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Zusammenfassung

In der Vergangenheit war die Reduzierung der Plattenzugri�e für die Leistung
eines DBVS entscheidender als die Reduzierung der für eine bestimmte Aufgabe
erforderlichen CPU-Zyklen. Es war wichtig, die CPU mit der Bearbeitung ande-
rer Transaktionen auszulasten, während eine Transaktion darauf warten musste,
dass benötigte Daten von der Festplatte geladen werden. Mit stetig wachsen-
dem Arbeitsspeicher in modernen Servern und der verbesserten Leistung von
NVRAM-Produkten wurden Hauptspeicher-DBS mehr und mehr zur Norm. In
diesen Systemen sind Optimierungen für HDD- — oder heute SSD- — Zugri�e für
die reguläre Transaktionsverarbeitung viel weniger wichtig.

Ohne diesen leistungseinschränkenden Faktor wurde die Minimierung der zur
Ausführung einer Transaktion erforderlichen CPU-Zyklen zum Schlüssel für die
Leistungsmaximierung von DBS. Um die Motivation für ein komplettes Redesign
von DBVS zu liefern, identi�zierten Harizopoulos et al. in [Har+08] verschiedene
Komponenten des Shore Storage Manager, die die überwiegende Zahl der CPU-
Zyklen während der Ausführung einiger Transaktionen des TPC-C Benchmarks
in Anspruch nehmen. Sie kamen zu dem Schluss, dass die CPU auf modernen
Systemen nur in einem sehr kleinen Teil — 1%–2% — der Zeit nützliche Arbeit
leistet. In Kapitel 2 dieser Arbeit wiederhole ich derenMessungenmit einer anderen
Methodik an einem modernisierten Nachfolger des Shore Storage Manager.

Allerdings ist die Ausführung von OLTP-Anwendungen auf schwacher Hardwa-
re noch immer im privaten und kommerziellen Bereich zu �nden, und es werden
auch dort stetig neue Arbeitslasten hinzugefügt, so dass DBVS-Optimierungen,
die sich auf die Minimierung des HDD- oder SSD-Zugri�s konzentrieren, immer
noch Sinn ergeben. Aus diesem Grund werden in Kapitel 1 viele gängige Seiten-
ersetzungsalgorithmen untersucht, die im Laufe der Geschichte vorgeschlagen
wurden. Es reicht jedoch nicht aus, in einer Leistungsbewertung dieser Seitener-
setzungsalgorithmen nur die Reduzierung von SSD-Zugri�en zu betrachten, da
einige von ihnen das Potenzial haben, selbst zu einem Flaschenhals für ein DBS zu
werden. Aus diesem Grund wurden alle diese Algorithmen für ein echtes DBVS
implementiert und im Hinblick auf Fehlseitenrate und Transaktionsdurchsatz bei
TPC-C verglichen.

Für meine Bachelorarbeit hatte ich die Pointer Swizzling für den Pu�erpool, wie
von Graefe et al. in [Gra+14] vorgeschlagen, bereits neu evaluiert. Aufgrund von
Stabilitätsproblemen des verwendeten DBMS-Prototypen waren die Messungen
jedoch kaum aussagekräftig. Eine Neuevaluierung dieser Technik ist im Abschnitt
2.4.1 zu �nden.
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Abstract

Traditionally, reducing disk accesses has been more decisive to the performance
of an OLTP system than reducing the number of CPU cycles needed for a given
workload. It was important to keep the CPU busy—executing other transactions—
while transactions had to wait for data to be fetched from hard disk. With the
ever-increasing amount of available RAM in modern servers and the improved
performance of NVRAM products, in-memory OLTP systems became more and
more the norm. In these systems, optimizations for disk—or today SSD—accesses
are much less important for regular transaction processing.

Without this performance constraining factor, minimizing the CPU cycles
required to execute a transaction became the key to maximizing OLTP system
throughput. To provide motivation for a complete redesign of DBMSs for these
new conditions, Harizopoulos et al. identi�ed various components of the Shore
Storage Manager that take the vast majority of CPU cycles during the execution of
some transactions of the TPC-C benchmark [Har+08]. They concluded that the
CPU does useful work on these modern systems only in a very small portion—
1%–2%—of the time. In Chapter 2 of this thesis, I repeat their measurements using
a di�erent technique on a modernized successor of the Shore Storage Manager.

However, OLTP systems on poor hardware are still found in private and com-
mercial applications, and they continue to be stressed with ever new workloads,
so there are still opportunities for DBMS optimizations that focus on minimizing
HDD or SSD access. For this reason, Chapter 1 assesses many common page
replacement algorithms that have been proposed throughout history. However,
it is insu�cient to address only the reduction of SSD accesses in a performance
evaluation of these page replacement algorithms, as some of them have the poten-
tial to become a bottleneck for a DBS. For this reason, all these algorithms have
been implemented for a real DBMS and compared in terms of hit rate and TPC-C
transaction throughput.

For my Bachelor’s thesis I re-evaluated the Pointer Swizzling technique for the
bu�er pool that Graefe et al. proposed in [Gra+14]. However, due to stability
problems of the DBMS prototype used, the measurements were hardly meaningful.
A re-re-evaluation of this technique can be found in the Section 2.4.1.
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1 Page Eviction by the Bu�er Pool
Management

1.1 DBMS Bu�er Management

The bu�er management of a typical disk-based DBMS serves the purpose
of providing the higher layers of the DBMS with managed access to data
and metadata pages of a database stored in �les on the secondary storage.
This managed access involves fetching speci�c pages into speci�c memory
locations—so-called bu�er frames—inside the bu�er pool and write-back
changes to pages in memory to database �les in secondary storage.
Today, there are server systems with 48 TiB of cache-coherent shared

memory1 that allow in-memory management of almost any database of
any application. But such expensive systems (>2 000 000 €) do not pay o�
for most applications even with large databases. Therefore, there will still
be many situations in which the main memory of a system is signi�cantly
smaller than the database(s) managed on it. Accordingly, the number of
bu�er frames in the bu�er pool is then smaller than the number of pages
in the database.
Therefore, the bu�er management must evict pages from bu�er frames

if currently not bu�ered pages are referenced while there are no more
free bu�er frames. For this purpose, each bu�er manager has a page evic-
tion module—implementing one of the many page replacement algorithms
developed since the 1960s.
In OLTP (online transaction processing) applications, the majority of

database accesses are random accesses, so the access latency of the under-
lying storage technology (�gure 1.1) is critical to performance. The main
goal of bu�er management is to maximize the hit rate in the DB bu�er by

1https://h20195.www2.hpe.com/v2/gethtml.aspx?docname=c04912781
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Figure 1.1: Storage hierarchy of computer systems

keeping as many pages of the working set (pages referenced in the near
future) as possible in relatively fast (51 ns) main memory to avoid expensive
(>100 �s) secondary storage accesses.

Bélády’s optimal page replacement algorithm [Bél66] evicts the one
page from the bu�er pool that is not re-referenced for the longest time in
the future2. However, this algorithm cannot make this decision at runtime,
since this would require knowledge about future requests to the database.
Therefore, page replacement algorithms that can be implemented in DBMS
must use heuristics to approximate the eviction decisions of Bélády’s algo-
rithm to achieve a high hit rate. These heuristics are usually based on the
assumption that there is a temporal locality of the page references. The
management of data in B-tree indices, which were developed 50 years ago
to improve the spatial locality of references in order to reduce random

2The more practical 5 Minute Rule [GP87] which is derived from this algorithm is still
valid [GG97][Gra07].
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1.1 DBMS Bu�er Management

disk access in database applications [BM70], increases the temporal locality
of page references due to the hierarchical structure of B-trees in which
higher-level pages are more likely to be referenced.

The expected performance of these possible page replacement algorithms
relative to the bu�er pool size is shown in �gure 1.2. In this diagram,����
is theminimummiss rate, which is greater than 0 due to the pagemisses that
occur when each page is �rst referenced after a cold start. The maximum
miss rate ��max is less than 1 due to the fact that there are always some
random page hits, even with RANDOM eviction on workloads with no
locality of references. � is the database size and �min is the minimum bu�er
pool size that will still lead to a working system.

���� �
����

�����
1

Bu�er pool size �

M
is
s
ra
te

�
�

Optimal
Random

No locality
Possible

Figure 1.2: Connection between miss rate and bu�er pool size [EH84]

Besides the impossibility to implement Bélády’s optimal page replace-
ment algorithm, there are also technical limitations in the use of the possible
page replacement algorithms. The abstract algorithms can evict any page
from the bu�er pool at any time. However, in a real-world system, there
are many reasons why a page that has been selected for eviction by the
page replacement algorithm cannot be immediately evicted. One reason,
for example, is already visible in the typical interface of a bu�er pool—a
page can be �xed and un�xed by the higher layers of the DBMS. Between
�xing and un�xing a page, it is guaranteed that it remains in the same
bu�er frame since the �xing thread processes the page during this time.
Another problem for some page replacement algorithms is the possibility to

3



1 Bu�er Manager Page Eviction

explicitly evict pages from the bu�er pool—independent from the decisions
of the page replacement algorithm.
The test system used for this work knows the following reasons why a

page in the bu�er pool is either temporarily or permanently unreclaimable:
• Metadata pages can never be evicted.
• B-tree root pages can never be evicted.
• Inner B-tree pages can never be evicted when pointer swizzling (like
in [Gra+14]) is used in the bu�er pool.

• B-tree pages with foster children (the Foster B-Tree from [GKK12] is
used) cannot be evicted.

• Dirty pages cannot be evicted until they are written back.
• Pages pinned to the bu�er pool by higher layers of the DBMS cannot
be evicted.

All non-trivial page replacement algorithms collect statistics about page
references to base their eviction decisions on. Simple implementations
of these page replacement algorithms do not re�ect in their statistics the
fact that certain pages are temporarily or permanently unreclaimable. But
treating pages found temporarily unreclaimable as a page reference and
excluding pages that are permanently unreclaimable from the eviction
could improve future eviction decisions or the runtime of the algorithm.

1.2 Page Replacement Strategies

There are two traditional classi�cations for page replacement algorithms—
Bélády’s classi�cation from [Bél66] and the classi�cation by E�elsberg and
Härder from [EH84].

Class 1 These replacement algorithms do not keep any statistics.
Class 2 These replacement algorithms keep statistics about the latest ref-

erences of pages in the bu�er pool and use those for their decisions.
Class 3 These replacement algorithms keep statistics about each time any

page was fetched from the database and each time it was evicted
from the bu�er pool and use those for their decisions.

Table 1.1: Bélády’s classi�cation of replacement algorithms from [Bél66]

4



1.2 Page Replacement Strategies

Bélády grouped the replacement algorithms into the three classes de-
scribed in table 1.1. The RANDOM, FIFO and FILO page replacement algo-
rithms belong to Class 1, the modern (proposed after 2002) ARC [MM03],
CAR [BM04], CART [BM04], LIRS [JZ02], CLOCK-Pro [JCZ05], DLIRS
[Li18] and CLOCK-Pro+ [Li19] page replacement algorithms belong to Class
3. All the other page replacement algorithms (LRU, MRU, LRU-K [OOW93],
SLRU [KLW94], CLOCK [Cor69], ZCLOCK, GCLOCK [EH84], DGCLOCK
[EH84], LRD [EH84], LFU, LFU-Aging [AFJ00], LFUDA [Arl+00], 2Q [JS94],
MQ [ZPL01] and LeanStore [Lei+18]) belong to Class 2.

The classi�cation by E�elsberg and Härder is two-dimensional as it takes
into account if a page replacement algorithm considers the time since a
certain reference of a page happened—the age—and the number of refer-
ences of a page—the references. While this classi�cation is very detailed, it
only covers the page replacement algorithms from Class 1 and Class 2 of
Bélády’s classi�cation. Table 1.2 shows each page replacement algorithm
covered in this thesis, classi�ed in an extended version of the classi�cation
by E�elsberg and Härder.

Consideration
during selection

decision

Age
No

consideration
Since most

recent reference
Since some

recent reference
Since �rst
reference

R
ef
er
en

ce
s

No
consideration RANDOM FIFO

FILO

Most recent
reference ZCLOCK

LRU
MRU

CLOCK
GCLOCK-V2
DGCLOCK-V2
LeanStore

Some recent
references SLRU LRU-K

LRD-V2
All

references LFU GCLOCK-V1
DGCLOCK-V1

LRD-V1
LFUDA

Table 1.2: Extended page replacement algorithm classi�cation by E�elsberg
and Härder from [EH84]

1.2.1 RANDOM

Introduction RANDOM eviction is the simplest page replacement policy
because it does not keep statistics on past page references—just a random
page from the bu�er pool is selected for eviction.
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In the course of the history of computer science many pseudo-random
number generators (PRNG) have been developed. A performance evalua-
tion of 98 PRNGs related to DB bu�er page replacement algorithms in my
Project Thesis [Gil20] revealed that each PRNG is suitable for implement-
ing a RANDOM page replacement algorithm. The evaluated PRNGs lead
to identical hit rates and therefore the one with the lowest overhead per
generated random number—that is the index of the bu�er frame that is
reclaimed—should be chosen. Therefore, SplitMix32 is used for the perfor-
mance evaluation in section 1.3.

Advantages The main advantage of the RANDOM page replacement pol-
icy over the Class 2 and Class 3 competitors is that it does not cause overhead
for page hits, while the more complex page replacement algorithms always
have to update their page reference statistics. In situations where hit rates
are high nevertheless, such as when the entire database �ts in the bu�er
pool—which is not uncommon in modern database systems—RANDOM
eviction is the fastest page replacement policy.

Disadvantages For the RANDOM page replacement policy, none of
the pages in the bu�er pool are more likely to be referenced again than
any other page in it. This results in poor hit rates—compared to more
sophisticated page replacement algorithms—but due to the locality of the
page references, the hit rate is not even close to 0 %, because, in general,
the pages in the bu�er pool are more likely to be referenced than the pages
that are currently not in the bu�er pool.

It is, for example, possible that the RANDOMpage replacement algorithm
selects a B-tree root page, normally located in the DB’s working set, for
eviction—the possibility is small because there are usually millions of bu�er
frames in a DB bu�er pool, but only a few B-tree indexes—each with only
one root page. But due to the fact that a B-tree root page must be �xed for
each search in its corresponding B-tree, it is more likely that these pages
are �xed at a certain point in time—where they are then not eligible for
eviction—than any other page, even though they usually contain fewer
keys than the inner B-tree pages and are therefore �xed for a shorter time
per search access.
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1.2.2 First In, First Out (FIFO)

The FIFO page replacement policy always evicts the oldest page �rst—it
organizes the bu�er frames in a FIFO queue, which is usually implemented
as a circular bu�er. The idea behind FIFO page eviction is that the more
recently fetched pages are more likely to be referenced again than pages
fetched a long time ago. An obvious counterexample against the optimality
of this heuristic is the B-tree root, which is accessed �rst when searching
in a B-tree, but which has the highest probability of being referenced again.

1.2.2.1 LOOP

Introduction FIFO page eviction can be easily implemented in the bu�er
pool by arranging the bu�er frames (0–15 in the example) in a circular
bu�er, as shown in �gure 1.3. The oldest page in the bu�er pool, �58 in the
example, is at the head of the FIFO queue and is therefore evicted next. The
last page fetched is �6 in bu�er frame 14. After �58 is evicted, the bu�er
frame 15 contains the newest page in the bu�er pool and is therefore the
tail of the FIFO queue. The oldest page in the bu�er pool is then �31 in
bu�er frame 0 which is now the head of the FIFO queue.

Bu�er
pool

0
�31 1

�52
2

�28
3�50

4�11

5
�47

6
�49

7
�23

8
�29

�38
10

�43

11 �51

12 �48

13
�56

14
�6

15
�58

Tail
Head (evict next)

Figure 1.3: The bu�er pool arranged as a circular bu�er
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Page Eviction The page eviction module of the bu�er manager there-
fore simply reclaims bu�er frames based on a cyclic counter—implemented
e.g. by taking the modulo of a simple in�nite counter. This counter-based
implementation—LOOP—is therefore comparable to a RANDOM page re-
placement algorithm with a trivial "pseudo-random" number generator :

• State word initialized with 0 (seed)
• Next state generated by simple increment
• Identity function is used to map the state word to the returned
"pseudo-random" number

If it is temporarily or permanently not possible to evict the page at the
head of the FIFO queue, the LOOP page replacement algorithm continues
iterating over the circular bu�er and suddenly places the oldest page in the
bu�er pool at the tail of the FIFO queue. This leads to a signi�cant deviation
from the algorithmic idea of the FIFO page replacement policy. If there
are many non-reclaimable bu�er frames, the actual page replacements are
rather random.

An evaluation of di�erent implementations was conducted for my Project
Thesis [Gil20]. The very fast Local Counter was used for the performance
evaluation in section 1.3 because it scored best in the performance evalu-
ation of my Project Thesis. But this variant does not properly implement
the FIFO page replacement policy because each working thread uses its
thread-local counter. As a result, even in a system with only two working
threads—if the counter of one of the threads is only 1 behind the counter of
the other thread—a thread will evict from the bu�er pool a page that was
just fetched into it by the other thread.

1.2.2.2 �asi-FIFO

Introduction The Quasi-FIFO implementation now strives to produce a
behavior closer to the FIFO page replacement policy. It does not simply in-
terpret the bu�er pool as a circular bu�er—like the LOOP page replacement
algorithm—but use more complex data structures for its page reference
statistics (�gure 1.4) and more complicated control structures for determin-
ing replacement candidates (Algorithm 1.1).

8



1.2 Page Replacement Strategies

FIFO
queue

0
1

2

3

5
68

11

12

13

14
15Tail

Head

retry
queue
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Head

currentlyCheckingRetryQueue true currentQueueChecks 15

Thread 0

currentlyCheckingRetryQueue false currentQueueChecks 0

Thread 1

�
true
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true
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true
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true
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true
8

true
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true
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true
11

true
12

true
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true
14

true
15

notExplicitlyEvictedList

Figure 1.4: The page reference statistics of the Quasi-FIFO page replacement
algorithm after almost a complete iteration over the bu�er pool

Data Structures As presented in �gure 1.4, the page reference statistics
of the Quasi-FIFO implementation is composed of two queues, the FIFO
queue and the retry queue, and the notExplicitlyEvictedList array, which is
used to �ag pages that have been explicitly removed from the bu�er pool
without involving the page replacement algorithm. The currentlyCheck-
ingRetryQueue �ag and the currentQueueChecks counter are used by the
threads that evict pages to balance page evictions between the FIFO queue
and the retry queue.

The example shows the page reference statistics of the Quasi-FIFO page
replacement algorithm operating on a bu�er pool with 16 bu�er frames—
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0–15—, after the events described in this paragraph. Before the �rst pages
were fetched from the database, both the FIFO queue and the repeat queue
were empty. After 16 pages were fetched into the bu�er pool, all bu�er
frame indexes were in the FIFO queue—0 at the head and 15 at the tail—and
the retry queue was still empty since it was not yet necessary to try to evict
pages from the bu�er pool.
Then thread 0 successfully reclaimed bu�er frame 0 and increased its

currentQueueChecks counter to 1. Afterward, bu�er frame 0 was reused
and 0 was added to the tail of the FIFO queue. Since the page reference
statistics do not contain information about the pages in the bu�er frames,
the changed ID of the page stored in the bu�er frame 0 is not re�ected
there. Subsequently thread 0 did the same with the bu�er frames 1, 2 and 3.
When the bu�er frame index 4 was at the head of the FIFO queue, it

was not reclaimable, and thread 0 moved the bu�er index from the head
of the FIFO queue to the tail of the retry queue for later retrying. The page
from the bu�er frame 5 was then successfully evicted. The �gure shows
the state of the page reference statistics after thread 0 checked 15 pages
for eviction (currentQueueChecks) and the pages from bu�er frames 0, 1,
2, 3, 5, 6, 8, 11, 12, 13 and 14 were successfully evicted. The bu�er frames
4, 7, 9 and 10 were found to be unreclaimable. No retries were made to
reclaim a bu�er frame that was found to be unreclaimable, and no page
was explicitly evicted.

Important to achieve behavior closer to the abstract FIFO page replace-
ment strategy is to balance the eviction of pages from both queues—FIFO
queue and retry queue. This results in the relatively3 high complexity of
the control structures in the function ������ from Algorithm 1.1.
According to the abstract FIFO strategy, the pages in the retry queue

should have already been evicted from the bu�er pool, so the further
eviction should concentrate on these pages. However, since some of the
reasons why a page cannot be evicted temporarily are relatively long-lasting
(dirty, foster children) and others indicate that a page is very hot (�xed,
pinned), it is more likely that the pages in the retry queue can—again—
not be evicted, and therefore, too much concentration of the eviction on
the retry queue would signi�cantly degrade the performance. Pages that

3compared to the simplicity of the abstract FIFO page replacement strategy
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1: function ������
2: selected � 0
3: static currentlyCheckingRetryQueue � false
4: static currentQueueChecks � 0
5: while true do
6: if currentlyCheckingRetryQueue == false then
7: if currentQueueChecks < 0.01 � |FIFOQueue| � |retryQueue| == 0 then
8: selected � FIFOQueue.pop()
9: currentQueueChecks � currentQueueChecks + 1
10: if notExplicitlyEvictedList [selected] == true then return selected
11: else
12: notExplicitlyEvictedList [selected] � true
13: continue
14: end if
15: else
16: selected � retryQueue.pop()
17: if notExplicitlyEvictedList [selected] == true then
18: currentQueueChecks � 0
19: currentlyCheckingRetryQueue � true return selected
20: else
21: notExplicitlyEvictedList [selected] � true
22: continue
23: end if
24: end if
25: else
26: if currentQueueChecks < |retryQueue| � |FIFOQueue| == 0 then
27: selected � retryQueue.pop()
28: currentQueueChecks � currentQueueChecks + 1
29: if notExplicitlyEvictedList [selected] == true then return selected
30: else
31: notExplicitlyEvictedList [selected] � true
32: continue
33: end if
34: else
35: selected � FIFOQueue.pop()
36: if notExplicitlyEvictedList [selected] == true then
37: currentQueueChecks � 0
38: currentlyCheckingRetryQueue � false return selected
39: else
40: notExplicitlyEvictedList [selected] � true
41: continue
42: end if
43: end if
44: end if
45: end while
46: end function

Algorithm 1.1: Selection of eviction candidates by the Quasi-FIFO page
replacement algorithm
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cannot be evicted permanently should be excluded from the eviction as an
additional optimization because they would be permanently included in
the retry queue and therefore, the eviction of these pages would be tried
repeatedly, which would reduce the overall performance.
As Algorithm 1.1 reveals, every working thread alternates its eviction

activities between the two queues—after trying to reclaim 1% of the bu�er
frames in the FIFO queue, it tries to reclaim every bu�er frame in the retry
queue. This gives a clear focus on the idea behind the FIFO page replacement
strategy and sets the Quasi-FIFO page replacement algorithm o� against
the LOOP page replacement algorithm.

1.2.3 First In, Last Out (FILO)

The FILO page replacement strategy always evicts the newest page �rst—it
arranges the bu�er frames in a FILO stack. It can therefore be considered
the opposite of the FIFO page replacement strategy. This strategy results in
very poor performance, because in a bu�er pool with � bu�er frames, the
(� � 1) pages fetched �rst from the bu�er pool remain there permanently,
and only the last page fetched is replaced over and over again, resulting
in a very low hit rate. However, for pages fetched during a table scan,
this page replacement algorithm is perfectly suitable as each page is only
accessed once, and therefore it could be part of a dynamic page replacement
algorithm that uses di�erent page replacement algorithms for di�erent
reference patterns.
But the implementation of the Quasi-FIFO and FILO page replacement

algorithms leads to identical problems with unreclaimable bu�er frames,
and thus the same solutions to these problems are used in the implementa-
tions of both replacement algorithms. In addition to the FILO stack, a retry
queue is used4. The algorithm used to select the bu�er frames for eviction
is almost identical to the one used for the Quasi-FIFO page replacement
algorithm (Algorithm 1.1), but instead of the FIFO queue, a FILO stack is
used. However, because the newest page in the bu�er pool is usually still
�xed, almost all pages selected for eviction are placed in the retry queue,
degrading this Quasi-FILO to FIFO.

4The FIFO queue from �gure 1.4is just replaced with the FILO stack.
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1.2.4 Least Recently Used (LRU)

The LRU page replacement algorithm improves on the idea of the FIFO page
replacement algorithm by considering the time of the last reference to a
page, rather than the time it was last fetched from the database �le into the
bu�er pool. It is probably the most widespread approach, both in operating
system virtual memory management and in DBMS bu�er management.

The intuition behind the algorithm is that of all pages in the bu�er pool,
the page that has not been referenced for the longest time in the past (least
recently used) will not be referenced for the longest time in the future
(Bélády’s optimal page replacement algorithm). Although this heuristic is
quite intuitive, it is not immune to suboptimal replacement decisions. LRU is
not scan resistant and prone to page thrashing. The lack of scan resistance
means that in the case of a table scan, a large number of pages that are
usually referenced only once (cold pages) will probably replace all or at least
many other pages in the bu�er pool—including the hot ones—just because
all these pages are used more recently than any previously referenced pages.
Thrashing refers to a behavior of page replacement algorithms that results
in a very low hit rate when the working set of the database is just larger
than the bu�er pool. For example, if the inner loop of a nested loop join is
just one page larger than the bu�er pool, LRU will always evict the page
used next, resulting in a page fault rate of 100 % (much worse than with
RANDOM page replacement), even though a hit rate of almost 100 % could
be achieved by sharing only one bu�er frame between two pages (with
page faults whenever one of these pages is referenced).

1.2.4.1 Hash-Map-Doubly-Linked-List Implementation

Introduction The most straightforward approach for implementing the
LRU page replacement strategy uses a queue into which each bu�er frame
index is inserted when a page is fetched into the respective bu�er frame.
For each page reference, the respective bu�er frame index is moved to the
tail of the queue. And the bu�er frame at the head of the queue is always
the one that is reclaimed during eviction.

13
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Page Reference Statistics Because of the requirement to �nd and re-
move a speci�c element (bu�er frame index) at any position in the queue
(whenever a page reference occurs), an abstract data type implementing a
simple queue with enqueue and dequeue operations cannot be used. The
Hash-Map-Doubly-Linked-List implementation uses a queue implemented
using a doubly-linked list inside a hash map (a simple array can be used
alternatively), because searching in a bare doubly-linked list would oth-
erwise require traversing all elements from the tail of the queue to the
searched bu�er frame index, which would require traversing less than half
of all elements (O (�)) due to the locality of the page references.

hashMap

7 6
0

0 13
6

10 0
7

6 1
13

2 7
10

13 5
1

14 10
2

1 3
5

15 2
14

5 12
3

9 14
15

3 11
12

8 15
9

12 4
11

NULL 9
8

11 NULL
4

8
head

4
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Figure 1.5: Implementation of the LRU queue using a doubly-linked list
inside a hash map

Figure 1.5 shows such a double-linked list within a hash map used to
obtain a queue with the special properties required for the LRU page re-
placement algorithm. The hashMap can be any suitable hash map imple-
mentation that maps a bu�er frame index (e.g., 10) to its corresponding
previous and next pointers (e.g., 2 and 7). The order of the bu�er frame
indices in the queue (shown in the �gure) does not necessarily correspond
to the way the hashMap organizes the elements (not speci�ed in the �gure).
A call to hashMap [10] will return (2, 7).

Updates of the Page Reference Statistics The operations for enqueu-
ing (Algorithm 1.2), dequeuing (Algorithm 1.3) and removing (Algorithm
1.4) a speci�c bu�er pool index are rather trivial, but are nevertheless given
here for clari�cation.

An eviction candidate is selected by dequeuing a bu�er frame index from
the LRU queue. If it cannot be evicted, it is enqueued again. When a page
is fetched into the bu�er pool, the corresponding bu�er frame index is
enqueued in the LRU queue, and when a page hit occurs, the corresponding
bu�er index is removed from the LRU queue and enqueued again.
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1: function ������(key)
2: if |hashMap| � 0 then
3: if hashMap [key] � NULL then
4: return ERROR!
5: end if
6: hashMap [key] � (tail,NULL)
7: hashMap [tail] .next � key
8: tail � key
9: else
10: hashMap [key] � (NULL,NULL)
11: head � key
12: tail � key
13: end if
14: end function

Algorithm 1.2: Enqueue an index into the Hash-Map-Doubly-Linked-List

1: function ������
2: if |hashMap| = 1 then
3: hashMap [head] � NULL
4: head � NULL
5: tail � NULL
6: else if |hashMap| > 1 then
7: oldHead � head
8: hashMap [hashMap [oldHead] .next] .previous � NULL
9: hashMap [oldHead] � NULL
10: else
11: return ERROR!
12: end if
13: end function

Algorithm 1.3: Dequeue an index from the Hash-Map-Doubly-Linked-List

A very important part of the implementation has been left out so far.
Since there are usually many working threads processing transactions
concurrently in a modern DBS, there are multiple threads referencing pages
concurrently and thus updating the page reference statistics concurrently.
For this reason, accesses to the LRU queue must be synchronized, which
is simply done here via a global latch for the entire queue. But such a
global latch, acquired during every page �x, severely limits the concurrent
transaction processing of the entire DBS and thus becomes a bottleneck
of the system. An implementation that scales better with the number of
threads is described in the next subsection 1.2.4.2.
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1: function ������(key)
2: if hashMap [key] � NULL then
3: if hashMap [key] .next � NULL then
4: hashMap [hashMap [key] .next] .previous � hashMap [key] .previous
5: else
6: tail � hashMap [key] .previous
7: end if
8: if hashMap [key] .previous � NULL then
9: hashMap [hashMap [key] .previous] .next � hashMap [key] .next
10: else
11: head � hashMap [key] .next
12: end if
13: hashMap [key] � NULL
14: else
15: return ERROR!
16: end if
17: end function

Algorithm 1.4: Remove an index from the Hash-Map-Doubly-Linked-List

1.2.4.2 Timestamp-Sorting Implementation

Introduction While page hit and page miss overhead is the same for
the Hash-Map-Doubly-Linked-List implementation of the LRU page re-
placement strategy, the Timestamp-Sorting implementation is optimized
for (on average) fast updates of page reference statistics on page hits. As
the name suggests, this implementation records the timestamp of the last
page reference for each bu�er frame, and sorts the bu�er frames by these
timestamps in order to evict the least recently referenced page.

Page Reference Statistics Figure 1.6 shows the page reference statistics
of this implementation of the LRU page replacement strategy for a bu�er
pool with 16 bu�er frames. The liveTimestamps array contains for each
bu�er frame 0–15 the timestamp of the most recent reference to the contained
page. The LRUqueue0 and LRUqueue1 arrays are unused until the �rst
bu�er frame is reclaimed. But then, either LRUqueue0 or LRUqueue1 (indi-
cated by either useLRUqueue0 or useLRUqueue1 being true) contains the
most up-to-date list of bu�er frames (�rst column), sorted by the timestamp
of references to the contained pages. The timestamp in the second column
shows the time of the last reference to the page in the corresponding bu�er
frame at the time the list (LRUqueue0 or LRUqueue1) was sorted—it is not
updated after the creation of the list.
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Figure 1.6: The page reference statistics of the Timestamp-Sorting imple-
mentation of the LRU page replacement strategy one eviction after sorting
LRUqueue0

The lastChecked variable refers to the entry in the currently used sorted
LRU queue that was last considered for eviction. If the currently used queue
is too outdated, the other queue is prepared by sorting the bu�er frames into
it based on the current timestamps. During this process, sortingInProgress is
set and the waitForSortedMutex is acquired by each working thread waiting
for this update.
useLRUqueue0, useLRUqueue1, lastChecked and the liveTimestamps

array provide atomic read and write operations and sortingInProgress pro-
vides test-and-set and clear operations.

Page Hits The Timestamp-Sorting implementation of the LRU page re-
placement algorithm prevents the synchronization overhead for page hits
by atomically writing the current wall clock time to the element in the
liveTimestamps array associated with the referenced bu�er frame during a
page hit. To obtain correctly ordered reference timestamps, a monotonic
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clock should be used if available. To further reduce the cost of page eviction,
the timestamps are also updated when a page cannot be evicted temporarily.
Since this indicates that a page is a somewhat hot, it should not be con-
sidered for eviction again so quickly. As a small optimization, pages that
cannot be evicted at all are given a timestamp that is as far in the future as
possible (which is always considered the most recent), but a regular page
reference to these pages overwrites this timestamp again.

Page Eviction The page in the bu�er pool with the oldest reference times-
tamp is selected for eviction whenever a bu�er frame needs to be freed.
But to avoid an exhaustive search for the oldest reference timestamp in
the liveTimestamps array, which would be required each time a bu�er
frame is needed to be reclaimed, an array of bu�er frame indexes sorted by
reference timestamp is created, in which in the best case the oldest reference
timestamp can be found in O (1). This array does not receive live updates,
but is created each time the old version became too outdated. To allow the
creation of a new sorted array in the background, two arrays are used alter-
nately, and therefore either LRUqueue0 or LRUqueue1 contains the most
up-to-date list of sorted bu�er frames. And to ensure that the entry for the
bu�er frame with the oldest reference timestamp in this list is not outdated,
the reference timestamp of the one used to create this list is compared with
the live version. A reference to this page made in the meantime (since the
last sorting) can be recognized in that way, and due to the fact that this
reference was made later than any other page reference used to create the
currently used sorted list, this page can be skipped without problems.

Sorting the reference timestamp becomes a scalability bottleneck due to
its computational complexity of O (� � log (�)), but asynchronous execution
helps with this problem to some degree.
As an example for this algorithm, �gure 1.6 shows LRUqueue0 as the

most up-to-date list of bu�er frames sorted by reference timestamp (useL-
RUqueue0 is true), and therefore it is iterated through this array when
pages are evicted. The last bu�er frame (potentially) reclaimed here was
bu�er frame 2 (lastChecked points to 0 and useLRUqueue0 is true), and
therefore its timestamp was updated in liveTimestamps after LRUqueue0
had been sorted—the newly fetched page was referenced or it was found
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1: function ������
2: while true do
3: if useLRUqueue0 = true then
4: if lastChecked > 0.75 �maxBu�erFrameIndex � ¬sortingInProgress.����_���_��� then
5: waitForSortedMutex.������
6: ����I���(LRUqueue1)
7: useLRUqueue1 � true
8: lastChecked � �1
9: waitForSortedMutex.�������
10: useLRUqueue0 � false
11: sortingInProgress.�����
12: else
13: checkThis � ++lastChecked
14: if checkThis > maxBu�erFrameIndex then
15: waitForSortedMutex.������
16: waitForSortedMutex.�������
17: else
18: if LRUqueue0 [checkThis] .timestamp = liveTimestamps [LRUqueue0 [checkThis] .bu�erIndex] then
19: return LRUqueue0 [checkThis] .bu�erIndex
20: else
21: continue
22: end if
23: end if
24: end if
25: else if useLRUqueue1 = true then
26: ... � As before but with LRUqueue1 instead of LRUqueue0
27: else if ¬sortingInProgress.����_���_��� then
28: � Initially neither useLRUqueue0 nor useLRUqueue1 is true.
29: waitForSortedMutex.������
30: ����I���(LRUqueue0)
31: useLRUqueue0 � true
32: lastChecked � �1
33: waitForSortedMutex.�������
34: useLRUqueue1 � false
35: sortingInProgress.�����
36: else
37: waitForSortedMutex.������
38: waitForSortedMutex.�������
39: end if
40: end while
41: end function

Algorithm 1.5: Selection of eviction candidates by the Timestamp-Sorting
implementation of the LRU page replacement strategy

temporarily unreclaimable. The next reclaimed bu�er frame will be bu�er
frame 0. It is already known that bu�er frames 4 and 7 will be skipped
because the contained pages were referenced after LRUqueue0 had been
sorted—their timestamps in LRUqueue0 are not up-to-date.
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If a bu�er frame is to be reclaimed by a working thread and lastChecked
is 12 (75 % of bu�er frames have been checked out), that thread sets sorting-
InProgress, acquires the waitForSortedMutex, and sorts the bu�er frames
in LRUqueue1 based on the timestamps in liveTimestamps as shown in
Algorithm 1.5. Other working threads reclaiming bu�er frames still use
LRUqueue0 until the working thread currently sorting sets useLRUqueue1
to true. They know that they do not need to perform the sorting because
they �nd sortingInProgress set. If all bu�er frames are checked out by the
other working threads before LRUqueue1 is completely sorted, threads that
need to reclaim bu�er frames wait using waitForSortedMutex.

1.2.5 Most Recently Used (MRU)

MRU is for LRU, what FILO is for FIFO. With the MRU page replacement
strategy, the most recently referenced is always evicted. In an OLTP system,
this leads to the frequent eviction of hot pages, as these are very often the
most recently referenced pages. But due to the arbitrariness of the trans-
action mix concurrently running on OLTP systems, this eviction strategy
will result in rather random eviction decisions.

Like the FILO page replacement strategy, this one has the problem that
pages, which are referenced early on after the system cold start, tend to
stay in the bu�er pool for a very long time, and that they are never evicted
if they are never referenced again after the �rst page eviction (of any page)
from the bu�er pool. There is no use case in an OLTP system where this
page replacement strategy is better suited than every other.

1.2.5.1 �asi-MRU

Introduction The Quasi-MRU implementation of this page replacement
strategy is based on the Quasi-FIFO implementation of the FIFO page
replacement strategy but with more sophisticated updates to the page
reference statistics.

Page Reference Statistics The Quasi-MRU page replacement algorithm
uses—like FILO—a stack (MRU stack) and a queue (retry queue) for its page
reference statistics. But both data structures are implemented using a
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doubly-linked list in a hash map (shown in �gure 1.5) like the one used
for the Hash-Map-Doubly-Linked-List implementation of the LRU page re-
placement strategy. In addition to the operations for enqueuing (alias “push
to back”) (Algorithm 1.2), dequeuing (alias “pop from front”) (Algorithm
1.3) and removing (Algorithm 1.4) a speci�c bu�er pool index, an operation
“push to front” (Algorithm 1.6) needs to be provided by the doubly-linked
list in a hash map.

1: function ����T�F����(key)
2: if |hashMap| � 0 then
3: if hashMap [key] � NULL then
4: return ERROR!
5: end if
6: hashMap [key] � (NULL, head)
7: hashMap [head] .previous � key
8: head � key
9: else
10: hashMap [key] � (NULL,NULL)
11: tail � key
12: head � key
13: end if
14: end function

Algorithm 1.6: Push an index to the front of Hash-Map-Doubly-Linked-List

Per working thread, the variables currentListChecks and currentlyCheck-
ingRetryQueue are used to balance the page evictions between the MRU
stack and the retry queue, as done in the Quasi-FIFO page replacement
algorithm.

Updates of the PageReference Statistics The page reference statistics
are not updated on page hit because moving a bu�er frame to the front of
the MRU stack would make that bu�er frame the last referenced one and
therefore the contained page would probably be selected for eviction while
it is still �xed. The update is done when the page gets un�xed.

A bu�er frame that is temporarily or permanently unreclaimable is moved
to the end of the retry queue, and an explicitly reclaimed bu�er frame is
removed either from the MRU stack or from the retry queue—wherever it
was before. Empty bu�er frames are always neither in the MRU stack nor
in the retry queue.
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Page Eviction The selection of bu�er frames for page eviction works
similar to that of the Quasi-FIFO page replacement algorithm presented in
Algorithm 1.1. However, instead of dequeuing bu�er frame indexes from
the head of an LRU queue, they are popped from the top (tail) of the MRU
stack. A notExplicitlyEvictedList does not need to be checked because
empty bu�er frames are simply not in the MRU stack or in the retry queue.
But unlike the simpler lock-free ring bu�er used in the Quasi-FIFO page
replacement algorithm, the double-linked-lists in hash maps used here
require a global latch to be acquired for synchronization.

1.2.6 LRU-K

The LRU-K page replacement strategy is an optimization (and generaliza-
tion) of the LRU page replacement strategy proposed by O’Neil, O’Neil and
Weikum in [OOW93]. By taking into account the � most recent references to
each page in the bu�er pool, the authors achieve a page replacement policy
that can better discriminate between pages that are referenced frequently
and those that are referenced only (once or) a few times. The fact that the
� th most recent reference of a page referenced <� times is considered to
be in�nitely far in the past leads to scan resistance thus overcoming one of
the major weaknesses of LRU. LRU-1 is equivalent to LRU.

The LRU-K page replacement algorithm evicts the page from the bu�er
pool where the � th most recent reference is farthest in the past. Therefore,
no page with �� references will be evicted if pages with <� references
are in the bu�er pool. A di�erent eviction policy is required for the pages
with <� references because the � th most recent reference of all these pages
is considered to be in�nitely far in the past, but a certain order must be
determined to evict these pages. One option would be to use LRU for these
pages, taking into account only the most recent page reference to these
pages. Another possibility—which was used for this evaluation—is to use
FIFO to di�erentiate between pages with <� references. But for � > 2 the
consideration of the reference frequency of the pages would be a possible
solution as well.
(� � 1) pseudo-references—which are considered to be in�nitely far in the

past—are added to the page reference statistics when a page is fetched into
the bu�er pool. These are considered to be later than any other pseudo-
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� For �� , i.e. the page that is currently in the bu�er frame �, the page ref-
erence string �4�3�2�3�2�4�2�0�4�0�3�1 (pages replaced in the mean-
time ignored) leads to the following page reference statistics:

least recent page references most recent page references

0 1 1 4 3 2 3 2 4 2 0 4 0 3 1
� in the past

� After the replacement of �0 with �0� :
least recent page references most recent page references

1 1 0 0 4 3 2 3 2 4 2 4 3 1 0
� in the past

� After a reference to �1:
least recent page references most recent page references

1 0 0 4 3 2 3 2 4 2 4 3 1 0 1
� in the past
Figure 1.7: Page reference statistics of LRU-3 for 5 bu�er frames

references currently contained—and are therefore inserted after them. This
leads to the eviction of the oldest page with <� page references (FIFO) when
the most recent page reference from the page reference statistics is selected
for eviction.

Figure 1.7 shows the abstract page reference statistics for a given page ref-
erence string collected by the LRU-3 page replacement policy with pseudo-
references inserted as described above. The page in bu�er frame 0 was
referenced twice (1 pseudo-reference) and the page in bu�er frame 1 was
referenced just once (2 pseudo-references). The page �0 was replaced by
the page �0� , because it was fetched into the bu�er pool before page �1 (FIFO).
The references to �0 have been removed and 2 (� � 1) pseudo-references
have been inserted after the most recent pseudo-reference in the page
reference statistics (that of �1). The least recent reference to the �1 page
(including pseudo-references) is removed when a new reference to this
page is recorded.
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1.2.6.1 Hash-Map-Doubly-Linked-List Implementation

Introduction The Hash-Map-Doubly-Linked-List implementation of the
LRU-K page replacement policy is based on the same principle as the Hash-
Map-Doubly-Linked-List Implementation of LRU. But for each bu�er frame
it manages the � most recent references in the used LRU queue.

PageReference Statistics To identify the� references recorded per bu�er
frame in the LRU queue, a unique ID must be de�ned for these references.
The � most recent references to the page in bu�er frame � receive IDs in
the range � � � to � � � + (� � 1).
When a page �� (in bu�er frame �) is re-referenced, the � th least recent

reference to �� is removed from the LRU queue and enqueued in the LRU
queue as the most recent reference. However, for these operations the ID
���� of the � th least recent reference to �� is required. It can be found by
traversing the LRU queue from the head (least recent references) to the
tail until a reference ID ��� with ���/� = � is found. Due to the fact that
this traversal is done in O (�) (for very frequently referenced pages, almost
� � � elements in the LRU queue must be visited), maintaining the ID of
the � th least recent reference to �� (in frameReference [�]) is a signi�cant
optimization of the function used to update page reference statistics on
page hit.
To allow the insertion of (� � 1) pseudo-references—between the most

recent pseudo-reference and the least recent real reference in the LRU
queue—when a page is fetched into the bu�er pool, the ID of the least
recent real reference is maintained in the variable leastRecentlyUsedFinite.

The page reference statistics are protected against data races caused by
concurrent page references by the LRUqueueLatch.

Page Hit Whenever a page hit (or alternatively a page un�x) occurs,
the least recent reference to that page is removed from the LRU queue
(LRUqueue) and enqueued as the most recent reference in the LRU queue.
Algorithm 1.7 shows the corresponding function. The used functions of the
Hash-Map-Doubly-Linked-List are described in Algorithms 1.8, 1.4 and 1.2.
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1: function ��H��(bu�erIndex)
2: LRUqueueLatch.������
3: referenceID � (frameReference [bu�erIndex] mod � ) + (� � bu�erIndex)
4: if referenceID = leastRecentlyUsedFinite then
5: if LRUqueue.���A����(leastRecentlyUsedFinite) = NULL then
6: leastRecentlyUsedFinite � NULL
7: else
8: leastRecentlyUsedFinite � LRUqueue.���A����(leastRecentlyUsedFinite)
9: end if
10: end if
11: LRUqueue.������(referenceID)
12: if leastRecentlyUsedFinite = NULL then
13: leastRecentlyUsedFinite � referenceID
14: end if
15: LRUqueue.������(referenceID)
16: frameReference [bu�erIndex] ++
17: LRUqueueLatch.�������
18: end function

Algorithm 1.7: Update the page reference statistics on a page hit when the
Hash-Map-Doubly-Linked-List implementation of the LRU-K page replace-
ment policy is used

1: function ���A����(key)
2: if hashMap [key] = NULL then
3: return ERROR!
4: else if tail = key then
5: return NULL
6: else
7: return hashMap [key] .next
8: end if
9: end function

Algorithm 1.8: Get the index after a given index in a Hash-Map-Doubly-
Linked-List

Page Eviction An eviction candidate is selected by dequeuing the least
recent reference (divided by � ) from the head of the LRU queue. Algorithm
1.9 shows the corresponding function. The used functions of the Hash-
Map-Doubly-Linked-List are described in Algorithms 1.10, 1.8 and 1.4.
If the selected eviction candidate cannot be evicted, the reference ID

dequeued from the LRU queue is enqueued (algorithm 1.2) again. Algorithm
1.11 describes the corresponding function.

But if a new page can be fetched into the reclaimed bu�er frame, func-
tion ������ described in Algorithm alg:hashmapdoublylinkedlistlrukinsert is
called. It begins with resetting the frameReference variable, then it removes
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1: function ������
2: LRUqueueLatch.������
3: front � LRUqueueLatch.���F����
4: if referenceID = leastRecentlyUsedFinite then
5: if LRUqueue.���A����(leastRecentlyUsedFinite) = NULL then
6: leastRecentlyUsedFinite � NULL
7: else
8: leastRecentlyUsedFinite � LRUqueue.���A����(leastRecentlyUsedFinite)
9: end if
10: end if
11: LRUqueue.������(referenceID)
12: return front/�
13: end function

Algorithm 1.9: Selection of eviction candidates by the Hash-Map-Doubly-
Linked-List implementation of the LRU-K page replacement strategy

1: function ���F����
2: if |hashMap| = 0 then
3: return ERROR!
4: else
5: return head
6: end if
7: end function

Algorithm 1.10: Get head index of an Hash-Map-Doubly-Linked-List

all the references associated with the bu�er frame. It then inserts the (� � 1)
pseudo-references into the LRU queue, and �nally enqueues a reference
for the initial reference to the bu�er frame. The same function is also used
when a bu�er frame is used for the �rst time, so the LRUqueueLatch must
be acquired �rst and released twice after the function—once for acquisi-
tion in this function and once for potential acquisition in the previously
called function ������. The Hash-Map-Doubly-Linked-List functions used
are described in the algorithms 1.8, 1.4, 1.13 and 1.2.

1.2.6.2 Timestamp-Sorting Implementation

Introduction The Timestamp-Sorting implementation of the LRU-K
page replacement policy is based on the same principle as the Timestamp-
Sorting Implementation of LRU. Therefore, the synchronization overhead
for page hits is eliminated, resulting in better scalability. But for each bu�er
frame it manages the timestamps of the � most recent references.

26



1.2 Page Replacement Strategies

1: function ���E�������
2: referenceID � (frameReference [bu�erIndex] mod � ) + (� � bu�erIndex)
3: if leastRecentlyUsedFinite = NULL then
4: leastRecentlyUsedFinite � referenceID
5: end if
6: LRUqueue.������(referenceID)
7: frameReference [bu�erIndex] ++
8: LRUqueueLatch.�������
9: end function

Algorithm 1.11: Update the page reference statistics for an eviction can-
didate that cannot be evicted when the Hash-Map-Doubly-Linked-List
implementation of the LRU-K page replacement policy is used

Page Reference Statistics The page reference statistics of the Time-
stamp-Sorting implementation of LRU-K is very similar to that of LRU. But
in this case, liveTimestamps is not a two-dimensional array with � columns
(timestamps) per bu�er frame. The array liveTimestampsOldestTimestamp
contains for each bu�er frame the array index of the least recent of the �
timestamps in the array liveTimestamps. This value is used whenever the
reference statistic of that particular bu�er frame is updated or when the
least recent timestamps of each bu�er frame are sorted into LRUqueue0 or
LRUqueue1. The pseudo-references use a timestamp as far in the past as
possible, but to allow FIFO page eviction to be used for pages with <� page
references, the timestamps used for pseudo-references are incremented
using the in�nitePast counter.

Updates of the Page Reference Statistics On a page hit (or alterna-
tively a page un�x), the least recent timestamp of that page (according to
liveTimestampsOldestTimestamp) is overwritten with the current time and
the value in liveTimestampsOldestTimestamp is atomically incremented.
This also happens when a page temporarily cannot be evicted.

� timestamps that are as far in the future as possible are used for pages
that cannot be evicted at all. However, if such a page is referenced, the
“least recent” timestamp will be overwritten with the current time.

As already described, the timestamps used for the pseudo-references are
taken from the in�nitePast counter. This means, when a page is fetched
into the bu�er pool, (� � 1) timestamps are set to in�nitePast which is
incremented after each read and one timestamp is set to the current time.
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1: function ������(bu�erIndex)
2: LRUqueueLatch.������
3: frameReference [bu�erIndex] � 0
4: for � � 0 to � � 1 do
5: referenceID � (� mod � ) + (� � bu�erIndex)
6: if referenceID = leastRecentlyUsedFinite then
7: if LRUqueue.���A����(leastRecentlyUsedFinite) = NULL then
8: leastRecentlyUsedFinite � NULL
9: else
10: leastRecentlyUsedFinite � LRUqueue.���A����(leastRecentlyUsedFinite)
11: end if
12: end if
13: LRUqueue.������(referenceID)
14: end for
15: referenceID � (frameReference [bu�erIndex] mod � ) + (� � bu�erIndex)
16: if leastRecentlyUsedFinite = NULL then
17: leastRecentlyUsedFinite � referenceID
18: end if
19: if � � 2 then
20: referenceID � (frameReference [bu�erIndex] mod � ) + (� � bu�erIndex)
21: LRUqueue.������B�����(referenceID, leastRecentlyUsedFinite)
22: end if
23: for � � 2 to � � 1 do
24: beforeID � (frameReference [bu�erIndex] mod � ) + (� � bu�erIndex)
25: frameReference [bu�erIndex] ++
26: referenceID � (frameReference [bu�erIndex] mod � ) + (� � bu�erIndex)
27: LRUqueue.������B�����(referenceID, beforeID)
28: end for
29: if � � 2 then
30: frameReference [bu�erIndex] ++
31: end if
32: LRUqueue.������(referenceID)
33: frameReference [bu�erIndex] ++
34: LRUqueueLatch.�������
35: LRUqueueLatch.�������
36: end function

Algorithm 1.12: Update the page reference statistics for a fetched page
when the Hash-Map-Doubly-Linked-List implementation of the LRU-K
page replacement policy is used

Page Eviction The selection of eviction candidates works almost exactly
the way as in the Timestamp-Sorting implementation of the LRU page re-
placement policy. This was described in algorithm 1.5. But both the sorting
and the checking whether a page has been referenced in the meantime take
into account the liveTimestampsOldestTimestamp array here.

28



1.2 Page Replacement Strategies

1: function ������B�����(key, ref)
2: if hashMap [ref] = NULL then
3: return ERROR!
4: else if hashMap [key] = NULL then
5: if head = ref then
6: hashMap [key] � (NULL, ref)
7: ���� � key
8: hashMap [ref] .previous � key
9: else
10: hashMap [key] � (hashMap [ref] .previous, ref)
11: hashMap [hashMap [ref] .previous] .next � key
12: hashMap [ref] .previous � key
13: end if
14: end if
15: end function

Algorithm 1.13: Insert an index before another index in an Hash-Map-
Doubly-Linked-List

1.2.7 Segmented LRU (SLRU)

Introduction SLRU, like LRU-K, is an optimization of the LRU page re-
placement policy that combines the use of reference recency with reference
frequency for eviction decisions. It was proposed by Karedla, Love and
Wherry in [KLW94].
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Figure 1.8: The probationary and protected segment of SLRU and the �ow
of pages between those

Page Reference Statistics The page reference statistics consist of two
LRU queues, the probationary segment and the protected segment. The
protected segment has an adjustable maximum size (usually smaller than
the bu�er pool), is reserved for pages that are referenced multiple times
and is ordered by reference recency. The probationary segment contains all
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bu�ered pages that were referenced only once, as well as pages that were
referenced multiple times, where the most recent reference is less recent
than that of any page in the protected segment.

Updates of the Page Reference Statistics Figure 1.8 illustrates the
�ow of pages in the page reference statistics of the SLRU page replacement
policy. Pages that are fetched into the bu�er pool are enqueued in the
probationary segment. When a page is re-referenced (but not on un�x), it is
removed from the segment it is currently in and enqueued in the protected
segment—if the number of pages in the protected segment is exceeded,
the least recently referenced page in it is dequeued and enqueued in the
probationary segment.

Page Eviction The least recently referenced page from the probationary
segment will be selected as eviction candidate. If it cannot be evicted—either
temporarily or permanently—it is assumed that it is a hot page and will
therefore be enqueued in the protected segment.

1.2.8 CLOCK

Introduction The CLOCK page replacement algorithm is a scalable ap-
proximation of the LRU page replacement policy which was �rst described
by Corbató in [Cor69]5. The implementation of this page replacement
algorithm extends the LOOP variant of the FIFO page replacement policy
by a so-called usage-bit.

Page Reference Statistics The page reference statistics of the CLOCK
page replacement algorithm consists of a global cyclic counter (representing
the clock hand) and an array of usage-bits—one for each bu�er frame. The
usage-bit of a bu�er frame is true if the page contained in it has been
referenced since the last sweep of the hand over that bu�er frame.
The cyclic counter used is the Modulo Counter, which was evaluated in

my Project Thesis [Gil20]. It uses the modulo (to get a value in the bu�er
5F. J. Corbató proposed a more general algorithm with some similarities to GCLOCK. If
the parameter � of his generalized algorithm is set to 1, the result is the CLOCK page
replacement algorithm.
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frame index range) of a global counter variable that is incremented using
the atomic fetch-and-increment instruction.
Figure 1.9 shows the usage-bits of a bu�er pool with 16 bu�er frames

arranged in a circle with the clock hand pointing to bu�er frame 4. The
next bu�er frame that the clock pointer moves to has index 5. Its usage-bit
is false because it has not been referenced since it was last swept.
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Figure 1.9: The page reference statistics of the CLOCK page replacement
algorithm

Updates of the Page Reference Statistics Each time a page hit occurs,
the usage-bit of the corresponding bu�er frame is set to true atomically.
This can also be done whenever a page is un�xed or when a page selected as
a candidate for eviction by the CLOCK page replacement algorithm cannot
be evicted. When a page is fetched into the bu�er pool, its corresponding
usage-bit can either be set to false, which results in a faster eviction of
pages that are referenced only once, or it can be set to true. If the use bit
is always set to true when the corresponding page is un�xed, an initially
false use bit will always be true as soon as the page can be evicted.

Page Eviction The CLOCK page eviction algorithm moves its clock hand
forward—setting the usage-bits of the bu�er frames which have been swept
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to true—until it points to a bu�er frame where the usage-bit is false. This
bu�er frame is then the selected eviction candidate.

It approximates the LRU page replacement policy by storing—instead of
the exact time of the most recent reference of each page—-the information
whether a page was referenced in a particular time frame—which corresponds
to a complete sweep of the clock—in its page reference statistics. With this
information, it is not possible to determine the exact order of the pages based
on the most recent references, but it is guaranteed that the most recent
reference of the least recently referenced page was less than the time of a
complete sweep of the clock hand before the most recent reference of the
page selected as an eviction candidate.

Performance Evaluation Figure 1.10 shows transaction throughput
and �gure 1.11 shows the miss rate achieved with di�erent variants of the
CLOCK page replacement algorithm for di�erent bu�er pool sizes. Details
of the benchmark setup can be found in section 1.3.
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Figure 1.10: Transaction throughput of the CLOCK page replacement algo-
rithm variants for the TPC-C benchmark on 100 warehouses

The Fix variant sets the corresponding usage-bit to true whenever a page
hit occurs. The Un�x variant does this on page un�x, and the FixUn�x
variant combines the two. The Full variant does it also if the bu�er frame
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Figure 1.11:Miss rate of the CLOCK page replacement algorithm variants
for the TPC-C benchmark on 100 warehouses

cannot be reclaimed after it being selected as eviction candidate. Only the
Fix variant allows the immediate eviction of a page referenced once.

The di�erent variants show only slight di�erences in performance. The
additional overhead for setting the usage-bit to true for the FixUn�x variant
is negligible and the di�erence in the resulting miss rates is statistically
insigni�cant. The only di�erence that can be observed at all is the slightly
higher miss rate achieved with the Full variant, indicating that a page that
cannot be evicted temporarily should not be considered hot. But even if
the Full variant has the highest overhead, it does not perform worse than
the other variants when it comes to the achieved transaction throughput.
The Full variant is used for the performance evaluation in section 1.3.

1.2.9 Zero-Handed CLOCK (ZCLOCK)

Introduction The ZCLOCK page replacement algorithm is a variation
of the CLOCK page replacement algorithm, in which the clock hand points
to a random bu�er frame at every move. The result is a RANDOM page
replacement algorithm in which each bu�er frame is given a second chance
to be referenced again. The random selection is done using SplitMix32.
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Figure 1.12: Transaction throughput of the ZCLOCK page replacement
algorithm variants for the TPC-C benchmark on 100 warehouses

Page Reference Statistics The page reference statistics of the ZCLOCK
page replacement algorithm for a bu�er pool with 16 bu�er frame is shown
in �gure 1.14. There is just one usage-bit (but actually no clock hand) for
each bu�er frame—if true, the corresponding page has been referenced
since the clock hand last pointed to it. ZCLOCK uses the usage-bits in the
same way as the CLOCK page replacement algorithm. But the random
movement of the clock hand makes the duration between two times the clock
hand points to a particular bu�er frame completely unpredictable, resulting
in behavior less similar to the LRU page replacement policy.

Performance Evaluation Figure 1.12 shows transaction throughput
and �gure 1.13 shows the miss rates achieved with di�erent variants of
the ZCLOCK page replacement algorithm for di�erent bu�er pool sizes.
Details of the benchmark setup can be found in section 1.3.
The evaluated variants of ZCLOCK are the same as for CLOCK.
The lower overhead variants of the ZCLOCK page replacement algorithm,

Fix and Un�x, perform best, regardless of bu�er pool size. The variant
with the highest overhead—Full—achieves a lower transaction throughput—
especially when the database almost �ts into the bu�er pool.

34



1.2 Page Replacement Strategies

100MB 500MB 1GB 2.5 GB 5GB 10GB 20GB 30GB
0

5

10

15

20

Bu�er pool size (DB size: Initially �14.3 GiB but increasing to <30GiB)

M
is
sr

at
e
[%
]

Fix Un�x FixUn�x Full

Figure 1.13: Miss rate of the ZCLOCK page replacement algorithm variants
for the TPC-C benchmark on 100 warehouses

tr
ue

0

tr
ue

1

fa
ls
e

2

tr
ue

3

fa
ls
e

4

fa
ls
e

5

fa
ls
e

6

fa
ls
e

7

tr
ue

8

tr
ue

9

fa
ls
e

10

fa
ls
e

11
tr
ue

12

tr
ue

13

tr
ue

14

fa
ls
e

15

Figure 1.14: The page reference statistics of the ZCLOCK page replacement
algorithm

With larger bu�er pools (�2.5 GB), the miss rates achieved are almost
identical for all variants. The small deviations for smaller bu�er pools are
statistically insigni�cant.

In contrast to the results for the CLOCK page replacement algorithm,
the ZCLOCK page replacement algorithm cannot bene�t from more infor-
mation collected in the page reference statistics of the Full variant. The
less predictable behavior of ZCLOCK—with more or less random eviction
decisions—cannot properly utilize this information.

The Fix variant is used for the performance evaluation in section 1.3.

35



1 Bu�er Manager Page Eviction

1.2.10 Generalized CLOCK (GCLOCK)

Introduction The GCLOCK page replacement algorithm is a scalable
approximation to the LRU page replacement policy which was proposed
by E�elsberg and Härder in [EH84]. A simpler approach was proposed by
Corbató in [Cor69] and extended by Smith in [Smi78] by additional rules
for prefetching. It generalizes the CLOCK page replacement algorithm by
replacing the usage-bit with an usage-count, thus including information
about reference frequency of a page in the page reference statistics.

Page Reference Statistics The page reference statistics maintained by
the GCLOCK page replacement algorithm for an exemplary bu�er pool
with 16 bu�er frames is shown in �gure 1.15. Instead of one usage-bit per
bu�er frame, as used by the CLOCK page replacement algorithm, usage-
counts (of integer type) are used. The clock hand is implemented in the
same way as in the CLOCK page replacement algorithm, using the Modulo
Counter from [Gil20].
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Updates of Page Reference Statistics E�elsberg and Härder worked
out two di�erent versions of the GCLOCK page replacement algorithm,
GCLOCK-V1 and GCLOCK-V2 with di�erent rules for updating the usage-
counts in case of a page hit (or alternatively in case of a page un�x). The
usage-counts can also be updated based on these rules if an eviction candi-
date cannot be evicted temporarily or permanently. The di�erent rules are
speci�ed in subsections 1.2.10.1 and 1.2.10.2. Both versions of the GCLOCK
page replacement algorithm de�ne a parameter � to which a corresponding
usage-count is set (�� (�) = � ) when a page � is fetched into a bu�er frame.
For optimal hit rates, the values of all the parameters de�ned by the

GCLOCK page replacement algorithms needs to be chosen speci�cally for
every application. The optimization e�ort is likely to prevent the usage of
these page replacement algorithms in any production DBMS.

Page Eviciton Both versions of the evict pages the same way. They
move the clock hand forward—decrementing the usage-counts of the bu�er
frames which have been touched by the value of a new parameter � (which
is not part of the de�nition in [EH84])—until it points to a bu�er frame
where the usage-count is 0. This bu�er frame is then the selected eviction
candidate.

1.2.10.1 GCLOCK-V1

Introduction The GCLOCK-V1 page replacement algorithm is the ver-
sion of the GCLOCK page replacement algorithm where reference recency
and reference frequency are taken into account for eviction decisions. One
or the other factor can be taken into account to a greater extent by choosing
the appropriate parameter values.

Updates of Page Reference Statistics The GCLOCK-V1 page replace-
ment algorithm increases the corresponding usage-count (�� (�) = �� (�)+
�) of a page � by the value of the parameter � on page hit (or alternatively
on page un�x). In this way, the usage-count of a page represents the num-
ber of references to this page. The decrease of the usage-counts during
eviction can be seen as an aging process. With a greater value for �, eviction
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Figure 1.16: Transaction throughput of the GCLOCK-V1 page replacement
algorithm variants for the TPC-C benchmark on 100 warehouses

decisions are based more on reference frequency while a greater � result in
an increased focus on reference recency.

Performance Evaluation Figure 1.16 shows transaction throughput
and �gure 1.17 shows the miss rate achieved with di�erent variants of the
GCLOCK-V1 page replacement algorithm for di�erent bu�er pool sizes.
Details of the benchmark setup can be found in section 1.3.
The Fix variant uses � = 25 when a page is fetched into the bu�er pool

and � = 5 when a page is �xed, while the FixFull variant also updates usage
numbers based on � when an eviction candidate cannot be evicted. The
Un�x and Un�xFull variants are the equivalents for updates on page un�x.
The variants ending on x2 use � = 50 and � = 10—which both increases
overhead and improves the information available for eviction decisions.
The � parameter is always 1, which gives the GCLOCK-V1 variants a focus
on the reference frequency.
For the most bu�er pool sizes the FixFull variants outperform the Fix

variants and the Un�xFull variants outperform the Un�x variants in terms
of transaction throughput. If the bu�er pool is slightly smaller than the
initial DB (10 GB), the performance di�erence is about 15 %. The di�erence
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Figure 1.17: Miss rate of the GCLOCK-V1 page replacement algorithm vari-
ants for the TPC-C benchmark on 100 warehouses

is smaller for smaller bu�er pools, and for a 100MB bu�er pool, the Fix and
Un�x variants are even slightly faster. Once the bu�er pool is larger than
the database, the performance di�erences become statistically insigni�cant
(±0.5 %). The performance di�erences between the Fix (FixFull) and the
Un�x (Un�xFull) variants are negligible (±2%).

Themiss rates of the FixFull and Un�xFull variants are 0.53 % if the bu�er
pool size is 10GB, while they are 0.55 % for the Fix and Un�x variants.
For the x2 variants, the miss rates are 0.54 %. The miss rate of the FixFull
and Un�xFull variants is also lower for a bu�er pool of 1 GB–5GB. The
higher miss rates of the FixFull and Un�xFull variants for the bu�er pool
size 500MB are counterintuitive considering the transaction throughput
achieved. Once the complete database �ts into the bu�er pool, the miss rates
of all variants are identical.

The almost non-existent performance and miss rate di�erence when the
database is completely in memory is to be expected, since in this case no
pages need to be evicted. Therefore, the only overhead due to the page
replacement algorithm is the incrementing of the usage-count on either
page �x or page un�x. The negligible di�erence in performance between
the Fix (FixFull) and the Un�x (un�xFull) variants is the result of the fact,
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that the clock hand passes a page �25◊ between fetching the page into the
bu�er pool and evicting it from it for Fix (FixFull), but only once more for
Un�x (Un�xFull). The lower miss rate and better performance of the FixFull
and Un�xFull variants for medium-sized bu�er pools suggest that the pages
that cannot be evicted temporarily will be re-referenced in the near future.
The decreasing di�erences in performance for smaller bu�er pools are the
result of shorter clock hand cycle times, which leads to a smaller e�ect of
this additional increase of the usage-count.

The FixFull variant is used for the performance evaluation in section 1.3.

1.2.10.2 GCLOCK-V2

Introduction The GCLOCK-V2 page replacement algorithm is the ver-
sion of the GCLOCK page replacement algorithm where only reference
recency is taken into account for eviction decisions. GCLOCK-V2 with
� = 1 is equivalent to CLOCK.

Updates of Page Reference Statistics The GCLOCK-V2 page replace-
ment algorithm sets the corresponding usage-count (�� (�) = �) of a page
� to the value of the parameter � on page hit (or alternatively on page un�x).
Higher � result in more precise information about how many page misses
have occurred in the DBMS (which corresponds to the time elapsed) since
the most recent reference of a page. This allows a better approximation to
the LRU page replacement algorithm.

Performance Evaluation Figure 1.18 shows transaction throughput
and �gure 1.19 shows the miss rate achieved with di�erent variants of the
GCLOCK-V2 page replacement algorithm for di�erent bu�er pool sizes.
Details of the benchmark setup can be found in section 1.3.

The evaluated variants of GCLOCK-V2 and the corresponding parameter
values are the same as for GCLOCK-V1.

The di�erences in transaction throughput between the di�erent vari-
ants of the GCLOCK-V2 page replacement algorithm are smaller than the
di�erences between the variants of the GCLOCK-V1 page replacement al-
gorithm. As with GCLOCK-V1, the performance di�erences are negligible
or even statistically insigni�cant for very small and su�ciently large bu�er
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Figure 1.18: Transaction throughput of the GCLOCK-V2 page replacement
algorithm variants for the TPC-C benchmark on 100 warehouses

pools. However, it is an interesting detail that the Un�x (Un�xFull) variants
perform slightly better than the Fix (FixFull) variants.

It is absolutely counterintuitive that the miss rates of the Full variants
are greater than that of the corresponding other variants. But the Un�x
(Un�xFull) variants have slightly lower miss rates than the Fix (FixFull)
variants, which explains the higher transaction throughput.

The higher performance of the Un�x and Un�xFull variants suggests that
the chosen value for the � parameter is too high. If a page that is referenced
only once is un�xed, the Un�x and Un�xFull variants set the usage-count
to �, which is one-�fth of � . The Fix and FixFull variants do not do this
for these pages, so they stay in the bu�er pool much longer without being
referenced again. The less superior results for the Full variants—compared
to these variants with GCLOCK-V1—suggest that pages that could not
be evicted temporarily are subsequently referenced more frequently than
others, which is taken into account by GCLOCK-V1 but not by the GCLOCK-
V2 page replacement algorithm.

The Un�xFull variant is thus used for the performance evaluation in
section 1.3.
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Figure 1.19: Miss rate of the GCLOCK-V2 page replacement algorithm vari-
ants for the TPC-C benchmark on 100 warehouses

1.2.11 Dynamic Generalized CLOCK (DGCLOCK)

Introduction The DGCLOCK page replacement algorithm is a variant
of the GCLOCK page replacement algorithm, which was also proposed by
E�elsberg and Härder in [EH84], where changes to the usage-count of a
bu�er frame depend on the type of page it contains.

PageReference Statistics The page reference statistics of theDGCLOCK
page replacement algorithm are identical to those of the GCLOCK page
replacement algorithm. Examplary page reference statistics are given in
�gure 1.15.

Updates of Page Reference Statistics Both versions of the GCLOCK
page replacement algorithm—GCLOCK-V1 and GCLOCK-V2—have “dy-
namic” equivalents under DGCLOCK. DGCLOCK-V1 and DGCLOCK-V2
de�ne di�erent rules for the updating of usage-counts of bu�er frames on
corresponding page hits (or alternatively on page un�xes), and optionally
these rules are also applied if a page cannot be evicted temporarily or per-
manently. The rules used by the two versions of DGCLOCK are speci�ed in
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the sections 1.2.11.1 and 1.2.11.2. The usage-count associated with a newly
fetched page is set to the value of parameter �� for a page of type �.

Since DGCLOCKhas evenmore parameter values to select thanGCLOCK,
optimization for speci�c applications is even more challenging. In a rela-
tional DBMS, values for the parameters �� and �� must be selected for a
variety of page types �:

• regular data pages
• LOB data pages
• B-tree index pages of di�erent levels and of primary and secondary
indexes

• hash index pages of primary and secondary indexes
• pages of other index implementations (bitmap, R-tree etc.)
• dirty pages
• other metadata pages

Page Eviction The DGCLOCK page replacement algorithms select the
eviction candidates in exactly the same way as the GCLOCK page replace-
ment algorithms—the implementation is absolutely identical.

1.2.11.1 DGCLOCK-V1

Introduction The only di�erence between the DGCLOCK-V1 page re-
placement algorithm and its “static” counterpart GCLOCK-V1 is that instead
of one parameter � for all pages, there are many parameters �� for di�erent
page types �. A larger value �� for a speci�c page type allows prioritizing
this page type � in the bu�er pool.

Updates of PageReference Statistics The DGCLOCK-V1 page replace-
ment algorithm increases the corresponding usage-count (�� (�) = �� (�)+
��) of a page � by the value of the parameter �� , which is speci�c to the
page type of �, on page hit (or alternatively on page un�x). Page types �
with greater values of �� are prioritized and therefore corresponding pages
are evicted later.

Performance Evaluation Figure 1.20 shows transaction throughput
and �gure 1.21 shows the miss rate achieved with di�erent variants of the
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Figure 1.20: Transaction throughput of the DGCLOCK-V1 page replacement
algorithm variants for the TPC-C benchmark on 100 warehouses

DGCLOCK-V1 page replacement algorithm for di�erent bu�er pool sizes.
Details of the benchmark setup can be found in section 1.3.

The Fix variant uses �non-B-tree = 25, �root = 25, �root�1 = 10 and �root��2 =
5 when a page is fetched into the bu�er pool and �non-B-tree = 5, �root = 5,
�root�1 = 2 and �root��2 = 1 when a page is �xed, while the FixFull variant
also updates usage numbers based on � when an eviction candidate cannot
be evicted. The variants ending on x2 use �non-B-tree = 50, �root = 50,
�root�1 = 25, �root��2 = 10, �non-B-tree = 10, �root = 10, �root�1 = 5 and
�root��2 = 2—which both increases overhead and improves the information
available for eviction decisions. The � parameter is always 1, which gives
the DGCLOCK-V1 variants a focus on the reference frequency.

For bu�er pool sizes �500MB, the DGCLOCK-V1 variants with the higher
value of �� and �� (which end on x2) show a slightly worse hit rate and
transaction throughput than the other variants. The FixFull variant per-
forms best for all these bu�er pool sizes. For the 100MB bu�er pool size,
the Fixxx2 variant achieves the lowest miss rate, but the Fix variant still
achieves the higher transaction throughput.

The x2 variants better approximate the behavior of the LRU page replace-
ment policy, but the minimally higher miss rates of these variants for bu�er
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Figure 1.21: Miss rate of the DGCLOCK-V1 page replacement algorithm
variants for the TPC-C benchmark on 100 warehouses

pool sizes �500MB show that this could not improve the performance
for the tested workload. The higher overhead of these DGCLOCK-V1
variants results in a lower transaction throughput even for the 100MB
bu�er pool. The slightly lower miss rate and slightly higher transaction
throughput of the FixFull variants indicate that pages selected for eviction
by the DGCLOCK-V1 page replacement algorithm, which cannot be evicted
temporarily, are hot and should be kept longer in the bu�er pool.

The FixFull variant is used for the performance evaluation in section 1.3.

1.2.11.2 DGCLOCK-V2

Introduction The only di�erence between the DGCLOCK-V2 page re-
placement algorithm and its “static” counterpart GCLOCK-V2 is that instead
of one parameter � for all pages, there are many parameters �� for di�erent
page types �. A larger value �� for a speci�c page type allows prioritizing
this page type � in the bu�er pool.

Updates of PageReference Statistics The DGCLOCK-V2 page replace-
ment algorithm sets the corresponding usage-count (�� (�) = ��) of a page
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� to the value of the parameter �� , which is speci�c to the page type of
�, on page hit (or alternatively on page un�x). Page types � with greater
values of �� are prioritized and therefore pages of that type are evicted later.

Performance Evaluation Figure 1.22 shows transaction throughput
and �gure 1.23 shows the miss rate achieved with di�erent variants of the
DGCLOCK-V2 page replacement algorithm for di�erent bu�er pool sizes.
Details of the benchmark setup can be found in section 1.3.
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Figure 1.22: Transaction throughput of the DGCLOCK-V2 page replacement
algorithm variants for the TPC-C benchmark on 100 warehouses

The evaluated variants of DGCLOCK-V2 and the corresponding parame-
ter values are the same as for DGCLOCK-V1.
The miss rates achieved by the di�erent DGCLOCK-V2 variants only

vary for very small bu�er pools. There, the variants that do not update
the usage-count when a page cannot be evicted temporarily achieve lower
miss rates. However, the lower miss rates of these variants do not lead to a
higher transaction throughput. The di�erences in transaction throughput
are small for larger bu�er pools. For larger bu�er pools, the variants of the
DGCLOCK-V2 page replacement algorithm that end in x2 show slightly
worse transaction throughput than the other variants. The FixFull variant
performs best for all these bu�er pool sizes.
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Figure 1.23: Miss rate of the DGCLOCK-V2 page replacement algorithm
variants for the TPC-C benchmark on 100 warehouses

The higher overhead of the x2 variants results in lower transaction
throughput for any bu�er pool size. The slightly higher transaction through-
put of the FixFull variants indicates that pages selected for eviction by the
DGCLOCK-V2 page replacement algorithm that cannot be evicted tem-
porarily are hot, but the higher miss rate of these variants for small bu�er
pools indicates that most other pages in such a small bu�er pool are hotter
for the tested workload.

The FixFull variant is used for the performance evaluation in section 1.3.

1.2.12 Least Reference Density (LRD)

Introduction The LRD page replacement policy evicts pages based on
the so-called reference density—i.e. the number of references to a page per
total number of references to all pages in the bu�er pool since that page was
fetched. This policy, like GCLOCK and DGCLOCK, has been—proposed by
E�elsberg and Härder in [EH84].

Page Reference Statistics The page reference statistics used by the
LRD page replacement policy consist of a global reference counter and, for

47



1 Bu�er Manager Page Eviction

each bu�ered page, a reference counter, the value of the global reference
counter at the time of the �rst reference, and—to allow concurrent eviction
of pages by multiple working threads—a �ag indicating whether another
thread has already selected the bu�er frame for eviction.

Exemplary page reference statistics for a bu�er pool with sixteen bu�er
frames are shown in �gure 1.24. It shows for each bu�er frame the reference
counter (e.g., 120 for bu�er frame 0), the value of the global reference
counter when the contained page was fetched (e.g., 2450 for bu�er frame
5), and the �ag indicating whether a working thread has already selected
that frame as a candidate for eviction (true only for bu�er frame 13). The
current reference density of each bu�er frame is calculated in the rightmost
column. A working thread that is currently evicting pages has obviously
already found the page with the lowest reference density—it is contained in
bu�er frame 13.

Reference
count

First
reference

Already
selected

Global ref. count
2500

0 120 0 false 125
2500�0 = 0.05

1 4 1500 false 4
2500�1500 = 0.004

2 7 600 false 7
2500�600 � 0.0037

3 2 2100 false 2
2500�2100 = 0.005

4 8 400 false 8
2500�400 � 0.0038

5 1 2450 false 1
2500�2450 = 0.02

6 3 1800 false 3
2500�1800 � 0.0043

7 5 1150 false 5
2500�1150 � 0.0037

8 1 2425 false 1
2500�2425 � 0.0133

9 1 2400 false 1
2500�2400 = 0.01

10 2 2200 false 2
2500�2200 � 0.0067

11 5 1100 false 5
2500�1100 � 0.0036

12 6 1000 false 6
2500�1000 = 0.004

13 4 1200 true 4
2500�1200 � 0.0031

14 8 400 false 8
2500�400 � 0.0038

15 9 200 false 9
2500�200 � 0.0039

Figure 1.24: The page reference statistics of the LRD-V1 and LRD-V2 page
replacement algorithms
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Page Eviction The algorithm used by the LRD page replacement policies
to select an eviction candidate is shown in Algorithm 1.14. The compu-
tational complexity of this algorithm growns linearly with the number of
bu�er frames, making it a performance bottleneck in almost every modern
OLTP application.
The algorithm searches linearly in the bu�er pool for the page with the

least reference density. minIndex is the index of the bu�er frame with the least
reference density among those already compared. The reference density of
the page in the bu�er frame minIndex is stored in minReferenceDensity (must be
� at the beginning) and to be able to verify at the end that the page in the
bu�er frame minIndex was not referenced again during the search, the value
of the reference counter used for calculating the minReferenceDensity is stored
in minReferences.
1: function ������
2: minIndex � �1
3: minReferences � 0
4: minReferenceDensity � �
5: while true do
6: for � � 0 to maxBu�erIndex do
7: if �

referenceCount[�]
globalReferenceCount��rstReference[�]� < minReferenceDensity then

8: if NOT alreadySelected [�] .����_���_��� then
9: alreadySelected [minIndex] .�����
10: minIndex � �
11: minReferences � referenceCount [�]
12: minReferenceDensity � referenceCount[�]

globalReferenceCount��rstReference[�]
13: end if
14: end if
15: end for
16: if minReferences � referenceCount [minIndex] then
17: alreadySelected [minIndex] .�����
18: minReferenceDensity � �
19: continue
20: else
21: return minIndex
22: end if
23: end while
24: end function

Algorithm 1.14: Selection of eviction candidates by the LRD-V1 and LRD-V2
page replacement strategies

A working thread searching for a page with the least reference density
will always �ag the bu�er frame minIndex as already selected to ensure that
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multiple working threads concurrently searching for an eviction candidate
will �nd unique pages. The �ag is also used to exclude unused bu�er frames—
e.g. explicitly evicted ones—from this process. If the found page temporarily
cannot be evicted, the �ag is removed again, and to prevent an in�nite loop
in which this page would be selected over and over again, its reference
counter is incremented (but not the global reference counter). The reference
counter corresponding to a page that cannot be evicted permanently is set to
the current value of the global reference counter to delay the next selection
for eviction. If the maximum value of the used integer data type was used,
the next reference to this page would cause an over�ow of the reference
counter.

1.2.12.1 LRD-V1

Introduction The LRD-V1 page replacement strategy is more basic than
the LRD-V2 page replacement strategy, which works with aging of the
reference statistics. In this version of the LRD page replacement strategy,
each reference to a page since the last time the page was fetched into the
bu�er pool is valued equally.

Updates of Page Reference Statistics When a page is fetched into the
bu�er pool, its corresponding �rst reference value is set to the current value
of the global reference count, the value of the global reference count is incre-
mented, and the reference count of the page is set to 1. The corresponding
bu�er frame is marked as not already selected.
In the event of a page hit, both the corresponding reference count and

the global reference count will be incremented. The page is marked as not
already selected for eviction.

If a page selected for eviction is temporarily impossible to evict, its reference
count is incremented so that it is not selected over and over again. It is
marked as not already selected for eviction.

If a page selected for eviction cannot be evicted permanently, its reference
count is set to the current value of the global reference count to prevent
further selection for eviction.
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1.2.12.2 LRD-V2

Introduction The LRD-V2 page replacement strategy adds aging of the
reference statistics to the LRD-V1 page replacement strategy. In this way,
pages that are referenced very frequently for a limited period of time are
evicted more quickly once they are not referenced again. In this way, the
reference frequency becomes less important than the reference recency.

Updates of Page Reference Statistics LRD-V2 applies the same page
reference statistics updates as LRD-V1, but after every � th global reference an
aging function is applied to the reference counts of all bu�er frames. Simple
aging function are e.g. subtraction of a �xed value � (referenceCount =
max (0, referenceCount � �)) or multiplication by a �xed factor � < 1
(referenceCount = referenceCount � �).

Performance Evaluation Figure 1.25 shows transaction throughput
and �gure 1.26 shows the miss rate achieved with di�erent variants of the
LRD-V2 page replacement algorithm for di�erent bu�er pool sizes. Details
of the benchmark setup can be found in section 1.3.

The variants of the LRD-V2 page replacement policy are named according
to the scheme � �� with the aging period � , the aging function � and the
aging operand � . For a bu�er pool with � bu�er frames, a aging period of
� means that the speci�ed aging function with the given aging operand
is applied to each reference count after � � � global page references. For
example, the 2 � 0.75 variant multiplies after every 2 � � page references each
reference count by 0.75. The variant 2 � 10 subtracts 10 from each reference
count (minimum value 0) with the same period.
The most striking result of the performance evaluation of LRD-V2 is

that as long as around <10 % of the initial DB �ts in the bu�er pool, the
transaction throughput for all variants of the replacement policy shrinks
as the bu�er pool size increases. Despite the signi�cant growth in page
hit rate, some variants such as 2 � 0.5 perform better on a small 100MB
bu�er pool than on a large 5GB one, which is very surprising. In contrast,
transaction throughput increases again with bu�er pool size for larger
bu�er pools, which is in accordance with intuition.
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Figure 1.25: Transaction throughput of the LRD-V2 page replacement algo-
rithm variants for the TPC-C benchmark on 100 warehouses

The optimal aging frequency with respect to transaction throughput
decreases with an increasing size of the bu�er pool. For a bu�er pool size of
100MB, the variants with an aging period of � = 2 perform best, but for
one with 2.5 GB, the variants with an aging period of � = 10 are better. This
behavior is not only the result of greater overhead from the aging process
with larger bu�er pools, but is also supported by the hit rates. For each
bu�er size, the faster LRD-V2 variants are also those with a lower page
miss rate, while those with a high miss rate always perform poorer.
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Figure 1.26:Miss rate of the LRD-V2 page replacement algorithm variants
for the TPC-C benchmark on 100 warehouses

For growing aging periods, decreasing factors for multiplicative aging
and increasing subtrahents for subtractive aging are required to achieve
the best transaction throughput. It keeps the in�uence of aging stable, the
reference count values need to age more strongly with less frequent aging.

For larger bu�er pools (�5GB), the miss rates and transaction throughput
of the di�erent variants of the LRD-V2 page replacement policy are almost
identical. The di�erences are statistically insigni�cant.

Due to its decent performance for all bu�er pool sizes the 10 � 10 variant
is used for the performance evaluation in section 1.3.
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1.2.13 Least Frequently Used (LFU)

Introduction The LFU page replacement policy is one of the oldest ap-
proaches to page replacement. It considers only the reference frequency
when deciding on an eviction candidate. The idea behind this criterion is
that hot pages are referenced very frequently.
However, one problem with this page replacement policy is that pages

that were referenced very frequently remain in the bu�er pool forever, even
if they left the working set a long time ago (violation of the �ve-minute
rule). And because the least frequently referenced page is very often also
the least recently fetched page, the LFU page replacement policy has the
same problem as the FILO page replacement policy—the page selected for
eviction is often still �xed and therefore temporarily impossible to evict.

Page Reference Statistics The page reference statistics maintained by
the LFU page replacement policy consists of one reference count per bu�er
frame. And to allow concurrent eviction of pages by multiple working
threads, there is also �ag for each bu�er frame indicating whether another
thread has already selected the contained page for eviction.

Updates of Page Reference Statistics When a page is fetched into
the bu�er pool, the corresponding reference count is set to 1 and the
corresponding bu�er frame is marked as not already selected. Whenever
this page is referenced again, the reference count is incremented by 1.

If a page selected for eviction is temporarily impossible to evict, its reference
count is incremented so that it is not selected over and over again. It is
marked as not already selected for eviction.

If a page selected for eviction cannot be evicted permanently, its reference
count is set to half the maximum value of the data type used, both to prevent
further selection for eviction and to ensure that there is no over�ow to 0
the next time the page is referenced.

Page Eviction The algorithm used by the LFU page replacement policy
to select an eviction candidate is shown in Algorithm 1.15. It is similar
to the one used by the LRD page replacement policies, and therefore its
computational complexity grows linearly with the number of bu�er frames.
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The algorithm searches linearly in the bu�er pool for the page with the
least reference frequency. minIndex is the index of the bu�er frame with the
least reference frequency among those already examined. The reference
frequency of the page in the bu�er frame minIndex is stored in minReferences

(must be � at the beginning). By comparing minReferences with the current
reference count of the bu�er frame minIndex, it is veri�ed at the end that the
page in the bu�er frame minIndex was not referenced again during the search.

1: function ������
2: minIndex � �1
3: minReferences � �
4: while true do
5: for � � 0 to maxBu�erIndex do
6: if referenceCount [�] < minReferences then
7: if NOT alreadySelected [�] .����_���_��� then
8: alreadySelected [minIndex] .�����
9: minIndex � �
10: minReferences � referenceCount [�]
11: end if
12: end if
13: end for
14: if minReferences � referenceCount [minIndex] then
15: alreadySelected [minIndex] .�����
16: minReferences � �
17: continue
18: else
19: return minIndex
20: end if
21: end while
22: end function

Algorithm 1.15: Selection of eviction candidates by the LFU page replace-
ment strategy

A working thread searching for a page with the least reference frequency
will always �ag the bu�er frame minIndex as already selected to ensure that
multiple working threads concurrently searching for an eviction candidate
will �nd unique pages. The �ag is also used to exclude unused bu�er frames—
e.g. explicitly evicted ones—from this process. If the found page temporarily
cannot be evicted, the �ag is removed again, and to prevent an in�nite loop
in which this page would be selected over and over again, its reference
counter is incremented. The reference counter corresponding to a page
that cannot be evicted permanently is set to half the maximum value of the
data type used. If the maximum value of the used integer data type was
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used, the next reference to this page would cause an over�ow (to 0) of the
reference counter.

1.2.14 LFUWith Dynamic Aging (LFUDA)

Introduction The LFUDA page replacement policy is an extension of
the LFU page replacement policy that was proposed by Arlitt et al. in
[Arl+00]. It tries to solve the main problem of the LFU page replacement
policy—the pollution of the bu�er pool with pages that were referenced
very frequently, possibly a long time ago. The LFUDA page replacement
policy does this by setting the initial reference count of a page just fetched
to a dynamically growing in�ation factor instead of 1—thus the reference
count of pages just fetched can exceed the value of older pages that were
very frequently fetched.

Page Reference Statistics In addition to the page reference statistics
maintained by the LFU page replacement algorithm (reference counts and
“already selected” �ags per bu�er frame), the LFUDA page replacement
algorithm also manages the in�ation factor, which is updated each time a
page is selected for eviction.

Updates of Page Reference Statistics When a page is fetched into the
bu�er pool, the corresponding reference count is set to the current value
of the in�ation factor and the corresponding bu�er frame is marked as
not already selected. In all other situations, the LFUDA page replacement
algorithm updates its page reference statistics in the same way as the LFU
page replacement algorithm.

Page Eviction The LFUDA page replacement algorithm selects eviction
candidates in the same manner as the LFU page replacement algorithm
(Algorithm 1.15), but before returning the bu�er index of the eviction
candidate, it sets the in�ation factor to the reference count of the eviction
candidate.
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1.2.15 LeanStore Replacement

Introduction The LeanStore page replacement algorithm was proposed
by Leis et al. in [Lei+18]. It is based on pointer swizzling in the bu�er pool
proposed by Graefe et al. in [Gra+14] and selects eviction candidates based
on randomly unswizzled pages that have not been recently used. With this
technique it approximates the behavior of the ZCLOCK page replacement
algorithm. In most cases, there is no need to update the page reference
statistics on page hits.

Page Reference Statistics The LeanStore page replacement algorithm
does not keep page reference statistics in the usual sense for each page. Instead,
it uses a FIFO queue—the cooling stage—which contains a fraction of the
bu�er indexes that refer to pages that have not been recently referenced.
To allow multiple working threads to enqueue and dequeue bu�er frame in-
dexes concurrently, a latch (mutex) must be acquired before each operation
on the cooling stage. It also uses the information—stored in the pointer to a
page contained in the parent page (within the B tree) of that page—whether
that page is swizzled (for a detailed description of the pointer swizzling
technique, see subsection 2.4.1). The bu�er frame containing a page that is
not swizzled is included in the cooling stage.
As an additional optimization, it �ags pages that cannot be evicted per-

manently as “not evictable”.

Updates of Page Reference Statistics When a page is fetched into the
bu�er pool, the corresponding pointer within the parent page will usually
be swizzled. Accordingly, the corresponding bu�er frame index is not added
to the cooling stage.
But at a random point in time, this pointer (if the page is not marked as

“not evictable”) gets unswizzled during the page eviction of other pages,
and therefore enters the cooling stage. If that page is then re-referenced
(page hit) after the unswizzling, it is removed from the cooling stage and its
pointer within the parent page is again swizzled. In other cases, no update
of the page reference statistics is required when a page hit occurs.

If a page selected for eviction cannot be evicted permanently, it is �agged
“not evictable”.
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Page Eviction The algorithm used by the LeanStore page replacement al-
gorithm to �ll the cooling stage and select an eviction candidate is provided
in Algorithm 1.16.
As soon as the cooling stage is half empty, it is re�lled until it contains

maxCoolingStageSize bu�er frame indexes. The working threads do this before
they start to reclaim bu�er frames. To add a page to the cooling stage, a
random bu�er frame index is picked—the cooling candidate—, an attempt
is made to unswizzle the pointer to the contained page, and on success, the
cooling candidate is enqueued to the cooling stage.
More speci�cally, this means that once a working thread has randomly

selected a bu�er frame using the SplitMix32 PRNG, it checks if this cooling
candidate is already in the cooling stage or if the contained page cannot
be evicted. If the bu�er frame could be reclaimed and is not already in
the cooling stage, the working thread tries to acquire the latch of the cool-
ing candidate in exclusive mode. If the latch is held by another working
thread, the contained page is probably not cold and should therefore not
be added to the cooling stage—another cooling candidate must be picked
at random. Now, in order to unswizzle the pointer in the parent page, the
corresponding bu�er frame must be latched in shared mode to ensure that
the page is not changed until the pointer is unswizzled. If the latch cannot
be acquired, the unswizzling cannot be performed, and therefore another
cooling candidate must be picked randomly. However, if both latches—the
one for the cooling candidate and the one for the parent page—have been
acquired, the pointer will be unswizzled. If successful, the bu�er index of the
cooling candidate is enqueued in the cooling stage queue and the latches
are released. Otherwise, the latches must be released and another cooling
candidate must be randomly picked.
If the cooling stage contains enough pages, the page that has been in

the cooling stage for the longest time (FIFO) is taken out of the queue and
returned as an eviction candidate. If it cannot be evicted temporarily, it is
again enqueued to the cooling stage queue for a later retry.

Performance Evaluation A large cooling stage—containing a larger
fraction of the bu�er frame indexeswhen full—results in a lot of unnecessary
unswizzling and swizzling operations. But if the cooling stage is too small,
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1: function ������
2: while true do
3: if |coolingStage| < maxCoolingStageSize/2 then
4: while |coolingStage| < maxCoolingStageSize do
5: coolingCandidate � � randomly � {� � ��0 � � � maxBu�erIndex}
6: coolingStageLatch.������
7: if |coolingStage| � maxCoolingStageSize then
8: coolingStageLatch.�������
9: continue
10: end if
11: if coolingCandidate � coolingStage � notEvictable [coolingCandidate] then
12: coolingStageLatch.�������
13: continue
14: else
15: coolingStageLatch.�������
16: if ¬��S�������(coolingCandidate) � ��L������(coolingCandidate) then
17: continue
18: end if
19: if ¬������L����(coolingCandidate,X) then
20: continue
21: end if
22: if ¬��E��������(coolingCandidate) then
23: �������L����(coolingCandidate)
24: continue
25: end if
26: coolingCandidateParent � ���P�����(coolingCandidate)
27: if ¬������L����(coolingCandidateParent, S) then
28: �������L����(coolingCandidate)
29: continue
30: end if
31: if ���������(coolingCandidateParent) then
32: coolingStageLatch.������
33: coolingStage.������(coolingCandidate)
34: coolingStageLatch.�������
35: �������L����(coolingCandidateParent)
36: �������L����(coolingCandidate)
37: else
38: �������L����(coolingCandidateParent)
39: �������L����(coolingCandidate)
40: continue
41: end if
42: end if
43: end while
44: end if
45: coolingStageLatch.������
46: evictionCandidate � coolingStage.������
47: coolingStageLatch.�������
48: if evictionCandidate � NULL then
49: return evictionCandidate
50: else
51: continue
52: end if
53: end while
54: end function

Algorithm 1.16: Selection of eviction candidates by the LeanStore page
replacement algorithm
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Figure 1.27: Transaction throughput of the LeanStore page replacement
algorithm variants for the TPC-C benchmark on 100 warehouses

pages are evicted very quickly after being added to the cooling stage. That
way, the cooling stage cannot be used to verify that a page is not used. For
this reason, the performance evaluation of the LeanStore page replacement
algorithm covers cooling stage sizes from 1% of the bu�er pool up to 25 %
thereof.

Figure 1.27 shows transaction throughput and �gure 1.28 shows the miss
rate achieved with di�erent variants of the LeanStore page replacement
algorithm for di�erent bu�er pool sizes. Details of the benchmark setup
can be found in section 1.3.

Neither the miss rate nor the transaction throughput di�er signi�cantly
for di�erent cooling stage sizes. Neither the pointer (un)swizzling overhead
for larger cooling stage sizes nor the less detailed page reference statistics
for smaller ones have a signi�cant impact.

While any variant could have been used for the performance evaluation
in section 1.3, the one with a cooling stage size of 2.5 % of the bu�er pool
was chosen.
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Figure 1.28:Miss rate of the LeanStore page replacement algorithm variants
for the TPC-C benchmark on 100 warehouses

1.3 Performance Evaluation

As described in the introductory section (section 1.1) of this chapter, the
page replacement algorithm used in a DBMS has a signi�cant impact on
system performance. There are three key performance factors of a page
replacement algorithm:

1. achieved hit rate
2. overhead on page hit (e.g. waiting on a latch)
3. overhead on page miss (selecting an eviction candidate)
When page replacement algorithms are compared in scienti�c papers, the

focus is usually on the 1st of the performance factors—the hit rate. [Bél66],
[Smi78], [EH84], [OOW93], [KLW94], [JS94], [AFJ00], [Arl+00], [JZ02],
[MM03], [BM04], [Li18] and [Li19] compare only the hit rates achieved with
di�erent page replacement algorithms in di�erent situations—for example
for di�erent applications or bu�er pool sizes. [JCZ05], [ZPL01], and [Li18]
give some limited data on overall system performance for di�erent page re-
placement algorithms and [Cor69] compares the hit rate and CPU overhead
for di�erent parameterizations of one page replacement algorithm.
There are many reasons why the overhead of page replacement algo-
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rithms is so rarely compared. Hit rates are usually measured in a simulated
bu�er pool with given page reference strings—which are either syntheti-
cally generated or recorded from real software runs. In this way, the hit
rates achieved with the reference behavior of many di�erent applications
(for which a newly proposed page replacement algorithm is usually to
be evaluated) can be compared without having to implement the page
replacement algorithms in di�erent applications. Furthermore, it is usually
easier to implement a page replacement algorithm for a simulated bu�er
pool, since fewer exceptional cases have to be considered. The results of
these simulations are also easier to compare because they abstract from
real-world in�uences such as the system con�guration and the elapsed real
time between successive page references. But ignoring factors such as the
overhead of page hit synchronization, which occurs, for example, in the
Hash-Map-Doubly-Linked-List implementation of the LRU page replace-
ment algorithm, results in a biased—wrong—ranking of page replacement
algorithms.

To allow a more realistic estimation of the achievable performance of the
page replacement algorithms described in section 1.2, this section provides
a combined comparison of the hit rate and transaction throughput achieved
with the di�erent algorithms.

1.3.1 System Configuration

C++ Compiler GCC (GNU Compiler Collection) 7.5.0 67

OS GNU/Linux 4.15.0 8

Kernel Ubuntu 18.04 LTS (Bionic Beaver) 9
CPU 2◊ Intel® Xeon® X5670 @12 ◊ 2.93GHz released early 2010
RAM 12 ◊ 8GiB (96GiB) Samsung DDR3-SDRAM @1333MHz10
Storage 2 ◊ 256GiB Samsung SSD 840 PRO1112

6https://gcc.gnu.org/gcc-7/
7Used �ags: -g -O3 -fexpensive-optimizations -�nline-functions -�to -fno-fat-lto-objects
-fno-strict-aliasing -march=native

8https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/
9https://releases.ubuntu.com/18.04/
10https://www.samsung.com/semiconductor/dram/module/M393B1K70CH0-CH9/
11https://www.samsung.com/at/support/model/MZ-7PD256BW/
12One SSD is only used for the DB �le, the other is only used for the transaction log.
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1.3.2 Benchmark

The benchmark used for this performance evaluation is the well recognized
OLTP benchmark TPC-C13. TPC-C simulates a classical business application
for an OLTP system—a wholesale supplier. It is the successor of the much
simpler and deprecated TPC-A14 and the predecessor of the much more
sophisticated TPC-E15.

Database The DB consists of nine tables. The size of the database can be
scaled using the scaling factor � , which allows the benchmark to simulate
many di�erent business sizes. With a scaling factor of � = 1 the initial
database size is � 143MiB.
� stands for ”warehouse”. The simulated wholesale supplier operates

exactly one warehouse if � = 1 is used. This warehouse has 100 000 items
in stock and covers 10 districts with 3000 customers each. Per customer an
order history of �1 orders is managed. Open orders consist of 5–15 line
items from the warehouse stock and as soon as an open order is processed,
it is added to the order history without details such as line items.
There are text �elds with variable (SQL VARCHAR) and �xed length

(SQL CHAR), �elds with signed numeric (SQL DECIMAL), date and time
(SQL TIMESTAMP) and ID data types ( can be implemented with SQL INT).
The NEW ORDER table consists of 3 ID �elds and each tuple has a size
of 6 B. The CUSTOMER table consists of 22 �elds of di�erent types and
each tuple is �679 B. The tuple sizes of the seven other tables are between
these two tuple sizes. There are primary indexes based on the (composite)
primary keys, and two tables also have secondary indexes.

Transactions A number of simulated online terminal sessions are used
to concurrently submit transactions to the database. 12 terminal sessions
(the number of physical cores available) were used for this performance
evaluation. The benchmark de�nes �ve types of transactions that simulate
di�erent activities of a wholesale supplier. The transactions must meet the

13http://www.tpc.org/tpcc/
14http://www.tpc.org/tpca/
15http://www.tpc.org/tpce/

63



1 Bu�er Manager Page Eviction

ACID properties. The data accesses by these transactions follow certain
non-uniform distributions that lead to contention on the data.
45 % of the transactions submitted to the system are NEW ORDER

transactions—characterized as mid-weight read/write transactions. The
light-weight read/write transaction PAYMENT is used for 43 % (+4%, be-
cause the implementation included with the used prototype DBMS Zero16
also runs PAYMENT instead of DELIVERY) of the transactions submitted
to the system. The only two read-only transactions de�ned by the TPC-C
speci�cation—the mid-weight ORDER STATUS transaction and the heavy
STOCK LEVEL transaction—each account for only 4 % of the transactions
making TPC-C update-focused.

1.3.3 Limitations of this Performance Evaluation

The con�guration of the server system used for the performance evaluation,
the properties of the database prototype used and the benchmark limit the
generalizability of the results.
A 10 year old server with two SSDs connected via SATA and DDR3

SDRAM is no longer a typical database server today. Even cheap servers
use CPUs with much more cores and CPU cache. Midrange servers often
have multiple TiB DDR4 SDRAM and use much faster NVMe SSDs. Even
faster NVRAM solutions for DIMM slots are also available17 at a much
higher price.

The DBMS prototype Zero1819 supports storing data only in Foster B trees
with one B-tree per primary index. Other data structures for indexes such as
hash index structures, multidimensional index structures or trie structures
are not supported. Zero’s bu�er pool uses a global bu�er allocation and
only demand paging. Hints about pages that may be used in the future by a
running transaction, which could be used for prefetching, or hints about
the page reference pattern (e.g. loop) of a particular transaction, which
could be used for page eviction decisions, are not supported.

16https://github.com/iMax3060/zero
17https://www.intel.com/content/dam/www/public/us/en/documents/product-

briefs/optane-dc-persistent-memory-brief.pdf
18https://github.com/iMax3060/zero
19See my Bachelor’s thesis [Gil17] for more details about the history of Zero.
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Zero is an embedded DBMS, not a relational DBMS. The logical data
structures layer, which provides a set-oriented interface, e.g. using a query
language like SQL, is missing in the system. The logical access paths layer
is also not part of Zero itself, but implemented as part of its benchmark
framework. Therefore, Zero is not representative for most DBMSs used for
DBs larger-than-memory.

The benchmark used—TPC-C—was speci�ed in 1992, and applications for
OLTP have diversi�ed dramatically over the past nearly 30 years. Especially
the web with the advent of e-commerce and a hardly assessable number
of other online services that are indispensable today leads to many new
applications for OLTP and OLAP database systems. While the traditional
business applications for OLTP applications still exist almost unchanged
but the new applications are very often more read-heavy than TPC-C. And
it is almost impossible to specify a benchmark that replicates the diversity
of Big Data applications.

1.3.4 Results

Figure 1.29 shows the transaction throughput and �gure 1.30 shows the
miss rate achieved with all the evaluated page replacement algorithms for
di�erent bu�er pool sizes.
FILO, MRU and the Hash-Map-Doubly-Linked-List implementation of

LRU-K do not work for small bu�er pools. The latter two even stalled the
DBS if the bu�er pool is not large enough for the entire DB.

The Hash-Map-Doubly-Linked-List implementation of LRU—called List-
LRU here—and SLRU do not scale with respect to the transaction throughput.
For larger bu�er pool sizes, they perform �94 % worse than the fastest com-
peting page replacement algorithms. Their performance does not increase
at all with bu�er pool size for bu�er pools >10GB. They are also slower than
most of the competition for smaller bu�er pools, but the gap is smaller—in
both absolute and relative terms.

For the bu�er pool sizes where the Hash-Map-Doubly-Linked-List imple-
mentation of LRU-K works, List-LRU-2, List-LRU-3, and List-LRU-4 achieve
almost twice the transaction throughput as the Hash-Map-Doubly-Linked-
List implementation of LRU. But even the fastest of the three variants—List-
LRU-2—is almost 90 % slower than most of the competition.

65



1 Bu�er Manager Page Eviction

100MB 200MB 400MB
0

20,000

40,000

60,000

80,000

tp
m
-C

[1
/m

in
]

600MB 800MB 1GB
0

50,000

1 � 105

tp
m
-C

[1
/m

in
]

2GB 4GB 6GB
0

2 � 105

4 � 105

6 � 105

Bu�er pool size (DB size: Initially �14.3 GiB but increasing to <30GiB)

tp
m
-C

[1
/m

in
]

Figure 1.29: Transaction throughput of the page replacement algorithms
from section 1.2 for the TPC-C benchmark on 100 warehouses

Quasi-FIFO and FILO are in the midrange for bu�er pools smaller than the
initial DB in terms of transaction throughput, but they are among the fastest
page replacement algorithms when (almost) no pages are evicted. But both
algorithms show random drops in their transaction throughput—Quasi-FIFO
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Figure 1.29: Transaction throughput of the page replacement algorithms
from section 1.2 for the TPC-C benchmark on 100 warehouses (continued)

for a bu�er pool with 1GB size and FILO for one with 25GB size.
For very small bu�er pools (�1GB), LFU is one of the slowest page re-

placement policies in the competition—LFUDA is in the mid-range for these
bu�er pool sizes. Both policies are amongst the slowest for medium-sized
bu�er pools (2 GB–20GB) and amongst the fastest when the bu�er pool has
the size of the DB. LFUDA is constantly faster than LFU.

20LeanStore uses the pointer swizzling technique described in subsection 2.4.1.
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Figure 1.30: Miss rates of the page replacement algorithms from section 1.2
for the TPC-C benchmark on 100 warehouses

LRD-V1 and LRD-V2 perform very similar to LFU and LFUDA, but they
are consistently slower than at least the latter one.

The Timestamp-Sorting implementation of LRU-K—here referred to as
Sorting-LRU-2, Sorting-LRU-3, and Sorting-LRU-4—is almost one of the
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Figure 1.30: Miss rates of the page replacement algorithms from section 1.2
for the TPC-C benchmark on 100 warehouses (continued)

fastest page replacement policies in the competition. Except for the smallest
bu�er pool sizes, Sorting-LRU-2 is the fastest of the three.
RANDOM, the Timestamp-Sorting implementation of LRU, CLOCK,

ZCLOCK, GCLOCK-V1 and GCLOCK-V2 are all among the fastest page
replacement algorithms for most of the bu�er pool sizes. But the FIFO
implementation LOOP and DGCLOCK-V1 and DGCLOCK-V2 are almost
twice as fast for 4GB and 6GB bu�er pools.
The transaction throughput achieved with LeanStore is for small bu�er
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pools of �2GB as decent as that of Quasi-FIFO and for larger bu�er pools as
bad as that of LFU.
Especially for smaller bu�er pool sizes, the Hash-Map-Doubly-Linked-

List implementation of LRU, the Timestamp-Sorting implementation of
LRU-K, GCLOCK-V1, LRD-V1 and LRD-V2 achieve a lower miss rate than
the competition.
For bu�er pools smaller than 4GB, the miss rate of FILO is �4 % higher

than that of most competitors, and Quasi-FIFO maintains an even higher
miss rate for bu�er pools of �10GB size. But once the initial DB �ts in the
bu�er pool, both algorithms are among the best in terms of miss rate.

The miss rates achieved with most page replacement algorithms is below
0.2 % once the DB �ts in the bu�er pool. The responsible page misses are
the result of cold starting the DBS—with an empty bu�er pool—which is
part of each 10min benchmark run used to gather this data. The page
miss rates would converge for a continuously running system to 0 %. The
higher page miss rates of approximately 0.9 % of the Hash-Map-Doubly-
Linked-List implementation of LRU, the Hash-Map-Doubly-Linked-List
implementation of LRU-K, MRU and SLRU are the result of a lower total
number of page �xes due to the lower transaction throughput achieved
with these page replacement algorithms.

1.3.5 Analysis

The Hash-Map-Doubly-Linked-List implementation of LRU, the Hash-Map-
Doubly-Linked-List implementation of LRU-K, MRU, and SLRU scale very
poorly regarding transaction throughput due to the synchronization re-
quired for multithreaded execution. A global latch must be acquired on
each page hit—regardless of whether pages are evicted or not. However,
this cannot explain the exceptionally highmiss rates for bu�er pools �15 GB.
It is no surprise that the sloppy selection of eviction candidates by

LeanStore does not result in high hit rates, but although it does not re-
quire an update of the page reference statistics on most page hits, the
overhead for pointer (un)swizzling is high, keeping the transaction through-
put relatively low even with large bu�er pools. The overhead for adding
pages to and removing pages from the cooling stage is particularly high
when pages are infrequently evicted.
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The very low hit rates achieved by Quasi-FIFO and especially by FILO are
to be expected in consideration of their suboptimal eviction decisions when
used with B-trees. But because of the very low overhead (no overhead on
page hits), the transaction throughput they achieve is very decent.
Considering the expected pollution of the bu�er pool with pages refer-

enced very frequently for a short period of time when using the LFU page
replacement policy, it reached surprisingly low miss rates. However, this
may be a result of short (10min) benchmark runs, where pages that are
referenced very frequently remain hot until the end of the benchmark. The
simple reference counter results in a competitive transaction throughput
when the DB �ts into the bu�er pool, but the slow selection of eviction
candidates slows down LFU when page evictions actually take place. The
lower miss rate of LFUDA for small bu�er pools suggests that some pollu-
tion of the bu�er pool can be prevented by ageing, but for bigger bu�er
pools the way the dynamic aging of LFUDA works leads to higher miss
rates. Because of the identical overhead imposed by both algorithms, the
transaction throughput roughly re�ects the di�erences inmiss rates between
the two algorithms.
The good idea behind the LRD page replacement strategies results in

the lowest miss rates of all page replacement algorithms for smaller bu�er
pools. However, due to the slow selection of eviction candidates, neither
LRD-V1 nor LRD-V2 will achieve high transaction throughput when the DB
�ts into the bu�er pool. However, the atomic counters that are incremented
on a page hit do not cause signi�cant overhead, resulting in a competitive
transaction throughput for the biggest bu�er pool sizes.

For themost bu�er pool sizes (small and large bu�er pools), the Timestamp-
Sorting implementation of the LRU-K page replacement strategy achieves
the lowest miss rates. In particular, Sorting-LRU-3 and Sorting-LRU-4
achieve very high hit rates for smaller bu�er pools. For larger ones, the
Timestamp-Sorting implementation of LRU achieves the same hit rates.
These high hit rates also lead to a high transaction throughput—especially
with Sorting-LRU, which has a particularly low overhead. Only few competi-
tors can beat these algorithms in terms of hit rates or transaction throughput.
The higher miss rates of RANDOM and LOOP compared to CLOCK,

ZCLOCK, GCLOCK and DGCLOCK are no surprise. But due to the complete
lack of overhead and the quick eviction candidate selection, they perform
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just as well as the others—for some bu�er pool sizes even better.

When comparing CLOCK, ZCLOCK, GCLOCK, and DGCLOCK, they all
perform very similarly well on very small bu�er pools. Onmedium size bu�er
pools, the ones with more detailed page reference statistics—DGCLOCK-V1
and DGCLOCK-V2—perform better than the others. But low overhead and
simplicity are king when the hit rates are high anyways, resulting in CLOCK
and ZCLOCK outperforming the others on big bu�er pools. A reason why
GCLOCK-V1 is usually slower than GCLOCK-V2, while DGCLOCK-V1 and
DGCLOCK-V2 perform almost identically, could not be found.

1.4 Conclusion

The performance evaluation of the di�erent page replacement algorithms
showed that a low overhead per page hit and a fast selection of eviction
candidates are as important for good performance as a high hit rate. In this
context, it was demonstrated that the Timestamp-Sorting implementation
of the LRU page replacement policy performed signi�cantly better than
the Hash-Map-Doubly-Linked-List implementation of the same page re-
placement policy due to its more scalable page reference statistic updating
function on page hits.

The very low transaction throughput achieved with the relatively new
LeanStore page eviction algorithm was surprising. Especially considering
the fact that it was the only candidate in competition with enabled pointer
swizzling in the bu�er pool.

In most cases, the Timestamp-Sorting implementation of LRU may actu-
ally be recommended due to its consistently high transaction throughput.
But due to concerns about the scalability of the sorting process for much
larger bu�er pools and more CPU cores, using ZCLOCK or a cleverly tuned
DGCLOCK is probably safer.
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1.4 Conclusion

1.4.1 Future Work

Future work should focus on eliminating the limitations mentioned in sub-
section 1.3.3. Other, more modern benchmarks such as YSCB21 or TPC-E22
should also be used and run on a more up-to-date server system. GIS appli-
cations also bene�t from a well-optimized bu�er pool—a comprehensive
comparison of page replacement algorithms in this context would also be
interesting.

The implementation of many page replacement algorithms, listed in sec-
tion 1.2, was beyond the scope of this thesis—especially CAR [BM04], CART
[BM04], CLOCK-Pro [JCZ05] and CLOCK-Pro+ [Li19] look very promising.

Hints from higher DBMS layers about the current and future page refer-
ence behavior together with page prefetching should also be combined in
such a comprehensive evaluation.

21https://github.com/brianfrankcooper/YCSB/
22http://www.tpc.org/tpce/
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2 Component-Wise Performance
Evaluation of OLTP Systems

2.1 Harizopoulos et al. “OLTP through the Looking
Glass, and What We Found There”

2.1.1 Introduction

As a starting point for the search for optimization potentials of OLTP
systems, Harizopoulos et al. in [Har+08] have broken down the CPU time
used by the di�erent components of a DBMS. They stated that many of the
features and guarantees provided by relational DBMS—which were mainly
developed in the 1970’s and 1980’s—are not needed on modern hardware
and for many new applications. Therefore, the CPU time consumed by
the components responsible for realizing these features and guarantees
can be seen as unnecessary overhead. Their work proves that signi�cant
performance improvements can be achieved with architectural changes
for—what was called a few years later—NoSQL DBMS.

2.1.2 Features and Guarantees Identified to be Unnecessary

Depending on the application, one, some or all of the following features and
guarantees typically provided by a relational DBMS have been identi�ed
as unnecessary by Harizopoulos et al.
Larger-Than-Memory Databases Since database sizes grow more slowly

than the available main memory, it is no longer necessary to optimize
a DBMS for DBs that are larger than the available main memory.

Multithreaded and Interleaved Execution If transactions never block
due to disk access latency, interleaved execution using multithreading
is no longer needed for good transaction throughput.
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Strict Consistency and Transaction Support (and ACID in general)
For many new OLTP applications—especially in the area of dis-
tributed Internet services—the eventual consistency will be su�cient.
And amore complete approach—BASE (BasicallyAvailable, Soft state,
Eventual consistency)—was later proposed by Pritchett in [Pri08].

Log-Based Recovery On the one hand, some OLTP applications do not
require recovery at all, and on the other hand, recovery can be done
from other sites of a cluster.

2.1.3 A�ected DBMS Components

The authors propose the removal of components from a DBMS to eliminate
these features and guarantees along with the associated overheads.
Bu�er Management In-memory DBMSs simply allocate the DB in RAM.
Latching and Lock Management Without support for multithreading

and interleaved transaction execution, latching and locking is not
required anymore.

Log Management If crash recovery is required by the application, the
required data can be provided by a replicated DBS. However, replica-
tion using log-shipping is not possible without a transaction log, so
that other techniques must be used. The management of LSNs (log
sequence numbers) is not necessary with a log-free DBMS.

B-Tree B-tree indices are mostly optimized for disk-based use [BM70]
and other data structures—like ART [LKN13]—are better suited for
in-memory DBMS. But using larger pages can still improve the in-
memory performance of B-trees. But for the evaluation in [Har+08]
the authors have simply hand-optimized the B-tree code for the case
of uncompressed integer keys which are used throughout TPC-C.

2.1.4 Performance Evaluation

They have analyzed these architectural changes quantitatively, by taking the
stock Shore Storage Manager12 as a baseline and then gradually removing the

1https://research.cs.wisc.edu/shore/
2The Shore Storage Manager (the remaining part of the Shore DBMS) was derived from
the EXODUS. Shore was later developed into Shore-MT, the direct predecessor of Zero,

75



2 Component-Wise Performance Evaluation of OLTP Systems

0

200 k

400 k

600 k

800 k

1M

1.2M

1.4M

1.6M

disk log
main log

LSN

dir lookup

small page

page access

Xactions
remaining overhead
useful work

Btree key
16.2 %

logging
11.9 %

locking
16.3 %

latching
14.2 %

bu�er
manager
34.6 %

6.8 %

in
st
ru
ct
io
ns

0

500 k

1M

1.5M

2M

2.5M

3M

3.5M Btree key
8.1 %

logging
21%

locking
18.7 %

latching
10.2 %

bu�er
manager
29.6 %

12.3 %

CP
U
cy
cl
es

Figure 2.1: Number of CPU instructions and CPU cycles per TPC-C NEW
ORDER transaction measured by Harizopoulos et al. for [Har+08]

previously mentioned components. This gave them for each of these DBMS
components the overhead imposed on the overall system. They also applied
some code optimizations to these components and to the remaining code,
and tested the performance of a basic in-memory B-tree as a replacement
for the DBMS. The used performance metrics are the instruction count
and CPU cycles of the TPC-C read-write transactions NEW ORDER and
PAYMENT.
Figure 2.1 shows their results for the NEW ORDER transaction. The

number of CPU instructions executed during an average NEW ORDER
transaction decreased by 16.2 % after optimizing the search for uncom-
pressed integer keys in B-tree pages. Removing the I/O operations of the
log manager (disk log), the generation of log records (main log) and the

which is used throughout this thesis.
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maintenance of LSN reduced the number of executed CPU instructions
by a further 11.9 % compared to the baseline. Removing calls to the lock
manager and the acquisition and release of latches saved another 16.3 %
respective 14.2 % of the instructions compared to the baseline. The authors
achieved the greatest savings by removing parts of the bu�er manager.
They removed the directory used to �nd storage structures like indexes
on disk (dir lookup), they increased the page size from 8 kB to 32 kB, they
removed the facilities used to access disk pages and �nd disk pages in the
bu�er pool (page access) and they removed the transaction management
(Xactions). Their bare B-tree in main memory executed only a tiny fraction
of the CPU instructions (useful work) compared to the baseline.

Fewer instructions do not result in the same degree of fewer CPU cycles.
The optimizations the authors applied to Shore’s B-tree did not remove
many CPU cache misses and branch miss predictions compared to their
optimizations to other DBMS components, resulting in lower savings in
required CPU cycles. The comparatively small fraction of instructions saved
after removing transaction logging resulted in a far greater proportion of
CPU cycles saved because the logging code accessedmanymemory locations.
The remaining components require around two CPU cycles per instruction.

2.1.5 Assessment of the Assumptions and Results

Larger-Than-Memory Databases The assumption that the DB of most
OLTP applications �ts in main memory is correct. But support for
DBs larger-than-memory is still needed for embedded DBs—such as
those used by web browsers for managing browser history, cookies,
or bookmarks—and for local copies of production DBs on notebooks
used to overcome network latency when working with e.g. GIS data
in the home o�ce.

Multithreaded and Interleaved Execution Withoutmultithreaded and
interleaved execution, even a modern single CPU socket desktop PC
with up to 64 CPU cores3 cannot be utilized to the slightest degree.

Strict Consistency and Transaction Support (and ACID in general)
The idea that omitting transaction support and ACID guarantees is

3https://www.amd.com/en/products/ryzen-threadripper
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bene�cial for most modern web applications led to the rise of NoSQL
DBMSs in the 2000s. These new systems were much more performant
than traditional DBMSs and could be scaled horizontally. In the 2010s
it was realized that the application development e�ort is higher when
using a NoSQL DBMS and that relational DBMSs are possible with
almost the performance and scalability of a NoSQL DBMS—NewSQL
DBMSs were born. An overview of the transition from NoSQL to
NewSQL and a de�nition of NewSQL DBMSs can be found in [PA16].

Performance Evaluation The Shore Storage Manager (as well as Zero,
which is used in his thesis) lacks the set-oriented layer of a relational
DBMS—it is therefore not fully representative for a traditional OLTP
DBMS. But the greatest overhead of a relational DBMS should be
below this layer, since it is mainly responsible for query optimization
and compilation.
The similar architectures of traditional DBMSs allow such a perfor-
mance evaluation to be representative to a certain extent, even if only
one DBMS is examined. But evaluating multiple DBMSs would cer-
tainly have resulted in �nding di�erent optimization opportunities
in these DBMSs, which would have led to di�erent amounts of CPU
instructions in the components.
In general, the TPC-C benchmark is a suitable benchmark for evalu-
ating the OLTP performance of a DBS. However, the two read/write
transactions selected by the authors (which account for 88 % of the
TPC-C transactions) are not very representative for most web appli-
cations that use many read-only transactions. Most importantly, the
performance gain from eliminating transaction logging is entirely
based on the write accesses of these transactions. The standard trans-
action mixture of TPC-C—or for a focus on Web applications more
ORDER STATUS and STOCK LEVEL transactions—should be used
for the performance evaluation.
Harizopoulos et al. made it clear that they could not completely
remove all components from Shore, but that by removing them in
a certain order helped to minimize the overhead caused by these
leftovers. However, if one wants to optimize a component instead
of removing it completely, breaking down the CPU time into the
di�erent components is not very helpful because it is too coarse. A
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di�erent order of component removals would also lead to (slightly)
di�erent percentages of CPU time per DBMS component due to de-
pendencies between di�erent components. With the drawback of
adding measurement overhead to the application under test—which
slows it down and may distort the result—pro�ling and tracing soft-
ware can be used to obtain a code line-, function-, sub-component-,
or component-wise breakdown of CPU cycles or other performance
metrics.

Revisited The measurements from [Har+08] are repeated in this chapter
to address some of the problems of the original measurements. Mul-
tithreaded and interleaved execution and all TPC-C transactions are
considered. And instead of removing DBMS components, pro�ling
and tracing software on the baseline DBMS is used. The following sec-
tion 2.2 describes the technique and gives an overview of the software
that can be used for this and describes in more detail the software
that was used. Subsection 2.3.3 gives results for single threaded DBS
executions and subsection 2.3.4 discusses the multithreaded case.
Section 2.4 presents some optimizations that can be easily applied
based on these measurements.

2.2 Profiling and Tracing

The Oxford A Dictionary of Computer Science [BNK16] gives the following
de�nitions:

Pro�ling “Production of a histogram (or equivalent) concern-
ing some aspect of a system. For example, an execution pro�le
for a program might show the proportion of time spent in
each individual procedure during a run of the program, while
a statement pro�le might show the distribution of the state-
ments in a program between the di�erent kinds of statement
provided by the language.”

Trace Program “A program that monitors the execution of
some software system and provides information on the dy-
namic behaviour of that system in the form of a trace, i.e.
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a report of the sequence of actions carried out. Typically a
trace program will o�er several options as to the kind of trace
produced. For example, there may be options to produce a
statement-by-statement trace, or to trace just those statements
that alter the �ow of control, or to trace changes to the value
of a speci�c variable.”

A program execution pro�le is thus created by the aggregation of traces.

2.2.1 So�ware

While many proprietary performance analysis tools create execution pro-
�les in one step—at least if one of the provided presets is suitable for the
respective task—, the many free and open-source programs only collect
program traces. Analysis of the collected traces and pro�ling can be done
using scripts written by the user or shared online. But for common pro�ling
tasks free and open source GUI frontends are available, at least for the more
popular programs. Some trace programs are also programmable, which al-
lows the user to perform more complex calculations during the tracing and
to analyze the program execution in more detail, e.g. by reading variable
values or function parameters, as is done in debugging.

This subsection contains a brief description and/or potential sample
analyses of free and open source performance analysis tools that could
have been used (partially) for the measurements for section 2.3. But for the
simple analysis performed in section 2.3, the less powerful Intel® VTune™
Pro�ler was chosen because of its easy-to-use GUI and fast con�guration.
How to use it is described in more detail in subsection 2.2.2.

LTT The Linux Trace Toolkit is a simple and not very con�gurable Linux
kernel tracer that logs system calls, traps, interrupts, memory management
events, etc. The traces are then displayed using a graphical visualizer.

LTTng The Linux Trace Toolkit Next Generation4 is a more sophisticated
successor of LTT. It can trace the Linux kernel based on built-in trace-
points and other instrumentation points, but it can also be used to trace user
4https://lttng.org/

80



2.2 Pro�ling and Tracing

programs that need to be prepared by inserting tracepoints. Tracing is
managed in isolated tracing sessions, where di�erent event rules can be
set per session for kernel and user space tracing. A trace record contain-
ing, for example, the process ID, call stack or CPU performance counter
values is produced whenever an active event rule is satis�ed. To analyze
the generated traces, tools like Babeltrace 25 are useful.

�race ftrace6 gives an insight into the operation of the Linux kernel. It
requires a Linux kernel compiled with ftrace capabilities enabled, and is
con�gured using virtual �les—it is not a command line application. Events
that are used to create traces are kernel built-in static tracepoints, kprobe
events, uprobe events, or any function call within the kernel. Tracing of
speci�c events can be enabled in the con�guration. It can also be used to
measure certain latencies within the kernel or to create a function graph.
Tools for visualizing the not very human readable traces recorded by ftrace
are of course also available.

perf perf is a performance analysis tool built into Linux, and it is proba-
bly the most commonly used one on Linux. It can create traces based on
hardware events (e.g. for microarchitecture-level analysis), low-level kernel
events, kernel tracepoints, user-de�ned tracepoints in user programs, dynamic
kprobe or uprobe events, and a speci�c trace frequency. perf can create
pro�les that contain simple counter values, latencies aggregated per event,
or human-readable aggregated call stacks with associated performance
metrics.

DTrace DTrace is an open-source programmable tracing software that
was originally released by Sun Microsystems for Solaris in 2005. Today, ports
exist also for macOS, Linux andWindows.

Listing 2.1 shows a simple DTrace script written in the awk-like scripting
language D, which is used by DTrace. vminfo:::pgpgin is an instrumentation
point—a so-called probe—which �res upon the occurrence of a certain event
in the virtual memory management of the operating system. According

5https://babeltrace.org/
6https://www.kernel.org/doc/Documentation/trace/ftrace.txt
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#!/usr/sbin/dtrace −s

vminfo:::pgpgin {
@pg[execname] = sum(arg0);

}

Listing 2.1: DTrace script pgpginbyproc.d from the DTrace Toolkit7

to the DTrace documentation8 the pgpgin probe “�res whenever a page
is paged in from the backing store or from a swap device”. The number
of pages paged in—returned by the probe in arg0—is then aggregated per
process name (execname) into the aggregate pg using the sum() aggregation
function. The aggregate pg thus contains for each process name (which
possibly represents a number of running processes) that is paging in pages
a counter of the number of pages paged in by it.
For more complex pro�ling tasks, many probes for kernel and user

process tracing can be used in one script, resulting in DTrace scripts of 100s
of lines. Brendan Gregg developed hundreds of scripts—covering many
di�erent �elds—for his open source DTrace Toolkit, which is available at
https://github.com/opendtrace/toolkit.

eBPF The extended Berkeley Packet Filter is an in-kernel virtual machine
that can be used as a programmable open source tracing software similar to
DTrace. It has its origin in the network tra�c analysis tool Berkeley Packet
Filter from 1992. While it runs small programs in the kernel whenever a
certain event occurs, it is programmed using frameworks like bpftrace9
or for more complex scripts BCC10—providing high-level languages like
DTrace’s D—that run in user space. Like most pro�ling tools, eBPF supports
the instrumentation points that are also supported by perf.
Listing 2.2 shows a simple bpftrace script written in an awk-like lan-

guage, which is compiled to eBPF bytecode and then executed by eBPF
inside the kernel. The action block of the special BEGIN event is exe-
cuted once when the script is started. And every time an event matching

8http://dtrace.org/guide
9https://github.com/iovisor/bpftrace
10https://github.com/iovisor/bcc
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#!/usr/bin/env bpftrace

BEGIN {
printf("%−10s�%−5s�%s\n", "TIME(ms)", "PID", "ARGS");

}

tracepoint:syscalls:sys_enter_exec∗ {
printf("%−10u�%−5d�", elapsed / 1e6, pid);
join(args−>argv);

}

Listing 2.2: bpftrace script execsnoop.bt, which is one of the o�cial examples
of bpftrace

tracepoint:syscalls: sys_enter_exec∗ occurs, where ∗ is a wildcard for a 0–�
number of characters, the elapsed time (since script start) in ms, the corre-
sponding process ID, and the array of event arguments args−>argv with a
space as delimiter are printed to the standard output stream. Thewildcarded
event matches e.g. the tracepoint tracepoint:syscalls:sys_enter_execve, which
is �red whenever a new process is started, so this script prints information
about each new process.

ktap ktap11 is a free and open-source, but discontinued in-kernel Lua
virtual machine for Linux and works almost exactly like eBPF.

SystemTap SystemTap12 is, unlike eBPF or ktap, not a kernel-internal
virtual machine, but a program that compiles user-written programs into
kernel modules and executes them dynamically in the Linux kernel. This
makes it very powerful for instrumentation of live running systems and
keeps the overhead very low. The scripting language used is hardly distin-
guishable from those of DTrace, bpftrace (eBPF ) or ktap—the general script
structure with probe points (pattern matching for events) and associated
code blocks with C-style syntax is inspired by the script language awk.
Since the scripts can manipulate the entire system, SystemTap checks

them before adding them as a kernel module by running them a few times
11https://github.com/ktap/ktap
12https://sourceware.org/systemtap/wiki
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#! /usr/bin/env stap

/∗
∗ Copyright (C) 2006−2007 Red Hat Inc.
∗
∗ This copyrighted material is made available to anyone wishing to use,
∗ modify, copy, or redistribute it subject to the terms and conditions
∗ of the GNU General Public License v.2.
∗/
global start

function timestamp:long() {
return gettimeofday_us() − start

}

function proc:string() {
return sprintf("%d�(%s)", pid(), execname())

}

probe begin {
start = gettimeofday_us()

}

probe syscall.nanosleep.return,
syscall.compat_nanosleep.return ?
{

elapsed_time = gettimeofday_us() −@entry(gettimeofday_us())
printf("%d�%s�%s:�%d\n", timestamp(), proc(), name, elapsed_time)

}

Listing 2.3: SystemTap script sleeptime.stp, which is one of the o�cial ex-
amples of SystemTap

outside the kernel to minimize the risk of kernel panics and other serious
errors. However, it is also possible to add any C code to SystemTap scripts,
which can be quite harmful.

Listing 2.3 is a simple SystemTap script which logs calls to the system
calls nanosleep and compat_nanosleep and the respective time periods. The
special probe point begin writes the current epoch time in �s to the global
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variable start when the script is started. The function timestamp returns the
�s since the script was started as long value. The proc function returns a
formatted string containing the process ID and process name of the process
that triggered the probe from which the function was called.
The probe de�ned at the end of the script is always executed when the

system call nanosleep or compat_nanosleep returns. From inside a return
probe, @entry can be used to execute code at the time of the corresponding
function call. Thus, elapsed_time contains the time between the call and the
return of a nanosleep or compat_nanosleep system call. The probe outputs
the �s since the script was started, information about the process that
caused the probe to execute, the name of the system call (either nanosleep
or compat_nanosleep) and the elapsed_time to the standard output stream.

Valgrind Valgrind13 was originally a free and open-source memory de-
bugger for Linux but evolved into a more generic pro�ling tool for Linux,
macOS and Solaris. It is di�erent from all the other programs presented
here as it takes the program to analyse in the form of a x86 binary as input
and runs it on a synthetic CPU where Valgrind tools do e.g. memory error
detection or cache and branch prediction pro�ling of that program.

2.2.2 Intel® VTune™ Profiler

Intel® VTune™ Pro�ler14 is a proprietary pro�ling software that is available
as a stand-alone product or as a part of Intel® Parallel Studio XE15 or Intel®
System Studio16. It is available for Windows, macOS17 and Linux, but it
also supports target systems for analysis on which some other operating
systems like Android run.
In contrast to most open-source solutions for tracing and pro�ling, the

Intel® VTune™ Pro�ler o�ers a quite polished GUI that provides a quick
entry into software pro�ling. However, to automate the software analysis
with this tool, the collector—the part of the software responsible for data

13https://www.valgrind.org/
14https://software.intel.com/content/www/us/en/develop/tools/vtune-pro�ler.html
15https://software.intel.com/content/www/us/en/develop/tools/parallel-studio-xe.html
16https://software.intel.com/content/www/us/en/develop/tools/system-studio.html
17There is no collector available for macOS, which prevents it from being a target system.
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Figure 2.2: In Intel® VTune™ Pro�ler, the con�guration of an analysis via
GUI is clearly structured: How should what software running where be
analyzed?

acquisition and post-processing—can also be used via the command line.
The con�guration of an analysis via the GUI even allows the export of the
respective command to make scripting even easier. But any more complex
software pro�le should be viewed in the GUI.
The software allows naming of the generated analyses and their man-

agement in projects, which makes it easier to keep track of all generated
results. But these functionalities are not as comfortable as they could be—an
analysis cannot be named during con�guration. The results have to be
generated �rst to give it its own name afterwards. And after renaming
an analysis, the results must be reloaded by the software—resetting the
analysis viewer.

But before the �rst analysis can be created, a license for the software must
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be acquired and the VTune™ Pro�ler needs to be installed. The installation
can be done via command line or GUI. But for example, if the target software
is running on a server, only the sampling driver needs to be installed there,
while it is controlled by a full VTune™ Pro�ler installation on the PC on
which the analyses are initiated and evaluated.

But once the software (and the sampling driver on a potentially separate
target system) is installed, the �rst analysis can be started. Figure 2.2 shows
the con�guration dialog for a VTune™ Pro�ler analysis via GUI. It is divided
into three main topics.

Figure 2.3: The Intel® VTune™ Pro�ler does not only allow the analysis of
software running local.

First, it is required to decidewhere to run the target software on—�gure
2.2 shows the di�erent options. For example, if “Remote Linux (SSH)” is
selected, as in the example shown in �gure 2.2, the local VTune™ Pro�ler
will connect to the target system, where at least the sampling driver must
be installed, via SSH, conveniently using the user’s con�guration for SSH
connections.

Figure 2.4: The Intel® VTune™ Pro�ler can also attach to an already running
process to analyze that.

The second decision to be made is the question of what to analyze on the
target system by the VTune™ Pro�ler. Figure 2.4 shows the di�erent options.
While “Pro�le System” and “Attach to Process” can also be used to evaluate
a production system, the “Launch Application” option is best suited for
the measurements performed for this chapter. With this option, the target
application is started by the VTune™ Pro�ler and speci�ed parameters are
passed to it. Data acquisition can be delayed, and a maximum amount of
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data or time span for data acquisition can be speci�ed, for example, to omit
the start and shutdown procedures of the target application from analysis.

Figure 2.5: The Intel® VTune™ Pro�ler o�ers a number of presets that de�ne
which events should be collected during analysis and how this data should
be post-processed afterwards.

With the �nal decision, the user tells the VTune™ Pro�ler their intention
for the analysis—how should the VTune™ Pro�ler create the analysis? The
Intel® VTune™ Pro�ler provides a set of presets for various analyses—each
preset de�nes the events to be counted and the sample rate for stack traces,
allowing the identi�cation of components, functions, or code lines causing
these events.
The preset can be used for example with “User-Mode Sampling” or

with “Hardware Event-Based Sampling”. “User-Mode Sampling” interrupts
the analyzed process (de�ned in “what”) every 10ms (default “CPU sam-
pling interval”) and stores the current call stack of each unhalted thread
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Figure 2.6: The “Hotspots” preset of the Intel® VTune™ Pro�ler speci�es
among many other options the CPU sampling interval and the events to be
counted. Many less relevant options that are not used by this preset have
been removed from this screenshot.

of the process. The CPU time since the previous sample is then assigned
to that captured call stack. Afterwards, the stack trace is aggregated by
summing the CPU times of identical call stacks to obtain a—statistically
exact—allocation of CPU time to di�erent call stacks. “Hardware Event-
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Based Sampling” also interrupts the analyzed process to store the call stacks,
but it assigns the values of certain hardware counters to each sample, so that
di�erent samples contribute to the �nal summary based on these values.
These hardware counters can count e.g. CPU cycles, executed instructions,
L2 cache misses or branch mispredictions—depending on the capabilities
of the CPU architecture. Figure 2.6 shows some settings of the “Hotspots”
preset, but many others, e.g. regarding GPU usage and memory, have been
removed from the screenshot for the sake of clarity.

Figure 2.7: The Intel® VTune™ Pro�ler provides a “Summary” tab for each
analysis performed, displaying—depending on con�guration—highlights
related to various performance aspects.

The VTune™ Pro�ler presents the results of each analysis in a variety of
ways, divided among di�erent tabs. An exemplary “Summary” tab of the
“Hotspots” preset when using “User-Mode Sampling” is shown in �gure 2.7.
It shows a ranking of the functions that required the most CPU time and a
visualization of the degree of parallelism achieved.
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Figure 2.8: The “Bottom-up” tab of a Intel® VTune™ Pro�ler analysis sum-
marizes the collected samples based on the lowest element of the call stacks.

The “Bottom-up” tab breaks down CPU time (or other performance
characteristics) based on the bottom element of the call stack of each sample.
This element is the function (or loop, if displayed) that was running on
the CPU at the time the sample was taken. As shown in the �gure 2.8, the
callers (and their callers) to these functions can also be displayed along
with a breakdown of the share of CPU time of each combination.

The samples considered for the summaries in the “Bottom-up” tab and
the other tabs can be �ltered by timestamp, process, thread and software
module. These �lter options are shown at the bottom of the �gure 2.8.

The “Caller/Callee” tab lists each function contained in the stack trace and
assigns it the CPU time it requires including that of any functions it calls.
Therefore, the entry point of the program is usually the function with the
highest CPU time required—it is the base of every call and every thread
spawn. This list is shown in the left frame in �gure 2.9. The callers and
callees to these functions can then be retrieved as shown for �x_nonroot in
the example. The upper right frame in the �gure shows the callers as they
are displayed in the “Bottom-up” tab. The callees can be displayed in the
same way as they are shown in the “Top-down Tree” tab. This is shown in
the lower right frame in �gure 2.9.
The “Top-down Tree” tab initially shows only the entry point of the

analyzed program and the total CPU time it has used during the analysis.
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Figure 2.9: The “Caller/Callee” tab of a Intel® VTune™ Pro�ler analysis lists
the total CPU time used by each function—including the called functions.

Figure 2.10: The “Top-down Tree” tab of a Intel® VTune™ Pro�ler analysis
o�ers the possibility to interactively discover the call stack of a program
from top to bottom, sorted by e.g. CPU time.

From there, the view can be expanded, as shown in �gure 2.10, to show all
called functions (and the functions they call, etc.) together with the CPU
time they utilize (including or excluding their callees).
Finally, the “Platform” tab visualizes the complete analysis in terms of

CPU usage. As shown in �gure 2.11, it shows a graph for each thread (or
alternatively process, module, or any combination of them), with CPU time
displayed in brown and idle time in green. For example, if “synchronization
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Figure 2.11: The “Platform” tab of a Intel® VTune™ Pro�ler analysis visu-
alizes e.g. the CPU utilization (and optionally spin time of spinlocks) per
thread, process or module.

API data” is collected, the spin time of spinlocks would be displayed in the
graphs in red.

2.2.2.1 Flaws

While collecting measurements for the section 2.3, the Intel® VTune™
Pro�ler showed some of its �aws.
When “Launch Application” is used, it starts the target application and

shows the command line output of this program during the tracing. How-
ever, this command line output is not saved together with the trace data and
thus discarded when the analysis results are closed. If anything from the
command line output of the analyzed program is to be used later with the
analysis results—such as transaction throughput in the case of Zero—this
information must be stored outside the VTune™ Pro�ler.

2.3 Measurements of Harizopoulos et al. – Redone

Based on the estimation that the assumptions of Harizopoulos et al. and
their methodology are too restrictive, in this section their measurements
are repeated with changed assumptions and using a completely di�erent
technique. Subsection 2.3.1 describes in detail the methodology used and
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to demonstrate that the—-probably most controversial—assumption from
[Har+08]—-the unnecessity for multithreaded execution of OLTP DBS—is
invalid, subsection 2.3.3 shows the new evaluation (mostly) single-threaded
while subsection 2.3.4 uses multithreaded execution to provide data for a
comparison.
Due to the extensive evaluation of the e�ect of the bu�er pool size on

OLTP performance in Chapter 1 and the fact that today larger-than-memory
databases are rarely used, only in-memory DBSs are considered in these
measurements. Since transaction support and ACID guarantees are still used
in most OLTP applications, these are also used during the measurements.
ARIES-style logging is also used, as this is still common and built into the
used prototype DBMS.

2.3.1 Methodology

The software used to breakdown the runtime of an OLTP system is the
Intel® VTune™ Pro�ler 2020, which is described in subsection 2.2.2. It was
con�gured according to the outlined con�guration steps as follows:
Where The DBS was running on a “Remote Linux (SSH)” server. Its

con�guration is described in subsection 1.3.1.
What The DBS with built-in benchmarks was started by the pro�ling

software. Some details about the embedded DBMS used—Zero—were
given in the subsection 1.3.3 and the benchmarks are TPC-C (see
subsection 1.3.2) and YCSB (see subsection 2.3.1.1). The DBS started
with a clean DB (no crash recovery required), but—obviously—with
an empty bu�er pool. Due to the fact that a typical DBMS runs
continuously—and thus with a populated bu�er pool—the Intel®
VTune™ Pro�ler started tracing after a cold start of 5min (recording
10min total) to give realistic results.

How The preset “Hotspots” of the Intel® VTune™ Pro�ler was used.
The software pro�le generated by the Intel® VTune™ Pro�ler consists of

stack traces, as shown in subsection 2.2.2, with a total run time in seconds
for each of them. Every relevant (except e.g. benchmark code such as the
test data generation that would typically run on a client) stack trace is then
manually assigned to one of the DBMS components described in subsection
2.3.1.2. The delayed start of tracing and the overhead associated with it
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prevent a reliable calculation of the CPU time per transaction, so that only
the percentage of CPU time used per component is shown.

2.3.1.1 Benchmarks

The �rst benchmark used for the measurements in this chapter is the Yahoo!
Cloud Serving Benchmark18 (YCSB). It is based on a simple workload for
key-value stores (NoSQL DBMSs) and was designed for systems running in
the cloud. It is for NoSQL DBMSs what TPC-C is for OLTP SQL DBMSs.

The DB contains 10 000 000 completely random key-value pairs in a table
with 10 character �elds of 100 B each mapped to a 10 B key. One skewed
(based on the Zip�an distribution) random key is drawn per transaction. A
read transaction reads all 10 �elds associated with the key and an update
transaction writes random data to a randomly selected �eld associated with
the key. The read-only YCSB workloads from subsection 2.3.3.1 and 2.3.4.1
execute only read transactions, the write-only ones from subsection 2.3.3.2
and 2.3.4.2 execute only update transactions. No transactions abort and all
queried keys exist in the DB.

The second benchmark used in this chapter—TPC-C—performs read and
(more frequently) update transactions, so that a read-write YCSB workload
is evaluated. The database and transactions of TPC-C have already been
described in the subsection 1.3.2.

2.3.1.2 Considered DBMS Components

B-Tree Each stack trace associated with maintaining the Foster B-Tree
structure or searching for keys within a B-Tree page is assigned to
this component.

Logging The CPU time used to create log records, maintain log sequence
numbers (LSNs) and �ush log records to SSD is assigned to this
component.

Locking The CPU time spent on transaction management, acquiring and
releasing locks and managing locks in the lock manager is assigned
to this component.

18https://ycsb.site/
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Latching Internal structures of transaction and lock managers re-
quire latches (not the mutexes on which the locks are based on)
for synchronization in multithreaded environments. The CPU
time required to acquire and release these latches is assigned
to this sub-component.

Bu�er Pool The e�ort for �xing and un�xing pages is assigned to this
component. In addition to the following sub-components, page evic-
tion would also be a sub-component, but only the RANDOM page
replacement algorithm and smaller-than-memory DBs are considered
thus requiring no CPU time for page eviction.
Latching A latch is assigned to each bu�er frame, and a thread

reading or writing a page must acquire the corresponding latch
in the appropriate mode (shared or exclusive). The CPU time
required to acquire and release these latches is assigned to this
sub-component.

Fetching Few pages are fetched from the SSD while the stack traces
are being gathered, because—due to the skewed access to the
records—not all pages were accessed during the cold start phase,
which is ignored by the pro�ler. But since the whole database
�ts into the bu�er pool during each benchmark run, no pages
need to be fetched because they were previously evicted. The
CPU time required to fetch pages from the SSD is assigned to
this sub-component.

Hash Table The hash table maps the page identi�er of each page
in the bu�er pool to the corresponding bu�er frame index. It is
queried on each page �x—regardless of whether it is a page hit
or a page miss. The runtime required to search within this hash
table is assigned to this sub-component. More details about the
hash table and an alternative can be found in the subsection
2.4.1.

Free List The free list is a simple concurrent queue containing the
indexes of unoccupied bu�er frames. Indexes are only dequeued
when a page is fetched from SSD, so the CPU time assigned to
this sub-component is very little.

The logical access paths layer, which is responsible for the mapping
between internal and external records, among other things, and which is
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not a core component of Zero, is not considered here. It consumes up to
25 % of the CPU time, but mainly for memory operations, e.g. for creating
records based on input data, so these operations would be considered useful
work by Harizopoulos et al.

2.3.2 Other Related Work

In contrast to Harizopoulos et al., Johnson et al. focus in [Joh+09] on
scalability in the context of multithreading. They present their successor
of the Shore Storage Manager—Shore-MT—together with measurements to
prove its better multithreading capabilities. Instead of removing modules
of the Shore Storage Manager one by one, they optimized them one after the
other and showed the increase in transaction throughput (for a simple insert-
only microbenchmark) after each step. In this way, their measurements
show which components of Shore Storage Manager limit scalability to what
extent.

Pandis et al. proposed a new page latching protocol for partitioned DBSs.
In their work, they compared their approach—physiological partitioning
(PLP)—to the “conventional” approach, by breaking down the number of
critical sections per DBMS component.

The most detailed analysis of the inner workings of a DBMS in terms of
performance was conducted by Tözün et al. in [Töz+13]. Their main goal
was to compare the (micro-architectural) behavior of the OLTP benchmarks
of the Transaction Processing Performance Council—TPC-B, TPC-C and TPC-
E. They broke down CPU time and other performance metrics per DBMS
component in a very similar way as here, compared CPU cache misses per
cache level, and compared the behavior of the three benchmarks on systems
that use Hyper-Threading Technology.

2.3.3 Single-Threaded OLTP System Analysis

The analysis of single-threaded OLTP systems is especially relevant for
the comparisons between the results of Harizopoulos et al. and the results
presented here, which were obtained using a totally di�erent methodology.
However, the results can also give a better insight—compared to the results
for multithreaded OLTP systems from subsection 2.3.4—into the overhead
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Figure 2.12: Transaction throughput for di�erent numbers of working
threads for read/update-only YCSB and TPC-C

of the pessimistic concurrency control, because here—without multithreaded
and interleaved execution—every operation performed by the lock manager
is unnecessary.

A quick comparison of the transaction throughput achieved with di�erent
numbers of working threads—i.e., di�erent numbers of threads processing
transactions concurrently and di�erent numbers of transactions executing
in an interleaved fashion—is shown in �gure 2.12. The used server (see
subsection 1.3.1) is equipped with two CPUs, each with 6 cores, supporting
2 hardware contexts running concurrently via simultaneous multithreading,
so that a total of 24 logical cores or 12 physical cores are available.
The results indicate that the additional logical cores cannot be used to

increase transaction throughput. In fact, they even increase overhead
through more contention and additional context switches. But read-only
YCSB and especially TPC-C bene�t from multithreaded and interleaved
transaction execution. Read-only YCSB can more than double its throughput
if 12 instead of 1 working threads are used, TPC-C can more than quadruple
its throughput. The bottleneck of read-only YCSB is the contention caused
by the very large number of very short transactions on a global latch in the
transaction manager, which has to be acquired twice per transaction. The
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limited write rate of the transaction log prevents an increase in transaction
throughput for update-only YCSB. The more balanced workload of TPC-C
can better utilize the larger number of working threads.

2.3.3.1 Read-Only YCSB
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Figure 2.13: Component-wise breakdown of the CPU cycles when running
read-only YCSB with one querying terminal.

Figure 2.13 shows the breakdown of CPU time of Zero when running
read-only YCSB on 1 working thread and a DB smaller than the bu�er pool.
While this diagram only shows the percentage of CPU time per DBMS
component, CPU times in seconds are given in table 2.1 later in this section.
Since read-only workloads do not generate log entries, logging here

only accounts for 1.01 % of the total CPU time. The only overhead of the
transaction log is caused by the need to store the current LSN for each
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transaction at the time it begins.
The 4.14 % of CPU time used to fetch pages from the SSD (and the 0.13 %

used to access the bu�er pool’s free list) is caused by the skewed DB accesses
of YCSBwhere not all pages used during the benchmark runwere referenced
during the bu�er pool warmup.
Because of the very large number of simple transactions that are being

executed, the lock manager and mainly the transaction manager use 34.47 %
of CPU time. This overhead is caused by management tasks required
whenever a transaction begins or commits.

During single-threaded execution, no concurrency control is required,
so lock management and bu�er frame latching—which accounts for 5.3 % of
CPU time—are a waste of resources.

2.3.3.2 Write-Only YCSB

Figure 2.14 shows the CPU time breakdown of Zero when running update-
only YCSB on 1 working thread and a DB smaller than the bu�er pool.
Just like the read-only YCSB, the update-only YCSB does not access all

used DB pages during bu�er pool warmup. However, due to the lower
transaction throughput of this workload, signi�cantly fewer pages have to
be fetched using only 1.17 % + 0.07 % of the total CPU time.
In contrast to read-only workloads, each transaction of the update-only

YCSB results in the creation and writing of a log entry, which results in
24.42 % of the CPU time used for logging.
The just a little smaller number of simple transactions executed with

the update-only variant causes the lock and transaction managers to use
21.73 % of CPU time. As can be seen in table 2.1, the absolute CPU time
used by these components re�ects what is expected taking into account
the transaction throughput and CPU time required during read-only YCSB.
The lower transaction throughput does not reduce the absolute CPU

time used by the Foster B-tree, although fewer records are accessed. The
lower overhead imposed by the bu�er pool—compared to the measurement
with read-only YCSB—is similar to what would be expected considering the
lower transaction throughput.
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2.3 Measurements of Harizopoulos et al. – Redone
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Figure 2.14: Component-wise breakdown of the CPU cycles when running
update-only YCSB with one querying terminal.

2.3.3.3 TPC-C

Figure 2.15 shows the breakdown of CPU time of Zero when running TPC-C
with one working thread and a DB not growing beyond the size of the
bu�er pool.

The TPC-C benchmark is not much less write-intensive than update-only
YCSB. In addition to the updates performed by YCSB, TPC-C also inserts
many records, resulting in a much larger logging overhead of 42.46 % of
the total CPU time. This is twice as high a share as that measured by
Harizopoulos et al. for the NEW ORDER transaction. This means that
either the PAYMENT transaction—the other update transaction executed
here—causes much more logging overhead or that the log manager of Zero
is much less optimized compared to the other components of the DBMS.
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Figure 2.15: Component-wise breakdown of the CPU cycles when running
TPC-C with one querying terminal.

The fewer transactions that are executed, the less CPU time is used
by the transaction management. Correspondingly, overhead of lock and
transaction management is just at 4.91 %.
TPC-C �xes more pages—compared to YCSB—containing records from

several smaller B-trees which results in fewer executed B-tree instructions
(32.51 % of CPU time) and more bu�er pool work (20.11 % of CPU time).

Harizopoulos et al. measured amuch higher concurrency control overhead
and also a higher bu�er pool overhead, but much less overhead in the B-tree.
The di�erent results for the B-tree can be explained mainly through the
di�erent approaches—the total CPU time used by the B-tree is given here,
while they measured only the bene�t obtained with a small optimization.
But especially the lockmanagement and latching seems to bemore optimized
in Zero compared to its predecessor, the Shore Storage Manager.
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Figure 2.16: Component-wise breakdown of the CPU cycles when running
read-only YCSB with 24 querying terminal.

2.3.4 Multithreaded OLTP System Analysis

Based on the trend of having more and more cores per CPU and the perfor-
mance bene�ts of multithreaded execution for OLTP workloads (TPC-C) as
shown in �gure 2.12, these results for a system with 24 working threads
should be considered more relevant to modern OLTP systems than the
results in the previous section. However, the traditional two-phase locking
(2PL) used by Zero is less representative because almost all modern (main
memory) DBMSs use multiversion concurrency control (MVCC)19, which
is considered more scalable with the number of threads when correctly
designed [Wu+17]. The 10 years old CPUs used for this analysis do not
represent the state of the art in terms of the degree of achievable parallelism.

19MVCC was originally proposed by Reed in [Ree78].
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Figure 2.17: Component-wise breakdown of the CPU cycles when running
update-only YCSB with 24 querying terminal.

2.3.4.1 Read-Only YCSB

Figure 2.16 shows the CPU time breakdown of Zerowhen running read-only
YCSB with 24 working thread and a DB smaller than the bu�er pool.

The high percentage of CPU time used by the lock and transaction man-
agers is much more signi�cant here—it dominates every other component—
compared to single-threaded execution. The 77.59 % of the total compu-
tation time are mostly used spinning a global latch inside the transaction
manager implemented using a spinlock (almost 50 % of CPU time is used
for this).
Due to the dominance of the transaction manager with regard to used

CPU time, the overhead of logging is here—where no log records are
created—down to 0.36 % of the total CPU time.
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2.3 Measurements of Harizopoulos et al. – Redone

As can read from table 2.1, the absolute CPU time used by the Foster
B-tree and bu�er pool grew more strongly than the transaction throughput
compared to the single-threaded case. The increase in the bu�er pool can
partly be explained by a higher latching cost.
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Figure 2.18: Component-wise breakdown of the CPU cycles when running
TPC-C with 24 querying terminal.

2.3.4.2 Write-Only YCSB

Figure 2.17 shows the CPU time breakdown of Zero when running update-
only YCSB with 24 working thread and a DB smaller than the bu�er pool.
The same spinlock that causes the high overhead of the lock and trans-

action managers for read-only YCSB also causes a high overhead of these
components here. However, due to the lower transaction throughput, the
CPU time is not quite as high.
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1 thread 24 threads
read-only
YCSB

update-only
YCSB TPC-C read-only

YCSB
update-only

YCSB TPC-C

logging 5.236 166.306 244.855 17.566 1119.645 316.533
locking 166.703 130.689 26.257 1367.299 413.172 142.108
+ latching 12.374 17.269 2.08 2470.092 1619.046 28.26
B-tree 219.454 257.482 187.497 829.531 627.305 2437.772
bu�er pool 42.984 41.989 50.993 114.462 94.723 322.127
+ latching 27.562 35.204 35.584 90.462 98.321 336.345
+ hash table 23.053 23.582 26.319 53.211 44.874 150.108
+ free list 0.668 0.5 0.276 3.137 1.86 8.223
+ fetching 21.517 7.948 2.829 0.054 1.052 1.769

Table 2.1: Component-wise breakdown of CPU time in seconds

The CPU time required for transaction logging is—even if the transaction
throughput is not higher—much higher than in the case of single-threaded
execution. This is caused by synchronization overhead in the log manager.

The increase in CPU time used in multithreaded execution by the bu�er
pool manager and in the B-tree is comparable to that of read-only YCSB.

2.3.4.3 TPC-C

Figure 2.18 shows the CPU time breakdown of Zero when running TPC-C
with 24 working thread and a DB smaller than the bu�er pool.

The overhead due to transaction logging is here—as it is only 8.45 % of
the total CPU time—comparatively small, given the drastic growth in trans-
action throughput when ran on 24 working threads. The lower transaction
throughput of TPC-C compared to update-only YCSB causes less synchro-
nization overhead in the log manager, and with the higher transaction
throughput of multithreaded compared to single-threaded TPC-C execution
and with asynchronous commits, more log entries can be written at once.

The explosive growth in B-tree overhead compared to the single-threaded
TPC-C execution can only partially be explained by the higher transaction
throughput and overhead caused by the cache coherency protocol and
the NUMA (Non-Uniform Memory Access) architecture, where pages are
moved between memory banks of di�erent CPUs and caches of di�erent
CPU cores. Other unknown e�ects must cause this overhead.
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2.4 Optimizations Based on Pro�ling

2.4 Optimizations Based on Profiling

The results from section 2.3 do not suggest a single component of Zero
that should be optimized due to outstanding overhead at any workload.
But Graefe et al. decided to optimize the bu�er pool by saving calls to
the hash table that uses 1.08 %–4.56 % of the CPU time. This optimization
is evaluated in the subsection 2.4.1. A more detailed look at the analysis
provided by the VTune™ Pro�ler suggests many smaller optimizations—a
very simple one is—as an example—evaluated in subsection 2.4.2.

2.4.1 Pointer Swizzling

2.4.1.1 Definition
5 �200� 10 �400� 151:

0b000

2 �100� 35:
0b001

25 50 752:
0b010

125 150 1753:
0b111

6 �300� 710:
0b011

225 250 2756: 325 350 3757:
0b100

11 �500� 1215:
0b101

425 450 47511: 525 550 57512:

0 7 0b100 �
1 1 0b000 �
2 2 0b010 �
3 3 0b111 �
4 �
5 5 0b001 �
6 �

15 0b101 �

15 0b101 �

10 0b011 �

Hash Table (hash function is mod 7)

6 �300� 0b10010:
0b011

225 250 2756: 325 350 3757:
0b100

frame index

page ID

page pointer separator key swizzled page pointer

page not in the bu�er pool page in the bu�er pool

Notation (used in �gures 2.19 and 2.20)

Figure 2.19: Example of a B+tree-like data structure partially in the bu�er
pool where the bu�er pool manager uses a hash table as translation table.

To support pointers to persistent objects (such as DB pages), each persistent
object requires an identi�er (such as a page ID). A pointer can then simply
be the ID of the corresponding persistent object. If the ID only needs to
be unique within a �le, the ID could simply be a byte o�set in that �le.
So accessing an object based on such an ID would only require opening
the corresponding �le and reading the �le from the speci�c byte o�set.
However, logical IDs that require data structures for the translation of these
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0b001 �200� 0b011 �400� 0b1011:
0b000

0b010 �100� 0b1115:
0b001

25 50 752:
0b010

125 150 1753:
0b111

6 �300� 0b10010:
0b011

225 250 2756: 325 350 3757:
0b100

11 �500� 1215:
0b101

425 450 47511: 525 550 57512:

Figure 2.20: The same data structure and data like in �gure 2.19: The bu�er
pool manager now uses pointer swizzling to locate pages.

IDs to a location in a �le on secondary storage are more common in DBMSs.
In �gure 2.19, the root page of the B+tree-like data structure contains three
such pointers to DB pages—5, 10 and 15.

Due to the access latency of secondary storage devices, these redirections
via translation tables do not represent a large overhead when accessing
persistent objects. However, if the target of such a pointer is already bu�ered
in main memory—like some of the DB pages in �gure 2.19—to speed up
access to it, �nding the object based on these persistent IDs can become a
potential bottleneck. This is especially true if almost all accessed objects
are in main memory, i.e. the hit rate is very high. A translation table
that maps persistent IDs to main memory addresses must be accessed—if
the persistent ID of an object is contained in the table, it is bu�ered in
main memory, otherwise it must be fetched from its original location in
secondary memory. In �gure 2.19 the translation table is implemented
as hash table and maps the page IDs of bu�ered pages to corresponding
memory addresses. For example, it maps page ID 7 to memory address
(represented by a bu�er index) 0b100, since DB page 7 is bu�ered there.

Pointer swizzling is a technique used to speed up access to persistent
objects bu�ered in main memory. Swizzling a pointer means replacing the
identi�er of the persistent object referenced there by a more direct address
(usually the main memory address) of the transient object (the replica of
the object in main memory) in such a way that this replacement can be
used during several indirections of this pointer [Mos92].
Graefe et al. proposed in [Gra+14] the use of this technique for Foster

B-tree pages bu�ered in a DBMS bu�er pool. Figure 2.20 shows the same
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B+tree-like data structure as �gure 2.19, but with pointer swizzling used by
the bu�er pool. Since in the example all inner B+tree pages are in the bu�er
pool, all page IDs in the transient copy of the root page have been replaced
by the bu�er frame indices of the transient copies of the respective inner
B+tree pages. Two inner pages also contain swizzled pointers.
Whenever a B+tree page is going to be �xed, this is done based on the

pointer to that page contained in the corresponding parent page. Without
pointer swizzling, this pointer is always the page ID, so the hash table must
be probed to �nd out if the page is in the bu�er pool—if not, it would be
fetched into a free bu�er frame and the mapping from the page ID to the
bu�er frame index would be added to the hash table.
With pointer swizzling, the bu�er pool manager must simply check

whether the pointer read from the transient copy of the parent page is
a swizzled. A �ag bit in the pointer is used to distinguish between bu�er
frame indices and page IDs—if it is set, the page is in the bu�er pool, and
the pointer (without the �ag bit) represents the bu�er frame index which
can be used to access the page without further overhead.

If the pointer is not swizzled, the hash table still maintained here is probed
to �nd out if the pointer is simply not swizzled although the page is in the
bu�er pool. If this is the case, the bu�er manager swizzles the pointer in
the parent page based on the bu�er frame index from the hash table and
�xes the page. If the page is not contained in the bu�er pool, it is fetched
into a free bu�er frame, the corresponding mapping is added to the hash
table, the pointer in the parent page is swizzled and the page is �xed.
To write back a dirty B+tree page containing swizzled pointers, these

pointers must be unswizzled by the page cleaner, because swizzled pointers
become invalid as soon as the corresponding page is evicted from the bu�er
pool. If a page gets evicted, the corresponding pointer in the parent page is
unswizzled and the mapping is removed from the hash table.

2.4.1.2 Performance Evaluation

A performance evaluation of this pointer swizzling technique was already
performed for my Bachelor’s thesis [Gil17], but instabilities in the page
eviction module of the bu�er pool led to inaccurate measurement results.

Figure 2.21 shows new measurement results for a bu�er pool using RAN-
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Figure 2.21: Transaction throughput of the RANDOM page replacement
algorithm with and without pointer swizzling in the bu�er pool for the
TPC-C benchmark on 100 warehouses

DOM page replacement with and without pointer swizzling. Although
the hit rate with pointer swizzling was consistently higher (which is un-
expected) due to limitations added to the page replacement module by
the implementation of pointer swizzling, the transaction throughput with
pointer swizzling is not higher but actually lower for all bu�er pool sizes.
This is especially surprising for the 30GB bu�er pool, since there is no
overhead caused by the swizzling and unswizzling of pointers, but only
the saving of �4 % of CPU cycles that would otherwise be spent in the
bu�er pool. Pro�ling using the method used in section 2.3 also shows a
signi�cant reduction in CPU cycles per transaction, but does not provide
an explanation for the poorer performance.

2.4.2 System Call: bzero

Finding small blocks of code that take up an unexpectedly large amount of
computing time (or other resources) is probably the most common and basic
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Figure 2.22: The “Caller/Callee” tab of an Intel® VTune™ Pro�ler analysis
can be used to �nd code that consumes a signi�cant amount of CPU time.

application of software tracing and pro�ling.
The screenshot in �gure 2.22 shows part of the “Caller/Callee” tab of the

Intel® VTune™ Pro�ler analysis of the multithreaded execution of TPC-C
on Zero. The DBS spends 3.3 % (including benchmark code etc.) of CPU
time in bzero, which erases memory areas. Such a call is a good candidate to
�nd unnecessarily used CPU cycles, because such a call is not needed if e.g.
the respective memory area is not reused without initialization.

1 struct GcSegment {
2 /∗ ... ∗/
3 void recycle() {
4 owner = 0;
5 allocated_objects = 0;
6 ::memset(objects, 0, sizeof(T) ∗ total_objects);
7 }
8 /∗ ... ∗/
9 }

Listing 2.4: The member function GcSegment::recycle does unnecessarily
erase a memory area.
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This is the case for the caller GcSegment<RawXct>::recycle which is re-
sponsible for 28 % of the CPU time spent running bzero. Listing 2.4 shows
the implementation of this member function. As soon as an object of class
GcSegment is no longer needed, it is prepared for later reuse by overwrit-
ing all its member variables with zero. bzero is called by memset on line 7
because it is called to write zeros into a given memory area. But since it
can be guaranteed that no part of the member variable objects is accessed
after reuse before it is reinitialized, this call is unnecessary and a waste of
CPU time.

0 1 � 105 2 � 105 3 � 105 4 � 105 5 � 105 6 � 105 7 � 105 8 � 105 9 � 105

Optimized

Baseline

Transaction throughput [1/min]
Figure 2.23: Transaction throughput of the RANDOM page replacement
algorithm before and after removing unnecessary calls to bzero (memory
erasure) for the TPC-C benchmark on 100 warehouses

Figure 2.22 shows the transaction throughput of Zero when running the
TPC-C Benchmarks before and after removing the mentioned call of bzero.
Both versions use the RANDOM page replacement algorithm and do not use
the pointer swizzling technique from subsection 2.4.1. After saving these
3.3 % �28 % = 0.924 % of CPU cycles a �0.67 % higher transaction throughput
can be achieved.

2.5 Conclusion

While the measurements from “OLTP through the Looking Glass, andWhat
We Found There” were driven by the idea of omitting certain guarantees and
features provided by relational DBMSs, the measurements for section 2.3
had the goal of optimizing certain components of a DBMS. Using the tracing
and pro�ling tool Intel® VTune™ Pro�ler it was shown that, depending on
the workload, di�erent DBMS components require the largest proportion
of CPU cycles. When many small transactions are executed, the transaction
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manager becomes a bottleneck, but with a balanced workload such as
TPC-C, key comparisons in the B-tree consume most CPU time.

These results suggest an optimization of the transaction manager. Since
most of the CPU time was spent on spinning a spinlock, the complete
removal of such a global latch would be an enormous optimization, making
this component much more scalable. Optimizations in the B-tree are—as
demonstrated here again—also always bene�cial, especially when executing
TPC-C. Even though Zero uses the well optimized Foster B-tree—many other
approaches to optimize B+trees are known. Some of them are described by
Goetz Graefe in his book “Modern B-tree techniques” [Gra04].
When executing TPC-C, the bu�er pool used unexpectedly much CPU

time, considering that (almost) all accessed DB pages were in memory
during the whole measurement. Therefore, an optimization of the bu�er
pool like the pointer swizzling technique proposed by Graefe et al. in
[Gra+14] looks promising. However, the performance evaluation of the
technique in subsection 2.4.1 showed a decrease in transaction throughput
when applied. However, subsection 2.4.2 showed that removing a single line
of code can be enough to improve transaction throughput by �0.67 %, which
is remarkable given the ease of the change. But as long as the quality of the
implementation of a DBMS is not extremely poor, not much unnecessary
code should be found that requires a considerable amount of CPU cycles,
so such success should not be easily repeatable.
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