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Abstract

Media failures usually leave database systems unavailable for several hours un-
til recovery is complete, especially in applications with large devices and high
transaction volume. Previous work introduced a technique called single-pass re-
store, which increases restore bandwidth and thus substantially decreases time
to repair. Instant restore goes further as it permits read/write access to any
data on a device undergoing restore—even data not yet restored—by restoring
individual data segments on demand. Thus, the restore process is guided pri-
marily by the needs of applications, and the observed mean time to repair is
effectively reduced from several hours to a few seconds.

This paper presents an implementation and evaluation of instant restore.
The technique is incrementally implemented on a system starting with the tra-
ditional ARIES design for logging and recovery. Experiments show that the
transaction latency perceived after a media failure can be cut down to less than
a second. The net effect is that a few “nines” of availability are added to the
system using simple and low-overhead software techniques.

1. Introduction

Advancements in hardware technology have significantly improved the per-
formance of database systems over the last decade, allowing for throughput in
the order of thousands of transactions per second and data volumes in the order
of petabytes. Availability, on the other hand, has not seen drastic improve-
ments, and the research goal postulated by Jim Gray in his ACM Turing Award
Lecture of a system “unavailable for less than one second per hundred years” [1]
remains an open challenge. Improvements in reliable hardware and data center
technology have contributed significantly to the availability goal, but proper
software techniques are required to not only avoid failures but also repair failed
systems as quickly as possible. This is especially relevant given that a signif-
icant share of failures is caused by human errors and unpredictable defects in
software and firmware, which are immune to hardware improvements [2]. In the
context of database logging and recovery, the state of the art has unfortunately
not changed much since the early 90’s, and no significant advancements were
achieved in the software front towards the availability goal.
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Instant restore is a technique for media recovery that drastically reduces
mean time to repair by means of simple software techniques. It works by ex-
tending the write-ahead logging mechanism of ARIES [3] and, as such, can be
incrementally implemented on the vast majority of existing database systems.
The key idea is to introduce a different organization of the log archive to enable
efficient on-demand, incremental recovery of individual data pages. This allows
transactions to access recovered data from a failed device orders of magnitude
faster than state-of-the-art techniques, all of which require complete restoration
of the entire device before access to the application’s working set is allowed.
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Figure 1: Effect of instant restore

The problem of in-
efficient media recovery
in state-of-the-art tech-
niques, including ARIES
and its optimizations, can
be attributed to two ma-
jor deficiencies. First,
the media recovery pro-
cess has a very ineffi-
cient random access pat-
tern, which in practice
encourages excessive redundancy and frequent incremental backups—solutions
that only alleviate the problem instead of eliminating it. The second deficiency
is that the recovery process is not incremental and requires full recovery before
any data can be accessed—on-demand schedules are not possible and there is
no prioritization scheme to make most needed data available earlier. Previous
work addressed the first problem with a technique called single-pass restore [4],
while this paper focuses on the second one.

The effect of instant restore is illustrated in Fig. 1, where transaction through-
put is plotted over time and a media failure occurs after 10 minutes. In single-
pass restore, as in ARIES, transaction processing halts until the device is fully
restored (the red line in the chart), while instant restore continues processing
transactions, using them to guide the restore process (blue and green lines). In
a scenario where the application working set fits in the buffer pool (blue line),
there is actually no visible effect on transaction throughput.

In the remainder of this paper, Section 2 describes related work, both previ-
ous work leading to the current design as well as competing approaches. Then,
Section 3 describes the instant restore technique. Finally, Section 4 presents an
empirical evaluation, while Section 5 concludes this paper.

A high-level description of instant restore was previously published in a book
chapter [5] among other instant recovery techniques. This paper, which is an ex-
tension of an earlier conference publication [6], contributes with a more detailed
discussion of the design and implementation aspects as well as an empirical
evaluation of the technique with an open-source prototype.
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Table 1: Failure classes, their causes, and effects

Failure class Loss Typical cause Response

Transaction Single-transaction progress Deadlock Rollback

System Server process (in-memory state) Software fault, power loss Restart

Media Stored data Hardware fault Restore

Single page Local integrity Partial writes, wear-out Repair

2. Related work

2.1. Failure classes and assumptions

Database literature traditionally considers three classes of database failures
[7], which are summarized in Table 1 (along with single-page failures, a fourth
class to be discussed in Section 2.6). In the scope of this paper, it is impor-
tant to distinguish between system and media failures, which are conceptually
quite different in their causes, effects, and recovery measures. System failures
are usually caused by a software fault or power loss, and what is lost—hence
what must be recovered—is the state of the server process in main memory;
this typically entails recovering page images in the buffer pool (i.e., “repeating
history” [3]) as well as lists of active transactions and their acquired locks, so
that they can be properly aborted. The process of recovery from system failures
is called restart.

Instant restart [5, 8] is an orthogonal technique that provides on-demand,
incremental data access following a system failure. While the goals are sim-
ilar, the design and implementation of instant restore require quite different
techniques.

In a media failure, which is the focus here, a persistent storage device fails
but the system might continue running, serving transactions that only touch
data in the buffer pool or on other healthy devices. If system and media failures
happen simultaneously, or perhaps one as a cause of the other, their recovery
processes are executed independently, and, by recovering pages in the buffer
pool, the processes coordinate transparently.

The present work makes the same assumptions as most prior research on
database recovery. The log and its archive copy reside on “stable storage”, i.e.,
they are assumed to never fail. We consider failures on the database device only,
i.e., the permanent storage location of data pages. Recovery from such failures
requires a backup copy (possibly days or weeks old) of the lost device and all
log records since the backup was taken; these may reside either in the active
transaction log or in the log archive. The process of recovery from media failures
is called restore. The following sections introduce some background techniques
and briefly describe previous restore methods.

2.2. Logging

This paper is based on write-ahead logging as implemented in ARIES [3],
most importantly the concept of physiological logging. With physiological log-
ging, every logged update is associated with a database page, which is a physical
unit of data storage and fault containment. Within a database page, the changes
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described in a log record may be logical; the insertion of a record in a B-tree
page, for example, only needs to log the key and the record’s contents rather
than a delta of physical contents of the page. Physiological logging guaran-
tees the important property of “recovery independence amongst objects” [3],
which, in the case of instant recovery techniques, enables on demand recovery
of individual pages or contiguous sets thereof.

The concept of logical undo with compensation is also a key component or
ARIES on which the techniques in this paper rely. It dictates that undo actions
must be the logical compensation of the original action; “logical” here implies
granularity greater than a page, i.e., a table, index, or the whole database. For
example, an insertion of a record on a table is undone as the deletion of that same
record from that table, regardless of the effects on physical data structures—
during undo, the record might have been moved to a different page due to a page
split operation, which is logged as a system transaction [9] (also known as top-
level action in ARIES [3]). These undo actions generate special redo-only log
records known as compensation log records (CLR), which are processed like any
other log record during redo but guide the undo logic in a way that guarantees
idempotence, i.e., recovery actions are applied exactly once, even in the presence
of system failures. The key advantage of this undo scheme is that it enables
partial rollbacks, and, most importantly, record-level locking, i.e., concurrency
control with granularity finer than a page.

2.3. ARIES restore

sequential log scan
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Figure 2: Random access pattern of ARIES restore

Techniques to recover databases
from media failures were ini-
tially presented in the seminal
work of Gray [10] and later
incorporated into the ARIES
family of recovery algorithms
[3]. In ARIES, restore after
a media failure first loads a
backup image and then ap-
plies a redo log scan, similar
to the redo scan of restart af-
ter a system failure. Fig. 2
illustrates the process, which
we now briefly describe. Af-
ter loading full and incre-
mental backups into the re-
placement device, a sequen-
tial scan is performed on the log archive and each update is replayed on its
corresponding page in the buffer pool. A global minLSN value (called “media
recovery redo point” by Mohan et al. [3]) is maintained on backup devices to
determine the begin point of the log scan.

Because log records are ordered strictly by LSN, pages are read into the
buffer pool in random order, as illustrated in the restoration of pages A and
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B in Fig. 2. Furthermore, as the buffer pool fills up, they are also written in
random order into the replacement device, except perhaps for some minor degree
of clustering. As the log scan progresses, evicted pages might be read again
multiple times, also randomly. This mechanism is quite inefficient, especially
for magnetic drives with high access latencies. Thus, it is no surprise that
multiple hours of downtime are required in systems with high-capacity drives
and high transaction rates [4].

Another fundamental limitation of the ARIES restore algorithm is that it is
not incremental, i.e., pages cannot be restored to their most up-to-date version
one-by-one and made available to running transactions incrementally. As shown
in the example of Fig. 2, the last update to page A may be at the very end
of the log; thus, page A remains out-of-date until almost the end of the log
scan. Some optimizations may alleviate this situation (e.g., reusing checkpoint
information), but there is no general mechanism for incremental restoration.
Furthermore, even if pages could somehow be released incrementally when their
last update is replayed, the hottest pages of the application working set are
most likely to be released only at the very end of the log scan, and probably not
even then, because they might contain updates of uncommitted transactions
and thus require subsequent undo. This leads to yet another limitation of this
approach: even if pages could be restored incrementally, there is no effective way
to provide on-demand restoration, i.e., to restore most important pages first.

Despite a variety of optimizations proposed to the basic ARIES algorithm
[3, 11, 12], none of them solves these problems in a general and effective manner.
In summary, all proposed techniques that enable earlier access to recovered data
items suffer from the same problem: early access is only provided for data for
which early access is not really needed—hot data in the application working set
is not prioritized and most accesses must wait for complete recovery.

Finally, commercial database systems that implement ARIES recovery suffer
from the same problems. IBM’s DB2 speeds up log replay by sorting log records
after restoring the backup and before applying the log records to the replace-
ment database [13]. While a sorted log enables a more efficient access pattern,
incremental and on-demand restoration is not provided. Furthermore, the delay
imposed by the offline sort may be as high as the total downtime incurred by
the traditional method. As another example, Oracle attempts to eliminate the
overhead of reading incremental backups by incrementally maintaining a full
backup image [14]. While this makes recovery slightly more efficient, it does not
address the deficiencies discussed earlier.

2.4. Replication

Given the extremely high cost of media recovery in existing systems, repli-
cation solutions such as disk mirroring or RAID [15, 16] are usually employed in
practice to increase mean time to failure. However, it is important to emphasize
that, from the database system’s perspective, a failed disk in a redundant array
does not constitute a media failure as long as it can be repaired automatically.
Restore techniques aim to improve mean time to repair whenever a failure that
cannot be masked by lower levels of the system occurs. Therefore, replication
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techniques can be seen largely as orthogonal to media restore techniques as
implemented in database recovery mechanisms.

Nevertheless, a substantial reduction in mean time to repair, especially if
done solely with simple software techniques, opens many opportunities to man-
age the trade-off between operational costs and availability. One option can be
to maintain a highly-available infrastructure (with whatever costs it already re-
quires) while availability is increased by deploying software with more efficient
recovery. Alternatively, replication costs can be reduced (e.g., downgrading
RAID-10 into RAID-5) while maintaining the same availability. Such level of
flexibility, with solutions tackling both mean time to failure and mean time to
repair, are essential in the pursuit of Gray’s availability goal [1].

Many open-source and commercial database systems provide an additional
level of replication in the form of a hot stand-by server [17, 18, 19, 20]. In
principle, such solutions are orthogonal to media recovery approaches such as
instant restore, in which only the database storage device is assumed to fail and
not the entire server on which the database is running. However, a hot stand-by
server can (and often is) used in practice to recover from a media failure on the
primary server with relatively low mean time to repair, and thus we provide a
brief overview below.

The main idea behind hot stand-by designs is to ship log records continu-
ously from the primary database server to a secondary server, which maintains
a fresh copy of the database by continuously replaying the received log records.
These approaches are very costly, not only in terms of the computational power
required to maintain a fresh database copy on a secondary server, but also in
terms of the added network latency to the commit path of transactions (assum-
ing durability is a requirement, i.e., synchronous replication). Instant restore
makes hot stand-by servers much less appealing as a means to recover from
media failures, because very similar levels of availability can be achieved with a
single (primary) server and thus a significantly lower hardware investment.

Instant restore can also be combined with the related instant restart tech-
nique to provide instant failover [5], a recovery technique for server failures in
networked environments that has substantially lower costs than traditional hot
stand-by techniques.

2.5. In-memory databases

Early work on in-memory databases focused mainly on restart after a sys-
tem failure, employing traditional backup and log-replay techniques for media
recovery [21, 22]. The work of Levi and Silberschatz [23] was among the first
to consider the challenge of incremental restart after a system failure. While
an extension of their work for media recovery is conceivable, it would not ad-
dress the efficiency problem discussed in Section 1. Thus, it would, in the best
case and with a more complex algorithm, perform no better than the algorithm
discussed later in Section 2.6.

Recent proposals for recovery on both volatile and non-volatile in-memory
systems usually ignore the problem of media failures, employing the unspecific
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term “recovery” to describe system restart only [24, 25, 26]. Therefore, re-
covery from media failures in modern systems either relies on the traditional
techniques or is simply not supported, employing replication as the only means
to sustain service during storage hardware faults. As discussed above, while re-
lying on replication is a valid solution to increase mean time to failure, a highly
available system must also provide efficient repair facilities. In this aspect, tra-
ditional database system designs—using ARIES physiological logging and buffer
management—provide more reliable behavior. Therefore, we believe that im-
proving traditional techniques for more efficient recovery with low overhead on
memory-optimized workloads is an important open research challenge.

2.6. Single-page repair

Single-page failures are considered a fourth class of database failures [27],
along with the other classes summarized in Table 1. It covers failures restricted
to a small set of individual pages of a storage device and applies online local-
ized recovery to each individual page instead of invoking media recovery on
the whole device. The single-page repair algorithm, illustrated in Fig. 3 (with
backup and replacement devices omitted for simplification), has two basic re-
quirements: first, the LSN of the most recent update of each page (i.e., the
current PageLSN value) must be known without having to access the page;
second, starting from the most recent log record, the system must be able to
retrieve the complete history of updates to a page. The former requirement can
be provided with a page recovery index—a data structure mapping page iden-
tifiers to their most recent PageLSN value. Alternatively, the current PageLSN
can be stored together with the parent-to-child node pointer in a B-tree data
structure [28]. The latter requirement is provided by per-page log record chains,
which are straight-forward to maintain using the PageLSN fields in the buffer
pool.

A

B

Buffer pool

random
reads

random
writes

...

minLSN

Page recovery index

A B

Figure 3: Single-page repair

In principle, single-page
repair could be used to re-
cover from a media failure,
by simply repairing each page
of the failed device individu-
ally. One advantage of this
technique is that it yields in-
cremental and on-demand re-
store, addressing the second
deficiency of traditional me-
dia recovery algorithms men-
tioned in Section 1. To illustrate how this would work in practice, consider the
example of Fig. 3. If the first page to be accessed after the failure is A, it would
be the first to be restored. Using information from the page recovery index
(which can be maintained in main memory or fetched directly from backups),
the last red log record on the right side of the diagram would be fetched first.
Then, following the per-page chain, all red log records until minLSN would be
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retrieved and replayed in the backup image of page A, thus yielding its most
recent version to running transactions.

While the benefit of on-demand and incremental restore is a major advan-
tage over traditional ARIES recovery, this algorithm still suffers from the first
deficiency discussed in Section 1—namely the inefficient access pattern. The
authors of the original publication even foresee the application to media failures
[27], arguing that while a page is the unit of recovery, multiple pages can be
repaired in bulk in a coordinated fashion. However, the access pattern with
larger restoration granules would approach that of traditional ARIES restore—
i.e., random access during log replay. Thus, while the technique introduces a
useful degree of flexibility, it does not provide a unified solution for the two
deficiencies discussed.

2.7. Single-pass restore

Our previous work introduced a technique called single-pass restore, which
aims to perform media recovery in a single sequential pass over both backup
and log archive devices [4]. Eliminating random access effectively addresses the
first deficiency discussed in Section 1. This is achieved by partially sorting the
log on page identifiers, using a stable sort to maintain LSN order within log
records of the same page. The access pattern is essentially the same as that
of a sort-merge join: external sort with run generation and merge followed by
another merge between the two inputs—log and backup in the media recovery
case.

A B

A B
A

B

Full backup

Incr.
backups

Buffer pool Replacement
drive

sequential
merge join sequential

writes

fix A, replay all updates, unfix
fix B, replay all updates, unfix

.
.
.

...

...

...

Log archive runs

R0

R1

R2

Figure 4: Single-pass restore

The idea itself is as old
as the first recovery algo-
rithms (see Section 5.8.5.1
of Gray’s paper [10]) and
is even employed in DB2’s
“fast log apply” [13]. How-
ever, the key advantage of
single-pass restore is that the
two phases of the sorting
process—run generation and
merge—are performed inde-
pendently: runs are gener-
ated during the log archiv-
ing process (i.e., moving log
records from the latency-optimized transaction log device into high-capacity,
bandwidth-optimized secondary storage) with negligible overhead (at most 1%
[4]); the merge phase, on the other hand, happens both asynchronously as a
maintenance service and also during media recovery, in order to obtain a single
sorted log stream for recovery. Importantly, merging runs of the log archive and
applying the log records to backed-up pages can be done in a sequential pass,
similar to a merge join. The process is illustrated in Fig. 4. We refer to the
original publication for further details [4] as well as a related dissertation [8] for
details on the run generation process with replacement selection.
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Having addressed the access pattern deficiency of media recovery algorithms,
single-pass restore still leaves open the problem of incremental and on-demand
restoration. Nevertheless, given its superiority over traditional ARIES restore
(see related publications [4, 5, 8] for an in-depth discussion), it is a promising
approach to use as starting point in addressing the two deficiencies in a unified
way. Therefore, as mentioned in Section 1, single-pass restore is taken as the
baseline for the present work.

3. Instant restore

The main goal of instant restore is to preserve the efficiency of single-pass
restore while allowing more fine-granular restoration units (i.e., smaller than
the whole device) that can be recovered incrementally and on demand. We
propose a generalized approach based on segments, which consist of contiguous
sets of data pages. If a segment is chosen to be as large as a whole device, our
algorithm behaves exactly like single-pass restore; on the other extreme, if a
segment is chosen to be a single page, the algorithm behaves like single-page
repair. As discussed in this section and evaluated empirically in Section 4, the
optimal restore behavior lies somewhere between these two extremes, and simple
adaptive techniques are proposed to robustly deliver good restore performance
without turning knobs manually.

This section starts by introducing the log data structure employed to pro-
vide efficient access to log records belonging to a given segment or page; then,
we present the restore algorithm based on this data structure. After that, per-
formance expectations are addressed in a discussion of latency vs. bandwidth
trade-off, which is followed by a discussion of how simultaneous recovery from
multiple failures are coordinated, and, finally, a brief exposure of some key im-
plementation issues.

3.1. Indexed log archive

In order to restore a given segment incrementally, instant restore requires
efficient access to log records pertaining to pages in that segment. In single-
page repair, such access is provided for individual pages, using the per-page
chain among log records [27]. As already discussed, this is not efficient for
restoration units much larger than a single page. Therefore, we build upon the
partially sorted log archive organization introduced in single-pass restore [4].

In instant restore, the partially sorted log archive is extended with an in-
dex. The log archiving process sorts log records in an in-memory workspace
and saves them into runs on persistent storage. These runs must then be in-
dexed, so that log records of a given page or segment identifier can be fetched
directly. Sorting and indexing of log records is done online and without any
interference on transaction processing, in addition to standard archiving tasks
such as compression.

In an index lookup for instant restore, the set of runs to consider would be
restricted by the given minLSN (see Section 2.3) of the backup image, since
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runs older than that LSN are not needed. Furthermore, Bloom filters can be
appended to each run to restrict this set even further. The result of the lookup
in each indexed run is then fed into a merge process that delivers a single
stream of log records sorted primarily by page identifier and secondarily by
LSN. This stream is then used by the restore algorithm to replay updates on
backup segments.

Multiple choices exist for the physical data structure of the indexed log
archive. Ideally, the B-tree component of the indexing subsystem can be reused,
but there is an important caveat in terms of providing atomicity and durability
to this structure. A typical index relies on write-ahead logging, but that is not
an option for the indexed log archive because it would introduce a kind of self-
reference loop—updates to the log data structure itself would have to be logged
and used later on for recovery. This self-reference loop could be dealt with by
introducing special logging and recovery modes (e.g., a separate “meta”-log for
the indexed log archive), but the resulting algorithm would be too cumbersome.
In our prototype, we chose a simpler solution: each run of the log archive is
maintained in its own read-only file; temporary shadow files are then used for
merges and appends. In this scheme, atomicity is provided by the file rename
operation, which is atomic in standard filesystems [29].

A thorough explanation of the indexed log archive and its implementation,
as well as its applications in techniques beyond instant restore is provided in a
related thesis [8].

3.2. Restore algorithm

When a media failure is detected, a restore manager component is initialized
and all page read and write requests from the buffer pool are intercepted by
this component. The diagram in Fig. 5 illustrates the interaction of the restore
manager with the buffer pool and all persistent devices involved in the restore
process: failed and replacement devices, log archive, and backup. For reasons
discussed in previous work [4], incremental backups are made obsolete by the
partially sorted log archive; thus, the algorithm performs just as well with full
backups only. Nevertheless, incremental backups can be easily incorporated, and
the description below considers a single full backup without loss of generality.

Failed device Replacement device

Segments

Buffer
pool

Bitmap

Scheduler

Restore

Backup

Log archive

1. Segment
request

2b. (Bit = 0)
Enqueue 

2a. (Bit = 1)
Read page

3. Next
segment

5. Probe

4. Fetch6. Write

7. Set bit

Restore manager

Figure 5: Instant restore flow chart

In the following discus-
sion, the numbers in paren-
theses refer to the numbered
steps in Fig. 5. The re-
store manager keeps track of
which segments were already
restored using a segment re-
covery bitmap, which is ini-
tialized with zeros. When a
page access occurs, the re-
store manager first looks up
its segment in the bitmap (1).
If set to one, it indicates that
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the segment was already re-
stored and can be accessed directly on the replacement device (2a). If set to
zero, a segment restore request is enqueued into a restore scheduler (2b), which
coordinates the restoration of individual segments (3).

To restore a given segment, an older version is first fetched from the backup
directly (4). This is in contrast to ARIES restore, which first loads entire
backups into the replacement device and then reads pages from there [3]. This
has the implication that backups must reside on random-access devices (i.e., not
on tape) and allow direct access to individual segments, which might require an
index if backup images are compressed. These requirements, which are also
present in single-page repair [27], seem quite reasonable given the very low cost
per byte of current high-capacity hard disks. For moderately-sized databases,
it is even advisable to maintain log archive and backups on flash storage.

While the backed-up image of a segment is loaded, the indexed log archive
data structure is probed for the log records pertaining to that segment (5); the
results of each probe are merged to form a single sorted log stream. Then, log
replay is performed to bring the segment to its most recent state, after which it
can be written back into a replacement device (6).

Finally, once a segment is restored, the bitmap is updated (7) and all pending
read and write requests can proceed. Typically, a requested page will remain
in the buffer pool after its containing segment is restored, so that no additional
read is required on the replacement device when a transaction accesses a restored
page.

A B
A BA

B

(Indexed)
Full backup

Buffer pool Replacement
drive

segment-wise
merge join

segment-wise
writes

... ... ...

Indexed log archive runs

R0 R1 R2

Figure 6: Access pattern of instant restore

All read and write oper-
ations described above—log
archive index probe, segment
fetch, and segment write after
restoration—happen asynchron-
ously with minimal coordina-
tion. The read operations
are essentially merged index
scans—a very common pat-
tern in query processing [30].
Writing a restored segment to the replacement device can also be done asyn-
chronously, preferably by simply reusing the page write process of the buffer
pool.

The output of log archive merges performed during instant restore can be
saved as new, higher-level runs in the log archive, thereby reusing the merge
effort for future log archive accesses. Unlike a background merge operation,
which merges whole runs at a time, the instant restore logic merges fragments
of each input run pertaining to the segment(s) being restored. As such, an
additional data structure is required to keep track of these fragments, the details
of which we omit here. Note that with a partitioned B-tree [? ], these fragments
are simply an instance of a key-range merge, which is supported natively by the
data structure without additional bookkeeping.

To illustrate the access pattern of instant restore, similarly to the diagrams
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in Section 2, Fig. 6 shows an example scenario with three log archive runs and
two pages, A and B, belonging to the same segment. The main difference to
the previous diagrams is the segment-wise, incremental access pattern, which
delivers the efficiency of pure sequential access with the responsiveness of on-
demand random reads.

Using this mechanism, user transactions accessing data either in the buffer
pool or on segments already restored can execute without any additional delay,
whereby the media failure goes completely unnoticed. Access to segments not
yet restored are used to guide the restore process, triggering the restoration
of individual segments on demand. As such, the time to repair observed by
transactions accessing data not yet restored is multiple orders of magnitude
lower than the time to repair the whole device. Furthermore, time to repair
observed by an individual transaction is independent of the total capacity of
the failed device. This is in contrast to previous methods, which require longer
downtime for larger devices.

3.3. Latency vs. bandwidth trade-off

One major contribution of instant restore is that it generalizes single-page
repair and single-pass restore, providing a range of choices of restore granularity
between the two. In order to optimize restore behavior, the restore manager
must adaptively and robustly choose the best option within this range. In
practice, this boils down to choosing the correct granularity of access to both
backup and log archive, in order to balance restore latency and bandwidth.

Restore latency is defined as the additional delay imposed on the page reads
and writes of an individual transaction due to restore operations. Hence, it
follows that if a single page can be read and restored in the same time it takes
to just read it, the restore latency is zero—this is the “gold standard” of restore
performance and availability. For a single transaction, restore latency can be
reduced by setting a small segment size—e.g., a single page. However, this is
not the optimal behavior when considering average restore latency across all
transactions. Therefore, restore bandwidth, i.e., the number of bytes restored
per second, must also be optimized. The optimized restore behavior is such
that in the beginning of the restore process, pages which are needed more ur-
gently should be restored first, so that restore latency is decreased; towards the
end, less and less transactions must wait for restore, so the system can effec-
tively increase restore bandwidth while a low restore latency is maintained. To
adaptively choose a restore unit that optimizes for either latency or bandwidth
when applicable, a small segment size (e.g., 1 MB) is chosen, so that individual
segments can be restored quickly, but multiple adjacent segments are restored
together when there is no pending restoration request in the restore manager.
This way, low restore latency is prioritized in the initial phase of restore, where
transactions are more likely to trigger segment restorations; during the end
phase, on the other hand, the portions of the device that are not accessed fre-
quently by running transactions are restored in bulk, with large sequences of
adjacent segments.
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It is also worth noting that devices with low latency and inherent support
for parallelism, e.g., solid-state drives, make these trade-offs less pronounced.
This does not mean, however, that instant restore is any less significant for such
devices—a point which is emphasized in the next two paragraphs.

As discussed earlier, previous restore techniques suffered from two deficien-
cies: inefficient access pattern and lack of incremental and on-demand recovery.
Solid-state devices shorten the efficiency gap between restore algorithms with
sequential and random access, but this gap will never be entirely closed, espe-
cially considering the locality and predictability of sequential access, and thus
its proneness to prefetching.

As for the second deficiency, low-latency devices directly contribute to the
reduction of restore latency, because the time to recover a single segment is
reduced with faster access to backup and log archive runs. Therefore, with
instant restore, any improvement on I/O latency directly translates into lower
time to repair—as perceived by a single transaction—and thus higher availabil-
ity. Non-incremental techniques, where the restore latency is basically the time
for complete recovery, do not benefit as much from low-latency storage hardware
when it comes to improving restore latency.

In terms of latency and bandwidth trade-off in the instant restore algorithm,
the first choice to be made is the segment size. In order to simplify the tracking
of restore progress with a simple bitmap data structure, a fixed segment size
must be chosen when initializing the restore manager. A good choice seems to
be a size such that acceptable bandwidth is delivered even for purely random
access, but not too many segments exist such that the bitmap would be too
large—e.g., 1 MB for both SSD and HDD.

In order to exploit opportunities for increasing bandwidth, multiple contigu-
ous segments should be restored in a single step when applicable. One technique
to achieve that dynamically and adaptively is to simply run single-pass restore
concurrently with instant restore. Since the two processes rely on the same
algorithm, no additional code complexity is required. Furthermore, the coordi-
nation between them is essentially the same as that between concurrent instant
restore processes—they both rely on the buffer pool and the segment recovery
bitmap.

In terms of log archive access, the size of initial (i.e., not-yet merged) runs
poses an important trade-off between minimizing merge effort and minimizing
the lag between generating a log record and persisting it into the log archive. In
order to generate larger runs, log records must be kept longer in the in-memory
sort workspace. On the other hand, correct recovery requires that all log records
up to the time of device failure be properly archived before restore can begin;
thus, smaller initial runs imply lower restore latency for the first post-failure
transactions. One simple technique that can potentially mitigate this concern
is to adapt instant restore to use the recovery log with per-page log chains,
as in single-page repair. Instant restore could be used to bring all pages in a
segment to the state up to the end of the log archive. After that, single-page
repair using the per-page log chain could be applied to apply the remaining log
records to each page of a segment. This should only be necessary for the first
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few segments, as the log archiving process should quickly reach the minLSN
restore point; from that point on, restore operations can rely solely on the log
archive.

Besides these concerns specific to instant restore, established techniques to
choose initial run size and merge fan-in based on device characteristics directly
apply [30]. This is mainly because the access pattern of instant restore basically
resembles that of an external sort followed by a merge join.

3.4. Coordination of multiple failures

As mentioned briefly above, the segment recovery bitmap enables the coordi-
nation of concurrent restore processes, allowing configurable scheduling policies.
Another important aspect to be considered is the coordination among restore
and the other recovery modes summarized in Table 1. This section discusses
how to coordinate all such recovery actions without violating transactional con-
sistency.

The first failure class—transaction failure—is the easiest to handle because
its recovery is made transparent to the other classes thanks to rollback by logical
compensation actions, as introduced in ARIES [3] and refined in the multi-level
transaction model [31]. In this multi-level model, all undo actions—either from
transaction failures or undo recovery after restart—are logical operations that
operate on the lower-level, page-based storage interface in which redo recovery
with physiological log records occurs. The implication is that recovery for the
other failure classes must distinguish only between uncommitted and committed
transactions. Transactions that abort are simply considered committed—it just
happens that they revert all changes they made, i.e., they “commit nothing”.
Therefore, for the purposes of instant restore, transactions that issue an abort
behave exactly like any other in-flight transaction, including those that started
after the failure: they hold locks to protect their reads and writes and access
data through the buffer pool, which possibly triggers segment restoration as
described earlier.

Instant restart and single-page repair can be executed concurrently because
they both perform log replay on a single page at a time, and thus coordination
relies on the latching protocol of the buffer pool. If a single-page failure occurs
during instant restart, it is detected in the fix operation, which invokes single-
page repair to bring that page to its most recent state. Therefore, no further
action will be required for the redo of that page in instant restart, because it
will detect that the page LSN matches the expected value registered in the dirty
page table. If a single-page failure happens after restart redo has recovered it,
then single-page repair is simply invoked as it would normally be—regardless of
ongoing restart recovery on other pages.

If a system failure happens during single-page repair, the failure will be
detected again during restart, because the fix call on that page will result in the
same failure. Therefore, single-page repair is simply re-invoked. Alternatively,
a system transaction can be used to register the fact that a single-page failure
was detected, along with the new storage location of the recovered page—this
is similar to page migration in write-optimized B-trees [32]. Upon restart, the
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single-page repair process is simply resumed, and coordination works exactly as
described above.

While instant restart and single-page repair both work at a page granular-
ity and can thus be coordinated using latches in the buffer pool, that is not
enough for instant restore. Here, a segment, whose size is fixed when a failure
is detected, is the unit of recovery, and coordination relies on the segment re-
covery bitmap. Using two states—restored and not restored—avoids restoring
a segment more than once in sequence, but additional measures are required to
prevent that from happening concurrently. One option is to simply employ a
map with three states, the additional one being simply “undergoing restore”.
A thread encountering the “not restored” state attempts to atomically change
it to “undergoing restore”: if it succeeds, it initiates the restore request for
the segment in question; otherwise, it simply waits until the state changes to
“restored”.

Alternatively, coordination of segment restore requests can reuse the lock
manager. A shared lock is acquired before verifying the bitmap state, and, in
order to restore a segment, the shared lock must be upgraded to exclusive with
an unconditional request. The thread that is granted the upgrade is then in
charge of restoration, while the others will automatically wait and be awoken
by the lock protocol, after which they see the “restored” state.

While the segment recovery bitmap provides coordination of concurrent re-
store processes, the buffer fix protocol is again used to coordinate restore with
the other recovery modes. Concomitant restart and restore processes may oc-
cur in practice because some failures tend to cause related failures. A hardware
fault, for instance, may not only corrupt persistent data, but also cause an
operating system crash.

In order to not lose the progress of instant restore in case of a system failure,
three restore actions must be logged: begin, segment restore, and end. During log
analysis after a system failure, a begin log record causes the system to initialize
the data structures of instant restore and redirect all page reads and writes to
the restore manager, as described earlier. As segment-restore log records are
found, the restore bitmap is updated accordingly, letting the system know which
segments have already been restored prior to the system failure. In this case, a
segment can only be considered fully restored once it has been fully written into
the replacement device; thus, the segment-restore log record is only generated
after that happens. Finally, if an end log record is found, the system knows that
full restoration was completed, and it can return to normal mode.

After log analysis is completed, the restart and restore processes will be
automatically coordinated with the methods described above. Restart recovery
will fix pages in the buffer pool prior to performing any redo or undo action.
The fix call, in turn, will issue a read request on the device. If the device has
failed, the restore manager will intercept this request and follow the restore
protocol described above. Only after the containing segment is restored, the fix
call returns. After that, the page may still require log replay in the redo phase
of restart, which is fine—the two recovery modes will simply replay different
ranges of the page’s history.
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3.5. Implementation issues

The conceptual diagram of Fig. 5 does not illustrate how restore interacts
with other parts of the database system architecture, most importantly the
buffer pool. Reusing the buffer pool component is highly advisable, as it provides
several advantages. The following paragraphs discuss the interaction between
the restore manager and the buffer pool in detail, emphasizing the advantages
of reusing the buffer pool as well as highlighting some important concerns for a
practical implementation.

Relying on the normal fix protocol to access pages and replay log records on
them allows high concurrency between restore actions and transactions accessing
pages already in the buffer pool, i.e., pages that do not require immediate on-
demand restoration. Transactions accessing these pages do not observe any
delay from restore actions. Furthermore, once the segments containing these
pages are picked by the restore scheduler, log replay can be skipped on them,
since they are already up to date.

Frames of the buffer pool should also be used as the restore workspace,
serving as buffer into which pages are loaded from the backup and log records
are replayed into. In order to exploit large reads and fetch whole segments at
once, the buffer pool should provide a prefetch function that allocates multiple
frames and reads pages from the backup with a single scatter-gather I/O call
(e.g., readv() in Linux). Once the read is performed, each allocated frame
should only be added to the buffer pool if that page is not yet cached (i.e., not
found in the page-ID lookup table). This prefetch function is not exclusive to
instant restore—regular prefetch functionality has the same logic and should
therefore be reused. Lastly, because such prefetched pages are in an older state,
a control-block flag is used to indicate that they are still in need of recovery;
user transactions that happen to fix them must therefore coordinate with the
restore manager.

As segments are restored, the regular page cleaning protocol of the buffer
pool takes care of writing them into the replacement device. Using proper I/O
scheduling that can exploit large page writes [33], whole segments—or even
multiple adjacent segments—are written at once without any explicit involve-
ment of the restore manager. As in the prefetch case, buffer pool functionality
is reused with minimal restore-specific code. One crucial requirement in this
case is that segment-restore log records, which are required to support recovery
from system failures during restore, should only be produced after all pages of
a segment have been successfully written out. Alternatively, log records can be
generated immediately after log replay; in case of a concomitant system failure,
log analysis must then additionally mark a segment as “unrestored” if any of
its pages are in the dirty page table.

One important concern involving the synchronization of restore actions and
user transactions is to avoid lost updates that can occur when restoring segments
in the buffer pool. This can happen with the following sequence of events: (1) a
page of the failed device is already in the buffer pool when the failure is detected;
(2) when the restore manager is initialized, it waits for the restore begin log
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record to be archived (as discussed earlier, this is required to make sure that all
updates up to the failure point are replayed during restore); (3) after that, the
page is updated by a user transaction in LSN x, written into the replacement
device, and subsequently evicted from the buffer pool; (4) now, the segment
containing that page is picked for restore, which fetches the old version from the
backup and replays all log records until the restore begin LSN; (5) finally, that
page is written by the cleaner and evicted. When this last write is performed,
the update on LSN x is lost, because the restored version of the page was older
than the one on the replacement device.

Unfortunately, there is no straight-forward solution for this lost-update prob-
lem. The key issue here is that neither the restore manager nor the buffer pool
have knowledge of individual pages written by the page cleaner. Thus, the sit-
uation above can only be detected if the system keeps track of individual pages
restored rather than whole segments. In step 4 above, for example, an auxiliary
data structure could be used to inform the restore manager that that particular
page does not need recovery, or that it should be fetched from the replacement
device rather than the backup. Such data structure would complement the
segment recovery bitmap by keeping track of individual pages already restored
in the segments that are not yet marked as restored in the segment recovery
bitmap.

An alternative solution reuses the single-page repair infrastructure. If a page
recovery index is maintained, either as a separate data structure or embedded
in parent-to-child page pointers [27], then the overwrite of step 5 below would
be detected when the page is re-fetched, applying the necessary single-page re-
pair actions as needed. This mechanism also forgoes the need to wait for the
log archiver to reach the restore begin log record, since every page would be
guaranteed to be fully recovered with a combination of log-archive replay and
single-page repair. Furthermore, it could be easily combined with the write eli-
sion technique [5] to alleviate write pressure on the replacement device. Lastly,
a middle-ground solution would be to wait for the log archiver as described
earlier, but only create and maintain the page recovery index for the duration
of instant restore; this achieves the same guarantees without having to main-
tain the page recovery index during normal processing. This last solution was
implemented in the prototype of this paper, because it is relatively simple to
implement if the system already provides a page recovery index and single-page
repair, which is the case in our prototype. A more in-depth discussion of imple-
mentation issues for instant recovery techniques, relying on the same prototype
used here, is provided in a related dissertation [8].

3.6. Summary of instant restore

Instant restore is enabled by an indexed log archive data structure that can
be generated online with very low overhead. By partitioning data pages into
segments, the recovery algorithm provides incremental and on-demand access
to restored data. The algorithm requires a simple bitmap data structure to
keep track of progress and coordinate restoration of individual segments under
configurable scheduling policies.
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The generalized nature of instant restore enables a wide range of choices for
trading restore latency and bandwidth. These choices can be made adaptively
and robustly by the system using simple techniques. Moreover, while instant re-
store mitigates many of the issues with high-capacity hard disks, making them a
more attractive option, it still benefits greatly from modern storage devices such
as solid-state drives. Therefore, the technique is equally relevant for improving
availability with any kind of storage hardware.

Lastly, the restore processes can be easily coordinated with processes from
other recovery modes—the independence of these modes and the integrated
coordination using the buffer pool ensure transaction consistency in the presence
of an arbitrary mix of failure classes.

4. Experiments

This section presents an empirical evaluation of instant restore, focusing on
the impact of restore on concurrent transactions as well as on the efficiency
of restore itself, i.e., how quickly the failed media is fully restored. The main
goal is to investigate how much the media failure disturbs transaction process-
ing, looking at throughput and latency for restore actions as well as individual
transactions. The experiments presented here serve as a proof of concept for
how instant restore can improve availability in practice, focusing on detailed
metrics of system behavior during individual media restore executions.

4.1. Environment and workload

We implemented instant restore in a fork of the Shore-MT storage manager
[34] called Zero. The code is available as open source 1. The workload consists
of the TPC-C benchmark as implemented in Shore-MT, but adapted to use the
Foster B-tree [35] data structure for both table and index data.

All experiments were performed on dual six-core CPUs with HyperThread-
ing. The system has 100 GB of RAM and several Samsung 840 Pro 250 GB
SSDs. The operating system is Ubuntu Linux 16.04 with Kernel 4.4.0 and all
code is compiled with gcc 5.4 and -O3 optimization.

To generate the dataset for these experiments, a database of 10 GB is loaded
(TPC-C scale factor 75) and copied to a separate file to serve as full backup.
Then, the benchmark is executed until another 10 GB of log data is produced;
the log is then archived into one level-3 run (i.e., merged twice) of 5 GB, six
level-2 runs of 750 MB, and four level-1 runs of 110 MB. Finally, the database
is cleaned (i.e., all dirty pages are flushed) and the recovery log is emptied.
During an experiment, the benchmark is executed on this dataset with 8 worker
threads for five minutes to warm-up the buffer pool, after which a media failure
is injected. The experiment then continues until the complete device is restored
and then for five more minutes after that. All experiments described below use
the same dataset and follow this same pattern.

1http://github.com/caetanosauer/zero
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Figure 7: Pattern of segment restoration during instant restore

4.2. Segment size, latency, and bandwidth

The first experiment analyzes restore efficiency with different segment sizes.
A buffer pool of 10 GB was chosen for the benchmark; this corresponds to the
size of the initial database and it is not too small so that the process would
be I/O-bound, but also not too large so that on-demand restore requests are
very rare. The sizes analyzed are between 512 KB (64 pages) and 8 MB (4,000
pages), varying in exponential steps.

The first result, shown in Fig. 7, shows the pattern of segment restoration
over time for segment sizes of 512 KB and 4 MB. The x-axis shows the time since
the beginning of the experiment, while the y-axis shows segment numbers (in
increments of 1,000). Each dot in the chart represents the successful restoration
of one segment. As the pattern shows, many segments are restored in a very
scattered way in the beginning of the restore process; this is expected because,
in this phase, many on-demand requests from transactions arrive in the restore
scheduler. As time goes on, less requests arrive, making the pattern more sparse.

One visible feature in this experiment is the effect of a background restore
thread, which performs single-pass restore in parallel but with low priority, i.e.,
it only picks up segments to restore if no requests exist in the restore scheduler.
The effect of background single-pass restore is shown as the sequence of dots in
the lower part of the charts, which at the very end rises to the top rapidly. The
lower range of segment numbers contains important pages, such as catalogs and
B-tree inner nodes—these are kept cached in the buffer pool, so that no restore
request ever arrives. Thus, it is up to the background process to restore them.
Towards the end of the experiment, the background restore process picks up the
remaining segments, filling up the “holes” in the segment recovery bitmap. Once
is passes the last segment, the replacement device has been fully restored and it
may thus terminate the restore procedure. This restore pattern described above
is observed in both segment sizes shown in Fig. 7, but in different granularities.
These charts also show that the smallest segment size (512 KB) requires about
12 minutes for complete restoration, while the largest one (8 MB) requires less
than 4 minutes.

The next result, based on the same experiment, is shown in Fig. 8, which
plots average restore bandwidth over time for four segment sizes. This chart
shows an interesting result: in the first minutes of the restore process, band-
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Figure 9: Average restore latency during instant restore: time series (left) and distribution of
individual values (right).

width, i.e., the rate at which segments are restored, is very similar for all segment
sizes. This is because, in this stage, all worker threads are performing restora-
tion of the segments they request in parallel, so that the aggregate bandwidth
does not depend so much on the segment size. This is largely due to the fact
that the experiments use SSDs, which support a high degree of I/O parallelism.
Towards the end phase of the restore process, most segments are restored by the
background single-pass procedure, and thus the observed bandwidth becomes
much more dependent on the segment size. The bandwidth observed in the end
phase is therefore the main factor determining the total restore time.

Fig. 9 plots the average transaction latency during this same experiment in
two different representations: on the left, a time series of average latency values
and, on the right, the distribution of these values in a box plot. On the left
chart, the expected behavior described earlier in Section 3.3 is observed: the
smaller the segment, the less restore latency is incurred on transactions waiting
to access data on the failed device. Note that the y-axis is in logarithmic scale;
thus, during the first minute of media failure, average latency with 512-KB
segments is one order of magnitude lower than with 8-MB segments. On the box
plot on the right, 50% of the observed latency values fall within the boxes, while
the lines at the bottom and at the top extend to the lowest and highest latency
observed, respectively. The maximum value is due most importantly to the wait
for the log archiving process to reach the restore begin log record; since the
experiment leaves the archiving process running eagerly in the background, this
wait is about 3 seconds only.

The results observed for this experiment show a clear trade-off between seg-
ment size and restore efficiency. Larger segments allow for higher bandwidth
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Figure 10: Restore pattern, bandwidth, and latency with adaptive technique

in the background single-pass restore process, which provides shorter total re-
store time. Smaller segments, on the other hand, reduce the restore latency as
perceived by individual transactions in the beginning phase. To eliminate this
trade-off and provide the best of both worlds, an adaptive technique can be
used, in which the single-pass background service attempts to restore multiple
adjacent segments whenever it encounters them. With this technique, small
segments can be used, so that low latency is observed in the beginning phase.
Then, during the end phase, background restoration performs large reads and
writes of multiple segments, as if a much larger segment size would be used.

Results for this adaptive technique are shown in Fig. 10. It uses segments of
1 MB, which can be coalesced into large units of up to 8 MB by the background
restore process. The top chart shows the restore pattern, which clearly shows
that overall restore lasts about as long (3 minutes) as for the largest segment
in the previous experiment (8 MB) while the beginning phase has a dense pat-
tern like the one observed earlier for the 512-KB segment size. The plots for
restore bandwidth (bottom left) and latency (bottom right) also show that the
advantages of small and large segments are combined.

4.3. Transaction throughput

The next experiment fixes the segment size at 1 MB with the adaptive tech-
nique and varies the buffer pool size. The goal is to evaluate the impact of the
media failure and concurrent restore actions on running transactions. With
a sufficiently large buffer pool, a media failure should go completely unno-
ticed, since all page accesses are hits, which do not trigger segment restore. In
that case, the background restore process will perform single-pass restore, us-
ing the largest possible unit thanks to the adaptive technique described above.
Therefore, this configuration should yield the shortest total recovery time. For
smaller buffer pools, instant restore should cause a significant dip in transaction
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Figure 11: Transaction throughput observed during instant restore with different buffer pool
sizes

throughput, but it should gradually raise back up as segments of the working
set are restored.

The buffer pool sizes considered here vary from 2.5 GB to 12.5 GB. Fig. 11
shows the results. In each chart, the x-axis shows elapsed time, as in the previ-
ous charts, whereas the y-axis shows transaction throughput. The shaded area
starting at the five-minute mark shows the time during which instant restore
was active. As the top-left chart shows, the smaller buffer pool incurs the longer
restore time, since the high miss ratio causes almost all segments to be restored
on demand. However, after about two minutes only, the pre-failure throughput
is reestablished, thus demonstrating the main benefit of instant restore. With
the remaining buffer sizes, the pattern is similar, but with higher transaction
throughput. Note, for example, that with the 10-GB buffer pool, restore fin-
ishes before the pre-failure throughput is reestablished; this is expected because
restore uses frames of the buffer pool, and thus a higher miss rate is observed
until all restored pages that are not in the working set are evicted.

With the buffer pool size of 12.5 GB, which is larger than the working set,
the dip in throughput is very small, incurred mostly by the wait for the log
archiver. This wait is only necessary because the buffer pool was probably
not warm enough after the five-minute execution, and thus a few misses still
occur. Unfortunately, the prototype system used here does not support a way
to manually warm-up the buffer pool or to detect when it is fully warmed-up.
Nevertheless, the results clearly demonstrate the effect of larger buffer pool sizes
on instant restore—as it gets larger than the working set, the media failure goes
practically unnoticed.
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5. Conclusions

Instant restore improves perceived mean time to repair and thus database
availability in the presence of media failures. We identified two main deficiencies
with traditional recovery techniques, such as the ARIES design [3]: (i) media
recovery is very inefficient due to its random access pattern on database pages,
which means that time to repair is unacceptably long; and (ii) data on a failed
device cannot be accessed before recovery is completed. The first deficiency was
addressed with single-pass restore [4], which introduces a partial sort order on
the log archive, eliminating the random access pattern of log replay.

The second deficiency is addressed with the instant restore technique, which
was first described in earlier work [5] and discussed in more detail, implemented,
and evaluated in this paper. By generalizing single-pass restore and other recov-
ery methods such as single-page repair, instant restore is the first media recovery
method to effectively eliminate the two deficiencies discussed. In comparison
with traditional ARIES media restore, instant restore delivers not only the ben-
efits of single-pass restore (i.e., substantially higher bandwidth and therefore
shorter recovery time), but also much quicker access (e.g., seconds instead of
hours) to the application working set after a failure.

Our empirical analysis shows that instant restore is able to effectively de-
liver the efficiency of single-pass restore while cutting down restore latency by
multiple orders of magnitude. Thanks to an adaptive technique, small segments
can be used to prioritize the application working set after a failure and still
achieve high average bandwidth by restoring multiple adjacent segments when
appropriate. The experiments also analyze the impact of a failure on transac-
tion throughput, which largely depends on the size of the working set in relation
to the buffer pool size. The results confirm our expectation that the pre-failure
transaction throughput is re-established earlier as memory size increases—up
to a point where a media failure goes completely unnoticed. The net effect is
that availability is greatly improved and the number of missed transactions due
to media failures is significantly reduced.
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