
Filtering and Indexing in a
Partially-sorted Log Archive

Lucas Lersch

University of Kaiserslautern
Germany

Abstract. In order to provide the illusion of an instant restore of a database
storage device in the case of a media failure, the ability to restore single
database pages on demand is required. Therefore, it is essential to have
an efficient access to log records that refer to a certain database page. To
achieve such an efficiency, the first step is to sort log records by the page
identifier they refer to, prior to writing them from a “temporary log” de-
vice to a “log archive” device. This enables the archived log records which
refer to the same page to be read sequentially when performing log replay
as part of a media restore. Many runs of sorted log records are stored in
the log archive, since an external merge sort is required when sorting the
log records from the temporary log. In other words, log records which refer
to the same page are spread across multiple runs and the whole log archive
is said to be partially-sorted. Thus, an index-like data structure is also re-
quired for accessing directly the log records that refer to a certain page. In
addition, since large runs of sorted log records can be generated during the
log archiving process, an efficient load performance is also desirable. Atom-
icity of operations in this data structure must also be considered in order
to enable tolerance to system failures. In this report, we discuss some of the
suitable data structures, try to identify their advantages and disadvantages,
and propose an overview of the use of one of these data structures in the
context of the log archive and instant restore.

1 Introduction

Most database systems, old and modern, rely on logging to enable recovery from
system failures and media failures as well as rollback in the case of transaction
aborts. In other words, logging ensures that, in the case of a failure, the most recent
and consistent database state can be reached from a chaotic state.

The ARIES [8] algorithm employs write-ahead logging (WAL), which essentially
consists of forcing log records of each operation to stable storage prior to writing
back modified pages. In a no-force system [5], writing modified pages back to stable
storage is not required as part of transaction commit. However, writing log records
up to that transaction is required for committing. This means that even log records
generated before by other transactions must also be written in a way to preserve
the log sequence number correlation. For this reason, a storage device separated
from the main database storage device is usually dedicated to logging purposes.
It is highly desirable for such a device to be latency-optimized (in terms of cost),
as the write operations on the log directly influence the throughput of the whole
database system.

However, until the present time, latency-optimized devices (such as SSD) do not
provide good storage costs (in terms of MB/$) when compared to other storage
devices such as hard drives or tape devices. Since the system generates logs contin-
uously over time, log entries tend to become obsolete with time and consequently
expensive to maintain in a latency-optimized storage device. For this reason, it



is highly desirable to move old log entries (from already completed transactions)
from this device to a device with less expensive storage costs. Such devices are
also bandwidth-optimized, in the sense that they offer a better relation between
sequential speed and cost.

The operation of moving old log records to a less expensive device is known as
“log archiving”. In other words, the log archive keeps obsolete log records that are
required only in the case of recovering from a media failure, where the replay of
these log records might be necessary. For clarity in the remainder of this work, the
term “temporary log” is used to differ from the “log archive”.

In addition to logging, full backups that reflect the database image are period-
ically taken. It is important to note that the backup is generated one page at a
time in a fuzzy way, meaning that the backup does not reflect a snapshot of the
database at some point in time. Instead, it reflects a snapshot of each page – each
at a different point in time. Therefore, in the case of a media failure, the steps for
recovering the database to the most recent operational state consist of copying the
last full backup to the replacement storage media and replaying all operations that
happened after this full backup was made. It is important to note that the log re-
play operation induce random access to database pages in the replacement media.
As an alternative to alleviate the costs of replaying the temporary log and the log
archive, lightweight incremental backups can be taken more frequently, since they
store only differential information. In this case, incremental backups are restored
after the full backup and before replaying the contents of the temporary log and
log archive. The relation between devices is shown in Figure 1.

Fig. 1. Devices involved in a database system and their relations during restore.

The single-pass restore technique [9] aims at minimizing the costs of restoring a
failed media device. It does so by reducing the costs of log archive replay to a point
where even differential backups do not offer a great advantage in the whole restore
process. The main idea is to store the log records in the log archive partially sorted
by the page identifier, so both the backup device and the log archive device can be



sequentially read, and a merge operation between these two can be performed. It
is important to mention that the temporary log does not participate in the merge
join and it is replayed only after the log archive replay has completed. In addition,
assuming the backup and the log archive are in different devices, the sequential
reads can be done in parallel. The devices involved in single-pass restore can be
seen in Figure 2.

Fig. 2. Devices involved in a database system and their relations during single-pass restore.

In this context, the “instant restore”[3] technique is introduced, which aims at
taking the basic idea behind single-pass restore even further by enabling transac-
tions to run practically immediately after the replacement device is available, not
requiring the whole single-pass media restore to take place prior to that. This is
done by allowing transactions to execute at an early state and recovering database
pages on demand, giving the illusion of an instant restore operation. In addition,
in order to eventually achieve a complete restored state, it is desirable to have a
process running in the background responsible for restoring pages not yet restored
by the on-demand scheduler.

To realize the idea of instant restore, efficient access to the log entries in the
partially-sorted log archive is required. This efficient access can only be achieved
by creating an indexing structure over the log archive. The main focus of this work
is then to define important requirements that would be taken into consideration
for implementing an ideal solution. The goal in providing a well-defined design is
to enable a future work on the implementation of the instant restore on the Zero
storage manager1 (based on Shore-MT [6]). Therefore, the remainder of this report
is going to analyze the log archiver structure as it was initially implemented in the
Zero system. In Section 2, the properties of B-trees, a data structure commonly used
for indexing purposes, are discussed, its advantages and disadvantages as well the
reasons why it is not considered suitable for the problem. Section 3 introduces zone

1 https://github.com/caetanosauer/zero



filters and zone indexes as an alternative data structure that aims to be simpler
and more adequate for dealing with necessary requirements, but still not applicable
to the exact scenario of log archiving. Finally, Section 4 considers a tailored data
structure which is a mix of partitioned B-trees and zone indexes. Based on our
initial qualitative analysis, this data structure provides the best trade-off between
simplicity, efficiency, and effectiveness.

2 Partitioned B-trees

B-trees [1] are a ubiquitous data structure in the context of database systems.
Largely employed to implement indexes, it would be natural to think about em-
ploying these widely used and well accepted data structures or one of its variations
to achieve such a goal of indexing the log archive.

The partitioned B-tree variant [2] was introduced to alleviate the trade-off be-
tween good lookup response time at the cost of load bandwidth, which is inherent
from traditional B-trees. The main idea behind a partitioned B-tree is to have an
additional artificial leading key value which represents the partition number. This
simple variation introduces multiple benefits.

In the case of a partially-sorted log archive, a partitioned B-tree allows to put
all the sorted runs into a single data structure, having the run number as artificial
leading key column. The direct benefit from this is that inserting new runs in the
index structure is less expensive than in a traditional B-tree. However, in order to
enable more efficient loads, partitioned B-trees introduce some overhead that should
be considered. These are discussed below.

First, the additional leading key column incurs additional storage costs. For-
tunately, prefix truncation techniques can be employed to reduce disk space and
bandwidth costs to a level where they can be safely ignored.

Second, the search operation becomes more expensive, as it has to be performed
in every partition. In other words, the number of partitions has a direct impact on
the performance of search operations. Therefore, if there is an asynchronous process
running in the background merging runs, the number of partitions can be kept to
a desired level that does not deteriorate the performance.

Third, there is the need for atomicity in order to enable tolerance to system
failures. In other words, if a system failure happens while a B-tree node is being
written, the whole B-tree structure is compromised. Even in the case where only
internal nodes are affected and it is possible to rebuild the whole index from the
leaf nodes, it is an extremely costly operation, since the log archive tends to grow
indefinitely as new log records are generated. The required atomicity could be easily
achieved by reusing the logging infrastructure already present in regular B-tree in-
dexes. However, generating new log records for indexing existing log records creates
a cyclic behavior in the whole log archiving process. As a result, we have so-called
“meta” log records, i.e., log records referring to operations related to the indexing
of other log records. In the case of a system failure, this “meta” log would have to
be recovered prior to starting or resuming the instant restore technique. Therefore,
this approach introduces a whole new level of complexity for treating these “meta”
log records, such as new logging and recovery modes.

An alternative to using the logging infrastructure is to rely on a copy-on-write
strategy to achieve the desired atomicity in the B-tree index, while avoiding the
creation of “meta” log records. By doing this, every time an update is made in
the index, all the B-tree nodes from the affected node up to the root are copied,
the changes are then made in these copies and later the copies replace the original
B-tree nodes in a single atomic operation. The obvious disadvantage is that this
approach would require a disk space management layer to keep track of old B-tree



pages that were replaced by updated ones and free disk space that can be used.
However, the complexity of implementation introduced by this additional layer is
not desirable.

To summarize, using a B-tree index, which at first seems to be the natural fit
for the problem, requires additional complexity that causes the implementation of
this approach to become cumbersome. In addition, log archiving generates large
runs, which makes the performance of the loading process in an index structure
extremely important. Even though partitioned B-trees offer a much better load
bandwidth than regular B-trees, we can resort to a much simpler data structure
that offers an even better load performance from which we can directly benefit.

3 Zone Filters & Zone Indexes

The use of index structures in database systems usually imposes a trade-off between
better query performance and load bandwidth in bulk insertions. In other words,
the maintenance requirements of the index structure in relational data warehous-
ing result in additional load bandwidth costs. In this sense, the behavior of the
log archiver is similar to load operations in a data warehouse, since large runs of
sorted log records are created. These costs, in the case of loading large amounts of
data, refer to the random insertions or sorting the incremental changes followed by
merging these changes into an existing index. As mentioned in the previous section,
partitioned B-trees create the ability to perform the work later and incrementally,
but do not reduce such effort.

Netezza’s zone maps, which are closely related to “small materialized aggregates”
[7], were introduced to alleviated this trade-off by offering a higher load bandwidth
without the costs related to index maintenance and index tuning at the same time
as it offers very fast scans for typical queries. The main idea behind zone maps is
to group data records in so-called “zones” (which can be equivalent to a database
segment) and to gather the minimum and maximum values of columns for each of
these zones. The minimal and maximal information can be easily gathered during
the initial load, as well as updated in future insertions (maintenance of these values
during deletion is omitted). By having the interval range of values within a zone, it
is possible to simply skip over zones in which a queried value is guaranteed to be
absent (the presence of a value within a zone cannot be guaranteed by minimal and
maximal values). However, some characteristics should be considered as possible
weaknesses, as they might impose important limitations to the use of zone maps.
We discuss these below.

First, if the range of values of a zone map contains outliers, storing the minimal
and maximal values of this zone does not offer a great benefit.

Second, there is the requirement for correlation between load sequence and the
values of the attributes being captured. As an example, assume an e-commerce
database with a table that keeps track of information about client orders and a
column that contains timestamp values referring to the order creation time. In this
case, the values of this column have a direct correlation to the sequence in which each
row was inserted. Attributes without such a correlation do not benefit from zone
maps, since it is unlikely for the range of values within a zone to be substantially
smaller than the entire domain of values. In other words, if there is no correlation,
then a large portion of the entire domain of values is present in every zone and no
zone can be skipped, since almost every value is comprised in the range between
the minimum value and maximum value of a zone.

In the partially-sorted log archive, if we consider the domain of a single run file,
there is a direct correlation between the page identifier and the “load sequence”,
since the log records within a single run file are primarily sorted by the page identifier



of the page they refer to. It is important to note that the mentioned “load sequence”
refers to the sequence given by the partial sorting and not to the LSN sequence.
However, if we treat each run file as a “zone”, such correlation does not necessarily
exist, since log records referring to a certain page can be present in multiple run
files.

Zone filters [4] were introduced to address the limitations of zone maps without
reducing the advantages. They generalize the idea of zone maps by introducing mul-
tiple boundary values, i.e., multiple lowest and highest values for a certain range.
This can alleviate the problem with outliers in the sense that more lowest (or high-
est) values can be used to surpass the number of expected outliers. In addition to
this, a bit vector can also used for each zone to provide more precise information
of the values present in that zone by mapping these values to positions in the bit
vector. In this sense, the bit vector helps to filter columns without correlation to
the load sequence.

Zone indexes extend the concept of zone filters by allowing direct access to values
within a zone. In combination, these techniques provide near-direct access to certain
key values in an index structure that can be loaded sequentially. By using zone
filters, regions of the input data that do not contain the key values of interest can
be skipped during a scan. By using zone indexes, key lookup is supported within
a zone, allowing direct access even in the case of large zones and low selectivity.
In addition to that, zone indexes can be built very efficiently during the loading
process, at least more efficiently than B-trees, because it does not require sorting.
However, this is not relevant in our scenario, since the input is (partially) sorted
regardless of the index structure.

In summary, even if partitioned B-trees create the illusion of alleviating the load
costs of traditional B-trees, they do not really reduce the costs (only postpone it).
On the other hand, zone filters and zone indexes can be employed in a non-indexed
structure for improving search performance without impact on load performance.
While this difference between partitioned B-trees and zone indexes is present in
common scenarios, there is no such distinction in the log archive scenario, since
the log records are already pre-sorted. Nevertheless, these data structures can be
constructed as part of the load process, with little processing effort and memory.
All the costs related to sorting the future index records and to external merge sort,
in the case of a fully-indexed structure, are relinquished.

In the next section, we evaluate the application of zone filters and indexes to the
log archive. Furthermore, we provide a blueprint for implementing this approach in
an existing system with partially-sorted log archives.

4 Indexed Log Archive

In order to realize the idea of instant restore, log records pertaining to a certain
page must be retrieved efficiently. In this section we propose a design inspired by
zone filters and zone indexes to achieve this desired efficiency. A partially-sorted log
archive, as used in single-pass restore, is divided into sorted runs (files) as illustrated
in Figure 3.

Each run file contains a disjoint range of the LSNs in the temporary log. The
log records within a single run file are sorted by page id and stored in blocks of
fixed length. The information about the LSN range of each run is present in the
file name. When performing on-demand restore, the log archive is searched for log
records of a certain page id beginning at a certain start lsn and optionally finishing
at a certain end lsn. Thus, initially we can define a query in the log archive index
by a tuple:

<page id , s t a r t l s n , ( end l sn )>



Fig. 3. Run files in the log archive.

Moreover, the search process can be divided into two steps:

1. Search for run.
2. Search for block within a run.

First the run to be searched must be determined. Second, since runs tend to be
large files, given a run, the access to the block containing the first log record in the
search query must be as efficient as possible.

4.1 Filtering runs

From a query, since the start lsn is known, it is possible, based on the LSN range of
each run, to determine the first run file to search for the log record with start lsn.
Since the log records in a single run are sorted by page id, once the first log record
is found, all the following log records from the same page id within that run are
read. However, log records for a certain page span across multiple runs and not all
pages have log records in every run. Thus, after the last log record for a page in a
run is read, there is no information about the LSN of the next log record pertaining
to the same page and, as a result, it is not possible to precisely determine which
run does it contain.

Even if the runs are sorted and an efficient search algorithm can be employed
to scan the run file, searching for a log record of a certain page without the aid of
an index can be expensive, even more if the run file is scanned just to find out that
log records about that page are not even present. Therefore, it is highly desirable
to have additional information about runs to enable us to skip the ones that do
not contain log records of the page id being searched. Each run file is treated as a
“zone” in such a way that it is possible to filter only the runs that contain desired
information. To this end, a data structure is needed to store such information that
will enable runs to be filtered. It is desirable for this data structure to be simple and
lightweight to minimize the storage overhead, since it has to be stored alongside each
run file. For a naive approach, let us consider that information about the minimum
and maximum page ids for each run can be used to discard runs that do not have
the queried page id in its interval.

The trade-off from filtering runs has to be considered. Information required for
filtering runs adds additional storage costs in the log archive. If we have a run file
that does not contain the queried page id and there is no filtering, a portion of this
run file, the one where the page id was supposed to be, is loaded into memory. This
portion of the file is then searched only to find out that the page id is not present.
If an effective filter is employed, in such a way that it is possible to determine the
absence of the page id in the run, there is no need to load any portion of the run.
Therefore, the main gain from having a filter is to avoid one useless I/O operation.
In other words, the additional costs only pay off if the filter enables a run to be



skipped. Then, the main challenge is to determine if applying a filter to a certain
run offers a sufficient gain.

Runs have sorted log records referring to page ids within a certain interval. This
interval is not necessarily, and unlikely, continuous, meaning that not all page ids
defined by the interval are present in the run. The more absent page ids defined by
the interval of a run, the higher is the probability of false positives, i.e., the filter
indicates that an absent page id is present. As an example, storing the minimum and
maximum page ids for a run that has only odd page ids has a false positive ratio
of about 50%, assuming that pages are queried following a uniform distribution.
Therefore, in addition to the minimum and maximum page id of each run file, it
is desirable to store a more detailed ”summary” about the distribution of page ids
within the run. Considering that the page ids in a run are known prior to writing
the run file to disk, it is possible to use such information to determine if applying a
filter is worth the additional costs (in the case where there is only one filter format)
as well as to tailor a filter that is more suitable for each run file (in the case where
runs are allowed to have different filter formats).

Finally, even if it is unlikely that a page does not have log records in every run
(assuming on-demand restore) and, consequently, not many runs will be filtered, the
gain from skipping a single run and, consequently, saving an I/O operation should
justify the additional costs.

4.2 Finding the block

Once a run file that may contain the desired log record is determined, the problem
then is how to directly access the portion of the file where the record might be,
instead of searching the whole file. Therefore, additional information for zones of
the file must also be maintained, similar to the filter information for each run
mentioned in the previous section.

By dividing the run file in “blocks” of fixed size, it is possible to have information
for each block about the log records it contains. Such information may comprise the
page id of the first log record in the block, and, therefore, it acts like a “separator
key” in a B-tree. The index for a single run consists of a list of separator keys that
represent the page id of the first log record of each block in the run, as well as the
offset of each block within the run file. From that point of view, it is as if the list of
separator keys is a variable-length root node (large enough to contain all separator
keys of a run) of a B-tree of height 1, and the fixed-length blocks are the leaf nodes
of this said B-tree. The log archive index is then defined as a list that contains the
indexes for every run in the log archive.

While fixed-length blocks may consume additional storage space in the cases
where the next log record does not fit in the remaining space of that zone, the
storage space “lost” in these cases should be small enough to a point where it
justifies the gain of reduced complexity. The index of a run is then stored alongside
the run file itself. The example of Figure 4 shows a run file divided by blocks of
fixed size (say, 1KB). For each “data block”, i.e., blocks that contain log records,
there is a separator key. If we have 50 “data blocks” and each separator key has 32
bytes, the total amount of additional space required for storing these entries is 1600
Bytes (50 * 32), i.e., two additional “index blocks” are required at the end of the
run file.

When the desired run file is known, all that has to be done is read this list
of separator keys to determine, based on the matching key value, the offset of the
block where the log records for the desired page starts.

Figure 5 illustrates the design of a run index. Each run has a list of all separator
keys within that run, each one pointing to the block where the first log record refers
to the corresponding page id. Since the log records within a run are sorted by the



Fig. 4. Internal organization of a run file.

page ids, to determine in which block the log records that refer to a certain page id
start, a binary search based on the range of page ids between two separator keys
can be employed. It is important to mention that, if the log records that refer to the
desired page id are in the beginning of a block, the previous block must also be read,
since it is likely that log records referring to the same page id are also present in the
end of the previous block. In addition, it is undesirable to have multiple blocks with
log records referring to a single page id, as this would require all of these blocks to
be read.

Fig. 5. Relation between blocks and separator keys in a run index.

Finally, the performance gains of this strategy are combined with the ones from
filtering run files, providing access to any log record efficient enough to realize the
idea of on-demand restore.

4.3 Concurrency

By analyzing the concurrency control requirements of the proposed archive index
structure, there are three types of processes involved: the archiver process, the
merger processes and the restorer process. During normal database operation, the



archiver process is running, reading log records from the temporary log and writ-
ing them into sorted run files in the log archive. The merger processes runs asyn-
chronously in the background merging run files. After a media failure, the restorer
process is triggered and it accesses the archived log records by querying the archive
index in order to replay the operations and restore the most recent state of each
database page. Even if multiple transactions trigger the on-demand restore of pages
concurrently, the access to the disk where the log archive is stored is still sequential.
Therefore, each transaction emits requests for restoring a certain page. These re-
quests are received by the restorer process, which is responsible for scheduling and
processing them. While the media restore is taking place, there are two alternatives
on how these three types of processes interact with each other.

First, we assume that the merge of runs does not take place while there are
still pages to be restored. Stopping the archiver process, in addition to the merger
process, is not desirable, as it would cause log records to accumulate in the tempo-
rary log, since new transactions are being executed. If this was the case, when the
restore of all pages completes and the archiver process restarts, the volume of log
records to be archived would be bigger. Furthermore, if the temporary log contains
too many log records, and since it is not indexed, it might be expensive to replay all
its contents in case of a restore from a media failure. Thus, stopping only the merger
process is the simplest approach, as it does not add much limitations and requires
a rather simply concurrency control to synchronize the access to the archive index
structure by the archiver process and restorer process.

The second alternative is to allow the merger process to merge existing runs while
there are still database pages to be restored. This behavior is desired in a scenario
where pages are constantly being restored during normal database processing. A
new level of complexity is introduced, as there is the need of a much more complex
synchronization to access the index structure in order to prevent incorrect behaviors.
A more detailed view from the inner operation of each of the types of processes is
required.

From the perspective of the writer process, a new run is written to a temporary
file and after the runs if finished, the file is renamed to its permanent name. Since
renaming a file is an atomic operation, the index structure, i.e., the list of “block
information” entries for that run, is made available only after successfully creating
the run file. In case there is a failure in-between, the index structure is normally
loaded from the run file at startup.

The merger process merges two adjacent files (in order to keep the contiguous
mapping to LSN ranges) in a temporary file. Similarly to the write operation, after
the merge is complete the temporary file is renamed to its permanent name. The
deletion of the two original files does not need to be done atomically. In case of
a system failure after the temporary file was renamed and before the deletion of
the two merge files, the system checks for run files with overlapping LSN ranges
at startup and deletes the smaller runs. Therefore, before the two original files are
deleted, their in-memory index must be replaced by the new merged index. In order
to achieve correctness, before deleting the two older indexes, it must be guaranteed
that no other process is still accessing them.

Since the archive index consists of multiple indexes for each individual run,
the access synchronization could be kept at the level of a single run index. In this
case, the possible outcome of interleaved operations of the restorer process and
the archiver process must be carefully considered in order to guarantee the access
integrity of the data structure used to store the run indexes. However, analyzing the
interactions between these two processes might turn out to be a quite cumbersome
task that will not pay off. Therefore, in order to keep the design less complex, the
restorer process and the archiver process may request an exclusive access to the
whole archive index structure (indexes of all runs).



Finally, regarding synchronization between the restorer process and the merge
process, the only requirement, as mentioned before, is that the deletion of an index
of a run cannot occur while the restorer process is accessing that same index. Fur-
thermore, the restorer process must handle the situation where the portion of the
indexed it was going to access was deleted as a result of a merge. In these cases, the
restorer process must retry the query from the beginning, being able to access the
new index structure created for the new merged file. Again, if both restorer process
and merger process require an exclusive access to the whole archive index structure,
these guarantees are achieved without introducing further complexity to the design.

4.4 Caching

In a single-pass restore operation, the whole log archive is read only a single time in
order to replay the log records. The on-demand access, as a requirement for instant
restore, deviates from this single-pass behavior. If a block is read from the archive to
memory only to replay a portion of the log records it contains and it is thrown away
afterwards, the same block will need to be read again in the future for replaying
the remaining log records. For this reason, it is desirable to keep these unused log
records in memory, every time a block is read. This caching of log records not only
avoids the need of re-reading the same block over and over, but also enables a faster
response time for queries for log records present in the cache.

However, the caching does not guarantee a single pass through the whole log
archive. Consider the scenario where a block is read into memory and the unused
portion of log records is kept in the cache. If the run to which that block pertains
was merged afterwards, the log records currently in cache are now part of a different
block. This different block might be read into memory as a consequence of a query
for another page id and thus the same log records are read into memory again
together with the block. In order to avoid this, the cache may proactively try to
merge cached portions of the log, making it more efficient. However, this would
further increase the complexity. A better alternative to workaround this behavior
is to prevent runs to be merged while restoring is taking place, as mentioned in
the previous section. Still, even if the caching of log records does not guarantee
a single-pass property, it is effective to keep the number of passes to a minimum
desired level.

Even with all the advantages mentioned above, there are important aspects that
must be considered. Caching introduces additional memory consumption costs as
well as the requirement for efficient memory management, since the data structure
used would have to manage small variable-length portions of blocks, instead of
blocks themselves. Furthermore, caching may not even pay off if the log volume is
typically much lower than the data volume (i.e., backup), which is quite common. On
the other hand, caching becomes more interesting if we consider using the partially-
sorted log archive for restart as well (not just restore). Thus, a detailed analysis
of the gains and the implied trade-offs must be made in order to determine how
desirable a caching mechanism is.

5 Conclusion

The core concept to realize the instant restore strategy is to restore single database
pages on demand. To achieve this, efficient access to log records pertaining to a
certain page is required. Since the log records are already stored partially-sorted in
a log archive, there is the need for a structure to provide such efficient access at the
same time it enables efficient loads of large runs of sorted log records.

B-trees arise as the most common data structure for indexing. Partitioned B-
trees particularly offer a better trade-off between search and load performance in the



context of log archiving. Costs related to large load operations and index mainte-
nance are not reduced, but rather than that, they are postponed. However, in order
to maintain the data structure resilient to system failures, new levels of complexity
must be introduced. Simply reusing the existing logging infrastructure of regular
B-trees seems to be not a good approach, since it generates new log records while
already indexing old log records.

As an alternative, zone filters and zone indexes indeed offer a load performance
improvement, at the same time it enables efficient search operations. Since the data
structure required for zone filters and zone indexes tend to be small, storing and
maintaining them can be realized in a simple way to guarantee atomicity in the case
of system failures.

By employing zone filters for each run file in a partially-sorted log archive, it is
possible to skip run files that do not contain the desired log record. Since runs can
be large files, even if not many runs are discarded, skipping a single run offers a gain
of one I/O operation that may already justify the additional costs. In addition to
that, information about fixed-length blocks within a run is stored together within
the run file in the form of a zone index. This information enables to access the block
(offset in the run file) in which the log records of a certain page start within that
run.

In order to keep a good performance and response time for operations accessing
the index structure, concurrency and caching aspects must also be considered. Even
if the performance requirements of the proposed approach are yet unclear, its design
is flexible enough to enable the composition of new techniques to fulfill future re-
quirements. This approach is expected to offer a good solution for the requirements
needed for realizing the on-demand restore of pages.

References

1. D. Comer. The Ubiquitous B-Tree. ACM Comput. Surv., 11(2):121–137, June 1979.
2. G. Graefe. Sorting And Indexing With Partitioned B-Trees. In Proc. CIDR, 2003.
3. G. Graefe, W. Guy, and C. Sauer. Instant recovery with write-ahead logging: Page

repair, system restart, and media restore. Synthesis Lectures on Data Management,
6(5):1–85, 2014.

4. G. Graefe and H. A. Kuno. Fast Loads and Queries. Trans. Large-Scale Data- and
Knowledge-Centered Systems, 2:31–72, 2010.

5. T. Haerder and A. Reuter. Principles of Transaction-oriented Database Recovery. ACM
Comput. Surv., 15(4):287–317, Dec. 1983.

6. R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-MT: A
Scalable Storage Manager for the Multicore Era. In Proc. EDBT, pages 24–35, 2009.

7. G. Moerkotte. Small Materialized Aggregates: A Light-Weight Index Structure for Data
Warehousing. In Proc. VLDB, pages 476–487, 1998.

8. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A Transaction
Recovery Method Supporting Fine-granularity Locking and Partial Rollbacks Using
Write-ahead Logging. ACM Trans. Database Syst., 17(1):94–162, Mar. 1992.

9. C. Sauer, G. Graefe, and T. Härder. Single-pass restore after a media failure. In Proc.
BTW, LNI 241, pages 217–236, 2015.


	Filtering and Indexing in a  Partially-sorted Log Archive

