
Update propagation strategies for
high-performance OLTP

Caetano Sauer1, Lucas Lersch2?, Theo Härder1, and Goetz Graefe3

1 TU Kaiserslautern, Germany {csauer,haerder}@cs.uni-kl.de
2 TU Dresden & SAP AG lucas.lersch@sap.com

3 Hewlett Packard Laboratories goetz.graefe@hpe.com

Abstract. Traditional transaction processing architectures employ a
buffer pool where page updates are absorbed in main memory and asyn-
chronously propagated to the persistent database. In a scenario where
transaction throughput is limited by I/O bandwidth—which was typical
when OLTP systems first arrived—such propagation usually happens on
demand, as a consequence of evicting a page. However, as the cost of
main memory decreases and larger portions of an application’s working
set fit into the buffer pool, running transactions are less likely to depend
on page I/O to make progress. In this scenario, update propagation plays
a more independent and proactive role, where the main goal is to con-
trol the amount of cached dirty data. This is crucial to maintain high
performance as well as to reduce recovery time in case of a system failure.
In this paper, we analyze different propagation strategies and measure
their effectiveness in reducing the number of dirty pages in the buffer
pool. We show that typical strategies have a complex parametrization
space, yet fail to robustly deliver high propagation rates. As a solution,
we propose a propagation strategy based on efficient log replay rather
than writing page images from the buffer pool. This novel technique not
only maximizes propagation efficiency, but also has interesting properties
that can be exploited for novel logging and recovery schemes.

1 Introduction

Database systems rely on persistent storage to provide the durability property
of “ACID” transactions. However, in order to deliver acceptable performance,
operations that modify data are usually performed in a volatile copy of data
objects in the buffer pool and later propagated to persistent storage. In a force
approach [5], such propagation happens at commit time at the latest, whereas
a no-force approach—which is used in the vast majority of database systems—
delays such propagation to an arbitrary point in time, relying on REDO logging to
provide durability. In the latter case, which is the focus of this paper, controlling
this delay is crucial for two main reasons: (1) it enables the efficient recycling of
buffer pool frames and log space for new transactions; and (2) it determines the
amount of recovery effort in case of a system failure.

? Work done while at TU Kaiserlsautern



50k

100k

150k

200k

P
a
g
e
co

u
n
t

1000

3000

5000

0 1 2 3 4 5 6 7 8T
h
ro
u
g
h
p
u
t
(t
p
s)

Time (min)

Dirty pages

Transaction tput

Running transactions
(page dirtying)

Page cleaning

Dirty page backlog

Fig. 1: Dirty page backlog and its implication on system performance

Traditionally, main memory has been a limited resource, so that transaction
throughput was limited by the bandwidth of page read and write operations. In
this scenario, update propagation is almost exclusively used for reason 1 above:
cached pages must be evicted from the buffer pool to make room for pages
accessed by new transactions and, as a consequence, its updates are propagated
to persistent storage. However, as the capacity of main memory increases, which
has been a strong trend in the past years, typical workloads are less likely to
depend on page I/O to make progress. In this scenario, reason 1 becomes less
important, and the main role of update propagation becomes the minimization
of recovery effort—or reason 2 above. This work is motivated by the need to
re-evaluate update propagation strategies for this new crucial role.

The problem addressed in this work can be characterized by a race between
user transactions that modify pages and mark them dirty and system actions
that clean these pages. If the cleaning speed, i.e., the number of pages being
cleaned per second, does not match the dirtying speed of the workload, the accu-
mulated backlog may negatively impact system performance. This backlog can
be measured across two dimensions: number of dirty pages and accumulated log
volume. In the latter case, the issue appears when the log volume required for
REDO recovery fills up the entire log device, so that transactions cannot make
progress until some log space is freed. Since the length of REDO recovery is de-
termined by the dirty pages in the buffer pool, this means that an inefficiency
in page cleaning can lead to a complete halt of read-write transactions. In the
former case, if the number of dirty pages grows until it fills up the entire buffer
pool, the system eventually slows down as transactions must wait for page evic-
tion, despite their working set fitting into main memory. This can happen, for
instance, in the TPC-C workload, whose working set consists mainly of ware-
house and customer data as well as currently active orders. If page cleaning is
inefficient, dirty pages containing finished orders will linger in the buffer pool,
until no clean frames are available for inserting new orders and the system slows
down, becoming I/O-constrained even though there is abundant main memory
to hold the working set.



Figure 1 presents the problem graphically in two ways. On the right-hand
side, the problem is illustrated as an analogy of a sink full of water—running
transactions that make clean pages dirty are like a faucet filling up the sink, while
page cleaning corresponds to the drain. If the drain is not large enough, water will
accumulate in the sink, which in our case corresponds to the backlog discussed
above. Eventually, the sink fills up and the only way to avoid an overflow is
to close the faucet, i.e., the transaction throughput must be reduced. On the
left-hand side, the problem is shown in a real experiment which plots both the
number of dirty pages in the buffer pool as well as the transaction throughput
over time. On the top graph, the number of dirty pages grows until it reaches the
buffer pool size of 180,000 pages. At that point, which occurs at minute 3 of the
experiment, the transaction throughput drops substantially, from 5,000 to about
1,000 transactions per second. Such drop in throughput is a direct consequence
of the page cleaner not being able keep up with the running transactions.

This work makes two main contributions. First, we discuss and evaluate typ-
ical propagation strategies that write pages from the buffer pool into persistent
storage—this is the common technique used in state-of-the-art database systems,
and we refer to it as page-based propagation. Second, we propose a novel tech-
nique which propagates updates by replaying REDO log records in an efficient
way—we call this log-based propagation. The key to enabling this new technique
is a partially sorted log, which was introduced in previous work in the context
of archiving and recovery from media failures [11]. Rather than employing the
partially sorted organization only for media recovery, we exploit its log replay
efficiency to propagate updates as well, achieving a propagation strategy which
is completely decoupled from the buffer pool. An empirical evaluation of the new
method shows that it performs better than traditional strategies, maintaining a
controlled dirty page backlog.

In the remainder of this paper, Section 2 summarizes related work, including
a brief discussion of background techniques on which our approach is based,
a related family of instant recovery algorithms, and alternative approaches for
in-memory database system designs. Section 3 discusses page-based propagation
strategies, while Section 4 introduces our novel log-based approach. Experiments
that support our claims empirically are provided in Section 5. Finally, Section 6
discusses future work opportunities and concludes our findings.

2 Related work

We divide related work into three main categories. First, we discuss the basic
system architecture on which our approach is based. Second, we briefly sum-
marize a family of techniques known as instant recovery [3]. Our approach for
log-based propagation relies on a log organization proposed for one of such tech-
niques. Third, we summarize update propagation strategies as implemented in
main-memory database system designs found in the literature.



2.1 Background

Our approach is based on a traditional database system architecture, with page-
based data structures accessed via a buffer pool backed by SSD or HDD de-
vices [6]. Write-ahead logging with physiological log records as implemented in
ARIES [9] is also assumed. Since this work concerns only buffer management and
storage, it is orthogonal to concurrency control schemes—for both transaction
isolation and multi-threaded data structure access.

We assume that a system thread called page cleaner is responsible for flushing
pages from the buffer pool. Multiple threads can be used for multiple storage
drives. Checkpoints are of the fuzzy type and do not flush dirty pages [10]. If page
replacement is required, user threads simply wake up the cleaning service and
wait for a signal of completion. This design allows a centralization of all cleaning
aspects to a single system module. The page cleaner generates log records for
each write operation, which allows a more precise computation of the dirty page
set during checkpoints and log analysis, thus reducing the recovery effort in case
of a system failure [10].

2.2 Instant recovery techniques

A family of techniques known as instant recovery enables incremental, on-demand
recovery of individual pages from both system and media failures [3]. Our ap-
proach for log-based propagation is based on the partially sorted log data struc-
ture, as employed in single-pass restore for the log archive [11]. However, it goes
beyond the scope of media recovery, relying on the partially sorted log for update
propagation during normal processing. As such, the partially sorted log should
be kept on lower-latency devices such as SSDs instead of on archive storage. This
also allows its usage for restart after a system failure and single-page repair [3],
since it provides faster log replay in general.

A further instant recovery technique known as write elision permits the evic-
tion of dirty pages from the buffer pool without flushing them first [3]. This leaves
the persistent page image out of date, and requires single-page repair the next
time it is fetched. In principle, write elision alleviates the backlog problem intro-
duced in Figure 1, because running transactions need not wait for a page flush
before acquiring an empty buffer pool frame. However, since the page on disk
remains out of date, its old log records cannot be recycled until the page is re-
paired. This means that write elision reduces the dirty page backlog but not the
log backlog, and the situation depicted in Figure 1 is likely to happen anyway,
unless the system has a chance to catch up during lower activity periods.

Rather than being an alternative technique, write elision complements log-
based propagation in which it eliminates the need to ever flush a page from
the buffer pool. Furthermore, it permits fast reaction in situations of memory
pressure, where evicting dirty pages is a better choice than evicting clean but
frequently accessed ones. Further advantages of combining log-based propagation
and write elision are discussed in Section 6 as future work.



2.3 In-memory database systems

In-memory database systems are built on the assumption that the entire dataset
fits into main memory, but persistent storage is still required to provide transac-
tion durability. As such, some form of update propagation is still required, and
the backlog problem still exists in some form or another. Early work by Levy
and Silberschatz [7] already recognized the problem of page-based propagation
schemes in the context of main-memory databases. They proposed a log-based
approach similar to the one introduced in this work, but because the log is not
sorted or prepared in any way, log replay requires random I/O operations, which
can be multiple orders of magnitude slower than the page dirtying rate in main
memory. To circumvent this problem, the authors suggest increasing I/O band-
width with multiple disks in a striped configuration, but not only is the required
amount of disks impractical, it would be very sensitive to skew, thus not dis-
tributing the I/O operations equally among disks. Our log-based propagation
approach fully utilizes the sequential write speed of a single device, thus being
more efficient and feasible.

The traditional propagation approach in most main-memory DBMS designs
is to maintain action- or transaction-consistent checkpoints [5] on persistent
storage. Propagation to this checkpoint should be performed concurrently to
transaction activity. A common approach—which is present in both early [1]
and modern [8] designs—is to put the database in a temporary copy-on-write
mode, flushing shadow versions of pages to the checkpoint file while transactions
make updates on copied images. The problem addressed in this research is thus
also present in such systems, since checkpointing of in-memory databases is very
similar to page cleaning as discussed here—the end goal is always to increase
propagation efficiency and diminish recovery times in case of failure.

As observed in recent research [4], the assumption of all data fitting in main
memory is unrealistic, and techniques of traditional disk-based systems—when
adapted for better in-memory performance—may be a better alternative to tech-
niques of main-memory DBMSs. This is especially true for recovery, since many
such systems have very inefficient and incomplete (in the sense that media fail-
ures are not considered) recovery schemes. This research represents a step in
the direction of optimizing traditional techniques for large memories, while still
supporting disk-resident data with high reliability.

3 Page-based propagation strategies

As discussed in Section 2.1, page-based propagation is performed by the page
cleaner service. This section provides an overview of how the page cleaner works,
including its impact on the recovery effort in case of a system failure. Further-
more, we discuss a variety of policies that can be implemented to achieve the
two, sometimes conflicting, goals of page cleaning: reducing dirty page backlog
and recovery effort.



3.1 Page cleaner algorithm

The page cleaner is an independent system thread, which runs continually in
a main loop described in Algorithm 1. First, it waits for an activation signal,
which may come from threads waiting for eviction or log space recycling, or a
timeout if it is set to run periodically. Once activated, the cleaner collects a list
of candidate frame descriptors in a priority queue. This queue is used to order
frames according to some policy, such as oldest-first or hottest-first; these are
discussed in detail in Section 3.2.

Algorithm 1 Page cleaner main loop

1: procedure PageCleaner(bufferPool, policy, maxCandidates)
2: waitForActivation()
3: candidates ← createHeap(policy, maxCandidates)
4: writeBuffer ← allocateBuffer()
5: for all d in bufferPool.descriptors do
6: if d.isDirty() then
7: candidates.pushHeap(d)
8: end if
9: end for

10: clusters ← sortAndAggregateByPageID(candidates)
11: cleanLSN ← logTailLSN()
12: for all c in clusters do
13: latchAndCopy(c, writeBuffer)
14: flush(writeBuffer)
15: logPageF lush(c, cleanLSN)
16: bufferPool.updateCleanLSN(c, cleanLSN)
17: end for
18: end procedure

Once a list of candidates is collected, it is sorted by page ID in line 10 of
Algorithm 1. The purpose here is to form clusters of adjacent pages, which can
be flushed with a single write operation. For each cluster of pages, the cleaner
then latches their buffer pool frames in shared mode and copies their contents
into its internal write buffer. This is done to avoid holding a latch, and thus
delaying updating threads, for the entire duration of a synchronous write, which
is performed in line 14. These writes must be synchronous because marking a
page as clean before it is actually persisted may result in lost updates in case of
a system failure. After the flush operation completes, it is logged to support a
more precise estimation of the dirty page set during log analysis [10]. This step
is not required, but has benefits for more efficient recovery.

The last step of the algorithm is to mark the page as clean in the buffer pool.
Traditionally, the dirty state of each page is tracked with a Boolean flag on each
frame descriptor. Before setting the dirty flag to false, the cleaner must check
whether or not an update happened to the page while it was being flushed. An



alternative approach, which is used in our design, is to maintain an additional
LSN field instead of a Boolean flag in the page descriptor. This field, called
CleanLSN, contains some LSN value for which all previous updates on the page
are guaranteed to have been propagated; it is initialized with the PageLSN value
and updated by the cleaner every time a page is flushed. Using this mechanism,
a page is considered dirty if and only if PageLSN > CleanLSN . This approach
eliminates the need to keep track of PageLSN values of copied page images, and
can also be used to implement a cleaning policy that considers “how long ago”
a page was last flushed.

3.2 Page cleaning policies

Before discussing different page cleaning policies—and why it is important to
have them instead of collecting all dirty pages as candidates—it is important
to understand the impact that the cleaner has on the dirty page backlog and,
ultimately, on the recovery effort in case of a system crash.

The main efficiency measure of the page cleaner is its write bandwidth, i.e.,
how many pages it can write per second (or how large the “drain” is in the sink
analogy of Figure 1). However, optimizing for write bandwidth does not neces-
sarily minimize the dirty page backlog, because—as mentioned in Section 1—the
backlog can be measured as not only the number of dirty pages, but also how
much log volume is covered by such pages. If the cleaner policy in use neglects
the log volume, the length of the REDO log scan required during recovery is not
kept under control, and a situation similar to that of Figure 1 may happen when
the log device is full. Therefore, the goal of page cleaning policies is to reduce
the dirty page backlog—and consequently reducing the recovery effort—across
two dimensions: number of dirty pages and log volume.

A page cleaning policy can be defined as a sort order applied to candidate
buffer pool frames. This is implemented using a priority queue in the pushHeap
function of Algorithm 1. Our work considers three policies: oldest first (lowest
CleanLSN value); coldest first (lowest reference counter value); and hottest first
(highest reference counter value). Each of these policies has its own benefits for
reducing the dirty page backlog. An empirical analysis is performed in Section 5.
For now, we briefly discuss these benefits, i.e., the rationale behind choosing one
policy over the others.

The oldest-first policy aims to flush dirty pages which have been lingering the
longest in the buffer pool. This is possible thanks to our CleanLSN mechanism
introduced earlier. The goal of this policy is to reduce the log volume of the
dirty page backlog, which in turn reduces the length of the REDO log scan
during recovery. However, it does not necessarily decrease the number of dirty
pages as much. For that, the coldest-first policy is more appropriate. It collects
pages which are referenced the least, using a reference counter maintained in
each frame descriptor. This reference counter can be reused by clock-based page
replacement policies. The rationale behind flushing coldest pages first is that
they are the less likely to become dirty again after flushing, and thus a significant
reduction of the dirty page set is expected. Furthermore, they are the most likely



to be selected for eviction, so cleaning them also improves the performance of
the page replacement algorithm.

Finally, the policy of flushing hottest pages first may seem counter-intuitive,
but it plays an important role for on-demand recovery schemes like instant
restart [3]. In this case, it is worthwhile to reduce the recovery time of important
pages such as system catalogs and B-tree roots. Since these tend to be the mostly
accessed pages, this policy guarantees that they are always kept as up-to-date
as possible. However, cold dirty pages will linger in the buffer pool without ever
being flushed, and so the dirty page backlog is not reduced. Therefore, this policy
is better utilized in combination with one of the other policies.

3.3 Problems of page-based propagation

The first problem of page-based propagation strategies is that they fail to sustain
maximum write throughput. Despite the access pattern not being completely
random, but jump-sequential thanks to the sorting of candidate frames, a large
clustered page write is rare. Such large writes are required to deliver maximum
throughput, especially in the case of synchronous writes.

A low write bandwidth alone is ineffective in reducing the dirty page backlog,
but the fact that cleaning policies have such a complex parametrization space
worsens the problem even further. Maximizing cleaner efficiency is a matter
of choosing the ideal parameters for any point in time of a given workload.
These parameters include not only the policy type, as discussed above, but also
the number of candidates to choose at each iteration and whether to prioritize
large clusters over single page writes—an additional dimension which was not
considered in Algorithm 1.

Lastly, page-based propagation is tightly coupled to the buffer pool. As al-
ready observed by Levy and Silberschatz [7], propagation always causes some
interference to normal transaction processing. The page cleaner loop presented
in Algorithm 1 requires latching each flushed page three times: first to collect it
as a candidate, then to copy it into the write buffer, and finally to update its
CleanLSN. Furthermore, each dirty page not flushed must be accessed, and thus
latched, at least once when collecting candidates. Despite being shared-mode
latches, these may cause noticeable interference in a scenario of intensive trans-
action activity, which is also when page cleaning should run more aggressively.

4 Log-based propagation—a novel technique

Log-based propagation solves the aforementioned problems of page cleaning.
First, its I/O pattern is purely sequential, which guarantees the best possible
cleaning throughput. Second, because propagation is driven by the log, there is
no need for any policy or prioritization scheme. Third, it does not interact with
the buffer pool, thus reducing interference and increasing separation of concerns.
This section introduces this new technique and elaborates on these advantages.



4.1 Partially sorted log

Log-based propagation could, in principle, rely on the transaction log to replay
updates on the active database, but this would be inefficient given the random
access pattern. This approach was proposed in related work [7], and the problem
is recognized by the authors, who suggest an impractically large disk array to
match the bandwidth of transaction updates.

A better approach is to reorganize the log so that log replay is performed
sequentially. This idea was explored in previous work on single-pass restore [11],
a technique to recover from media failures in a single sequential pass over log
archive and backup. The technique consists of integrating a run generation phase
in the archiving process, so that the log archive is composed of sorted runs. A
run maps to a contiguous LSN range, but, within each run, log records are
sorted primarily by page identifier. During restore, these runs are then merged
to form a single sorted stream of log records. These two steps—run generation
and merge—correspond to an external merge sort procedure, but because they
are seamlessly integrated into normal processing and recovery, respectively, no
noticeable overhead or increased downtime is incurred. We refer to the original
publication for further details and experiments [11].

4.2 Log-based page cleaner

Similar to its page-based counterpart, the log-based cleaner runs in a dedicated
thread. It runs Algorithm 2, presented here in pseudo-code, in a main loop. On
each iteration, a subset of partitions in the partially sorted log is scanned, start-
ing on the LSN on which the previous iteration stopped—here called startLSN .
This delivers an iterator of log records sorted by page identifier (line 2).

Algorithm 2 Log-based cleaner main loop

1: function LogBasedCleaner(sortedLog, startLSN)
2: iter ← sortedLog.open(startLSN)
3: buffer ← allocateBuffer()
4: while iter.hasNext() do
5: logrec ← iter.get()
6: readSegment(buffer, logrec.pid)
7: replayLog(buffer, iter)
8: flush(buffer)
9: end while

10: return iter.endLSN
11: end function

The stream of sorted log records is processed one segment at a time, whereby
a segment is defined as a fixed-size set of contiguous pages. This size should be
such that scattered writes deliver good sequential write speed (e.g., 1 MB). Each
segment is first read into the cleaner’s internal buffer (line 6). Then, log replay



is performed on this segment using the iterator, until the current log record
refers to a page outside the current segment or the iterator has finished. At this
point, the buffer is flushed into the persistent database and further segments
are processed until the log scan iterator has finished. The end of the LSN range
covered by the log scan is then returned to the caller—it will be used as the
startLSN on the next cleaner invocation.

Note that the algorithm has no reference to the buffer pool, which means
that the page cleaner is completely decoupled from it. This has not only archi-
tectural advantages, i.e., better modularization and separation of concerns, but
also performance benefits, since there is no latching or copying of pages in the
buffer pool. We illustrate this in Figure 2. Traditional page-based propagation
(on the left-hand side of the diagram) propagates data directly from in-memory
data structures into persistent storage, creating a tight coupling between these
components; unlike log-based propagation (on the right-hand side), where the
components are independent. This decoupled design also has interesting proper-
ties that can be exploited in logging and recovery mechanisms—these are briefly
discussed in Section 6. One detail worth mentioning is that the need for tracking
dirty pages in the buffer pool is eliminated. However, this tracking is necessary
if eviction of dirty pages is not allowed, i.e., if write elision [3] is not supported.
To that end, an additional step is required in Algorithm 2 to mark pages flushed
as clean. Because this design would introduce a dependency to the buffer pool
module, it is not completely decoupled, but still fairly loosely coupled when
compared with the traditional page cleaner.

In-memory
processing

Persistent
structures

In-memory
processing

Persistent
structures

LOG LOG

Page-based: Log-based:
Tight coupling

Fig. 2: Coupling of persistent and in-memory components

The log-based propagation algorithm has a jump-sequential I/O pattern,
since segments are read and written in page-ID order, skipping segments for
which no log record is found. If a moderately large segment size is used (e.g., a
few megabytes for either SSD or HDD), this jump-sequential pattern fully utilizes
the device sequential speed. One performance concern is that segments must be
both read and written during propagation, which means that a single database
device would spend roughly only half of the time performing writes. Further-
more, the log archive must also be read using a merge pattern, which may incur
many random reads if too many log partitions are merged [11]. Thus, the I/O
activity of the log-based cleaner is more intense than the traditional page-based
approach. However, these problems are easily mitigated with simple software and



hardware measures. First, if the partially sorted log is stored with redundancy
(e.g., RAID-1)—which is a bare-minimal requirement for reliability—concurrent
reads and writes can be performed in parallel. Second, if the merge logic of
the log scan supports asynchronous read-ahead [2], then log reads are also per-
formed in parallel with update propagation. Furthermore, despite this intense
I/O behavior, the next section demonstrates that log-based propagation beats
the traditional page cleaner even with a single non-redundant database device.

5 Experiments

5.1 Write bandwidth

Our first experiment analyzes the average write bandwidth sustained by 12 vari-
ations of page-based propagation strategies in comparison with the log-based
strategy. For this experiment, which uses the TPC-C benchmark, the buffer pool
is large enough to contain the whole dataset, which has initial size of 13 GB,
and SSD devices are used for both log and database files. With 20 concurrent
clients on a multi-core server, it delivers an average transaction throughput of
10,000 per second. Therefore, our goal here is to maximize pressure on the sys-
tem and analyze how the propagation strategies keep up. The results are shown
in Figure 3, with strategies on the x-axis and write bandwidth plotted in MB/s
with a log scale on the y-axis.

The first nine strategies consist of the three policies described in Section 3.2
using three different sizes for the priority queue of candidate frames—2,000,
20,000 and 200,000. This corresponds roughly to 0.1%, 1%, and 10% of the
application working set, respectively. We note that all of them are quite slow,
utilizing only from 3 to 5 MB/s write bandwidth. This is because most writes are
of single pages, which is inefficient even for SSD devices. Three other page-based
strategies are considered in this experiment. The first one, labeled “no-policy” is
a naive strategy in which every dirty frame is flushed, thus ignoring any prioriti-
zation policy. At ∼6 MB/s, it is slightly more efficient than the others, because
more opportunities for large writes are found. The two “clustered” policies are
just like “no-policy”, but only page writes larger than a certain number of pages

2

4

8

16

32

64

128

hottest-2k

coldest-2k

oldest-2k

oldest-20k

coldest-20k

hottest-20k

hottest-200k

oldest-200k

coldest-200k

no-policy

clustered-32

clustered-8

log-based

W
ri
te

b
a
n
d
w
id
th

(M
B
/
s)

Propagation strategy

Fig. 3: Write bandwidth of different propagation strategies



are performed—here 8 and 32 pages. We note that the bandwidth is indeed in-
creased to about 18 MB/s, but the policy is not as effective because the larger
the minimum size is, the less likely it is that large-enough clusters are found;
this is why the 8-page policy is slightly faster than the 32-page policy. Finally,
the log-based propagation strategy, which has only a single variant, is by far
the most efficient, at 100 MB/s. The maximum bandwidth of the device is ac-
tually 200 MB/s, but, as discussed earlier, half of the time is spend performing
reads, which means that 100 MB/s is indeed the maximum possible speed for
this propagation strategy.

5.2 Backlog reduction

The next experiment analyzes the effectiveness of propagation strategies in re-
ducing the dirty page backlog. We break down the execution of each experiment
into a time series of 20 minutes and measure the number of dirty pages as well as
the log volume covered by them, i.e., the length of the REDO log scan in case of a
system failure. Because the page-based policies introduced in Section 3.2 are very
inefficient with a single storage device, we consider—in addition to the scenario
of the previous experiment—a low-throughput scenario with ∼1,000 transactions
per second. With the lower dirtying speed, page-base strategies should be more
effective and interesting comparisons may be drawn.

The results are shown in Figure 4. The two plots on the top correspond
to the low-throughput scenario, whereas the bottom plots are high-throughput
ones. The plots on the left-hand side measure the number of dirty pages in the
buffer pool, while the ones on the right-hand side measure the REDO length.
For this experiment, we consider only three page-based policies: oldest-first with
200,000 candidate frames; the clustered strategy with 8 pages; and a “mixed”
policy which is a special version of oldest-first—it ignores newly allocated, never-
flushed pages in 3/4 of the cleaner activations. We implemented this strategy
to show that mixing policies and adjusting parameters allows for more efficient
cleaning when tailored to a particular workload. Other strategy variants have
similar results and thus provide no additional insight.

For the low-throughput scenario, we observe that the clustered policy, as ex-
pected, is not able to reduce the dirty page backlog despite delivering better write
bandwidth. The oldest-first policy is able to maintain a low dirty page count be-
tween 20,000 and 30,000, but it performs just as bad as the clustered strategy
in controlling REDO length. Our mixed strategy tailored for this workload ac-
tually performs best on both criteria: it maintains a stable and low dirty page
count (after an initial period of instability) and is more effective than the two
other page-based policies in controlling REDO length. The log-based propaga-
tion strategy maintains a higher dirty page count than the mixed and oldest-first
policies—this can be attributed to the natural backlog occurring due to the delay
between inserting a log record in the (unsorted) recovery log and processing it
in the partially sorted log. The zig-zag pattern is a consequence of the log-based
cleaning algorithm, which processes runs of the partially sorted log and segments
of multiple pages in batches. It performs slightly better than the mixed policy in



0
10
20
30
40
50
60
70
80

0 2 4 6 8 10 12 14 16 18 20

D
ir
ty

p
a
g
es

(×
1
0
3
)

Time (minutes)

0
2
4
6
8

10
12
14

0 2 4 6 8 10 12 14 16 18 20

R
E
D
O

le
n
g
th

(G
B
)

Time (minutes)

0
200
400
600
800

1000
1200
1400
1600

0 2 4 6 8 10 12 14 16 18 20

D
ir
ty

p
a
g
es

(×
1
0
3
)

Time (minutes)

0
10
20
30
40
50
60
70
80

0 2 4 6 8 10 12 14 16 18 20

R
E
D
O

le
n
g
th

(G
B
)

Time (minutes)

mixed-200k oldest-200k clustered-8 log-based

Fig. 4: Backlog analysis for low- (top) and high-throughput (bottom) scenarios

REDO length, but the main take-away here is that none of the strategies is able
to maintain it stable, suggesting that an adaptive approach, possibly combining
both log- and page-based propagation, might be more appropriate.

In the high-throughput scenario, which is the main goal of our investigation,
log-based propagation performs better than the mixed and oldest-first policies,
but loses to the clustered approach in maintaining a low dirty page count. How-
ever, it is the only approach which is able to control the REDO length, with a
large margin to page-based strategies. Thus, these results clearly demonstrate
its superiority for the workload considered.

6 Outlook and conclusion

This work deals with the problem of update propagation for high-performance
OLTP scenarios. Given the ever-increasing performance gap between in-memory
processing and I/O operations, as well as the decreasing costs of main mem-
ory, a database system’s buffer pool may get saturated with dirty data, unless
an efficient propagation strategy is employed. This makes it more challenging
to maintain a well-balanced system using hardware alone. The approaches pre-
sented here address the problem with software techniques, improving hardware
utilization and thus reducing costs.

We described a flexible page-based propagation tool (the page cleaner) and
analyzed its effectiveness under a variety of policies. Our empirical evaluation
shows that this traditional approach is not able to fully exploit the write band-
width of a single storage device. In addition to the inefficiency problem, we
pointed out the tight coupling between buffer management and persistence mod-
ules in the traditional design. The storage manager of a database system is known
in the literature for having intricate dependencies between its components: con-
currency control, recovery, buffer management, and storage structures [6]. This



is not only an architectural problem for code maintenance, reusability, and evo-
lution, but also a performance problem for scalability of transactional workloads.

To solve these two problems—cleaning inefficiency and tight coupling—we
proposed a log-based propagation strategy. Instead of flushing dirty pages from
the buffer pool directly into persistent storage, an independent system com-
ponent propagates updates into the persistent database using log replay. To
support a sequential access pattern, a partially sorted log data structure is bor-
rowed from previous work in the context of recovery from media failures [11].
Our empirical evaluation shows that log-based propagation is able to fully uti-
lize the bandwidth of the database device, thus providing much higher cleaner
efficiency. In practice, this results in reduced operational costs, as less disks are
required to match in-memory performance and reach a balanced state. Lastly,
this novel propagation technique does not require any access to the buffer pool
data structures, simplifying the buffer manager implementation and increasing
separation of concerns in the system architecture.

References

1. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M., Wood, D.A.:
Implementation techniques for main memory database systems. In: Proc. SIG-
MOD. pp. 1–8 (1984)

2. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Computing
Surveys 25(2), 73–170 (1993)

3. Graefe, G., Guy, W., Sauer, C.: Instant Recovery with Write-Ahead Logging: Page
Repair, System Restart, and Media Restore. Synthesis Lectures on Data Manage-
ment, Morgan & Claypool Publishers (2014)

4. Graefe, G., Volos, H., Kimura, H., Kuno, H.A., Tucek, J., Lillibridge, M., Veitch,
A.C.: In-memory performance for big data. PVLDB 8(1), 37–48 (2014)

5. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Computing Surveys 15(4), 287–317 (1983)

6. Hellerstein, J.M., Stonebraker, M., Hamilton, J.: Architecture of a database system.
Now Publishers Inc. (2007)

7. Levy, E., Silberschatz, A.: Log-driven backups: A recovery scheme for large memory
database systems. In: Proc. 5th Jerusalem Conference on Information Technology.
pp. 99–109 (1990)

8. Malviya, N., Weisberg, A., Madden, S., Stonebraker, M.: Rethinking main memory
OLTP recovery. In: Proc. ICDE. pp. 604–615 (2014)

9. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst. 17(1), 94–162 (1992)

10. Sauer, C., Graefe, G., Härder, T.: An empirical analysis of database recovery costs.
In: RDSS (SIGMOD Workshops), Snowbird, UT, USA (2014)

11. Sauer, C., Graefe, G., Härder, T.: Single-pass restore after a media failure. In:
Proc. BTW, LNI 241. pp. 217–236 (2015)


	Update propagation strategies for high-performance OLTP

