
Evaluation of Pointer Swizzling for
Database Buffer Management

Max Gilbert
University of Kaiserslautern

Germany
m_gilbert13@cs.uni-kl.de

Caetano Sauer
University of Kaiserslautern

Germany
csauer@cs.uni-kl.de

Theo Härder
University of Kaiserslautern

Germany
haerder@cs.uni-kl.de

ABSTRACT
To achieve high performance, the lower system layers of a
DBMS should enable very efficient access to the database.
With the exception of MMDBS, all other architectures need
to cope with two levels of data access, where the database
is stored on secondary storage and (part of) the current
working set is kept in main memory and managed in the
DBMS buffer. Even if ever larger main memories are available
today, the performance behavior of most DBMS still relies
on an effective buffer management, where only a fraction of
an OLTP workload is present in main memory.

Therefore, DB buffer management is usually optimized
for scenarios where only a small subset of the database is
held in main memory and still many references to database
pages require pages to be accessed from secondary storage.
Those page misses take much longer (typically orders of
magnitude) than page hits, when the referenced page is
found in the DB buffer. Optimization efforts concerning
page hits do not result in substantial performance gain when
a significant amount of references results in page misses. On
the other hand, when (almost) only page hits occur, even
a tiny performance optimization of those page accesses can
bring substantial performance improvement—even if that
results in a slightly increased overhead on page misses. In
this paper, we evaluate the use of pointer swizzling by a
DB buffer manager as a measure to optimize page hits in a
mostly memory-resident OLTP workload.

Keywords
Database Buffer Management, Pointer Swizzling

1. INTRODUCTION
Durability as an essential demand of the ACID paradigm
requires a persistent state of the DB, usually achieved by
use of “stable storage” (HDDs or SSDs). A DBMS, in turn,
needs fast and efficient access to DB data while processing
DB operations. For this reason, buffer management provides
in-memory copies of DB pages to the higher DBMS layers.

29th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 30.05.2017 - 02.06.2017, Blankenburg/Harz, Germany.
Copyright is held by the author/owner(s)..

The access time gap between RAM and SSDs or even
HDDs makes page misses in a buffer pool tremendously more
expensive than page hits. Thus, an obvious optimization goal
is to augment the hit rates, which can be achieved—besides
improved page replacement algorithms, often tailored to the
workload—by use of ever larger DB buffers. These days,
an OLTP working set often completely fits into the DB
buffer pool due to grown main-memory sizes; therefore, I/O
latency is not a bottleneck anymore. But, because of the
substantially increased average speed of page references, the
processing overhead of page hits may now become relevant
for the overall DBMS performance. It might even become the
major DBMS bottleneck, as the results of S. Harizopoulos et
al. [5] suggest.

The operations executed by the buffer manager during a
page reference are fix and unfix. In case of a page hit, i.e., if
the page is found in the buffer pool, the buffer manager needs
to locate the page stored in one of its buffer frames; then, it
acquires the related frame latch for the calling thread and
modifies the statistics of the page replacement module (e.g.,
increase the reference count or update the LRU list). During
unfix, the only operation required is to release the latch,
which has insignificant cost. The update of page replacement
statistics is usually also cheap with a suitable strategy like
CLOCK, which requires writing to a local variable instead of
modifying a global data structure, as in LRU. Therefore, the
only two significant operations during a page hit are latching
and mapping page IDs to frames. This work focuses on the
latter aspect, i.e., on reducing the cost of page ID lookups
for page hits.

The technique explored in this work is pointer swizzling
in the context of buffer management. Section 2 outlines the
process of page ID lookups in detail, while Section 3 describes
how this process is optimized with pointer swizzling. Section
4 presents a short performance evaluation of pointer swiz-
zling compared to traditional approaches. Finally, Section 5
concludes this paper.

2. USAGE OF A HASH TABLE

2.1 Fix a Page
When a hash table is used to locate database pages in the
buffer pool (and latching for concurrency control), a page fix
basically works as sketched by Algorithm 1. First, the hash
table is looked up for the given page ID on line 2. Such a
hash table is illustrated in Figure 1. The hash table returns
the index of the buffer frame, where the requested page can
be found, or NIL, if the page is not in the buffer pool.

5 ·200· 10 ·400· 151:

0b000

2 ·100· 35:

0b001

25 50 752:

0b010

125 150 1753:

0b111

6 ·300· 710:

0b011

225 250 2756: 325 350 3757:

0b100
11 ·500· 1215:

0b101

425 450 47511: 525 550 57512:

0 7 0b100 ◦
1 1 0b000 •
2 2 0b010 ◦
3 3 0b111 •
4 ◦
5 5 0b001 ◦
6 ◦

15 0b101 ◦

hash table:

hash function: mod 7

15 0b101 ◦

10 0b011 ◦

Figure 1: Example of a B+tree-like data structure partially buffered in main memory where the buffer manager uses a hash table
to locate the buffered pages. The notation is defined in Figure 2.

1: function fixPage(pageID, latchType)
2: frameID← hashtable.lookup(pageID)
3: if frameID = NIL then . Miss
4: if full then
5: frameID← chooseVictim
6: acquireLatch(frameID, EX)
7: victimPageID← getPageID(frameID)
8: hashtable.remove(victimPage)
9: else

10: frameID← chooseFreeFrame
11: acquireLatch(frameID, EX)
12: end if
13: page← storageManager.retrieve(pageID)
14: insertIntoFrame(frameID, page)
15: hashtable.add(pageID, frameID)
16: end if
17: acquireLatch(frameID, latchType)
18: referenceStatistics(frameID, pageID)
19: return get(frameID)
20: end function

Algorithm 1: Page fix without pointer swizzling

If a page miss happened, the page needs to be fetched
from secondary storage, which requires a free buffer frame.
If there is none (line 4), then a page needs to be evicted.
On line 5, a page gets selected for eviction using some page
replacement algorithm. To prevent concurrent fixes of the
page to be evicted, the corresponding frame needs to be
exclusively latched (line 6). Afterwards, it can be removed
from the hash table using its page ID retrieved on line 7. If
there is a free buffer frame, its index gets retrieved on line
10. To allow the buffering of a new page inside that frame,
it requires again an exclusive latch (line 11).

When the index of such a free frame is known, the requested
page can be retrieved from secondary storage. The required
I/O operations are handled by the storage manager on line
13. The actual page is written to the free buffer frame on
line 14 and its page ID is inserted into the hash table on line
15 to enable the location of the page during subsequent fixes
of that page.

When a requested page is already in the buffer pool, the
related latch is acquired1 on line 17. Most page replacement
strategies collect statistics on page fixes; thus, the fix op-
eration is recorded on line 18. Finally, a reference to the
requested page is returned on line 19.

1If it was a page miss, the held exclusive latch might get
downgraded.

2.2 B+Tree Traversal
Let us discuss the search in a B+tree index using an example
where the initial state of the buffer is shown in Figure 1. The
left part shows a B+tree index structure partially cached in
the DB buffer. The right part visualizes the corresponding
hash table, mapping each of the buffered database pages to
its corresponding buffer frame.

When a record with key 250 is requested, the search in
the B+tree starts at the root page. The page ID of the
root—1—is given from the system catalogs. Therefore, the
first call to the buffer manager will be fixPage(1, SH). The
call of lookup(1) calculates 1 ≡ (1 mod 7) and the hash
table’s entry for a hash value of 1 is the mapping from page
ID 1 to the frame index 0b000. Because of the encountered
page hit, the only major step left is to acquire a shared latch
using acquireLatch(0b000, SH). If no other thread holds
an exclusive latch on this frame, this call will return nearly
instantaneously.

The search is continued within page 1 and identifies the
next page to be examined having page ID 10. Therefore,
the buffer manager will call be fixPage(10, SH) which, in
turn, will execute lookup(10) on the hash table, yielding
10 ≡ (3 mod 7); thus, the frame index corresponding to page
ID 10 is in the hash table at index 3. However, the found
entry is for page ID 3. Therefore, the related overflow chain
has to be checked, revealing that the searched page can be
accessed in buffer frame 0b011. Then, this page is latched
and its frame address is returned.

The following call of fixPage(6, SH) does not work like the
preceding ones. The call of hashtable.lookup(6) returns
NIL, which signals a page miss. As the buffer pool is currently
full, a page needs to be evicted. Assuming that the eviction
strategy picks the page2 with page ID 5 to be evicted from
buffer frame 0b001. Therefore, it is exclusively latched and
removed from the hash table. Such a removal is hardly more
expensive than a search inside it. The most expensive task
during a page miss is the subsequent retrieval of the page
by the storage manager, which is then stored in the buffer
frame with index 0b001. The mapping from page ID 6 to
buffer frame index 0b001 is added calling hashtable.add(6,
0b001), which is roughly as expensive as a search in the hash
table. As the requested latch was of type SH, the exclusive
latch held by the calling thread gets downgraded to that type
and the page is returned.

The calling transaction can now find the searched key 250
in that page.

2Depending on the chosen page replacement algorithm, the
selection of a victim can be very costly.

6 ·300· 0b10010:

0b011

225 250 2756: 325 350 3757:

0b100

frame index

page ID

page pointer separator key swizzled page pointer

page not in the buffer pool page in the buffer pool

Figure 2: Notation in Figures 1 and 5

2.3 Cost of this Technique
As shown in Figure 4, the lion share of the time spent during
a page miss is required for the eviction of the victim page
and the retrieval of the requested DB page, in this case on
an SSD. On a system running 8 worker threads concurrently,
the majority of time spent during a page hit is waiting for
the latch. This considers the average case only, as most page
fixes do not need to wait to acquire the latch. When only
those page fixes are considered where a shared latch was
requested, the average time required for latching drops by
∼30 %. But the hash table lookup also requires a significant
time share during a page hit—in such a case, it is responsible
for ∼15 % of the cost. Section 3 below describes how to
mitigate this cost.

When comparing the overall time required for a page fix,
a page miss takes in average 19× longer than a page hit.
Figure 3 illustrates the overhead due to buffer management
for different hit rates. When the hit rate is at 75 %, more
than 85 % of the entire runtime of page fixes is required for
the remaining 25 % of page misses. Therefore, it is more
important to optimize the performance of page misses when
the available main memory is smaller3. But when the whole
working set fits into the buffer pool, then the hit rate will be
close to 100 %; for example, for a hit rate of 95 %, the page
hits already require around 50 % of the runtime of the buffer
manager. Therefore, the overhead due to buffer management
would be significantly decreased if the hash table lookup is
omitted.

75 % 100 %

overhead due to

page hits

overhead due to

page misses

hit rate

b
u
ff

er
m

a
n

a
g
em

en
t

o
v
er

h
ea

d

Figure 3: Overhead imposed by the buffer manager repre-
sented by the total time spent for fix pages

3The higher I/O latency of HDDs increases the runtime of
page misses, which is another reason why the optimization
of page hits was not that effective years ago.

0 5,000 10,000 15,000 20,000

miss

hit

runtime [ns]

hash table latching

eviction I/O

Figure 4: Runtime of an average page fix: Illustration of
time slices for the tasks executed4.

3. USAGE OF POINTER SWIZZLING

3.1 Fix a Page
The fixing of a DB page when using pointer swizzling requires
the same basic tasks as the traditional technique presented in
the previous section. But due to swizzling, the parent page
is required during page misses. To keep the buffer pool with
pointer swizzling simple, it requires that only one pointer
per page referencing it should exist (Figure 5). Therefore, a
B+tree index where the data pages are not only linked to
the inner navigational pages but also to their following (and
preceding) siblings to form a linked list [2], is not supported.
In the original work [3], the write-optimized Foster B-tree
was used [4]. The restriction to one pointer per page makes
it simple to guarantee that every pointer to a page in the DB
buffer is always swizzled. This makes the management of
swizzled pointers during page misses and during page eviction
much simpler. Another consequence of that restriction is
the fact that a transaction, before fixing a page, needs to
fix its parent page and therefore it can offer the frame ID
of the parent page with nearly no overhead when fixing a
page. This makes the swizzling of the pointer inside that
page much cheaper.

To facilitate the comparison between the new approach
and the traditional technique, fixing of a page inside a buffer
pool using pointer swizzling is presented in Algorithm 2 in
the same way the traditional approach was presented in
Section 2.

The very first step when fixing a page under pointer swiz-
zling buffer management (PSBM for short) is a check if
the page ID is swizzled, which is done on line 2. To that
end, the most significant bit in the page ID format is used.
The overhead of one bit does not significantly restrict the
maximum number of pages the DBMS can manage—in fact,
most 64-bit CPU architectures only use 48 bits for virtual
memory addresses, and the unused bits are commonly used
for techniques similar to pointer swizzling. If a page pointer
is swizzled, the pointer contains the frame index where the
requested page can be found (line 3) instead of its page ID.

If a pointer is not swizzled, i.e., it contains the actual page
ID, the page is not in the buffer. To bring the database page
into the buffer pool, the steps required in the traditional
approach need to be taken here as well on lines 6 to 8, 14,
15, 17 and 18. But instead of updating the hash table, the
pointer in the parent page of the new page needs to be
swizzled and in case of a full buffer pool, the pointer in the
parent page of the evicted page needs to be unswizzled.

To unswizzle a pointer inside the in-memory copy of the
parent page of the replacement victim, the frame where this
page can be found needs to be located. The arguments of the
fixPage function only contain the buffer frame index where

4Minor management tasks omitted.

1: function fixPage(pageID, latchType, parentFID)
2: if swizzled(pageID) then . Hit
3: frameID← pageID
4: else . Miss
5: if full then
6: frameID← chooseVictim
7: acquireLatch(frameID, EX)
8: victimPID← getPageID(frameID)
9: victimPaFID← getParent(frameID)

10: acquireLatch(victimPaFID, EX)
11: unswizzle(victimPaFID, frameID, victimPID)
12: releaseLatch(victimPaFID)
13: else
14: frameID← chooseFreeFrame
15: acquireLatch(frameID, EX)
16: end if
17: page← storageManager.retrieve(pageID)
18: insertIntoFrame(frameID, page)
19: setParent(parentFID)
20: acquireLatch(victimPaFID, EX)
21: swizzle(parentFID, pageID, frameID)
22: releaseLatch(victimPaFID)
23: end if
24: acquireLatch(frameID, latchType)
25: referenceStatistics(frameID, pageID)
26: return get(frameID)
27: end function

Algorithm 2: Page fix with pointer swizzling

the parent page of the requested page can be found, but as the
replacement victim is picked independently from the calling
transaction, it is not known at the time when the fixPage
function is called. Therefore, locating its parent page needs
to be done differently. When fixing a page, the frame index
of its parent page is always known and, therefore, storing
this frame index inside the buffer frame of its child page
does not introduce significant overhead. Thus, the required
frame index of the victim’s parent page can be retrieved from
there on line 9. But as our implementation still requires the
hash table for management tasks, the frame index of the
parent page is maintained there. To perform unswizzling—
which actually implies a change of the parent page—thread
safe, the parent page is latched in exclusive mode on line
10. During unswizzling, the page reference field inside the
page buffered in frame victimPaFID containing frameID is
replaced with the victimPID on line 11. Afterwards neither
the replacement victim nor its parent is required anymore
during this page fix and therefore the latch of the victim’s
parent can be released. The latch of the frame, where the
replacement victim was found, cannot be released because
this frame is required to buffer the requested page in it.

If the buffer pool was not full when a page miss happened,
an unused frame needs to be chosen on lines 14 and 15 and
this task does not interfere with locating a page. Therefore,
it is the same as in the approach using a hash table.

The retrieval of the requested page from persistent storage
(lines 17 and 18) also works the same as before. But while
the page was added to the hash table at this point of the
traditional approach, here swizzling is required. To support
unswizzling as described before, the frame index of the parent
page is stored in the frame of its child page on line 19. The
swizzling step on line 21 works similarly to unswizzling:
the page pointer inside the parent frame is replaced with

the frame ID, with the swizzled bit set to 1. And as the
replacement of pointers changes that parent page, its latch
needs to be acquired in exclusive mode (line 20) just for that
task (line 22).

Once the frame is properly located and loaded, it is latched
in line 24. Like in the traditional approach, this potentially
downgrades the exclusive latch, if it is a page miss. The
notification of the page reference (line 25) and the return
of the reference to the page fixed (line 26) also needs to be
done the same way as it is done in the traditional approach.

3.2 B+Tree Traversal
The initial state of the B+Tree and of the buffer manager in
Figure 5 is the same as in Section 2. But instead of having
a hash table as additional data structure, some of the page
pointers in the pages 1, 5 and 10 are swizzled.

When a record with key 250 has to be accessed, the search
in the B+tree starts at the root page. The page ID of the
root—1—could be found in the system catalogs in the same
way as via hash table access. But when pointer swizzling is
used between the pages of an index structure, it can also be
applied to the pointers from the system catalogs to the root
pages of the index structures used. Therefore, the system
catalogs contain the buffer frame indexes—here 0b000—of
root page currently kept in the buffer. Furthermore, a root
page can be fixed using that buffer frame index and using a
simplified version of Algorithm 2.

The next page on the access path to the record with key
250 has page ID 10. But as the pointer between separator
keys ·200· and ·400· contains the swizzled pointer 0b011,
the next call to the buffer manager will be fixPage(0b011,
SH). For example, using the technique to recognize swizzled
pointers introduced above5, a call to swizzled(0b011) would
return true. Hence, the buffer manager recognizes a page hit
and, in turn, it treats 0b011 as the buffer frame index where
the requested page 10 can be found. The only important
steps left to fix that page are to acquire its latch calling
acquireLatch(0b011, SH) and to return the actual page
address by executing return get(0b011).

As the next page on the access path with page ID 6 is not
currently held in main memory, the pointer before separator
key ·300· is not swizzled and therefore just contains the page
ID 6. The following call of fixPage(6, SH) therefore does
not work like the preceding calls to that function. The call
of swizzled(6) returns false, which signals a page miss6. As
the buffer pool is currently full, a victim page needs to be
chosen. Assuming, the page eviction strategy picks the page
with page ID 7 to be evicted from buffer frame 0b100. In
the example in Section 2, the page eviction strategy picked
page 5 for eviction but as there are child pages of that page
buffered in the buffer pool (pages 2 and 3), this page cannot
be evicted when using pointer swizzling. To evict the page
in buffer frame 0b100, the frame gets exclusively latched and
the page ID 7 of the contained page gets read7 from the
buffer frame. The call of getParent(0b100) returns 0b011

and, as this buffer frame is already latched, the call of ac-
quireLatch(0b011, EX) will only upgrade the shared latch
to exclusive mode. With that page latched exclusively, the

5The bit of the page ID dedicated to that recognition is not
shown in this example.
6Implied by the fact that the parent page does contain an
actual page ID instead of a swizzled pointer.
7The pickVictim function could also directly return that.

0b001 ·200· 0b011 ·400· 0b1011:

0b000

0b010 ·100· 0b1115:

0b001

25 50 752:

0b010

125 150 1753:

0b111

6 ·300· 0b10010:

0b011

225 250 2756: 325 350 3757:

0b100

11 ·500· 1215:

0b101

425 450 47511: 525 550 57512:

Figure 5: The same data structure and data like in Figure 1: The buffer manager uses pointer swizzling to locate pages.

swizzled page pointer 0b100 can be replaced by the page ID
7. This unswizzling task is executed by calling unswizzle(
0b011, 0b100, 7). The latch of the changed page 10 can now
be released as the eviction of its child page has completed.
But as that page is also the parent page of page 6, it was
already latched in shared mode before the eviction8 and there-
fore releaseLatch(0b011) only downgrades the latch to the
mode (shared) before the call of acquireLatch(0b011, EX).
Now that the buffer frame 0b100 is unused, page 6 can be
retrieved from secondary storage using the storage manager
and buffered in that location. Using pointer swizzling, the
pointer to a page brought to the buffer pool needs to be
swizzled. Therefore, call swizzle(0b011, 6, 0b100) replaces
in page 10 the pointer in ahead of of the separator key by
the buffer index 0b100. To support the unswizzling of that
pointer required during the eviction of that page 6, the buffer
frame index 0b011 gets stored in a dedicated field in buffer
frame 0b100. As a consequence, the swizzled pointer can be
easily found when frame 0b100 is picked for eviction. The
address of the page stored in buffer frame 0b100 can now be
returned to the calling transaction as this frame now contains
the requested page 6.

The calling transaction can now locate the searched key
250 in that page.

3.3 Cost of this Technique
Compared to the traditional buffer management (TBM) ap-
proach, a page hit does not require a hash table lookup;
therefore, the only cost of a page hit for PSBM is the time
for latch acquisition, as presented in Figure 6. But this over-
head is identical for both approaches and, hence, average
page hits are ∼15 % faster due to pointer swizzling9.

For page misses, the only differences between both ap-
proaches apply to page eviction and the swizzling procedure.
As we use RANDOM page replacement10 in our experimental
DBMS, the differences in hit rate and runtime of page evic-
tion between the two approaches are insignificant. However,
pointer swizzling contributes some overhead to page misses.
However, the swizzling step adds a small overhead of ∼2.5 %
to page misses.

Not included in the algorithmic sketch of PSBM is the
usage of a hash table for additional management tasks such
as synchronizing concurrent reads and writes on persistent
storage, i.e., managing in-flight I/Os.

8And it will also be required when the page pointer to page
6 gets swizzled.
9Compare the page hits in Figure 4 with those in Figure 6

10With RANDOM replacement, chooseVictim selects a ran-
dom page not in use and not containing swizzled pointers.

0 5,000 10,000 15,000 20,000

miss

hit

runtime [ns]

hash table latching eviction

I/O swizzling

Figure 6: Runtime of an average page fix for PSBM: Illus-
tration of time slices for the different tasks executed11.

During the runtime measurements of different phases of
page fixes, we encountered a great spread of runtimes for
some of the phases. It is clear that some page fixes wait
very long for a latch (exclusive latching of pages in higher
levels of the B+Tree), while others instantly acquire the
requested latch (page misses imply that the pages were not
in use). We also note that the average time required for page
fetching drastically varies (∼10 000 ns–17 500 ns) for the SSD
used in the experiments between multiple runs of the same
benchmark—this could be attributed to variations in the
internal flash translation layer and garbage collection. More
precisely, the runtime of hash table operations, swizzling, and
latching during page misses were the only measured values
that do not show up significant variability (standard deviation
of <4.5 % of the average value). The standard deviation of
the other phases was at 14 %–23 % of the average measured
value.

50 % 100 %

overhead due to

page hits

overhead due to

page misses

hit rate

b
u
ff

er
m

a
n
a
g
em

en
t

o
v
er

h
ea

d

Figure 7: Overhead imposed by the buffer manager rep-
resented by the total time spent to fix pages. The time
spent for page misses also includes the overhead due to the
underlying system layers (incl. I/O latency).

11Minor management tasks omitted.

The total runtime of page hits and page misses for different
hit rates is presented in Figure 7. The dashed lines show the
comparison with TBM. It shows that page misses are slightly
cheaper in the traditional approach while page hits are more
expensive there. Therefore, PSBM can profit from high hit
rates while the usage of TBM is an advantage when the hit
rates are lower. While both buffer management techniques
obviously profit from higher hit rates, our measurements
clearly show superior results of PSBM for hit rates >75 %.

4. PERFORMANCE EVALUATION
The evaluation of our implementation of PSBM12 using the
TPC-C benchmark is shown in Figure 8. The experiments
were performed on a system equipped with an Intel®Xeon®

E5420 CPU, 32 GB of RAM and three 256 GB Samsung 840
PRO SSDs. Transactional log and database file were stored
on separate SSDs, TRIMed before each benchmark run.

0 2 4 6 8 10 12 14 16 18 20
0

2,500

5,000

7,500

10,000

d
a
ta

b
a
se

si
ze

buffer pool size [GiB]

av
g
.

th
ro

u
g
h
p
u
t

[t
ra

n
sa

c
ti
o
n
s /

s]

Traditional Buffer Pool

Pointer Swizzling Buffer Pool

Figure 8: TPC-C transaction throughput for different buffer
pool sizes and a database of 100 warehouses (=⇒ ∼13.2 GB
database size) queried by 8 terminals

Using micro-benchmarks, our measurements inside the
buffer manager have led to the observation that pointer
swizzling improves the performance for high hit rates and,
in turn, also for larger buffer pool sizes. But the evaluation
of the overall DBMS does not confirm this observation.

Even when the whole database fits in the buffer pool, the
performance of PSBM is not better than the performance of
TBM. It would be expected that a hit rate close to 100 %13

leads to the performance advantage due pointer swizzling as
measured inside the buffer manager. We believe this can be
attributed to the presence of other bottlenecks in the system
architecture, and further measurements will be performed in
future work to investigate this issue.

5. CONCLUSIONS
The performance of many applications caching persistent
objects suffers from the overhead imposed by the mapping
of persistent addresses to memory addresses. To address
that overhead, pointer swizzling was introduced initially to
so-called Load-Work-Save applications, where a batch of
persistent objects (typically representing a self-contained
project) is loaded into an object cache to work on those

12Our implementation is based on Shore-MT.
13Initially the DB buffer needs to warm up but the effect of
this is insignificant when the benchmark runs for 50 min.

objects. After fetching the objects, the persistent point-
ers between those objects are replaced with the memory
addresses of the transient copies. When having finished
working on a batch of objects, the transient copies are saved
persistently. But before, the persistent pointers are restored
as the memory addresses will become invalid once the objects
are removed from the object cache. This technique is called
eager pointer swizzling (classification proposed in [6]).

DB buffer management does not have those clear phases
of caching and uncaching of pages, but large buffer pools
also lead to situations where almost all page references are
page hits and, therefore, the page IDs used by the storage
manager are not required. But as database pages are cached
on demand and uncached whenever page eviction is required,
the usage of direct, lazy pointer swizzling, replacing the page
IDs with memory addresses decreases buffer management
overhead on page hits.

We could measure those positive effects of pointer swizzling
inside the buffer manager, but our implementation does not
lead to the expected performance improvement of the overall
workload (as measured by transaction throughput). The
wide variance of benchmark results leads us to the belief
that there are other unexpected bottlenecks in the system
architecture that must be addressed. We expect that a proper
implementation of PSBM could actually show an advantage
due to pointer swizzling.

The runtime measurements inside the buffer manager lead
to the observation that higher hit rates increase the perfor-
mance advantage of pointer swizzling and, hence, the usage
of better page replacement algorithms is an obvious idea. Up
to now, we implemented and evaluated the CAR [1] algo-
rithm in our buffer manager leading to significantly higher
hit rates. We did not use this page replacement algorithm in
the context of this work as the high overhead of our imple-
mentation of CAR has eaten up the performance advantage
due to higher hit rates. Therefore, another goal of future
work is optimizing that implementation.

6. REFERENCES
[1] S. Bansal and D. S. Modha. CAR: clock with adaptive

replacement. In FAST ’04, pages 187–200, 2004.

[2] D. Comer. The ubiquitous b-tree. ACM Comput. Surv.,
11(2):121–137, 1979.

[3] G. Graefe et al. In-memory performance for big data.
PVLDB, 8(1):37–48, 2014.

[4] G. Graefe, H. Kimura, and H. A. Kuno. Foster b-trees.
ACM Trans. Database Syst., 37(3):17:1–17:29, 2012.

[5] S. Harizopoulos et al. OLTP through the looking glass,
and what we found there. In SIGMOD ’08, pages
981–992, 2008.

[6] S. J. White and D. J. DeWitt. Quickstore: A high
performance mapped object store. In SIGMOD ’94,
pages 395–406, 1994.

	Introduction
	Usage of a Hash Table
	Fix a Page
	B+Tree Traversal
	Cost of this Technique

	Usage of Pointer Swizzling
	Fix a Page
	B+Tree Traversal
	Cost of this Technique

	Performance Evaluation
	Conclusions
	References

