
Noname manuscript No.
(will be inserted by the editor)

Instant recovery with write-ahead logging

Goetz Graefe · Caetano Sauer · Wey Guy · Theo Härder

Received: date / Accepted: date

Abstract Instant recovery improves system availability by
reducing the mean time to repair, i.e., the interval during
which a database is not available for queries and updates due
to recovery activities. Variants of instant recovery pertain to
system failures, media failures, node failures, and combi-
nations of multiple failures. After a system failure, instant
restart permits new transactions immediately after log anal-
ysis, before and concurrent to “redo” and “undo” recovery
actions. After a media failure, instant restore permits new
transactions immediately after allocation of a replacement
device, before and concurrent to restoring backups and re-
playing the recovery log.

Write-ahead logging is already ubiquitous in data man-
agement software. The recent definition of single-page fail-
ures and techniques for log-based single-page recovery en-
able immediate, lossless repair after a localized wear-out in
novel or traditional storage hardware. In addition, they form
the backbone of on-demand “redo” in instant restart, instant
restore, and eventually instant failover. Thus, they comple-
ment on-demand invocation of traditional single-transaction
“undo” or rollback.

In addition to these instant recovery techniques, the dis-
cussion introduces self-repairing indexes and much faster
offline restore operations, which impose no slowdown in
backup operations and hardly any slowdown in log archiving
operations. The new restore techniques also render differ-
ential and incremental backups obsolete, complete backup
commands on a database server practically instantly, and

Goetz Graefe, Wey Guy
HP Lab, Palo Alto
E-mail: [goetz.graefe, wey.guy]@hp.com

Caetano Sauer, Theo Härder
TU Kaiserslautern
E-mail: [csauer, haerder]@cs.uni-kl.de

even permit taking full up-to-date backups without impos-
ing any load on the database server.

1 Introduction

Modern hardware differs from hardware of 25 years ago,
when many of the database recovery techniques used to-
day were designed. Current hardware includes high-density
disks with single-page failures due to cross-track effects,
e.g., in shingled or overlapping recording; high-capacity
storage devices with long restore recovery after media fail-
ures; semiconductor storage with single-page failures due
to localized wear-out; and large memory and large buffer
pools with many pages and therefore many dirty pages and
long restart recovery after system failures.

On contemporary hardware, instant recovery1 tech-
niques seem more appropriate. They employ and build on
many proven techniques, in particular write-ahead logging,
checkpoints, and log archiving. The foundation are two new
ideas. First, single-page failures and single-page recovery
[5] enable incremental recovery fast enough to run on de-
mand without imposing major delays in query and transac-
tion processing. Second, log archiving not only compresses
the log records but also partially sorts the log archive, which
enables multiple access patterns, all reasonably efficient.
These foundations are exploited for incremental recovery
actions executing on demand, in particular after system fail-
ures (producing an impression of “instant restart”) and after

1 We use the term “instant” not in an absolute meaning but a relative
one, i.e., in comparison to prior techniques. This is like instant coffee,
which is not absolutely instantaneous but only relative to traditional
techniques of coffee preparation. The reader’s taste and opinion must
decide whether instant coffee actually is coffee. Instant recovery, how-
ever, is true and reliable recovery from system and media failures, with
guarantees as strong as those of traditional recovery techniques.



2 Goetz Graefe et al.

media failures (“instant restore”). In addition to incremen-
tal recovery, new techniques speed up offline backup and
offline restore operations. In particular, differential and in-
cremental backups become obsolete and full backups can be
created efficiently without imposing any load on the active
server process.

The problem of out-of-date recovery methods for to-
day’s hardware exists equally for file systems, databases,
key-value stores, and contents indexes in information re-
trieval and internet search. Similarly, the techniques and
solutions discussed below apply not only to databases, even
if they are often discussed using database terms, but also
to file systems, key-value stores, and contents indexes. In
other words, the problems, techniques, and solutions apply
to practically all persistent digital storage technologies that
employ write-ahead logging.

2 Single-page failure and repair

Modern hardware such as flash storage promises higher
performance than traditional hardware such as rotating
magnetic disks. However, it also introduces its own issues
such as relatively high write costs and limited endurance.
Techniques such as log-structured file systems and write-
optimized B-trees [3] might reduce the effects of high write
costs and wear leveling might delay the onset of reliability
problems. Nonetheless, when failures do occur, they must
be identified and repaired.

2.1 Single-page recovery

Single-page recovery uses a page image in a backup and the
history of the page as captured in the recovery log, specif-
ically the “redo” portions of log records pertaining to the
specific database page. Efficient access to all relevant log
records requires a pointer to the most recent log record and,
within each log record, a pointer to the prior one. In a sys-
tem that ensures exactly-once application of log records to
database pages by means of PageLSN values [11], this is
equivalent to saving, in each log record, the prior PageLSN
value of the affected database page.

Figure 1 shows a few log records in a recovery log in-
cluding the per-transaction log chains (transactions T1 and
T2) and the per-page log chains (database pages 4 and 7).
Varying from the ARIES design, log records describing
“undo” (rollback log records) point to the original “do”
log records in order to reduce redundant information in
the log. Incidentally, this design permits compensation log
records of uniform size and therefore enables accurate pre-
allocation of log space for an eventual rollback – with that,
a transaction abort cannot fail due to exhausted log space.
In the example shown in Figure 1, both rollback log records

have equal values for the per-transaction pointer and the per-
page pointer, with an obvious opportunity for compression.
The sequence of log records for page 4, slot 6 implies that
transaction T1 released locks incrementally while rolling
back. An aborted transaction ends with a commit record
after it has “updated back” all its changes in the database.
If a transaction ends with no change in the logical database
contents, there is no need to force the commit record to
stable storage – this applies both to system transactions
(similar to “top-level actions” in ARIES) and to aborted
user transactions.

While some commercial systems already include the
prior PageLSN in each log record, e.g., Microsoft SQL
Server, others do not. Thus, an argument could be made that
the per-page chain of log records increases individual log
records and thus a systems overall log volume and band-
width requirements. It turns out, however, that all systems
unnecessarily include per-transaction chains of log records
in the persistent recovery log. Instead, it is sufficient to retain
this per-transaction information in memory. During restart
after a system failure, log analysis can re-create the required
information from checkpoint log records and the individual
log records between checkpoint and system crash.

The original proposal for single-page failures suggests a
“page recovery index” for each database or each table space.
With an index entry for each page in the database or table
space, an entry in the page recovery index points to the most
recent log record for each database not in the buffer pool. In
other words, each time the buffer pool writes a dirty database
page to storage, an entry in the page recovery index requires
an update with a new LSN value.

2.2 Self-repairing B-trees

Self-repairing indexes [6] combine efficient (yet compre-
hensive) detection of single-page faults with immediate
single-page recovery. Comprehensive fault detection re-
quires in-page checks as well as cross-page checks. In a
self-repairing B-tree index, each node includes low and

Fig. 1 Example log contents



Instant recovery with write-ahead logging 3

high fence keys that define the node’s maximal permissi-
ble key range. Along the left and right edges of the B-tree,
these fence keys have values −∞ and +∞, including in the
root node. In all other nodes, a node’s fence keys equal two
keys in the node’s parent, i.e., typically branch keys. A node
and its leftmost child share the same low fence key value;
a node and its rightmost child share the high fence key
value. Moreover, for both fault detection and repair, each
parent-to-child pointer in a self-repairing B-tree carries an
expected PageLSN value for the child page. For simplicity
of maintenance, this requires that there be at all times only
a single pointer to each page as in Foster B-trees [5].

3 System failure and restart

Database system failures and the subsequent recovery dis-
rupt many transactions and entire applications, usually for
an extended duration. For those failures, new on-demand
“instant” recovery techniques reduce application downtime
from minutes or hours to seconds.

The top of Figure 2 illustrates the three traditional phases
of system recovery and some typical durations. The bottom
of Figure 2 illustrates application availability after a restart
using prior approaches and using the new technique. Top
and bottom share a common timeline. The important obser-
vation is that previous techniques enable query and transac-
tion processing only after the “redo” recovery phase or even
after the “undo” recovery phase, whereas instant recovery
permits new queries and update transactions immediately af-
ter log analysis. If log analysis takes one second and “redo”
and “undo” phases take one minute each, then instant recov-
ery reduces the time from database restart to processing new
transactions by about two orders of magnitude compared to
both traditional implementations and the ARIES design. Re-
ducing the mean time to repair by two orders of magnitude
adds two nines to application availability, e.g., turning a sys-
tem with 99% availability into one with 99.99% availability.

Immediately upon system restart, instant recovery per-
forms log analysis but invokes neither “redo” nor “undo” re-
covery. Log analysis gathers information both about pages
requiring “redo” and about transactions requiring “undo”.
Thus, log analysis restores essential server state lost in the
system failure, i.e., in transaction manager and lock man-

Fig. 2 Restart phases and new transactions

ager. The buffer pool gathers information about dirty pages.
This information does not include images of pages, i.e., ran-
dom I/O in the database is not required. For efficiency of
subsequent recovery, log pages and records should remain
in memory after log analysis.

In preparation of “undo” recovery, log analysis tracks the
set of active transactions and their locks. It initiates this set
from the checkpoint log record. When log analysis is com-
plete, it has identified all transactions active at the time of the
crash and their concurrency control requirements. The lock
manager holds these locks just as if the transactions were
still active. Note that conflict detection is not required dur-
ing log analysis; the recovery process may rely on success-
ful and correct detection of lock conflicts during transaction
processing prior to the crash.

In preparation of “redo” recovery, log analysis produces
a list of pages that may require “redo” actions. It initiates this
list from the checkpoint log record, specifically the list of
dirty pages. Log analysis registers those pages without I/O
and thus without page images in memory. In other words,
the buffer pool must support allocation of descriptors with-
out page images. While registered for “redo” recovery, a
page must remain in the buffer pool. For each such page,
the registration includes the expected PageLSN value, i.e.,
the last log record pertaining to the database page found
during log analysis. During log analysis, i.e., the scan over
all log records between the last checkpoint and the crash,
log records describing page updates (including formatting
of newly allocated pages) add or modify registrations of
database pages. Log records describing completed write op-
erations unregister the appropriate database page.

When an application requires one of the registered pages
but the page image in the database is older than the expected
PageLSN included in the registration, the buffer pool in-
vokes single-page “redo” recovery. Once single-page “redo”
recovery is complete, it rescinds the registration, which pre-
vents future “redo” attempts for this page.

Upon a lock conflict between new and old (pre-crash)
transactions, the first question is whether the old transac-
tion has participated in a two-phase commit and is waiting
for the global commit decision – in those cases, the new
transaction must wait or abort. Otherwise, the old transac-
tions can roll back using standard techniques, i.e., invoking
“undo” (compensation) actions and logging them. If trans-
action rollback touches a database page registered in the
buffer pool as requiring “redo” recovery, rollback invokes
the appropriate single-page recovery before the transaction
rollback resumes. As usual, when a transaction rollback is
complete, the transaction writes a log record (it “commits
nothing” with no need to force the log record immediately
to stable storage), releases its locks, and frees its in-memory
data structures.



4 Goetz Graefe et al.

4 Media failure and restore

After detection of a media failure, the first step is provi-
sioning of a replacement device, hopefully a spare that is
formatted but empty. Traditional restore operations require
multiple phases: copying a full backup (perhaps a week old),
adding modified pages from incremental backups (perhaps
from every day since the full backup), log analysis (to de-
termine incomplete transactions that require rollback), log
replay (“redo” of hours of recovery log in order to ensure
durability of committed transactions that modified the failed
media), and finally rollback of incomplete transactions (for
transaction-consistent restore). Optimizations merge pages
from full backup and incremental backups in a single re-
store phase and sort log records by their affected database
page such that log replay and transaction rollback requires
only a single sweep over the replacement media.

4.1 Single-pass restore

Our design for single-pass restore goes two steps further.
First, during transaction processing, it writes the standard
recovery log but when archiving the recovery log, it ap-
plies run generation logic (the first phase of external merge
sort). Thus, a log archive is partitioned into epochs (per-
haps one minute to one hour of log records per partition)
and within each partition, log records are sorted by their af-
fected database page. Run generation with replacement se-
lection (a priority queue) is a continuous process built into
the log archiving logic. Second, during media restore opera-
tions, our design merges not only page images from backups
but also the runs in the log archive with each other and with
the backup pages. Thus, each page written to the replace-
ment device is immediately fully up-to-date and recovered.
If run generation during transaction processing uses very
limited memory and CPU power, intermediate merge steps,
e.g., once a day, can reduce the number of runs (partitions)
in the log archive such that a restore operation requires only
a single merge step.

4.2 Instant restore

For practically immediate availability after a media failure
(assuming immediate availability of an empty replacement
device), the logic of single-pass restore can run on demand.
The required indexes on backups and log archive can be a
side effect of backup and log archiving – note that both pro-
cesses write their output sorted on page identifier, which
permits almost free creation of sorted indexes. Media re-
covery can run for individual pages or, for efficiency and
higher bandwidth, in groups of contiguous pages. A sim-
ple and practical policy recovers contiguous database pages

until it reaches a database page already restored or until an
active transaction requires a database page not yet restored.
In other words, instant restore uses the logic of single-pass
restore but in multiple segments chosen on demand instead
of in a single contiguous run.

5 Multiple failures

The presence of a first failure or inconsistency suggests that
another failure or inconsistency is likely due to a common
underlying cause. For example, if a code defect in low-level
concurrency control (latching) causes an inconsistent page
image during a period of high system load, it is likely to
affect more than a single page. Similarly, if a programming
error (perhaps in an unrelated application) causes a system
crash, running the same applications after a system restart
may cause another crash.

A system failure during system restart (after a prior fail-
ure) requires precisely the same recovery logic as the orig-
inal system failure. The first restart may speed up a sec-
ond restart, should it become necessary, by logging a sys-
tem checkpoint immediately after log analysis and then fre-
quently during restart. Such checkpoint log records reduce
the log analysis effort during restart recovery from a system
failure during a restart.

Similarly, a media failure during recovery from another,
unrelated media failure merely requires running the restore
logic for both failures using, of course, two replacement de-
vices. A media failure of replacement media during restore
merely requires restarting the restore logic with uncompro-
mised replacement media.

Our long paper on instant recovery [4] also covers fur-
ther combined failure modes, e.g., a media failure during
restart or a system failure during restore.

6 Alternatives

The desire for instant recovery after failures is not new. For
system restart, the promise of nonvolatile memory triggered
early designs [7–9] as well as recent ones [12]. In contrast,
all techniques described above rely on write-ahead logging,
which any transactional system needs for cases of trans-
action failure and transaction rollback, and work with all
storage technologies (except tape), from traditional disks
and disk arrays to flash storage and non-volatile memory.
For media restore operations, Gray [2] proposed sorting
and merging log records to turn a “fuzzy dump” into a
“sharp” one, i.e., to turn an online backup into one with
only committed transactions, and some IBM products sort
and aggregate log records prior to log replay [1,10]. In
contrast, single-pass restore divides the sort into run gen-
eration during log archiving and merging during restore



Instant recovery with write-ahead logging 5

operations, thus achieving high restore bandwidth without
adding phases and delays to the recovery effort. In addition,
inexpensive indexing for the backup and for the log archive
permit the appearance of instant restore operations. Again,
these recovery techniques work with all storage technolo-
gies (except tape), i.e., without reliance on special hardware.

7 Summary

In summary, write-ahead logging readily enables recov-
ery techniques overlooked for decades. The foundation is
on-demand single-page repair using per-page chains of log
records, i.e., efficient access to the history of each database
page. Using on-demand single-page “redo” and on-demand
single-transaction “undo”, instant restart permits new trans-
actions almost immediately after a system failure and re-
boot. External merge sort of log records during log archiving
and media restore operations, with run generation during log
archiving and merging during restore, enables single-pass
restore. Exploiting the order of database pages during back-
ups and of log records during log archiving enables cheap
creation of sorted indexes, which in turn enable on-demand
restore logic for individual database pages or for contiguous
runs of database pages.

References

1. Paolo Bruni, Marcelo Antonelli, Davy Goethals, Armin Kompalka,
Mary Petras: DB2 9 for z/OS: using the utilities suite. IBM Red-
books, 2nd ed., February 2010 – Section 13.10 “Fast log apply”
(2010).

2. Jim Gray: Notes on data base operating systems. In R. Bayer, R.
M. Graham, G. Seegmüller (eds): Operating systems – an advanced
course. LNCS 60: 393–481, Springer-Verlag (1978).

3. Goetz Graefe: Write-optimized B-trees. VLDB 2004: 672–683.
4. Goetz Graefe, Wey Guy, Caetano Sauer: Instant recovery with

write-ahead logging: page repair, system restart, and media restore.
Synthesis Lectures on Data Management, Morgan & Claypool Pub-
lishers (2014).

5. Goetz Graefe, Hideaki Kimura, Harumi A. Kuno: Foster B-trees.
ACM TODS 37(3): 17 (2012).

6. Goetz Graefe, Harumi A. Kuno, Bernhard Seeger: Self-diagnosing
and self-healing indexes. DBTest 2012: 8.

7. Eliezer Levy: Incremental restart. ICDE 1991: 640–648.
8. Tobin J. Lehman, Michael J. Carey: A recovery algorithm for

a high-performance memory-resident database system. ACM SIG-
MOD 1987: 104–117.

9. Eliezer Levy, Abraham Silberschatz: Incremental recovery in main
memory database systems. IEEE TKDE 4(6): 529–540 (1992).

10. Rick Long, Mark Harrington, Robert Hain, Geoff Nicholls: IMS
primer. IBM Redbooks, January 2000 – Section 15.4.2 “Database
change accumulation utility (DFSUCUM0)”.

11. C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh,
Peter M. Schwarz: ARIES: a transaction recovery method support-
ing fine-granularity locking and partial rollbacks using write-ahead
logging. ACM TODS 17(1): 94–162 (1992).

12. Ismail Oukid, Wolfgang Lehner, Thomas Kissinger, Thomas Will-
halm, Peter Bumbulis: Instant recovery for main memory databases.
CIDR 2015.


