessloch, S.: A demand-driven bulk loading scheme for large-scale social
graphs. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS
2014. LNCS, vol. 8716, pp. 139-152. Springer, Heidelberg (2014)

2. http://hbase.apache.org

3. Casters, M., Bouman, R., Van Dongen, J.: Pentaho Kettle Solutions: Building
Open Source ETL Solutions with Pentaho Data Integration. John Wiley & Sons,
Indianapolis (2010)

4. https://wiki.trafodion.org/

5. http://phoenix.apache.org/

6. Li, F., Ozsu, M.T., Chen, G., Ooi, B.C.: R-Store: a scalable distributed system for
supporting real-time analytics. In: IEEE 30th International Conference on Data
Engineering, ICDE 2014, pp. 40-51. IEEE, March 2014

7. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099-1110. ACM, June 2008

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

9. Vassiliadis, P., Simitsis, A.: Near real time ETL. In: Kozielski, S., Wrembel,
R. (eds.) New Trends in Data Warehousing and Data Analysis. AIS, pp. 1-31.
Springer, Cambridge (2009)

http://hbase.apache.org
https://wiki.trafodion.org/
http://phoenix.apache.org/

10.

11.

12.

13.

14.

15.

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 137

Jorg, T., Dessloch, S.: Near real-time data warehousing using state-of-the-art ETL
tools. In: Castellanos, M., Dayal, U., Miller, R.J. (eds.) BIRTE 2009. LNBIP, vol.
41, pp. 100-117. Springer, Heidelberg (2010)

Golab, L., Johnson, T., Shkapenyuk, V.: Scheduling updates in a real-time stream
warehouse. In: IEEE 25th International Conference on Data Engineering, ICDE
2009, pp. 1207-1210. IEEE, March 2009

Golab, L., Johnson, T.: Consistency in a stream warehouse. In: CIDR, Vol. 11, pp.
114-122 (2011)

Kemper, A., Neumann, T.: HyPer: a hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: IEEE 27th International Conference
on Data Engineering, ICDE 2011, pp. 195-206. IEEE, April 2011

Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit. John Wiley & Sons,
Indianapolis (2004)

http://www.tpc.org/tpcds/

http://www.tpc.org/tpcds/

	HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store for Real-Time Analytics
	1 Introduction
	2 Related Work
	3 Background
	3.1 HBase
	3.2 Kettle

	4 HBelt System
	4.1 Architecture Overview
	4.2 Consistency Model
	4.3 MVCC Integration for Delta Batches
	4.4 Pipelining Delta Batches in Kettle

	5 Experimental Results
	6 Conclusion
	References

