
Department of Computer Science
Database and Information Systems Group

Bachelor’s Thesis:

Evaluation of Pointer Swizzling Techniques
for DBMS Buffer Management

by Max Fabian Gilbert*

Day of issue: September 1, 2016
Day of release: March 1, 2017

Advisor: M. Sc. Caetano Sauer
First Reviewer: Prof. Dr.-Ing. Dr. h. c. Theo Härder
Second Reviewer: M. Sc. Caetano Sauer

∗
m_gilbert13@cs.uni-kl.de

Abstract

Pointer swizzling is a well-known technique used to improve the performance

of dereferencing pointers between persistent objects while they reside in main

memory. The pointer between persistent objects usually uses an address used to

locate the referenced object on non-volatile storage. This requires a translation of

the persistent address to a memory address during each dereferencing of the pointer

even when both objects are cached in main memory. With pointer swizzling, the

translation needs to be done only once because the pointer in the transient copy

of the objects will be replaced with the memory address to safe the cost of future

address translations. This replacement is only done inside the transient copies of

the objects as those main memory addresses will be invalid when the referenced

object gets evicted.

Pages in the bu�er pool of a DBMS are persistent objects that are cached in

main memory and typical index structures like B-trees use pointers between those

pages to build a tree structure of such pages to allow the fast location of records.

Multiple page pointers needs to be dereferenced during each operation on the

index structure. Therefore Goetz Graefe et al. proposed in [Gra+14] the usage of

pointer swizzling for the references between pages in the DBMS bu�er pool. This

would safe the lookup of the main memory address on each page hit while the

swizzling and unswizzling happening during a page miss and during the eviction

of a page will add some overhead. A discussion of the proposed concept and its

implementation can be found in chapter 1.

The very high performance increase observed by the authors requires a closer

look to locate the exact source of the performance growth and to determine

potential problems that might happen on di�erent workloads. Therefore I repeated

the measurements and I compared the execution time of di�erent operations for a

bu�er management with and without pointer swizzling in chapter 2.

As the performance growth caused by pointer swizzling only occurs in presence

of high hit rates a further improvement of the performance using e�cient page

replacement algorithms is evaluated in chapter 3.

I

This page intentionally left blank.

Acknowledgements

Most of all, I want to give thanks to Caetano Sauer who helped me through-

out the whole creation process of this bachelor’s thesis. I struggled so much

to get Zero running in a reasonable way and he helped me with so many

technical details which would have watered my benchmark results down.

His patience is the reason why I managed to �nish this thesis.

I also want to thank Prof. Theo Härder for proposing the topic of this

thesis and who made all this possible. It’s really inspiring to me to work

with someone who generated so much new far-reaching knowledge while

staying humble.

A special thanks goes out to Goetz Graefe and his team at the HP Labs
who proposed the idea of pointer swizzling in the bu�er pool in [Gra+14].

This proposal was the starting point of my topic and I’m really glad that

they came up with that technique.

I want to thank Weiping Qu for assigning me the paper ”In-memory

performance for big data.“ when I participated in the seminar on ”Big Data“

during winter term 2015/16. He also initiated the contact between me and

Prof. Theo Härder when he assigned him as my tutor for that seminar. The

server administrator of the research group - Ste�en Reithermann - was a help

when I had issues with the computer system that I used for the performance

evaluation. I also want to thank all the people who worked on EXODUS,
Shore, Shore-MT and Zero most sincerely. The section about the history of

this great testbed for new technologies is dedicated to those researchers.

Most recently especially Caetano Sauer and Lucas Lersch maintained the

software very well.

III

This page intentionally left blank.

Contents

1. Pointer Swizzling as in “In-Memory Performance for Big
Data” [Gra+14] 1
1.1. De�nition of a Database Management System 1

1.2. The Structure of a Database Management System 1

1.2.1. The ANSI/SPARC DBMS Model 2

1.2.2. The 5-Layer DBMS Architecture 3

1.2.3. Motivation for the Usage of a DBMS Bu�er 6

1.3. Concept of a DBMS Bu�er Management 9

1.3.1. Memory Allocation in the Bu�er Pool 11

1.3.2. Concurrency Control of the Bu�er Pool 12

1.3.3. Page Eviction from the Bu�er Pool 14

1.3.4. Locate Pages in the Bu�er Pool without Pointer

Swizzling . 14

1.3.5. Locate Pages in the Bu�er Pool with Pointer Swizzling 18

1.4. Design and Implementation of the DBMS Bu�er Manage-

ment as in [Gra+14] . 23

1.4.1. Zero - A Test Bed for DBMS Techniques 23

1.4.2. Design of the Bu�er Management of Zero 25

1.4.3. Implementation of fix() for a Page Hit in a Bu�er

Pool With and Without Pointer Swizzling 31

1.4.4. Implementation of fix() for a Page Miss in a Bu�er

Pool With and Without Pointer Swizzling 38

2. Performance Evaluation of the Bu�er Management with
Pointer Swizzling 42
2.1. Expected Performance . 42

2.1.1. For Di�erent Bu�er Pool Sizes 43

2.1.2. For Bu�er Management with Pointer Swizzling . . 45

2.2. Con�guration of the Used System 46

V

Contents

2.3. Measured Performance of Pointer Swizzling in the Bu�er

Management . 47

2.3.1. Performance of the DBMS 48

2.3.2. Execution Time of the Fix Operation 55

2.4. Measured Performance of MariaDB for Comparison 59

2.4.1. Performance of MariaDB 59

2.4.2. Comparison with Zero’s Performance 60

2.5. Measured Performance as in [Gra+14] 62

2.5.1. Performance of the Bu�er Management with Pointer

Swizzling in [Gra+14] 62

2.5.2. Comparison with my Performance Evaluation . . . 66

2.6. Conclusion . 68

2.7. Future Work . 69

3. Page Eviction Strategies in the Context of Pointer Swizzling 71
3.1. Importance of Page Eviction Strategies 71

3.2. Problems of Page Eviction with Pointer Swizzling in the

Bu�er Management . 74

3.2.1. General Problems of the Implementation of Page

Eviction Strategies 75

3.2.2. Pointer Swizzling Speci�c Problems of Page Eviction 77

3.3. Concept and Implementation of Di�erent Page Eviction

Strategies . 79

3.3.1. Page Replacement as Proposed in [Gra+14] 79

3.3.2. RANDOM with Check of Usage 80

3.3.3. GCLOCK . 82

3.3.4. CAR . 90

3.4. Performance Evaluation . 106

3.4.1. Transaction Throughput and Hit-Rate 106

3.4.2. Execution Time of the Fix Operation 118

3.5. Conclusion . 121

3.6. Future Work . 121

A. Implementation of the Data Structures Used in CAR and
CART 123

VI

Contents

B. Implementation of the Buffer Pool Log 134

Bibliography 139

VII

This page intentionally left blank.

1. Pointer Swizzling as in
“In-Memory Performance for Big
Data” [Gra+14]

1.1. Definition of a Database Management System

A database is a collection of persistently stored data that should be some-

how used by application programs. Mainly to reduce the complexity of

application programs (especially of information systems) that access such

databases, a specialized kind of software evolved in the mid-1960’s that

takes care about the database access - the database management system
(DBMS). Early works on database management systems were e.g. done

in the Data Base Task Group of the CODASYL which was founded in 1965

([Wik16]). To ful�l this task, according to [GDW09] a DBMS is expected to

o�er the following features:

• O�er an interface to create new databases and to de�ne the logical
structure of the data.

• O�er an interface to query and modify the data.

• Persistently store very large amounts of data that can be accessed

with a high performance.

• O�er ACID ([HR83b]) properties.

1.2. The Structure of a Database Management System

Just like any other complex software system (as well as other complex

systems), a database management system can’t be designed and imple-

1

1. Pointer Swizzling in the DBMS Bu�er Management

mented monolithic but it needs to be well-structured to reduce its complex-

ity as “systematic abstraction is the prime task of computer science” (H.
Wedekind). A typical structure of a DBMS is based on a layer architecture

which de�nes a number of layers, where each layer only has interfaces to

the over- and underlying layer.

1.2.1. The ANSI/SPARC DBMS Model

The ANSI/SPARC DBMS Model ([Jar]) o�ers a conceptual, three-layer ar-

chitecture that divides a data independent DBMS as seen in �gure 1.1. The

model de�nes �ner-grained architectures as well but the understanding

of those isn’t needed for the classi�cation of the bu�er management as

component of a DBMS.

Application
Program

Application
Program

Application
Program

External Level External Level

Conceptual Level

Internal Level

Figure 1.1.: ANSI-SPARC Architecture for Databases

The abstraction of the data representation increases from the lowermost

to the uppermost layer in this model. The application programs access

the user representations of the database provided by the external layers.
This representation o�ers di�erent views on the database depending on

the speci�c application program needs. The conceptual level o�ers a holistic
representation of the data which corresponds to the data model of the DBMS

2

1.2. Structure of a DBMS

that can be e.g. relational or object-oriented. The internal layer stores a

physical representation of the data on the disk(s) ([Jai14]). The main concern

of these layers is to o�er physical (internal layer), logical (conceptual layer)

and data independence and distribution independence (internal layer).

1.2.2. The 5-Layer DBMS Architecture

The implementation of a DBMS can’t be based directly on this conceptual

model because it only de�nes some levels to achieve data independence. It

can only be used for a very coarse-grained assignment of functionality to the

di�erent layers. Therefore there are many other architectures roughly based

on the ANSI/SPARC DBMSModel that enable a systematical implementation

of a DBMS. One of those is the �ve-layer architecture ([HR83a] [HR85]) that

assigns concrete functionality to its layers and that de�nes the interfaces

between these layers as in �gure 1.2. The following description will be

top-down as the bu�er management can be found in the lower part of the

architecture.

The transaction programs use the set-oriented interface of the layer of

logical data structures (non-procedural access layer). This interface is usually

very powerful and o�ers the capabilities to process complex descriptive

DBMS query languages like SQL, QBE, XQuery as input. As the identi�ers

used by these languages are part of the metadata, this layer is responsible to

map those to the internal identi�ers of the record-oriented interface. Like all

the other components of a DBMS, this layer uses the metadata management
system to store its metadata which are e.g. metadata that describe structures

like relations, views and tuples. This layer also needs to map the complex

set operators of the set-oriented interface to those simple ones of the record-
oriented interface, that usually uses an iterator-like interface on records. The

non-procedural access layer also has to o�er data integrity, access control,

transaction management and it is the most import layer for the query
optimizer.

The navigational access layer which operates on logical access paths uses

the internal record interface to o�er navigational access though the records

to the overlying layer. The control over the returned records is very limited

at this interface. E.g. a selection (based on explicit attribute values) of

records from a speci�c set can be returned one-record-at-a-time where the

3

1. Pointer Swizzling in the DBMS Bu�er Management

Transaction Programs

Logical Data Structures

Logical Access Paths

Storage Structures

Propagation Control

File Services

Secondary Storage

Set-Oriented Interface SQL, QBE

Record-Oriented Interface next(), remove(), add() record

Internal Record Interface store record in index

Bu�er Interface fix(), unfix(), refix() page

File Interface fread(), fwrite() block

Device Interface channel programs

Figure 1.2.: Five Layer Architecture for DBMS

overlying layer can iterate over. The layer needs to process the sorting

and it has to navigate through the access path structures provided by the

internal record interface. The internal records, provided by the underlying

layer are also of a di�erent format (e.g. datatypes) as the external records

are and therefore a mapping is required here. The record-oriented interface
would be the uppermost interface of navigational or hierarchical DBMS.

The record and access path management o�ers access to access path struc-
tures like B* trees or hash indexes through the internal record interface. This

layer has to manage the mapping between records and pages as the in-

terface below only o�ers pages whereas the internal record interface uses

records as addressing unit. The importance to realize such index structures
in a separate layer is quite high compared to the layers above because the

4

1.2. Structure of a DBMS

selection of the best �tting index structure is mandatory for the performance

of the whole DBMS and the later extension in this area is quite probable.

For one-dimensional data, this probably doesn’t hold as B* tree and hash

indexes usually o�er high performance (regarding to metrics like storage

overhead, insert, update, delete and search performance) for that case. But

there isn’t a single multi-dimensional index structure that always nearly

outperforms all the other ones. A comprehensive but far not complete

and especially not very recent (there is still a lot of research done in that

�eld) overview of such multi-dimensional access paths can be found in

[GG98]. Many implementations of general purpose DBMS o�er multiple

index structures and secondary indexes which are both features that needs

to be supported by this layer. There are also multiple addressing schemes

available, to locate records inside pages which is important for the index
structures and other features of this layer. Other common capabilities of the

record and access path management are support for variable-sized �elds,

large �elds that are stored out-of-line and references between records.

The propagation control o�ers the bu�er interface with pages as address-

ing units. As the overlying layers only process data in main memory and

as the �le services only o�er �le streams, this layer is used to provide an

image of the persistently stored data in memory.

The �le management o�ers �le services through the �le interface. It needs

to abstract from the device interface o�ered by the secondary storage devices
to o�er dynamically growing �les and blocks of di�erent length within those

�les to the overlying layer. Therefore it needs to manage data structures

to store �le addresses (on the storage device) and block borders as well

as addresses of unused parts of the secondary storage devices. It needs to

take into account the special characteristics of the used storage device like

HDDs and SSDs. Especially HDDs with its physical addressing based on

cylinders, tracks and sectors aren’t trivial to abstract from. Consecutive

blocks within a �le should be e.g. located on cylinders that are physically

close together to decrease the access latency by reducing the number of

random accesses.

A more detailed discussion of the design and implementation of a DBMS

is beyond the scope of this work. Comprehensive descriptions on this topic

can be found in [GDW09], [HR01] and [HSS11].

5

1. Pointer Swizzling in the DBMS Bu�er Management

1.2.3. Motivation for the Usage of a DBMS Bu�er

Just like any other software system that needs non-volatile storage with

high capacity or network access, a DBMS su�ers from high I/O latency.

The non-volatility is needed to guarantee the durability of the database and

the support for high capacity is a requirement as many OLTP databases are

quite large in size.

Ca
pa
ci
ty
pe
r C

PU Access Tim
e

Volatile

Non-volatile

Registers

L1 Cache

L2 Cache

L3 Cache

Main Memory

Online Storage (Secondary S.) - SDD

Online Storage (Secondary S.) - HDD

O�ine Storage (Tertiary Storage)

128 B
1

256 KiB

1 MiB

8 MiB

64 GiB

TiB

TiB–PiB

PiB

1 Cyc. ≈ 0.25 ns

4 Cyc. ≈ 1 ns

12 Cyc. ≈ 3 ns

42 Cyc. ≈ 11 ns

51 ns

≈0.1 ms [Sam15]

5–20ms [Tom13] [Sea16]

s − min

Example System:
Intel® Xeon®

E3-1280 v5
(Skylake)

[Pav]

P
r
i
c
e

p
e
r

C
a
p

a
c
i
t
y

A
c
c
e
s
s

T
i
m

e

1
Only considered general purpose registers.

Figure 1.3.: Storage Hierarchy of Computer Systems

The seriousness of the problem of I/O latency can be seen in the storage

hierarchy of a modern computer shown in �gure 1.3. The access time
gap between main memory and traditional HDDs is more than 6 orders of
magnitude (still 5 orders of magnitude for SSDs) in size and in addition an

I/O access requires a call to the OS which needs ≈2000–5000 instructions

compared to ≈100 instructions needed for a memory access. This makes

access to online storage much more expensive than main memory access

and therefore a system that frequently needs to access data (in worst-case

random accesses are needed), wouldn’t be able to achieve an adequate

performance.

Therefore it would be better to just store the database in main memory.

A very crucial problem of this solution would be the available capacity
of main memory which is much smaller than the capacity of secondary

6

1.2. Structure of a DBMS

Table 1.1.: Price per Capacity of Di�erent Types of Memory/Storage Devices

(as of Feb. 8, 2017) [He17]

Hierarchy
Layer Main Memory Secondary Storage

Device
Type

DDR4-

SDRAM

DDR4-

SDRAM

with ECC

HDD

Server

HDD
1

SSD

Server

SSD
2

Price [€/GB] >5.4 >5.8 >0.027 >0.24 >0.23 >0.35

1
Suitable for Server and Datacenter

2
Interface: SAS, PCIe or FC

memory devices. One reason for that is the much higher price of main

memory as shown in table 1.1. The same capacity of main memory costs

more than 20-times the money than non-volatile storage devices with high

performance and even 200-times the money than slow HDDs. It’s also

possible to connect much more secondary storage devices to one CPU

as the performance of the needed bus interface of main memory doesn’t

allow a distance of more than a few centimeters. The higher number of

CPUs (and the high price of those) needed for the same capacity of main

memory makes it evermore reasonable to use secondary storage when high

storage capacity is needed. As long as the needed performance doesn’t

really requires to have the whole database in main memory, it’s impractical

to store it only there.

Also because of the need for durability in a DBMS with ACID properties,

non-volatile storage devices to store the database on are required. In case of

a crash, a database stored in main memory would be lost and therefore the

e�ect of every committed transaction needs to be stored on a secondary

storage device.

But it’s also important to make the data available on a byte-wise address-
able device as the CPU can’t process data directly on block-wise addressable
devices like SSDs and HDDs. The architecture of typical computer systems

requires the main memory as an intermediate link between I/O devices and

the CPU (using DMA to perform well [Sta12]) and therefore the usage of

main memory is necessary.

Summarizing the arguments from before, it’s necessary for a DBMS to

7

1. Pointer Swizzling in the DBMS Bu�er Management

use the whole storage hierarchy. The registers are taken into account by

the compiler used to compile the DBMS as well as used to compile queries

generated by the query optimizer. The CPU caches are managed by cache

controllers of the CPU and therefore the DBMS doesn’t need to take care

about the usage of those caches. But to optimize the memory usage to �t to

speci�c characteristics of the cache controller might be promising. Some

DBMS use tertiary storage to store archive and backup data on it. As those

data isn’t randomly accessed, the long access time of magnetic tapes (in

tape libraries) doesn’t matter. The long lifetime, high capacity and low

price (a magnetic tape can just be stored in a shelf and doesn’t require a

connection to a computer) of those storage media makes it appropriate for

that purpose.

The usage of main memory as cache for data stored on secondary storage,

would therefore be the obvious solution for those remaining two layers

of the storage hierarchy, as this mechanism is typically used in situations

where one layer of the storage hierarchy doesn’t �t the needs. The caching

could be left to the operating system and its virtual memory management.
This would e.g. allow the mapping of �les, stored on a block device, to main

memory using mmap. While this function �ts the needs of the database, the

some properties of it makes the usage of those services for the given purpose

impossible. The OS services would allow the access of persistently stored

�les through main memory managed with hardware acceleration. But the

interface of those services isn’t su�cient for a database. As the imple-

mentation of the ACID properties enforces the persisting of log records at

speci�c points in time (Write-Ahead Logging as in [Moh+92]), an interface

to control the writing of pages would be required. The page replacement
algorithms used by the VM layer of the OS might not be optimized for the

speci�c reference pattern of database systems. Many DBMS use prefetching
to exploit the speci�c reference pattern of e.g. table scans to decrease the

transaction latency due to I/O latency. This cannot be applied when the

VM layer of the operating system is used to access the database as such an

operation isn’t supported by the virtual memory management.

Therefore the caching of subsets of the database in main memory needs

to be part of the database management system. It’s implemented in the

bu�er management as part of the propagation control layer. More details

about the reasons why this decreases the number of secondary storage

8

1.3. Concept of a DBMS Bu�er Management

accesses can be found in chapter 3.

1.3. Concept of a DBMS Bu�er Management

The caching is realized in the DBMS bu�er pool manager which can be

found in the DBMS propagation control layer as shown in �gure 1.2. The

upper layers access the bu�er pool through an interface which basically

o�ers the operations fix() and unfix(). As the processing of data inside

the CPU requires the data to be byte-wise addressable, the data needs to

be mapped from the block-addressable secondary storage devices to main

memory.

These requirements lead to the partial architecture as shown in �gure 1.4.

The transaction management and access path operators summarize the the

layers of logical data structures, logical access paths and storage structures.
The propagation control is called bu�er pool management and the �le ser-
vices are called storage management. The latter manages the data stored on

secondary storage and therefore it requires access to those storage devices

which takes ≈0.1–12ms of I/O latency and ≈2000–5000 instructions needed

for a call to the OS. The bu�er manager manages the data cached in main

memory and therefore it only requires ≈50 ns of latency for memory access

and ≈100 instructions to �x a page. If a requested page isn’t managed by

the bu�er manager before the page access, it needs to be retrieved from the

storage management. Therefore the bu�er pool management is the layer

that accesses the storage management like it was de�ned in the 5-Layer
DBMS architecture. A logical page reference is an access to a page which

can be performed by the bu�er pool without the need for the call to the

storage management while a physical page reference requires a retrieval

from secondary storage.

The fix() operation, given a page ID, returns the memory address of

the page referenced by that ID. Therefore an important task executed

during this operation is to locate the page inside the bu�er pool. In case

of a physical page reference, the bu�er manager requests the page from the

storage manager using the page ID and blocks the calling thread until the

page is available at a main memory address. To allow the insertion of a page

into the bu�er pool, there needs to be a free bu�er frame. Therefore there

9

1. Pointer Swizzling in the DBMS Bu�er Management

Transaction Management
and Access Path Operators

Bu�er Pool
Management

Main Memory

Storage Management

Secondary Storage

Logical Page References (≈100 Instructions)

Physical Page References (≈2000–5000 Instructions)

Memory
Access (≈50 ns)

Disc Accesses (≈0.1–12ms)

Figure 1.4.: The DBMS-Layers Above and Below the Bu�er Pool Manager

needs to be a component of the bu�er pool which manages the set of empty

frames and another component needs to take care about evicting pages

in case of a full bu�er pool. In any case, the bu�er pool needs to control

concurrent accesses on the frames managed by it and on the auxiliary

structures needed for this management as there might be multiple threads

�xing pages concurrently. When a page is �xed by a thread, it needs to

acquire the page’s latch. Working on the data wouldn’t be even possible

on secondary storage as those devices only allow the addressing of blocks

which are too large to be processed directly by the CPU and therefore the

pages needs to be mapped to main memory.

The unfix() operation reverses the fix() operation. The thread that

�xed the page before, releases the page with calling unfix(). After a

transaction called unfix(), it’s not allowed to use the memory address given

by the fix() operation any further as the bu�er pool doesn’t guarantee

that the page can be found at this memory address any more (it might be

evicted by the bu�er pool). It also releases the latch of the page for the

10

1.3. Concept of a DBMS Bu�er Management

calling thread.

To be able to o�er this interface, the DBMS bu�er manager have to

perform various tasks with many alternative techniques how the task can

be performed.

1.3.1. Memory Allocation in the Bu�er Pool

The bu�er management divides the limited amount available main memory

allocated to it into bu�er frames. A page retrieved from secondary storage

gets placed inside one of the bu�er frames if it doesn’t already reside in

the bu�er pool. But as the number of available bu�er frames is limited, the

bu�er manager needs to decide in which frame the page should be placed

in. As a database system executes multiple transactions in parallel, there

are always multiple transactions �xing pages in the bu�er pool.

Therefore it would be possible strategy to allocate a static number of

bu�er frames to each active transaction to guarantee each of those transac-

tions the opportunity to use the same portion of the bu�er pool. Using such

a local memory allocation strategy prevents one transaction from slowing

down all other active transactions by �xing that many pages that the bu�er

pool will be �lled by only the pages of that transaction. It also removes

pages from the bu�er pool when the transaction which �xed them, ter-

minates. This might be an advantage as the locality of page references

(timespan between two consecutive references of the same page) is also

much higher within one transaction than between all the active transac-

tion. This can be easily seen in �gure 1.5. When only one transaction is

running at a time, then around 63 % of the page references consider pages

that were used less than 20 page references before. When 100 transactions

are running in parallel, then only circa 54 % of the page references got such

a low reuse distance. The di�erence between the two situations isn’t bigger

as pages closer to the root of the used B-tree index structure needs to be

accessed frequently by every transaction. But the small di�erence between

the two results shows also, that the lower locality shouldn’t be the reason

for the usage of local memory allocation. It’s also possible to dynamically
allocate bu�er frames to transactions as they need them. This would take

into account the di�erent complexity of transactions and therefore the

amount of wasted bu�er frames would be lower compared to static memory

11

1. Pointer Swizzling in the DBMS Bu�er Management

allocation. If a static number of frames gets allocated to a transaction which

doesn’t �x that many pages, it would leave some bu�er frames unused. To

increase the e�ciency of static allocation it would be possible to estimate

the number of needed bu�er frames when the transaction starts, to allocate

enough frames to that transaction. But if the estimation is wrong, then the

transaction either wastes some frames or it su�ers from low performance.

If a transaction which needs many pages, starts when many transactions

are active, it might not get su�cient bu�er frames to perform fast but

even when the number of active transactions drastically decreases after-

wards, the number of bu�er frames allocated to that transaction cannot

be increased. The static local memory allocation isn’t very e�cient and

therefore the dynamic allocation would be used in case of local allocation.

Another possible memory allocation strategy allocates memory globally.

This is a very simple allocation strategy as every active transaction com-

petes for the bu�er frames of the whole bu�er pool. It doesn’t require

any additional rules how to handle the concurrent usage of the same page

by multiple transactions as each page in the bu�er pool can be used by

each active transaction in parallel (might be restricted by the concurrency

control).

The memory allocation is typically done by the page eviction algorithm as

this is used to select frames to be freed when pages needs to be propagated

from secondary storage into a full bu�er pool. The strategies presented

in chapter 3 realize a global memory allocation as they doesn’t take into

account the transaction that requests a bu�er frame.

1.3.2. Concurrency Control of the Bu�er Pool

Higher levels of a DBMS already participate in a concurrency control system

to control concurrent access on records. This is usually realized in a lock
manager or using MVCC (Multiversion Concurrency Control). But as the

data structures of the bu�er pool manager like pages and auxiliary data

structures are also accessed concurrently, the corruption of those structures

needs to be prevented by the use of latching. The access to bu�er frames
needs to be mutually exclusive and therefore there needs to be a latch per

page. A reasonable implementation has at least one latch mode for writes

which guarantees exclusive access by one thread and it has another latch

12

1.3. Concept of a DBMS Bu�er Management

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

1 ⋅ 10
7

2 ⋅ 10
7

LRU stack depth

#
o

f
r
e
f
e
r
e
n

c
e
s

TPC-C with 100 Warehouses queried by 1 Thread

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

1 ⋅ 10
7

2 ⋅ 10
7

LRU stack depth

#
o

f
r
e
f
e
r
e
n

c
e
s

TPC-C with 100 Warehouses queried by 100 Threads

Figure 1.5.: Comparison of the LRU (least recently un�xed) stack depth

distribution for 1 and 100 parallel transactions (threads). The basis of this

data are reference strings with the lengths of 66 680 384 and 81 142 877 gen-

erated by executing 500 000 transactions of the TPC-C benchmark accessing

63 362 and 969 190 distinct pages of a database of 100 warehouses. The given

number of threads de�nes the number of users querying the database in

parallel. The LRU stack depth of a page reference is the number of di�erent

page references between this page reference and the most recent usage

(used between a �x and an un�x) of the same page. If the page is �xed by

another thread when the page reference happens, the stack depth will be

0 and if the page was just un�xed (without any other page references is

between) by the last thread having �xed the page, the LRU stack depth of

the page reference will be 0. Each of the page references is assigned to one

of the histogram buckets by its LRU stack depth and therefore the hight of

the leftmost bar of each histogram indicates the number of page references

with a LRU stack depth between 0 and 1.

13

1. Pointer Swizzling in the DBMS Bu�er Management

mode for read accesses where multiple threads are allowed to concurrently

read a page. The concurrency control of the used auxiliary data structures
can be done using special concurrent implementations of the used data

structures or by latching the whole data structure like it is done with each

bu�er frame.

1.3.3. Page Eviction from the Bu�er Pool

A detailed discussion of the concepts can be found in chapter 3.

1.3.4. Locate Pages in the Bu�er Pool without Pointer Swizzling

As the database’s size exceeds the bu�er pool’s capacity, the address space

of page IDs is larger than the one of of the bu�er frame IDs and therefore

some address translation is required when a page is accessed by page IDs
using the bu�er manager. The numerous possible strategies how to perform

this address translation are shown in �gure 1.6.

Search

Strategy

Direct Search in

the Bu�er Frames

Indirect Search Using

Auxiliary Tables

Translation

Table

Unsorted

Table

Sorted

Table

Chained

Table

Search

Trees

Hash

Table

Figure 1.6.: Classi�cation of search strategies to translate from page IDs to

bu�er frame IDs as in [EH84]

The following overview of costs caused by those search strategies leads

to the result that the usage of a hash table is the preferred strategy. Let

n = number of bu�er pool frames and p = total number of pages:

14

1.3. Concept of a DBMS Bu�er Management

• Direct Search in Bu�er Frames: T search

avg
∈  (

n

2)
, T

search

worst
∈  (n)

(Swapping can be expensive using virtual memory management)

• Translation Table: T search
∈  (1), T

insert
∈  (1), Space ∈  (p)

• Unsorted Table: T search

avg
∈  (

1

n)
, T

search

worst
∈  (n)

• Sorted Table: T search

avg
∈  (log2

n), T
insert

avg
∈  (n log2

n)

• Chained Table: T search

avg
∈  (log2

n), T
insert

avg
∈  (log2

n)

• Search Trees: T search

avg
∈  (log n), T

insert

avg
∈  (log n)

• Hash Table: T search

avg
∈  (1), T

insert

avg
∈  (1), T

search

worst
∈  (n)

The direct search in the bu�er frames reads the page ID within each page

residing in the bu�er pool and therefore it needs to access each bu�er pool

frame. If the main memory is managed using virtual memory management,

the access to wide-spread memory addresses could cause a notable overhead

due to swapping.

The translation table stores per page ID the frame ID where the corre-

sponding page can be found in the bu�er pool. Therefore the entry of each

page not residing in the bu�er pool will be empty (null).

The unsorted table would typically use the addressing of the bu�er frames

and it would store for each bu�er frame ID the page ID of the contained

frame. While it works similar to the direct search in the bu�er frames, it

doesn’t require the access to wide-spread memory addresses.

7785 6977 4347 3380 5610 6376 4877 3332 3354
0 1 2 3 4 5 6 7 8

Figure 1.7.: An unsorted table used to map bu�er frames to page IDs.

The sorted table contains an entry for each used bu�er frame sorted

by the page ID of the contained page. It allows binary searching but the

insertion requires sorting and therefore serious movement of entries inside

the table is required.

15

1. Pointer Swizzling in the DBMS Bu�er Management

3332
→ 7

3354
→ 8

3380
→ 3

4347
→ 2

4877
→ 6

5610
→ 4

6376
→ 5

6977
→ 1

7785
→ 0

Figure 1.8.: A sorted table used to map page IDs to bu�er frames.

The entries of a chained table are similar to those of the sorted table. But

instead of ordering the entries using their memory addresses (e.g. using

an array) inside the table, the entries are chained using pointers from one

entry to the next
1

(and its previous) and an insert or removal only requires

to connect the previous and the next entry of the removed entry and to

search the new position for insertion. It has some disadvantage against

a sorted table with regard to binary search but the insertion works much

faster.

3332
→ 7

3354
→ 8

3380
→ 3

4347
→ 2

4877
→ 6

5610
→ 4

6376
→ 5

6977
→ 1

⋅

7785
→ 0

Figure 1.9.: A chained table used to map page IDs to bu�er frames.

There are numerous search tree structures like AVL-trees or red–black

trees and therefore I refer to [Knu98] for further details on them. All those

tree structures share a similar asymptotic complexity for the average cases

but they have di�erent worst case behaviour (and di�erent worst cases).

In this application, the search key will be the page ID of pages cached in

the bu�er pool and the entries will contain the bu�er frame IDs where the

corresponding page is located at.

A hash table uses the page ID as key as well. This key is mapped to a

smaller address space and each value of this address space corresponds to

a hash bucket which is used to store the entries in it. There are numerous

concepts on the exact mechanics of such a data structure and therefore

I’ll refer again to [Knu98]. Like before, the asymptotic complexity for the

average cases of those concepts is similar and therefore the selection of a

speci�c implementation depends on numerous assumptions which are of

the scope of this thesis. As mentioned before, the auxiliary structures of the

1
With regard to the ordering on the page IDs.

16

1.3. Concept of a DBMS Bu�er Management

mod 5

3332

5610

3354

4877

6376

3380

6977

4347

7785

4347 → 2

4877 → 6

6376 → 5

⋅

⋅

⋅

3380 → 3

5610 → 4

3354 → 8

⋅

0

1 ⋅

2

3 ⋅

4 ⋅

7785 → 0

⋅

⋅

⋅

0 ⋅

3332 → 7

6977 → 1

⋅

⋅

2 ⋅

Figure 1.10.: Typical design of a hash table. It maps a page ID of a page in

the bu�er pool (left) using a hash function (center) to a hash bucket (right).

A hash bucket contains an entry for each page ID currently mapped to it

but if the hash bucket is full (two entries possible in this example), a chained

hash bucket (far right) will be used. Each entry maps a page ID to a bu�er

frame ID where the corresponding page can be found. The used test bed

Zero uses an implementation based on this concept.

bu�er pool are accessed concurrently and therefore a data structure which

takes that into account is preferable. And such concurrent hash tables (also

called hash maps) are still an active topic of research (and development)

[Pre16]. An exemplary concept of an hash table is shown in �gure 1.10.

17

1. Pointer Swizzling in the DBMS Bu�er Management

Bu�er pool page image

Search key

Look for entry in page image

that corresponds to search key

Found entry?

Search key not found

Get identi�er of the next page

to search from the page image

calculate hash id of the page id

Look in bu�er pool hash table for

hashed page id (protect hash table)

Found hashed page id?

Return bu�er pool page im-

age of the next page to search

Bring page into bu�er pool (possibly

need to evict another page image)

no

yes

no

yes

Figure 1.11.: The whole process of �xing a page given a search key and an

index page when a hash table is used to locate pages in the bu�er pool.

This summarizing diagram is taken from [Gra+14].

1.3.5. Locate Pages in the Bu�er Pool with Pointer Swizzling

Following Moore’s Law, the price of memory rapidly decreases as some

actual data in �gure 1.12 point out. Therefore the available memory ca-
pacity increases exponentially by time. As a result of that trend, there are

many OLTP applications where the whole working set (or even the whole

database) �ts in the bu�er pool.

In such a case, the performance of a page hit de�nes the overall per-

formance of the bu�er pool as there won’t be many page misses anymore

when the whole working set is cached in main memory. Therefore the

optimization of page hits is a major concern. The only slow operation

performed during a page hit is the searching of the appropriate bu�er

frame (the concurrency control might delay a transaction as well). Even the

18

1.3. Concept of a DBMS Bu�er Management

usage of a hash table which in average searches in  (1) needs a reasonable

number of instruction cycles to perform it’s operations. To search a page in

the bu�er pool, the calculation of the hash value using the hash function is

required. Afterwards, the corresponding hash bucket needs to be scanned

until the searched for page is found. If that page cannot be found, an arbi-

trary number ( (n)) of chained hash buckets needs to be scanned as well

until the page is found or until a page miss is detected. And that worst-case

performance of those hash tables is in  (n) which cannot be tolerated.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Time [year]

M
e
m

o
r
y

P
r
i
c
e
[

U
S
-
$
/M

i
B
]

Figure 1.12.: History of Memory Prices taken from [BM15].

Many applications su�er from this overhead when locating persistent

objects cached in main memory. In general, applications like persistent
programming languages, database programming languages, object oriented
database systems, persistent object stores or object servers work on persistent

objects stored on secondary storage. But the same reasons why a bu�er

pool is used in DBMS also hold for the need of an object cache in those

applications. Generally, those applications use unique object identi�ers

to reference persistent objects and therefore it’s needed to translate this

19

1. Pointer Swizzling in the DBMS Bu�er Management

address to a memory address during an object reference. To eliminate this

overhead, pointer swizzling was introduced in the late 80’s and classi�ed

in [WD95]. To swizzle a pointer means to transform the address of the per-
sistent object referenced there to a more direct address of the transient object
in a way that this transformation could be used during multiple indirections
of this pointer ([Mos92]). White and DeWitt identi�ed 7 dimensions on

which di�erent approaches of pointer swizzling can be characterized. The

classi�cation of the pointer swizzling approach for the DBMS bu�er pool

proposed by Graefe et al. in [Gra+14] is shown in �gure 1.13.

eager

direct

in-placehardware

no-swizzling

no uncaching

partial

lazy

indirect

copy software

swizzling

uncaching

full

Figure 1.13.: Dimensions of Pointer Swizzling as of [WD95] and the Classi-

�cation of the Presented Approach

The approach of using pointer swizzling in the bu�er pool of a DBMS

obviously uses swizzling.

As a DBMS typically cannot use hardware acceleration, the swizzling

and unswizzling of references in done in software.
The bu�er pool’s addressing unit is the page and therefore those are

20

1.3. Concept of a DBMS Bu�er Management

the persistent objects that needs to be concerned by the pointer swizzling

approach. The references that are swizzled are the page identi�ers. The

proposed approach of pointer swizzling inside the bu�er pool only allows a

primary Foster B-tree index ([GKK12]) on the database and therefore there

exists only one pointer to each page. Those pointers are always swizzled

when the referenced child page also resides in main memory. The pointers

to the root pages of the Foster B-tree are stored separately and those got

also swizzled. As the bu�er pool doesn’t omit the swizzling of some of the

pointers it knows, the approach is full swizzling.

As a collection (e.g. a table) in a DBMS can be much larger than the bu�er

pool, it’s not always possible to load a whole collection which is indexed in

one Foster B-tree into the main memory. Therefore the proposed approach

cannot use eager but lazy swizzling. This means that only a subset of

the pointers, inside a page which is cached in the bu�er pool, need to be

swizzled. Eager swizzling would require the swizzling of all the page IDs

inside pages that a in the bu�er pool. This would require that all those

pages are also available in the bu�er pool. An hierarchical index structure

like a Foster B-tree would therefore cause an eager loading of the pages

where all the pages that are part of the index structure are loaded into

main memory when the root gets accessed. But as lazy swizzling allows a

page pointer inside a bu�ered page to be not swizzled, it’s unclear during

the dereferencing of such a pointer, if it’s a page hit (pointer is swizzled

and therefore a memory address) or if it’s a page miss (pointer is a page

ID and the page needs to be requested from the storage management).

This additional check of the semantics of a discovered pointer adds some

overhead. In the proposed approach, each swizzled pointer has set a bit

that is never set in valid page IDs. Therefore the check only requires

the checking if this bit is set and the unsetting of this bit to receive the

memory address of the referenced page. The tradeo� of this approach is

the additional bit needed in every pointer that cannot be used to extend the

possible number of pages in the DBMS but the usage of 64 bit architectures

in modern computer systems makes this drawback negligible.

An approach that would allow eager swizzling in the bu�er pool would

need to use indirect swizzling. This would introduce an so called object table

entry. With indirect swizzling, a swizzled pointer points to such an object

table entry and this entry contains the actual address of the referenced page.

21

1. Pointer Swizzling in the DBMS Bu�er Management

Therefore this additional indirection allows eager swizzling where only

the object table entries for referenced pages are created when a page gets

loaded in main memory. Those object table entries will contain the page

ID or the memory address of the corresponding page. But the proposed

approach uses direct swizzling and therefore there is no indirection during

a page reference when the pointer is swizzled.

The pointers are swizzled in-place and therefore there isn’t another copy

of the page in main memory not containing swizzled pointers. But the

de�nition of copy and in-place swizzling cannot be fully applied to the given

approach as the classi�cation using this dimension requires a distinction

between a bu�er pool containing pages and an object cache containing

objects. Copy swizzling would require a single accessed object to be copied

from the page into the object cache. The cached page would still contain the

object without the pointers being swizzled (unswizzling not required when

page is written to secondary storage) while an accessed object from that

page would be copied to the object cache where the pointers are swizzled

pointing to referenced objects.

The proposed approach of pointer swizzling in the DBMS bu�er pool

allows uncaching. Therefore a page that doesn’t contain a swizzled pointer

can be evicted from the bu�er pool. Those pages are the leafs of the subset of

the Foster B-tree cached in the bu�er pool. The eviction of pages containing

swizzled pointers would make the approach more complex. The eviction of

a page would require the unswizzling of all the contained pointers to allow

the writing of the page. It would also require the check if the parent page

actually resides in main memory and therefore it would be possible that

an eviction doesn’t imply the unswizzling of a pointer. Another possible

problem would be the situation where there isn’t a pointer to a page that

resides in the bu�er pool. When the evicted parent page gets loaded into

the bu�er pool again while the child still resides in the bu�er pool, the

pointer in the parent page would still be not swizzled and therefore a future

reference of the child page would require the usage of a hash table to

locate the page even when a page hit happens. This would also require the

swizzling of a pointer to a page that was loaded to the bu�er pool before

the pointer to it was loaded to the bu�er pool. But the major reason for

this decision is the fact that a page cannot be accessed without using its

parent page as there only exists one pointer per page. It wouldn’t make

22

1.4. Design and Implementation of the Bu�er Manager

sense to hold a page in the bu�er pool when the parent page was evicted.

An access of the page would require the parent page to be loaded to the

bu�er pool again and due to the hierarchical structure of the pages, the

parent page has a higher probability of being used.

The simplicity of the proposed approach can be seen in �gure 1.14.

Bu�er pool page image

Search key

Look for entry in page image

that corresponds to search key

Found entry?

Search key not found

Get identi�er of the next page

to search from the page image

Identi�er swizzled?

Bring page into bu�er pool

(possibly need to evict another page

image) and swizzle pointer on it

Return bu�er pool page im-

age of the next page to search

no

yes

no

yes

Figure 1.14.: The whole process of �xing a page given a search key and an

index page when pointer swizzling is used to locate pages in the bu�er

pool. This summarizing diagram is taken from [Gra+14].

1.4. Design and Implementation of the DBMS Bu�er
Management as in [Gra+14]

1.4.1. Zero - A Test Bed for DBMS Techniques

To illustrate the acceleration of a DBMS when enabling pointer swizzling

inside the bu�er management as described in subsection 1.3.5, Goetz Graefe

23

1. Pointer Swizzling in the DBMS Bu�er Management

et al. used the transactional storage manager Zero where they introduced

the technique.

1.4.1.1. The History of Zero

Zero ([HU]), that gets developed by Goetz Graefe’s research group at HP
Labs and the Database and Information Systems Group at the University
of Kaiserslautern, is a fork of the Shore-MT Storage Manager ([CÉ], short

for “Shore Storage Manager: The Multi-Threaded Version”), which is, as

the name suggests the successor of the Shore Storage Manager ([Uni08],

acronym for “Scalable Heterogeneous Object REpository”). Shore-MT has

been developed at the Carnegie Mellon University and École polytechnique
fédérale de Lausanne since the mid 2000’s whereas Shore’s development

started in the early 1990’s at the University of Wisconsin. Originally Shore
([Uni97]) included a whole DBMS but only the development of the storage

manager continued till the time when the development of Shore-MT started,

which is at well only a storage manager. Back in the mid 1990’s there was

even a predecessor of Shore, EXODUS ([Uni94], acronym for “EXtensible

Object-Oriented Database System Toolkit”, the “U” has no meaning) which

was a research project at the University of Wisconsin funded by the ARPA
(also known as DARPA).

Figure 1.15 gives an overview on the development (based on new releases

of the software or publications about software for the case that a version

history is unavailable) of these database management system prototypes.

Shore-MT is a basis for researchers to experiment with new techniques

and applications in the area of persistent data management, especially when

multi-threading is required. Many features that can be found in modern

DBMS, like transactions with ACID-properties, B+ tree indexes and many

more, are already build in the storage manager and therefore Shore-MT is an

excellent framework for researchers to evaluate new techniques in a realistic

DBMS context. The ease of extension of Shore-MT makes it reasonable

to evaluate techniques like pointer swizzling in the bu�er manager using

this storage manager and therefore it’s commonly used by researchers.

The availability of Shore-Kits, a suite of standardized database benchmarks

for Shore-MT, even further supports researchers by executing meaningful

performance evaluations for OLTP and OLAP scenarios.

24

1.4. Design and Implementation of the Bu�er Manager

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

2012

2014

2016

EXODUS publications

Shore 0.9
0.9.3

1.0
1.1

1.1.1

releases

SSM 2.0

IS
0

IS
1

IS
2

5.0
5.0.1

5.0.2
5.0.3

releases

Shore-MT 6.0
6.0.1

6.0.2

releases

Zeropublications

Figure 1.15.: History of EXODUS (publications, [Uni95]), Shore (versions,

[Hal11]), Shore Storage Manager (versions, [Hal11], [ShSM08]), Shore-MT
(versions, [ShMT12]) and Zero (publications, [Sa]) - The version/publication
history is subject to correction!

Zero was forked of Shore-MT for the evaluation of the Foster B-tree

in 2012 ([GKK12]). In contrast to Shore-MT which o�ers di�erent index

structures, Zero only o�ers the Foster B-tree (which has crucial features for

the pointer swizzling in the bu�er manager). Following the investigation

of S. Harizopoulos et al. in [Har+08] on the bottlenecks of a DBMS, where

the usual OLTP workload �ts in main memory, other new techniques

were introduced to Zero to eliminate these bottlenecks. These are e.g.

the Orthogonal Key-Value Locking Protocol or an improved lock manager

design. The latest research activities using Zero as a test-bed, which are

done by Caetano Sauer (my advisor for this work) among others, are in the

area of Instant Recovery.

1.4.2. Design of the Bu�er Management of Zero

The main component of Zero’s bu�er manager is the class bf_tree_m. As

Zero is designed object-oriented, an overview of this class is given in �gure

1.16 using the UML class diagram syntax.

The actual bu�er pool which stores the pages is the member _buffer.

It’s an array of _block_cnt elements of type generic_page. The index 0

25

1. Pointer Swizzling in the DBMS Bu�er Management

bf_tree_m
− _block_cnt: bf_idx
− _root_pages: bf_idx[stnode_page::max]
− _control_blocks: bf_tree_cb_t*
− _buffer: generic_page*
− _hashtable: bf_hashtable<bf_idx_pair>*
− _freelist: boost::lockfree::queue<bf_idx>*
− _approx_freelist_length: mutable boost::atomic<int>
− _eviction_lock: pthread_mutex_t
− _cleaner: page_cleaner_base*
− _evictioner: page_evictioner_base*
− _enable_swizzling: bool
− _cleaner_decoupled: bool
− _logstats_fix: bool
+ bf_tree_m(in: sm_options&)
+ ~bf_tree_m()
+ shutdown(): void
+ get_cbp(in idx:bf_idx): bf_tree_cb_t*
+ is_swizzled_pointer(in pid:PageID): bool
+ fix_nonroot(out page:generic_page*&, in parent:generic_page*&,

in pid:PageID, in mode:latch_mode_t, in conditional:bool, in vir-
gin_page:bool, in only_if_hit:bool = false, in emlsn:lsn_t =

lsn_t::null): w_rc_t
+ pin_for_refix(in page:generic_page*): bf_idx
+ unpin_for_refix(in idx:bf_idx): void
+ refix_direct(out page:generic_page*&, in idx:bf_idx, in

mode:latch_mode_t, in conditional:bool): w_rc_t
+ fix_root(out page:generic_page*&, in store:StoreID, in

mode:latch_mode_t, in conditional:bool, in virgin:bool): w_rc_t
+ unfix(in page:generic_page*, in evict:bool = false): bf_idx
+ is_swizzled(in page:generic_page*): bool
+ has_swizzled_child(in node_idx:bf_idx): bool
+ get_cleaner(): page_cleaner_base*
+ get_evictioner(): page_evictioner_base*
− fix(out page:generic_page*, in parent:generic_page*&, in pid:PageID,

in mode:latch_mode_t, in conditional:bool, in virgin_page:bool, in

only_if_hit:bool = false, in emlsn:lsn_t = lsn_t::null): w_rc_t
− _grab_free_block(out ret:bf_idx&, out evicted:bool&, in evict:bool =

true): w_rc_t
− _get_replacement_block(): w_rc_t
− _add_free_block(in idx:bf_idx): void
− _is_valid_index(in idx:bf_idx): bool
− _is_active_index(in idx:bf_idx): bool

Figure 1.16.: Overview of the Class bf_tree_m in UML Notation

is never used as this is expected to be an invalid bu�er frame index. The

member _block_cnt is initialized with the size of the bu�er pool counted

26

1.4. Design and Implementation of the Bu�er Manager

in pages. The type bf_idx is an integer type that is used for bu�er frame

indexes. A generic_page is the super type of pages and therefore any

page that can be cached in the bu�er pool is a generic_page. The array

_root_pages holds the bu�er frame indexes of root pages that are stored

in the bu�er pool. A root page is the root page of an index structure like a

Foster B-tree and therefore the is no other page with a pointer on a root

page. The _control_blocks array holds one bf_tree_cb_t for each bu�er

frames. A detailed description of those control blocks can be found later is

this subsection.

The _hashtable represents the hash table used to locate a page when

pointer swizzling isn’t used. But even with pointer swizzling, this auxiliary

structure will be of use. The _freelist is a list of free bu�er frames used to

allocate a bu�er frame during a page miss. It needs to be a queue to allow

the usage of CLOCK page eviction strategies which require the reuse of

frames in the order in which they were freed. After the startup of the bu�er

pool, the �rst bu�er index returned by the _freelist is the index 1 and the

last returned index before pages need to be evicted is _block_cnt - 1.An

approximate number of free frames is stored in _approx_freelist_length

to allow the eviction of pages until a speci�c number of frames are free. The

hash table and the list of free pages needs to be protected against concurrent

accesses as multiple thread might access the bu�er pool in parallel.

The _evictioner is the component of the bu�er pool that takes cares

about the eviction of pages. It is used by the bu�er pool when some free

bu�er frames are needed and it gets called to update its statistics about

bu�ered pages inside some methods. Multiple implementations of the class

page_evictioner_base are discussed in chapter 3. To prevent the concur-

rent execution of the evictioner on multiple threads, the _eviction_lock

is used to prevent multiple executions.

The _cleaner takes care about the propagating updates of pages to the

secondary storage. When a page gets updated, the update only takes

place in the bu�ered copy of the page (and the update is logged in the

transactional log). Afterwards the page is marked dirty until the cleaner

updated the persistent copy of the page. A dirty page isn’t allowed to

be evicted and therefore the optimization of this component is a major

concern. In [SHG16] multiple designs of cleaners are evaluated and the

di�erent implementations are also part of Zero. The cleaner runs in an own

27

1. Pointer Swizzling in the DBMS Bu�er Management

thread and therefore it just needs to be started by a thread that encounters

the need of cleaned pages.

The _cleaner_decoupled is set when the decoupled cleaner should be

used. When the bu�er pool should use pointer swizzling to locate pages,

then _enable_swizzling is set and when the bu�er pool log (implementa-

tion in appendix B) should be used to log �x, un�x and re�x events, then

_logstats_fix is set.

The constructor of the class bf_tree_m() initializes the members as

discussed before. To allow the bu�er pool to consider the program options

used when the DBMS was started, the sm_options are passed to it. The

destructor ~bf_tree_m() deallocates the memory dynamically allocated

during the instantiation of the bu�er pool. But before, the bu�er pool

components cleaner and evictioner should be stopped and destroyed using

shutdown().

To get the control block of a speci�c bu�er frame, the get_cbp() method

can be used and to �nd out if a page pointer is swizzled the static method

is_swizzled_pointer() can be used. If the pointer to a speci�c page rep-

resented by a generic_page is swizzled, the method is_swizzled() returns

true. As the evictioner is only allowed to evict pages that doesn’t contain

swizzled pointers, the method has_swizzled_child() calculates if a page

contains swizzled pointers.

To get the next free bu�er pool frame frame index from the _freelist,

the method _grab_free_block() needs to be used. It returns the index of

the free frame through the parameter ret. If the _approx_freelist_length

is 0 and if the parameter evict is set, it triggers the evictioner through

_get_replacement_block(). If eviction was needed it sets the parame-

ter evicted. The method _get_replacement_block() locks the evictioner

and executes it when it encounters a full bu�er pool. When the evic-

tioner freed a frame, it adds it to the list of free frames using the method

_add_free_block(). This needs to be also used the usage of a requested

free frame failed.

The valid indexes of bu�er frame only range from 0 to _block_cnt - 1

due to limited size of the bu�er pool and the usage of the �rst frame as

invalid frame. To check if a given frame index is in this range, the method

_is_valid_index() is de�ned. If it should also be checked that the frame

is actually in use (a page is cached there), the method _is_active_index()

28

1.4. Design and Implementation of the Bu�er Manager

needs to be called.

The main interface of the bu�er pool takes care about the �xing and

un�xing of pages. This interface is split into 5 methods that o�er di�erent

services.

To �x a root page, the method fix_root() needs to be called. The

parameter store de�nes which root page should be �xed and returned

through the parameter page. The mode de�nes the kind of latch that should

be acquired when the page gets �xed. A LATCH_SH is used when the page

should be only read and a LATCH_EX needs to be used when the page should

be updated. Only one thread at a time can have an exclusive latch to

mutually exclude concurrent writes. But it usually takes longer to acquire

an exclusive latch as there are no other threads allowed to have a shared

latch as well, when one thread has acquired an exclusive latch. The acquired

latch can later be up- or downgraded. If the parameter conditional is set,

the page gets only �xed, if the latch can be acquired without waiting on

other thread releasing the latch. This is e.g. used by the evictioner as it

wouldn’t evict a page that is currently latched by another thread. If the

parameter virgin isn’t set, fix_root() doesn’t �x the requested page when

the bu�er pool is full.

To �x a page that isn’t the root of an index structure, the appropriate

method to call is fix_nonroot(). The page is identi�ed using its PageID

which can be an actual page identi�er or it can be a swizzled pointer

containing a bu�er frame index. A pointer swizzling needs the parent of

a page to swizzle the pointer there during a page miss, the parent page is

passed in the parameter parent. As the only possible access path to access

a page is by using its parent, the parent needs to be �xed by the calling

thread as well and therefore this doesn’t add any overhead to the process.

The parameters page, mode and virgin_page (like virgin) are used as in

fix_root(). If the parameter only_if_hit is set, the page is only �xed,

when it is available in the bu�er pool.

Zero’s bu�er pool also o�ers a mechanism called re�x. This allows a

thread to un�x a page without requiring the e�ort of a usual �x to re�x the

page later on. To use this mechanism a thread needs to pin a page by calling

pin_for_refix() passing the page. Until the thread doesn’t unpin the page

using unpin_for_refix(), the page cannot be evicted from the bu�er pool.

The thread needs to keep the frame index of the page to use the re�x as the

29

1. Pointer Swizzling in the DBMS Bu�er Management

major overhead of a �x during a page hit with disabled pointer swizzling

would be caused by locating the page in the bu�er pool. To re�x a pinned

page, the method refix_direct() needs to be called. The parameters page,

mode and conditional are used as before and the parameter idx needs to

contain the kept index of the bu�er frame where the requested page can be

found.

The most complex method of the bu�er pool is the fix() method. This

method is used by the methods fix_root() and fix_nonroot() to perform

the common tasks. It locates the requested page, retrieves it from the

storage manager if needed and acquires the latch. If swizzling is enabled,

it cares about following a swizzled pointer and it does the swizzling of

a pointer in the parent of a requested page. The majority of the code

presented in the subsections 1.4.3 and 1.4.4 is part of this method.

bf_tree_cb_t
+ _pid: PageID
+ _pin_cnt: int32_t
+ _used: std::atomic<bool>
+ _swizzled: std::atomic<bool>
+ clear_except_latch(): void
+ init(in pid:PageID, in page_lsn:lsn_t): void
+ is_dirty(): bool
+ pin(): void
+ unpin(): void
+ latch(): latch_t&

Figure 1.17.: Overview of the Class bf_tree_cb_t in UML Notation

Methods returning a value of type w_rc_t can throw exceptions through

this return type. If such a method is called inside the macro W_DO(), the

calling method immediately returns if the called method returned an er-

ror. To manually check for an error, the class w_rc_t o�ers the method

is_error() which returns true if the method which returned the instance

of w_rc_t encountered an error. An instance that isn’t an error is RCOK

while an error can be generated using RC(e) where e is an error code.

The class bf_tree_cb_t shown in �gure 1.17 realizes the control blocks

which are used to store meta data for each bu�er frame of the bu�er

manager.

It stores the page ID of the page that is currently bu�ered in the cor-

responding frame in the _pid member. If the corresponding bu�er frame

30

1.4. Design and Implementation of the Bu�er Manager

is used, the _used bit is set and if the pointer to the page contained in the

frame is swizzled, then the _swizzled bit is set. As the access of the lastly

mentioned members doesn’t require a thread to have the frame latched,

those need to manage consistent updates that happen concurrently.

The _pin_cnt gets initialized with 0 and incremented by one when the

contained page gets �xed, when the pointer to the page gets swizzled and

when a pointer inside the page gets swizzled. It gets decremented on the

opposite actions. A _pin_cnt that is greater 0 prevents the eviction of the

contained page as the state where the page is �xed, swizzled or where

it contains swizzled pointers requires the page to stay in the bu�er pool.

When the evictioner selects a page to become evicted, it sets the _pin_cnt

of the corresponding bu�er frame to -1 to prevent the further usage of the

page.

The methods pin() and unpin() increment and decrement the _pin_cnt

thread-safe and therefore concurrent actions doesn’t interfere.

The method is_dirty() called on the control block of a bu�er frame

returns true, if the page contained in the frame is dirty and latch() returns

the latch of the bu�er frame which is stored outside the control block but

inside the memory allocated for it.

When a page gets removed from the bu�er frame, the control block

corresponding to the bu�er frame where the page was cached, gets cleared

using clear_except_latch(). The latch mustn’t be cleared as it mustn’t be

released until the control block is cleared. A newly initialized control block

holds the _pid passed in pid to the method init(). Therefore the frame is

marked used and not swizzled.

1.4.3. Implementation of fix() for a Page Hit in a Bu�er Pool
With and Without Pointer Swizzling

The fix() operation is used by fix_root() and fix_nonroot(). The last

one just passes its arguments to the fix() method as it uses the same

parameters. The �rst one doesn’t call fix() during a page hit. In that

case, this operation just needs to lookup the bu�er frame index of the

frame where the requested page can be found using the store ID in the

array _root_pages. As there only exists a very limited amount of root pages

those cannot be evicted from the bu�er pool and their addresses gets always

31

1. Pointer Swizzling in the DBMS Bu�er Management

swizzled - even when pointer swizzling in the bu�er pool is deactivated - in

that array. Afterwards the method acquires the latch in the requested mode

and it pins the page calling bf_tree_cb_t::pin(). Therefore the overhead

of fix_root() is always very small.

1.4.3.1. A Page Hit Without Pointer Swizzling

Listing 1.1: Implementation of bf_tree_m::fix() in case of a page hit

without having a swizzled page identi�er

1 w_rc_t bf_tree_m::fix(generic_page *parent, generic_page *&page,
2 PageID pid, latch_mode_t mode,
3 bool conditional, bool virgin_page,
4 bool only_if_hit, lsn_t emlsn)
5 {

46 while (true)
47 {
48 bf_idx_pair p;
49 bf_idx idx = 0;
50 if (_hashtable->lookup(pid, p)) {
51 idx = p.first;
52 }

54 if (idx == 0) {
125 }
126 else {
128 bf_tree_cb_t &cb = get_cb(idx);

133 W_DO(cb.latch().latch_acquire(mode,
134 conditional ? sthread_t::WAIT_IMMEDIATE
135 : sthread_t::WAIT_FOREVER));

137 if (cb._pin_cnt < 0 || cb._pid != pid) {
140 cb.latch().latch_release();
141 continue;
142 }
145 cb.pin();

152 page = &(_buffer[idx]);
157 }
235 return RCOK;
236 }
237 }

In case of a page hit (without having pid swizzled), the major operation to

32

1.4. Design and Implementation of the Bu�er Manager

be executed by fix() is to locate the bu�er pool frame where the requested

page can be found. The part of the implementation of the fix() method

which is executed during a page hit when pointer swizzling is deactivated

s shown in listing 1.1.

The whole task of �xing a page runs inside an in�nite while-loop which

is used to implicitly retry the operation when an error occurs. If the task

performs without an error then the whole function gets terminated by

calling a return-statement as in line 235. If an error happens somewhere

during the fix() then an automatic retry happens by using a continue-

statement as in line 141.

In line 50 the frame index of the page speci�ed with parameter pid is

searched. As the given PageID isn’t swizzled, a hash table lookup is needed.

The pid is the input parameter of the lookup whereas the bf_idx_pair

p is needed as an output parameter. Therefore parameter p gets set by

bf_hashtable::lookup(). A bf_idx_pair is a pair of bf_idx values where

the bf_hashtable uses the �rst value (.first) to store the index of the

frame corresponding to the indexed PageID and the second value (.second)

for the index of the frame where the parent page can be found (this is needed

for the swizzling and unswizzling of pointers). An instance of bf_idx_pair

is prepared in line 48 and an instance of type bf_idx is prepared in line 49
as the rest of the function only uses the index of the requested frame. The

initialization of idx with 0 is used to mark the current value as invalid.

The method bf_hashtable::lookup(), used by bf_tree_m::fix(), cal-

culates the hash-value on line 297 in listing 1.2 using a function that just

uses a built-in hash function (w_hashing::uhash::hash32()). The hash

function tries to equally distribute the actually used PageID values among

the range of a 32 bit integer value and the modulo operator inside the index

calculation for the _table distributes the hash values equally among the

_size hash buckets. In the next step it calls bf_hashbucket::find() on the

hash table bucket corresponding to the calculated hash value. The hash

table bucket of type bf_hashbucket<T> can be found in the array _table

which is indexed using the hash value. As listing 1.2 reveals, the hash table

is implemented as a template class that allows the mapping of PageID values

to arbitrary values but it is only used with T == bf_idx_pair.

The method bf_hashbucket::find() needs to lock the hash bucket it’s

searching in using a read lock on line 93 to prevent concurrent changes

33

1. Pointer Swizzling in the DBMS Bu�er Management

Listing 1.2: Implementation of bf_hashtable::lookup()

91 template<class T>
92 bool bf_hashbucket<T>::find(PageID key, T& value) {
93 spinlock_read_critical_section cs(&_lock);
96 for (uint32_t i = 0; i < _used_count
97 && i < HASHBUCKET_INITIAL_CHUNK_SIZE; ++i) {
98 if (_chunk.keys[i] == key) {
99 value = _chunk.values[i];

100 return true;
101 }
102 }
105 uint32_t cur_count = HASHBUCKET_INITIAL_CHUNK_SIZE;
106 for (bf_hashbucket_chunk_linked<T>* cur_chunk
107 = _chunk.next_chunk; cur_count < _used_count;
108 cur_chunk = cur_chunk->next_chunk)
109 {
111 for (uint32_t i = 0; i < cur_chunk->size
112 && cur_count < _used_count; ++i, ++cur_count) {
113 if (cur_chunk->keys[i] == key) {
114 value = cur_chunk->values[i];
115 return true;
116 }
117 }
118 }

120 return false;
121 }

294 template<class T>
295 bool bf_hashtable<T>::lookup(PageID key, T& value) const {
297 uint32_t hash = bf_hash(key);
298 return _table[hash % _size].find(key, value);
299 }

to it, which would cause errors during the execution of the method. If a

concurrent change would add an entry, this entry might not be found by the

find() method as the for-loops de�ned on lines 96-97, 106-108 and 111-
112 only run over that much entries that were used (_used_count) when

the for-loop checked the condition the last time. If a concurrent change

removes an entry, the for-loops might read at invalid (unused) indices, the

algorithm might try to look inside not existing chained chunks or some

entries might be rearranged and therefore skipped during the iteration over

the hash bucket.

34

1.4. Design and Implementation of the Bu�er Manager

The �rst for-loop only iterates over the used �elds (_used_count) of

the �rst chunk (corresponding hash bucket without chained buckets) of

the hash bucket (HASHBUCKET_INITIAL_CHUNK_SIZE == 4) and compares

the found keys (PageID values) with the key parameter representing the

searched PageID value on line 98. If the key was found, the reference to

the corresponding value (which represents the bf_idx_pair where the

generic_page with PageID key can be found in the bu�er pool) gets copied

into the output parameter value and, together with the success indicator

(return true), returned to the calling fix() method.

But if the key wasn’t found in the �rst chunk, the for-loop de�ned on

lines 106-108 iterates over the linked chunks (chained buckets) which are of

type bf_hashbucket_chunk_linked<T>. Therefore it moves the pointer that

always points to the chunk where it currently operates on (cur_chunk) to

the next_chunk pointer of the cur_chunk within each iteration until the last

entry was checked (cur_count >= _used_count ⟹ A chained bucket

isn’t fully populated). Within each of the iterations of the outer for-loop

there is an inner for-loop that works pretty much the same as the for-loop

on lines 96-97. The major di�erence is that it has to work on a chained

chunk (cur_chunk) and that it has to update the cur_count-value for the

outer for-loop to allow the check inside the loop condition if there is

another entry inside the chunk and if there is another chained chunk. The

reader can convince herself that this process needs much more instructions

than a page hit in the next subsection 1.4.3.2.

Back in the method body of the bf_tree_m::fix() method, the searched

bu�er index (not the one of the parent of the searched page) gets extracted

on line 51 if the hash table has found an entry for the searched PageID. If the

hash table failed to �nd a matching entry, the page isn’t in the bu�er pool

(still idx == 0 which is an unused index) and therefore the code for a page

miss (on 55-124), as described in subsection 1.4.4.1, needs to be executed.

As another major part of �xing a page is to acquire it’s latch for the

current thread, the control block of the corresponding bu�er pool frame is

needed. Therefore the method get_cb() is called with the just found bu�er

frame index idx as parameter on line 128.

On lines 133-135 the thread acquires the latch of the page depending

on the requested latch mode which was given in parameter mode. The

parameter conditional speci�es, if the latch should only be acquired in

35

1. Pointer Swizzling in the DBMS Bu�er Management

the case, that the latch in the speci�ed mode can be acquired immedi-

ately (sthread_t::WAIT_IMMEDIATE), if conditional isn’t set, waiting on

the latch (sthread_t::WAIT_FOREVER) can be tolerated. If an error hap-

pens during the execution of latch_acquire(), the function fix() im-

mediately returns with the error in its return parameter as the function

latch_acquire() (and latch() as well) was called inside the macro W_DO().

As the �xing of a page requires the page to be pinned (it’s pin count

needs to be incremented), the pin() method gets called on the control

block on line 145. But before that happens, it needs to be checked that the

page isn’t currently selected as eviction victim by a concurrently running

evictioner or if it is even already replaced with another page. The evictioner

sets the pin count (_pin_cnt) of an eviction victim to -1, and therefore the

check cb._pin_cnt < 0 catches this case. If the page in the latched frame

was already replaced after this thread found the page using the hash table,

the second check on line 137, cb._pid != pid would catch this case as the

searched pid would di�er from the actual cb._pid in the control block.

Afterwards, the latch on the not needed page would be released on line 140
and an automatic retry of �xing the requested page would be started by

restarting the while-loop with the continue-statement on line 141.

In the last step on line 152, the output parameter page which is a reference

to a pointer to a generic_page is set by getting the actual memory address

of the �xed page from the _buffer array using the idx that was retrieved

before. To leave the in�nite while-loop and to signal the absence of errors

during the execution of the fix() method, the value RCOK gets returned on

line 235.

1.4.3.2. A Page Hit With Pointer Swizzling

Fixing a page is where the performance advantage of pointer swizzling

comes in place. But this only holds for page hits. A page miss is slightly

slower with pointer swizzling as the pointer to the retrieved page needs

to be swizzled as additional step. This case is described in the subsection

1.4.4.2.

In the case of a page hit, the pid parameter usually contains a swizzled

page identi�er. It’s possible that a page hit occurs without having the

pointer swizzled, e.g. when the swizzling is still in process (on another

36

1.4. Design and Implementation of the Bu�er Manager

Listing 1.3: Implementation of bf_tree_m::fix() in case of a page hit

with having a swizzled page identi�er

1 w_rc_t bf_tree_m::fix(generic_page *parent, generic_page *&page,
2 PageID pid, latch_mode_t mode,
3 bool conditional, bool virgin_page,
4 bool only_if_hit, lsn_t emlsn)
5 {

12 if (is_swizzled_pointer(pid)) {
15 bf_idx idx = pid ^ SWIZZLED_PID_BIT;
17 bf_tree_cb_t &cb = get_cb(idx);

19 W_DO(cb.latch().latch_acquire(mode,
20 conditional ? sthread_t::WAIT_IMMEDIATE
21 : sthread_t::WAIT_FOREVER));
27 cb.pin();

36 page = &(_buffer[idx]);

43 return RCOK;
44 }

237 }

thread) or when the swizzling of that speci�c pointer isn’t possible. In that

case, the appropriate frame gets located using the hash table as described in

the previous subsection 1.4.3.1. To check that the page identi�er is actually

swizzled, fix() calls the static function is_swizzled_pointer() in line
6 of listing 1.3 which is de�ned in listing 1.4.

Listing 1.4: Implementation of bf_tree_m::is_swizzled_pointer()

1 const uint32_t SWIZZLED_PID_BIT = 0x80000000;

3 class bf_tree_m {

5 public:
6 static bool is_swizzled_pointer (PageID pid) {
7 return (pid & SWIZZLED_PID_BIT) != 0;
8 }

10 }

As only swizzled page IDs have the 30th bit (0x80000000) set, this can be

37

1. Pointer Swizzling in the DBMS Bu�er Management

used by is_swizzled_pointer(). The bitwise ∧ (&) on line 7 of listing 1.4
would return 0 if this bit isn’t set in the parameter pid. When a swizzled

pid was found on line 12 of listing 1.3, the unsetting of the 30th bit using a

⊕ (^) with that bit set on line 15 returns a valid bf_idx of the frame where

the requested page can be found.

The following steps are nearly identical to the ones in the case of a page

hit without swizzling discussed in subsection 1.4.3.1. The thread acquires

the latch of the page on lines 19-21, pins the page on line 27 and it returns

the page through the output parameter page on line line 36 and 43. But

as the pointer to the page is already swizzled, the page couldn’t be easily

evicted and therefore a check if the requested page can still be found inside

the expected bu�er frame can be omitted.

1.4.4. Implementation of fix() for a Page Miss in a Bu�er Pool
With and Without Pointer Swizzling

On a page miss, the fix_root() method cannot just lookup the appro-

priate page ID for the store ID using the array _root_pages as this only

contains the bu�er index of root pages that reside in memory. Therefore it

needs to retrieve the page ID required for the usage of the fix() method

from the storage management layer (smlevel_0). This retrieval is basi-

cally an array lookup with a known index. Therefore this doesn’t add

any overhead to a page miss. Some other parameters of fix_root() are

also di�erent from those in fix() and therefore those need to be speci-

�ed. As a root page doesn’t have a parent page, fix_root() passes NULL as

argument for the parent parameter of fix(). The remaining parameters

of fix_non() have default values and those are used by fix_root(). The

method fix_nonroot() works identical for page hits and page misses.

1.4.4.1. A Page Miss Without Pointer Swizzling

The retrieval of a page from secondary storage during a page miss is an

extensive process and it’s equal for bu�er pools with and without pointer

swizzling. Therefore the overhead due to this process is identical for both

kinds of bu�er pools. When pointer swizzling is disabled, there is no other

operation needed to �x a page and therefore a detailed description of this

38

1.4. Design and Implementation of the Bu�er Manager

part is omitted here.

1.4.4.2. A Page Miss With Pointer Swizzling

After the requested page was retrieved from the storage management layer,

the bu�er pool that utilizes pointer swizzling needs to swizzle the pointer

corresponding pointer in the page’s parent page.

Listing 1.5: Implementation of the swizzling of a pointer in

bf_tree_m::fix() in case of a page miss

1 w_rc_t bf_tree_m::fix(generic_page *parent, generic_page *&page,
2 PageID pid, latch_mode_t mode,
3 bool conditional, bool virgin_page,
4 bool only_if_hit, lsn_t emlsn)
5 {

159 if (!is_swizzled(page) && _enable_swizzling && parent) {
161 bf_tree_cb_t &cb = get_cb(idx);
166 fixable_page_h p;
167 p.fix_nonbufferpool_page(parent);
168 general_recordid_t slot =
169 find_page_id_slot(parent, pid);

171 if (!is_swizzled(parent)) {
177 return RCOK;
178 }
182 if (slot == GeneralRecordIds::INVALID) {
188 return RCOK;
189 }
192 if (slot == GeneralRecordIds::FOSTER_CHILD) {
198 return RCOK;
199 }
204 bool old_value = false;
205 if (!std::atomic_compare_exchange_strong(&cb._swizzled
206 , &old_value, true)) {
214 return RCOK;
215 }
219 PageID* addr = p.child_slot_address(slot);
220 *addr = idx | SWIZZLED_PID_BIT;
222 }
235 return RCOK;
236 }
237 }

The pointer to the page page only needs to be swizzled if the pointer

39

1. Pointer Swizzling in the DBMS Bu�er Management

isn’t already swizzled (!is_swizzled(page)), if swizzling is enabled in the

bu�er pool (_enable_swizzling) and if the page’s parent page is known

(parent). This is checked on line 159 of listing 1.5. The swizzling is also

omitted when the parent page isn’t swizzled as well as the simplicity of

this swizzling approach requires the pointers being swizzled uninterrupted

from the root to the leaf of the currently swizzled subtree. This check is

done on line 173 and the method is left without an error on the next line.
After the pointer to a page got swizzled, it is required to set the _swizzled

value of the control block of the corresponding bu�er frame. Therefore the

control block needs to be retrieved again on line 161.

To allow the swizzling of a pointer inside the parent page, it is required to

�x the page with an exclusive latch. The modi�cation of the page required

for the swizzling requires the page to be of type fixable_page_h. The page

is available as generic_page and it is already �xed by the current thread.

Therefore the parent page can just being �xed without using the bu�er

pool but with calling the ”imaginary“ �x method fix_nonbufferpool_page

on the empty fixable_page_h p created on line 166. This operation just

embeds the generic_page inside the fixable_page_h to make it accessible

and it also acquires a latch of mode LATCH_EX.

To �nd the record inside the parent page that contains the pointer which

should be swizzled, the method bf_tree_m::find_page_id_slot() is used

on line 169. This method takes the page (containing the records) and the

pointer (page ID of the page to be swizzled) as parameters and returns the

page-local index of the appropriate record as general_recordid_t.

Pointers to foster children aren’t swizzled as those are only used tem-

porarily by the Foster B-tree until the parent page gets actually split. The

short timespan in which a foster child exists doesn’t make it worth to swiz-

zle the pointer to it. This case is caught on line 192. The pointer inside an

invalid slot shouldn’t be swizzled as well and therefore this case is caught

on line 182. If one of those cases occurs, the method gets left without an

error as the page is actually �xed, executing return RCOK on lines 188 and

198.

If the pointer was swizzled by another thread after the initial check on

line 159, the pointer cannot be swizzled again. Therefore this property

needs to be checked again. To prevent two threads from concurrently

swizzling a pointer, the check is done atomically together with the setting

40

1.4. Design and Implementation of the Bu�er Manager

of the _swizzled value inside the control block of the corresponding bu�er

frame. This atomic operation cannot be divided into two operations where

another thread reads or writes the value in between. Therefore there can

only be one thread that recognizes itself to be the one who swizzles the

page. The function call of std::atomic_compare_exchange_strong() on

lines 205-206 checks if cb._swizzled equals old_value which is set to bool

and if so, it sets cb._swizzled to true. If the function call returns false,

then cb._swizzled was already true and therefore the swizzling is done

by another thread. In that case, the current thread can leave the fix()

method on line 214 without an error.

If this thread is allowed to swizzle the pointer, it retrieves the memory

address of the pointer inside the parent page on line 219 using the slot ID

of the corresponding slot inside the �xed page p. This pointer contains

the page ID of the page to be swizzled before the code on line 220 was

executed. This line replaces this page ID with the bu�er index idx of the

frame in which the page that gets swizzled can be found. To be able to

identify the pointer as being swizzled, the SWIZZLED_PID_BIT (used by

is_swizzled_pointer()) is set using an bitwise-∨ (|) on the idx.

41

2. Performance Evaluation of the
Bu�er Management with Pointer
Swizzling

The performed performance evaluation will mainly compare the bu�er pool
with and without pointer swizzling for di�erent bu�er pool sizes. The varia-

tion of the bu�er pool size is used to change the hit rate of the bu�er pool

as the hit rate mainly depends on the page reference string (should be �xed

by the benchmark), the used page replacement algorithm (performance

evaluation in chapter 3) and on the proportion between bu�er pool size and

working set size. The performance advance of pointer swizzling mainly

depends on the hit rate as the swizzling/unswizzling of a pointer adds cost

to every bu�er miss and as the usage of swizzled pointers reduces the cost

during a page hit. Therefore this is a way to measure the e�ect of pointer

swizzling over a wide range of use cases.

2.1. Expected Performance

Based on the results of past research, the performance behavior of the bu�er

manager for di�erent bu�er pool sizes can be estimated. The past research

only took into account a bu�er manager without pointer swizzling (except

for [Gra+14]) but using theoretical considerations those results can be used

to estimate the performance of the bu�er pool with pointer swizzling as

well. Those theoretical considerations are the fundamentals for the com-

parison between the bu�er management with and without the utilization

pointer swizzling.

42

2.1. Expected Performance

2.1.1. For Di�erent Bu�er Pool Sizes

As discussed in subsection 1.2.3, a DBMS using secondary storage to store

its database persistently needs a bu�er pool in main memory to reduce

the performance impact of the slow I/O operations. But as the available

capacity of main memory is usually much more limited than the capacity

of secondary storage, the bu�er pool can only hold a subset of the database.
Therefore there are still physical references to pages that don’t reside in

memory. Those physical references have a huge impact on the performance

of the DBMS and therefore the reduction of those slow I/O operations

improves the overall performance of the DBMS.

The bu�er management tries to decrease the number of those physical

references by estimating the pages that will be used most likely in the near

future to store those in the limited number of bu�er frames. The estimation

of the usage of pages is done using a page replacement strategy as discussed

in the next chapter 3. But the higher the amount of bu�er frames available

to cache pages of the database, the higher the chance that a referenced page

already resides in the bu�er pool. This results in the performance metrics

hit rate = # of logical references

of references
and miss rate = # of physical references

of references
.

W. E�elsberg and T. Härder showed some bounds of miss rates in [EH84].

The bounds for reasonable page replacement algorithms and for typical page

reference strings are shown in �gure 2.1. When the whole database (D) �ts

in the bu�er pool, then the miss rate will be MRCS . This miss rate will only

a�ect the performance of the DBMS after a cold start. After each page was

referenced at least once, the whole database will be in memory and therefore

no more physical references will be needed (at least for read accesses). As

a typical OLTP database system doesn’t restart very frequently, this miss

rate will be negligible but can be further reduced using prefetching. As

operating on the data is only possible when they’re in memory, there needs

to be at least one bu�er frame and therefore the minimum bu�er pool size

Bmin > 0. In practice there need to be multiple frames, as some operations

might �x multiple pages at a time. Therefore there is always a chance for

a logical reference so that MRmax < 1. The miss rate between a bu�er

size of Bmin and D depends on the used page replacement algorithm. The

optimal, not realizable page replacement ([Bel66]) evicts pages that will be

accessed the furthest in the future. This OPT algorithm achieves a very low

43

2. Performance Evaluation of Pointer Swizzling

Bmin D

MRCS

MRmax

1

bu�er pool size B

m
is

s
ra

te
M
R

optimal
random
possible

Figure 2.1.: Miss Rate for Di�erent Fractions
bu�er pool size

database size
and for Di�erent

Page Replacement Strategies with Typical Reference Strings ([EH84]). Bmin

is the minimal possible bu�er size (e.g. 1 frame), D is the size of the database,

MRCS is the cold start miss rate (caused by an initially empty bu�er pool)

and MRmax is the maximal miss rate.

miss rate as the working set size of a DBMS is usually much smaller than

the whole database. The random replacement algorithm would achieve a

linear miss rate (MR (B) = 1 − B ⋅
1−MRCS

D
) when the page accesses would be

random as well but as the chance for reaccessing a page that was accessed

in the recent past is higher than the chance of accessing a page that wasn’t

accessed in the recent past, the chance that the page wasn’t already evicted

is still high. The possible algorithms try to use statistics about recent page

references to evict pages that will be reaccessed the furthest in the future.

Details about some of those algorithms can be found in chapter 3.

But the overall performance of a DBMS or even of a storage manager

only isn’t only based on the hit rate of the bu�er manager. Typical metrics

44

2.1. Expected Performance

to measure the performance of a DBMS would be transaction throughput
and transaction latency.

The usage of concurrent transactions can compensate a high miss rate

with regard to the transaction throughput up to a certain level as the CPU

can work on other transactions while an I/O operation blocks a transaction.

But this advantage is limited due to the fact that the sum of the I/O latency

doesn’t decrease because the total number of page misses doesn’t decrease

for a �xed miss rate. Therefore only the used CPU-time will be increased

using concurrent transactions. A disadvantage of concurrent transactions

is the need of concurrency control (still an active topic of research) to

guarantee transactional isolation. This adds a new bottleneck to the DBMS.

Another problem of concurrent transactions is the reduced locality of

the referenced pages. Each concurrently running transaction has its own

working set and therefore a small bu�er pool might be a major bottleneck

in such a situation. Therefore a low miss rate of a bu�er pool which is

slightly smaller than the current working set shouldn’t a�ect the transaction

throughput at all, while a high miss rate of a small bu�er pool should

decrease the transaction throughput heavily.

The latency of transactions will be directly a�ected by the hit rate of

the bu�er manager. When a transaction causes a page miss, it needs to

be blocked until the �le management retrieved the page to the bu�er

management. A reordering of the operations executed in the context of

that transaction could improve the overall latency of that transaction but

needs to be done on a higher level of the DBMS architecture. Therefore

the average latency of transactions with similar computational complexity

should be much higher with a higher miss rate as more of those transactions

would encounter a page miss.

2.1.2. For Bu�er Management with Pointer Swizzling

The reason to use pointer swizzling is to improve the performance of

dereferencing references between persistently stored data while this data

is cached in memory. But there is a trade-o� between faster dereferencing

and the overhead of the (un)swizzling of a reference. Therefore there

exists a threshold of dereferencings per (un)swizzling, above which pointer

swizzling improves the overall performance.

45

2. Performance Evaluation of Pointer Swizzling

The implementation of pointer swizzling in Zero’s bu�er manager deref-

erences a swizzled pointer on each page hit and it swizzles a pointer on

each page miss. The unswizzling happens during the eviction of a page

from the bu�er pool. Without pointer swizzling in the bu�er pool, a page

hit would cause a hash table lookup as described in subsection 1.3.4. The

average complexity of a hash table lookup is in  (1) (worst-case complex-

ity in  (n)), but with a higher constant factor than the dereferencing of a

swizzled pointer. On a page miss, the pointer would just not be swizzled

without pointer swizzling and therefore the reverse operation would just

not happen during a page eviction. As the used index structure - the Foster

B-tree - only uses one pointer per page, there needs to be only one pointer

(un)swizzled per page miss (eviction). When the eviction in the bu�er

pool has started (after the bu�er pool was completely �lled the �rst time

since startup), each page miss will trigger an eviction of another page (in

batches), to free a bu�er frame for the requested page. Therefore pointer

swizzling will decrease the execution time of a page hit whereas it will

increased the execution time of a page miss.

Figure 2.2 visualizes the portion of execution time needed for page hits

and for page misses with and without pointer swizzling. The total execution

time needed for page misses is slightly higher for the bu�er pool with

pointer swizzling but the total execution time needed for page hits is heavily

decreased when using this bu�er pool. The lower hit rate HRmin results in

a higher portion of page misses whereas the higher hit rate HRCS results

in a lower portion of page misses.

2.2. Configuration of the Used System

• CPU: 2× Intel® Xeon® Processor E5420 @2.50GHz released late 2007

• Main Memory: 8 × 4GB = 32GB of DDR2-RAM @667MHz

• Storage: 3 × 256GB Samsung SSD 840 PRO Series released mid 2012

The following data are stored on seperate SSD:

– database �le of Zero (--sm_dbfile)

– log directory of Zero (--sm_logdir)

– log �le of the bu�er log for Zero (--sm_fix_stats_file)

46

2.3. Measured Performance

HRmin HRCS

hit rate

to
ta

le
xe

cu
ti

on
ti

m
e

faster with

pointer swizzling

faster without

pointer swizzling

Page Hits without Pointer Swizzling
Page Misses without Pointer Swizzling

Page Hits with Pointer Swizzling
Page Misses with Pointer Swizzling

Figure 2.2.: Expected sum of execution times of every execution of the fix()
operation for a bu�er pool with and without pointer swizzling.

– XtraDB data �le of MariaDB (datadir)

• OS: Ubuntu 15.04

• Kernel: Linux 3.19.0-15-generic

• C++-Compiler: GCC (GNU Compiler Collection) 5.4.1

2.3. Measured Performance of Pointer Swizzling in
the Bu�er Management

One way to show the actual in�uence of a new technique is to isolate
the changed component of the system and to measure this component

47

2. Performance Evaluation of Pointer Swizzling

independently with and without the new technique. This would result in the

usage of a microbenchmark that only reads records from the layer of storage

structures (the Foster B-tree structure is required for the pointer swizzling

approach) with the transactional locking and logging deactivated. This

would ignore the overhead imposed by higher levels of the DBMS (e.g. query

optimization) as well as e�ects of concurrency control in the bu�er pool

(arbitrarily many concurrent read accesses are allowed). The deactivation

of locking and logging removes the overhead due to concurrency control

(transaction level) and it removes the I/O latency of the log manager.

Another way to show the performance advantage of new techniques

shows the impact of the new technique on the whole system. Therefore

the measured performance change imposed by the new technique will

depend on the in�uence of the changed component on the whole system.

To achieve such a measurement the usage of a synthetic benchmark like

TPC-C ([TPC10]), which tries to simulate an actual OLTP application of a

DBMS, would �t best. Those benchmarks are industry standards to measure

the performance of a DBMS. The advantage of this kind of evaluation is

that it allows an insight in how the new technique interacts with the whole

system compared to the old techniques. But as there are many di�erent

con�gurations of the surrounding system, this kind of evaluation could

lead to completely di�erent results when other system components gets

replaced as other components can be optimized independently. In the case

of pointer swizzling in the bu�er pool, the changes of the whole system

could be enormous but the in�uence of the new technique and the in�uence

of di�erent hit rates is very isolated. Changes in other components wouldn’t

change the performance behavior of the DBMS for di�erent hit rates as

those components rely on the bu�er pool to cache pages. The hit rate

only changes the performance of the bu�er pool operations and therefore

changes in other components could only change the in�uence of the bu�er

pool on the overall performance by �xing more or less pages or by adding

or removing overhead imposed by other components.

2.3.1. Performance of the DBMS

The performance evaluation of the whole DBMS was done using the im-

plementations of TPC-C and TPC-B that are part of Shore-MT ’s Shore-Kits

48

2.3. Measured Performance

which is used in Zero as well.

2.3.1.1. TPC-C

TPC-C ([TPC10]) is the industry standard benchmark for moderately com-

plex OLTP workloads. It was approved as new OLTP benchmark in July

1992 and therefore it simulates a typical OLTP workload of that time. The

benchmark simulates a wholesale supplier managing orders. It uses 9 dif-

ferent tables and the terminals (threads) run queries of 5 di�erent types

searching, updating, deleting and inserting on those tables. It’s prede-

cessor with an even simpler workload was TPC-A and the successor is

TPC-E which simulates a tremendously more complex and modern OLTP

application.

Each benchmark run was executed on a database of 100 warehouses

(≡ 13.22 GiB) which was initialized (schema created and initial records

inserted) beforehand. Before each execution, the TRIM-command was

executed on the SSDs used for the database �le and for the transactional

log because it wasn’t executed automatically. Each benchmark run used

the same initial database (initialized once and saved). As the used CPUs can

execute 8 threads in parallel, the used number of TPC-C terminals is 8 and

therefore the system simulates 8 users concurrently running transactions

on the database system. To compensate environmental e�ects (e.g. �le

accesses) on the used test system, the results are averaged over 3 runs.

As synchronized commits greatly restrict the transaction throughput, the

option asyncCommit was set during all the benchmark runs.

The results of the 234 benchmark runs are shown in �gure 2.3. The trans-

action throughput of the DBMS grows nearly quadratic with the bu�er

pool size until the bu�er has a size of 2 GiB. Afterwards the growth of the

transaction throughput is roughly linear until the maximum throughput is

achieved at a bu�er pool size of around 8 GiB. This behavior is the same for

the bu�er pool that utilizes pointer swizzling and for the one that doesn’t

utilize it. The saturation of the throughput for bu�er sizes smaller than the

whole database is either caused by limitations due to other components of

the DBMS (maximum throughput is around 15 000 transactions/s independent of

the bu�er latency) or it’s the result of the TPC-C benchmark only accessing

around 8 GiB of pages when the database has a size of 100 warehouses. The

49

2. Performance Evaluation of Pointer Swizzling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

0 200 400 600 800 1,000

0

500

1,000

1,500

2,000

Figure 2.3.: Transaction throughput of the DBMS with a bu�er pool with

and without pointer swizzling running TPC-C. The database contains 100

warehouses and 8 terminals are running transactions concurrently. The

bu�er size is 0.05 GiB–20 GiB and the bu�er wasn’t warmed up (benchmark

started with an empty bu�er pool). Random page replacement (latched)

was used. Each con�guration was executed three times and each run lasted

10 min. Asynchronous commits are enabled. The error bars represent the

standard deviation of the three measurements.

high standard deviations for some bu�er pool sizes (without pointer swiz-

zling: 14 GiB, with pointer swizzling: 5 GiB, 6.5 GiB, 8.5 GiB and 17 GiB)

are the result of single measurements with abnormally low throughputs

caused by e.g. randomly occurring issues in other components (Zero is

an experimental platform where problems of the design and implementa-

tion sometimes cause deadlocks, segmentation faults and other undetected

faults).

The performance of the DBMS for the di�erent bu�er pool sizes is as
expected. When nearly the whole database �ts in the bu�er pool, the

50

2.3. Measured Performance

performance will be close to the maximum performance as the long term

working set of pages will be smaller than the database. The steep rise of

the throughput for bu�er pool sizes from 500 MiB to 2 GiB is the result of a

very small short term working set. The locality of the page reference string

will cause a high hit rate even when only a small subset of the database

�ts in the bu�er pool and as a smaller amount of terminals concurrently

querying the database system would cause an even smaller working set,

the performance increase would be even steeper there. The roughly linear

increase for bu�er pool sizes of 2 GiB–8 GiB perfectly �ts between the high

rate of increase before 2 GiB and the low rate of increase after 8 GiB.

The performance of the bu�er pool that uses pointer swizzling to locate

bu�ered pages isn’t as expected. For either high and low miss rates, the

transaction throughput of the DBMS using the bu�er pool with pointer

swizzling is lower than the one of the DBMS with the bu�er pool only

utilizing a hash table for page location. Some isolated bu�er sizes show

an opposite result but the high standard deviation of the results makes

those inconclusive. Even con�gurations where the overhead caused by

transactional logging is partly eliminated by storing the log in main memory

(as shown in �gure 2.4) doesn’t show a performance improvement due to

the usage of pointer swizzling.

The reason for the unexpected behavior of the bu�er pool with pointer

swizzling couldn’t be found but it’s either an issue of the implementation or

it’s an issue of the con�guration of the server or of the benchmark because

pointer swizzling was actually utilized during the benchmark runs that had

pointer swizzling enabled. The number of hash table lookups was only a

fraction compared to the runs with disabled pointer swizzling.

2.3.1.2. TPC-B

TPC-B ([TPC95]) was a standard benchmark for database workloads that

mainly utilize the lower levels of a DBMS. It leads to a signi�cant I/O

activity while requiring a moderate execution time. The bu�er pool is the

mainly utilized component when this benchmark is executed. It uses 4

di�erent tables and the terminals run simple queries of 7 di�erent types

searching, updating, deleting and inserting on those tables. It’s obsolete

because it’s too simple to be an appropriate representation of a modern

51

2. Performance Evaluation of Pointer Swizzling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

0 200 400 600 800 1,000

0

200

400

Figure 2.4.: Transaction throughput of the DBMS with a bu�er pool with

and without pointer swizzling running TPC-C on another computer sys-
tem. The database contains 100 warehouses and 24 terminals are running

transactions concurrently. The bu�er size is 0.05 GiB–15 GiB and the bu�er

wasn’t warmed up (benchmark started with an empty bu�er pool). Random

page replacement (latched) was used. The log was written to the main

memory to partly eliminate the overhead due to transactional logging. Each

con�guration was executed three times and each run lasted 10 min. The

error bars represent the standard deviation of the three measurements.

OLTP application and the used metrics aren’t proper anymore ([Lev+93]).

Each benchmark run was executed on a database with a scaling factor of

500 (≡ 1.87 GiB) which was initialized (schema created and initial records

inserted) beforehand. Before each execution, the TRIM-command was

executed on the SSDs used for the database �le and for the transactional

log because it wasn’t executed automatically. Each benchmark run used

the same initial database (initialized once and saved). The database size

after 10 min of TPC-B querying varies as a higher transaction throughput

results in a higher number of inserted records. As the used CPUs can

52

2.3. Measured Performance

execute 8 threads in parallel, the used number of TPC-B terminals is 8 and

therefore the system simulates 8 users concurrently running transactions

on the database system. To compensate environmental e�ects (e.g. �le

accesses) on the used test system, the results are averaged over 3 runs.

As synchronized commits greatly restrict the transaction throughput, the

option asyncCommit was set during all the benchmark runs.

0 1 2 3 4 5
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

Figure 2.5.: Transaction throughput of the DBMS with a bu�er pool with

and without pointer swizzling running TPC-B. The database contains 500

warehouses and 8 terminals are running transactions concurrently. The

bu�er size is 0.025 GiB–5 GiB and the bu�er wasn’t warmed up (benchmark

started with an empty bu�er pool). Random page replacement (latched)

was used. Each con�guration was executed three times and each run lasted

10 min. Asynchronous commits are enabled. The error bars represent the

standard deviation of the three measurements.

The results of the 150 benchmark runs are shown in �gure 2.5. The

transaction throughput of the DBMS grows nearly linear with the bu�er pool
size until the maximum throughput is achieved at a bu�er pool size of

53

2. Performance Evaluation of Pointer Swizzling

around 3 GiB. This behavior is the same for the bu�er pool with pointer

swizzling and for the one that needs an hash table lookup on each page hit.

The fact that the performance saturates at a bu�er pool size which is much

higher than the initial size of the database is the result of a growth of the

database size due to inserts of records. The irregular behavior for bu�er

sizes between 600 MiB and 1 GiB could be the result of a tremendous growth

of the hit rate when the bu�er pool growths from 600 MiB to 700 MiB due to

a loop-like (or multiple loops initiated on the 8 terminals) reference pattern

that just �ts in the bu�er pool.

Therefore the performance behavior for TPC-B isn’t as expected. But the

expectation of the hit rates (in subsection 2.1.1) for di�erent proportions of

the database �tting in the bu�er pool are based on the assumption that the

reference pattern isn’t completely random. It expects a reference string that

has some reference locality. The reference string due to TPC-B is completely
random and therefore the expected growth of the hit rate with a growing

bu�er size is linear. This shows a weakness of the TPC-B benchmark and it

is a reason why it is deprecated. With that prerequisite, the behavior of the

DBMS is even closer to the theoretical considerations as expected. It was

expected that the overhead due to other components of the DBMS would

reduce the growth of the throughput but the simplicity of TPC-B highlights

the performance of the bu�er pool.

The performance of the bu�er pool utilizing pointer swizzling is iden-

tical for bu�er pool sizes of 25 MiB–100 MiB, slightly higher (1 %–3.5 %)

for bu�er pool sizes of 150 MiB–300 MiB, lower (4 %–8 %) for bu�er pool

sizes of 350 MiB–500 MiB and higher (4 %–8 %) for bu�er pool sizes of

1.5 GiB–3.5 GiB. The performance behaves irregular for bu�er sizes be-

tween the mentioned ranges.

The identical or slightly higher performance of the bu�er manager with

pointer swizzling for very small bu�er sizes can be explained by the irrele-
vance of operations that doesn’t require I/O for such a very high miss rate.

The cost of a hash table lookup required during a page hit in the bu�er

pool without pointer swizzling and the overhead due to swizzling and

unswizzling of a pointer done in the bu�er pool with pointer swizzling isn’t

signi�cant when the miss rate is close to 1. This shows that the overhead

imposed by the swizzling and unswizzling of pointers isn’t as noticeable as

expected. But the lower performance due to pointer swizzling for bu�er

54

2.3. Measured Performance

sizes of 350 MiB–500 MiB would support the expectation that the bu�er pool
with pointer swizzling su�ers from high miss rates. The notable performance
advantage of the bu�er manager with pointer swizzling for large bu�er pools
supports the theoretical considerations that a high hit rate and therefore the

high number of saved hash table lookups, compensates the added overhead

due to swizzling and unswizzling of pointers. Summarizing the results of

the TPC-B benchmark runs, pointer swizzling can increase the performance

of the DBMS when a large portion of the database �ts in the bu�er pool

but the results for smaller bu�er pools are unclear and therefore it can be

concluded that the performance disadvantage due to pointer swizzling isn’t

signi�cant there.

2.3.2. Execution Time of the Fix Operation

As the results of the benchmark runs of TPC-C doesn’t show any per-

formance advantage of the bu�er pool using pointer swizzling, a deeper

look inside the bu�er pool might show the reason for this behavior. It was

expected that a page hit is much faster when the hash table doesn’t need

to be looked up. But it was also expected that a page miss is slower when

pointer swizzling is used in the bu�er pool as the swizzling of a pointer

during a page miss and as the unswizzling of a pointer during the eviction

of a page add some overhead.

The average number of hash table lookups during the benchmark runs of

�gure 2.3 is shown in �gure 2.6. This result was expected as the bu�er pool

utilizing pointer swizzling doesn’t need the hash table during a page hit.

The decreased number of hash table lookups should drastically decrease

the overhead of the bu�er pool. The small amount of page misses during

a benchmark run with a bu�er pool that can hold the complete database

shouldn’t compensate this reduction of overhead as the overhead imposed

by pointer swizzling during a page miss is expected to be very small com-

pared to the whole latency of a page miss. Therefore it is expected that a

benchmark run with a bu�er pool size of 20 GiB can fully bene�t from the

decreased number of hash table lookups.

But the actual execution times of the di�erent operations of a bu�er

pool can be measured as well. The bu�er pool log as implemented in

appendix B can log the execution time for each call of fix(), fix_root()

55

2. Performance Evaluation of Pointer Swizzling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1 ⋅ 10
8

2 ⋅ 10
8

3 ⋅ 10
8

4 ⋅ 10
8

5 ⋅ 10
8

6 ⋅ 10
8

7 ⋅ 10
8

8 ⋅ 10
8

9 ⋅ 10
8

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

nu
m

be
r

of
ha

sh
ta

bl
e

lo
ok

up
s

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

0 500 1,000 1,500 2,000

0

2 ⋅ 10
7

4 ⋅ 10
7

6 ⋅ 10
7

8 ⋅ 10
7

1 ⋅ 10
8

Figure 2.6.: The number of hash table lookup of the TPC-C benchmark runs

shown in �gure 2.3

and fix_nonroot(). As the methods fix_root() and fix_nonroot() work

identical with enabled and disabled pointer swizzling and as those methods

cannot be used to identify a page miss, the method fix() is used to measure

the execution time per �x. This method isn’t executed during a page hit of

a root page but the execution time of this case is independent of pointer

swizzling.

The measured execution times of page �xes of the execution of TPC-C

with a bu�er pool size of 20 GiB as shown in �gure 2.7 are partially as

expected. When a shared latch is requested, a page hit is much faster when

using pointer swizzling but a page miss su�ers from the overhead of pointer

swizzling. The average execution times for all �xes with shared latches are

nearly identical which is expected as well as the transaction throughput

for the two con�gurations was nearly identical, too. The performance of

page hits for the request of an exclusive latch is also as expected but the

performance for page misses is contrary to the expectation.

56

2.3. Measured Performance

total hit miss miss

w/o

evict

miss

w/

evict

10
0

10
1

10
2

10
3

10
4

10
5

LATCH_SH

e
x
e
c
u

t
i
o

n
t
i
m

e
[
n
s
]

total hit miss miss

w/o

evict

miss

w/

evict

10
0

10
1

10
2

10
3

10
4

10
5

LATCH_EX
e
x
e
c
u

t
i
o

n
t
i
m

e
[
n
s
]

Traditional Bu�er Pool Pointer Swizzling Bu�er Pool

Figure 2.7.: Average execution time of the fix() method for a TPC-C run

with a bu�er pool size of 20 GiB like in �gure 2.3.

A page hit is slower when an exclusive latch is requested instead of an

shared latch. This is the result of the conditions that need to be met for

acquiring a latch in the two modes. A shared latch can be acquired when

no other thread has an exclusive latch on the same page while an exclusive

latch can be acquiring only when no other thread has any kind of latch on

the same page. But there shouldn’t be a performance di�erence for page

misses. An exclusive as well as an shared latch can be immediately acquired

during a page miss as a page miss implies that no other thread used the

page at that time. Therefore the performance of a page miss should be

identical for the two latch modes. During a page hit, a thread might need

to wait until other threads released the latch of a page to acquire the latch

in exclusive mode.

As there aren’t any more page misses in this con�guration after the

bu�er pool warmed up, the average execution time of the �x method will be

approximately the average execution time of page hits when the database

system is running for a longer timespan. Therefore pointer swizzling

57

2. Performance Evaluation of Pointer Swizzling

increases the performance of the bu�er pool by 30 % when the complete

database �ts in the bu�er pool.

total hit miss miss

w/o

evict

miss

w/

evict

10
1

10
4

10
7

10
10

LATCH_SH

e
x
e
c
u

t
i
o

n
t
i
m

e
[
n
s
]

total hit miss miss

w/o

evict

miss

w/

evict

10
1

10
3

10
5

10
7

LATCH_EX
e
x
e
c
u

t
i
o

n
t
i
m

e
[
n
s
]

Traditional Bu�er Pool Pointer Swizzling Bu�er Pool

Figure 2.8.: Average execution time of the fix() method for a TPC-C run

with a bu�er pool size of 500 MiB like in �gure 2.3.

The measured execution times of page �xes of the execution of TPC-C

with a bu�er pool size of 500 MiB as shown in �gure 2.8 aren’t as expected.

The bu�er pool that utilizes pointer swizzling to locate a page is signi�cantly

slower as it’s expected for such small bu�er pool sizes. But there is no

reason why the bu�er pool with pointer swizzling should perform worse

during a page hit. The execution time of page hits and page misses should

be identical to those with the larger bu�er pool as the methods doesn’t

change. It’s expected that the performance di�erence between the two

bu�er sizes only comes from the di�erent miss rates. The higher miss rate of

a small bu�er pool is expected to result in a total performance closer to the

one of page misses while the performance of low miss rates is expected to

converge towards the high performant page hits. The lower execution time

of page evictions when pointer swizzling is active is also not as expected.

The unswizzling which happens during the eviction should add additional

58

2.4. Measured Performance of MariaDB for Comparison

overhead to this process.

There is no justi�cation for the much lower execution time of fix()

when an exclusive latch is requested. Finding an explanation for this

unexpected behavior is left for future work as I wasn’t able to do this

during the processing period of this work.

2.4. Measured Performance of MariaDB for
Comparison

Zero is just an experimental storage manager and therefore it’s not clear

that its performance behavior is similar to the one of database manage-

ment systems used for productive environments. I chose MariaDB for this

comparison as it’s commonly used, actively maintained, freely available

and it allows the selection of the bu�er size which is mandatory for the

measurements. It’s also important that the �le accesses use direct I/O to

prevent double caching of the database in the DBMS’s bu�er pool and in

the OS’s page cache. A page miss of a DBMS using direct I/O would be

comparable to a double page miss of a DBMS not using direct I/O. A page

in the OS’s page cache wouldn’t use space of the DBMS’ bu�er pool but it

would be still cached in main memory and therefore an access would be a

page hit (not inside DBMS).

The absolute transaction throughput should be ignored for this compar-

ison but the velocity due to in increase of bu�er size should be compared.

2.4.1. Performance of MariaDB

To benchmark MariaDB, the OLTP benchmark framework OLTPBench (pre-

sented in [Dif+13]) was used. This tool allows the benchmarking of a wide

range of DBMS which use the database gateway JDBC and therefore Mari-
aDB is supported. It o�ers an implementation of TPC-C among many other

benchmarks.

Each benchmark run was executed on a database of 50 warehouses (≡

6.5 GiB) which was initialized (schema created and initial records inserted)

beforehand. The TRIM-command wasn’t executed on the SSD used for

the database �le and for the transactional log. Each benchmark run used

59

2. Performance Evaluation of Pointer Swizzling

the same initial database (initialized once and saved) and the database was

restarted between consecutive benchmark runs to clear the bu�er pool. The

bu�er pool size was set using the innodb_buffer_pool_size parameter of

the XtraDB storage manager. Except for the setting of the datadir to use

a SSD and usage of ALL_O_DIRECT to use direct I/O for the database and

for the log, the default con�guration of MariaDB and of the used storage

manager XtraDB was used. The TPC-C transactions were executed with

the transaction isolation level TRANSACTION_SERIALIZABLE and the rate of

transactions was limited to 50 000 transactions/s. The database size after 10 min

of TPC-C querying varies as a higher transaction throughput results in a

higher number of inserted records. The used number of TPC-C terminals is

5 and therefore the system simulates 5 users concurrently running transac-

tions on the database system. To compensate environmental e�ects (e.g.

�le accesses) on the used test system, the results are averaged over 3 runs.

The results of the 87 benchmark runs are shown in �gure 2.9. The

transaction throughput of the DBMS grows linear with the bu�er pool size
until the maximum throughput is achieved at a bu�er pool size of around

1 GiB. The saturation of the throughput for a bu�er size of around a sixth of

the database size might be caused by limitations due to other components

of the DBMS. The database and the transactional log are stored on the same

SSD and therefore the limit of IOPS of the SSD might be the limiting factor.

The increase in transaction throughput for an increasing size of available

DBMS bu�er space is much faster than expected. While the bu�er can only

hold less than a sixth of the database, the transaction throughput is already

maximized. The transaction throughput growth nearly linear by the bu�er

pool size until the maximum transaction throughput is achieved.

The results suggest that the bu�er pool isn’t a major bottleneck of Mari-
aDB. It’s expected that the miss rate will be still moderately high when the

bu�er pool has a size of 1050 MiB but at that point, there are already other

components of the DBMS that limit the transaction throughput.

2.4.2. Comparison with Zero’s Performance

MariaDB performs much better than Zero even for small bu�er sizes. When

a sixth of the database �ts in the bu�er pool, the performance of MariaDB
is already at its limit but Zero got only a tenth of its maximal performance

60

2.4. Measured Performance of MariaDB for Comparison

0 1 2 3 4 5 6 7 8 9 10
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

MariaDB

Figure 2.9.: Transaction throughput of MariaDB running the TPC-C im-

plementation of [OLTP] (described in [Dif+13]). The database contains 50

warehouses and 5 terminals are running transactions concurrently. The

bu�er size is 0.05 GiB–10 GiB and ALL_O_DIRECT is used to prevent the

usage of the OS page cache for database and log. Each con�guration was

executed three times and each run lasted 10 min. The error bars represent

the standard deviation of the three measurements.

there. But the performance of MariaDB rapidly decreases when the bu�er

pool size falls below a certain point. The transaction throughput of Zero
does also basically decrease linearly with the bu�er pool size when it falls

below a certain (much higher) value. But a meaningful comparison of the

results would require a closer look on the design and implementation ofXtra
and MariaDB which is o� the scope of this thesis. The higher transaction

throughput could be due a higher layers of the DBMS. The used index

structures, a more optimized lock manager or even the query optimizer

might be the reason for the much higher performance of MariaDB. But all

those components also add overhead and those are all potential bottlenecks

61

2. Performance Evaluation of Pointer Swizzling

for the performance of the complete system. As Zero doesn’t implement

the most of those components, those overheads and potential optimizations

doesn’t apply to it. If the performance of MariaDB isn’t limited by the

bu�er pool but by any other component, the transaction throughput might

be increased even further with larger bu�er pool sizes and therefore the

resulting performance behavior of MariaDB could be similar to the one

of Zero but on a much higher level of transaction throughput. Therefore

it’s open for future work if pointer swizzling in the bu�er pool of Xtra
would improve it’s performance. The results of the experiments run on

Zero doesn’t imply such an advantage of pointer swizzling in an system

like MariaDB.

2.5. Measured Performance as in [Gra+14]

The experiments applied for [Gra+14] are signi�cantly di�erent from the

experiments applied for this thesis. But especially those di�erences of

the settings of the experiments makes the comparison interesting and the

experiments applied for the two works complement each other.

2.5.1. Performance of the Bu�er Management with Pointer
Swizzling in [Gra+14]

Goetz Graefe et al. used a �xed database (100 GB) and bu�er (10 GB) size

but worked with a variable working set size (0.1 GB–100 GB) while the

experiments presented here use a �xed database (13.22 GiB and 1.87 GiB)

and working set (de�ned by the used TPC-C/TPC-B benchmark suite and

by the number of concurrently querying threads) size while the bu�er pool

size varies (0.05 GiB–20 GiB and 0.025 GiB–5 GiB) between the benchmark

runs.

But the most important characteristic which is di�erent between the

two performance evaluations is the used benchmark. While the authors of

the original article didn’t focus on a DBMS with ACID properties, I always

considered a DBMS with logging and locking. The main measurements

used by Goetz Graefe et al. to show the great advantage of their technique

are done using a microbenchmark that only reads a �xed subset of the

database using 24 threads without the transactional logging and locking

62

2.5. Measured Performance as in [Gra+14]

being activated. As they planned to vanish the overhead imposed by those

modules in future publications as well, it was a reasonable restriction to the

evaluation of their technique. Their performance evaluation isolates the

e�ects of their optimization of the bu�er pool, which is more expressiveness

for their purpose.

They also compared their new bu�er pool technique with an in-memory

DBMS. The title of their publication already states that their approach

should enable the performance of in-memory databases for DBMS that store

their database on secondary storage. Therefore they developed a version

of their DBMS that doesn’t use a DBMS bu�er but that maps the whole

database to main memory while using the virtual memory management

of the OS as the database doesn’t �t in main memory. But even with that

approach they limit the size of available main memory to the bu�er pool

size used by the other approaches.

The presented results of their microbenchmark are shown in �gure 2.10.

As expected, the in-memory DBMS performs best as long as the working

set �ts in the available main memory. It doesn’t have any overhead due

to I/O latency or address translation. But when the working set exceeds

the available main memory, it performs worst, as the virtual memory

management of the operating system isn’t optimized for the given workload.

The selection of pages to swap to secondary storage isn’t as good as the

selection of pages to evict done by the bu�er pool of the two other solutions.

The traditional bu�er pool (bu�er pool without pointer swizzling) per-

forms worst when the whole working set �ts in main memory as each

page hit requires an address translation. The other two solutions doesn’t

need that additional operation there. But when the working set exceeds

the bu�er pool size, this solution performs best as it is optimized to work

under this condition. The traditional bu�er pool has a page replacement

optimized for typical OLTP workloads and it doesn’t require the overhead

of swizzling and unswizzling during a page miss.

Pointer swizzling results in a performance close to the one of the in-

memory DBMS when the working set �ts in the bu�er pool and the mea-

sured performance of it is close to the one of the traditional bu�er pool

when eviction is required. This represents the expectation that the major

overhead of a traditional bu�er pool during a page miss is imposed by the

address translation while the performance overhead of pointer swizzling

63

2. Performance Evaluation of Pointer Swizzling

0 10 20 30 40 50 60 70 80 90 100

10
2

10
3

10
4

10
5

10
6

bu
�

er
po

ol
si

ze

working set size [GiB]

qu
er

y
th

ro
ug

hp
ut

[
qu

er
ie

s /
s]

Traditional Bu�er Pool
In-Memory Database

Pointer Swizzling Bu�er Pool

0 10 20 30 40 50 60 70 80 90 100

10
2

10
3

10
4

10
5

10
6

bu
�

er
po

ol
si

ze

working set size [GiB]

qu
er

y
th

ro
ug

hp
ut

[
qu

er
ie

s /
s]

Traditional Bu�er Pool
In-Memory Database

Pointer Swizzling Bu�er Pool

Figure 2.10.: Query throughput of read-only queries for a �xed bu�er pool

size of 10GB and a working set size between 1GB and 100GB. The traditional

bu�er pool uses a hash table to �nd a page in the bu�er pool, the in-memory

database has the hold database in VM and the pointer swizzling bu�er pool

uses pointer swizzling as discussed here. The measurements were published

by Graefe et al. in [Gra+14].

in case of a page miss is really small.

Quantitative considerations of the performance di�erence between the

solutions lead to a performance growth of 80 % for a bu�er manager by

adding pointer swizzling when the working set �ts in the bu�er pool. There-

fore the subtraction of the overhead due to address translation during a

page hit nearly doubles the transaction throughput. This is a reasonable

result as the hash table lookup has a noticeable computational complex-

ity that is saved when using pointer swizzling. This also shows that this

benchmark is very focused on showing the performance of the lower layers

of the DBMS as the results imply that the DBMS with traditional bu�er

64

2.5. Measured Performance as in [Gra+14]

pool requires nearly half of the CPU-time to translate a page ID to a frame

ID.

Their results also show an overhead of around 20 % due to swizzling and
unswizzling of pointers when the working set doesn’t �t in the bu�er. That’s

as expected as the swizzling and unswizzling requires a change in the parent

page of a page. While those changes only happen in memory and therefore

doesn’t require any additional writes to database and transactional log, the

parent page needs to be �xed to perform those actions and that could be

costly.

The actual performance of their in-memory DBMS is very bad when the

working set exceeds the available main memory. The DBMS with traditional

bu�er pool performs around 6 times faster than the in-memory version.

The reason for those catastrophic results is the simple design of their in-

memory DBMS. Many in-memory DBMS doesn’t support databases that

exceed the available main memory because it’s hard to achieve a reasonable

performance for that case when the design of the DBMS is completely

focused on optimizing for a high performance of in memory operations.

But the usage of virtual memory management shouldn’t lead to such a huge

performance disadvantage compared to the usage of a specialized bu�er

manager.

But the much more questionable result of the benchmarks is the behavior

of all the three solutions when the size of the working set changes. The per-

formance of each solution doesn’t signi�cantly change when the working

set size changes between 0.1 GB and 10 GB as the whole working set �ts

in the bu�er pool during the whole range of working set sizes. But when

the working set size just exceeds the capacity of available main memory,

the query throughput rapidly decreases. Even cache thrashing couldn’t

lead to a performance drop of nearly three orders of magnitude for the

in-memory DBMS when the working set just exceeds the available main

memory. A reasonable assumption should be a slightly increased miss rate

when the working set increases from 10 GB to 11 GB. This would result in

a very high performance loss due to the I/O latency of secondary storage

which is 6 orders of magnitude higher than the latency of main memory.

But a situation where more than 90 % of pages still reside in main memory

should lead to a hit rate that is still close to 1 and therefore the remaining

page hits should partly compensate the performance loss imposed by the

65

2. Performance Evaluation of Pointer Swizzling

page misses.

The performance of the other two solutions drops as well when the

working set size gets increased from 10 GB to 11 GB. When 90 % of the

pages still reside in the bu�er pool, the query throughput of a DBMS with

a traditional bu�er pool shouldn’t be 60 times slower compared to the

situation when 100 % of the pages �t in the bu�er pool. The performance

should change slower. The same holds for the performance drop of the

DBMS that uses pointer swizzling in the bu�er pool.

But it’s still conceivable that just a small number of page misses which

are 6 orders of magnitude slower than page hits drastically decrease the

overall performance of the DBMS.

The performance evaluation in [Gra+14] using TPC-C shows the over-

head imposed by transactional locking and logging as shown in �gure 2.11.

They only considered the situation where the whole database resides in

main memory during the complete benchmark. That is the ideal situation

for pointer swizzling as the swizzling and unswizzling of pointers isn’t

required there.

Therefore the transaction throughput of the DBMS with pointer swizzling

in the bu�er pool is higher than the one of the DBMS with traditional bu�er

pool.

2.5.2. Comparison with my Performance Evaluation

The measured execution times of the fix() method support the perfor-

mance increase due to pointer swizzling for large bu�er pools as proven

by Goetz Graefe et al. in their read-only microbenchmark with disabled

locking and logging. They achieved a performance growth of around 80 %

and I measured a higher execution time of the bu�er pool without pointer

swizzling of around 46 % when the database doesn’t encounter any page

misses anymore. The di�erence of the increases might be the result of

di�erent con�gurations of the benchmark as both measurements only take

the bu�erpool into account.

The slightly lower performance of the bu�er pool that uses pointer

swizzling to locate a page when the database doesn’t �t in main memory is

also supported by the measurements of the execution performance of the

bu�er pool.

66

2.5. Measured Performance as in [Gra+14]

Transactional Logging O� Transactional Logging On
T
ra
ns

ac
ti
on

al
Lo

ck
in
g
O
�

0

20,000

40,000

60,000

a
v
e
r
a
g
e

t
r
a
n

s
a
c
t
i
o

n
t
h

r
o

u
g
h

p
u

t
[

t
r
a
n

s
a
c
t
i
o

n
s
/s
]

0

20,000

40,000

60,000

a
v
e
r
a
g
e

t
r
a
n

s
a
c
t
i
o

n
t
h

r
o

u
g
h

p
u

t
[

t
r
a
n

s
a
c
t
i
o

n
s
/s
]

T
ra
ns

ac
ti
on

al
Lo

ck
in
g
O
n

0

20,000

40,000

60,000

a
v
e
r
a
g
e

t
r
a
n

s
a
c
t
i
o

n
t
h

r
o

u
g
h

p
u

t
[

t
r
a
n

s
a
c
t
i
o

n
s
/s
]

0

20,000

40,000

60,000

a
v
e
r
a
g
e

t
r
a
n

s
a
c
t
i
o

n
t
h

r
o

u
g
h

p
u

t
[

t
r
a
n

s
a
c
t
i
o

n
s
/s
] Traditional Bu�er Pool

Pointer Swizzling Bu�er Pool

In-Memory Database

Figure 2.11.: Transaction throughput of the DBMS with a bu�er pool, with a

bu�er pool and pointer swizzling and without a bu�er pool running TPC-C

as measured in [Gra+14]. The database contains 100 warehouses and 12

terminals are running transactions concurrently. The bu�er pool is larger

than the database and the bu�er pool is warmed up (initially �lled). The

system con�guration can be found in [Gra+14].

The performance decrease for small bu�er pools shown in [Gra+14]

does also correspond to the measured execution times of fix(). But as

the reliability of the data presented in �gure 2.8 isn’t clear, this behavior

couldn’t be proven here.

The TPC-C results presented by Goetz Graefe et al. are very similar to

my results. My results of the transaction throughput and of the execution

time of fix() imply that a longer execution of the benchmark would have

67

2. Performance Evaluation of Pointer Swizzling

shown a slight advantage of pointer swizzling. But a longer execution of

Zero very often leads to deadlocks in the concurrency control and therefore

there aren’t reliable measurements for longer TPC-C runs.

2.6. Conclusion

Pointer swizzling is used to replace the hash table typically needed to locate

a page in the bu�er pool. When traversing an index structure, the pointers

between the pages are page IDs that are needed to locate the pages on

secondary storage. But when a page already resides in the bu�er pool, the

bu�er pool frame index of the frame where the page is locates, is needed

to �x the page. For that purpose a hash table is usually used as it o�ers a

constant search latency (in average). But the replacement of the page ID

within the transient copies of the pages which form the index structure

with the memory address could even improve the performance of a page

hit. But the swizzling and unswizzling of the pointers (the replacement of

the page ID with the frame index and back) adds some overhead during

page misses. Therefore the performance advantage of pointer swizzling

only holds for high hit rates and therefore large bu�er pools.

The current status of the implementation of pointer swizzling in Zero’s

bu�er pool doesn’t increase the overall performance of the database system

for complex benchmarks like TPC-C. The DBMS could bene�t from it during

simpler workloads like TPC-B. It could also be shown by measuring the

time needed to �x a page, that a longer running database with a large bu�er

pool could also pro�t from pointer swizzling even when the workload is

more complex than TPC-B. Typically a database system used by an OLTP

application runs continuously and therefore the performance advantage of

pointer swizzling can be expected following the results presented in this

chapter. It could also be shown that the performance increase due to pointer

swizzling measured by me equals the performance increase measured in

[Gra+14].

A few belated benchmark runs could con�rm the expectation that a

longer running database system could easily bene�t from pointer swizzling

in the bu�er pool. The con�guration used for the benchmark runs shown

in �gure 2.12 equals the one used in subsection 2.3.1.1 but the duration of

68

2.7. Future Work

each execution got increased to 50 min. Pointer swizzling could increase

the transaction throughput during the benchmarks by up to 18 %. Further

experiments with even longer durations are very time consuming but they

might be worth it. Another alternative would be to implement a warmup

for the bu�er pool that starts the measurements after the benchmark �lled

the bu�er pool (or after all pages got bu�ered).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

0 500 1,000 1,500 2,000

0

1,000

2,000

3,000

Figure 2.12.: Transaction throughput of the DBMS with a bu�er pool with

and without pointer swizzling running TPC-C. The database contains 100

warehouses and 8 terminals are running transactions concurrently. The

bu�er size is 0.05 GiB–20 GiB and the bu�er wasn’t warmed up (benchmark

started with an empty bu�er pool). Random page replacement (latched)

was used. Each con�guration was executed once and each run lasted 50 min.

2.7. Future Work

The most important concern for future work is the investigation why the

performance evaluation of the overall system doesn’t re�ect the performance

69

2. Performance Evaluation of Pointer Swizzling

gain of pointer swizzling. Pointer swizzling signi�cantly improves the per-

formance of the �x operation but the in�uence on the overall performance

of the DBMS was close to zero even in ideal test cases. Even the serial exe-

cution of transactions (one thread running the benchmark) which reduces

the overhead due to concurrency control and the transfer of the transaction

log to main memory doesn’t show a di�erent result.

The current concept of pointer swizzling in the bu�er pool only works

when Foster B-trees are used in the layer of storage structures. But there

are reasons to use other index structures. The requirement to have only

one pointer that points to a page makes the transfer of this technique

to work with other index structures challenging. But actually the most

commonly used index structures work with that restriction. Any B-tree

structure that doesn’t use a linked list on the leafs would work �ne and

many other tree index structures like R-trees borrow this feature from

the B-trees. Pointer swizzling wouldn’t work with secondary indexes.

Secondary indexes o�er additional pointers to records and therefore those

would need to be swizzled and unswizzled as well. But as the secondary

indexes cannot use the allocation of records to pages, a secondary index

would contain one page pointer per record and therefore multiple pointers

to one page. The access to a page without using the primary index used

would also cause that a page can be accessed without the need to access its

parent page. This would break the whole scheme of swizzling pointer from

the root down to the leafs. A more sophisticated lazy pointer swizzling

technique would be needed. A further characterization of the suitability of

alternative index structures would be worth the e�ort even when B-tree

structures like the Foster B-trees are the most commonly used once.

70

3. Page Eviction Strategies in the
Context of Pointer Swizzling

3.1. Importance of Page Eviction Strategies

As discussed in subsection 2.1.1, it’s the main goal of the bu�er pool to

maximise the hit rate as a high hit rate drastically increases the performance

of the whole DBMS.

It was already discussed that the used page replacement strategy needs

to be optimized to achieve this goal. The optimal OPT algorithm is only

of use in theory as it cannot be implemented but it de�nes the desired

characteristics of actually realizable page replacement algorithms. They

should evict the page that won’t be used for the longest time in the near

future. But as they only know about the page references of the past, they

only approximate this behavior by assigning reuse probabilities to the pages

in the bu�er pool based on statistics about the page accesses.

One very common page replacement algorithm is the LRU (least recently

used) strategy which expects a page that wasn’t used for the longest time

in the past to be used (more details about the de�nition of usage in the next

section) the furthest in the future. But many page reference strings (se-

quence of page reference) doesn’t perform well with this page replacement

algorithm. A loop that accesses exactly the number of pages that �t in the

bu�er pool will work perfectly as already after the �rst iteration there are

only pages in the bu�er pool that were referenced during the loop (if there

aren’t concurrent transactions using other pages) as the pages referenced

before the loop are always accessed earlier than the ones accesses during

the loop. As any further page references that happen during the loop only

access pages that already reside in the bu�er pool, there will only be page

hits for the rest of the time the loop is running. But if there is one more page

referenced during the loop, the hit rate will drop to 0. When the last page of

71

3. Page Eviction Strategies

the loop will be referenced, the bu�er pool will already only contain pages

accesses during the loop and therefore the �rst page referenced during

the loop will be evicted to free a frame for the last page of the loop. The

next page reference will cause the just evicted page to be retrieved from

the secondary storage again and it will replace the second page referenced

during the loop. And therefore every page reference during the loop will

be a page miss. A more sophisticated page replacement algorithm would

recognize the loop and it could reduce the physical page references to 2

during each iteration of the loop after the �rst iteration. But the reason

why page replacement algorithms which only rely on recency are still

popular can be seen in �gure 3.1. It shows a situation in which a bu�er

pool with 1095 bu�er frames could achieve a hit rate of 75 % using LRU

page replacement. The used database had a size of 1 691 576 pages and only

the locality of the page references allowed the bu�er pool to achieve such

a high hit rate while storing only a small portion of the whole database.

The presented situation is based on the reference string of the synthetic

OLTP benchmark TPC-C. The LRU page replacement algorithm is usually

implemented using a stack where a page is moved to the bottom of the

stack when it is referenced and where the page at the top of the stack is

evicted as this page wasn’t moved down for the longest time. But there exist

many modi�cations for this page replacement strategy focusing on either

reducing the weaknesses of this strategy with regard to miss rates of some

speci�c reference strings (e.g. LRU-k proposed in [OOW93]) or reducing

the complexity (due to synchronization) of the operations performed to

update the statistics during a page hit (e.g. CLOCK).

Another proposed page replacement strategy uses the total number of

references to a speci�c page to pick a victim for eviction. The LFU (least

frequently used) algorithm maintains a counter for each frame of the bu�er

pool counting the number of references of the contained page. The counter

is initialized with 1 when the frame gets allocated to a page and it will be

increased with every further reference of that page as long as the page stays

in the bu�er pool. This page replacement expects the most frequently used

pages to be used the most in the recent future. But this strategy is even

easier to break than the LRU page replacement strategy. A page that was

referenced very frequently for some time but without any references in the

recent past (might be a long time) stays in the bu�er pool as long as there

72

3.1. Importance of Page Eviction Strategies

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

5 ⋅ 10
6

1 ⋅ 10
7

LRU stack depth

#
of

re
fe

re
nc

es
TPC-C with Warehouses: 100, Threads: 25

Figure 3.1.: The LRU (least recently used) stack depth distribution for 25

parallel transactions (threads). The basis of this data is a reference strings

with the length of 66 161 654 generated by executing the TPC-C benchmark

with a database of 100 warehouses. The benchmark simulates 25 users

concurrently querying the database. The LRU stack depth of a page refer-

ence is the number of di�erent page references between this page reference

and the most recent �x of the same page. If a page is �xed twice without

another page �x in between, the second of those page references will have

a LRU stack depth of 1. Each of the page references is assigned to one of

the histogram buckets by its LRU stack depth and therefore the hight of the

leftmost bar of the histogram indicates the number of page references with

a LRU stack depth of 1.

aren’t enough pages with a higher number of references. Therefore there

can be a large number of pages in the bu�er pool that just waste bu�er

frames as they won’t be used anymore in the future but as the further page

reference string doesn’t contain pages that are accessed that frequently, they

cannot be evicted. This problem prevents this page replacement algorithm

from being used but many other page replacement algorithms combine the

idea of taking into account the frequency of references with the usage of

other statistical data (e.g. LRD-V1 (least reference density) as proposed in

[EH84]).

Techniques that aren’t usually recognized as being part of the page

replacement algorithms are memory allocation strategies (as discussed in

subsection 1.3.1) which is implicitly done by the page eviction and prefetch-
ing strategies which also decide about the pages that are actually cached

73

3. Page Eviction Strategies

in the bu�er pool. The usual way of selecting pages to be cached in the

bu�er pool is called demand fetching as a page is cached on demand (on a

page reference). Prefetching tries to estimate pages that weren’t used in

the recent past but that will be referenced next by recognizing patterns in

the recorded page reference string or by receiving hints from the upper

layers of the DBMS.

The introduction of two basic page replacement strategies LRU and LFU

shows the vitally of selecting a page replacement strategy that matches

best the expected workload. Page replacement algorithms in general can be

classi�ed with regard to the used statistics about the reference history of a

page like it was done in [EH84] as shown in �gure 3.1. More recent and

quite promising page replacement algorithms are presented and evaluated

in this chapter and an overview of many others can be found in [HR01],

[HSS11], [Wan01] or [Paa07].

Table 3.1.: Classi�cation of classical page replacement algorithms taken

from [EH84].

Consideration during
selection decision

Age
No

consideration
Since most

recent reference
Since �rst
reference

R
ef
er
en

ce
s

No
consideration RANDOM FIFO

Most recent
reference

LRU

CLOCK

GCLOCK-V2

All references LFU

GCLOCK-V1

DGCLOCK

LRD-V1

LRU-K

LRD-V2

3.2. Problems of Page Eviction with Pointer Swizzling
in the Bu�er Management

Page replacement algorithms have the task of selecting a page, which resides

in memory, to be evicted to free memory space for other pages to bu�er in

74

3.2. Problems of Page Eviction with Pointer Swizzling

memory. In order to do so, this component of a bu�er manager needs to

know some features of the bu�er pool. At least it needs to know about the

address space of the bu�er, to select a frame to be freed. In theory, those

page replacement strategies select an arbitrary page (following the speci�c

algorithm) from the bu�er pool for eviction without taking care about the

usage of those pages. And even complex page replacement algorithms that

store many statistics on each page in the bu�er pool only update those

statistics on a page �x (or on an un�x operation as well).

3.2.1. General Problems of the Implementation of Page Eviction
Strategies

There are many limitations regarding the eviction of a page in a DBMS

bu�er manager. A page might be �xed for a very long time (e.g. with an

exclusive latch which prevents concurrent �xes) and therefore it might be

already the least recently used page in a LRU strategy because the time

of the last update of the LRU-stack was to long ago. The implementation

of a page evictioner needs to take that into account and there needs to

be some rules de�ned for such situations. In case of a LRU strategy, a

page that is �xed might be considered as used and therefore it shouldn’t

be the least recently used page. But if a page is considered used during

the whole time it is �xed, the replacement algorithm should continuously

update the statistics about that page - at least in theory. Its trivial that this

is impractical but the same result can be achieved by updating the statistics

on an un�x as this is the last time it was used (proposed as least recently

un�xed in [EH84]). And before the un�x, the page couldn’t be evicted and

therefore the intention of the replacement strategy does hold here as well.

The feature to pin a page for a later re�x, as it is implemented in Zero, is

another of those problems. The pin for re�x is a performance optimization

that allows a transaction to release the latch of a page without the need

of �xing it again using the page ID as this would cause the �x operation

to localize the page in the bu�er pool using a hash table lookup (can be

prevented using pointer swizzling as discussed in the previous chapters). It

has the same semantics and the same a�ect on the performance as using

a latch that does allow neither writing nor reading (called LATCH_NL in

Zero) as a thread could acquire an exclusive latch on a page even when

75

3. Page Eviction Strategies

another thread already holds such a latch on that page. Regarding the page

replacement algorithm, the intention of a transaction to use a page again

can be considered as continuous usage of that page. This would extend the

previous case as the unpin for re�x operation should also update the statis-

tics of the page replacement algorithm as this is the last time a transaction

uses (with regard to the semantics in the context of page replacement) a

page. While a page is pinned, it obviously cannot be evicted as this would

cause the transaction that pinned the page having a dangling pointer to that

page (the pointer wouldn’t refer to the intended page anymore). Therefore

the solution for this problem is easy but it needs to be taken into account

when implementing a page eviction algorithm.

Another occurrence that prevents a page from being evicted is the dirty-
ing of a page. In a DBMS that uses force to guarantee durability ([HR83c]),

a page (sometimes even �ner-grained objects like records) is cleaned, when

a transaction that dirtied that page commits. But the most DBMS use no-

force which only requires the log records of a transaction to be written

persistently when the transaction commits. In both cases a page that isn’t

used at the moment can stay dirty in the bu�er pool which means that

it cannot be evicted from there until the update got propagated to the

secondary storage. The dirtiness of a page can’t be considered as ”in use“

by the page replacement algorithm as a dirty page might stay dirty for

an arbitrarily long time after it was referenced the last time. Therefore

the impossibility of evicting a dirty page doesn’t follow through with the

intentions of the page replacement strategy. One solution would be to

immediately write a page that was picked for eviction to secondary storage

but with the drawback of reduced performance of the page eviction due to

the caused I/O latency. Another solution would be to skip the page during

the eviction but to pick the page again during the next execution of the

eviction. But this could noticeably increase the runtime of the eviction as

the list of those pages that should be checked again �rst, can become very

long. It would also be possible to trigger the page cleaner after a speci�c

number of dirty pages discovered by the evictioner. But a much better

solution would be the usage of an update propagation strategy as it was

proposed by my advisor et al. in [SHG16]. This log-based page cleaner uses

the after-image of a page from the transaction log to propagate an update

to secondary storage and therefore a dirty page can be evicted.

76

3.2. Problems of Page Eviction with Pointer Swizzling

All these real-world cases aren’t speci�ed as part of the page replacement

algorithms as these cases are application-speci�c. But the page replacement

algorithms are speci�ed for the usage in any application that uses caching.

Even integrated library systems use those algorithms to pick books to weed

from their collection ([Rui16]). Therefore the de�nition of such a strategy

needs to be as general as possible causing the need of some extension of

the rules when implementing the algorithm.

The discussed cases only take into account page replacement algorithms
that use recency (like LRU) of page references to predict the future usage of a
page. Algorithms that take frequency or other metrics into account will have
similar problems.

3.2.2. Pointer Swizzling Specific Problems of Page Eviction

The pointer swizzling as it was discussed in the previous chapters of this

thesis, adds additional problems to the challenge of implementing a page

evictioner for a DBMS. Besides the unswizzling of the pointer to a page

within its parent page when it is evicted, there are additional limitations to

the eviction as well.

To achieve the simplicity of this approach of pointer swizzling it’s needed

to keep the parent page of each non-root page that is cached in the bu�er

pool in the bu�er pool as well. This limitation pins many pages to the bu�er

pool as they have child pages inside the bu�er pool. But this new limitation

doesn’t contradict the concept of page replacement algorithms as a parent

page is referenced at least as frequent as its child pages. This is caused by

the fact that the traversal of a Foster B-tree always starts from the root

node and therefore it’s only possible to access a non-root page using the

pointer in its parent page. A secondary index would create another access

path to a page but the pointer swizzling approach prevents a usage of such

an index.

A page which is in a higher level of a B-tree like index structure always

contains more records in its subtree than a page in a lower level of the tree

and therefore the access frequency of the parent node should be higher than

the child page’s one. But the recency of the last un�x might be higher for a

child page as a parent page can be un�xed when the pointer to the child

page was found. And as discussed before, an intuitive way of de�ning usage

77

3. Page Eviction Strategies

is by considering the last point in time in which a page was in the �xed

state and this would allow the eviction of a parent page before all its child

pages were evicted. Therefore there are two solutions for this problem.

The �rst one would be to rede�ne the ”usage“ of a page to only consider

the calls of the fix() function with its problems described above. But the

solution closer to the concept of page replacement algorithms would be to

treat pages containing swizzled pointers as a special case where eviction is

just prohibited.

A completely di�erent strategy in dealing with this problem would be to

design a special page replacement algorithm that takes into account the

structure of the cached data. Possible solutions would e.g. traverse the

Foster B-tree to pick a victim for eviction. But this solution would tightly

couple the page eviction component with the index structure component

which should be avoided. But the bene�ts of such a solution would also be

questionable as the structure of the data only partially de�nes the usage of

a page and therefore it would require the combination with some statistics

to perform competitively compared to general purpose page replacement

algorithms.

It also requires the participation of the evictioner in the concurrency

control as the access of data within a page needs to be synchronized. An

eviction strategy that is independent from the data structure only needs to

latch a page when it gets evicted as this causes a write access but it doesn’t

need to acquire the latch of the page to check if a page should be evicted

as this can be done by separate statistics only used by the eviction. The

main reason for the usage of the CLOCK algorithm to approximate the

LRU algorithm is the need to latch the stack of the LRU algorithm on each

update of the statistics and those updates are performed concurrently by

the running transactions. The atomic update of the CLOCK statistics safes

the overhead due to concurrency control and this increase of overhead

signi�cantly increases the performance.

Such a data structure dependent page replacement algorithm could e.g.

consider a page as being used when a descending page gets used. When

using the least recently un�xed algorithm as a basis, the un�x of a page

would cause the page to be moved to the bottom of the stack. But it would

also cause the parent (and the grandparent and so on) of that page to be

moved to the bottom of the stack even when the child page was �xed for a

78

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

long time and when the parent page wasn’t referenced during that timespan.

This naive strategy would increase the overhead due to updates during

un�x operations but an approximation based on the CLOCK algorithm

might perform well.

A similar solution would be the implementation of a page eviction strat-

egy which receives hints about future page references from higher system

layers. Such hints could also be used for prefetching but it requires very

tight coupling with the rest of the DBMS and it might be su�cient to use

the re�x mechanism as discussed before.

All these solutions would break the concept of the usual page replacement

algorithms but the simple solutions discussed �rst are promising and doesn’t

require much e�ort to be implemented.

3.3. Concept and Implementation of Di�erent Page
Eviction Strategies

3.3.1. Page Replacement as Proposed in [Gra+14]

Goetz Graefe et al. proposed in [Gra+14] a page replacement algorithm

based on GCLOCK with a depth-�rst search of candidates to unswizzle as

fallback.

3.3.1.1. Concept

If the GCLOCK cannot �nd a page for eviction as each found candidate has

child pages with swizzled references, the strategy sweeps the Foster B-tree

depth-�rst to unswizzle pages starting from the leafs. When a victim for

eviction was found by this mechanism, it is unswizzled and evicted. If a

future eviction also requires this sweeping mechanism, this would start

where the previous run ended to fairly distribute the evictions over the all

the pages. The used GCLOCK algorithm is a reasonable page replacement

algorithm with good hit-rates for many reference strings but the fallback

using depth-�rst search selects pages for eviction similar to a random

algorithm as it doesn’t use any statistics. It also needs to participate in the

concurrency control as it traverses the Foster B-tree like any other thread

executing a transaction. The fallback algorithm could be replaced by just

79

3. Page Eviction Strategies

continuing the searching for victims using the GCLOCK until this would

select a page without swizzled references but the possibly high number of

circulations in the clock might reduce the quality of the collected usage

statistics. And to �nd out about swizzled pointers inside a page, the latch of

the page needs to be acquired as well and therefore the overall performance

of this alternative wouldn’t be much better. Further details on GCLOCK

can be found in subsection 3.3.3.

3.3.2. RANDOM with Check of Usage

3.3.2.1. Concept

The RANDOM replacement is the simplest kind of page replacement al-

gorithm. On each call, it selects a random page for eviction. To prohibit

the selection of frequently used pages, this extension of the algorithm tries

to acquire an exclusive latch on an eviction candidate without waiting for

other threads to release their latch on the page. If the evicting thread can

acquire the latch immediately, the page isn’t in the current working set

as pages in the working set would be at least latched with a shared latch.

This check isn’t special with regard to the implementation as an eviction

always requires the acquiring of an exclusive latch but in this strategy it’s

the basis for the whole selection of a victim for eviction.

3.3.2.2. Implementation

The implementation of the RANDOM replacement is really simple as it

doesn’t have to store any statistics about past references and therefore there

are no methods to update any statistics. But as the page_evictioner_base

class implements some auxiliary methods, it’s nevertheless quite complex.

Those methods don’t depend on the used page replacement algorithm and

therefore are not discussed any further here.

The Data Structures To be able to start the iteration over the bu�er

frames on each run of pick_victim() where it stopped the last time,

_current_frame contains the next frame index where to start to search

for pages that can be evicted.

80

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

Listing 3.1: Data Structures of the Class page_evictioner_base

1 class page_evictioner_base {
20 private:
22 bf_idx _current_frame;
25 };

Listing 3.2: Implementation of page_evictioner_base::pick_victim()

69 bf_idx page_evictioner_base::pick_victim() {
70 bf_idx idx = _current_frame;
71 while (true) {
72 if (idx == _bufferpool->_block_cnt) {
73 idx = 1;
74 }

76 if (idx == _current_frame - 1) {
77 _bufferpool->get_cleaner()->wakeup(true);
78 }

80 PageID evicted_page;
81 if (evict_page(idx, evicted_page)) {
83 _current_frame = idx + 1;
84 return idx;
85 } else {
86 idx++;
87 continue;
88 }
89 }
90 }

The Implementation of pick_victim() The method pick_victim()

presented in �gure 3.2 selects one used frame from the bu�er pool that

can be freed. Therefore it iterates over the frame indexes starting from the

_current_frame. The idx variable contains the bu�er index that is checked

in the current iteration of the in�nite while-loop de�ned on line 71. It is

set to _current_frame before the while-loop.

The �rst task executed inside the loop is to check if the idx value is

inside the bounds of the actual bu�er indexes. If it exceeded the highest

bu�er index _bufferpool->_block_cnt - 1 by one, the idx gets set to 1

on line 73 as the index 0 isn’t in use.

81

3. Page Eviction Strategies

The reason not to use the member variable _current_frame to keep

track of the current bu�er frame to check, within an execution of the

method is that it can be used to count the checked frames during the

current execution of pick_victim(). If each frame was checked once

(idx == _current_frame - 1), the page cleaner gets triggered to clean

dirty pages to make it possible to evict those. That is done on line 77 which

blocks the evictioner until the cleaner �nished its job.

To check if the page at idx can be evicted, the evict_page() method

gets called. This method tries to immediately acquire an exclusive latch

on the corresponding frame and it also checks the other restrictions that

prevent the eviction of a page. If the page could be latched and if no other

restriction prevents the page at idx from being evicted, the if-condition

on line 81 evaluates to true. Now the execution of pick_victim() can be

terminated returning the found idx as victim for eviction on line 84. But

to allow the next execution of pick_victim() to start from the succeeding

bu�er frame, the class member _current_frame gets updated before.

If the page couldn’t be evicted, the next bu�er frame idx++ needs to

be checked during the next iteration of the while-loop started using the

continue-statement.

3.3.3. GCLOCK

The generalized CLOCK page replacement algorithm was proposed by A.

J. Smith in [Smi78]. It’s a slight enhancement of the usual Second Chance
CLOCK algorithm which allows more �ne-grained statistics using a counter

per bu�er frame instead of a bit. This allows the consideration of frequency

as well as weighting of references.

3.3.3.1. Concept

To approximate LRU, GCLOCK stores if a page in the bu�er pool was

referenced within a recent timespan. It selects a page for eviction when all

other pages in the bu�er pool were referenced during a more recent one of

those timespans.

82

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

The Collected Statistics The statistics are stored in a data structure

called ”clock“. The clock is a circular list of the pages in the bu�er pool and

each page has an associated ref erenced counter. The clock also contains a

clock hand that de�nes a page as head of the list and another page as its tail.

One circulation of the clock hand de�nes the timespans mentions before.

When a page in the bu�er pool gets referenced between two consecutive

swipes of the clock hand over it, its ref erenced counter gets set to k as

discussed in the next paragraph.

4
3

244
4

0

1

1

0

0

0

0
3

3 3 2
2

1

4

4

0

1

0

head
tail

Figure 3.2.: Data structures used by GCLOCK to store the statistics about

past page references.

The Retrieval of a Page During a page hit of page x , the ref erenced

counter needs to be set to k on line 3 of algorithm 3.1. k is a parameter that

needs to be con�gured to adapt the GCLOCK algorithm to the application.

A high k value causes a more �ne-grained history of page references to

be created. The last references to bu�ered pages can be divided into more

di�erent timespans as more circulations are needed until a page can be

evicted. A high k value should increase the hit rate but the higher number

of circulations needed until a page can be evicted (the average ref erenced

counter is higher) also increases the overhead. If the circulation in the

GCLOCK algorithm is an expensive task a lower k is the better choice. It’s

83

3. Page Eviction Strategies

Algorithm 3.1: Retrieval of a page as in the GCLOCK algorithm.

1: procedure get_page(x)

2: if x ∈ bu�er pool then
3: ref erenced [x] ← k

4: else if bu�er pool is full then
5: evict

6: insert(x)

7: ref erenced [x] ← 0

8: else
9: insert(x)

10: ref erenced [x] ← 0

11: end if
12: end procedure

also better to have a lower k when the cost di�erence between a page hit

and a page miss is small. Faster page misses can compensate the higher

miss rate of smaller k values.

During a page miss, a page might need to be evicted from the bu�er pool.

When the bu�er pool is full, this is done by calling EVICT on line 5 which

is discussed in the next paragraph. It’s also needed to insert the new page

x into the bu�er pool and clock and to set its ref erenced counter to 0 to

allow the next reference to the page to be recognized. Those tasks are done

independently from the �lling ratio of the bu�er pool on lines 6-7 and 9-10.

The Eviction of a Page The eviction is done in an in�nite while-loop

as arbitrary many hand movements are required. When a page for eviction

could be found, the f ound variable gets set to terminate the while-loop.

Therefore it needs to be initialized to false on line 2 of algorithm 3.2. Inside

the while-loop, it needs to be checked if the head of the clock can be evicted.

Therefore the index of it is retrieved on line 4.

If the ref erenced counter of it is 0, the current head page can be evicted

(REMOVE_NEXT) and therefore a page for eviction is found (f ound ←

true). The procedure would be terminated after line 7.

If it is greater than 0, it gets decremented by 1 and the next page gets

84

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

Algorithm 3.2: Eviction of a page as in the GCLOCK algorithm.

1: procedure evict
2: f ound ← false

3: while f ound ≠ true do
4: x ←get_next

5: if ref erenced [x] = 0 then
6: f ound ← true

7: remove_next

8: else
9: ref erenced [x] ← ref erenced [x] − 1

10: move_hand

11: end if
12: end while
13: end procedure

checked in the subsequent iteration of the while-loop. Therefore the clock

hand needs to be moved on line 10.

3.3.3.2. Implementation

The class page_evictioner_gclock implements the GCLOCK page eviction

for Zero. Some methods provided by the base class page_evictioner_base

are used by it to perform the actual eviction.

Listing 3.3: Data Structures of the Class page_evictioner_gclock

1 class page_evictioner_gclock : public page_evictioner_base {
17 private:
18 uint16_t _k;
19 uint16_t* _counts;
20 bf_idx _current_frame;
21 };

The Data Structures It stores its parameter k in _k, and the index of the

current head of the clock in _current_frame. The clock is implemented on

85

3. Page Eviction Strategies

line 19 of listing 3.3 as an array where the next element of the last one is

the �rst one. As it only needs to store the ref erenced counters, those are

stored in _counts. Each element of that array corresponds to the bu�er

frame with the same index and therefore the �rst element isn’t used.

Listing 3.4: Constructor and Destructor of the Class

page_evictioner_gclock

1 page_evictioner_gclock::page_evictioner_gclock(bf_tree_m* bufferpool,
2 const sm_options& options)
3 : page_evictioner_base(bufferpool, options) {
4 _k = options.get_int_option("sm_bufferpool_gclock_k", 10);
5 _counts = new uint16_t[_bufferpool->_block_cnt];
6 _current_frame = 0;

8 }

10 page_evictioner_gclock::~page_evictioner_gclock() {
11 delete[] _counts;
12 }

Construction and Destruction of Instances The constructor initial-

izes the member variables of its super class by calling its constructor on

line 3 of listing 3.4. As the k parameter can be set in the settings of Zero,

it gets retrieved on line 4. The default value which is used throughout the

rest of this chapter is 10.

The array of the ref erenced counters need to have the same size as the

database bu�er pool and the current head of the page is the unused bu�er

index as no there is no page which was already checked. The current head

gets automatically set to the �rst index during the �rst run of the page

eviction.

The destructor only needs to deallocate on line 11 the dynamically allo-

cated memory used for the _counts.

The Implementation of the Statistics Updates During a page hit and

during an un�x, the value of the appropriate _counts value gets set to _k.

The Same is done when a page cannot be evicted as it is in use. Simply the

hit_ref() method is used there on line 21 of listing 3.5.

86

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

Listing 3.5: Implementation of page_evictioner_gclock::hit_ref(),

used_ref(), block_ref() and unbuffered()

14 void page_evictioner_gclock::hit_ref(bf_idx idx) {
15 _counts[idx] = _k;
16 }

20 void page_evictioner_gclock::used_ref(bf_idx idx) {
21 hit_ref(idx);
22 }

26 void page_evictioner_gclock::block_ref(bf_idx idx) {
27 _counts[idx] = std::numeric_limits<uint16_t>::max();
28 }

32 void page_evictioner_gclock::unbuffered(bf_idx idx) {
33 _counts[idx] = 0;
34 }

If it will never be possible to evict a speci�c page as it is e.g. a root page,

its _counts value is maximized to minimize the number of times in which

the eviction of that page needs to be checked. The _counts value of a page

which manually gets removed from the bu�er pool gets set to 0 on line 33
as a usual eviction of a page also leaves the _counts value on 0.

The Implementation of pick_victim() The frame checked during

the current iteration of the while-loop of the pick_victim() method is

stored in idx. The �rst bu�er frame which is checked for being a candidate

for eviction has the index _current_frame. That frame was the �rst one

the wasn’t checked during the previous execution of pick_victim().

Inside the in�nite while-loop initialized on line 43 of listing 3.6, the

actual idx got calculated on line 44 as idx might have contained an invalid

index like 0 or _bufferpool->_block_cnt.

The next lines implement an optimization to reduce the execution time

per iteration of the while-loop. The index checked during the subsequent

iteration gets calculated and the control block needed for the checks is

prefetched.

The lines 52-77 check if the page at bu�er pool index idx could be evicted.

If so, it is latched with a shared latch afterwards. If it couldn’t be evicted,

87

3. Page Eviction Strategies

Listing 3.6: Implementation of page_evictioner_gclock::pick_victim()

36 bf_idx page_evictioner_gclock::pick_victim() {
42 bf_idx idx = _current_frame;
43 while(true) {
44 idx = (idx % (_bufferpool->_block_cnt - 1)) + 1;

47 bf_idx next_idx
48 = ((idx + 1) % (_bufferpool->_block_cnt - 1)) + 1;
49 __builtin_prefetch(&_bufferpool->_buffer[next_idx]);
50 __builtin_prefetch(_bufferpool->get_cbp(next_idx));

52 bf_tree_cb_t& cb = _bufferpool->get_cb(idx);

54 rc_t latch_rc = cb.latch().latch_acquire(LATCH_SH,
55 sthread_t::WAIT_IMMEDIATE);
56 if (latch_rc.is_error()) {
57 idx++;
58 continue;
59 }

63 btree_page_h p;
64 p.fix_nonbufferpool_page(_bufferpool->_buffer + idx);
65 if (p.tag() != t_btree_p || cb.is_dirty()
66 || !cb._used || p.pid() == p.root()) {
67 cb.latch().latch_release();
68 idx++;
69 continue;
70 }

72 if(_swizziling_enabled
73 && _bufferpool->has_swizzled_child(idx)) {
74 cb.latch().latch_release();
75 idx++;
76 continue;
77 }

the next iteration of the while-loop is started working on the next bu�er

frame with index idx++. A decrement of the _counts isn’t done as a page

that is pinned is considered to be used.

If the page could be latched and if its ref erenced counter equals 0, it can

be evicted in the if-block on lines 79-101. At �rst it would be checked if

there are other threads having a shared latch on that bu�er frame. This

check is done by calling upgrade_if_not_block() on the latch. This method

88

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

Listing 3.6: Implementation of page_evictioner_gclock::pick_victim()
(cont.)

79 if(_counts[idx] <= 0)
80 {
81 bool would_block;
82 cb.latch().upgrade_if_not_block(would_block);
83 if(!would_block) {
86 if (cb._pin_cnt != 0) {
87 cb.latch().latch_release();
88 idx++;
89 continue;
90 }

92 _current_frame = idx + 1;

99 return idx;
100 }
101 }
102 cb.latch().latch_release();
103 --_counts[idx];
104 idx++;
105 }
106 }

call returns false in the parameter which has been assigned to the variable

would_block if an upgrade of the latch to exclusive mode isn’t possible

immediately. It returns true if no other thread holds the latch of this page.

A page that is latched by other threads cannot be evicted and it’s also not

useful to evict such a page as it’s of use for the database. It gets handled

like pages with a higher _counts value.

If it could be latched, its _pin_cnt is checked on line 86 as a _pin_cnt

unequal to 0 also prevents the eviction of a page. A higher _pin_cnt implies

that it is somehow in use and a lower one implies that it currently gets

evicted by another thread (more details about the _pin_cnt can be found in

subsection 1.4.2). If _pin_cnt != 0 the latch gets released as the frame isn’t

needed by the evictioner anymore and the next iteration of the while-loop

gets started to work on the next bu�er frame with index idx++.

If a page for eviction was successfully found, the next call of the method

pick_victim() will start on the next frame idx + 1 and the frame index

corresponding to the found eviction victim gets returned on line 99.

89

3. Page Eviction Strategies

If the page at idx has a _counts value greater 0 or if other threads got a

shared latch on the page, the latch got released on line 102 to allow other

threads to further latch the page. The _counts value of it is decremented

as those situations are considered to be a swipe over a page that isn’t a

candidate for eviction. This task was de�ned in GCLOCK’s algorithm 3.2
on line 9. Afterwards the next iteration of the while-loop gets started to

work on the next bu�er frame with index idx++

3.3.4. CAR

The Clock with Adaptive Replacement page replacement algorithm was

proposed by Bansal and Modha in [BM04]. It’s an extensive enhancement

of the CLOCK algorithm with the bene�ts of scan-resistance and self-

tuning weighted consideration of recency and frequency using two clocks

and statistics about recently evicted pages (like e.g. in 2Q proposed in

[JS94]). The concept is inspired by the Adaptive Replacement Cache (ARC)

page replacement algorithm proposed one year earlier by Megiddo and

Modha in [MM03]. As CLOCK is an approximation of LRU, CAR is an

approximation of ARC.

3.3.4.1. Concept

The advantages of the CAR algorithm are the low complexity of a page

hit inherited from CLOCK were only a ref erenced bit of the referenced

bu�er frame needs to be set. Such a blind write can be done without

synchronization even so the executing thread haven’t acquired an exclusive

latch to that page. A stack used to implement LRU needs to be synchronized

to prevent it from becoming inconsistent and therefore the latching results

in unacceptable contention. As discussed in section 3.1 the consideration of

either recency or frequency both results in an ine�cient page replacement

with some common reference strings. To consider both in an adaptively

weighted manner can �x those issues. If the consideration of recency

would increase the hit rate it is considered more and vice versa. A scan

of the database would e.g. only remove recently referenced pages, but the

algorithm would therefore focus on frequency and the frequently referenced

pages wouldn’t be evicted.

90

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

1
01

0

1

1

0
1 0

1

0

0

T1

head

tail

B1

LRU

MRU

1
0

101
1

0

1

0

1

0

0

1
0

1 1 0
1

0

1

1

0

1

0

T2

head
tail

B2

LRU

MRU

Figure 3.3.: Data structures used by CAR to store the statistics about past

page references. The schematic representation is based on the one from

[BM04].

The Collected Statistics The CAR page replacement algorithm uses the

data structures shown in �gure 3.3 to store the required statistics about

past page references. Each page which resides in the bu�er pool is assigned

to one of the clock structures T1 or T2. Like the clock structure in the

CLOCK algorithm there is a ref erenced bit for each page. On a page

reference, the corresponding ref erenced bit gets set to true. When the

clock hand swipes over a page with a set ref erenced bit during the eviction,

the ref erenced bit gets unset.

There are also two stacks B1 and B2. Those contain the order of the

recently evicted pages. Therefore the least recently evicted page (LRU in

�gure 3.3) is on the top of the stack and the most recently evicted page

(MRU in �gure 3.3) is on the bottom of the stack. The maximum size of the

two stacks together is the size of the bu�er pool. The most recently evicted

page gets removed from the stack when that constraint would violated.

Pages managed in T2 and B2 were referenced during multiple circulations

91

3. Page Eviction Strategies

of the clock T1 within the timespan in which they are known to the CAR

algorithm. The ones in T1 and B1 were only referenced during one of those

iterations. Therefore the reference of a page that is known to the CAR

algorithm as it is managed in B1 or T1 results in the page getting added to

T2. A page that gets evicted from Ti gets added to Bi for i ∈ {1, 2}. Pages in

T1 or B1 are considered to be recently used pages while the pages in T2 or

B2 are frequently used.

As a page can be evicted from either T1 or T2 there needs to be a target size

which de�nes the share of bu�er frames associated in T1. This parameter is

p and to allow the adaption of the page replacement to di�erent situations,

p is adapted during each page miss. If a large T1 could have prevented a

page miss, the share of T1 gets increased by increasing p. This case can be

detected by �nding the referenced page in B1. If a referenced page could be

found in B2, the page replacement should focus on frequency and it should

evict more recently referenced pages than frequently referenced ones.

The eviction within the clocks works exactly like in the CLOCK algo-

rithm.

The Retrieval of a Page If a page x resides in the bu�er pool then

x ∈ T1 ∪ T2. Such a page hit needs to cause the setting of the ref erenced

bit as described on lines 2-4 of algorithm 3.3.

A page miss is handled on lines 4-25. If the bu�er pool is full, then the

size of the clock equals the size of the bu�er pool c (|T1| + |T2| = c). If so, a

page needs to be evicted from the bu�er pool. This is part of the procedure

EVICT which is discussed in the next paragraph. When a page got removed

from either T1 or T2 it got added to B1 or to B2 and as the size of those is

limited, one page might need to get removed. But if the referenced page x

is contained in either B1 or in B2 it gets removed from there and therefore

the size constraint of those (|T1| + |T2| + |B1| + |B2| = 2c) would still be met

after the page miss. But if that isn’t the case an entry from either B1 or B2

might need to be removed. If |T1| + |B1| = c then B1 needs to be reduced

and therefore the most recently evicted page in B1 gets removed on line 8.

If it’s not required to remove a page from B1 it’s required to remove one

from B2 and that is done on line 10.

Afterwards there is room to add the new page to the statistics of CAR

92

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

Algorithm 3.3: Retrieval of a page as in the CAR algorithm. The presented

algorithm is based on the one from [BM04] but more formalized.

1: procedure get_page(x)

2: if x ∈ T1 ∪ T2 then
3: ref erenced [x] ← true

4: else
5: if |T1| + |T2| = c then
6: evict

7: if (x ∉ B1 ∪ B2) ∧ (|T1| + |B1| = c) then
8: remove_next(B1)

9: else if (x ∉ B1 ∪ B2) ∧ (|T1| + |T2| + |B1| + |B2| = 2c) then
10: remove_next(B2)

11: end if
12: end if
13: if x ∉ B1 ∪ B2 then
14: insert_into(T1, x)

15: ref erenced [x] ← false

16: else if x ∈ B1 then
17: p ← min

{

p + max

{

1,
|B2 |

|B1 |

}

, c

}

18: insert_into(T2, x)

19: ref erenced [x] ← false

20: else
21: p ← max

{

p − max

{

1,
|B1 |

|B2 |

}

, 0

}

22: insert_into(T2, x)

23: ref erenced [x] ← false

24: end if
25: end if
26: end procedure

and also to add it to the bu�er pool. Now the clock is chosen in which

the referenced page x should be inserted. But after that insertion, its

ref erenced bit gets unset on lines 15, 19 or 23 to allow CAR to register

a future reference to that page. If the page wasn’t evicted recently from

neither B1 nor B2, a repeated reference of the same page didn’t happen.

93

3. Page Eviction Strategies

Therefore it needs to be inserted into the clock T1 on line 14.

If x ∈ B1, it was removed from T1 and therefore it was referenced only

once before. But as this new reference to x is a repeated access, it gets

inserted into T2 now. As a larger T1 might have inhibited the recent page

miss, the target size p of T1 gets increased on line 17. But as T1 only contains

pages residing in the bu�er pool, it’s size cannot exceed c and therefore p

is also limited to c.

If x ∈ B2 (implicitly on line 20), it was already repeatedly accessed before

its eviction and therefore it de�nitely needs to be inserted into T2. The

adaption of p now works the opposite way. The target size of T2 gets

increased which might have inhibited the page miss of x . But target size of

T1 must not fall under 0 as it cannot contain less than 0 pages.

The Eviction of a Page The eviction of a page happens in a while-loop

as it might require arbitrary many hand movements (limited by the bu�er

size). The while-loop gets terminated when a victim for eviction could be

found and therefore f ound is initially false.

If the clock T1 has reached its target size p, a page from T1 needs to

be selected for eviction. The element in the clock associated with the

ref erenced bit that wasn’t unset for the longest time (approximation to

LRU) is the head of the clock which is retrieved on line 5 of algorithm 3.4.

If the ref erenced bit of the page x isn’t set, a victim for eviction is found

(f ound ← true) and it (the head of T1) can be removed from from the

bu�er pool on line 8. To allow the adaption of p when x gets referenced

again, it needs to be added to B1.

If the ref erenced bit of the page x is set, it gets unset on line 11 and

the body of the while-loop gets restarted with the next element in T1 by

moving the clock hand of it forward.

If a page needs to be evicted while T1 is smaller than its target size p, a

page managed in T2 needs to be evicted. It implies that there are too many

pages in the bu�er pool that were referenced frequently a while ago while

the recently used pages doesn’t �nd enough space to stay in the bu�er pool

long enough. The eviction from T2, done on lines 15-23, works exactly like

the eviction of pages from T1 that is implemented on lines 5-13.

94

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

Algorithm 3.4: Eviction of a page as in the CAR algorithm. The presented

algorithm is based on the one from [BM04] but more formalized.

1: procedure evict
2: f ound ← false

3: while f ound ≠ true do
4: if |T1| ≥ max {1, p} then
5: x ←get_next_from(T1)

6: if ref erenced [x] = false then
7: f ound ← true

8: remove_next(T1)

9: insert_into(B1, x)

10: else
11: ref erenced [x] ← false

12: move_hand(T1)

13: end if
14: else
15: x ←get_next_from(T2)

16: if ref erenced [x] = false then
17: f ound ← true

18: remove_next(T2)

19: insert_into(B2, x)

20: else
21: ref erenced [x] ← false

22: move_hand(T2)

23: end if
24: end if
25: end while
26: end procedure

3.3.4.2. Implementation

The implementation of the CAR algorithm required some adaptation to

the application. The management of free bu�er frames is done outside the

evictioner in Zero and therefore the CAR algorithm needs to be informed

about a newly bu�ered page. To allow the insertion of a newly used bu�er

95

3. Page Eviction Strategies

frame into one of the clocks a page miss needs to be signalized. That part

of the GET_PAGE(x) procedure of CAR is implemented in the miss_ref()

method. This method needs the page ID of the page that caused the page

miss as parameter to allow the CAR algorithm the management of the LRU

lists B1 and B2. It also needs to be called with the index of the newly used

bu�er frame as argument as the evictioner in CAR doesn’t know about the

frames that get used. The lines 2-4 of algorithm 3.3 need to be implemented

separately in hit_ref() as a page hit is managed separately from page

misses in Zero. The pick_victim() method only have to select one used

bu�er frame that should be freed. Therefore the EVICT procedure de�ned

in algorithm 3.4 needs to be implemented in that pick_victim() method.

Listing 3.7: Data Structures of the Class page_evictioner_car

1 class page_evictioner_car : public page_evictioner_base {
18 protected:
19 multi_clock<bf_idx, bool>* _clocks;
20 hashtable_queue<PageID>* _b1;
21 hashtable_queue<PageID>* _b2;

23 u_int32_t _p;
24 u_int32_t _c;
25 bf_idx _hand_movement;

27 pthread_mutex_t _lock;

29 enum clock_index {
30 T_1 = 0,
31 T_2 = 1
32 };
33 };

The Data Structures The class page_evictioner_car implementing the

CAR algorithm uses a structure of type multi_clock<bf_idx, bool> to

store the clocks T1 and T2. The _clocks structure is shown in listing 3.7 on

line 19. The usage of only one data structure to store both clocks allows the

hit_ref() method to just use the referenced bu�er index as index to an

array that stores the ref erenced bits. Two separate data structures would

require a translation between the address of the bu�er frame and the two

96

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

address spaces used inside the clocks. The de�nition and implementation

of the multi_clock class can be found in appendix A. It manages two clock

hands and an order of element inside the two clocks. It assigns each used

bu�er frame index (bf_idx) to a clock, to a position inside the clock and

it also assigns a ref erenced bit of type bool to each of the frames. The

access to a speci�c entry uses the bf_idx of the associated bu�er frame

while an access to a speci�c clock requires the clock_index. Those clock

indexes are de�ned in the enumeration on lines 29-32.

The stacks B1 and B2 are stored in the class members _b1 and _b2. As

the size of the LRU stacks required for the CAR algorithm is limited, the

most recently evicted page needs to be removed from the stack when it’s

full. Therefore a queue interface is needed. The least recently evicted page

gets added to the back of the queue and a page which needs to be removed

from the queue gets removed from the front of it. To allow the usage of

those statistics, it also needs to be possible to �nd a speci�c page ID in the

queue. Therefore a hash table used internally allows the check if a page

ID is contained. The removal of an arbitrary page from the queue is also

required when a page from B1 or B2 gets referenced again.The de�nition

and implementation of the hashtable_queue class can also be found in

appendix A.

The _p member from line 23 corresponds to the p parameter of the

CAR algorithm and the _c member stores the size of the bu�er pool.

_hand_movements is used to count the movements of the clock hand during

eviction since the last run of the page cleaner. As manipulations of the

data structures _clocks, _b1 and _b2 happen during miss_ref() and dur-

ing pick_victim(), concurrent accesses to those needs to be synchronized

using the pthread_mutex_t _lock.

Construction and Destruction of Instances The �rst parameter of

the constructor of class page_evictioner_car is a pointer to the bu�er

pool where the resulting instance of an evictioner should evict pages from.

The second one are the options which are set for the storage manager. The

attributes assigned to the parameters when the constructor gets called are

transferred to constructor of the superclass page_evictioner_base gets

called on line 3 of listing 3.8.

97

3. Page Eviction Strategies

Listing 3.8:Constructor and Destructor of the Class page_evictioner_car

1 page_evictioner_car::page_evictioner_car(bf_tree_m *bufferpool,
2 const sm_options &options)
3 : page_evictioner_base(bufferpool, options) {
4 _clocks
5 = new multi_clock<bf_idx, bool>(_bufferpool->_block_cnt, 2, 0);

7 _b1 = new hashtable_queue<PageID>(1 | SWIZZLED_PID_BIT);
8 _b2 = new hashtable_queue<PageID>(1 | SWIZZLED_PID_BIT);

10 _p = 0;
11 _c = _bufferpool->_block_cnt - 1;

13 _hand_movement = 0;

15 DO_PTHREAD(pthread_mutex_init(&_lock, nullptr));
16 }

18 page_evictioner_car::~page_evictioner_car() {
19 DO_PTHREAD(pthread_mutex_destroy(&_lock));

21 delete(_clocks);

23 delete(_b1);
24 delete(_b2);
25 }

The _clocks member variable gets initialized on lines 4-5 where a new

instance of multi_clock gets created. The new multi_clock uses addresses

of type bf_idx as elements inside the clocks and it assigns a value of type

bool to each of the indexes. This represents the ref erenced bits. The

used address space is the bu�er pool size _bufferpool->_block_cnt and

the invalid index is 0. This is used internally for the doubly-linked list that

represents the clocks. The _clocks should manage 2 clocks (T1 and T2).

The hashtable_queues _b1 and _b2 are initialized on lines 7 and 8. They

need to put values of type PageID into an order and the invalid index used

internally for the back and front of the doubly-linked list is a page ID with

the SWIZZLED_PID_BIT set as a swizzled page ID will never be stored in one

of the lists. The page IDs stored there need to identify pages that don’t

reside in the bu�er pool.

The initial value of _p is 0 as de�ned in the CAR algorithm and the

98

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

member variable _c is set to the maximum number of available bu�er

frames on line 11. As the clock hands haven’t already moved when the

evictioner gets initialized, the _hand_movement member gets set to 0. Finally

the _lock needs to be initialized on line 15.

The destructor needs to deallocate the dynamically allocated memory

for _clocks, _b1 and _b2 on lines 21-24 and it needs to destroy the _lock

on line 19.

The Implementation of the Statistics Updates Like discussed before

the hit_ref() needs to set the ref erenced bit of a referenced bu�er frame.

The ref erenced bits are stored in the clocks and therefore the call on line
28 of listing 3.9 does exactly that task. It sets the ref erenced bit associated

with the bu�er index idx to true. The set() method has a low constant

complexity as it only needs to access an array with a known index.

When a bu�er index selected as candidate during the eviction cannot

be evicted as it’s in use, the used_ref() method is called. Such a case is

considered to be equal to a fresh �x or un�x of the corresponding frame

and therefore just the hit_ref() method is used on line 81.

Zero also allows the removal of an arbitrary page from the bu�er pool

without the usage of the page evictioner. Such a process isn’t handled like

an eviction of a page. An eviction would cause the page to be put inside

B1 or B2 but it is expected than an explicit removal of a page is only done

when the upper layers don’t need the removed page in the near future.

Therefore the explicitly freed frame is just removed from the clocks on

line 92 of listing 3.9. This requires the latching of the data structures of the

evictioner as the structure of the clocks changes during this process.

The miss_ref() method decides where to insert a page that caused a

page miss into the statistics of CAR. If the page ID of the page added to the

bu�er pool isn’t contained in B1 either B2 it wasn’t evicted from the bu�er

pool recently. Therefore the code inside the body of the if-clause de�ned

on line 38 needs to be executed. This block of code corresponds to the lines

lines 7-11 and 14-15 of algorithm 3.3. As the new page gets added to T1, the

compliance to the invariant |T1| + |B1| ≤ c needs to be ensured (inside the

if-clause on line 39) by removing the front of _b1 on line 40 if required. If

there wasn’t a page removed from B1 the insertion of the new page might

99

3. Page Eviction Strategies

Listing 3.9: Implementation of page_evictioner_car::hit_ref(),

miss_ref(), used_ref() and unbuffered()

27 void page_evictioner_car::hit_ref(bf_idx idx) {
28 _clocks->set(idx, true);
29 }

31 void page_evictioner_car::miss_ref(bf_idx b_idx, PageID pid) {
37 DO_PTHREAD(pthread_mutex_lock(&_lock));
38 if (!_b1->contains(pid) && !_b2->contains(pid)) {
39 if (_clocks->size_of(T_1) + _b1->length() >= _c) {
40 _b1->remove_front();
41 } else if (_clocks->size_of(T_1) + _clocks->size_of(T_2)
42 + _b1->length() + _b2->length() >= 2 * (_c)) {
43 _b2->remove_front();
44 }
45 w_assert0(_clocks->add_tail(T_1, b_idx));
47 _clocks->set(b_idx, false);
48 } else if (_b1->contains(pid)) {
49 _p = std::min(_p + std::max(u_int32_t(1),
50 (_b2->length() / _b1->length())), _c);
51 w_assert0(_b1->remove(pid));
52 w_assert0(_clocks->add_tail(T_2, b_idx));
54 _clocks->set(b_idx, false);
55 } else {
56 _p = std::max<int32_t>(int32_t(_p) - std::max<int32_t>(1,
57 (_b1->length() / _b2->length())), 0);
58 w_assert0(_b2->remove(pid));
59 w_assert0(_clocks->add_tail(T_2, b_idx));
61 _clocks->set(b_idx, false);
62 }
67 DO_PTHREAD(pthread_mutex_unlock(&_lock));
78 }

80 void page_evictioner_car::used_ref(bf_idx idx) {
81 hit_ref(idx);
82 }

90 void page_evictioner_car::unbuffered(bf_idx idx) {
91 DO_PTHREAD(pthread_mutex_lock(&_lock));
92 _clocks->remove(idx);
93 DO_PTHREAD(pthread_mutex_unlock(&_lock));
94 }

cause the non-compliance of the invariant |T1| + |T2| + |B1| + |B2| ≤ 2c and

therefore the front of _b2 would be required to be removed on line 40. When

100

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

the insertion of the new page doesn’t contradict with one of the invariants

of CAR, the bu�er index can be assigned to the clock T_1 on line 45. If

the assignment fails, the w_assert0() macro causes the whole program

to terminate. It’s expected that this assertion never fails. Afterwards the

ref erenced bit of the inserted page gets unset on line 47 to comply to line
15 of CAR’s GET_PAGE(x) procedure.

If the page causing the page miss is contained in B1, it was recently

evicted from T1. _b1->contains(pid) checks if the corresponding page ID

can be found in _b1. If so, the _p parameter needs to be adapted to possibly

increase the target size of T1. This is implemented on lines 49-50 exactly as

de�ned on line 17 of algorithm 3.3. As the page now resides in the bu�er

pool again, it needs to be removed from _b1 on line 51 and the repeated

use of the page results in the insertion of it into T_2. This is done on line
52 and - like the previous command - the successful execution is proven

using the w_assert0() macro as the failure of those tasks isn’t expected.

Like before, the ref erenced bit of the added page needs to be unset on the

next line to comply to the CAR algorithm.

If an added page is contained in B2, then it was recently evicted from T2.

_b2->contains(pid) checks if the corresponding page ID can be found in

_b2. If so, the _p parameter needs to be adapted to possibly increase the

target size of T2. This is implemented on lines 56-57 exactly as de�ned on

line 21 of algorithm 3.3. But to prevent an under�ow of the �rst parameter

of the outer std::max method _p - std::max(...), the unsigned integers

need to be casted to signed ones as an under�ow would result in a very

large number which would be assigned to _p. As the page now resides in

the bu�er pool again, it needs to be removed from _b2 on line 58 and just

like in the previous case the repeated use of the page results in the insertion

of it into clock T_2. This is done on line 59 and - like the previous command

- the successful execution is proven using the w_assert0() macro as the

failure of those tasks isn’t expected. Like always, the ref erenced bit of an

added page needs to be unset on the next line.
As miss_ref() must not manipulate the data structures of CAR when

another thread executes miss_ref() or pick_victim() concurrently, the

executing thread needs to acquire the _lock of page_evictioner_car.

101

3. Page Eviction Strategies

Listing 3.10: Implementation of page_evictioner_car::pick_victim()

96 bf_idx page_evictioner_car::pick_victim() {
102 bool evicted_page = false;
103 u_int32_t blocked_t_1 = 0;
104 u_int32_t blocked_t_2 = 0;

106 while (!evicted_page) {
107 if (_hand_movement >= _c) {
108 _bufferpool->get_cleaner()->wakeup(false);
110 _hand_movement = 0;
111 }
118 DO_PTHREAD(pthread_mutex_lock(&_lock));
119 if ((_clocks->size_of(T_1) >=
120 std::max<u_int32_t>(u_int32_t(1), _p)
121 || blocked_t_2 >= _clocks->size_of(T_2))
122 && blocked_t_1 < _clocks->size_of(T_1)) {
123 bool t_1_head = false;
124 bf_idx t_1_head_index = 0;
125 _clocks->get_head(T_1, t_1_head);
126 _clocks->get_head_index(T_1, t_1_head_index);

129 if (!t_1_head) {
130 PageID evicted_pid;
131 evicted_page
132 = evict_page(t_1_head_index, evicted_pid);

134 if (evicted_page) {
135 w_assert0(_clocks->remove_head(T_1,
136 t_1_head_index));
137 w_assert0(_b1->insert_back(evicted_pid));
150 DO_PTHREAD(pthread_mutex_unlock(&_lock));
151 return t_1_head_index;
152 } else {
153 _clocks->move_head(T_1);
154 blocked_t_1++;
155 _hand_movement++;
156 DO_PTHREAD(pthread_mutex_unlock(&_lock));
157 continue;
158 }
159 } else {
160 w_assert0(_clocks->set_head(T_1, false));
162 _clocks->switch_head_to_tail(T_1, T_2,
163 t_1_head_index);
166 DO_PTHREAD(pthread_mutex_unlock(&_lock));
167 continue;
168 }

102

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

Listing 3.10: Implementation of page_evictioner_car::pick_victim()
(cont.)

169 } else if (blocked_t_2 < _clocks->size_of(T_2)) {
170 bool t_2_head = false;
171 bf_idx t_2_head_index = 0;
172 _clocks->get_head(T_2, t_2_head);
173 _clocks->get_head_index(T_2, t_2_head_index);

176 if (!t_2_head) {
177 PageID evicted_pid;
178 evicted_page = evict_page(t_2_head_index,
179 evicted_pid);

181 if (evicted_page) {
182 w_assert0(_clocks->remove_head(T_2,
183 t_2_head_index));
184 w_assert0(_b2->insert_back(evicted_pid));
186 DO_PTHREAD(pthread_mutex_unlock(&_lock));
198 return t_2_head_index;
199 } else {
200 _clocks->move_head(T_2);
201 blocked_t_2++;
202 _hand_movement++;
203 DO_PTHREAD(pthread_mutex_unlock(&_lock));
204 continue;
205 }
206 } else {
207 w_assert0(_clocks->set_head(T_2, false));
209 _clocks->move_head(T_2);
210 _hand_movement++;
211 DO_PTHREAD(pthread_mutex_unlock(&_lock));
212 continue;
213 }
214 } else {
215 DO_PTHREAD(pthread_mutex_unlock(&_lock));
228 return 0;
229 }

231 DO_PTHREAD(pthread_mutex_unlock(&_lock));
232 }

244 return 0;
245 }

The Implementation of pick_victim() Like one would expect, the

most complex method implementation is the one of pick_victim() which

103

3. Page Eviction Strategies

is shown in listing 3.10. This method also required the most complicated

adaptation to Zero’s bu�er pool.

It needs to trigger the page cleaner after one complete circulation of

the clocks. To guarantee the frequent execution of the cleaner, the total

number of hand movements is considered as the hand of one of the clocks

might not move for a long time and therefore the more frequent movement

of the other hand su�ce the if-clause on line 107. The _hand_movement

counter gets reset on line 110 as the page cleaner was just triggered. The

wakeup() method called on the cleaner immediately returns as the cleaner

gets executed in a separate thread. This reduces the latency of the eviction

which is important because the evictioner doesn’t run in an own thread

and therefore it delays a transaction.

It’s also required to contradict the algorithm when all the pages assigned

to one of the clocks cannot be evicted. If the algorithm would pick a page

from T1 to be evicted but if all the pages managed in T1 cannot be evicted, a

page from T2 needs to be evicted. Therefore the counters blocked_t_1 and

blocked_t_2 initialized on lines 103 and 104 are used to count the pages

from T1 and T2 that were discovered during one run of the pick_victim()

method to be pinned to the bu�er pool. They get increased throughout

the whole method implementation and on each branch where the clock is

selected from which a page gets evicted, the exception is added that forces

the eviction from the other clock. It would be also reasonable to increase

the target size of the blocked clock by adapting _p. When the method

cannot �nd a page which can be evicted, the method returns the invalid

bu�er index 0 on line 228.

The rest of the algorithm 3.3 gets implemented in pick_victim() very

similar to the concept. The evicted_page variable initialized on line 102
corresponds to the f ound variable in the algorithm. When a victim for

page eviction could be found, it gets set to terminate the while-loop used

to iterate over the entries of the _clocks. When a victim couldn’t be found,

at the end of each iteration of the while-loop the hand of one of the clocks

gets moved forward.

At the beginning of each iteration of the while-loop it gets checked

if the page cleaner needs to be triggered like discussed before. After that

step the data structures of CAR get latched as the following steps might

manipulate _clocks, _b1 and _b2. Because the evictioner evicts pages in

104

3.3. Concept and Implementation of Di�erent Page Eviction Strategies

a batch, other threads are already able to use the freed pages when the

evictioner is still running. To allow other threads to add pages to the bu�er

pool using miss_ref() while pick_victim() is running, the latch _lock is

released after each iteration of the while-loop (before each continue-

statement). Therefore it needs to be (re)acquired at the beginning of the

loop on line 118. It’s also required to release the latch before each return-

statement because the next time pick_victim() might get executed on a

di�erent thread.

Lines 123-168 gets executed if the victim needs to be selected from the

pages bu�ered in one of the frames managed in the clock with index

T_1. As _p is the target size for that clock, the condition to enter that

block of code checks if that clock has at least the size of _p. If _p is 0 and

if the clock is already empty, then there is no page in T1 to be evicted.

Therefore a page from T2 would be selected for eviction. The if-condition

on lines 119-120 gets extended with the adaptation discussed before. If

each page of T2 was already tried to be evicted, if all those couldn’t be

(blocked_t_2 >= _clocks->size_of(T_2)) and if there are still pages in T1

left to check (blocked_t_1 < _clocks->size_of(T_1)), then the clock T1

has to be considered to select a victim for eviction from.

When a page from clock T1 needs to be evicted, the ref erenced bit of

the head of the clock needs to be checked �rst. The head of the clock is the

bu�er frame where the hand of the clock points on. The bu�er index of the

head element of the clock gets retrieved on line 126 and the ref erenced

bit on the line before. Because the methods of the multi_clock class use

return parameters, variables to assign the bu�er index and the ref erenced

bit to, when the method gets executed needs to be created before.

If the ref erenced bit t_1_head isn’t set, the page wasn’t referenced since

the clocks hand touched that frame the last time. Therefore the page

corresponding to that ref erenced bit is a candidate to be evicted from

the bu�er frame with index t_1_head_index. The method evict_page()

is used to latch the bu�er frame for the eviction and also to check for the

restrictions which prevent the eviction candidate from being evicted. It

returns true if the page can be evicted and it also returns the page ID

of the page in the second parameter. Therefore the variable evicted_pid

will contain the page ID from the eviction candidate after lines 131-132
were executed and the variable evicted_page will be true if the eviction

105

3. Page Eviction Strategies

candidate can be evicted. If so, the bu�er index found at the head position

of T1 can be returned on line 151. But before that can be done, the page

needs to be removed from T1 as the clocks only contain pages that reside

in the bu�er pool. This is done on lines 135-136 just before the page ID of

the evicted page got added to the rear of _b1. This gets done with every

page evicted from T1 to remember the last pages evicted from there. But

if it couldn’t be evicted the hand of T1 needs to be moved forward. This

is done on line 153. As the algorithm allowed the eviction of the page at

t_1_head_index, the variable blocked_t_1 needs to be incremented and as

the hand of a clock moved, the member variable _hand_movement needs to

be incremented as well. After those counter increments on lines 154-155,

the while-loop gets restarted to check another bu�er frame for an eviction

candidate.

If the ref erenced bit t_1_head is set, then the page in bu�er frame

t_1_head_index was referenced at least twice. Therefore it can be promoted

to clock T2. Lines 162-163 move the entry t_1_head_index from the head

of the clock with index T_1 to the tail of the one with index T_2. The

ref erenced bit needs to be unset on line 160 to allow the observation of the

next page reference(s) and as the page couldn’t be evicted, the while-loop

needs to be restarted. The clock hands doesn’t need to be moved here as

the removal of an entry from the clocks head already does that.

If a page doesn’t need to be removed from T1 but there are still pages in

T2 that were not checked for eviction, lines 170-213 gets executed to try to

�nd a victim for eviction in T2. This process is identical to the one discussed

before for pages from T1.

3.4. Performance Evaluation

The system con�guration and used tools for the performance evaluation

are the same that where used for chapter 2. Some benchmark runs where

also reused from the previous chapter.

3.4.1. Transaction Throughput and Hit-Rate

The transaction throughput is an important performance metric for a DBMS

but when it comes to page replacement algorithms the achieved hit rate is

106

3.4. Performance Evaluation

another meaningful metric to compare di�erent approaches.

Each benchmark run was executed on a database of 100 warehouses

(≡ 13.22 GiB) which was initialized (schema created and initial records

inserted) beforehand. Before each execution, the TRIM-command was

executed on the SSDs used for the database �le and for the transactional

log because it wasn’t executed automatically. Each benchmark run used

the same initial database (initialized once and saved). As the used CPUs can

execute 8 threads in parallel, the used number of TPC-C terminals is 8 and

therefore the system simulates 8 users concurrently running transactions

on the database system. To compensate environmental e�ects (e.g. �le

accesses) on the used test system, the results are averaged over 3 runs.

As synchronized commits greatly restrict the transaction throughput, the

option asyncCommit was set during all the benchmark runs.

At �rst, the transaction throughput and hit rate (only regarding the

fix_nonroot method) for the available page replacement strategies will be

compared. Therefore �gure 3.4 shows those measurements for the bu�er

pool with disabled pointer swizzling and �gure 3.5 shows them for the

bu�er pool with pointer swizzling. It’s expected that the bu�er pool with

pointer swizzling even more bene�ts from a high hit rate. This means

that a page replacement algorithms that achieves a higher hit rate but a

lower transaction throughput due to higher overhead might perform better

when pointer swizzling is enabled as this bene�ts from the higher hit rate.

Therefore it’s possible that a less complex page replacement algorithm with

a lower hit rate outperforms another without pointer swizzling while it

undercuts the performance with pointer swizzling.

3.4.1.1. Performance of RANDOM, GCLOCK and CAR without Pointer
Swizzling

The transaction throughput for di�erent bu�er pool sizes behaves like de-

scribed in subsection 2.3.1.1. It grows approximately linear until the maxi-

mum transaction throughput is achieved when the bu�er pool has a size of

8 GiB.

For bu�er pool sizes of 0.5 GiB–1 GiB and disabled pointer swizzling

GCLOCK performs up to 9 % worse than RANDOM but for smaller bu�er

pools, it performs up to 20 % better. A 3 GiB bu�er pool results in a transac-

107

3. Page Eviction Strategies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

10
−0.18

10
−0.16

10
−0.14

10
−0.12

10
−0.1

10
−0.08

10
−0.06

10
−0.04

10
−0.02

10
0

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

average
hit

rate

0 250 500 750 1,000

0

500

1,000

1,500

2,000

0 250 500 750 1,000

0.8

0.9

1

RANDOM GCLOCK CAR RANDOM GCLOCK CAR

Figure 3.4.: Transaction throughput and page hit rate (except root pages) for

di�erent page replacement strategies. The error bars represent the standard

deviation of the multiple repetitions of the experiment. Benchmark: TPC-

C, Warehouses: 100, Terminals: 8, Bu�er Size: 0.05 GiB–20 GiB, Initial

Bu�er Pool: Empty, Pointer Swizzling: Disabled, Asynchronous Commits:

Enabled, Repetitions of the Experiment: 3, Experiment Duration: 10 min.

The implementation of CAR wasn’t operable for bu�er sizes below 500 MiB.

tion throughput that is 8 % higher when GCLOCK is used. For the remaining

bu�er pool sizes GCLOCK performs around as good as RANDOM replace-

ment.

CAR generally performs worse than GCLOCK. For bu�er pool sizes of

100 MiB–3000 MiB, the transaction throughput is up to 16 % worse when

using CAR instead of GCLOCK. For larger bu�er pools CAR and GCLOCK

perform nearly identical. It outperforms RANDOM replacement only for

a bu�er size of 250 MiB where it achieves a 12 % higher throughput but

108

3.4. Performance Evaluation

for other bu�er pool sizes CAR causes a nearly identical or even worse

transaction throughput when used instead of RANDOM.

The miss rate decreases slower for small bu�er pool sizes. GCLOCK’s

miss rate for a 50 MiB bu�er pool is at ≈20 %, for double the bu�er pool size

it already dropped by 25 % to ≈15 %. For the increase of the bu�er pool from

500 MiB to 1 GiB, the miss rate decreases by 80 % from ≈39 % to ≈8 %. This

behavior is similar for all the page replacement algorithms. The hit rate

grows even faster with larger bu�er pool sizes. For bu�er pool sizes which

maximize the transaction throughput, every page replacement algorithm

has a miss rate of ≈0.12 %.

Themiss rate ofGCLOCK is around 30 % higher than the one of RANDON

replacement when the bu�er pool has a size of ≤250 MiB but it is up to 30 %

lower for bu�er pool sizes of 0.5 GiB–7 GiB.

CAR can decrease the miss rate even further. Due to a bug in the im-

plementation of CAR, there are no data for the bu�er pools size of 50 MiB

but the miss rates for bu�er pools of size 100 MiB–2000 MiB are 25 %–55 %

lower than the ones of GCLOCK. For bu�er pool sizes of 3 GiB–4 GiB, the

miss rate is still more than 6 % lower. For the remaining bu�er pool sizes,

CAR performs around as good as GCLOCK when the miss rate is taken into

account. Therefore CAR signi�cantly outperforms GCLOCK and RANDOM

with regard to hit rate.

The high hit rates even for small bu�er pool sizes of 50 MiB show that

the TPC-C workload has a high reference locality. When less than 0.4 % of

the database �t in the bu�er pool, even RANDOM replacement achieves a

hit rate of 84 %. During one 10 min lasting benchmark run of TPC-C, the 8

terminals only reference around 8 GiB of pages as the absolute number of

page misses only minorly changes for higher bu�er pool sizes. Therefore

the slight performance di�erence of the page replacement algorithms for

those bu�er pool sizes only results from the overhead due to their statistics

updates.

The results doesn’t support that thesis. GCLOCK tends to perform

slightly better than RANDOM replacement for bu�er pool sizes of 8 GiB

and more. But the high variance of the measurements of Zero might be the

reason for this behavior. The atomic assignment of an integer value during

the statistics update of GCLOCK is a negligible overhead compared to the

overhead due to the late binding of the hit_ref() method which e�ects

109

3. Page Eviction Strategies

RANDOM replacement as well. The pick_victim() method isn’t called

during the execution of the benchmark for the high bu�er pool sizes.

Contrary to expectation, the results for smaller bu�er pool sizes show a

lower transaction throughput for higher miss rates and vice versa when

comparing the RANDOM and GCLOCK replacement strategies. This im-

plies that the overhead due to the pick_victim() method signi�cantly

decreases when changing from RANDOM to GCLOCK for bu�er sizes of

50 MiB–250 MiB. For those bu�er sizes GCLOCK’s transaction throughput

is higher while GCLOCK increases the miss rate and therefore the absolute

number of page misses. The reduced number of pages checked for eviction

when using GCLOCK’s statistics can reduce the overhead due to eviction

compared to RANDOM. But its selection of eviction victims is worse than

the one of RANDOM replacement.

But larger bu�er pools result in opposite results. A lower miss rate of

GCLOCK results in a lower transaction throughput of it. The pick_victim()

method of GCLOCK seems to impose an higher overhead for bu�er pool

sizes of 500 MiB–2000 MiB. A higher number of circulations in GCLOCK’s

clock can be the reason for that performance di�erence as GCLOCK needs

to decrement the referenced counter of frames until it �nds a page with

a counter of 0. Therefore the dominating overhead for lower transaction

throughputs is due to checks of eviction candidates. A higher transac-

tion throughput and a larger clock (bu�er pool) causes the circulations

of GCLOCK’s clock to become the major overhead. The result might be

that a much larger number of referenced values of frames needs to be

decremented for larger clocks until a candidate with a value of 0 can be

found by GCLOCK.

The remaining bu�er pool sizes show a better selection of pages for evic-

tion due to GCLOCK but the higher overhead of the eviction predominates

the e�ect due to less evictions.

CAR’s similar results for bu�er pools larger than 7 GiB are the result

of similar overheads of its statistics updates compared to GCLOCK. But

the complex miss_ref() method which isn’t used by GCLOCK makes CAR

tend to perform worse when no eviction happens.

The generally lower miss rates of CAR compared to the other replace-

ment strategies show that the optimizations of CAR work �ne. But the

higher miss rates of GCLOCK gets compensated by its lower overhead. The

110

3.4. Performance Evaluation

management of the statistics needed during a page miss is much higher

when using CAR. The underlying data structures also require the latching

of those during a page miss and therefore threads cannot simply load pages

into freed frames when the evictioner is still running.

Therefore the very high hit rates of CAR cannot compete with the sim-

plicity of GCLOCK and RANDOM replacement when pointer swizzling

isn’t used in the bu�er pool.

3.4.1.2. Performance of RANDOM, GCLOCK and CAR with Pointer
Swizzling

For a bu�er pool size of 250 MiB and enabled pointer swizzling GCLOCK
performs 36 % better than RANDOM and for the smaller bu�er pools it still

outperforms RANDOM replacement with regard to the transaction through-
put. But for bu�er pool sizes between 500 MiB and 1 GiB the transaction

throughput with GCLOCK is around 7 % lower. It outperforms RANDOM

for a 5 GiB bu�er pool but for the remaining bu�er pool sizes GCLOCK

performs around as good as RANDOM replacement.

CAR’s transaction throughout for enabled pointer swizzling is worse than

the one of GCLOCK when the bu�er pool is small. For bu�er pool sizes

of 100 MiB–2000 MiB it’s up to 15 % slower. It’s also signi�cantly slower

for bu�er pool sizes of 10 GiB–20 GiB. For bu�er pool sizes in between

those ranges, CAR performs generally better than GCLOCK with regard to

transaction throughput. The measurements with a 6 GiB bu�er pool are

an exception here as CAR performed around 3 % worse during those. The

advantage of CAR was an up to 6.5 % higher transaction throughput. The

comparison with RANDOM replacement comes to a similar result. CAR

performs well for medium sized bu�er pools but worse for small and large

ones. One exception is the performance for a bu�er pool of 250 MiB where

RANDOM replacement performed really bad and where CAR could perform

nearly 30 % better than RANDOM. But GCLOCK still outperformed CAR

for that bu�er pool size.

The miss rate when using GCLOCK instead of RANDOM for page evic-

tion increases by 10 %–30 % for bu�er pool sizes of 50 MiB–250 MiB. RAN-

DOM replacement resulted in a signi�cantly worse miss rate for bu�ers

of 0.75 GiB–7 GiB. GCLOCK’s miss rate is between 19 % and 38 % lower

111

3. Page Eviction Strategies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

10
−0.18

10
−0.16

10
−0.14

10
−0.12

10
−0.1

10
−0.08

10
−0.06

10
−0.04

10
−0.02

10
0

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

average
hit

rate

0 250 500 750 1,000

0

500

1,000

1,500

2,000

0 250 500 750 1,000

0.8

0.9

1

RANDOM GCLOCK CAR RANDOM GCLOCK CAR

Figure 3.5.: Transaction throughput and page hit rate (except root pages) for

di�erent page replacement strategies. The error bars represent the standard

deviation of the multiple repetitions of the experiment. Benchmark: TPC-

C, Warehouses: 100, Terminals: 8, Bu�er Size: 0.05 GiB–20 GiB, Initial

Bu�er Pool: Empty, Pointer Swizzling: Enabled, Asynchronous Commits:

Enabled, Repetitions of the Experiment: 3, Experiment Duration: 10 min.

The implementation of CAR wasn’t operable for bu�er sizes below 250 MiB.

for bu�er pool sizes of 0.75 GiB–3 GiB and between 4 % and 12 % lower for

bu�er pool sizes of 4 GiB–7 GiB. For bu�er sizes which maximize the trans-

action throughput, the usage of GCLOCK instead of RANDOM replacement

doesn’t change the hit rate.

CAR generally decreases the miss rate a lot compared to both other

page replacement algorithms. It reduces the miss rate against GCLOCK
by 18 %–57 % for small bu�er sizes of 100 MiB–2000 MiB. For larger bu�er

pools of 5 GiB–20 GiB CAR’s hit rate is slightly lower than the one of

112

3.4. Performance Evaluation

GCLOCK. The comparison with RANDOM replacement reveals a similar

result. CAR performs up to 67 % better than RANDOM replacement with

regard to miss rate when pointer swizzling is enabled. But for bu�er pool

larger than 4 GiB the di�erence isn’t that bit and for the largest bu�er pool

sizes CAR’s miss rate is even slightly higher than the one of RANDOM

replacement.

As the general di�erence of the transaction throughput and miss rate for

the di�erent page replacement algorithms doesn’t change due to enabling

pointer swizzling in the bu�er pool, the arguments for that behavior doesn’t

change as well. The advantage of pointer swizzling isn’t great enough to

change the ranking of the page replacement algorithms with regard to

transaction throughput.

3.4.1.3. Performance of RANDOM with and without Pointer Swizzling

The comparison between the transaction throughput of the bu�er pool

without pointer swizzling and the one with pointer swizzling when using

RANDOM replacement was already discussed in chapter 2. The found

di�erence of the performances of the two techniques was insigni�cant

and for some bu�er pool sizes pointer swizzling resulted in a performance

advantage while the most bu�er pool sizes caused pointer swizzling to be

slower. But the changes between those two results were random.

The same random behavior can be found in the miss rates of the two

techniques. It doesn’t di�er by more than 8 % to either direction. A strong

connection between the metrics of transaction throughput and hit rate

cannot be detected in the data. But there is the expected correlation between

the values for bu�er pool sizes of 7 GiB and more. When the usage of pointer

swizzling results in a lower miss rate, the transaction throughput of it is

higher. But this doesn’t hold for smaller bu�ers.

To enable pointer swizzling in the bu�er pool in�uences the miss rate by

preventing pages from being evicted when they got child pages in the bu�er

pool. This restriction gives the RANDOM replacement a hint about the

reference probability of a page. When many child pages of an inner page

gets referenced RANDOM replacement will need to evict all those before it

can evict the parent page of those. But when only one child page of a page

is accessed very often, then RANDOM cannot recognize the importance

113

3. Page Eviction Strategies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

10
−0.18

10
−0.16

10
−0.14

10
−0.12

10
−0.1

10
−0.08

10
−0.06

10
−0.04

10
−0.02

10
0

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

average
hit

rate

0 250 500 750 1,000

0

500

1,000

1,500

2,000

0 250 500 750 1,000

0.8

0.9

1

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

Figure 3.6.: Transaction throughput and page hit rate (except root pages) for

the bu�er pool with and without pointer swizzling. The error bars represent

the standard deviation of the multiple repetitions of the experiment. Bench-

mark: TPC-C, Warehouses: 100, Terminals: 8, Bu�er Size: 0.05 GiB–20 GiB,

Initial Bu�er Pool: Empty, Page Replacement Strategy: RANDOM, Asyn-

chronous Commits: Enabled, Repetitions of the Experiment: 3, Experiment

Duration: 10 min.

of that page through that restriction of pointer swizzling. For a workload

which randomly accesses records of a subset of the database (in a range

of the keys used for the index structure), RANDOM replacement with a

pointer swizzling bu�er pool would work similar to LRU. Every access of an

inner page would leave this page with one swizzled pointer and therefore it

wouldn’t be possible to evict that page until this child page wasn’t evicted.

The random distribution of the accesses prevents the very frequent usage

of only one child page of a page and therefore many accesses to a page

114

3.4. Performance Evaluation

result in more swizzled pointers inside the page. And for more bu�ered

child pages RANDOM replacement even needs more time to evict their

parent page. Therefore this additional hint to the eviction should cause the

RANDOM page replacement from achieving a higher hit rate.

The expected advantage of pointer swizzling regarding the hit rate
doesn’t show up in the benchmark results. The di�erence of the hit rates

between the two page location techniques is similar to the di�erence of the

transaction throughputs. It’s insigni�cant and for some arbitrary bu�er

pool sizes pointer swizzling increases the hit rate and for some others it

slightly decreases it. Therefore the miss rate is independent from pointer

swizzling when RANDOM replacement is used.

3.4.1.4. Performance of GCLOCK with and without Pointer Swizzling

The transaction throughput when using GCLOCK for page eviction does

not change much when enabling pointer swizzling in the bu�er pool.

It’s up to 3 % lower with pointer swizzling than without it for the most

bu�er pool sizes. For a 3 GiB bu�er pool, pointer swizzling reduces the

transaction throughput by nearly 10 % but for the rest of the bu�er pool

sizes it only caused an insigni�cant decrease of performance. For bu�er pool

sizes of 15 GiB and more pointer swizzling even increased the transaction

throughput by up to 2.8 %.

The miss rate got signi�cantly reduced due to pointer swizzling in the

bu�er pool. The high miss rates for low bu�er pool sizes dropped by up

to 12 % when pointer swizzling was used to locate pages in the bu�er pool

whereas the ones for bu�er pools larger than 3 GiB still increased by up to

2 %. But the di�erences for the larger bu�er sizes aren’t signi�cant.

Taking into account the e�ect of pointer swizzling experienced before,

the slight changes of the transaction throughput when using it are no sur-

prise. The hit rates of GCLOCK are similar to those of RANDOM re-

placement and therefore it wasn’t expected that the e�ect due to pointer

swizzling will be much di�erent there.

The strictly higher hit rate due to pointer swizzling implies that GCLOCK

more often evicted inner nodes with child nodes still bu�ered. It also implies

that this decision was wrong very often. The reason for evicting a parent

page �rst is that a parent page gets �xed and un�xed before its child page.

115

3. Page Eviction Strategies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

10
−0.18

10
−0.16

10
−0.14

10
−0.12

10
−0.1

10
−0.08

10
−0.06

10
−0.04

10
−0.02

10
0

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

average
hit

rate

0 250 500 750 1,000

0

500

1,000

1,500

2,000

0 250 500 750 1,000

0.8

0.9

1

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

Figure 3.7.: Transaction throughput and page hit rate (except root pages) for

the bu�er pool with and without pointer swizzling. The error bars represent

the standard deviation of the multiple repetitions of the experiment. Bench-

mark: TPC-C, Warehouses: 100, Terminals: 8, Bu�er Size: 0.05 GiB–20 GiB,

Initial Bu�er Pool: Empty, Page Replacement Strategy: GCLOCK (k = 10),
Asynchronous Commits: Enabled, Repetitions of the Experiment: 3, Exper-

iment Duration: 10 min.

Therefore the referenced value of the child page gets set to GCLOCK’s

_k value later and the referenced value of the parent page might already

be decreased in between. It seems like that the reference frequency to

inner nodes is too low to be detected by the GCLOCK algorithm but the

probability of an access in the future is still higher to those. It’s also usual

that a parent page gets loaded into the bu�er pool just before one of its

child pages and therefore it’s on a position just a bit earlier in the clock.

Depending on the position of the hand when the two pages got bu�ered,

116

3.4. Performance Evaluation

this advances the eviction of a parent page before its child page.

3.4.1.5. Performance of CAR with and without Pointer Swizzling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

10
−0.18

10
−0.16

10
−0.14

10
−0.12

10
−0.1

10
−0.08

10
−0.06

10
−0.04

10
−0.02

10
0

in
it

ia
ld

at
ab

as
e

si
ze

sm_bufpoolsize [GiB]

av
er

ag
e

tr
an

sa
ct

io
n

th
ro

ug
hp

ut
[

tr
an

sa
ct

io
ns
/s
]

average
hit

rate

0 250 500 750 1,000

0

500

1,000

1,500

2,000

0 250 500 750 1,000

0.8

0.9

1

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

Figure 3.8.: Transaction throughput and page hit rate (except root pages) for

the bu�er pool with and without pointer swizzling. The error bars represent

the standard deviation of the multiple repetitions of the experiment. Bench-

mark: TPC-C, Warehouses: 100, Terminals: 8, Bu�er Size: 0.05 GiB–20 GiB,

Initial Bu�er Pool: Empty, Page Replacement Strategy: CAR, Asynchronous

Commits: Enabled, Repetitions of the Experiment: 3, Experiment Duration:

10 min. The implementation of CAR wasn’t operable for bu�er sizes below

500 MiB/250 MiB.

For bu�er pool sizes of 100 MiB–2000 MiB the transaction throughput
does not change due to the di�erent page location algorithms. For larger

bu�er pools the throughput with pointer swizzling was between 7 % lower

117

3. Page Eviction Strategies

and 4 % higher than the transaction throughput with disabled pointer swiz-

zling. But while there’re some bu�er pool sizes which are signi�cantly

slower with pointer swizzling, pointer swizzling improves the performance

for the most con�gurations. But especially the transaction throughput

for bu�er pools of 15 GiB and 20 GiB is much lower when using pointer

swizzling.

The hit rate doesn’t change when changing between the two page loca-

tion techniques. The highest di�erence of the miss rates is a 4 % lower miss

rate when using pointer swizzling together with a bu�er pool of 4 GiB in

size.

The much better e�ect of pointer swizzling to the transaction throughput

compared to the other page replacement algorithms is caused by the higher

hit rate of the CAR algorithm. The lower amount of page misses results in

a lower overhead due to pointer swizzling and the higher amount of page

hits results in a higher advantage due to the omitted hash table lookups.

Therefore CAR should be used when pointer swizzling is used by the bu�er

pool.

The nearly unchanged miss rates imply that the structural information

due to the restrictions introduced by pointer swizzling doesn’t improve the

page replacement. The reuse probability of pages that are inner nodes of

the index structure seems to be correctly characterized by CAR.

3.4.2. Execution Time of the Fix Operation

The average execution time required by the page eviction algorithms to-

gether with the hit rate de�ne the performance of a page eviction strategy.

The hit rate and the performance of the di�erent page replacement al-

gorithms were already discussed in the previous subsection 3.4.1. The

execution times can now be used to reason about the performance per

achieved hit rate.

The replacement strategies RANDOM and GCLOCK doesn’t use the

miss_ref() method and therefore the overhead imposed by calls of that

method cannot be measured using the Bu�er Pool Log. Therefore the

overhead imposed by those during a page miss is only de�ned by the

method pick_victim(). Only 1 % of the overhead imposed by CAR is due

to the miss_ref() method and therefore the average execution times of

118

3.4. Performance Evaluation

RANDOM GCLOCK CAR

0

5 ⋅ 10
5

1 ⋅ 10
6

1.5 ⋅ 10
6

2 ⋅ 10
6

a
v
e
r
a
g
e

e
x
e
c
u

t
i
o

n
t
i
m

e
[
n
s
]

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

RANDOM GCLOCK CAR

0

100

200

300

400

500

600

t
o

t
a
l

e
x
e
c
u

t
i
o

n
t
i
m

e
[
s
]

Traditional Bu�er Pool
Pointer Swizzling Bu�er Pool

Figure 3.9.: Average and total execution time of the miss_ref() and

pick_victim() methods for a TPC-C run with a bu�er pool size of 500 MiB

like in �gures 3.4 and 3.5.

miss_ref() and pick_victim() are just added in the following analysis

as those methods are usually called together. But until the bu�er pool is

warmed up, the miss_ref() method is called to create statistics about the

bu�ered pages but the pick_victim() method is only called after the bu�er

pool was full. The total execution time considered in the analysis also

includes those initial calls of the miss_ref() method.

The unswizzling of the pointers isn’t considered because the actual task

of page eviction isn’t implemented in a method that depends on the used

page replacement strategy.

The average execution time of the RANDOM replacement is the lowest

one of the three page replacement algorithms. It’s more than 25 % faster

than GCLOCK when pointer swizzling is disabled and around 50 % faster

119

3. Page Eviction Strategies

when the bu�er pool swizzles the page pointers.

The average execution time of the page eviction using CAR is 28-times

higher than the one of GCLOCK. When pointer swizzling is enabled it’s

nearly 30-times slower than GCLOCK and 58-times slower than RANDOM

replacement.

The total execution time of RANDOM is also lower than the one of the

other two page replacement strategies. But the di�erence isn’t as big

as the one of the average execution times. It’s only slightly faster than

GCLOCK when pointer swizzling isn’t used and it’s only 3.5 % faster when

it’s enabled.

CAR’s total execution time is signi�cantly higher than the execution

times of the other two page eviction strategies. It takes 6.5 % more time to

use CAR with disabled pointer swizzling and around 7 % more time when

pointer swizzling is enabled.

RANDOM replacement evicts the �rst page that can be evicted. Therefore

the average execution time of the pick_victim() method using RANDOM

is much lower compared to the execution of it with GCLOCK. GCLOCK

needs to �nd a page with a referenced value of 0 and therefore it needs to

iterate over its statistics until it �nds such a page. RANDOM replacement

needs to check each candidate page by trying to latch the corresponding

bu�er frame. GCLOCK uses only its statistics in the �rst step to �nd

candidates for eviction and only those candidates gets checked using the

latching of the frame. Using the statistics should be faster compared to

trying to latch the bu�er frame and therefore it would be more e�cient

to check less pages using the bu�er frame latch. But the high miss rate

and the higher average execution time of GCLOCK imply that GCLOCK

cannot decrease the number of checks inside the bu�er pool and only adds

overhead due to its statistics.

The slightly reduced di�erence between the total execution times of the

RANDOM eviction and GCLOCK compared to the di�erence of the average

execution times imply that GCLOCK’s pick_victim() method is called less

frequently. The lower transaction throughput of GCLOCK for the bu�er

pool size of 500 MiB is the reason for this result.

The low increase of total execution time due to the usage of CAR is

the result of the much lower miss rate of it compared to RANDOM and

GCLOCK. But the miss rate of CAR is only around 60 % lower than the one

120

3.5. Conclusion

of the other page replacement algorithms but the other’s pick_victim()

method is called multiple times per page miss and therefore pick_victim()

is called around 27-times more frequently when those evictioners are used.

3.5. Conclusion

The newly implemented CAR algorithm ([BM04]) for page eviction signi�-

cantly improves the hit rate of the bu�er pool but due to the high overhead

imposed by the management of statistics about page references and due to

a more complex selection of candidates for eviction, the algorithms reduces

the transaction throughput when executing the TPC-C workload. A further

optimization of the implementation of the CAR strategy might reduce the

overhead imposed by the and therefore the bu�er pool would bene�t from

the lower miss rates.

As expected pointer swizzling can bene�t from the increased hit rate

achieved with CAR page replacement. The reduced number of page misses

reduces the overhead due to swizzling and unswizzling of pointers.

3.6. Future Work

A more detailed speci�cation of the behavior of the di�erent page replace-
ment algorithms in case of a page that cannot be evicted would be worth

to be developed. Pages that’ll never be possible to be evicted (e.g. root

pages can’t be evicted) should possibly be ignored by the page replacement

algorithm as they e.g. need to be checked on each circulation of the clock

hand in a CLOCK-like algorithm. References of those pages might not

be useful to be used to adapt parameters of adaptive page replacement

algorithms like CAR, CART or CLOCK-Pro. A �rst try in implementing

a special behavior for pages that cannot be evicted is done in GCLOCK

where they get assigned the highest possible reference value to increase

the timespan between two runs of the eviction in which they are selected

as candidates for eviction. It should be further investigated if ”used“ needs

to be de�ned di�erently for di�erent page replacement algorithms. Also

the impact of the type of page cleaner (coupled to the bu�er pool or decou-

pled as in [SHG16]) needs to be checked as the usual cleaner completely

121

3. Page Eviction Strategies

changes the behavior of a page replacement algorithm. More complex rules

for those special implementation-dependent exceptions might �t better to

the concept of the underlying page replacement strategy and they might

improve the performance of the whole bu�er pool.

Another interesting �eld might be the development of page replacement
strategies which take into account the semantics of the cached pages. It’s an

extension to the case mentioned before where pages that’ll never be evicted

can be ignored by the page eviction algorithm. The page replacement

algorithm should e.g. take into account the tree structure contained in

the cached pages. This is especially interesting in the context of pointer

swizzling as this adds some restrictions on the eviction of pages depending

on the tree structure. Such a page replacement strategy should only take

leaf pages (of the subtree which resides in the bu�er pool) into account

for eviction as those are the only ones that can be evicted. This would �t

perfectly the behavior of a system with pointer swizzling in the bu�er pool

where the pages get evicted from the leafs to the root.

122

Appendix A.

Implementation of the Data
Structures Used in CAR and CART

Listing A.1: Interface De�nition of the Class multi_clock

1 template<class key, class value>
2 class multi_clock {
3 public:
4 typedef clk_idx u_int32_t;

6 private:
7 class index_pair {
8 public:
9 index_pair() {};

10 index_pair(key before, key after) {
11 this->_before = before;
12 this->_after = after;
13 };

15 // visited before
16 key _before;
17 // visited after
18 key _after;
19 };

21 // number of elements in the multi clock:
22 key _clocksize;
23 // stored values of the elements:
24 value* _values;
25 // .first == before, .second == after:
26 index_pair* _clocks;
27 // index value with NULL semantics:
28 key _invalid_index;

123

Appendix A. Implementation of the Data Structures Used in CAR and CART

Listing A.1: Interface De�nition of the Class multi_clock (cont.)

29 // to which clock does an element belong?:
30 clk_idx* _clock_membership;

32 // number of clocks in the multi clock:
33 clk_idx _clocknumber;
34 // always points to the clocks head:
35 key* _hands;
36 // number of elements within a clock:
37 key* _sizes;
38 // index of a clock value with NULL semantics:
39 clk_idx _invalid_clock_index;

41 public:
42 multi_clock(key clocksize, u_int32_t clocknumber,
43 key invalid_index);
44 virtual ~multi_clock();

46 bool get_head(clk_idx clock, value &head_value);
47 bool set_head(clk_idx clock, value new_value);
48 bool get_head_index(clk_idx clock, key &head_index);
49 bool move_head(clk_idx clock);
50 bool add_tail(clk_idx clock, key index);
51 bool remove_head(clk_idx clock, key &removed_index);
52 bool remove(key &index);
53 bool switch_head_to_tail(clk_idx source,
54 clk_idx destination, key &moved_index);
55 inline key size_of(clk_idx clock);

57 inline value& get(key index) {
58 return _values[index];
59 }
60 inline void set(key index, value new_value) {
61 _values[index] = new_value;
62 }
63 inline value& operator[](key index) {
64 return _values[index];
65 }
66 };

124

Listing A.2: Implementation of the Class multi_clock

1 template<class key, class value>
2 multi_clock<key, value>::multi_clock(key clocksize,
3 clk_idx clocknumber, key invalid_index) {
4 _clocksize = clocksize;
5 _values = new value[_clocksize]();
6 _clocks = new index_pair[_clocksize]();
7 _invalid_index = invalid_index;

9 _clocknumber = clocknumber;
10 _hands = new key[_clocknumber]();
11 _sizes = new key[_clocknumber]();
12 for (int i = 0; i <= _clocknumber - 1; i++) {
13 _hands[i] = _invalid_index;
14 }
15 _invalid_clock_index = _clocknumber;
16 _clock_membership = new clk_idx[_clocksize]();
17 for (int i = 0; i <= _clocksize - 1; i++) {
18 _clock_membership[i] = _invalid_clock_index;
19 }
20 }

22 template<class key, class value>
23 multi_clock<key, value>::~multi_clock() {
24 _clocksize = 0;
25 delete[](_values);
26 delete[](_clocks);
27 delete[](_clock_membership);

29 _clocknumber = 0;
30 delete[](_hands);
31 delete[](_sizes);
32 }

34 template<class key, class value>
35 bool multi_clock<key, value>::get_head(clk_idx clock,
36 value &head_value) {
37 if (clock >= 0 && clock <= _clocknumber - 1) {
38 head_value = _values[_hands[clock]];
39 if (_sizes[clock] >= 1) {
40 w_assert1(_clock_membership[_hands[clock]] == clock);
41 return true;
42 } else {
43 w_assert1(_hands[clock] == _invalid_index);
44 return false;
45 }
46 } else {
47 return false;
48 }
49 }

125

Appendix A. Implementation of the Data Structures Used in CAR and CART

Listing A.2: Implementation of the Class multi_clock (cont.)

51 template<class key, class value>
52 bool multi_clock<key, value>::set_head(clk_idx clock,
53 value new_value) {
54 if (clock >= 0 && clock <= _clocknumber - 1
55 && _sizes[clock] >= 1) {
56 _values[_hands[clock]] = new_value;
57 return true;
58 } else {
59 return false;
60 }
61 }

63 template<class key, class value>
64 bool multi_clock<key, value>::get_head_index(clk_idx clock,
65 key &head_index) {
66 if (clock >= 0 && clock <= _clocknumber - 1) {
67 head_index = _hands[clock];
68 if (_sizes[clock] >= 1) {
69 w_assert1(_clock_membership[_hands[clock]] == clock);
70 return true;
71 } else {
72 w_assert1(head_index == _invalid_index);
73 return false;
74 }
75 } else {
76 return false;
77 }
78 }

80 template<class key, class value>
81 bool multi_clock<key, value>::move_head(clk_idx clock) {
82 if (clock >= 0 && clock <= _clocknumber - 1
83 && _sizes[clock] >= 1) {
84 _hands[clock] = _clocks[_hands[clock]]._after;
85 w_assert1(_clock_membership[_hands[clock]] == clock);
86 return true;
87 } else {
88 return false;
89 }
90 }

193 template<class key, class value>
194 key multi_clock<key, value>::size_of(clk_idx clock) {
195 return _sizes[clock];
196 }

126

Listing A.2: Implementation of the Class multi_clock (cont.)

92 template<class key, class value>
93 bool multi_clock<key, value>::add_tail(clk_idx clock, key index) {
94 if (index >= 0 && index <= _clocksize - 1
95 && index != _invalid_index && clock >= 0
96 && clock <= _clocknumber - 1
97 && _clock_membership[index] == _invalid_clock_index) {
98 if (_sizes[clock] == 0) {
99 _hands[clock] = index;

100 _clocks[index]._before = index;
101 _clocks[index]._after = index;
102 } else {
103 _clocks[index]._before = _clocks[_hands[clock]]._before;
104 _clocks[index]._after = _hands[clock];
105 _clocks[_clocks[_hands[clock]]._before]._after = index;
106 _clocks[_hands[clock]]._before = index;
107 }
108 _sizes[clock]++;
109 _clock_membership[index] = clock;
110 return true;
111 } else {
112 return false;
113 }
114 }

177 template<class key, class value>
178 bool multi_clock<key, value>::switch_head_to_tail(clk_idx source,
179 clk_idx destination, key &moved_index) {
180 moved_index = _invalid_index;
181 if (_sizes[source] > 0
182 && source >= 0 && source <= _clocknumber - 1
183 && destination >= 0 && destination <= _clocknumber - 1) {
184 w_assert0(remove_head(source, moved_index));
185 w_assert0(add_tail(destination, moved_index));

187 return true;
188 } else {
189 return false;
190 }
191 }

127

Appendix A. Implementation of the Data Structures Used in CAR and CART

Listing A.2: Implementation of the Class multi_clock (cont.)

135 template<class key, class value>
136 bool multi_clock<key, value>::remove(key &index) {
137 if (index >= 0 && index <= _clocksize - 1
138 && index != _invalid_index
139 && _clock_membership[index] != _invalid_clock_index) {
140 clk_idx clock = _clock_membership[index];
141 if (_sizes[clock] == 1) {
142 w_assert1(_hands[clock] >= 0
143 && _hands[clock] <= _clocksize - 1
144 && _hands[clock] != _invalid_index);
145 w_assert1(_clocks[_hands[clock]]._before
146 == _hands[clock]);
147 w_assert1(_clocks[_hands[clock]]._after
148 == _hands[clock]);

150 _clocks[index]._before = _invalid_index;
151 _clocks[index]._after = _invalid_index;
152 _hands[clock] = _invalid_index;
153 _clock_membership[index]
154 = _invalid_clock_index;
155 _sizes[clock]--;
156 return true;
157 } else {
158 _clocks[_clocks[index]._before]._after
159 = _clocks[index]._after;
160 _clocks[_clocks[index]._after]._before
161 = _clocks[index]._before;
162 _hands[clock] = _clocks[index]._after;
163 _clocks[index]._before = _invalid_index;
164 _clocks[index]._after = _invalid_index;
165 _clock_membership[index]
166 = _invalid_clock_index;
167 _sizes[clock]--;

169 w_assert1(_hands[clock] != _invalid_index);
170 return true;
171 }
172 } else {
173 return false;
174 }
175 }

128

Listing A.2: Implementation of the Class multi_clock (cont.)

116 template<class key, class value>
117 bool multi_clock<key, value>::remove_head(clk_idx clock,
118 key &removed_index) {
119 removed_index = _invalid_index;
120 if (clock >= 0 && clock <= _clocknumber - 1) {
121 removed_index = _hands[clock];
122 if (_sizes[clock] == 0) {
123 w_assert1(_hands[clock] == _invalid_index);
124 return false;
125 } else if (_clock_membership[removed_index] != clock) {
126 return false;
127 } else {
128 w_assert0(remove(removed_index));
129 }
130 } else {
131 return false;
132 }
133 }

129

Appendix A. Implementation of the Data Structures Used in CAR and CART

Listing A.3: Interface De�nition of the Class hashtable_queue

1 #include <unordered_map>

3 class hashtable_queue {
4 private:
5 class key_pair {
6 public:
7 key_pair() {}
8 key_pair(key previous, key next) {
9 this->_previous = previous;

10 this->_next = next;
11 }
12 virtual ~key_pair() {}

14 key _previous;
15 key _next;
16 };

18 // the actual queue of keys:
19 std::unordered_map<key, key_pair>* _direct_access_queue;
20 // the back of the list (MRU-element); insert here:
21 key _back;
22 // the front of the list (LRU-element); remove here:
23 key _front;

25 // index value with NULL semantics:
26 key _invalid_key;

28 public:
29 hashtable_queue(key invalid_key);
30 virtual ~hashtable_queue();

32 bool contains(key k);
33 bool insert_back(key k);
34 bool remove_front();
35 bool remove(key k);
36 u_int32_t length();
37 };

130

Listing A.4: Implementation of the Class hashtable_queue

1 template<class key>
2 bool hashtable_queue<key>::contains(key k) {
3 return _direct_access_queue->count(k);
4 }

6 template<class key>
7 hashtable_queue<key>::hashtable_queue(key invalid_key) {
8 _direct_access_queue = new std::unordered_map<key, key_pair>();
9 _invalid_key = invalid_key;

10 _back = _invalid_key;
11 _front = _invalid_key;
12 }

14 template<class key>
15 hashtable_queue<key>::~hashtable_queue() {
16 delete(_direct_access_queue);
17 _direct_access_queue = nullptr;
18 }

20 template<class key>
21 bool hashtable_queue<key>::insert_back(key k) {
22 if (!_direct_access_queue->empty()) {
23 auto old_size = _direct_access_queue->size();
24 key old_back = _back;
25 key_pair old_back_entry = (*_direct_access_queue)[old_back];
26 w_assert1(old_back != _invalid_key);
27 w_assert1(old_back_entry._next == _invalid_key);

29 if (this->contains(k)) {
30 return false;
31 }
32 (*_direct_access_queue)[k]
33 = key_pair(old_back, _invalid_key);
34 (*_direct_access_queue)[old_back]._next = k;
35 _back = k;
36 w_assert1(_direct_access_queue->size() == old_size + 1);
37 } else {
38 w_assert1(_back == _invalid_key);
39 w_assert1(_front == _invalid_key);

41 (*_direct_access_queue)[k]
42 = key_pair(_invalid_key, _invalid_key);
43 _back = k;
44 _front = k;
45 w_assert1(_direct_access_queue->size() == 1);
46 }
47 return true;
48 }

131

Appendix A. Implementation of the Data Structures Used in CAR and CART

Listing A.4: Implementation of the Class hashtable_queue (cont.)

50 template<class key>
51 bool hashtable_queue<key>::remove_front() {
52 if (_direct_access_queue->empty()) {
53 return false;
54 } else if (_direct_access_queue->size() == 1) {
55 w_assert1(_back == _front);
56 w_assert1((*_direct_access_queue)[_front]._next
57 == _invalid_key);
58 w_assert1((*_direct_access_queue)[_front]._previous
59 == _invalid_key);

61 _direct_access_queue->erase(_front);
62 _front = _invalid_key;
63 _back = _invalid_key;
64 w_assert1(_direct_access_queue->size() == 0);
65 } else {
66 auto old_size = _direct_access_queue->size();
67 key old_front = _front;
68 key_pair old_front_entry = (*_direct_access_queue)[_front];
69 w_assert1(_back != _front);
70 w_assert1(_back != _invalid_key);

72 _front = old_front_entry._next;
73 (*_direct_access_queue)[old_front_entry._next]._previous
74 = _invalid_key;
75 _direct_access_queue->erase(old_front);
76 w_assert1(_direct_access_queue->size() == old_size - 1);
77 }
78 return true;
79 }

132

Listing A.4: Implementation of the Class hashtable_queue (cont.)

81 template<class key>
82 bool hashtable_queue<key>::remove(key k) {
83 if (!this->contains(k)) {
84 return false;
85 } else {
86 auto old_size = _direct_access_queue->size();
87 key_pair old_key = (*_direct_access_queue)[k];
88 if (old_key._next != _invalid_key) {
89 (*_direct_access_queue)[old_key._next]._previous
90 = old_key._previous;
91 } else {
92 _back = old_key._previous;
93 }
94 if (old_key._previous != _invalid_key) {
95 (*_direct_access_queue)[old_key._previous]._next
96 = old_key._next;
97 } else {
98 _front = old_key._next;
99 }

100 _direct_access_queue->erase(k);
101 w_assert1(_direct_access_queue->size() == old_size - 1);
102 }
103 return true;
104 }

106 template<class key>
107 u_int32_t hashtable_queue<key>::length() {
108 return _direct_access_queue->size();
109 }

133

Appendix B.

Implementation of the Buffer Pool Log

Listing B.1: Usage of the Bu�er Pool Log (Added lines are highlighted)

1 w_rc_t bf_tree_m::fix_nonroot(generic_page *&page,
2 generic_page *parent, PageID pid, latch_mode_t mode,
3 bool conditional, bool virgin_page, bool only_if_hit,
4 lsn_t emlsn) {
5 INC_TSTAT(bf_fix_nonroot_count);
6 u_long start;
7 if (_logstats_fix && (std::strcmp(me()->name(), "") == 0
8 || std::strncmp(me()->name(), "w", 1) == 0)) {
9 start = std::chrono::high_resolution_clock::now()

10 .time_since_epoch().count();
11 }

13 w_rc_t return_code = fix(parent, page, pid, mode, conditional,
14 virgin_page, only_if_hit, emlsn);

16 if (_logstats_fix && (std::strcmp(me()->name(), "") == 0
17 || std::strncmp(me()->name(), "w", 1) == 0) &&
18 !return_code.is_error()) {
19 u_long finish = std::chrono::high_resolution_clock::now()
20 .time_since_epoch().count();
21 LOGSTATS_FIX_NONROOT(xct()->tid(), page->pid, parent->pid,
22 mode, conditional, virgin_page,only_if_hit, start, finish);
23 }

25 return return_code;
26 }

134

Listing B.2: Interface De�nition of the Class sm_stats_logstats_t

1 class sm_stats_logstats_t {
2 private:
3 std::ofstream* logstats;
4 public:
5 sm_stats_logstats_t() {
6 logstats = new std::ofstream (sm_stats_logstats_t::filepath,
7 std::ofstream::app);
8 w_assert0(logstats->is_open());
9 };

10 virtual ~sm_stats_logstats_t();

12 static bool activate;
13 static char* filepath;
14 public:
15 void log_fix_nonroot(tid_t tid, PageID page, PageID parent,
16 latch_mode_t mode, bool conditional, bool virgin_page,
17 bool only_if_hit, u_long start, u_long finish);
18 void log_fix_root(tid_t tid, PageID page, StoreID store,
19 latch_mode_t mode, bool conditional, u_long start,
20 u_long finish);
21 void log_fix(tid_t tid, PageID page, PageID parent,
22 latch_mode_t mode, bool conditional, bool virgin_page,
23 bool only_if_hit, bool hit, bool evict, u_long start,
24 u_long finish);
25 void log_unfix_nonroot(tid_t tid, PageID page, PageID parent,
26 bool evict, u_long start, u_long finish);
27 void log_unfix_root(tid_t tid, PageID page, bool evict,
28 u_long start, u_long finish);
29 void log_refix(tid_t tid, PageID page, latch_mode_t mode,
30 bool conditional, u_long start, u_long finish);
31 void log_pin(tid_t tid, PageID page, u_long start,
32 u_long finish);
33 void log_unpin(tid_t tid, PageID page, u_long start,
34 u_long finish);
35 void log_pick_victim_gclock(tid_t tid, bf_idx b_idx,
36 bf_idx index, u_long start, u_long finish);
37 void log_miss_ref_car(tid_t tid, bf_idx b_idx, PageID page,
38 u_int32_t p, u_int32_t b1_length, u_int32_t b2_length,
39 bf_idx t1_length, bf_idx t2_length, bf_idx t1_index,
40 bf_idx t2_index, u_long start, u_long finish);
41 void log_pick_victim_car(tid_t tid, bf_idx b_idx,
42 u_int32_t t1_movements, u_int32_t t2_movements,
43 u_int32_t p, u_int32_t b1_length, u_int32_t b2_length,
44 bf_idx t1_length, bf_idx t2_length, bf_idx t1_index,
45 bf_idx t2_index, u_long start, u_long finish);
46 };

135

Appendix B. Implementation of the Buffer Pool Log

Listing B.3: Partial Implementation of the Class sm_stats_logstats_t

1 bool sm_stats_logstats_t::activate = false;
2 char *sm_stats_logstats_t::filepath = "";

39 void sm_stats_logstats_t::log_fix(tid_t tid, PageID page,
40 PageID parent, latch_mode_t mode, bool conditional,
41 bool virgin_page, bool only_if_hit, bool hit, bool evict,
42 u_long start, u_long finish) {
43 w_assert1(logstats->is_open());
44 w_assert1(sm_stats_logstats_t::activate);

46 *logstats << "fix,"
47 << tid.as_int64() << ","
48 << page << ","
49 << parent << ","
50 << mode << ","
51 << conditional << ","
52 << virgin_page << ","
53 << only_if_hit << ","
54 << hit << ","
55 << evict << ","
56 << start << ","
57 << finish << std::endl;
58 }

140 void sm_stats_logstats_t::log_miss_ref_car(tid_t tid, bf_idx b_idx,
141 PageID page, u_int32_t p, u_int32_t b1_length,
142 u_int32_t b2_length, bf_idx t1_length, bf_idx t2_length,
143 bf_idx t1_index, bf_idx t2_index, u_long start,
144 u_long finish) {
145 w_assert1(logstats->is_open());
146 w_assert1(sm_stats_logstats_t::activate);

148 *logstats << "miss_ref,"
149 << tid.as_int64() << ","
150 << b_idx << ","
151 << page << ","
152 << p << ","
153 << b1_length << ","
154 << b2_length << ","
155 << t1_length << ","
156 << t2_length << ","
157 << t1_index << ","
158 << t2_index << ","
159 << start << ","
160 << finish << std::endl;
161 }

188 sm_stats_logstats_t::~sm_stats_logstats_t() {
189 logstats->close();
190 delete logstats;
191 }

136

Listing B.4: Implementation of the Bu�er Pool Log in the Class smthread_t
(Only added code is shown!)

1 class smthread_t : public sthread_t {
4 struct tcb_t {

18 sm_stats_logstats_t *_TL_stats_logstats;

39 inline sm_stats_logstats_t *TL_stats_logstats() {
40 return _TL_stats_logstats;
41 }

43 tcb_t(tcb_t *outer) :
54 _TL_stats_logstats(0) {
63 if (sm_stats_logstats_t::activate) {
64 _TL_stats_logstats = new sm_stats_logstats_t();
65 }
66 }

68 ~tcb_t() {
71 if (_TL_stats_logstats) {
72 delete _TL_stats_logstats;
73 }
74 }
75 };

160 inline sm_stats_logstats_t *TL_stats_logstats() {
161 return tcb().TL_stats_logstats();
162 }
305 };

Listing B.5: Partial Macro De�nition for the Bu�er Pool Log

181 #define LOGSTATS_FIX(tid, page, parent, mode, conditional,
182 virgin_page, only_if_hit, hit, evict, start, finish)
183 me()->TL_stats_logstats()->log_fix(tid, page, parent,
184 mode, conditional, virgin_page, only_if_hit,
185 hit, evict, start, finish)
206 #define LOGSTATS_MISS_REF_CAR(tid, b_idx, page, p, b1_length,
207 b2_length, t1_length, t2_length, t1_index, t2_index,
208 start, finish)
209 me()->TL_stats_logstats()->log_miss_ref_car(tid, b_idx,
210 page, p, b1_length, b2_length, t1_length,
211 t2_length, t1_index, t2_index, start, finish)

137

Appendix B. Implementation of the Buffer Pool Log

Listing B.6: Added Options to Set Up the Bu�er Pool Log

1 void Command::setupSMOptions(po::options_description& options) {
3 smoptions.add_options()

210 ("sm_fix_stats", po::value<bool>()->default_value(false),
211 "Enable/Disable a log about page fix/unfix/refix/pin/unpin \
212 in the buffer pool")
213 ("sm_evict_stats", po::value<bool>()->default_value(false),
214 "Enable/Disable a log about page evictions")
215 ("sm_stats_file", po::value<string>()
216 ->default_value("buffer.log"),
217 "Path to the file where to write the log about the buffer \
218 pool");
220 }

138

Bibliography

[BM04] Sorav Bansal and Dharmendra S. Modha. “CAR: Clock with

Adaptive Replacement”. In: Proceedings of the Third USENIX
Conference on File and Storage Technologies. 3rd USENIX Con-

ference on File and Storage Technologies. (Mar. 31–Apr. 3,

2004). USENIX Association Berkeley. San Francisco, Califor-

nia, Mar. 31, 2004, pp. 187–200. url: http://usenix.org/
publications/library/proceedings/fast04/tech/
full_papers/bansal/bansal.pdf (visited on Feb. 6, 2017).

[Bel66] Laszlo A. Belady. “A study of replacement algorithms for a

virtual-storage computer”. In: IBM Systems Journal 5.2 (June

1966), pp. 78–101. issn: 0018-8670. doi: 10.1147/sj.52.
0078. url: http://ieeexplore.ieee.org/document/
5388441/ (visited on Feb. 2, 2017).

[BM15] Blok and John C. McCallum. hblok.net | Storage. Dec. 23,

2015. url: https://hblok.net/blog/storage/ (visited

on Feb. 10, 2017).

[CÉ] Carnegie Mellon University and École polytechnique fédérale

de Lausanne. Shore-MT. url: https://sites.google.com/
site/shoremt/.

[Dif+13] Djellel Eddine Difallah et al. “OLTP-Bench: An Extensible

Testbed for Benchmarking Relational Databases”. In: Proceed-
ings of the 40th International Conference on Very Large Data
Bases. Vol. 7: Proceedings of the VLDB Endowment. The 40th

International Conference on Very Large Data Bases. (Sept. 1–

5, 2015). Ed. by H. V. Jagadish and Aoying Zhou. founding

H. V. Jagadish. In collab. with Shivnath Babu et al. Proceedings

of the VLDB Endowment 4. Very Large Data Base Endow-

ment Inc. Hangzhou, China, Dec. 2013, pp. 277–288. issn:

139

http://usenix.org/publications/library/proceedings/fast04/tech/full_papers/bansal/bansal.pdf
http://usenix.org/publications/library/proceedings/fast04/tech/full_papers/bansal/bansal.pdf
http://usenix.org/publications/library/proceedings/fast04/tech/full_papers/bansal/bansal.pdf
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1147/sj.52.0078
http://ieeexplore.ieee.org/document/5388441/
http://ieeexplore.ieee.org/document/5388441/
https://hblok.net/blog/storage/
https://sites.google.com/site/shoremt/
https://sites.google.com/site/shoremt/

Bibliography

2150-8097. doi: 10.14778/2732240.2732246. url: http:
//www.vldb.org/pvldb/vol7/p277-difallah.pdf (vis-

ited on Feb. 20, 2017).

[OLTP] Djellel Eddine Difallah et al. OLTPBench. url: http://
oltpbenchmark.com (visited on Feb. 20, 2017).

[ShSM08] Distributions of Shore Storage Manager. University of Wiscon-

sin. May 31, 2008. url: http://ftp.cs.wisc.edu/shore/
sm5.0/ChangeLog (visited on Jan. 11, 2017).

[ShMT12] Distributions of Shore Storage Manager. University of Wiscon-

sin. Jan. 3, 2012. url: http://ftp.cs.wisc.edu/shore-
mt/6.0.2/NEWS (visited on Jan. 11, 2017).

[EH84] Wolfgang E�elsberg and Theo Härder. “Principles of Database

Bu�er Management”. In: ACM Transactions on Database Sys-
tems 9 (4 Dec. 1984). Ed. by Robert W. Taylor, pp. 560–595.

issn: 0362-5915. doi: 10.1145/1994.2022. url: http:
//dl.acm.org/citation.cfm?id=2022 (visited on Feb. 2,

2017).

[Tom13] Enterprise-Festplatten: 36 High-Performance-Festplatten im Ver-
gleichstest. German. Tom’s Guides Publishing GmbH. Oct. 2,

2013. url: http://www.tomshardware.de/enterprise-
hdd- sshd, testberichte- 241390- 6.html (visited on

Feb. 8, 2017).

[GG98] Volker Gaede and Oliver Günther. “Multidimensional Access

Methods”. In: ACM Computing Surveys 30 (2 June 1998). Ed.

by Richard R. Muntz, pp. 170–231. issn: 0360-0300. doi:

10.1145/280277.280279. url: http://dl.acm.org/
citation.cfm?id=280279 (visited on Jan. 21, 2017).

[GDW09] Hector Garcia-Molina, Je�rey D. Ullman, and Jennifer Widom.

Database Systems: The Complete Book. Ed. by Tracy Dunkel-

berger. 2nd Edition. Upper Saddle River, NJ: Pearson Ed-

ucation Inc., 2009. 1203 pp. isbn: 978-0-13-606701-6. url:

http://infolab.stanford.edu/~ullman/dscb.html
(visited on Jan. 14, 2017).

140

https://doi.org/10.14778/2732240.2732246
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://oltpbenchmark.com
http://oltpbenchmark.com
http://ftp.cs.wisc.edu/shore/sm5.0/ChangeLog
http://ftp.cs.wisc.edu/shore/sm5.0/ChangeLog
http://ftp.cs.wisc.edu/shore-mt/6.0.2/NEWS
http://ftp.cs.wisc.edu/shore-mt/6.0.2/NEWS
https://doi.org/10.1145/1994.2022
http://dl.acm.org/citation.cfm?id=2022
http://dl.acm.org/citation.cfm?id=2022
http://www.tomshardware.de/enterprise-hdd-sshd,testberichte-241390-6.html
http://www.tomshardware.de/enterprise-hdd-sshd,testberichte-241390-6.html
https://doi.org/10.1145/280277.280279
http://dl.acm.org/citation.cfm?id=280279
http://dl.acm.org/citation.cfm?id=280279
http://infolab.stanford.edu/~ullman/dscb.html

Bibliography

[GKK12] Goetz Graefe, Hideaki Kimura, and Harumi Kuno. “Foster

b-trees”. In: ACM Transactions on Database Systems 37 (3

Aug. 2012). Ed. by Zehra Meral Özsoyoğlu, 17:1–17:29. issn:

0362-5915. doi: 10.1145/2338626.2338630. url: http:
//dl.acm.org/citation.cfm?id=2338630 (visited on

Jan. 13, 2016).

[Gra+14] Goetz Graefe et al. “In-Memory Performance for Big Data”.

In: Proceedings of the 41st International Conference on Very
Large Data Bases. Vol. 8: Proceedings of the VLDB Endowment.
The 41st International Conference on Very Large Data Bases.

(Aug. 31–Sept. 4, 2015). Ed. by Chen Li and Volker Markl.

founding H. V. Jagadish. In collab. with Kevin Chang et al.

Proceedings of the VLDB Endowment 1. Very Large Data Base

Endowment Inc. Kohala Coast, Hawaii, Sept. 2014, pp. 37–48.

issn: 2150-8097. doi: 10.14778/2735461.2735465. url:

http://www.vldb.org/pvldb/vol8/p37-graefe.pdf
(visited on Dec. 13, 2016).

[Hal11] Nancy Hall. Shore - A High-Performance, Scalable, Persistent
Object Repository: Release Information. University of Wisconsin.

Mar. 30, 2011. url: http://research.cs.wisc.edu/
shore/#Release (visited on Jan. 11, 2017).

[HR01] Theo Härder and Erhard Rahm. Datenbanksysteme - Konzepte
und Techniken der Implementierung. German. 2. überarbeitete

Au�age. Berlin Heidelberg: Springer-Verlag, 2001. 582 pp.

isbn: 978-3-642-62659-3. doi: 10 . 1007 / 978 - 3 - 642 -
56419-2. url: http://www.springer.com/de/book/
9783540421337 (visited on Jan. 14, 2017).

[HR83a] Theo Härder and Andreas Reuter. “Concepts for Implementing

a Centralized Database Management System”. In: Proceeding
International Computing Symposium 1983 on Application Sys-
tems Development. Proceeding International Computing Sympo-
sium on Application Systems Development. International Com-

puting Symposium 1983 on Application Systems Development.

(Mar. 22–24, 1983). Ed. by Hans Jürgen Schneider. Berichte des

141

https://doi.org/10.1145/2338626.2338630
http://dl.acm.org/citation.cfm?id=2338630
http://dl.acm.org/citation.cfm?id=2338630
https://doi.org/10.14778/2735461.2735465
http://www.vldb.org/pvldb/vol8/p37-graefe.pdf
http://research.cs.wisc.edu/shore/#Release
http://research.cs.wisc.edu/shore/#Release
https://doi.org/10.1007/978-3-642-56419-2
https://doi.org/10.1007/978-3-642-56419-2
http://www.springer.com/de/book/9783540421337
http://www.springer.com/de/book/9783540421337

Bibliography

German Chapter of the ACM. German Chapter of ACM. Nürn-

berg, Germany, 1983, pp. 36–60. isbn: 978-3-519-02432-3. url:

https://catalog.hathitrust.org/Record/007902142
(visited on Jan. 19, 2017).

[HR83b] Theo Härder and Andreas Reuter. “Principles of Transaction-

Oriented Database Recovery”. In: ACM Computing Surveys
15 (4 Dec. 1983). Ed. by Anthony I. Wasserman, pp. 287–317.

issn: 0360-0300. doi: 10.1145/289.291. url: http://
www.vldb.org/pvldb/vol8/p37-graefe.pdf (visited on

Jan. 14, 2017).

[HR83c] Theo Härder and Andreas Reuter. “Principles of Transaction-

Oriented Database Recovery”. In: ACM Computing Surveys
15 (4 Dec. 1983). Ed. by Adele Goldberg, pp. 287–317. issn:

0360-0300. doi: 10.1145/289.291. url: http://dl.acm.
org/citation.cfm?id=291 (visited on Feb. 4, 2017).

[HR85] Theo Härder and Andreas Reuter. “Architektur von Daten-

banksystemen für Non-Standard-Anwendungen”. German. In:

Datenbank-Systeme für Büro, Technik und Wissenschaft. GI-
Fachtagung, Karlsruhe, 20.-22. März 1985. Datenbank-Systeme

für Büro, Technik und Wissenschaft 1985. (Mar. 20–22, 1985).

Ed. by Albrecht Blaser and Peter Pistor. Vol. 94. Informatik-

Fachberichte. Gesellschaft für Informatik e.V. Karlsruhe, Ger-

many, Jan. 1985, pp. 253–286. isbn: 978-3-642-70284-6. issn:

0343-3005. doi: 10.1007/978-3-642-70284-6_21. url:

http://link.springer.com/chapter/10.1007%2F978-
3-642-70284-6_21 (visited on Jan. 19, 2017).

[Har+08] Stavros Harizopoulos et al. “OLTP through the looking glass,

and what we found there”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (2008): Pro-
ceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 981–992. doi: 10.1145/1376616.
1376713. url: http://dl.acm.org/citation.cfm?id=
1376713 (visited on Jan. 13, 2016).

142

https://catalog.hathitrust.org/Record/007902142
https://doi.org/10.1145/289.291
http://www.vldb.org/pvldb/vol8/p37-graefe.pdf
http://www.vldb.org/pvldb/vol8/p37-graefe.pdf
https://doi.org/10.1145/289.291
http://dl.acm.org/citation.cfm?id=291
http://dl.acm.org/citation.cfm?id=291
https://doi.org/10.1007/978-3-642-70284-6_21
http://link.springer.com/chapter/10.1007%2F978-3-642-70284-6_21
http://link.springer.com/chapter/10.1007%2F978-3-642-70284-6_21
https://doi.org/10.1145/1376616.1376713
https://doi.org/10.1145/1376616.1376713
http://dl.acm.org/citation.cfm?id=1376713
http://dl.acm.org/citation.cfm?id=1376713

Bibliography

[He17] heise online Preisvergleich | Hardware. German. Heise Medien

GmbH & Co. KG. 2017. url: https://www.heise.de/
preisvergleich/?m=1 (visited on Feb. 8, 2017).

[HSS11] Andreas Heuer, Gunter Saake, and Kai-Uwe Sattler. Daten-
banken - Implementierungstechniken. German. 3. überarbeit-

ete Au�age. mitp Professional. Bonn: mitp Verlags GmbH

& Co. KG, 2011. 672 pp. isbn: 978-3-8266-9156-0. url:

https://mitp.de/IT-WEB/Datenbanken/Datenbanken-
Implementierungstechniken . html (visited on Jan. 14,

2017).

[HU] HP Labs and University of Kaiserslautern. Zero. url: https:
//github.com/caetanosauer/zero.

[Jai14] Richa Jain. DBMS Architecture: An Overview of the 3-Tier ANSI-
SPARC Architecture. Udemy, Inc. May 22, 2014. url: https://
blog.udemy.com/dbms-architecture/ (visited on Jan. 14,

2017).

[Jar] Donald A. Jardine. “The ANSI/SPARC DBMS Modell”. In:

Proceedings of the 2nd SHARE Working Conference on Data
Base Management Systems. Proceedings of the SHARE Work-
ing Conference on Data Base Management Systems. The 2nd

SHARE Working Conference on Data Base Management Sys-

tems. (Apr. 26–30, 1976). Ed. by Donald A. Jardine. Proceedings

of the SHARE Working Conference on Data Base Management

Systems. S.H.A.R.E. Montreal, Quebec. isbn: 0444106723. url:

https://books.google.de/books?id=R18-AQAAIAAJ
(visited on Jan. 14, 2017).

[JS94] Theodore Johnson and Dennis Shasha. “2Q: A Low Overhead

High Performance Bu�er Management Replacement Algo-

rithm”. In: Proceedings of the 20th International Conference
on Very Large Data Bases. Proceedings of the VLDB Endow-
ment. The 20th International Conference on Very Large Data

Bases. (Sept. 12–15, 1994). Ed. by Jorge B. Bocca, Matthias

Jarke, and Carlo Zaniolo. Proceedings of the VLDB Endow-

ment. Very Large Data Base Endowment Inc. Santiago de

143

https://www.heise.de/preisvergleich/?m=1
https://www.heise.de/preisvergleich/?m=1
https://mitp.de/IT-WEB/Datenbanken/Datenbanken-Implementierungstechniken.html
https://mitp.de/IT-WEB/Datenbanken/Datenbanken-Implementierungstechniken.html
https://github.com/caetanosauer/zero
https://github.com/caetanosauer/zero
https://blog.udemy.com/dbms-architecture/
https://blog.udemy.com/dbms-architecture/
https://books.google.de/books?id=R18-AQAAIAAJ

Bibliography

Chile, Chile, 1994, pp. 439–450. isbn: 1-55860-153-8. url:

http://www.vldb.org/conf/1994/P439.PDF (visited on

Feb. 27, 2017).

[Knu98] Donald Ervin Knuth. Sorting and Searching. Second Edition.

Vol. 3. The Art of Computer Programming. Redwood City, CA:

Addison Wesley Longman Publishing Co., Inc., 1998. 782 pp.

isbn: 978-0-201-89685-5. url: http://www-cs-faculty.
stanford.edu/~knuth/taocp.html (visited on Feb. 13,

2017).

[Lev+93] Charles Levine et al. The Evolution of TPC Benchmarks: Why
TPC-A and TPC-B are Obsolete. Tech. rep. 93.1. Cupertino,

CA: Tandem Computers, July 1993. 21 pp. url: http://www.
hpl.hp.com/techreports/tandem/TR-93.1.pdf (visited

on Feb. 16, 2017).

[MM03] Nimrod Megiddo and Dharmendra S. Modha. “ARC: A Self-

Tuning, Low Overhead Replacement Cache”. In: Proceedings
of the Second USENIX Conference on File and Storage Tech-
nologies. 2rd USENIX Conference on File and Storage Tech-

nologies. (Mar. 31, 2003). USENIX Association Berkeley. San

Francisco, California, Mar. 31, 2003, pp. 115–130. url: https:
//www.usenix.org/legacy/event/fast03/tech/full_
papers/megiddo/megiddo.pdf (visited on Feb. 6, 2017).

[Moh+92] C. Mohan et al. “ARIES: A Transaction Recovery Method Sup-

porting Fine-Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging”. In: ACM Transactions on Database
Systems 17 (1 Mar. 1992). Ed. by Gio Wiederhold, pp. 94–162.

issn: 0362-5915. doi: 10.1145/128765.128770. url: http:
//dl.acm.org/citation.cfm?id=128770 (visited on

Feb. 9, 2017).

[Mos92] J. Eliot B. Moss. “Working with Persistent Objects: To Swizzle

or Not to Swizzle”. In: IEEE Transactions on Software Engineer-
ing 18 (8 Aug. 1992). Ed. by Nancy G. Leveson, pp. 657–673.

issn: 0098-5589. doi: 10.1109/32.153378. url: http:

144

http://www.vldb.org/conf/1994/P439.PDF
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www.hpl.hp.com/techreports/tandem/TR-93.1.pdf
http://www.hpl.hp.com/techreports/tandem/TR-93.1.pdf
https://www.usenix.org/legacy/event/fast03/tech/full_papers/megiddo/megiddo.pdf
https://www.usenix.org/legacy/event/fast03/tech/full_papers/megiddo/megiddo.pdf
https://www.usenix.org/legacy/event/fast03/tech/full_papers/megiddo/megiddo.pdf
https://doi.org/10.1145/128765.128770
http://dl.acm.org/citation.cfm?id=128770
http://dl.acm.org/citation.cfm?id=128770
https://doi.org/10.1109/32.153378
http://ieeexplore.ieee.org/document/153378/
http://ieeexplore.ieee.org/document/153378/

Bibliography

//ieeexplore.ieee.org/document/153378/ (visited on

Feb. 21, 2017).

[OOW93] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum.

“The LRU–K Page Replacement Algorithm For Database Disk

Bu�ering”. In: Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data. ACM SIGMOD

Conference 1993. (May 26–28, 1993). Ed. by Peter Buneman

and Sushil Jajodia. Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data. ACM, Inc.

Washigton, DC, June 1993, pp. 297–306. isbn: 0-89791-592-5.

doi: 10.1145/170035.170081. url: http://dl.acm.org/
citation.cfm?id=170081 (visited on Feb. 11, 2017).

[Paa07] Heikki Paajanen. “Page replacement in operating system

memory management”. MA thesis. Jyväskylä: University of

Jyväskylä, Oct. 23, 2007. 109 pp. url: http://urn.fi/URN:
NBN:fi:jyu-2007775 (visited on Feb. 2, 2017).

[Pav] Igor Pavlov. Intel Skylake. url: http://www.7-cpu.com/
cpu/Skylake.html (visited on Jan. 19, 2017).

[Pre16] Je� Preshing. New Concurrent Hash Maps for C++. Feb. 1,

2016. url: http : / / preshing . com / 20160201 / new -
concurrent- hash- maps- for- cpp/ (visited on Feb. 13,

2017).

[Rui16] Jason Ruiter. To save books, librarians create fake ’reader’ to
check out titles. Orlando Sentinel. Dec. 30, 2016. url: http:
//www.orlandosentinel.com/news/lake/os-chuck-
finley - lake - library - fake - reader - 20161227 -
story.html (visited on Feb. 4, 2017).

[Sa] Caetano Sauer. caetanosauer/zero: Fork of the Shore-MT storage
manager used by the research project Instant Recovery. Uni-

versity of Kaiserslautern. url: https : / / github . com /
caetanosauer/zero (visited on Jan. 11, 2017).

145

http://ieeexplore.ieee.org/document/153378/
http://ieeexplore.ieee.org/document/153378/
https://doi.org/10.1145/170035.170081
http://dl.acm.org/citation.cfm?id=170081
http://dl.acm.org/citation.cfm?id=170081
http://urn.fi/URN:NBN:fi:jyu-2007775
http://urn.fi/URN:NBN:fi:jyu-2007775
http://www.7-cpu.com/cpu/Skylake.html
http://www.7-cpu.com/cpu/Skylake.html
http://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/
http://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/
http://www.orlandosentinel.com/news/lake/os-chuck-finley-lake-library-fake-reader-20161227-story.html
http://www.orlandosentinel.com/news/lake/os-chuck-finley-lake-library-fake-reader-20161227-story.html
http://www.orlandosentinel.com/news/lake/os-chuck-finley-lake-library-fake-reader-20161227-story.html
http://www.orlandosentinel.com/news/lake/os-chuck-finley-lake-library-fake-reader-20161227-story.html
https://github.com/caetanosauer/zero
https://github.com/caetanosauer/zero

Bibliography

[SHG16] Lucas Sauer Caetano Lersch, Theo Härder, and Goetz Graefe.

“Update propagation strategies for high-performance OLTP”.

In: 20th East European Conference, ADBIS 2016, Prague, Czech
Republic, August 28-31, 2016, Proceedings. Advances in
Databases and Information Systems. 20th East-European Con-

ference on Advances in Databases and Information Systems.

(Aug. 28–31, 2016). Ed. by Jaroslav Pokorný et al. founding

Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen. Lecture

Notes in Computer Science 9809. Advances in Databases and

Information Systems. Prague, Czech Republic, Aug. 14, 2016,

pp. 152–165. isbn: 978-3-319-44038-5. doi: 10.1007/978-
3-319-44039-2_11. url: http://link.springer.com/
chapter/10.1007%2F978-3-319-44039-2_11 (visited on

Feb. 4, 2017).

[Sea16] Seagates Speicherriese ist schnell und sehr sparsam. German.

ComputerBase GmbH. Aug. 16, 2016. url: https://www.
computerbase . de / 2016 - 08 / seagate - enterprise -
capacity - 3 . 5 - hdd - 10tb - test / 3 / #diagramm -
zugriffszeiten-lesen-h2benchw-316 (visited on Feb. 8,

2017).

[Smi78] Alan Jay Smith. “Sequentiality and Prefetching in Database

Systems”. In: ACM Transactions on Database Systems 3 (3 Sept.

1978). Ed. by David K. Hsiao, pp. 223–247. issn: 0362-5915.

doi: 10.1145/320263.320276. url: http://dl.acm.org/
citation.cfm?id=320276&CFID=897673334&CFTOKEN=
49203344 (visited on Feb. 6, 2017).

[Sta12] William Stallings. Computer Organization and Architecture.
Designing and Performance. Ed. by Marcia Horton. Ninth Edi-

tion. Upper Saddle River, NJ: Pearson Education Inc., Mar. 11,

2012. 764 pp. isbn: 978-0-13-293633-0. url: http : / /
williamstallings . com / ComputerOrganization/ (vis-

ited on Feb. 9, 2017).

146

https://doi.org/10.1007/978-3-319-44039-2_11
https://doi.org/10.1007/978-3-319-44039-2_11
http://link.springer.com/chapter/10.1007%2F978-3-319-44039-2_11
http://link.springer.com/chapter/10.1007%2F978-3-319-44039-2_11
https://www.computerbase.de/2016-08/seagate-enterprise-capacity-3.5-hdd-10tb-test/3/#diagramm-zugriffszeiten-lesen-h2benchw-316
https://www.computerbase.de/2016-08/seagate-enterprise-capacity-3.5-hdd-10tb-test/3/#diagramm-zugriffszeiten-lesen-h2benchw-316
https://www.computerbase.de/2016-08/seagate-enterprise-capacity-3.5-hdd-10tb-test/3/#diagramm-zugriffszeiten-lesen-h2benchw-316
https://www.computerbase.de/2016-08/seagate-enterprise-capacity-3.5-hdd-10tb-test/3/#diagramm-zugriffszeiten-lesen-h2benchw-316
https://doi.org/10.1145/320263.320276
http://dl.acm.org/citation.cfm?id=320276&CFID=897673334&CFTOKEN=49203344
http://dl.acm.org/citation.cfm?id=320276&CFID=897673334&CFTOKEN=49203344
http://dl.acm.org/citation.cfm?id=320276&CFID=897673334&CFTOKEN=49203344
http://williamstallings.com/ComputerOrganization/
http://williamstallings.com/ComputerOrganization/

Bibliography

[TPC95] TPC-B. Transaction Processing Performance Council. June 6,

1995. url: http://www.tpc.org/tpcb/ (visited on Feb. 16,

2017).

[TPC10] TPC-C. Transaction Processing Performance Council. Feb.

2010. url: http://www.tpc.org/tpcc/ (visited on Feb. 16,

2017).

[Uni94] University of Wisconsin. EXODUS. Version 3.0. 1994. url:

http://research.cs.wisc.edu/exodus/.

[Uni95] University of Wisconsin. EXODUS Related Publications. Uni-

versity of Wisconsin. Mar. 8, 1995. url: http://research.
cs.wisc.edu/exodus/exodus.papers.html (visited on

Jan. 11, 2017).

[Uni97] University of Wisconsin. Shore. Version 1.1.1. Oct. 1997. url:

http://research.cs.wisc.edu/shore/.

[Uni08] University of Wisconsin. Shore Storage Manager. Version 5.0.3.

May 31, 2008. url: http://research.cs.wisc.edu/
shore/.

[Wan01] Wenguang Wang. “Storage Management in RDBMS”. Saska-

toon, Canada, Aug. 17, 2001. url: http://www.gohappycup.
com / personal / comprehensive . pdf (visited on Feb. 2,

2017).

[WD95] Seth J. White and David J. DeWitt. “QuickStore: A High Per-

formance Mapped Object Store”. In: The VLDB Journal. The
International Journal on Very Large Data Bases 4 (4 Oct. 1995).

Ed. by Stanley Y. W. Su, pp. 629–673. issn: 1066-8888. doi:

10.1007/BF01354878. url: http://link.springer.
com/article/10.1007/BF01354878 (visited on Feb. 21,

2017).

[Sam15] “Why SSDs Are Awesome - An SSD Primer”. In: (Aug. 2015).

url: http : / / www . samsung . com / global / business /
semiconductor/minisite/SSD/M2M/download/01_Why_
SSDs_Are_Awesome.pdf (visited on Jan. 19, 2017).

147

http://www.tpc.org/tpcb/
http://www.tpc.org/tpcc/
http://research.cs.wisc.edu/exodus/
http://research.cs.wisc.edu/exodus/exodus.papers.html
http://research.cs.wisc.edu/exodus/exodus.papers.html
http://research.cs.wisc.edu/shore/
http://research.cs.wisc.edu/shore/
http://research.cs.wisc.edu/shore/
http://www.gohappycup.com/personal/comprehensive.pdf
http://www.gohappycup.com/personal/comprehensive.pdf
https://doi.org/10.1007/BF01354878
http://link.springer.com/article/10.1007/BF01354878
http://link.springer.com/article/10.1007/BF01354878
http://www.samsung.com/global/business/semiconductor/minisite/SSD/M2M/download/01_Why_SSDs_Are_Awesome.pdf
http://www.samsung.com/global/business/semiconductor/minisite/SSD/M2M/download/01_Why_SSDs_Are_Awesome.pdf
http://www.samsung.com/global/business/semiconductor/minisite/SSD/M2M/download/01_Why_SSDs_Are_Awesome.pdf

Bibliography

[Wik16] Wikipedia. Data Base Task Group. Wikimedia Foundation, Inc.

2016. url: https://en.wikipedia.org/w/index.php?
title=Data_Base_Task_Group (visited on Jan. 14, 2017).

148

https://en.wikipedia.org/w/index.php?title=Data_Base_Task_Group
https://en.wikipedia.org/w/index.php?title=Data_Base_Task_Group

	Pointer Swizzling as in ``In-Memory Performance for Big Data'' Graefe:2014
	Definition of a Database Management System
	The Structure of a Database Management System
	The ANSI/SPARC DBMS Model
	The 5-Layer DBMS Architecture
	Motivation for the Usage of a DBMS Buffer

	Concept of a DBMS Buffer Management
	Memory Allocation in the Buffer Pool
	Concurrency Control of the Buffer Pool
	Page Eviction from the Buffer Pool
	Locate Pages in the Buffer Pool without Pointer Swizzling
	Locate Pages in the Buffer Pool with Pointer Swizzling

	Design and Implementation of the DBMS Buffer Management as in Graefe:2014
	Zero - A Test Bed for DBMS Techniques
	Design of the Buffer Management of Zero
	Implementation of fix() for a Page Hit in a Buffer Pool With and Without Pointer Swizzling
	Implementation of fix() for a Page Miss in a Buffer Pool With and Without Pointer Swizzling

	Performance Evaluation of the Buffer Management with Pointer Swizzling
	Expected Performance
	For Different Buffer Pool Sizes
	For Buffer Management with Pointer Swizzling

	Configuration of the Used System
	Measured Performance of Pointer Swizzling in the Buffer Management
	Performance of the DBMS
	Execution Time of the Fix Operation

	Measured Performance of MariaDB for Comparison
	Performance of MariaDB
	Comparison with Zero's Performance

	Measured Performance as in Graefe:2014
	Performance of the Buffer Management with Pointer Swizzling in Graefe:2014
	Comparison with my Performance Evaluation

	Conclusion
	Future Work

	Page Eviction Strategies in the Context of Pointer Swizzling
	Importance of Page Eviction Strategies
	Problems of Page Eviction with Pointer Swizzling in the Buffer Management
	General Problems of the Implementation of Page Eviction Strategies
	Pointer Swizzling Specific Problems of Page Eviction

	Concept and Implementation of Different Page Eviction Strategies
	Page Replacement as Proposed in Graefe:2014
	RANDOM with Check of Usage
	GCLOCK
	CAR

	Performance Evaluation
	Transaction Throughput and Hit-Rate
	Execution Time of the Fix Operation

	Conclusion
	Future Work

	Implementation of the Data Structures Used in CAR and CART
	Implementation of the Buffer Pool Log
	Bibliography

