
Optimizing Sort in Hadoop using
Replacement Selection

Pedro Martins Dusso1,2, Caetano Sauer1, and Theo Härder1

1 Technische Universität Kaiserslautern, Kaiserlautern, Germany
2 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Abstract. This paper presents and evaluates an alternative sorting
component for Hadoop based on the replacement selection algorithm.
In comparison with the default quicksort-based implementation, replace-
ment selection generates runs which are in average twice as large. This
makes the merge phase more efficient, since the amount of data that
can be merged in one pass increases in average by a factor of two. For
almost-sorted inputs, replacement selection is often capable of sorting
an arbitrarily large file in a single pass, eliminating the need for a merge
phase. This paper evaluates an implementation of replacement selection
for MapReduce computations in the Hadoop framework. We show that
the performance is comparable to quicksort for random inputs, but with
substantial gains for inputs which are either almost sorted or require two
merge passes in quicksort.

Keywords: Sorting, Quicksort, Replacement Selection, Hadoop

1 Introduction

This work implements and evaluates an alternative sorting component for
Hadoop based on the replacement selection algorithm [9]. Sorting is used in
Hadoop to group the map outputs by key and deliver them to the reduce func-
tion. Because of Hadoop’s big data nature, this sorting procedure usually is an
external sorting. The original implementation is based on the quicksort algo-
rithm, which is simple to implement and efficient in terms of RAM and CPU.

Sorting performance is critical in MapReduce, because it is not trivially par-
allelizable as map and reduce tasks. The data is parallelized by partitions on the
reduce key value, but this requires a lot of data movement. The sort stage of a
MapReduce job is network- and disk-intensive, and often reading a page from
the hard disk takes longer than the time to process it. Thus, CPU instructions
stop being the unit to measure the cost in the context of external sorting, and
we replace it by the number of disk accesses—or I/O operations—performed.
This difference makes algorithms designed only to minimize CPU instructions
not so efficient when analyzed from the I/O point of view. This means that the
superiority of quicksort for in-memory processing may not be directly manifested
in this scenario.



Our goal in this paper is to assess replacement selection for sorting inside
Hadoop jobs. To the best of our knowledge, this is the first approach in that
direction, both in academia and in the open-source community. We observe that
our implementation performs better for almost-sorted inputs and for inputs that
are considerably bigger than the available main memory. Furthermore, it exploits
multiple hard drives for better I/O utilization.

The remainder of this work is organized as follows. Section 2 reviews related
work and motivates the use of replacement selection. Section 3 reviews algo-
rithms for disk-based sorting, focusing on the replacement selection algorithm.
In Section 4, we discuss implementation details. First, we present the internals
of Hadoop, focusing on the algorithms and data structures used to implement
external sorting using quicksort. Second, we present a custom memory manager
used to manage the space in the sort buffer in main memory efficiently. Third,
we present optimizations in the key comparison during the sort and finally a cus-
tom heap with a byte array as the placeholder for the heap entries. In Section 5,
we compare our replacement selection method against the original quicksort. Fi-
nally, Section 6 concludes this paper, providing a brief overview of the pros and
cons of our solution, as well as discussing open challenges for future research.

2 Background

Data management research has shown that replacement selection may deliver
higher I/O performance for large datasets [11, 10] in the context of traditional
DBMS applications. Replacement selection is a desirable alternative for run gen-
eration for two main reasons: first, it generates longer runs than a standard
external-sort run-generation procedure. As Knuth remarks in [9], “the time re-
quired for external merge sorting is largely governed by the number of runs
produced by the initial distribution phase”. The fact that the lesser number
of runs created by replacement selection leads to a faster merger phase is also
reported in [7]. Thus, to decrease the time required for the merge phase, we
increase the size of the runs.

As a second advantage, this algorithm performs reads and writes in a con-
tinuous record-by-record process and, hence, it can be carried out in parallel.
This is particularly advantageous if a different disk device is used for writing
runs because heap operations can be interleaved with I/O reads and writes
asynchronously [7]. These optimizations are not possible with quicksort, which
operates in a strict read-process-write cycle of the entire input.

A potential disadvantage of replacement selection compared to quicksort is
that it requires memory management for variable-length records. Replacement
selection is based on the premise that when we select the smallest record from
the sort buffer in main memory, we can replace it with the incoming record. In
practice, this premise does not hold because variable-length records are the rule
and not the exception. When a record is removed from the sort workspace, the
free space it leaves must be tracked for use by following input records. If a new
input record does not fit in the free space left by the last selection, more records



must be selected until there is enough space. This leads to another problem,
namely the fragmentation of memory space. Thus, managing the space in the
sort buffer efficiently when records are of variable length becomes a necessity.
To address this issue, we implemented a memory manager based on the design
proposed by P. Larson in [10]. These characteristics will be evaluated empirically
in Section 4.

Run generation in quicksort is a simple, nevertheless effective, strategy to
create the sorted subfiles. First the records from the input are read into main
memory until the available main memory buffer is full. These records are then
sorted in-place using quicksort. Finally, they are written into a new temporary
file (run). If we assume fixed-length records such that m records fit in main
memory, this process is repeated s

m times, resulting in r := s
m runs of size m

stored in the disk.

Another advantage of quicksort is the vast research effort dedicated to it dur-
ing the last decades [1, 7, 14, 2]. We call attention to the work in AlphaSort [13],
which is a sort component that enhances quicksort with CPU cache optimiza-
tions. Two of these techniques include the minimization of cache misses and the
sorting of only pointers to records rather than whole records, which minimizes
data movements in memory. The reason behind the adoption of quicksort in Al-
phaSort is “it is faster because it is simpler, makes fewer exchanges on average,
and has superior address locality to exploit the processor caching” [13]. These
techniques are also employed by Hadoop in its quicksort implementation. In
Section 4.3 we discuss these techniques in the context of replacement selection.

3 Replacement selection sort

Sort algorithms can be classified into two broad categories. When the input set
fits in main memory, an internal sort can be executed. If the input set is larger
than main memory, an external sort is required. Memory devices slower than
main memory (e.g., hard disk) must work together to bring the records in the
desired ordering. We call a sorted subfile a run. The combination of sorting runs
in memory followed by an external merge process is described in two phases:
run generation, where intermediary sorted subfiles (i.e., runs) are produced, and
merge, where multiple runs are merged into a single ordered one.

A record is a basic unit for grouping and handling data. A key is a particular
field (or a subset of fields) used as criterion for the sort order. A value is the data
associated with a particular key, i.e., the rest of the record. Whether key and
value are disjoint or one is a subset of the other is irrelevant for our discussion.

3.1 Run generation

The replacement selection technique is of particular interest because the ex-
pected length of the runs produced is in average two times the size of available
main memory. This estimation was first proposed by E.H. Friend in [5] and later



described by E.F. Moore in [12], and is also described in [9]. In real-world ap-
plications, input data often exhibits some degree of pre-sortedness (i.e., there is
a correlation between the input and output orders). For instance, the order in
which products are ordered from a retail warehouse is closely correlated to the
order in which they are delivered. Thus, re-ordering a dataset from one criterion
to the other would require only small dislocations in the position of each record.
Replacement selection exploits this fact by trying to perform such movements
within an in-memory data structure. In such cases, the runs generated by re-
placement selection tend to contain even more than 2m records. In fact, for the
best case scenario, namely when all records can be ordered by dislocating no
more than m positions, where m is the number of records that fit in main mem-
ory, replacement selection produces only one run. This means that an arbitrarily
large file can be sorted in a single pass.

Step Memory contents Output
1 503 087 512 061 061
2 503 087 512 908 087
3 503 170 512 908 170
4 503 897 512 908 503
5 (275) 897 512 908 512
6 (275) 897 653 908 653
7 (275) 897 (426) 908 897
8 (275) (154) (426) 908 908
9 (275) (154) (426) (509) (end of run)
10 275 154 426 509 154
11 275 612 426 509 275

Table 1: Run generation with replacement
selection

Assume a set of tuples
〈record, status〉, where record
is a record read from the unsorted
input and status is a Boolean flag
indicating whether the record is
active or inactive. Active records
are candidates for the current run
while inactive records are saved for
the next run. The idea behind the
algorithm is as follows: assuming
a main memory of size m, we read
m records from the unsorted input
data, setting its status to active.
Then, the active tuple with the
smallest key is selected and moved
to an output file. When a tuple is
moved to the output (selection),
its place is occupied by another

tuple from the input data (replacement). If the record recently read is smaller
than the one just written, its status is set to inactive, which means it will be
written to the next run. Once all tuples are in the inactive state, the current
run file is closed, a new output file is created, and the status of all tuples is
reset to active.

We introduce an example from Knuth [9] in Table 1 to explain in detail the
replacement selection algorithm. Assume an input dataset consisting of twelve
records with the following key values: 061, 512, 087, 503, 908, 170, 897, 275,
653, 426, 154, 509 and 612. We represent the inactive records in parentheses.
To select the smallest current record, Knuth advises in [9] to make this selection
by comparing the records against each other (in r − 1 comparisons) only for a
small number of records. When the number of records is larger than a certain
threshold, the smallest record can be determined with fewer comparisons using



a selection tree. In this case, a heap data structure can be employed. With a
selection tree, we need only log(r) comparisons, i.e., the height of the tree.

In Step 1, we load the first four records from the input data into the memory.
We select 061 as the lowest key value, move it to the output and replace the whole
record with a new record with key value 908. The lowest key value then becomes
087, which is moved to the output and replaced with 170. The just-added record
is also the smallest in Step 3, so we move it out and replace it with 897. Now we
have an interesting situation: when the record 503 is replaced, the record read
from the input is 275, which is lower than 503. Thus, since we cannot output 275
in the current run, it is set as inactive—a state that will be kept until the end
of the current run. Steps 6, 7, and 8 normally proceed until we move out record
908, which is replaced by 509. At this point, in Step 9, all records in memory are
inactive. We close the current run (with twice the size of the available memory),
revert the status of all records to active, and continue the algorithm normally.

3.2 Merge

Fig. 1: Merging twelve runs into
one with merging factor of six.

The goal of the second phase of external
sorting, namely the merge phase, is to cre-
ate a final sorted file from the existing runs.
A heap data structure is used to select the
smallest record among all runs, in the exact
same way as done in run generation with re-
placement selection. A second improvement
over the näıve procedure is to take advan-
tage of read and write buffers. Given r runs
and memory of size m, a read buffer of size
m
r+1 can be used for each input run. The size
of the write buffer is then m− ( m

r+1 )r.
Assume that the minimum buffer size is b. If the first phase of the algorithm

produces more than m
b − 1 runs, then we cannot merge these runs in a single

step. A natural solution for this limitation is to repeat the merging procedure on
the merged runs, producing a merge tree. Figure 1 shows an example of merge
tree. At each iteration, m

b − 1 runs are merged into a new sorted run. The result
is r − m

b + 2 runs for the next iteration—the total number of runs minus the
merged runs in this turn plus the new merged run. Several heuristics exist to
merge runs in such a way that the resulting tree yields minimum I/O cost, such
as cascade and polyphase merges, and can be found in [9, 6].

4 Implementation

In this section, we discuss details of our implementation, in which the open-
source Hadoop framework was extended with a new sort component. First, we
present the internals of Hadoop, focusing on the algorithms and data structures
used to implement external sorting using quicksort. Second, we present a custom



memory manager used to manage the space in the sort buffer efficiently. Third,
we present optimizations in the key comparison during the sort as well as a
memory-efficient customized heap data structure.

4.1 Hadoop internals

In this section, we provide a brief review of the internal components involved in
a MapReduce computation in Hadoop. A primary goal of our design is to reuse
this infrastructure as much as possible, supporting the replacement selection
algorithm in a pluggable way. A detailed analysis of Hadoop’s architecture and
the components involved during the execution of a MapReduce job in Hadoop
can be found in [3].

The following process happens in a pipelined fashion, i.e., as soon as one step
finishes, the next can start using the output emitted by the former. Figure 2 il-
lustrates the process. The map function emits records (key-value pairs) while
its input partition is processed, and these records are separated into partitions
corresponding to the reducers that they will ultimately be sent to. However, the
map task does not directly write the intermediary results to disk. The records
stay in a memory buffer until they accumulate up to a certain minimum thresh-
old, measured as the amount of occupied space in a buffer called kvbuffer;
this threshold is by default 80% the size of kvbuffer. Hadoop keeps track of
the records in the key-value buffer in two metadata buffers called kvindices

and kvoffsets. When the buffer reaches the threshold, the map task sorts
and flushes the records to disk. When sorting kvoffsets, quicksort’s compare
function determines the ordering of the records accessing directly the partition
value in kvindices through index arithmetic. But quicksort’s swap function
only moves data in the kvoffsets buffer. This corresponds to the pointer sort
technique to be discussed in Section 4.3.

When the records are sorted, the map task finally writes them to a run file (or
spill file, in the Hadoop nomenclature). Every time the memory buffer reaches
the threshold, the map task flushes it to the disk and creates a new spill. When
the map function completes processing the input partition and finishes emitting
the key-value pairs, one last spill is executed to flush the buffers. Because the
input split normally is larger than the memory buffer, when the map task has
written the last key-value, several runs could be present. The map task then must
externally merge these spill files into a final output file that becomes available for
the reducers. Just like the spill files, this final output file is ordered by partition
and, within each partition, by key.

After the completion of a map task, each reduce task (possibly on a different
node) copies its assigned slice into its local memory. However, as long as this
copy phase is not finished, the reduce function may not be executed since it must
wait for the complete map output. Typically, the copied portion does not fit into
the reduce task’s local memory, and it must be written to disk. Once all map
outputs are copied, a cluster-wide merge phase begins. As we noted in Section
3.2, if we have more than m − 1 map task outputs, the reduce cannot merge
the intermediary results of all maps at the same time. The natural solution



is to merge these spills iteratively. Hadoop implements an iterative merging
procedure, where the property io.sort.factor specifies how many of those spill
files can merged into one file at a time. The details underlying Hadoop’s iterative
merging procedure can be found in [3].

Fig. 2: M/R tasks in detail

Hadoop’s sort component not only has to
take care of sorting in-memory keys and par-
titions but also merge these multiples sorted
spills into one single, locally-ordered file. It
has to consider data structures carefully to
store the records and algorithms to manage
and reorder these records. It should be clear
that this merge is only a local merge (per-
formed by each map task). A second, cluster-
wide merge performed on the reduce side will
merge the locally-ordered files that each map
task has processed. This global merge is be-
yond the scope of this work because its per-
formance is dictated only by the size and
number of runs generated, and it is thus in-
dependent of the in-memory sort algorithm.
Therefore, our analysis will consider a single
merge phase, regardless of whether it is local
or global.

4.2 Memory management

As introduced in Section 2, replacement se-
lection needs a memory manager to man-
age the space in the buffer efficiently when
records are of variable length. It is impor-
tant to emphasize that memory management
is not an issue in Hadoop’s quicksort strat-
egy because it only requires swapping records

into main memory. This means that a set of records is loaded into main memory
and sorted in-place without requiring additional space.

Our näıve implementation simply uses Java’s PriorityQueue class to imple-
ment the selection tree. Both memory management and heap implementation
are reused from Java’s standard library. However, this approach is inefficient
due to the JVM’s garbage collection overhead. To eliminate this overhead, we
implemented a custom memory manager based on the first-fit design proposed
by Larson in [10]. Other alternatives like the best-fit approach proposed in [11]
exist, but the evaluation of its efficacy is left for future work. The performance
gains of the customized memory manager are shown in the experiment of Fig-
ure 3, where run generation is performed for an input of 9GB and a buffer
of 16MB. The optimized implementation is approximately 20% faster than the
näıve, Java-based implementation.



Fig. 3: Comparion of
buffer implementations

In our implementation, the sort buffer is divided
into extents, and the extents are divided into blocks
of a predetermined size. The block sizes are spaced
32 bytes apart, which results in blocks of 32, 64, 96,
128, and so on. The extent size is the largest possible
block size, which is 8KB in our implementation.

For each block size, we keep a list containing all
free blocks of that particular size. The number of
free lists is given by the extent size divided by the
block size, thus 8 × 1024/32 = 256. The memory
manager provides two main methods: one to allocate
a memory block big enough to hold a record of a
given size, and one to free a block that is not in use
anymore (i.e., a block just selected for output).

Allocating a memory block big enough to hold a
given record means to locate the smallest (we want
to avoid waste at maximum) free block larger than the record size. The allo-
cate method works as follows: round up the record size to next multiple of 32
(drecordSize/blockSizee ∗ blockSize). Find the index of the resulting rounded
size in the free lists (roundedSize/blockSize− 1). Check if the list at the calcu-
lated index has a free block: if it does, return it. Otherwise, increment the index
and look in the next list (which will be 32 bytes larger). If no block with the
rounded record size is found, a larger block is taken and carved to the appropri-
ate size, returning the excess as a smaller free block on its appropriate list. For
instance, in the initial case where there is only one free block of 8192 bytes (the
extent size), suppose the memory manager must allocate a block for a record
of size 170. The rounded size of 170 is 192; because all other lists are empty,
the manager gets the 8192 block from its list. To avoid a major wasting, the
192 first bytes of the 8192 block are returned, and the other 8000 are placed in
its appropriate list. When the record is spilled from the buffer and its memory
block becomes free, we return the block to the appropriate list. We illustrate
this process in the example of Figure 4, which shows a possible buffer state after
a sequence of allocate and free invocations.

All lists start initially empty except the last one, which points to blocks of
maximum size. As the blocks are allocated and freed, the lists are populated with
smaller blocks. In the example of Figure 4, we have 10 blocks of variable sizes.
The block sizes are shown inside the blocks in the main-memory buffer (lower
part of the figure) and on top of the free list they belong to (upper part of the
figure). As smaller records are freed, the allocation process becomes faster, as
fewer lists have to be searched to find smaller blocks.

However, this can lead to the following situation. Without loss of generality,
imagine that the memory manager is continuously being asked for records of
32 bytes. After 256 block requests—the amount of blocks with 32 bytes in an
8KB extent—assume 4 contiguous (i.e., physically adjacent) blocks are freed. At
this point, the memory manager has 128 bytes of free memory fragmented into



four blocks of 32 bytes. If this stream of small records is interrupted by a larger
record with 96 bytes, the memory manager will not find any block sufficiently
large for that record—despite having enough free memory to answer the request.
To remedy this situation, adjacent free blocks must be detected and coalesced
into a single free block of total size equal to the sum of their sizes. For example,
a block of 192 bytes being freed next to a free block of 64 bytes can be coalesced
into a block of 256 bytes. Such coalescence also requires updating the free lists
accordingly.

Fig. 4: A possible state of the memory manager
and its free lists

Detecting adjacent free
blocks requires special
free/occupied markers at
the beginning and end of
blocks. When a block is freed,
the markers of the neigh-
boring blocks are verified,
and coalescence occurs if
either neighbor has a free
marker. Because implement-
ing this technique is not a
trivial task, especially in a
memory-managed language
like Java, we chose a sim-
pler implementation without
block coalescence. Instead, we
perform a global defragmen-
tation operation when large
records cannot be allocated.

As we show in Section 5, our implementation still delivers superior results than
quicksort for the targeted cases, despite the defragmentation penalty.

4.3 Pointer sort

As introduced in Section 2, one of the main advantages of quicksort is the pointer
sort technique used to move fewer data. However, Nyberg et al. [13] state that
“pointer sort has poor reference-locality because it accesses records to resolve
key comparisons”. In an ideal scenario, the whole selection tree should fit on the
CPU data cache. But, in practice, the keys used to resolve record comparisons
may be too large to fit all at the same time in the data cache. Nyberg et al.
suggest the use of a prefix of the key rather than the full key to minimize cache
misses. The idea is that a small prefix of the sort key (e.g., 2 bytes) is usually
enough to resolve the vast majority of comparisons [7]. The complete record only
has to be accessed in the rare occasions in which the prefixes are equal. Further
techniques for key normalization and key reordering exist as in [8] and should
be evaluated in future work.

We implement this technique of pointer sorting with key prefixes by storing
only a pointer and a key prefix in the heap data structure. The pointer refers to



the block allocated for the record in the memory manager, as discussed above.
Since the entries in the heap are of fixed size, we optimized the algorithm even
further by implementing a custom heap instead of using Java’s PriorityQueue.

4.4 Custom heap

Despite the customized memory manager for records, the JVM is still in charge
of managing entries in the heap data structure (i.e., the selection tree). Our
objective is to eliminate as far as possible the creation of objects in JVM’s
heap space during runtime, and allocate every needed array or object as soon as
possible. One of the main advantages of custom managed memory buffer was the
serialization of keys and values in a byte buffer of fixed size. To achieve the same
result but for the selection tree, we implemented a custom heap which employs
a byte array as the placeholder for the heap entries. We illustrate the idea in
Figure 5, which shows the format of entries in the optimized heap. We use Java’s
ByteBuffer class to wrap the byte array, which provides methods such putInt
and getInt, as well similar methods to set and get other data types in arbitrary
positions in the byte array. When we add a record to the sort buffer, we add its
metadata “heap entry object” by directly writing the run, partition, etc., into
the custom heap byte array. With this design, we can directly control how much
memory the selection tree will consume, pre-allocating the heap space in a single
contiguous block.

Fig. 5: The format of entries in our optimized heap

5 Experiments

This section evaluates the performance of replacement selection in the context
of actual Hadoop jobs. First, we evaluate the run generation process, i.e., in-
memory sorting using quicksort vs. replacement selection. Our goal is to show
that (i) replacement selection indeed generates less runs, and (ii) the efficiency
of replacement selection is not much worse than quicksort, i.e., the gains made
at the merge phase are not wasted in a slower run generation phase. In fact,
when able to exploit the continuous run generation characteristic of replacement
selection, described in [7], where reads and writes overlap as the input is con-
sumed and the output is produced, replacement selection outperforms quicksort.
Second, we take a look at the special case of inputs with a certain degree of pre-
sortedness, which is where replacement selection is preferred to quickdort. These
experiments are executed as micro-benchmarks to isolate sort performance on a
single machine. Finally, in the third experiment set, we execute a full Hadoop
job in a cluster comparing the run time with both sorting algorithms.



5.1 Run Generation

To confirm the prediction that replacement selection generates less runs empiri-
cally, we ran an experiment with the lineitem table from the TPC-H benchmark
[15]. To randomize the sort order on the input, we consider a lineitem table
sorted by comment, and them used the column shipdate as sorting key. Since the
comment field is generated randomly by the benchmark, no correlation to the
ship date is expected.

(a) Exec. time and number of runs (b) Performance with two disks

Fig. 6: Experiment results for random inputs

Results for this experiment are presented in Figure 6a. The buffer size used
in these experiments is 50MB, of which 10% are overheads of auxiliary data
structures (e.g., key prefixes). The table size is 700MB, which yields a ratio of 14
between input and buffer size. As shown in the graph, the run generation phase
in replacement selection takes a little longer, but it produces approximately
two thirds of the number of runs in quicksort. Note that the merge time is
approximately the same, despite the substantial difference in the number of
runs. This is expected because, in both cases, one merge pass was enough to
produce a single sorted output. In this case, replacement selection yields only
marginal gains in terms of CPU overhead in the merge phase, which are due
to the smaller size of the heap used to merge the inputs. Nevertheless, the goal
of this experiment is to show that replacement selection delivers comparable
performance to quicksort when inputs are randomly ordered, which is clearly
shown in the results. It substantially outperforms quicksort when inputs have a
certain degree of pre-sortedness or, similarly, when multiple passes are required
in quicksort. These cases are analyzed in Sections 5.2 and 5.3 below.

The quicksort algorithm exhibits a fixed read-process-write cycle that does
not allow I/O overlapping. One of the advantages of replacement selection is
the continuous run generation process, alternately consuming input records and



producing run files [7]. To demonstrate this fact empirically, we extended Hadoop
with an asynchronous writer following the producer-consumer pattern. The idea
is to place sorted blocks of data into a circular buffer instead of writing them
directly to disk. Then, an asynchronous writer thread consumes blocks from this
buffer and performs the blocking I/O write. While it waits, the sorting thread
can sort other blocks of data in parallel. The results of our experiment are shown
in Figure 6b, where we compare the elapsed time of run generation with two hard
disks—one for input and one for output. As predicted, quicksort delivers the same
performance regardless of whether the writer is synchronous or asynchronous,
whereas replacement selection benefits from writing asynchronously, performing
run generation approximately 30% faster. This is because reads from one disk
are performed in parallel with writes on another disk. Using the asynchronous
writer, the performance of replacement selection approximates that of quicksort,
despite the higher overheads of heap operations and memory management.

(a) Partially ordered file (b) Distributed join

Fig. 7: Experiment results for pre-sorted input and join computation

5.2 Exploiting Pre-sortedness

One of the major advantages of replacement selection is that it can exploit pre-
sortedness on the input file. Estivill-Castro and Wood showed mathematically
in [4] that the length of the runs created by replacement selection increases as
the order in the input file increases. To confirm this prediction empirically, we
ran an experiment with the lineitem table again. We took as input the lineitem
table sorted by shipdate, using the column receiptdate as new sorting key. We
prepared the table by sorting the file by shipdate beforehand, but in practice this
scenario could also occur if there is a clustered index or materialized view on



shipdate. Since there is a strong correlation between the dates on which orders
are shipped and received, this constitutes a good example of pre-sorted input.

The input dataset used in this experiment is the same as on the experiment
of Figure 6a, but with a different pre-sort order. As shown, the run generation
phase takes considerably longer with replacement selection, but it produces only
a single run at the end, meaning that no merge phase is required. As predicted,
replacement selection acts as a sort sliding-window in this case. Note that quick-
sort finishes run generation earlier, but an additional pass over the whole input
is required in the merge phase, requiring about 35% more time in total.

5.3 Distributed Join

To conclude the experiments, we created a test scenario where a distributed
join of two TPC-H tables is performed. Joins are a common operation in data
management systems, and in MapReduce both inputs must be sorted by the
join key (i.e., a sort-merge join algorithm). The joined tables are lineitem, which
has about 1GB, and orders, with 600MB. This experiment was performed in a
small cluster running Hadoop 2.4.0 with six nodes and we measured the total
execution time of the jobs. The buffer size was 16MB, which yields a 62.5 ratio
with the lineitem table and a 37.5 ratio with the order table. Note that despite
the tables being relatively small for typical Hadoop scales, the determinant factor
for performance is actually the ratio between input and sort buffer size. A real-
world large scale scenario would probably deal with sizes up to 1000× larger,
i.e., tables of 1TB and 600GB, and a sort buffer of 16GB. In such situations,
the relative performance difference between the two algorithms would be very
close to what is observed in our experiment, because the ratio is the same. The
results in Figure 7b confirm our expectation that replacement selection is faster,
because less runs are generated. Furthermore, it seems that it is also more robust
in terms of performance prediction, given the lower standard deviation.

6 Conclusion

This work described the implementation and evaluation of an alternative sort
component for Hadoop based on the replacement selection algorithm. The orig-
inal implementation, based on quicksort, is simple to implement and efficient in
terms of RAM and CPU. However, we demonstrated that under certain condi-
tions, such as pre-sorted inputs and large ratio between input and memory size,
replacement selection is faster due to the lower number of runs to be merged.
For the remaining cases, we showed that the performance is very close to that
of quicksort, meaning that the average long-term gain in a practical scenario is
in favor of replacement selection.

Despite the demonstrated advantages of replacement selection, we believe
the implementation has the potential to outperform quicksort even further with
certain optimizations. The main task in that direction is to optimize the main
memory management component (e.g., by implementing block coalescence [10])



and the heap data structure (e.g., by minimizing the number of comparisons
with a tree-of-losers approach or by optimizing key encoding [9, 7, 8]). Our work
has been published as an open source pluggable module for Hadoop3. We hope
to implement the mentioned optimizations and improve our code to integrate it
with the official Hadoop distribution.

Acknowledgements

We thank Renata Galante for her helpful comments and suggestions on earlier
revisions of this paper.

References

1. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms.
pp. 360–369. SODA ’97, SIAM, Philadelphia, PA, USA (1997)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

3. Dusso, P.M.: Optimizing Sort in Hadoop using Replacement Selection. Master
thesis, University of Kaiserslautern (2014)

4. Estivill-Castro, V., Wood, D.: Foundations for faster external sorting (extended
abstract). In: Thiagarajan, P.S. (ed.) FSTTCS. LNCS, vol. 880, pp. 414–425.
Springer, Heidelberg (1994)

5. Friend, E.H.: Sorting on electronic computer systems. J. ACM 3(3), 134–168 (Jul
1956)

6. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
25(2), 73–169 (Jun 1993)

7. Graefe, G.: Implementing sorting in database systems. ACM Comput. Surv. 38(3)
(Sep 2006)

8. Härder, T.: A Scan-driven Sort Facility for a Relational Database System. In: Proc.
VLDB. pp. 236–244 (1977)

9. Knuth, D.E.: The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (1998)

10. Larson, P.A.: External sorting: Run formation revisited. IEEE Transactions on
Knowledge and Data Engineering 15(4), 961–972 (Jul 2003)

11. Larson, P.A., Graefe, G.: Memory management during run generation in external
sorting. In: Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data. pp. 472–483. SIGMOD ’98, ACM, New York, NY, USA
(1998)

12. Moore, E.: Sorting method and apparatus (May 9 1961),
http://www.google.com.br/patents/US2983904

13. Nyberg, C., Barclay, T., Cvetanovic, Z.: AlphaSort: A RISC machine sort. In: Proc.
SIGMOD. pp. 233–242 (1994)

14. Skiena, S.S.: The Algorithm Design Manual. Springer-Verlag New York, Inc. (1998)
15. Transaction Processing Performance Council: TPC Benchmark H (Decision Sup-

port) Standard Specification. http://http://www.tpc.org/tpch/, accessed: 2014-
01-10

3 http://bitbucket.org/pmdusso/hadoop-replacement-selection-sort


