
Instant Restore After a Media Failure

Caetano Sauer1(B), Goetz Graefe2, and Theo Härder1

1 TU Kaiserslautern, Kaiserslautern, Germany
{csauer,haerder}@cs.uni-kl.de

2 Google, Madison, WI, USA
goetzg@google.com

Abstract. Media failures usually leave database systems unavailable for
several hours until recovery is complete, especially in applications with
large devices and high transaction volume. Previous work introduced a
technique called single-pass restore, which increases restore bandwidth
and thus substantially decreases time to repair. Instant restore goes fur-
ther as it permits read/write access to any data on a device undergoing
restore—even data not yet restored—by restoring individual data seg-
ments on demand. Thus, the restore process is guided primarily by the
needs of applications, and the observed mean time to repair is effectively
reduced from several hours to a few seconds.

This paper presents an implementation and evaluation of instant
restore. The technique is incrementally implemented on a system starting
with the traditional ARIES design for logging and recovery. Experiments
show that the transaction latency perceived after a media failure can be
cut down to less than a second. The net effect is that a few “nines”
of availability are added to the system using simple and low-overhead
software techniques.

1 Introduction

Advancements in hardware technology have significantly improved the perfor-
mance of database systems over the last decade, allowing for throughput in the
order of thousands of transactions per second and data volumes in the order of
petabytes. Availability, on the other hand, has not seen drastic improvements,
and the research goal postulated by Jim Gray in his ACM Turing Award Lecture
of a system “unavailable for less than one second per hundred years” [12] remains
an open challenge. Improvements in reliable hardware and data center technol-
ogy have contributed significantly to the availability goal, but proper software
techniques are required to not only avoid failures but also repair failed systems
as quickly as possible. This is especially relevant given that a significant share
of failures is caused by human errors and unpredictable defects in software and
firmware, which are immune to hardware improvements [11]. In the context of
database logging and recovery, the state of the art has unfortunately not changed
much since the early 90’s, and no significant advancements were achieved in the
software front towards the availability goal.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 311–325, 2017.
DOI: 10.1007/978-3-319-66917-5 21



312 C. Sauer et al.

Instant restore is a technique for media recovery that drastically reduces
mean time to repair by means of simple software techniques. It works by extend-
ing the write-ahead logging mechanism of ARIES [19] and, as such, can be
incrementally implemented on the vast majority of existing database systems.
The key idea is to introduce a different organization of the log archive to enable
efficient on-demand, incremental recovery of individual data pages. This allows
transactions to access recovered data from a failed device orders of magnitude
faster than state-of-the-art techniques, all of which require complete restoration
of the entire device before access to the application’s working set is allowed.

0

4

8

12

16

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t
(k
tp

s)

Time (minutes)

erotser-tsoperuliaf-erp

↓Media failure

Single-pass restore
Instant restore (small buffer)
Instant restore (large buffer)

Fig. 1. Effect of instant restore (Color figure online)

The problem of inef-
ficient media recovery
in state-of-the-art tech-
niques, including ARIES
and its optimizations,
can be attributed to
two major deficiencies.
First, the media recovery
process has a very ineffi-
cient random access pat-
tern, which in practice
encourages excessive redundancy and frequent incremental backups—solutions
that only alleviate the problem instead of eliminating it. The second deficiency
is that the recovery process is not incremental and requires full recovery before
any data can be accessed—on-demand schedules are not possible and there is
no prioritization scheme to make most needed data available earlier. Previous
work addressed the first problem with a technique called single-pass restore [24],
while this paper focuses on the second one.

The effect of instant restore is illustrated in Fig. 1, where transaction through-
put is plotted over time and a media failure occurs after 10 min. In single-
pass restore, as in ARIES, transaction processing halts until the device is fully
restored (the red line in the chart), while instant restore continues processing
transactions, using them to guide the restore process (blue and green lines). In
a scenario where the application working set fits in the buffer pool (blue line),
there is actually no visible effect on transaction throughput.

In the remainder of this paper, Sect. 2 describes related work, both previous
work leading to the current design as well as competing approaches. Then, Sect. 3
describes the instant restore technique. Finally, Sect. 4 presents an empirical
evaluation, while Sect. 5 concludes this paper.

A high-level description of instant restore was previously published in a book
chapter [6] among other instant recovery techniques. The additional contribution
here is a more detailed discussion of the design and implementation aspects as
well as an empirical evaluation of the technique with an open-source prototype.



Instant Restore After a Media Failure 313

2 Related Work

2.1 Failure Classes and Assumptions

Database literature traditionally considers three classes of database failures [14],
which are summarized in Table 1 (along with single-page failures, a fourth class to
be discussed in Sect. 2.5). In the scope of this paper, it is important to distinguish
between system and media failures, which are conceptually quite different in their
causes, effects, and recovery measures. System failures are usually caused by a
software fault or power loss, and what is lost—hence what must be recovered—is
the state of the server process in main memory; this typically entails recovering
page images in the buffer pool (i.e., “repeating history” [19]) as well as lists
of active transactions and their acquired locks, so that they can be properly
aborted. The process of recovery from system failures is called restart.

Table 1. Failure classes, their causes, and effects

Failure class Loss Typical cause Response

Transaction Single-transaction progress Deadlock Rollback

System Server process (in-memory state) Software fault, power loss Restart

Media Stored data Hardware fault Restore

Single page Local integrity Partial writes, wear-out Repair

Instant restart [6] is an orthogonal technique that provides on-demand, incre-
mental data access following a system failure. While the goals are similar, the
design and implementation of instant restore require quite different techniques.

In a media failure, which is the focus here, a persistent storage device fails but
the system might continue running, serving transactions that only touch data
in the buffer pool or on other healthy devices. If a system and media failures
happen simultaneously, or perhaps one as a cause of the other, their recovery
processes are executed independently, and, by recovering pages in the buffer
pool, the processes coordinate transparently.

The present work makes the same assumptions as most prior research on
database recovery. The log and its archive copy reside on “stable storage”, i.e.,
they are assumed to never fail. We consider failures on the database device only,
i.e., the permanent storage location of data pages. Recovery from such failures
requires a backup copy (possibly days or weeks old) of the lost device and all
log records since the backup was taken; these may reside either in the active
transaction log or in the log archive. The process of recovery from media failures
is called restore. The following sections briefly describe previous restore methods.

2.2 ARIES Restore

Techniques to recover databases from media failures were initially presented in
the seminal work of Gray [10] and later incorporated into the ARIES family



314 C. Sauer et al.

of recovery algorithms [19]. In ARIES, restore after a media failure first loads a
backup image and then applies a redo log scan, similar to the redo scan of restart
after a system failure. Figure 2 illustrates the process, which we now briefly
describe. After loading full and incremental backups into the replacement device,
a sequential scan is performed on the log archive and each update is replayed on
its corresponding page in the buffer pool. A global minLSN value (called “media
recovery redo point” by Mohan et al. [19]) is maintained on backup devices to
determine the begin point of the log scan.

Fig. 2. Random access pattern of ARIES restore

Because log records are
ordered strictly by LSN, pages
are read into the buffer pool in
random order, as illustrated
in the restoration of pages A
and B in Fig. 2. Furthermore,
as the buffer pool fills up,
they are also written in ran-
dom order into the replace-
ment device, except perhaps
for some minor degree of clus-
tering. As the log scan pro-
gresses, evicted pages might
be read again multiple times,
also randomly. This mecha-
nism is quite inefficient, espe-
cially for magnetic drives with high access latencies. Thus, it is no surprise that
multiple hours of downtime are required in systems with high-capacity drives
and high transaction rates [24].

Another fundamental limitation of the ARIES restore algorithm is that it is
not incremental, i.e., pages cannot be restored to their most up-to-date version
one-by-one and made available to running transactions incrementally. As shown
in the example of Fig. 2, the last update to page A may be at the very end
of the log; thus, page A remains out-of-date until almost the end of the log
scan. Some optimizations may alleviate this situation (e.g., reusing checkpoint
information), but there is no general mechanism for incremental restoration.
Furthermore, even if pages could somehow be released incrementally when their
last update is replayed, the hottest pages of the application working set are most
likely to be released only at the very end of the log scan, and probably not even
then, because they might contain updates of uncommitted transactions and thus
require subsequent undo. This leads to yet another limitation of this approach:
even if pages could be restored incrementally, there is no effective way to provide
on-demand restoration, i.e., to restore most important pages first.

Despite a variety of optimizations proposed to the basic ARIES algorithm
[19–21], none of them solves these problems in a general and effective manner.
In summary, all proposed techniques that enable earlier access to recovered data
items suffer from the same problem: early access is only provided for data for



Instant Restore After a Media Failure 315

which early access is not really needed—hot data in the application working set
is not prioritized and most accesses must wait for complete recovery.

Finally, industrial database systems that implement ARIES recovery suffer
from the same problems. IBM’s DB2 speeds up log replay by sorting log records
after restoring the backup and before applying the log records to the replace-
ment database [13]. While a sorted log enables a more efficient access pattern,
incremental and on-demand restoration is not provided. Furthermore, the delay
imposed by the offline sort may be as high as the total downtime incurred by the
traditional method. As another example, Oracle attempts to eliminate the over-
head of reading incremental backups by incrementally maintaining a full backup
image [22]. While this makes recovery slightly more efficient, it does not address
the deficiencies discussed earlier.

2.3 Replication

Given the extremely high cost of media recovery in existing systems, replication
solutions such as disk mirroring or RAID [2,3] are usually employed in practice
to increase mean time to failure. However, it is important to emphasize that,
from the database system’s perspective, a failed disk in a redundant array does
not constitute a media failure as long as it can be repaired automatically. Restore
techniques aim to improve mean time to repair whenever a failure occurs that
cannot be masked by lower levels of the system. Therefore, replication techniques
can be seen largely as orthogonal to media restore techniques as implemented in
database recovery mechanisms.

Nevertheless, a substantial reduction in mean time to repair, especially if done
solely with simple software techniques, opens many opportunities to manage the
trade-off between operational costs and availability. One option can be to main-
tain a highly-available infrastructure (with whatever costs it already requires)
while availability is increased by deploying software with more efficient recov-
ery. Alternatively, replication costs can be reduced (e.g., downgrading RAID-10
into RAID-5) while maintaining the same availability. Such level of flexibility,
with solutions tackling both mean time to failure and mean time to repair, are
essential in the pursuit of Gray’s availability goal [12].

2.4 In-Memory Databases

Early work on in-memory databases focused mainly on restart after a system
failure, employing traditional backup and log-replay techniques for media recov-
ery [4,16]. The work of Levi and Silberschatz [17] was among the first to consider
the challenge of incremental restart after a system failure. While an extension
of their work for media recovery is conceivable, it would not address the effi-
ciency problem discussed in Sect. 1. Thus, it would, in the best case and with a
more complex algorithm, perform no better than the algorithm discussed later
in Sect. 2.5.

Recent proposals for recovery on both volatile and non-volatile in-memory
systems usually ignore the problem of media failures, employing the unspecific



316 C. Sauer et al.

term “recovery” to describe system restart only [1,18,23]. Therefore, recovery
from media failures in modern systems either relies on the traditional tech-
niques or is simply not supported, employing replication as the only means
to maintain service upon storage hardware faults. As discussed above, while
relying on replication is a valid solution to increase mean time to failure, a
highly available system must also provide efficient repair facilities. In this aspect,
traditional database system designs—using ARIES physiological logging and
buffer management—provide more reliable behavior. Therefore, we believe that
improving traditional techniques for more efficient recovery with low overhead
on memory-optimized workloads is an important open research challenge.

2.5 Single-Page Repair

Single-page failures are considered a fourth class of database failures [8], along
with the other classes summarized in Table 1. It covers failures restricted to
a small set of individual pages of a storage device and applies online local-
ized recovery to that individual page instead of invoking media recovery on the
whole device. The single-page repair algorithm, illustrated in Fig. 3 (with backup
and replacement devices omitted for simplification), has two basic requirements:
first, the LSN of the most recent update of each page is known (i.e., the cur-
rent PageLSN value) without having to access the page; second, starting from
the most recent log record, the complete history of updates to a page can be
retrieved. The former requirement can be provided with a page recovery index—
a data structure mapping page identifiers to their most recent PageLSN value.
Alternatively, the current PageLSN can be stored together with the parent-
to-child node pointer in a B-tree data structure [9]. The latter requirement is
provided by per-page log record chains, which are straight-forward to maintain
using the PageLSN fields in the buffer pool.

Fig. 3. Single-page repair

In principle, single-page
repair could be used to
recover from a media failure,
by simply repairing each page
of the failed device individ-
ually. One advantage of this
technique is that it yields
incremental and on-demand
restore, addressing the sec-
ond deficiency of traditional
media recovery algorithms mentioned in Sect. 1. To illustrate how this would
work in practice, consider the example of Fig. 3. If the first page to be accessed
after the failure is A, it would be the first to be restored. Using information from
the page recovery index (which can be maintained in main memory or fetched
directly from backups), the last red log record on the right side of the diagram
would be fetched first. Then, following the per-page chain, all red log records
until minLSN would be retrieved and replayed in the backup image of page A,
thus yielding its most recent version to running transactions.



Instant Restore After a Media Failure 317

While the benefit of on-demand and incremental restore is a major advantage
over traditional ARIES recovery, this algorithm still suffers from the first defi-
ciency discussed in Sect. 1—namely the inefficient access pattern. The authors of
the original publication even foresee the application to media failures [8], argu-
ing that while a page is the unit of recovery, multiple pages can be repaired in
bulk in a coordinated fashion. However, the access pattern with larger restora-
tion granules would approach that of traditional ARIES restore—i.e., random
access during log replay. Thus, while the technique introduces a useful degree of
flexibility, it does not provide a unified solution for the two deficiencies discussed.

2.6 Single-Pass Restore

Our previous work introduced a technique called single-pass restore, which aims
to perform media recovery in a single sequential pass over both backup and log
archive devices [24]. Eliminating random access effectively addresses the first
deficiency discussed in Sect. 1. This is achieved by partially sorting the log on
page identifiers, using a stable sort to maintain LSN order within log records of
the same page. The access pattern is essentially the same as that of a sort-merge
join: external sort with run generation and merge followed by another merge
between the two inputs—log and backup in the media recovery case.

Fig. 4. Single-pass restore

The idea itself is as old
as the first recovery algo-
rithms (see Sect. 5.8.5.1 of
Gray’s paper [10]) and is
even employed in DB2’s “fast
log apply” [13]. However,
the key advantage of single-
pass restore is that the
two phases of the sorting
process—run generation and
merge—are performed inde-
pendently: runs are gener-
ated during the log archiving
process (i.e., moving log records from the latency-optimized transaction log
device into high-capacity, bandwidth-optimized secondary storage) with negligi-
ble overhead; the merge phase, on the other hand, happens both asynchronously
as a maintenance service and also during media recovery, in order to obtain a sin-
gle sorted log stream for recovery. Importantly, merging runs of the log archive
and applying the log records to backed-up pages can be done in a sequential
pass, similar to a merge join. The process is illustrated in Fig. 4. We refer to the
original publication for further details [24].

Having addressed the access pattern deficiency of media recovery algorithms,
single-pass restore still leaves open the problem of incremental and on-demand
restoration. Nevertheless, given its superiority over traditional ARIES restore (see
[6,24] for an in-depth discussion), it is a promising approach to use as starting



318 C. Sauer et al.

point in addressing the two deficiencies in a unified way. Therefore, as mentioned
in Sect. 1, single-pass restore is taken as the baseline for the present work.

3 Instant Restore

The main goal of instant restore is to preserve the efficiency of single-pass restore
while allowing more fine-granular restoration units (i.e., smaller than the whole
device) that can be recovered incrementally and on demand. We propose a gen-
eralized approach based on segments, which consist of contiguous sets of data
pages. If a segment is chosen to be as large as a whole device, our algorithm
behaves exactly like single-pass restore; on the other extreme, if a segment is
chosen to be a single page, the algorithm behaves like single-page repair.

This section starts by introducing the log data structure employed to provide
efficient access to log records belonging to a given segment or page; after that,
we present the restore algorithm based on this data structure.

3.1 Indexed Log Archive

In order to restore a given segment incrementally, instant restore requires efficient
access to log records pertaining to pages in that segment. In single-page repair,
such access is provided for individual pages, using the per-page chain among
log records [8]. As already discussed, this is not efficient for restoration units
much larger than a single page. Therefore, we build upon the partially sorted
log archive organization introduced in single-pass restore [24].

In instant restore, the partially sorted log archive is extended with an index.
The log archiving process sorts log records in an in-memory workspace and saves
them into runs on persistent storage. These runs must then be indexed, so that
log records of a given page or segment identifier can be fetched directly. Sorting
and indexing of log records is done online and without any interference on trans-
action processing, in addition to standard archiving tasks such as compression.

In an index lookup for instant restore, the set of runs to consider would be
restricted by the given minLSN (see Sect. 2.2) of the backup image, since runs
older than that LSN are not needed. Furthermore, Bloom filters can be appended
to each run to restrict this set even further. The result of the lookup in each
indexed run is then fed into a merge process that delivers a single stream of log
records sorted primarily by page identifier and secondarily by LSN. This stream
is then used by the restore algorithm to replay updates on backup segments.

Multiple choices exist for the physical data structure of the indexed log
archive. Ideally, the B-tree component of the indexing subsystem can be reused,
but there is an important caveat in terms of providing atomicity and durability
to this structure. A typical index relies on write-ahead logging, but that is not
an option for the indexed log archive because it would introduce a kind of self-
reference loop—updates to the log data structure itself would have to be logged
and used later on for recovery. This self-reference loop could be dealt with by
introducing special logging and recovery modes (e.g., a separate “meta”-log for



Instant Restore After a Media Failure 319

the indexed log archive), but the resulting algorithm would be too cumbersome.
In our prototype, we chose a simpler solution: each partition of the log archive
is maintained in its own read-only file; temporary shadow files are then used for
merges and appends. In this scheme, atomicity is provided by the file rename
operation, which is atomic in standard filesystems [5].

3.2 Restore Algorithm

When a media failure is detected, a restore manager component is initialized
and all page read and write requests from the buffer pool are intercepted by
this component. The diagram in Fig. 5 illustrates the interaction of the restore
manager with the buffer pool and all persistent devices involved in the restore
process: failed and replacement devices, log archive, and backup. For reasons
discussed in previous work [24], incremental backups are made obsolete by the
partially sorted log archive; thus, the algorithm performs just as well with full
backups only. Nevertheless, incremental backups can be easily incorporated, and
the description below considers a single full backup without loss of generality.

Failed device Replacement device

Segments

Buffer
pool Bitmap

Scheduler

Restore

Backup

Log archive

1. Segment
request

2b. (Bit = 0)
Enqueue 

2a. (Bit = 1)
Read page

3. Next
segment

5. Probe

4. Fetch6. Write

7. Set bit

Restore manager

Fig. 5. Instant restore flow chart

In the following discus-
sion, the numbers in paren-
theses refer to the num-
bered steps in Fig. 5. The
restore manager keeps track
of which segments were
already restored using a
segment recovery bitmap,
which is initialized with
zeros. When a page access
occurs, the restore manager
first looks up its segment in
the bitmap (1). If set to one,
it indicates that the segment
was already restored and can be accessed directly on the replacement device (2a).
If set to zero, a segment restore request is placed into a restore scheduler (2b),
which coordinates the restoration of individual segments (3).

To restore a given segment, an older version is first fetched from the backup
directly (4). This is in contrast to ARIES restore, which first loads entire backups
into the replacement device and then reads pages from there [19]. This has the
implication that backups must reside on random-access devices (i.e., not on tape)
and allow direct access to individual segments, which might require an index if
backup images are compressed. These requirements, which are also present in
single-page repair [8], seem quite reasonable given the very low cost per byte
of current high-capacity hard disks. For moderately-sized databases, it is even
advisable to maintain log archive and backups on flash storage.

While the backed-up image of a segment is loaded, the indexed log archive
data structure is probed for the log records pertaining to that segment (5);
the results of each probe are merged to form a single sorted log stream.



320 C. Sauer et al.

Then, log replay is performed to bring the segment to its most recent state,
after which it can be written back into a replacement device (6).

Finally, once a segment is restored, the bitmap is updated (7) and all pending
read and write requests can proceed. Typically, a requested page will remain in
the buffer pool after its containing segment is restored, so that no additional
I/O access is required on the replacement device.

Fig. 6. Instant restore

All read and write oper-
ations described above—log
archive index probe, segment
fetch, and segment write after
restoration—happen asynchro-
nously with minimal coordi-
nation. The read operations
are essentially merged index
scans—a very common pattern
in query processing. The write
of a restored segment is also
easily made asynchronous, whereby the only requirement is that marking a seg-
ment as restored on the bitmap, and consequently enabling access by waiting
threads, be done by a callback function after completion of the write.

To illustrate the access pattern of instant restore, similarly to the diagrams
in Sect. 2, Fig. 6 shows an example scenario with three log archive runs and
two pages, A and B, belonging to the same segment. The main difference to
the previous diagrams is the segment-wise, incremental access pattern, which
delivers the efficiency of pure sequential access with the responsiveness of on-
demand random reads.

Using this mechanism, user transactions accessing data either in the buffer
pool or on segments already restored can execute without any additional delay,
whereby the media failure goes completely unnoticed. Access to segments not
yet restored are used to guide the restore process, triggering the restoration
of individual segments on demand. As such, the time to repair observed by
transactions accessing data not yet restored is multiple orders of magnitude
lower than the time to repair the whole device. Furthermore, time to repair
observed by an individual transaction is independent of the total capacity of
the failed device. This is in contrast to previous methods, which require longer
downtime for larger devices.

4 Experiments

Our experimental evaluation covers three main measures of interest during recov-
ery from a media failure: restore latency, restore bandwidth, and transaction
throughput. Before presenting the empirical analysis, a brief summary of our
experimental environment is provided.



Instant Restore After a Media Failure 321

4.1 Environment

We implemented instant restore in a fork of the Shore-MT storage manager [15]
called Zero. The code is available as open source1. The workload consists of the
TPC-C benchmark as implemented in Shore-MT, but adapted to use the Foster
B-tree [7] data structure for both table and index data.

All experiments were performed on dual six-core CPUs with HyperThread-
ing. The system has 100 GB of high-speed RAM and several Samsung 840 Pro
250 GB SSDs. The operating system is Ubuntu Linux 14.04 with Kernel 3.13.0-68
and all code is compiled with gcc 4.8 and -O3 optimization.

The experiments all use the same workload, with media failure and recovery
set up as follows. Initial database size is 100 GB, with full backup and log archive
of the same size—i.e., recovery starts from a full backup of 100 GB and must
replay roughly the same amount of log records. Log archive runs are a little over
1.5 GB in size, resulting in 64 inputs in the restore merge logic. All persistent
data is stored on SSDs and 24 worker threads are used at all times.

4.2 Restore Latency and Bandwidth

Our first experiment evaluates restore latency by analyzing the total latency of
individual transactions before and after a media failure. The hypothesis under
test is that average transaction latency immediately following a media failure is
in the order of a few seconds or less, after which is gradually decreases to the
pre-failure latency. Furthermore, with larger memory, i.e., where a larger portion
of the working set fits in the buffer pool, average latency should remain at the
pre-failure level throughout the recovery process.

The results are shown in Fig. 7a. After ten minutes of normal processing,
during which the average latency is 1–2 ms, a media failure occurs. The imme-
diate effect is that average transaction latency spikes up (to about 100 ms in the
buffer pool size of 30 GB) but then decreases linearly until pre-failure latency is
reestablished. For the largest buffer pool size of 45 GB, there is a small pertur-
bation in the observed latency, but the average value seems to remain between 1
and 2 ms. From this, we can conclude that for any buffer pool size above 45 GB,
a media failure goes completely unnoticed.

These results successfully confirm our hypothesis: average latency of a trans-
action accessing failed media is reduced from several minutes to 100 ms, which
corresponds to three orders of magnitude or three additional 9’s of availability.
Note that the average restore latency is independent of total device capacity,
and thus of total recovery time. Therefore, the availability improvement could
be in the order of four or five orders of magnitude in certain cases. This would
be expected, for instance, for very large databases (in the order of terabytes)
stored on relatively low-latency devices. In these cases, the gap between a full
sequential read and a single random read—hence, between mean time to repair
with single-pass restore and with instant restore—is very pronounced.

1 http://github.com/caetanosauer/zero.

http://github.com/caetanosauer/zero


322 C. Sauer et al.

(a) Average txn. latency

1

2

4

8

16

32

64

128

0 5 10 15 20 25 30 35

L
a
te

n
cy

(m
s)

Time (min)

45 GB
40 GB
35 GB
30 GB

(b) Restore bandwidth

0

50

100

150

200

250

0 5 10 15 20

B
a
n
d
w

id
th

(M
B

/
s)

Time (min)

45 GB
40 GB
35 GB
30 GB

Fig. 7. Transaction latency and restore bandwidth observed with instant restore

Next, we evaluate restore bandwidth for the same experiment. The hypoth-
esis here is that, in general, restore bandwidth gradually increases throughout
the recovery process until it reaches the bandwidth of single-pass restore. From
these two general behaviors, two special cases are, again, the small and large
buffer pools. In the former, bandwidth may not reach single-pass speeds due to
prioritization of low latency for the many incoming requests (recall that each
buffer pool miss incurs a read on the replacement device, which, in turn, incurs
a restore request). In the latter case, restore bandwidth should be as large as
single-pass restore.

Figure 7b shows the results of this experiment for four buffer pool sizes. For
the smallest buffer pool of 30 GB, restore bandwidth remains roughly constant in
the first 15 min. This indicates that during this initial period, most segments are
restored individually in response to an on-demand request resulting from a buffer
pool miss. As the buffer size increases, the rate of on-demand requests decreases
as restore progresses, resulting in more opportunities for multiple segments being
restored at once. In all cases, restore bandwidth gradually increases throughout
the recovery process, reaching the maximum speed of 240 MB/s towards the end
in the larger buffer pool sizes.

4.3 Transaction Throughput

The next experiments evaluate how media failure and recovery impact transac-
tion throughput with instant restore. We take the same experiment performed
in the previous section and look at transaction throughput for each buffer pool
size individually. As instant restore progresses, transactions continue to access
data in the buffer pool, triggering restore requests for each page miss. Therefore,
we expect that the larger the buffer pool is (i.e., more of the working set fits into
main memory), the less impact a media failure has on transaction throughput.
This effect was already presented in the diagram of Fig. 1—the present section
analyzes that in more detail.

Figure 8 presents the results. In the four plots shown, transaction throughput is
measured with the red line on the left y-axis. At minute 10, a media failure occurs,
after which a green straight line shows the pre-failure average throughput. The
number of page reads per second is shown with the blue line on the right y-axis.



Instant Restore After a Media Failure 323

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s

(×
1
0
0
)

Time (min)

Buffer size = 20 GB

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50 55

1

2

3

4

5

6

7

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 25 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50
100

101

102

103

104

105
T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 35 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45
100

101

102

103

104

105

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 50 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40
100

101

102

103

104

105

Throughput Page reads Pre-failure throughput

Fig. 8. Impact of instant restore on txn. Throughput at varying buffer pool sizes.

Moreover, total recovery time, which also varies depending on the buffer pool size,
is also shown as the shaded interval on the x-axis.

The goal of instant restore in this experiment is to re-establish the pre-failure
transaction throughput (i.e., the dotted green line) as soon as possible. Similar
to the evaluation on previous experiments, our hypothesis is that this occurs
sooner the larger the buffer pool is. The results show that for a small buffer
pool of 20 GB, transaction throughput drops substantially, and it only regains
the pre-failure level at the very end of the recovery process. As the buffer size
is increased to 25 and then 35 GB, pre-failure throughput is re-established at
around minute 7, i.e., 1/3 of the total recovery time. Lastly, for the largest buffer
pool of 50 GB, the media failure does not produce any noticeable slowdown, as
predicted in our hypothesis.

5 Conclusions

Instant restore improves perceived mean time to repair and thus database avail-
ability in the presence of media failures. We identified two main deficiencies
with traditional recovery techniques, such as the ARIES design [19]: (i) media
recovery is very inefficient due to its random access pattern on database pages,
which means that time to repair is unacceptably long; and (ii) data on a failed
device cannot be accessed before recovery is completed. The first deficiency was
addressed with single-pass restore [24], which introduces a partial sort order on
the log archive, eliminating the random access pattern of log replay.



324 C. Sauer et al.

The second deficiency is addressed with the instant restore technique, which
was first described in earlier work [6] and discussed in more detail, implemented,
and evaluated in this paper. By generalizing single-pass restore and other recov-
ery methods such as single-page repair, instant restore is the first media recovery
method to effectively eliminate the two deficiencies discussed. In comparison with
traditional ARIES media restore, instant restore delivers not only the benefits
of single-pass restore (i.e., substantially higher bandwidth and therefore shorter
recovery time), but also much quicker access (e.g., seconds instead of hours) to
the application working set after a failure.

References

1. Arulraj, J., Pavlo, A., Dulloor, S.: Let’s talk about storage & recovery methods for
non-volatile memory database systems. In: Proceedings of SIGMOD, pp. 707–722
(2015)

2. Bitton, D., Gray, J.: Disk shadowing. In: Proceedings of VLDB, pp. 331–338 (1988)
3. Chen, P.M., et al.: RAID: high-performance, reliable secondary storage. ACM Com-

put. Surv. 26(2), 145–185 (1994)
4. Eich, M.H.: A classification and comparison of main memory database recovery

techniques. In: Proceedings of ICDE, pp. 332–339 (1987)
5. GLIBC: The GNU C Library Reference Manual (2014), http://www.gnu.org/

software/libc/manual/html node/Renaming-Files.html. Accessed 06 Oct 2014
6. Graefe, G., Guy, W., Sauer, C.: Instant Recovery with Write-Ahead Logging: Page

Repair, System Restart, Media Restore, and System Failover, 2nd edn. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers (2016)

7. Graefe, G., Kimura, H., Kuno, H.A.: Foster B-trees. ACM Trans. Database Syst.
37(3), 17 (2012)

8. Graefe, G., Kuno, H.A.: Definition, detection, and recovery of single-page failures,
a fourth class of database failures. PVLDB 5(7), 646–655 (2012)

9. Graefe, G., Kuno, H.A., Seeger, B.: Self-diagnosing and self-healing indexes. In:
Proceedings of DBTest, p. 8 (2012)

10. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M.,
Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer,
Heidelberg (1978). doi:10.1007/3-540-08755-9 9

11. Gray, J.: Why do computers stop and what can be done about it? In: Symposium
on Reliability in Distributed Software and Database Systems, pp. 3–12 (1986)

12. Gray, J.: What next?: a dozen information-technology research goals. J. ACM
50(1), 41–57 (2003)

13. Haderle, D.J., Majithia, T.: Fast log apply, US Patent 6,289,355, 11 September
2001

14. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15(4), 287–317 (1983)

15. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.: Shore-MT: a
scalable storage manager for the multicore era. In: Proceedings of EDBT, pp. 24–
35 (2009)

16. Lehman, T.J., Carey, M.J.: A recovery algorithm for a high-performance memory-
resident database system. In: Proceedings of SIGMOD, pp. 104–117 (1987)

17. Levy, E., Silberschatz, A.: Incremental recovery in main memory database systems.
IEEE Trans. Knowl. Data Eng. 4(6), 529–540 (1992)

http://www.gnu.org/software/libc/manual/html_node/Renaming-Files.html
http://www.gnu.org/software/libc/manual/html_node/Renaming-Files.html
http://dx.doi.org/10.1007/3-540-08755-9_9


Instant Restore After a Media Failure 325

18. Malviya, N., Weisberg, A., Madden, S., Stonebraker, M.: Rethinking main memory
OLTP recovery. In: Proceedings of ICDE, pp. 604–615 (2014)

19. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst. 17(1), 94–162 (1992)

20. Mohan, C., Narang, I.: An efficient and flexible method for archiving a data base.
SIGMOD Rec. 22(2), 139–146 (1993)

21. Mohan, C., Treiber, K., Obermarck, R.: Algorithms for the management of remote
backup data bases for disaster recovery. In: Proceedings of ICDE, pp. 511–518
(1993)

22. Oracle Corporation: RMAN Incremental Backups, Oracle Database Documenta-
tion 10g, Sect. 4.4 (2015)

23. Oukid, I., et al.: SOFORT: a hybrid SCM-DRAM storage engine for fast data
recovery. In: Proceedings of DaMoN, pp. 8:1–8:7 (2014)

24. Sauer, C., Graefe, G., Härder, T.: Single-pass restore after a media failure. In:
Proceedings of BTW. LNI, vol. 241, pp. 217–236 (2015)


	Instant Restore After a Media Failure
	1 Introduction
	2 Related Work
	2.1 Failure Classes and Assumptions
	2.2 ARIES Restore
	2.3 Replication
	2.4 In-Memory Databases
	2.5 Single-Page Repair
	2.6 Single-Pass Restore

	3 Instant Restore
	3.1 Indexed Log Archive
	3.2 Restore Algorithm

	4 Experiments
	4.1 Environment
	4.2 Restore Latency and Bandwidth
	4.3 Transaction Throughput

	5 Conclusions
	References




