TECHNISCHE UNIVERSITAT KAISERSLAUTERN

Evaluation and Demonstration of Instant
Recovery Techniques for Transactional

Database Systems

by

Gilson Souza dos Santos

A thesis submitted in partial fulfillment for the degree of
Master of Science

in the
Fachbereich Informatik
AG Datenbanken und Informationssysteme

April 2017

https://www.uni-kl.de/
hanna.abbott@hogwarts.se
http://www.informatik.uni-kl.de/en/
http://lgis.informatik.uni-kl.de/

Declaration of Authorship

I, Gilson Souza dos Santos, declare that this thesis titled, ‘Evaluation and Demonstration of

Instant Recovery Techniques for Transactional Database Systems’ and the work presented in it

are my own. [confirm that:

This work was done wholly or mainly while in candidature for a research degree at this

University.

Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.
Where I have consulted the published work of others, this is always clearly attributed.

Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.
I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

”He who says he can and he who says he cannot are both usually right.”

- Confucius

TECHNISCHE UNIVERSITAT KAISERSLAUTERN

Abstract

Fachbereich Informatik

AG Datenbanken und Informationssysteme

Master of Science

by Gilson Souza dos Santos

This thesis implements a demonstration platform to showcase database recovery techniques
based on write-ahead logging. It focuses on modern instant recovery techniques that compete
with traditional ARIES. On this platform, the database enthusiast is able to run different
benchmarks in a prototype database system and observe, through charts and progress bars,
how the system recovers from injected failures. The prototype system is able to recover from
single-page failures by using Single-Page Recovery, media failures by using Instant Restore, and
system failures by using either Instant Restart or ARIES restart. We describe how each of these

techniques is implemented, their differences, advantages, and disadvantages.

In order to launch the recovery processes, we implemented the option to arbitrarily inject the
three types of failures treated by the system. Each of these failures affects one or more internal
components of the system. In order to analyze the internal state of these components, we
embedded the server-side component of our platform in the database system runtime, thus

providing efficient access to internal data structures, logged events, and execution traces.

The server-side component aggregates system information in statistical tables and makes them
accessible through a REST API that delivers JSON data. We use this API in the development
of a simple Web client that graphically displays these statistics. Furthermore, the client allows

the injection of failures and reports on the progress of each recovery phase in real time.

https://www.uni-kl.de/
http://www.informatik.uni-kl.de/en/
http://lgis.informatik.uni-kl.de/
hanna.abbott@hogwarts.se

Acknowledgements

I would like to express my gratitude to my advisor Caetano Sauer. He was not just my mentor
during this work, but my guru during my entire master degree. All nights and weekends that

we worked together during the last three years will always be gently carried in my memories.

I would like to thank Prof. Dr. Theo Harder for the opportunity to work in his research group
and for all the assistance that he and his group gave to me. I was extremely fortunate to

contemplate his impact in the life of many people and many projects during these years.

I am grateful for all the colleagues and friends that shared all bad and good moments during
the past years. There are so many people, which makes hard to mention them all here. So I
would like to specially mention Lucas Lersch, who shared not just the office with me but also
his strange vision of the world, Claudio Busatto, who spent days and nights studying with me
before exams and drinking beer when the exams were over, and Filipe Esperandio, who even

living in Brazil was always present.

I would like to expose all my gratitude to my girlfriend Carmen. She was the one who brought

light to my dark days and watched me close during all the process of this work.

Finally, I would like to offer my thanks to all my family and friends. I am particularly grateful
to my mother, Rosangela, for raising me on her own and always helping me to achieve my

dreams.

iv

Contents

Declaration of Authorship
Abstract

Acknowledgements

1 Introduction
1.1 Motivation e e
1.2 Contribution e

2 Background Theory

2.1 Database Recovery L
2.2 ARIES . . . o e
2.2.1 Restart After a System Failure
2.2.2 Database Backups and Log Archive
2.2.3 Restore After a Media Failure
2.3 Instant Recovery L
2.3.1 Single-Page Recovery
2.3.2 Instant Restart
2.3.3 Single-Pass Restore After a Media Failure
2.3.4 Instant Restore After a Media Failure

3 Server-Side Implementation

3.1 Main Goals
3.2 Implementing More Control Over Benchmarks
3.3 Imserting Failures L
3.4 Extracting the Recovery Status
3.5 Gathering Statistics L
3.6 Counters Result Table,
3.7 REST APL e

4 Web Client Implementation
4.1 Goals
4.2 Architecture e

iii

iv

15
15
16
17
19
20
22
23

Contents vi
4.3 Interface and its Options L o 25
5 Injecting Failures and Observing Recovery Processes 29
5.1 Environment Setup 29
5.2 Injecting System Failures and Instant Restart Processes 29
5.3 Injecting System Failures and ARIES Restart Processes 30
5.4 Injecting a Media Failure and Running an Instant Restore Process 31
6 Conclusion 36
Bibliography 38

Dedicated to Rosangela

vii

Chapter 1

Introduction

1.1 Motivation

During the last years, a set of new database recovery techniques, known as Instant Recovery [1],
was developed in order to increase database availability in presence of failures. Such techniques
differ from traditional ARIES [2] due to their on-demand approach, which enables the system
to be available while database recovery is still in process. In order to demonstrate these new
techniques and compare them with traditional ARIES, we developed an interactive tool, which
allows the demo user to insert failures in the system and visualize the process of recovery of the

DBMS through instantly generated graphics.

Besides the graphics, which track the recovery state, our demo tool also keeps track of several
other system activities. By visualizing these activities (i.e., the internal system state) while
the DBMS recovery process happens, the user can observe other related information, such as
the fact that the system is available for new transactions earlier when it uses Instant Recovery
instead of ARIES.

The differences observed when we compare both techniques occur due to the different approach
used for each of them to recover from a failure. Although both techniques have similar steps
and are based on Write-Ahead Logging, they have different strategies to execute their steps. As
an example, both systems use three similar steps in restart recovery: Log Analysis, REDO pass,
and UNDO pass. However, a system using ARIES is available for new transactions only when
the first two steps are finished; meanwhile, a system using Instant Recovery would be available
after the first step and would execute the second step on demand (i.e., when the system needs
to access the data to be recovered). This Instant Recovery decision for executing the REDO

pass concurrently with new transactions explains the reason for its earlier availability.

Introduction 2

1.2 Contribution

The contribution of this work is the creation of a demonstration platform developed for inserting
failures in the system and analysing the DBMS recovery and its internal state. Such analysis
has been already done in other studies [1] , however, they were done with offline, post-execution
analysis of the data; meanwhile, our analysis is done while the system is running. Although this
approach can be interesting for our demo user, it does not show differences in the results already
presented besides a performance loss (if running in the same environment) due the constant
iteration with internal components from the DBMS while it runs. Our main contribution is to
make available a tool which enables users to generate failures and see the system recovering
from these failures with no need of advanced knowledge about system crash, media failure, and

page failure, and how to analyze the system behavior while it recovers.

This demo platform started as a guided research project [3], which resulted in an interface that
enables users to see the internal state of the system. We enhanced this platform by adding
several benchmark options, insertions of different failures, and tracking of the system recovery
process. The platform was created based on an architecture of two tiers: the Web server,
which is coupled with the database, and a Web interface, which is used by the user to execute
benchmarks, insert failures, and visualize the DBMS state through dashboards. These two tiers
communicate with each other through a REST API available on the Web server. Figure 1.1
presents how these communications are established in our system and the user iteration with

the system and the database.

As we needed to have control of the database internal components, we use the Zero transactional
storage manager [4] as a library in our system. Zero is a fork of Shore-MT [5] and is available
as open source. The approach of instantiating the database as a system object gives us more
flexibility to collect internal information and insert system failures. In order to get the internal
information from the system and create such failures, we enhanced the Zero prototype code
with new functions and internal statistics. All enhancements in the Zero prototype, as well as

the Web server and the Web interface developed, are available as open source.

The remaining of this work is organized as follows. Chapter 2 provides the background theory
required for the further understanding of this work. The concept of recovery is discussed as
well as relevant details about ARIES system recovery and how Instant Recovery implements the
recovery techniques that can be visualized in our system: restart recovery, media recovery, and
single-page recovery. Limitations and important aspects are also discussed. Chapter 3 describes
in detail the implementation of the Web server and the changes in the DBMS to generate failures
and statistics. Advantages and problems faced are as well discussed. Chapter 4 describes

the interface implementation and its usability. In Chapter 5, we run through some tests to

Introduction 3

User

Web interface

REST API

Web server

FIGURE 1.1: System communication

showcase the demonstration platform. Finally, Chapter 6 concludes this work by summarizing

our contribution and providing guidelines for future work.

Chapter 2

Background Theory

2.1 Database Recovery

Database recovery is the process that guarantees that committed data will remain accessible and
consistent in the case of a media failure or system crash. In other words, this process ensures
the atomicity and durability properties of transactions (the “A” an “D” of ACID) [6]. Following
a write-ahead logging approach, these properties are achieved by logging modifications to data
cached in volatile memory (i.e., pages in the buffer pool) and by controlling their propagation

to the persistent database.

Figure 2.1 presents the main data structures used by the DBMS in the propagation of modifi-
cations during update processing and recovery from failures. During update processing, trans-
actions modify the database pages in the buffer pool and write log records to the recovery log.
In case of a system failure, restart processing ensures up-to-date buffer pool contents from the
available database and the recovery log, along with relevant server state in the transaction man-
ager and the lock manager. Database backups provide long-term storage for database contents
and the log archive provides long-term storage for log records. These forms of archival storage

are used in restore processing to recover from a media failure [1].

There is a variety of system designs for a recovery component, and the ARIES mechanism [2]
is the de-facto standard for disk-based architectures. ARIES has support for fine-granularity
locking, does not require data pages to be flushed back to disk at commit time (no-force) and
the pages can be flushed at arbitrary times, even if they contain uncommitted updates (steal).
However, despite the several advantages of the ARIES design, recovery has a high impact on
system availability, since the system can take hours or days to recover from a failure and accept
post-failure transactions [1]. Instant recovery introduces some modifications to the ARIES

design in order to reduce the time to accept new transactions and, therefore, increase system

Background Theory 5

EZCE w - O

1 B

‘ Database ’ Log Archive

FIGURE 2.1: DBMS model and update propagation [1].

availability. Sections 2.2 and 2.3 describe both approaches and the methods used by each of

them to recover from failures.

2.2 ARIES

ARIES recovery relies on the log created during normal processing, i.e., it uses write-ahead
logging [2] to restore the system to its most-recent, transactionally consistent state. This log
records all actions from transactions when there are changes to the recordable data records,
ensuring that a committed action is reflected in the database, even with possible failures. The
log is composed of multiple log records, which are the entities where the data changes are stored.
Each log record has its unique log sequence number (LSN) assigned when it is appended to the
log. This LSN is assigned in ascending sequence. This sequence is respected during the recovery

process and it is used in order to determine if an operation was executed before another.

Every page in the database contains a field called PageLSN to track its state. Whenever a page
is updated, its LSN field is also updated with the LSN of the log record that logged this update.
If a failure occurs, it enables the system to determine which log records must be applied to the

page to restore its consistent state.

When a transaction with changes to a specific page commits, this page, which resides in the
buffer pool, is not necessarily written to disk at commit time. During this time the page on
disk does not have the last modifications performed by the committed transaction and it is

considered as dirty. The buffer pool manager registers the dirty pages in the dirty-page table,

Background Theory 6

which is used by the recovery system to determine pages in need of recovery. The entries in this
table have two fields: PagelD, which the identifier of the page, and RecLSN (recovery LSN),
which is the LSN of the first log record that must be applied to recover the given page.

Each log record describing a transaction update has a pointer, which points to the previous log
record created by the same transaction. By reading the previous log record that a transaction
wrote, the DBMS can track all the changes performed by this transaction. This capability is
important for the database to be able to rollback a transaction. When the database rolls back
a transaction, it writes compensation log records to the log to track the operations undone.
Every compensation log record has a field called next undo LSN, which guides rollback after an

interruption, e.g., a system crash during a transaction rollback.

In order to avoid reading the entire log to restore the dirty-page table after a crash, the system
periodically saves this table in a log record called checkpoint. This log record also contains a
table with all active transactions in the system and the locks that they hold. During system
recovery, it is necessary to reestablish the state of the system as it was immediately before the

failure, and checkpoints are used as the starting point of this process.

2.2.1 Restart After a System Failure

When a crash in the DBMS occurs, all information on volatile memory is lost at restart, and
the system recovery process kicks in. At this moment, the information contained in the log is
used by the restart recovery in three steps: log analysis, REDO, and UNDO passes. After the
conclusion of the second step, the system is already available for new transactions, provided
that locks of active pre-failure transactions are re-acquired beforehand. The conclusion of the

third step concludes the recovery process and brings the system to its last consistent state [2].

The first routine of restart recovery is log analysis. This routine receives as input the LSN
of the master record, which contains a pointer to the last checkpoint taken before the failure.
Log analysis recovers the dirty-page table and the transaction table from this checkpoint, and
then it scans log records coming after this last checkpoint. While it reads these checkpoints,
these two tables are updated accordingly. When a log record is found for a page that is not in
the dirty-page table, a new entry in this table is created in order to include this new change.
When a log record is found containing information that changes the state of a transaction, the
transaction table is also modified to track this new state. Once this process finished, the system
has the dirty-page table and the transaction table updated with the last state of the system and
REDO pass starts.

REDO pass receives as input the minimum RecLSN (recovery LSN) from the dirty-page table

produced during log analysis. Then it scans all log records from this point forward, verifying in

Background Theory 7

each log if the referenced page appears in the dirty-page table. If it does, it fetches the page in
the buffer pool and applies the REDO action described in the log record if and only if its LSN

is greater than the PageLLSN value. No log records are written by this routine.

When REDO ends, the database is reestablished as of the time of system failure (e.g., repeating
history[2]), except for updates performed by loser transactions that must be rolled back. The last
step of restart recovery, the UNDO pass, solves this problem by rolling back the uncommitted
transactions with compensating actions. The UNDO pass receives as input the transactions
table produced during log analysis. The system recovers the last generated log record from each
transaction in this table and uses it as a starting point to trace all changes performed by the

transaction.

As already mentioned, the changes performed by the transaction can be tracked by following its
last LSN, which points to the previous log record created by the transaction. By following these
pointers, the system creates a chain of all log records created by the transaction. Based on this
chain, the system identifies and rolls back all modifications of each transaction. When logged
updates are undone, new log records are generated to store the information used to undo these
changes. These log records are called compensation log records (CLR) and the pages affected by
these log records have their PageLSN updated with the Compensation Log Rercord LSN. The
compensation mechanism is required to enable record-level locking and protect against recurring
system failures during recovery. It is essentially a form of logical UNDO, and is described in
detail by Mohan et al. [2].

2.2.2 Database Backups and Log Archive

Backups are used to protect against data loss in case of media failures. There are three common
forms of backups: a full backup saves all allocated database pages, a differential backup saves
all database pages modified since the last full backup, and an incremental backup saves the last

database pages modified since the previous backup of any kind [1].

These three types of database backups also differ in the data structures they require within
the system architecture. A full backup requires only the data structures used for free space
management. However, differential and incremental backups require additional bitmaps (one
bit per database page) in order to identify pages which were previously saved in a backup. As
differential backups save all data modified since the last full backup, their bitmaps can only be

reset by full backups. The bitmaps for incremental backup are reset by any kind of backup [7].

While backups provide long-term storage of the database, the log archive provides long-term
storage of the recovery log. As the log is typically held by latency-optimized devices (e.g. flash

disks), there is a necessity to recycle space in these devices. Log archiving copies the log to

Background Theory 8

cheaper devices optimized for capacity and reliability and, during this process, may suppress all

the information irrelevant for media recovery in order to save disk space.

2.2.3 Restore After a Media Failure

When a media failure happens, restore operations are executed, utilizing backups, log archive,
and recovery log. Figure 2.2 presents the interaction among these components during this
recovery process. In ARIES restore, the system first restores the most-recent full backup in
a replacement disk that is formatted but empty. After that, all incremented backups created
after the full backup are applied. Notice that Figure 2.2 shows only incremental backups since

database administrators use either incremental or differential backups, but not both.

Incremental backups

Log records to replay

FIGURE 2.2: Media restore using the ARIES approach.

The last two steps of restore are based on the log. The system starts to replay all the log
records created since the last backup (i.e., REDO pass). When REDO pass is completed, the
system needs to roll back the incomplete transactions (i.e., UNDO pass). Due to the required
I/O operation in the database, the REDO pass may take as long as the time that the original
transactions took. For example, with daily backups, log replay can take as long as a day and

UNDO operations may need to wait until REDO is complete.

Background Theory 9

2.3 Instant Recovery

Depending on the workload and the system environment, the recovery techniques used in ARIES
may result in a system downtime of minutes or hours, since it needs to wait for the log analysis
and REDO pass to complete before accepting new transactions. In these cases, Instant Recovery
can reduce this time to seconds by recovering the system using an on-demand approach. By
using this approach, the system is unavailable only during log analysis and both REDO and

UNDO are deferred to on-demand execution.

Figure 2.3 presents an example of typical times spent in each step of restart recovery using
ARIES. We can see the huge impact on availability, if the system allows new transactions direct
after log analysis, since the log analysis is the fastest step from the restart recovery method,

because it does not require random database reads and page updates.

Log
Analysis “Redo” Phase “Undo”Phase
[~1 sec] [~1 min] [1sec-1 hr]

- — — — — n >
FIGURE 2.3: Example of time spent on restart recovery [1].

Such an approach is possible thanks to new techniques that enable the system to perform recov-
ery incrementally and on demand. Thus, Instant Recovery techniques do not need to complete
the REDO pass to make the system available. The system can be opened to new transactions
immediately after the log analysis phase and recover dirty pages on-demand. Associated with
it, other strategies are used to make the recovery process faster. Instant restore uses indexed
backups and log archives in order to replay the log sequentially, reducing random reads on the
disk.

2.3.1 Single-Page Recovery

Recovery of individual pages on storage is not described by ARIES or any other traditional
failure classes in transactional processing and database systems. Single-Page Recovery [8] ad-
dresses this issue by detecting the failure of an individual page, creating a per-page chain of log

records to recover this page, and replaying these logs to this page.

In order to detect failures and identify the most-recent log record applied for each database
page, the system has a page recovery index for each database or each table space. Each page
of the database has an index entry, which points to the most-recent log record of the page.
Each time the buffer pool writes a dirty page to storage, an entry in the page recovery index

is updated with a new LSN value. Figure 2.4 shows an example of the system when the buffer

Background Theory 10

pool reads and writes the pages A and B. In the page recovery index, there are entries for both
pages, which point to the last log record written in the log. By following the pointer prevLSN

existent in each log record, the system can create a chain of log records specific for each of the

pages.

random random
reads writes Page recovery index

Buffer poo]

-~
~ _ ~ .
k. ! P -
N Nm e Tt e m=m-=—— T

FIGURE 2.4: System example using a page recovery index to identify failures and create chain
of log records.

If a transaction encounters a corrupt page, as in Figure 2.5, the system identifies the single-page
failure, the log chain to this page is retrieved from the log and applied just to this specific page

in the buffer pool before this page is available for the transaction.

single-page failure

Page recovery index

Buffer pool

FIGURE 2.5: Example of single page recovery [9].

Background Theory 11

2.3.2 Instant Restart

Instant restart applies the same operations as in ARIES restart, but it enables incremental and
on demand restoration in the REDO and UNDO phases. Like in ARIES, log analysis must
collect from the log all information necessary to perform UNDO and REDO. It determines all
pages that need to be redone and all transactions that must be undone. In the end of log
analysis, all pages requiring REDO are registered in the buffer pool, which protects all REDO
activity. Similarly, locks in the lock manager protect all UNDO activity [1].

After log analysis is finished, the system is available for new transactions. Figure 2.6 shows
the state of the system at this point. If one of the new transactions requires access to a page
registered in the buffer pool to be recovered, as the page ”B” in the image, single-page REDO
is called to recover this page. It checks the most-recent LSN in the dirty-page table generated
by log analysis and applies the chain of log records for this page. After the page is redone, its
reference is removed from the dirty-page table, avoiding future REDO for this page. Once this

process is finished, the page is released to the transaction

(post-failure) Lock and txn. table

| Running txn. Locks| TTD
fix(B)\
A Y 1
T, lock
conflict!
Buffer pool\b | Aborting txn. |

(pre-failure)

LOG

FIGURE 2.6: Execution of Instant Restart.

As on-demand REDO needs the chain of log records to apply to the pages that need to be
redone, an efficient access to these log records is essential. To achieve acceptable performance,

these log records must remain available, with fast access, preferably in main memory.

Some pages registered in the buffer pool may not be required by any post-failure transaction,
and the buffer pool may decide to write these pages back to disk. When that happens, the
buffer pool must find another page to replace or initiate single-page REDO recovery to recover

this page before writing it [1].

During log analysis, all exclusive locks from transactions active at the time of failure are reac-
quired and their per-transaction log chains ensure their successful rollback. As Figure 2.6 shows,

when a post-failure transaction tries to access a page previously locked by a lost transaction, a

Background Theory 12

lock conflict occurs. At this moment, on-demand UNDO is invoked and the pre-failure transac-
tion is rolled back. If UNDO touches a page still in need of REDO recovery, the page is recovered
as described above. This process continues until the end of the transaction rollback, when a
commit log record is written and the acquired locks are released and subsequently granted to
the new transaction. The process of undoing a log record applied to a page is the same as that

described in ARIES, with compensation log records and UndoNext pointers.

2.3.3 Single-Pass Restore After a Media Failure

As ARIES Restore, Single-Pass Restore [10] is an offline recovery design to restore a media after
a failure. Offline recovery is performed over a replacement media which is formatted and empty.
The full backup and the incremental backups are restored in the replacement media and then
log records are replayed to update the media to the database most-recent state before the crash
and UNDO operations to rollback incomplete transactions. Offline recovery does not allow new
transactions in the system to access the failed media, i.e., if the system is running, the new

transactions can only access other volumes, which may exist in the system.

In the ARIES restore approach, after restoring the backups into the replacement media, the
system starts to replay the log in the same order that the log was created. This process can take
as much time as the system took to generate the log records. This happens because a number of
random read operations executed on the disk. For every log record replayed, the system loads
the page to be restored, replays the log, and writes the page back into the disk. Single-Pass

Restore optimizes this process by using different strategies during log archiving.

In the Single-Pass Restore, the log archive is separated in runs sorted by volume and page
identifiers such that, within each run or partition of the log archive, log records are clustered
and sorted first by volume, then by page identifier, and finally by the original LSN of the log

records.

When compared to a traditional, unsorted log archive, the crucial advantage of a partially sorted
log archive is the efficiency of its use during a restore operation. Replaying the log records in an
unsorted log archive requires many random accesses in the replacement database. In contrast,

a single merge step can merge many runs from a partially sorted log archive.

Another strategy used by log archiving is to suppress and compress log records as much as
possible. All log records not necessary to the restore process, are not archived, saving disk

space and time.

Figure 2.7 presents the system during Single-Pass Restores, with a full backup, incremental
backups, and log archiving runs partially sorted. The restore is executed page by page. After

the system takes the page from the full backup, it applies the incremental backups to this page,

Background Theory 13

and replays all log records from all runs to the page. The page is written to the buffer pool,
which writes it sequentially to the disk. As all logs were already replayed to this page, it will
not be loaded and updated again until the end of the restore process, resulting in a much faster

process than traditional ARIES restore.

Full backup sequential

Incr - merge join sequential -
backups | ALl | writes

Buffer pool Replacement
drive

Partially
sorted log !

archive . I:l

fix A, replay all updates, unfix
fix B, replay all updates, unfix

N

FIGURE 2.7: Single-Pass Restore [9].

2.3.4 Instant Restore After a Media Failure

In previous approaches of restore after a media failure, as the one presented in Section 2.2, the
system needs to perform an offline restore of the media, i.e., the system is unavailable to new
transactions until the media is recovered. Different from these approaches, Instant Restore [1]
permits queries and updates basically immediately after a replacement media is available for
recovery (i.e., formatted but empty). Besides the earlier availability of the system, this approach

also improves considerably the time of restore when compared to ARIES.

The main technique of Instant Restore are on-demand restore operations, which are executed
over segments (a page or a set of contiguous pages). If a transaction tries to access a segment
which was not yet recovered, this particular segment is recovered from the most recent backup
and the log archive. After that, the pages are available to the transaction. The process to
recover the page is very similar to Single-Pass Restore, but instead of to recover an entire

media, Single-Pass Recovery would be applied over segments on-demand.

Background Theory 14

As the system needs to be able to restore the segments fast enough to allow recovery on demand,
as in Single-Pass Restore, the log archive is also partially sorted into runs. However, in order
to access the logs records from the log archive faster and avoid several random reads, the full
backup and the log archive are also indexed [9]. Thus, if a single device fails, recovery from the

log archive is faster than with traditional log replay.

Figure 2.8 presents an example of Instant Restore. The full backup and all the log archive runs
are sorted and indexed. When a segment is loaded into the buffer pool, the backup version
of the page is loaded and the log records to this page are replayed. As they are indexed and
sorted, the system reduces considerably the random access to the disk, which makes this process
much faster than a traditional log replay. After the segment is recovered, the buffer pool will

be responsible for writing it into the replacement drive.

(Indexed)

Full backup -

> P n
N
AN EUHEI" pool Replacement
Ve \

T drive

— —

T~ /‘\

Indexed log archive runs

FIGURE 2.8: Execution of Instant Restore [9].

Chapter 3

Server-Side Implementation

3.1 Main Goals

As already mentioned, the demonstration platform is composed of a Web server and a Web
interface. The platform has in the interface only the logic to send requests to the server and
transform the server response into dashboards and status bars. All the communication is done
through a REST API available in the Web server. This API can be used to insert failures,
consult the state of the system, and start the benchmarks TPC-C [11] and TPC-B [12], which

are implemented as C++ libraries in Zero.

Figure 3.1 shows how the server treats a call to start a benchmark or to generate a failure
when the benchmark is already running. The benchmark is instantiated in the server, and its
implementation gives access to the database environment. If the user inserts a failure, the server
accesses the components present in Figure 3.1 through the benchmark object and generates the
required failure. Currently, the server is able to insert three types of failures: system failure,
media failure, and single-page failure. In case of a media failure, the system sets the volume
as failed; if a single-page failure is inserted, the server takes a page from the buffer, changes its
PageLSN, and writes it back to the disk; finally, for the case of a system failure, the program
requests the buffer to stop any write operation in order to not allow the DBMS to write the
changes to the disk and truncates the log in the current position to not allow any further progress

by running transactions.

As the system recovers from a system failure during restart recovery, we are able to visualize
and compare how ARIES and Instant Recovery behave in such scenario, since Zero has im-
plementations of restart recovery for both techniques. When a media failure or a single-page
failure occurs, we can just observe the behavior of instant recovery, since we did not implement

the media recovery technique of ARIES and ARIES does not implement single-page recovery.

15

Server-Side Implementation 16

DBMS environment

/@Buﬁer pool
Web server Benchmarks Implementation ,’—-@ Volume

.

Log

FIGURE 3.1: System architecture to start a benchmark or generate failures

When the system is running, the server collects statistics from the Zero storage manager using
internal event counters as well as event log records processed from the log. These two sources
of information are merged into a single statistics table and sent back to the interface in a JSON
format [13]. We can visualize the described operations on Figure 3.2, which shows how our

demo program extracts information about the executed operations in the DBMS.

In the following sections, we describe in more detail how each of the server characteristics was

implemented, the necessary changes performed in Zero, and the challenges faced.

3.2 Implementing More Control Over Benchmarks

The benchmarks implemented in Zero run with a predefined configuration to stop. Currently,
these three options are the duration of seconds, number of transactions to execute, and a log
size. For some cases in our demo system, such measures are not necessary. For example, if the
demo user runs the system with a predefined stop, the user needs to insert a failure in a point

before the stop is achieved instead of deciding to insert the failure just based on the database

Server-Side Implementation 17

f 1
, Web EST API HTTP server
interface

System
counters

4

Transaction

logJ

Server
process

Statisti 5

tables

FIGURE 3.2: System architecture to collect statistics [14]

internal behavior. Based on that, we create a new option to run benchmarks indefinitely and

only stop on request of the user.

By running the benchmark indefinitely, the user can observe statistics for the period of time
that he wants and insert the failures at any point during this time. We also implemented an
option to stop the benchmark at any point in time, which gives the user more control over the
system. Such option is just available through the Web server since Zero does not provide any

interaction with the user during its execution on the terminal.

3.3 Inserting Failures

In order to demonstrate the recovery process of Zero, we need to be able to insert failures in
the system. As we demonstrate three cases of recovery, we had to insert a failure for each of
them. Therefore, our system is able to insert three kinds of failures in the database system:
system crash, which is used to showcase restart recovery; media failure, which starts the restore
recovery; and page failure, which corrupts a page on storage so that it is eventually recovered

by single-page recovery.

When a crash occurs, the system stops immediately. It is not able to finish its transactions
nor create any other log record to be used during the restart recovery. Zero had already an
implementation of such a failure, called dirty shutdown. This implementation stops the system
during its process. However, the existing transactions were still able to abort and to write
additional log records and other operations of the system may also write additional log records,
as a checkpoint for instance. In order to insert a failure more similar to a real crash, we
implemented a new shutdown mode, called filthy shutdown, which does not write any additional

information for recovery.

Server-Side Implementation 18

2: Buffer stops to write
pages into the disk

Buffer pool

3: Resize log

1: Read log size

Log

F1GURE 3.3: Implementation of shutdown filthy

Filthy shutdown implementation reads the size of the log in the moment that the routine is
called. After that, it executes a call to the buffer manager requesting that it does not write
any pages to the disk. Finally, before the shutdown process finishes, the log file is truncated
to its size at the simulated crash moment. This truncation needs to occur because some other
operations still write into the log, as the checkpoint, and the execution of such operations would
hurt the simulation of a crash. As such writes are executed, we have the eventual problem
of a new log file created during the process of shutdown. If such log is created, it is removed
before we shut down the system. This pragmatic approach provides all mechanisms necessary
to simulate a true system failure without the implementation efforts and subtleties involved in

immediately stopping all system services and concurrent user transactions.

Figure 3.3, presents the iteration of the server with the components of the DBMS when the
system performs the filthy shutdown. As the benchmark has access to the DBMS environment,
all changes are executed through calls to the benchmark instance, however, the benchmark is

hidden from the figure to facilitate its visualization.

The next failure implemented for the Web server was media failure. As Zero had already
the implementation of a media failure, we just had to adapt it to the Web server code. The
implementation receives a parameter informing a delay to start the media failure and, once this
delay is reached, the system marks the media as failed, which starts media recovery. This delay

parameter used is necessary for Zero for two reasons: first, since Zero was not implemented

Server-Side Implementation 19

as an iterative system, it can only execute operations defined before the benchmark starts.
Therefore, the media failure could not be called during execution. Second, Zero is implemented
for research. The time that the workload will run before the failure occurs is important for the
researcher to be able to reproduce the exact environment used during the tests. However, in
our demo platform, the use of this parameter is unnecessary, since we expect that the failure
occurs moments after the demo user calls this failure. Therefore, when the server receives a
request for a media failure, it just uses the Zero’s crash implementation and sends zero as the

delay parameter. The media is instantly marked as failed and the system starts to recover.

The demonstration of single-page recovery is the most challenging. As this recovery process
occurs only if the workload accesses the page marked as corrupted, we had to be sure that the
chosen page to insert the failure will be accessed. As we cannot be sure about it, since we cannot
predict the workload behavior, our strategy was to choose a page present in the buffer, since
there is a probability that the workload will access this page and, therefore, start the single-page

recovery.

Once the failing page is chosen, we simply change its PageLSN value to zero and inform the
buffer component to remove the page from the buffer pool. Before the buffer component removes
the page from memory, it writes the page back to the disk, saving the changes that we made.
When the page is stored on the disk, the benchmark may access this page, if it happens the
system will verify the wrong PageLSN and will start the single-page recovery. However, as

previously stated, we cannot predict when this process will occur and it may never occur.

3.4 Extracting the Recovery Status

The server presents in its API an operation to consult the state of the recovery processes. There
are five tracked activities: log analysis, REDO pass, UNDO pass, media recovery, and single
pages recovered. The first three are related to the restart recovery, and the last one shows the

pages recovered due to the insertion of a single-page failure.

As log analysis reads a determined number of log records, we would like to present its progress,
by informing the percentage of log records scanned at the moment that the user consults the
system. However, due its fast process, we opted for presenting only if this process has finished

or not.

When log analysis is completed, we have a table containing a list of all dirty pages and all
lost transactions. In order to present the REDO pass progress, we consult the number of dirty
pages on this table and start to track, with a counter, every page recovered by single-page
recovery, since this is the process used to recover each dirty page. Such an approach can lead

to an imprecise result because, if other failures occur and other pages are recovered during this

Server-Side Implementation 20

process, they would be counted as part of the REDO progress since both cases are treated by
single-page recovery. We assume that such a case does not happen or does not have a big impact

on the progress status.

In order to present the UNDO progress, we consult the number of loser transactions and the
number of active transactions in the system. This approach is used to verify if log analysis has
restored all the loser transactions in order to UNDO the operations. Once these transactions
work are restored in the system, they behave as normal transactions, and we do not track their

behavior.

The single-page recovery metric is a counter informing how many single pages were recovered.
This counter is the same used during the computation of REDO progress minus the number of
pages in the table generated by log analysis. This approach leads to the same imprecision of
the REDO metric. If a new dirty page is recovered while REDO is still running, it would not

count it as a new dirty page recovered, but as part of the REDO progress.

The last recovery mode is media recovery. We track media recovery progress by counting how
many pages were recovered by the segment restoration procedure. The counter is incremented
by the number of pages existing in the recovered segment and then we divide this value by the
number of pages existing in the volume when it failed, which results in a percentage of pages

recovered.

3.5 Gathering Statistics

Besides the recovery state of the system, the server also displays information about other in-
ternal operations being executed in the database. This information is collected through event
counters and by reading log records and identifying the operations that generated them. The
implementation of this process is presented here in order to cover completely the system and

its functions.

The event counters are variables that are incremented when a certain operation occurs. By
counting how many times an operation is performed, we can see patterns during the execu-
tion of the benchmark and compare the performance of the system in different situations, as
using different recovery techniques, for instance. To illustrate how counters are produced and

collected, we take an example scenario using the buffer manager component.

Inside the buffer manager component, there is a process called cleaner, which reads all pages
from memory and writes the dirty pages to disk. If two or more pages in the memory can
be written in sequence, the cleaner process can write these pages with a single 1/O operation;

otherwise, it needs to perform two or more accesses, which increase the write cost. Every time a

Server-Side Implementation 21

write operation is executed, the event counter that tracks this operation is incremented. When
the benchmark is finished, we can check how many write operations the cleaner has executed

and which one of them was the most frequent.

In our studies, the most interesting counters are the ones concerned with transaction manager
activities, since they show when the system becomes ready to accept new transactions and
how transaction throughput develops while the system is still recovering. In order to track
these numbers, Zero has counters to track activities from the Transaction manager, such as new

transactions, committed transactions, and aborted transactions.

The other approach used to collect information from the DBMS is by analyzing the log file that
it produces. Log records stored in the log file contain information such as checkpoints, page
changes, compensations, etc. We can read this information to determine when operations were
executed and how many of them were performed. However, besides these log records already
described, Zero also creates log records to track the start and end points of certain system

activities, such as checkpoints, the phases of recovery, or the write of a dirty page.

In order to grab the information contained in the log, we use a tool that reads the log records
and analyzes them. This analysis tool reads log record after log record in order to create a
table, which presents the logged operations performed. This table contains a list of different
types of operations performed and how many times they were performed during the execution

of the workload.

In order to identify the events in the recovery log, the tool uses a field, which is presented in every
log record and identifies the type of log record, and by analyzing this field, the tool can identify
the operation that has generated this log record. As an illustration of this scenario, imagine
that the tool reads a log record and verifies that its log type is the commit of a transaction. At
this point, the tool knows that a transaction has committed and the table can be updated by

incrementing the position, which refers to committed transaction operations.

As we were also interested in the timeline of performed operations, a special type of log record
was introduced to determine the span of every second of the database execution. The system
creates a log record of this type every second with the only goal of informing the tool that
another second has passed since the last time a log record from this type was created. When
the tool finds this log record, it stops to count operations in the current column of the table and
starts to increment the next column, which results in a table representing the log and grouping

logged operations executed every second. Figure 3.4 illustrates the creation of this table.

Server-Side Implementation 22

LOG
=
=
=<
N

sec| Y | Z | Z |sec| X [X | X | Z |sec

Op
X
H_J . Y 4 \ Y 4 I— Type of log record

Op X 2 0 3
opY 1 1 0
opz 1 2 1

Log records table

FIGURE 3.4: Creating a table to represent the logged operations

3.6 Counters Result Table

After gathering the data from the log and the list of counters updated in memory, we join these
two sources in one table, so clients of the Web server do not have to make more than one request

to query the internal state of the system.

The two sources of the database state are represented in different models: one as a table with a
timeline showing the number of operations performed every second and the other only as a list
containing the total number of events, without any notion of time. In order to join both sources,
we had to decide which format would be more appropriated for a final table. As the notion
of time was important to us, we decided in favor of the option with a timeline of performed
operations. This decision forced us to present the counters existing in memory in the same way

as the table based on the log (i.e. separated by seconds).

In order to implement the notion of time for event counters, we created a periodic process that
reads the counters from the memory every second and inserts this information into a table,
which has the same format of the table of logged operations. After every second, a new row in

this table is created.

When a client requests the internal state of the database, the system joins the table created
by our new process with the table created based on the log and creates a final table with both
sources of information. This table is then converted into the JSON format, which makes it easy
for external programs to use this data, since there are several frameworks designed to work with

JSON. Finally, the Web server returns this table to the client.

Server-Side Implementation

23

TABLE 3.1: API routines

Zero: TPC-B and TPC-C.

Name Description Parameters
start kits Starts the database and runs one | Benchmark; Load
of the two benchmarks available in | database; No stop;

Duration; Transaction;
Number of threads.

is_kits_running

Returns the state of the database,
i.e., whether it is running or not.

No parameters.

REDO Pass, UNDO pass, media re-
covery, and single-page recovery.

counters Returns all counters in the sys- | No parameters.
tem, from both the log and system
events.
get_stats Returns counters collected from sys- | No parameters.
tem events.
agg-log Returns counters collected from the | No parameters.
log.
crash Inserts a system failure. No parameters.
mediafailure Inserts a media failure. No parameters.
singlepagefailure | Inserts a single-page failure. No parameters.
recoveryprogress | Verifies the state of log analysis, | No parameters.

3.7 REST API

Our platform makes the JSON response available through a Web server, which also accepts a

command to initiate the benchmarks. This Web server was built during the mentioned guided

research using the Boost.asto library [15], and it is built in Zero in order to run the benchmarks

and collect the database state.

The server had already five routines presented in its API.

We changed the start_kits routine, in order to send more parameters through post calls, and

we added four additional routines, which are responsible for inserting failures and showing the

progress of instant recovery. Table 3.1 presents the API routines, together with their descriptions

and parameters.

Chapter 4

Web Client Implementation

4.1 Goals

The main goal of the interface is to facilitate the interaction between the user and the server.
We achieve that by creating a Web interface that enables the user to inject failures in the DBMS
by clicking on buttons and visualize the recovery process and the server-internal state through
simple graphics and progress bars. This interface can run in any simple Web server, and it does
not need to run on the same machine of the Database used to insert failures and observe the

recovery process.

The communication between the interface and the database happens through the REST API
available in the Web server. We tried to show the progress of the recovery and the state of the
other operations as close as possible to the moment that the operation is happening, however,
as each call to the database requires access to variables used by the system, if we execute too
many of these calls in a small period of time, the database performance is negatively affected.
Therefore, we execute these calls to the server every three (for recovery state) and five (for the
other operations) seconds. Such an approach results in a delay in our interface comparing to
the event counters in the database. This delay is considered acceptable, since our goal is to

demonstrate the progress and, even with the delay, this goal is achieved.

4.2 Architecture

The base architecture of the interface was developed is described here in order to create a better

understanding of the system and of our enhancements.

The architecture of the Web interface is based on Model-View-Controller (MVC) [16] pattern,

which creates a clear division among the data (i.e. model), the interface presented to the user

24

Web Client Implementation 25

Controller

Update Update

Notify User Action

Model View

FIGURE 4.1: Model-View-Controller pattern.

(i.e. view), and the code that controls the interface and updates the model. Figure 4.1 shows

the interaction among these components.

The Model represents the information (the data) of the application and the business rules
used to manipulate the data. In our implementation, we have the counters and the progress
of the recovery processes as Models, which store the data recovered from the REST API and
information regarding its presentation in the interface, such as the counters currently selected for
presentation, their names, and the axis in which to plot the counter values (right or left Y-axis).
The View corresponds to elements of the user interface such as text, checkbox items, graphics,
progress bars, and other elements presented in the Web page. Finally, the Controller manages
the communication between Model and View. It handles user actions such as keystrokes and
mouse clicks and takes the appropriated actions by updating the interface or the models. It
also manages the communication with the Web server, sending the user request via the REST
API and reading the response. Once the controller gets the response, it feeds it into the models

existing in the system, updating the dashboards.

4.3 Interface and its Options

The interface was created using frameworks that facilitate the design and functions implementa-
tion. The charts are generated using the JavaScript version of Plotly [17], which is a framework
to create charts, and the design is based on Bootstrap [18], which is an HTML, CSS, and

Web Client Implementation 26

Benchmark is not running

@ = i

Y1
Y2

Ongoing Recovery Processes

Restart
Log Analysis:

REDO:

UNDO:

Restore
Progress: 0%

FIGURE 4.2: Interface of the system.

JavaScript framework to create Web pages. This framework adapts the interface to different

devices such as desktops, tablets, and smartphones.

Figure 4.2 shows a screenshot of our demo interface before a benchmark starts. At the top of the
interface, we can see the status of the benchmark, i.e., whether it is idle, initializing, or running.
Below it, we have the dashboard to the user interaction with the system. The first field on the
left of the screen is used to inform the server IP address, which runs our Web server with the
database. On the right of it, there is a connect button, which connects the interface with the
server and enables the other buttons in the screen. Then we have the buttons to adjust the
benchmark parameters, the counters to visualize (which can be modified while the benchmark
runs). Right below the controller buttons, there are two buttons used to inject two types of
failures in the DMBS.

Below the dashboard of interaction, we present the counters on a dynamic chart. As different

operations can be executed with higher frequency than others, we present the option to see

Web Client Implementation 27

N
benchmark=tpcc
gueried_sf=1
threads=1

duration=0
no_stop=trus
load=false
=m_archiving=true
=m_restart_instant=tru

®

-

FIGURE 4.3: Options to run the workloads.

them in two different Y-axes. We group the ones with a lower frequency of execution in Y1 and
the others in Y2.

After the chart of counters, we have the four bars to show the on-going recovery process. First
the three bars on the instant restart section, which shows the restart recovery, and then the
fourth bar on the instant restore section, which shows the progress of media recovery together

with a number of pages recovered.

The Adjust Workload Parameters button opens the pop-up menu presented on Figure 4.3. On
this menu, we are able to use the same options present in Zero. If we want to run the benchmark
indefinitely, we set the option no_stop to true, if we want to run the benchmark during a certain

period of time, we set the option duration, and so on.

By clicking on the Choose counters button, a pop-up menu with (currently) 276 event counters
is presented. The selected counters will be displayed on the chart and can be changed during

the execution. Figure 4.4 shows this pop-up menu and some of the existing counters.

Web Client Implementation

28

Check desired counters

[comment

[chkpt_begin

[chkpt_xct_lock

[chkpt_end

[xct_fresing_space
[alloc_page

[append_sxtent

[redo_done

| COMmpensate

| chxpt_bf_tab

| chxpt_restore_tab
| add_backup

| ®et_end

| dealloc_page

| loganalysis_begin
| undo_dona

| skip

| chikpt_xct_tab

| chkpt_backup_tab
| ket _abort

| xct_end_group

| create_store

| loganalysis_end

| restore_Degin

FIGURE 4.4: Pop-up to select the counters.

Chapter 5

Injecting Failures and Observing

Recovery Processes

5.1 Environment Setup

As already mentioned, the demo platform can inject three types of failures. However, due
limitations of our platform, we can just present the recovery of a crash for ARIES and Instant
Recovery and the recovery of a media failure for Instant Recovery. The recovery of single-page
failures is supported by the system, but it was removed from the Web interface because there is
no interesting visualization for that process. Instead, a status message is printed at the console

of the server component.

We executed the tests using the TPC-C benchmark with 10 worker threads and scale factor 10
in such a way that each hardware thread executes transactions referring to a single warehouse
of the benchmark. Before injecting a system failure, the database is loaded and the benchmark
is executed for two minutes, as presented in Figure 5.1. Such time was enough to generate dirty

pages to be recovered by Instant and ARIES restart.

The server used to run the benchmarks has two Intel Xeon E5420 processors, each with 4 out-
of-order cores running at 2.5 GHz and having a cache size of 6 MB. The server has 32 GB of
RAM. The operating system running on the server is Ubuntu 15.04.

5.2 Injecting System Failures and Instant Restart Processes

After the system loads the database and runs the TPC-C benchmark for 2 minutes, we clicked

on the System Failure button, which caused a crash, as presented in Figure 5.1. As shown

29

Injecting Failures and Observing Recovery Processes 30

Initizlizing

Server address! | hitp/locakhost:2080 m Adjust Workload Parameters Start Banchmark

Y1
[
&
a

100 20

500 1000 1500 2000 2500

—— Txn. commit rete(YL)

Ongoing Recovery Processes

Restart
Log Analysis:
REDO:

UNDO:

Restore
Prograss: 0%

FI1GURE 5.1: Loading database and injecting system failure.

in Figure 5.2, after approximately 180 seconds, the system starts to commit transactions even
with the REDO process running, as we can observe on the progress bars at the bottom of the
image. We also observe that, as the recovery process progresses, the system is able to commit

more transactions per second.

In Figure 5.3, the restart process is completed and the system achieves the top of its performance

after approximately 10 minutes running.

5.3 Injecting System Failures and ARIES Restart Processes

The next experiment uses the same setup as the previous one, but this time with ARIES restart.
We can observe in Figure 5.4 that after approximately 500 seconds, the system started to commit
transactions and directly achieves the highest performance, since the REDO pass has already
executed and the buffer pool is already warmed up. The difference is 5 minutes and 20 seconds

longer than Instant Restart took to accept new transactions, which is a big difference in this

Injecting Failures and Observing Recovery Processes 31

Benchmark s running

Server address: | http:ocalhost:2080 Adjust Workload Parameters Start Benchmark

System Failure Media Failure

12

25| i
20| B

15| s o
10 4
5 A 2
Mt ,
300 400 500

a 100 200

i

—— Txn. commit r2te(YL1)

Ongoing Recovery Processes

Restart

Log Analysis: 100%

REDO: | 6%

UNDO: 100%

Restore

Progress:

FIGURE 5.2: Instant restart.

small experiment with TPC-C running for only 2 minutes. Such a difference would be even
greater in a scenario with the benchmark running for a longer time, which would result in a

REDO pass taking longer to process.

5.4 Injecting a Media Failure and Running an Instant Restore

Process

In order to introduce a media failure, we started the system and waited until the three steps of
instant restart were completed, which can be observed on the three bars of the instant restart
section. Such a procedure is not needed, since the system can recover from a media failure while
it still recovers from system failures. However, we opted for this procedure in order to observe

the system achieve the highest performance.

Injecting Failures and Observing Recovery Processes 32

Benchmark is running

Server address: | http:/localhost:3080 m Adjust Workioad Parameters Start Benchmark

System Failure Media Failure

; 6

Y2

1] z
) oY NA.AJLJM
[} 300

a 100 201

—— Twn. commit rate(¥1}

Ongoing Recovery Processes

Restart

Log Analysis: 100%

REDO: 100%

UNDO: 100%

Restore

Progress:

FI1GuRrE 5.3: Instant Restart completed.

Once instant restart was completed, we injected a new media failure by clicking on the media
failure button. This action starts the instant restore process and its progress can be observed

on the bar of the instant restore section.

Figure 5.5 shows the system recovering from a media failure. While instant restore happens,
we observe the transaction commit rate. Once the failure occurs, the activity of this operation
reduces dramatically. However, the system is still able to commit transactions, which would
be impossible by using an offline restore approach. Figure 5.6 shows the state of the same
operation after the media is restored, and we can observe how fast the system recovers to

commit transactions at a similar rate as before the failure happened.

Injecting Failures and Observing Recovery Processes

Benchmark is running

Server address: | hitp:ocalhost: 8080 m Adjust Workioad Parameters Start Benchmark

System Failure Media Failure

5
150

4
100| 3

>

z
50

1

400 s00 500 700 a0

a 100 200 300

Y2

——— Txn. commit rate(¥l) —— Txn. commit rate(¥1l) —— Txn. commit rate(¥L}

Ongoing Recovery Processes
Restart

Log Analysis:

UNDO:

Restore
Progress:

REDO:

FIGURE 5.4: ARIES Restart completed.

Injecting Failures and Observing Recovery Processes

Benchmark s running

Server address: | hitp/localhost: 2080 Adjust Workload Parameters $Start Benchmark

System Failure Media Failure

Y1
Y2

oMM AN anAn A an A DA AN ANAN A AN ar AN N AAAAA An ArrA A A 5

960 280 1000 Lozo 1040 1080 LoEd 1100

—— Txn. commit rate(Y1)

Ongoing Recovery Processes

Restart

Log Analysis:
REDO:
UNDO:
Restore

Progress: — —

FIGURE 5.5: System state while Instant Restore is in progress.

Injecting Failures and Observing Recovery Processes

Benchmark s runming

Server address: | http/localhost: 2080 Adjust Workioad Paramebers: Start Banchmark

System Failure Media Failure

a0

1

TRy

a 200 400 600 EBDD 1000 1200 L400

—— Txn. commit r2te(YL)

Ongoing Recovery Processes

Restart
Log Analysis: 100%
REDC: 100%
UNDO: 100%
Restore
Progress: 100%

FIGURE 5.6: System state after the system recovered from a media failure.

Chapter 6

Conclusion

As every system eventually fails, recovery techniques have a direct impact on system availability.
This thesis implemented a demonstration platform to showcase these database recovery tech-
niques based on write-ahead logging. It focused on modern instant recovery techniques that
compete with traditional ARIES. On this platform, the database user is able to run different
benchmarks in a prototype database system and observe, through charts and progress bars,
how the system recovers from injected failures. The prototype system is able to recover from
single-page failures by using Single-Page Recovery, media failures by using Instant Restore, and

system failures by using either Instant Restart or ARIES restart.

The main advantage of Instant Recovery is the possibility to recover pages on demand. Because
of this possibility, if a crash occurs, the system can be available for new transactions almost
instantly after the system restarts. In this scenario, pages on disk requested by new transactions
are verified, and if they are considered as failed, they are recovered and then made available for

the transactions.

Another advantage of Instant Recovery is the possibility to keep the system available for new
transactions even after a media failure. This is possible because Instant Restore can also be
executed on demand. In order to be able to recover the media fast enough to execute it on
demand, Instant Restore uses a set of strategies to turn the process of restore faster than
traditional restore approaches. Among these techniques, there are the indexed full backups and
indexed log archive, which are also partially sorted, reducing random reads on the disk, making

this technique even faster than an offline traditional restore.

When implementing this demo platform, we chose a two-tier architecture, which allowed us to
have our interface separated from our server and be able to run in any Web browser. Fur-

thermore, as our Web server was developed independently of the interface, the development

36

Conclusion 37

of further interfaces for different platforms is also independent of the server, since the only

requirement for the interface is to be able to execute REST calls and interpret JSON replies.

The server was implemented coupled with the database, which allowed the server to get the
values of internal variables of the database and have access to its internal components. This
access was important to present the internal state of the DBMS and inject failures in the system
in order to start the recovery process. There are three possible failures that can be injected into
the DBMS: single-page failure, media failure, and system failure, which simulates the crash of
the system. Each of these failures is related to one recovery process, and the hardest to simulate
is the recovery of a single page, since we create failures in random pages and these pages will be
restored only if the system loads them into the buffer pool. As we cannot predict if the system

will use this page again, we cannot guarantee its recovery.

During the execution of our tests with the demonstration platform, we were able to see how
fast instant recovery allows new transactions, since it does not wait until the REDO pass is
completed. We also compared this behavior to the traditional ARIES restart recovery, which
waits for the REDO pass to complete, thus taking longer to accept new transactions. When we
observed Instant Restore in action, we were able to see the existence of new transactions on the
system even in the presence of a media failure, i.e., while a replacement disk was being restored.
Such scenario would not happen if the system used a traditional restore design, since the system

would be able to commit new transactions only after the restore process is completed.

Bibliography

1]

Goetz Graefe, Wey Guy, and Caetano Sauer. Instant Recovery with Write-Ahead Logging:
Page Repair, System Restart, and Media Restore. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2014.

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES: A
transaction recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst., 17(1):94-162, March 1992. ISSN
0362-5915.

Gilson Souza. Implementing a Demonstration of Instant Recovery of Database Systems.
TU Kaiserslautern, 2017.

Zero Storage Manager. URL https://github.com/caetanosauer/zero.

Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak
Falsafi. Shore-MT: A Scalable Storage Manager for the Multicore Era. In Proc. EDBT,
pages 24-35, 2009. ISBN 978-1-60558-422-5.

Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recovery.
ACM Comput. Surv., 15(4):287-317, December 1983. ISSN 0360-0300.

C. Mohan and I. Narang. An efficient and flexible method for archiving a database. ACM
SIGMOD, 12(1):139-146, 1993.

Goetz Graefe and Harumi A. Kuno. Definition, detection, and recovery of single-page
failures, a fourth class of database failures. CoRR, abs/1203.6404, 2012. URL
http://arxiv.org/abs/1203.6404.

Caetano Sauer, Goetz Graefe, and Theo Héarder. Instant restore after a media failure.
CoRR, abs/1702.08042, 2017.

Goetz Graefe Caetano Sauer and Theo Haerder. Single-pass restore after a media failure.
BTW, LNI 241, March 2015. URL http://wwwlgis.informatik.uni-k1.de/cms/
fileadmin/publications/2015/SinglePassRestore.pdf.

38

https://github.com/caetanosauer/zero
http://arxiv.org/abs/1203.6404
http://wwwlgis.informatik.uni-kl.de/cms/fileadmin/publications/2015/SinglePassRestore.pdf
http://wwwlgis.informatik.uni-kl.de/cms/fileadmin/publications/2015/SinglePassRestore.pdf

Bibliography 39

[11]

[12]

[14]

[15]

[17]

[18]

TPC. TPC benchmark C standard specification, Feb 2010. URL
http://www.tpc.org/tpcc.

TPC. TPC benchmark B standard specification, Feb 1994. URL
http://www.tpc.org/tpch.

ECMA. The JSON data interchange format., Oct 2013. URL
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.

Caetano Sauer, Gilson Souza, Goetz Graefe, and Theo Harder. Come and crash our
database! — Instant recovery in action. EDBT demo track. EDBT, 554-557, 2017.

Boost. Boost.Asio. URL
http://www.boost.org/doc/1ibs/1_62_0/doc/html/boost_asio.html.

Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view controller
user interface paradigm in Smalltalk-80. Journal of Object-OrientedProgramming,

1(3):26-49, August 1988. URL http://arxiv.org/abs/1702.08042.
Plotly. URL https://plot.ly/.

Bootstrap. URL http://getbootstrap.com/.

http://www.tpc.org/tpcc
http://www.tpc.org/tpcb
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.boost.org/doc/libs/1_62_0/doc/html/boost_asio.html
http://arxiv.org/abs/1702.08042
https://plot.ly/
http://getbootstrap.com/

	Declaration of Authorship
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Background Theory
	2.1 Database Recovery
	2.2 ARIES
	2.2.1 Restart After a System Failure
	2.2.2 Database Backups and Log Archive
	2.2.3 Restore After a Media Failure

	2.3 Instant Recovery
	2.3.1 Single-Page Recovery
	2.3.2 Instant Restart
	2.3.3 Single-Pass Restore After a Media Failure
	2.3.4 Instant Restore After a Media Failure

	3 Server-Side Implementation
	3.1 Main Goals
	3.2 Implementing More Control Over Benchmarks
	3.3 Inserting Failures
	3.4 Extracting the Recovery Status
	3.5 Gathering Statistics
	3.6 Counters Result Table
	3.7 REST API

	4 Web Client Implementation
	4.1 Goals
	4.2 Architecture
	4.3 Interface and its Options

	5 Injecting Failures and Observing Recovery Processes
	5.1 Environment Setup
	5.2 Injecting System Failures and Instant Restart Processes
	5.3 Injecting System Failures and ARIES Restart Processes
	5.4 Injecting a Media Failure and Running an Instant Restore Process

	6 Conclusion
	Bibliography

