
Decoupling Persistence Services
from DBMS Buffer Management

Lucas Lersch
∗

TU Kaiserslautern
Germany

lucas.lersch@sap.com

Caetano Sauer
TU Kaiserslautern

Germany
csauer@cs.uni-kl.de

Theo Härder
TU Kaiserslautern

Germany
haerder@cs.uni-kl.de

ABSTRACT
Advances in DRAM technology and, in turn, substantial cost
reduction for volatile memory in recent years require an evo-
lution of database system architectures to take full benefit of
large buffer pools. Having huge memory sizes, an up-to-date
version of database pages on stable storage is more than ever
necessary to support fast and effective crash recovery.

In this contribution, we consider important components of
a traditional DBMS architecture and related opportunities
for optimization in the context of persistence and system
recovery. We implemented and evaluated novel checkpoin-
ting and page cleaning algorithms which are based on log
information rather than on data collected from critical in-
memory data structures such as buffer pool and transaction
manager. Decoupling such persistence-related components
from in-memory processing enables a simpler and more mo-
dular DBMS architecture as well as less interference with
these components in critical in-memory data structures.

Keywords
database architecture, transaction processing, recovery

1. INTRODUCTION
The architecture of traditional database systems evolved

in a time when the available amount of main memory was
relatively small compared to the size of typical applicati-
on working sets. To achieve satisfactory transaction perfor-
mance, these systems had to be heavily optimized for the
underlying hardware, i. e., the design had to consider fre-
quent operations to persistent storage, taking into account
high latencies of both commit operations and data accesses.
Due to current advances in hardware technology, however,
an adaptation of existing DBMS architectures is required to
unleash their inherent performance potential [11].

Compared to the situation in the 1970s and 1980s, one of
the most important hardware-related changes is the drama-

∗Currently with TU Dresden & SAP SE.

28th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 24.05.2016 - 27.05.2016, Nörten-Hardenberg, Germany.
Copyright is held by the author/owner(s).

tic cost reduction of volatile memory. Nowadays, it is reali-
stic to consider a scenario where the buffer pool can accom-
modate most, if not all, data pages and, consequently, there
are fewer page reads and writes from/to persistent stora-
ge. Furthermore, the commit latency is drastically reduced,
thanks to modern solid state drives which offer a much hig-
her number of I/O operations per second when compared to
hard-disk drives. In this contribution, we reconsider the exi-
sting components of a traditional database architecture and
opportunities for optimization in the context of persistence
and system recovery.

We assume that even with large amounts of memory and
transaction processing hardly requiring I/O operations, it
is still desirable to keep an up-to-date version of database
pages in persistent storage to guarantee efficient recovery
in case of a system failure. Most modern database systems
rely on write-ahead logging techniques and implement the
ARIES [6] algorithm for system recovery. In such environ-
ments, regular checkpoints are taken to improve recovery
performance. Checkpoints serve as the starting point for log
analysis, the first phase of crash recovery. The more recent
a checkpoint was taken, the less time log analysis takes to
complete in case of a failure.

In addition to checkpoints, it is also common for data-
base systems to periodically clean dirty pages (pages with
committed updates so far not propagated) by flushing them
from the in-memory buffer pool to persistent storage. Conse-
quently, since the REDO phase (after a crash) would require
random reads, its cost is reduced by maintaining only a low
count of dirty pages [7]. In this work, we refer to both check-
pointing and page cleaning in a general way as propagation
services, in the sense that they propagate information from
the main memory to persistent storage.

The problem is that such propagation services interfere
with and might disturb in-memory transaction processing,
since they must inspect data structures and consequently
acquire and release latches on them. This is especially true
for scenarios of large buffer pools capable of holding the
entire application working set, since disk I/O is less likely
to be the bottleneck. Furthermore, decoupling unnecessarily
coupled components in a system is not only a matter of per-
formance, but it also offers a cleaner, more modular system
architecture and reduces code complexity.

The first contribution of the proposed architecture is to
enable checkpoints to gather all required information solely
by inspecting the log. As a main advantage, it is not on-
ly simpler by making use of the same existing logic of log
analysis during recovery, but it also implies less interference



(a) Tightly coupled persistence (b) Decoupled persistence

Figure 1: Differences between traditional and proposed architecture.

with in-memory processing, as mentioned above. The second
contribution is a decoupled implementation of a page clea-
ner, which also makes use of log data instead of in-memory
information. Besides also reducing the interference in the
buffer pool, it can be combined with single-page recovery
techniques [3] that enable a set of interesting features for
the recovery component of a database system, as discussed
later. Figure 1 illustrates differences between the traditional
design and the proposed decoupled design.

2. BACKGROUND

2.1 System Recovery

2.1.1 ARIES Restart
To offer transaction atomicity and durability guarantees,

i.e., the “A” and “D” of ACID, most modern database sy-
stems implement a write-ahead logging mechanism (WAL).
The ARIES algorithm [6] embodies an efficient way to enable
WAL-based system recovery. In case of a system crash, the
recovery goal is to re-establish the most recent transaction-
consistent database state.

The system recovery algorithm operates in three different
phases: log analysis, REDO, and UNDO. Starting from the
last checkpoint, log analysis scans the log to inspect all log
records to determine which pages were dirty and which tran-
sactions were active at the time of failure. After having ana-
lyzed the log, the REDO phase scans the relevant part of the
log and replays all log records that refer to updates of dirty
pages. Finally, the UNDO phase rolls back transactions that
were active at the time of failure.

As observed in a previous analysis of typical OLTP work-
loads [7], UNDO is usually very short, and the determinant
factor for recovery cost is the number of dirty pages that
require log replay in the REDO phase. Therefore, it is cru-
cial to clean pages proactively as frequently and efficient-
ly as possible. Furthermore, it is desirable to take frequent
checkpoints to reduce the time required for log analysis. In a
traditional design with tightly-coupled propagation services,
however, an increased frequency of page cleaning and check-
points inevitably hurts performance, as shown in Section 4.

2.1.2 Instant Restart
An alternative design for system recovery is the instant re-

start mechanism [2], which opens the system for new tran-
sactions immediately after the log analysis phase, perfor-
ming the required REDO and UNDO actions on demand.
The design is implemented with moderate incremental chan-
ges to the traditional ARIES algorithm. On-demand REDO

of dirty pages is performed page by page instead of using a
log scan. To that end, each log record must include a pointer
(i.e., the LSN) of the last log record affecting a specific pa-
ge. Such a pointer is simply copied from the page LSN field
prior to generating a log record.

For on-demand UNDO, loser transactions are rolled back
concurrently to REDO and newly running transactions. This
rollback is triggered by lock conflicts between new and lo-
ser transactions. Therefore, log analysis requires a lock re-
acquisition for loser transactions, which implies that currently-
held locks must also be included in the information collec-
ted for checkpoints – this is in contrast to the ARIES me-
thod which re-acquires such locks in the REDO phase. For a
traditional checkpoint procedure inspecting in-memory data
structures, this effort causes additional interference, which
is eliminated in our decoupled design.

For further details, we refer to an extensive publication on
instant recovery techniques [2].

2.2 Checkpoints
In a general way, a checkpoint could be defined as a rela-

tively recent persistent copy of any information that serves
as a basis for restart and enables a faster recovery process.
The more recent a checkpoint was taken w.r.t. the time of
the system failure, the less work is required for recovering
the system. Thus, it is a good practice to take checkpoints re-
gularly. To be more precise in the definition of a checkpoint,
we follow the definition of fuzzy checkpoints as presented in
[4]. Therefore, a checkpoint comprises relevant server state
information such as dirty pages, active transactions, and –
for the support of instant restart – all acquired locks. The
checkpoint is not concerned with the database state and,
therefore, it does not write any pages from the buffer pool
– as discussed later, this concern is delegated to the page
cleaner service.

To take a checkpoint, a BEGIN CHKPT log record is
written to the log. Then, all the required information is ga-
thered from the in-memory data structures and written to
the log as so-called checkpoint log records. An END CHKPT
log record is inserted to indicate that the checkpoint com-
pleted correctly. The information comprised by a checkpoint
summarizes, for the purposes of restoring the server state, all
the log records up to the point where the checkpoint began.

After a crash and during system restart, the log analysis
phase retrieves the most recent checkpoint and starts a for-
ward scan from there up to the end of the log. During the
scan, all log records are analyzed to update the information
collected by the last completed checkpoint. As a result, this
log analysis delivers the relevant restart information for the
state exactly before the crash occurred.



2.3 Page Cleaning
The REDO phase is responsible for replaying all log re-

cords that refer to pages marked as dirty in the buffer pool
at the moment of system failure. Therefore, the amount of
work to be processed by REDO is directly related to two
aspects: (1) the amount of dirty pages in the buffer pool at
failure time and (2) how old the versions of their persistent
page copies are (the older it is, the more log records are ex-
pected to be replayed to bring the page to its most recent
state).

During normal processing, there are three situations in
which pages are flushed from the buffer pool to persistent
storage. First, if a dirty page is picked for eviction, it is flus-
hed to persistent storage to making room for fetching the
new page. Considering systems with a large buffer pool, the
process of evicting a dirty page tends to happen less fre-
quently. Thus, regularly flushing dirty pages at appropriate
points is beneficial for reducing the REDO time in case of
a crash. This corresponds to the second situation. Third, at
normal system shutdown, it is desirable to flush all dirty
pages to avoid any recovery at the next start up.

Most modern database systems implement a page cleaner
service running as a background thread to handle all these
situations. In other words, the task of flushing a page is
always delegated to the page cleaner service.

Once it is activated, the page cleaner iterates over the
buffer pool and inspects the frame descriptor blocks to de-
termine whether the pages contained should be cleaned, i.e,
flushed to persistent storage. Pages can be selected accor-
ding to a number of policies, e.g., hottest first or oldest first.
In this work, we assume a naive policy that simply picks all
dirty pages. Pages picked to be cleaned are then copied to a
separate buffer; this is done to reduce the time for which a
shared latch is held on the page – from a synchronous write
call to a fast memcpy operation. The pages in the cleaning
buffer are then sorted by their page identifier to enable se-
quential writes. After the write buffer is flushed, the cleaner
must once again attempt to acquire shared latches on the
pages just flushed and mark them as clean, in case there are
no further modifications on such a page made during the
cleaning process. In total, each cleaned page is latched three
times: to verify its dirty state, to copy it into an in-transit
buffer, and to update the dirty state.

2.4 Log Archiving
In WAL-based database systems, the latency of the log de-

vice has a direct impact on transaction throughput. There-
fore, to enable better performance, latency-optimized stable
storage (such as SSDs) for the recovery log is usually em-
ployed. However, compared to storage devices such as hard-
disk drives, latency-optimized devices have a much higher
capacity/cost ratio and are therefore less cost-effective. Fur-
thermore, it is even more expensive to keep old log records
in a latency-optimized device, assuming that most of these
log records are unlikely to be needed. To avoid filling-up the
temporary log device, the log records are continuously mo-
ved into a log archive using a cost- and capacity-optimized,
long-term stable storage device. The latency of such a log ar-
chive device is not critical for the system performance, since
archived log records are usually needed only during recovery
from a media failure.

Instead of simply moving the log records from the tempo-
rary log to the log archive, it is possible to re-organize them

in a more convenient way. To enable single-pass restore of
a storage device after a media failure [8], when moving the
log records to the archive, they are sorted into runs ordered
by page identifier using an external sort-merge operation.
As a result, the log archive is said to be partially sorted, gi-
ven that the primary sort criterion is an LSN range – which
identifies a run – and the secondary sort criterion is the
page identifier. These runs are merged asynchronously and
incrementally, using a data structure similar to a partitioned
B-tree [1].

The partial sort order in the log archive also enables inde-
xing, meaning that the history of a single page can be acces-
sed much more efficiently. This was exploited in a proposal
for instant restore [9], which enables on-demand restoration
from a media failure concurrently with running transacti-
ons, similar to instant restart. However, such indexing can
also be exploited for efficient REDO operations during rest-
art after a system failure as well as for single-page recovery
in case of an isolated data corruption [3]. In our case, we
exploit the partially sorted log archive for a novel applicati-
on: propagation of updates with a decoupled page cleaner,
which is discussed in the next section.

3. DECOUPLED PERSISTENCE SERVICES

3.1 Decoupled Checkpoints
The idea behind a decoupled checkpoint is to use the sa-

me logic behind log analysis to gather all information nee-
ded for the checkpoint, instead of querying in-memory data
structures for this reason. To take a decoupled checkpoint,
all log records between the last completed checkpoint and
the BEGIN CHKPT log record referring to the checkpoint
currently being taken are analyzed. The main motivation he-
re is that, as minimal as it may be, any interference with the
data structures caused by the process of checkpoint creation
can be completely avoided. However, since it is desirable to
re-use the same logic of log analysis, some important diffe-
rences must be considered.

First, taking a traditional checkpoint is completely inde-
pendent from information contained in older checkpoints,
since it only inspects in-memory data structures. However,
in the case of a decoupled checkpoint, since the algorithm
is the same as for log analysis, it must rely on informa-
tion present in the checkpoint previously completed. This
introduces the limitation that, when taking a new decou-
pled checkpoint, the previously completed checkpoint must
always be contained in the log. Alternatively, the contents
of such a checkpoint can be cached in main memory during
normal processing.

Second, since the decoupled checkpoint inspects only log
records, page write operations must be logged to determine
when a previously dirty page can be considered clean. As
observed in previous studies [7], logging page writes is a
common practice used in existing database software, since
it enables more effective recovery from a system failure.

Third, taking a decoupled checkpoint may introduce ad-
ditional I/O for reading the temporary log. An approach
that eliminates this overhead maintains checkpoint informa-
tion in main memory and continuously updates it by con-
suming log records from the log buffer, which also resides
in main memory. When a checkpoint is requested, this in-
formation can then immediately be propagated to the per-
sistent log. Additionally, the checkpoint generation process



can feed from the same input stream used for log archiving.
When these two techniques are combined, no additional I/O
overhead is incurred. For simplicity of implementation, our
evaluation considers a naive approach where checkpoints al-
ways rely on reading the persistent log.

Fourth, since the process of taking a decoupled checkpoint
is basically the same as log analysis, the longer the elapsed
time from the last checkpoint, the more time is required
for taking a new decoupled checkpoint. Therefore, the new
technique encourages more frequent checkpoints, which also
benefits recovery performance. Since this kind of checkpoint
creation does not interfere with in-memory processing, over-
all system performance should not be affected.

3.2 Decoupled Page Cleaner
To motivate the use of a decoupled page cleaner, we are

first considering a scenario where the whole working set is
in main memory, later expanding our argument to medium
and small buffer pools. For such a large buffer pool, there
are no page misses and therefore no need for page eviction.
Therefore, the only I/O operations to the database device
made by the cleaner service are related to periodically clea-
ning dirty pages, which reduces REDO time during restart
after a system failure. Hence, it is desirable for the cleaner
service to be continuously active and provide for as many
clean pages as possible in the buffer pool.

To flush pages, the cleaner service requires direct access to
the buffer-pool data structure as well as unnecessarily high
latching (i.e., low-level concurrency control) contention. If
the page cleaner service is too aggressive, it might generate
too much interference (mainly with hot pages) and conse-
quently harm the transaction activity. Hence, it is highly
desirable to reduce any interference with in-memory data
structures while enabling the page cleaner to run as aggres-
sively as required. Note that this stands at odds with the
goal stated above, which means that a tradeoff is required
in the traditional design.

A decoupled page cleaner eliminates this trade-off by en-
couraging more frequent checkpoints regardless of transac-
tion activity. This is achieved by asynchronously replaying
log records on page versions present on persistent storage,
without requiring any access to the page images in the buf-
fer pool. This is a similar procedure as those performed by
single-pass restore and virtual backups [8].

However, assuming a group of sequential pages that are
in the cleaner buffer, fetching log records referring to these
pages implies random I/O to the recovery log device, which
should be avoided as far as possible for performance reasons.
Fortunately, as mentioned in Section 2.4, the log archive de-
vice can be partially sorted by page identifier and indexed,
enabling a sequential read of the log records referring to the
pages to be cleaned. Furthermore, to avoid repeated work,
the decoupled page cleaner keeps track of the LSN up to
which pages were cleaned. Every activation of the decou-
pled cleaner then increases this LSN value, essentially brin-
ging the persistent database state up to that LSN. Figure 2
illustrates the main idea of the decoupled page cleaner based
on log archive.

Two further issues must also be considered to fully decou-
ple a page cleaner from the buffer pool. First, an efficient
eviction policy should give preference for removing clean pa-
ges from the buffer to make room for new pages. Therefore,
to keep track of which pages are dirty and which pages are

Figure 2: Decoupled cleaning scenario

clean, the decoupled page cleaner, after replaying the log re-
cords and flushing a more recent version of pages, still has
to acquire latches on pages in the buffer pool to mark them
as clean, if necessary. Second, when a page flush is required
and the decoupled cleaner is activated, it must be guaran-
teed that the page is in its most recent version when fetching
it from persistent storage again. This requires some synchro-
nization among the page cleaner and the process of fetching
pages from disk.

To overcome these limitations, the decoupled page cleaner
can be combined with a method used for single-page reco-
very [3]. By employing this kind of recovery, it is possible
to determine whether or not a page fetched from persistent
storage is up to date. In case the page is outdated, log replay
is triggered to bring it to the most recent state before allowi-
ng further accesses. This addresses the second problem state
above. A similar idea, called write elision, can be employed
to deal with the eviction problem. It relies on single-page
recovery to allow evicting a dirty page from the buffer pool
without writing it back to disk. In combination, these tech-
niques enable full decoupling of persistence services from
buffer-pool data structures.

In a scenario where the working set does not fit into main
memory, the advantages of a decoupled cleaner must be
reconsidered. If a medium-sized buffer pool is used, such
that memory bandwidth is well utilized for high transaction
throughput, the decoupled cleaner is not expected to impact
performance in any way – positive or negative. However,
the advantage of a modular and loosely-coupled architec-
ture suggests it as a better approach. In the case of a small
buffer pool, where page I/O clearly becomes the bottleneck,
a traditional approach is preferrable, since it can more ef-
ficiently provide propagation solely by page eviciton – i.e.,
without an asynchronous cleaning daemon. This scenario,
however, is quite rare in modern OLTP systems, given the
moderate cost of DRAM.

3.2.1 Further Applications of Decoupled Cleaning
Other than decoupling the modules of page cleaning and

buffer management in the system architecture, a decoupled
page cleaner enables interesting recovery features which we
hope to exploit in future work. These are not considered in



our evaluation in Section 4, but are shortly listed here to
motivate further applications of our technique.

Similarly to write elision, a decoupled cleaner together
with single-page recovery also enables read elision [2]. The
idea consists of simply logging insertions and updates to da-
tabase pages without the requirement of having them loaded
from persistent storage to memory. The decoupled page clea-
ner is then responsible for later replaying the generated log
records to the persistent pages. Both read and write elision
offer the advantage of avoiding unnecessary I/O operations
that would increase the transaction response time. In other
words, the decoupled page cleaner works in synergy with
single-page recovery in the sense that it runs page recove-
ry in the background and alleviates the cost of doing it on
demand.

A decoupled cleaner also allows different page representa-
tions for buffered and persistent images of pages, which may
exhibit several advantages. For instance, in a design that
maintains only committed log records in the persistent log
[10], a no-steal policy is easily achieved. In such a design,
uncommitted updates always remain in the volatile buffer
pool, so that the need for UNDO logging & recovery is eli-
minated.

4. EXPERIMENTS
As the main hypothesis to be tested by the following ex-

periments, a decoupled design may reduce the interference
with main-memory data structures, which might deteriora-
te the transaction throughput of the whole system. In our
experiments, we only evaluate the performance of decoupled
checkpoints. The decoupled cleaner provides similar results,
but a more thorough analysis is currently being carried out
and it is thus reserved for a future publication.

We implemented the algorithms previously described for
creating decoupled checkpoints in the Zero storage mana-
ger1 (based on Shore-MT [5]). Here, we present experiments
comparing the classical and the decoupled checkpoint imple-
mentation to exemplify how such a service can interfere with
in-memory processing. The experiments consist of executing
the TPC-B benchmark, which performs a large amount of
small read-write transactions, such as debit and credit on a
bank account. For each experiment, the database is loaded
and the benchmark is executed for 15 minutes.

The scale factor of TPC-B is set to meet the exact number
of hardware threads in such a way that each hardware thread
executes transactions referring to a single branch. Conse-
quently, there are no concurrency conflicts that might inter-
fere with the transaction throughput. Furthermore, in order
to simulate modern in-memory database systems, the buffer
pool size is set to fit the whole database size after executing
the benchmark. Database and log archive are each stored
in its own latency-optimized device (SSD). The experiments
were executed with the recovery log both in a dedicated
latency-optimized device (SSD) and in a main-memory file
system. Having the recovery log in a main-memory file sy-
stem enables a simulation of database systems with higher
transaction throughput, where interferences should have a
larger impact on performance. However, this approach does
not represent a real-world scenario, since a recovery log must
always be stored on a non-volatile device.

The experiments with decoupled checkpoints were execu-

1https://github.com/caetanosauer/zero

ted with log archiving disabled. Transaction throughput was
measured by inspecting the log records generated during the
benchmark execution.

Finally, the experiments described here were carried out
on an Intel Xeon X5670 server with 96 GB of 1333 MHz
DDR3 memory. The system provides dual 6-core CPUs with
hyper-threading capabilities, which gives a total of 24 hard-
ware thread contexts. The operating system is a 64-bit Ubun-
tu Linux 12.04 with Kernel version 3.11.0.

Figure 3a shows the results after running the benchmark
with the log being on an SSD device. Values on the y-axis re-
present the average transaction throughput in units of thou-
sand transactions per second. Values on the x-axis represent
how frequent a checkpoint request is made in milliseconds.
Taking checkpoints too frequently increases the interference
with the in-memory data structures, which may harm the
transaction throughput of the system. Even though taking
a checkpoint every millisecond is not a realistic scenario, it
is done in order to stress the system and enforce as much
interference as possible.

The transaction throughput of decoupled checkpoints is
not only higher when compared to classical checkpoints,
but the variation of throughput between different checkpoint
frequencies is smaller. Ideally, the throughput of decoupled
checkpoints should be constant for any checkpoint frequency,
since there is no interference with in-memory data structures
that might disturb the system performance. However, the
additional I/O operations required for a decoupled check-
point to read log information might induce a delay on the
writing of log records for transaction commit.

Taking classical checkpoints every interval higher than
1000 ms does not produce significant interference in the sy-
stem and throughput after this point equals the one achieved
by decoupled checkpoints.

The CPU consumption for the whole benchmark executi-
on was also analyzed. The higher the transaction through-
put, the higher is the CPU consumption. In Figure 4, we
compare both designs in the case previously mentioned whe-
re the transaction throughput is the same. Here we can
observe that decoupled checkpoints consume a small extra
amount of CPU compared to classical checkpoints.

5. SUMMARY AND CONCLUSIONS
In this contribution, we propose an alternative architec-

ture for database systems by decoupling the propagation
components from in-memory processing. Decoupling com-
ponents is desirable not only because it avoids any interfe-
rence with in-memory data structures, but also because it
eliminates much of the code complexity introduced by unne-
cessary interactions between components. To that end, we
implemented novel checkpoint and page cleaner algorithms
that are based on log information rather than on data col-
lected from critical in-memory data structures. Based on a
qualitative analysis, we verified that the complexity of our
codebase was significantly reduced.

Our techniques are better suited for scenarios where the
majority of the application working set fits into main me-
mory. This is because decoupled persistence services are as-
sumed to have a more proactive and preventive role – rather
than being critical components on which transactions de-
pend in order to make progress. However, the techniques
are not restricted to in-memory workloads in any way.

The experiments presented in this work show that the



12

14

16

18

20

22

24

26

1 10 100 1000 10000

T
hr

ou
gh

pu
t

(k
tp

s)

Checkpoint frequency (ms)

classical
decoupled

(a) Log in SSD

72
74
76
78
80
82
84
86
88

1 10 100 1000 10000

T
hr

ou
gh

pu
t

(k
tp

s)

Checkpoint frequency (ms)

classical
decoupled

(b) Log in RAM

Figure 3: TPC-B throughput.

0

2

4

6

8

10

12

14

16

classical decoupled

A
ve

ra
ge

C
P

U
ut

ili
za

ti
on

(%
)

Figure 4: CPU consumption of Figure 3a with 10 sec.

decoupled strategy for checkpoints improves the transacti-
on throughput of the system when persistence services are
executed very frequently. As the frequency is reduced, the
performance of traditional techniques is matched, but the
decoupled strategy does not incur any performance penal-
ty. For future work, we plan to evaluate our decoupled page
cleaner in more detail, including an analysis of different clea-
ning policies for both classical and decoupled services. We
believe that a combination of the techniques can achieve the
most effectiveness in reducing recovery time, which is the
main goal of page cleaning.

6. REFERENCES
[1] G. Graefe. Sorting and indexing with partitioned

b-trees. In Proc. CIDR, pages 5–8, 2003.

[2] G. Graefe, W. Guy, and C. Sauer. Instant recovery
with write-ahead logging: page repair, system restart,
and media restore. Synthesis Lectures on Data
Management. Morgan & Claypool Publ., 2014.

[3] G. Graefe and H. A. Kuno. Definition, detection, and
recovery of single-page failures, a fourth class of
database failures. PVLDB, 5(7):646–655, 2012.

[4] T. Härder and A. Reuter. Principles of
transaction-oriented database recovery. ACM Comput.
Surv., 15(4):287–317, Dec. 1983.

[5] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-mt: A scalable storage manager
for the multicore era. In Proc. EDBT, pages 24–35,

2009.

[6] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: A transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1):94–162, Mar. 1992.

[7] C. Sauer, G. Graefe, and T. Härder. An empirical
analysis of database recovery costs. In Proc. RDSS
Workshop (co-located with SIGMOD), 2014.

[8] C. Sauer, G. Graefe, and T. Härder. Single-pass
restore after a media failure. In Proc. BTW, LNI 241,
pages 217–236, 2015.

[9] C. Sauer, G. Graefe, and T. Härder. Instant restore
after a media failure, 2016. Submitted for publication.

[10] C. Sauer and T. Härder. A novel recovery mechanism
enabling fine-granularity locking and fast, redo-only
recovery. CoRR, abs/1409.3682, 2014.

[11] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In Proc. VLDB, pages 1150–1160, 2007.


