
University of Kaiserslautern
Department of Computer Sciences
Research Group Databases and Information Systems
Prof. Dr.-Ing. Dr. h.c. Theo Härder

Improving XML Retrieval by Exploiting
Content and Structure

– Diploma Thesis –

Christoph R. Hartel

November 2007

Advisor: Prof. Dr.-Ing. Dr. h.c. Theo Härder
Co-Advisor: Dipl.-Inf. Philipp Dopichaj

Contents

Contents 2

List of Tables 5

List of Figures 6

I. Foundations 7

1. Preliminaries 8
1.1. Goals . 8
1.2. Notation and Terms . 8
1.3. Organisation . 9

2. Foundations of XML Retrieval 10
2.1. Introduction . 10

2.1.1. Information Retrieval . 10
2.1.2. The eXtensible Markup Language 13
2.1.3. XML Retrieval . 17

2.2. The XML Retrieval Process . 20
2.3. Use Cases . 23

2.3.1. Use Case Classification . 23
2.3.2. Use Cases . 28

2.4. Summary . 35

II. The XML Retrieval Process 37

3. Query Specification and Weighting 38
3.1. Criteria for Query Languages . 38

3.1.1. Requirements . 38
3.1.2. Classification by User . 40
3.1.3. Classification by Expressiveness 41

3.2. Existing Query Languages for CAS Retrieval 43
3.3. Query Language Definition . 44
3.4. Element Type Classification . 47

2

3.5. Weighting of Conditions . 48
3.5.1. Classification of Weighting Strategies 48
3.5.2. Weighting Strategies . 49

3.6. Summary . 54

4. Query Evaluation 56
4.1. Scoring of XML Fragments . 56
4.2. Explicit Structural Hints . 58

4.2.1. Problems . 59
4.2.2. Related Work . 66
4.2.3. Solution Approach . 71

4.3. Implicit Structural Hints . 81
4.3.1. Term Proximity . 81
4.3.2. Length-based Heuristics . 89

4.4. Summary . 92

5. Result Set Generation 93
5.1. Target Candidate Determination . 94

5.1.1. Interpretation of Target Conditions 94
5.1.2. Target Scoring . 99

5.2. Score Propagation . 102
5.2.1. Related Work . 103
5.2.2. Relevance Influence Model . 104
5.2.3. Final Score Computation . 108

5.3. Result Selection . 111
5.3.1. Related Work . 111
5.3.2. Result Selection Logic . 112

5.4. Summary . 115

III. Evaluation 117

6. Evaluation Framework 118
6.1. Evaluation Approaches . 118
6.2. Measuring XML Retrieval Quality . 119

6.2.1. Retrieval Quality Metrics . 120
6.2.2. Test Data Sets . 123

6.3. Evaluation Methodology . 126
6.4. Summary . 126

7. Evaluation Strategy 128
7.1. Evaluation Tasks . 128

7.1.1. Element Type Classification . 128
7.1.2. Weighting Strategies . 128

3

7.1.3. Explicit structural hint matching 133
7.1.4. Implicit structural hint matching 135
7.1.5. Result Selection . 138

7.2. Summary . 139

IV. Conclusions 140

8. Conclusions & Future Work 141
8.1. Conclusions . 141
8.2. Future Work . 142

Appendix 145

A. Ehrenwörtliche Erklärung (In German) 145

B. Notations 146

C. Query Language Grammars 149
C.1. CAS-QL Grammar . 149
C.2. CAS-QLX Grammar . 149

D. Glossary 151

E. Bibliography 161

4

List of Tables

2.1. Overview of important XPath axes . 15
2.2. XML-related auxiliary functions . 16
2.3. Use case configuration template . 28
2.4. Configuration of the Book Search use case 30
2.5. Configuration of the Re-finding use case 32
2.6. Configuration of the Corporate Intranet Search use case 34
2.7. Configuration of the XML Web Search use case 35

4.1. Example of a substitution group . 67
4.2. Example of a namespace-aware substitution group 74
4.3. Base cost assignments for edit operations 76
4.4. Sample rules to identify TACAs . 80
4.5. Example of Relevance Influence Factor (RIF) assignments 91
4.6. Example of an extended RIF rule set based on TACAs 91

5.1. Example of a substitution group for formatting elements 97

6.1. Template for evaluation tasks . 127

7.1. Evaluation Task: Relevance/Element Type Correlation 129
7.2. Evaluation Task: Type-specific Target Scoring Benchmarking 130
7.3. Evaluation Task: Condition Type-based Weighting Benchmarking 131
7.4. Evaluation Task: Statistics-based Weighting Benchmarking 132
7.5. Evaluation Task: Name Similarity Benchmarking 134
7.6. Evaluation Task: Simple Path Matching Benchmarking 135
7.7. Evaluation Task: Enhanced Path Matching Benchmarking 136
7.8. Evaluation Task: Relevance/Proximity Level Correlation 136
7.9. Evaluation Task: Proximity Benchmarking 137
7.10. Evaluation Task: RIF Benchmarking . 138

B.1. Overview of formal entities . 146
B.2. Overview of mathematical sets . 147
B.3. Overview of symbols and general notations 148

5

List of Figures

2.1. Sample of a query tree . 11
2.2. Sample XML document tree . 14
2.3. Sample XML document tree with fragments highlighted 17
2.4. The XML Retrieval process . 21

4.1. Conceptional scoring framework . 58
4.2. Score intervals for proximity levels . 86

5.1. Score propagation strategies . 106

6

Part I.

Foundations

7

1. Preliminaries

1.1. Goals

The overall goal of this thesis is to explore how information on the structure of XML
documents can be used to improve the quality of XML Retrieval. We define retrieval
quality as how well the results generated by an IR system satisfy the user’s information
need. Please note that this definition excludes improvements on user interaction as well
as improvements on retrieval efficiency; these fields – albeit being equally important –
are thus not in the scope of this thesis. We operationalise our overall goal by breaking
it down into the following three subordinate goals:

1. The design of a conceptional framework for Content-and-Structure (CAS)
Retrieval. This framework should integrate the various aspects discussed in present
day CAS literature, confine and structure them in a systematic manner, and
provide a foundation for developing improvements of these aspects.

2. The proposal of improvements. We should analyse existing solutions for the
implementation of individual CAS aspects, identify quality improvement needs,
and then devise possible solutions.

3. The evaluation of improvements. Due to the limited scope of this thesis we
will likely not be able to conduct practical experiments to test our improvement
proposals. However, we should clearly define how this evaluation is to be performed
to enable future work in this direction.

1.2. Notation and Terms

Throughout this thesis we endeavour to establish a clear and consistent wording and
notation. Whenever a new term is introduced, it is set in italics to highlight its definition
(e.g. definition). All important term definitions are also listed in the glossary at the end
of this thesis (cf. appendix D). In appendix B we have included several tables which
list general notations we use: Table B.1 provides an overview of formal entities; table
B.2 lists the predefined mathematical sets we use. The various symbols and general
notations we employ (like null value indicators, for example) are listed in table B.3.

8

1.3. Organisation

This thesis consists of four parts. In part I, after some preliminary notes, we introduce
the key concepts underlying our work and devise the foundations of our XML Retrieval
framework. Based on these foundations, part II describes the details of our framework
and discusses related work as well as our improvement proposals; it is the main part
of this thesis. In part III we propose means to evaluate the effect of our improvement
proposals on retrieval quality. Finally, in part IV we sum up the contents of this thesis,
draw conclusions, and outline perspectives for future work.

9

2. Foundations of XML Retrieval

2.1. Introduction

This thesis is about XML Retrieval or, more precisely, one specific kind of XML Retrieval
called Content-and-Structure Retrieval. Before we actually turn to this, however, we will
briefly introduce its two constituents: Information Retrieval and the eXtensible Markup
Language, commonly known as XML.

2.1.1. Information Retrieval

Information Retrieval has been an active area of research for many years [Sin01], with
researchers mainly coming from the fields of computer science, library science, and
linguistics1. Despite of this, the term “Information Retrieval” is still anything but
unambiguous, but can bear many different meanings [MRS08, chpt. 1]. We define it
based on proposals by Lancaster (as cited in [vR79, chpt. 1]) and Baeza-Yates/Ribeiro-
Neto [BYRN99, chpt. 1], but with emphasis on its process-oriented nature as follows2:
Information Retrieval (IR for short) is the process of informing a user “on the existence
(or non-existence) and whereabouts” of documents and/or document parts which to
some degree satisfy an information need the user has expressed. Traditional Information
Retrieval only considers whole documents and we regard XML Retrieval as a special case
of Information Retrieval. However, one of the key features of XML Retrieval (as defined
on page 17) is the handling of partial documents, so we include them in our definition of
Information Retrieval. To ease understanding, we still use the term “document” for both
whole documents and partial documents in the remainder of this section. As opposed to
question answering, Information Retrieval “does not inform (i.e. change the knowledge
of) the user on the subject of his inquiry”, but only points him to appropriate sources
of information.

Roughly, the general process of Information Retrieval looks like follows: Initially, the
user has an arbitrary information need. For example, he likes cats and is interested in
finding information on appropriate cat food. He then formulates this information need
in a query and enters it in the Information Retrieval system of his choice for processing.
The IR system then evaluates the query on a set of documents. During evaluation it
determines for each document in the set how well it thinks the document will satisfy

1Although the latter two perspectives are also important, we take the computer science perspective
throughout this thesis. In particular, we focus on the concepts underlying Information Retrieval
Systems which we regard as a special kind of Information Systems.

2All quotations in this paragraph are from Lancaster’s definition as cited in [vR79, chpt. 1].

10

the user’s information need. After that, the system presents the user with a list of
results. This list includes all documents which the system considers to (partially) satisfy
the information need with the best documents at the top. Finally, the user decides by
looking at these documents whether they satisfy his information need. In case they
do not (or if by looking at the documents his information need has changed), the user
adapts his query and iteratively runs through the process again until his information
need is eventually satisfied.

We will later on refine this process and adapt it to the peculiarities of XML Retrieval.
For now, we confine ourselves to discussing two important facets in more detail: queries
and relevance. A query is system of conditions on the documents (or document parts)
to be retrieved; the conditions are related by operators (such as AND, OR, and NOT, for
example). In our example, the query might look like this:

cats AND NOT dogs AND food

An IR system may actually provide arbitrary means for the user to formulate his
query. A textual representation following a defined notation (like our sample query)
is very common for web search engines, for example. Alternatively the user may also
be allowed to enter a natural language query, construct a query by using some sort of
graphical interface, or use any other means of interaction. To abstract from the way the
query is actually formulated, we regard a query as a tree whose nodes are conditions
and operators. We assume that any query can be transformed into this representation.
Figure 2.1 illustrates such a tree corresponding to our example.

and

and

cats

food

not

dogs

Figure 2.1.: Sample of a query tree

We can interpret a query in different ways. Most importantly, we distinguish two
semantics of query conditions: constraints and hints. A constraint imposes a restriction
which must be met by every item in the result set. A hint , on the other hand, only
provides an indication of what results might be desired. It may not cover all result
items, contain errors such as misspellings, or may be wrong altogether. Constraints
are the typical semantic used by data-oriented systems such as databases. Their aim
is to retrieve all records which exactly match a query. More precisely, no record not

11

matching the query must be retrieved and every record matching it has to be retrieved.
For IR applications this paradigm is too restrictive as IR queries are per se imprecise:
Information needs are innately vague and thus no perfect transformation into a query
is possible. Also IR queries are often formulated by non-expert users who are unsure of
how to formulate a query and who invest little time and effort on doing so. Therefore
we generally regard query conditions as hints in the context of Information Retrieval.

Relevance is a key concept in Information Retrieval [vR79, chpt. 1]. We define it
as the degree r ∈ [0, 1] to which a document satisfies an information need. If not
explicitly stated otherwise, we always refer to the relevance regarding the information
need expressed in a query processed by an IR system. For ease of expression we define
a function rv : D −→ [0, 1] which returns the relevance value of an arbitrary document
d ∈ D. By D we denote the document space, that is, the set of all documents on which
a given IR query is evaluated. When d is relevant, this implies rv(d) ∈ (0, 1]. If d is
not relevant, rv(d) is zero. This view on relevance is commonly referred to as binary
relevance [Peh06, sec. 1]. It primarily aims at determining which fragments ought to
appear in the query result. (Of course additional conditions can be applied to further
diminish the set of returned documents, e.g. when a maximum number of result items
is enforced.) Non-binary relevance, on the other hand, differentiates more than two
relevance levels. We can, for example, express non-binary relevance as ordinal values
such as “not relevant”, “partially relevant”, “mostly relevant”, “highly relevant” or as a
real number as shown above.

A concept closely related to – but not identical with – relevance is that of scoring:
The score of a document is an IR system’s estimation of its relevance. We determine
the score by using a scoring function s : D −→ [0, 1]. To illustrate this, consider the
document shown in listing 2.1: Assuming that the user has been looking for an article
about dogs, he would judge the document to have little relevance, say r = 0.2. As both
the terms “pets” and “dogs” appear in prominent positions in the document, however, an
Information Retrieval engine may assign it a rather high score (e.g. 0.8), thus providing
a bad approximation of its relevance. In an ideal system, the score of a document is
always equal to its relevance. By comparing the relevance of result items to the scores
they are assigned by a particular IR system, we can judge this system’s retrieval quality;
we will look at this in more detail in part III.

1 Popular Pets
2

3 Abstract
4 This article provides an overview of popular pets. We focus on

cats , whereas dogs are only of marginal interest.
5

6 1. Introduction
7 ...

Listing 2.1: Excerpt from a sample plain-text document

12

2.1.2. The eXtensible Markup Language

Over the last decade, the eXtensible Markup Language (XML) [BPSM+06] has become
an increasingly popular document format which is widely used in particular for electronic
data exchange and integration, today. It has been developed by the World Web Web
Consortium3 (W3C) in the late 1990’s based on SGML4. We define an XML document as
an ordered, labelled tree [MRS08, sec. 10.1]. This idea originates in the Document Object
Model (DOM) [HHW+04] also defined by the W3C. The nodes of this tree are XML
elements5, each of which has exactly one parent element (except for the document root
which has none) and arbitrarily many child elements. The order of the nodes in the tree
is the document order which is defined as the order in which the corresponding elements
appear in an XML document. In addition, every element has a tag name, an unordered,
possibly empty set of attributes, and optionally textual content. The tag name is a string
consisting of certain non-whitespace characters such as letters, digits, and hyphens. It
does not have to be unique, that is, there can be arbitrarily many elements with the
same tag name within a document. Typically, the tag name provides an indication of an
element’s semantics, such as in <section> or <author>, for example. For our purposes,
we assume that this holds for every tag name6. An attribute consists of a name and an
optional value; the name has to be unique within the containing element, the value, on
the other hand, is arbitrary. The textual content contains arbitrary character strings
(again, with the exception of certain special characters). It does not have to be a
monolithic block, but can actually be split in several parts per containing element; the
parts are treated like nodes and interleave with that element’s children according to the
document order. Listing 2.2 shows the customary textual representation of an XML
document, figure 2.2 illustrates the corresponding logical tree structure.

1 <article >
2 <title >
3 Popular Pets
4 </title >
5 <abstract >
6 This article provides an overview

of popular pets. We focus on cats , whereas dogs are only
of marginal interest.

7 </abstract >
8 ...
9 </article >

3http://www.w3.org
4See http://www.w3.org/MarkUp/SGML for an overview.
5Please note that the XML specification [BPSM+06] allows for documents to include other types of

nodes such as comments and parsed character data. To avoid unnecessary complexity, we use a
simplified definition, however.

6In theory, tag names can, of course, be just random character strings. As they are an integral part
of XML’s aim to create a meaningful, self-describing document structure, however, we believe this
assumption does not impose an actual restriction.

13

http://www.w3.org
http://www.w3.org/MarkUp/SGML

Listing 2.2: Sample XML fragment

title

article

abstract

Popular Pets

This article provides an

of popular pets. We focus
on cats, whereas dogs are
only of marginal interest.

font

overview

color

red

Figure 2.2.: Sample XML document tree

Besides these basic aspects of XML, many extensions have been defined. Four such
extensions which are of particular interest in our context are schemas, namespaces,
addressing, and references. A schema defines constraints regarding XML documents. For
example, it may define rules for elements’ nesting structures and for the use of attributes;
also, aspects like the typing of values may be addressed by a schema. We say that an
XML document whose nesting structure observes the rules of the XML specification (cf.
[BPSM+06]) is well-formed ; a document conforming to a schema is valid . For XML there
exist two major frameworks for schema definition: document type definitions (DTDs)
[BPSM+06] and XML schema [TBMM04], [BPM04]. The former is more concise, the
latter more powerful. For our purposes, however, it suffices to consider schemas on a more
abstract level without actually looking into which of these (or other) frameworks is used.
On the implementation level these details would, of course, be of interest. Namespaces
are related to schemas: A namespace provides a vocabulary of element and attribute
names [BHLT06] to enable reuse and ease the creation of uniform XML documents; a
schema can then be employed to define rules on how these elements and attributes may
be used. For addressing parts of an XML document, several languages have evolved.
The most prominent such language is XPath [CD99]. As we will see later on, XPath
is also the basis for most other XML-related languages including query languages for
XML Information Retrieval. It defines 13 axes which represent possible relationships

14

Table 2.1.: Overview of important XPath axes

Axis Example (from listing 2.2)
Self <abstract> −→ <abstract>

Parent −→ <abstract>

Child <abstract> −→

Ancestor −→ <article>

Descendant <article> −→

Preceding Sibling <abstract> −→ <title>

Following Sibling <title> −→ <abstract>

Attribute −→ color

between elements, attributes, and namespaces. Table 2.1 lists the axes which are of
interest to us; the second column shows a sample from listing 2.2 which illustrate the
respective axis. References serve to create logical links from one XML element to a
different element. To address specific elements within an XML document when creating
a reference, we can employ the addressing mechanisms described above. There are both
frameworks to reference elements within the same XML document as the referencing
element (the IDREF mechanism, for example [BPSM+06]) and frameworks to reference
elements in other documents (such as the XPointer framework [DJG+07]). To account
for references on the conceptional level, we define an additional “reference” axis which is
not included in the XPath specification; it represents the referencing element/referenced
element relationship.

Before we go on to discuss XML Retrieval, we first introduce some auxiliary constructs
to ease expression; these constructs will also provide the foundation for the conceptional
framework of XML Retrieval which we devise in the following chapters. First of all,
we define a (document) fragment fd as an arbitrary subtree of an XML document d.
Please note that – unlike elements – fragments are highly redundant due to the nesting
structure of XML. Figure 2.3 illustrates this (the black rectangles represent fragments).
The largest possible fragment is the document itself. In the context of XML Retrieval, we
require f to be always well-formed and non-empty. Analogously to the document space
D we define the fragment space F as the set of all fragments belonging to documents in
D and the element space E as the set of all elements in these fragments. The term space
T is the set of all terms (e.g. words, numbers) which occur in any document in D. Based
on these constructs, we define some auxiliary functions listed in table 2.2. In particular,
these functions include some important refinements of XML content. We will use these
functions in the remainder of this thesis.

Another key concept we need to introduce are (document) collections. In Information
Retrieval, documents are typically grouped according to their genre, provider, or other
characteristics. Thus we define a collections as an arbitrary set of documents. Without
loss of generality, we assume every document to belong to exactly one collection and
every collection to contain at least on document. For simplicity reasons we further
assume that collections used for XML Retrieval only contain XML documents (that is,

15

Table 2.2.: XML-related auxiliary functions

Declaration Specification
root : F −→ E Returns the root element of a fragment (or document);

as we assume fragments to be non-empty, the root func-
tion never returns a null value (⊥).

parent : E −→ E Returns the parent element of an element e or ⊥, if e is
the root element.

chld : E −→ En Returns the set of child elements of a given element e;
if e does not have any children, the function returns an
empty set.

desc : E −→ En Returns the set of descendant elements of a given ele-
ment e; if e does not have any descendants, the function
returns an empty set.

anc : E −→ En Returns the set of ancestor elements of a given element
e; if e does not have any ancestors (i.e. the root element),
the function returns an empty set.

sibl : E −→ En Returns the set of (preceding and following) sibling el-
ements of a given element e; if e does not have any
siblings, the function returns an empty set.

linkto : E −→ En Returns the set of elements which reference a given ele-
ment e; if e is not referenced by any element, the func-
tion returns an empty set.

linkfrom : E −→ En Returns the set of elements which are referenced by a
given element e; if e does not reference any element, the
function returns an empty set.

contd : E −→ T n Returns the direct content of e ∈ E , that is, the ordered
set of all term occurrences in e without regarding its
descendant elements, attributes, attribute values, or e’s
tag name.

contr : E −→ T n Returns the recursive content of e ∈ E , that is, e’s
direct content collated with the direct contents of all its
descendants; the resulting set is ordered in document
order.

contdf : E −→ T n Returns the direct full content of e ∈ E which consists of
its tag name, all its attribute names and their respective
values, and its direct content, in this order.

contrf : E −→ T n Returns the recursive full content of e ∈ E , that is, e’s
direct full content collated with the direct full contents
of all its descendants; the resulting set is ordered in
document order.

| contdf(e ∈ E)| The direct content length (number of terms) of e ∈ E .
| contrf(e ∈ E)| The recursive content length of e ∈ E .
|d ∈ D| The document length of a document d ∈ D. We define

it as the recursive length of d’s root element, formally
|d| = | contr(root(d))|.

16

title

article

abstract

Popular Pets

This article provides an

of popular pets. We focus
on cats, whereas dogs are
only of marginal interest.

font

overview

color

red

Figure 2.3.: Sample XML document tree with fragments highlighted

no documents of any other format). Please note that both the document space and
the fragment space are collection-independent, that is they contain all documents (or
fragments of documents, respectively) on which a given IR query is evaluated.

2.1.3. XML Retrieval

We define XML Retrieval simply as Information Retrieval over XML documents [MRS08,
p. 181] as opposed to the traditional “flat” retrieval over unstructured documents. Albeit
sounding trivial at first, XML Retrieval introduces some interesting potentials which, at
the same time, pose new challenges to Information Retrieval systems; we sum up these
potentials in the following two aspects:

1. Explicitness and genericness of the logical document structure

2. Fragment-oriented retrieval

In IR literature, the first aspect is generally referred to as retrieval on “structured”
documents documents (as opposed to “unstructured” ones). We argue, though, that
virtually any document does have a structure in some sense: Even a plain text file
describes content which is logically segmented in different parts such as an introduction,
body, and a conclusion. Unlike XML, however, other document formats such as plain
text typically do not (or only to some limited extend) allow to express this logical
structure explicitly: In the case of a plain text file, for example, the logical structure can
only be reflected in the physical document structure such as the spacing (paragraphs,

17

indentation, and so on). More enhanced formats such as HTML [RHJ99] can explicitly
express the logical structure, but lack the genericness of XML: In HTML we can only
express predefined concepts like paragraphs and headings, whereas XML is able to
express arbitrary ones; for example, we can easily represent custom entities such as
<author> or <play> in an XML structure. Therefore we restrain from using the terms
“structured” and “unstructured” in this context and instead refer to XML documents
as being able to express the logical document structure explicitly and generically. Also,
when we refer to “the” structure of a document, we always mean its logical structure,
not the physical one.

For Information Retrieval this means, that when operating on XML documents, we
can not only exploit the textual content of documents, but also their structure. There
are two ways how we can use the structure of a document: by explicit and by implicit
conditions. An explicit condition is provided by the user as part of his query string,
whereas implicit conditions are generated by the IR system. Implicit conditions may
either be additional, system-induced query conditions or scoring rules hard-coded in
the query evaluation mechanism. Orthogonally to the explicitness of conditions, we
distinguish three kinds of query conditions [TL05]:

1. Keywords are character strings regarding the content of documents. For example,
the keyword “cat” expresses that the user wants to retrieve all documents which
somehow concern cats. In traditional Information Retrieval they are the only con-
ditions available; thus an IR system matches them against all parts of a document,
be it textual or somehow related to the logical structure. In XML Retrieval we
restrict keywords to the textual contents of XML elements and attribute values.
Most IR systems allow for complex keywords such as strings consisting of multiple
words, grouping mechanisms like phrases, etc. (cf. [TPL06, p. 278], for example).
For simplicity reasons, we restrict keywords to single words consisting of alphanu-
meric characters, only. As keywords are not our focus, we believe this to be only
a minor restriction.

2. Support conditions express that certain patterns in the document structure will
render the corresponding part of the document helpful regarding the uses’s infor-
mation need. For example, when looking for documents on cats, the user may
think that documents containing a chapter with the title “Popular Pets” are of
particular interest to him.

3. Target conditions define which parts of a document to return to the user. This is
closely related to fragment-oriented retrieval which we will discuss below.

Like for Information Retrieval in general, we regard all of these conditions as hints. In
XML Retrieval we consider this to be mandatory7, as formulating a precise and correct

7In XML Retrieval literature these interpretations of query conditions are commonly known as strict
and vague evaluation, respectively [TL06]. There has been an intense debate on which interpretation
is preferable, but more recently most researchers have agreed that vague evaluation is necessary; cf.
e.g. [AYLP04], [KLP04].

18

query becomes even more difficult than in traditional IR. For ease of expression we define
Q to be the set of all conditions contained in a given query; Qkwd,Qsup,Qtgt ⊆ Q denote
the subsets of keyword, support, and target conditions, respectively.

Fragment-oriented retrieval means that the result set not only includes entires doc-
uments (as in traditional Information Retrieval), but parts of documents as well. To
illustrate this, image searching for information in a library. Traditional Information Re-
trieval would only return entire books, whereas fragment-oriented retrieval can return
the exact chapters, sections, or even paragraphs of a book which best address the in-
formation need. This has the obvious advantage of relieving the user from having “to
look for the right paragraphs” manually. On the other hand, this feature also introduces
some new challenges: In XML Retrieval, the parts of a document are fragments. As we
have discussed in the preceding section, fragments of a document are not independent
of each other, but strongly related. Namely, there is a containment relationship between
fragments which in XML Retrieval literature is commonly referred to as overlap. Due to
this items in the result set are to a large extend redundant and often have to be regarded
in a particular context. Redundancy means that when looking at result items in a linear
fashion, the user may come across the same content several times. This happens, for
example, if a result item the user looks at is contained in another result item located
higher up in the ranking. This redundancy may be undesired, so XML Retrieval has
to include means for generating overlap-free result sets. The second aspect (need of
context) is related to this: When the user is presented one paragraph of a book, he may
need to know which book it belongs to. For example, because a paragraph from a fiction
novel might be a less reliable source of information than a paragraph from a well-reputed
scientific lexicon. As a consequence of XML Retrieval being fragment-oriented, we gen-
eralise the relevance and scoring functions from section 2.1.1 to operate on fragments
instead of just documents as follows: rv : F −→ [0, 1] and s : F −→ [0, 1].

The two aspects we have just discussed (explicitness and genericness of structure and
fragment-oriented retrieval) are the core ideas of XML Retrieval. There are, however,
two major views on how they should be reflected in an IR system: Content-only Retrieval
(CO) and Content-and-Structure Retrieval (CAS) [FML03]. CO Retrieval only partially
exploits the explicitness and genericness of structure: The IR system uses the document
structure for fragment-oriented retrieval, but does not allow the user to provide target
or support conditions. CAS Retrieval, on the other hand, takes into account all three
condition types. In this thesis we focus on CAS retrieval and in particular on target and
support conditions. They impose the greatest challenges, but we also expect them to
also yield the highest potential regarding high-quality XML Retrieval.

Before we go on to devising the XML Retrieval process in the next section, we will
now provide a brief introduction to some organisational aspects of XML IR research:
Information Retrieval in general has been an active area of research for a long time (in
computer science terms, that is). Major conferences focussing on Information Retrieval
are held regularly such as the Text REtrieval Conference8 (TREC) and the SIGIR

8http://trec.nist.gov

19

http://trec.nist.gov

conference which is held by the ACM Special Interest Group on Information Retrieval9.
XML Retrieval, on the other hand, has only in recent years started to gain attention. As
a main forum for XML IR research the INitiative for the Evaluation of XML Retrieval10

(INEX) has been established in 2002 [GK02]. Besides networking the XML IR research
community, one of its main aims is to provide an infrastructure for the comparative
evaluation of XML Retrieval approaches. Throughout this thesis, we will at various
points reference parts of the infrastructure (such as the INEX query language(s), test
document collections and evaluation metrics). Also we generally follow the terminology
used by INEX, except where it impedes our work.

2.2. The XML Retrieval Process

In this section we define the process of XML Retrieval. This process is not intended as
an implementation basis (i.e. a system design), but serves as a conceptual framework for
the issues discussed in this thesis. It refines the general Information Retrieval process we
have outlined in section 2.1.1. Each phase is marked with a letter to indicate by whom it
is performed: “U” stands for the end-user, “F” for the front-end of the IR system (i.e. its
user interface), and “P” for the actual query processor. Please note that only the latter
is in the scope of this thesis, whereas the other aspects – albeit being equally important
– are only listed for the sake of completeness. Figure 2.4 illustrates the process.

Information Need (U) The user has an arbitrary information need. This analogous
to traditional Information Retrieval and an initiates the XML Retrieval process,
conceptionally.

Query Formulation (U) The user formulates his information need using the means the
IR system front-end provides. This may be a natural language query, a query
using some formal query language, filling out of a HTML form, using a graphical
editor, or any other form of interaction the front-end supports. Query formulation
marks the practical start of the process.

Query Translation (F) The IR system front-end translates the query formulated in
some end-user language to the language used by the query processor. We discuss
the various kinds of query languages and their translation in more detail in section
3.2.

Query Rewriting (P) The query processor optionally rewrites the query by exploiting
additional knowledge which the user does not possess. This might include the
expansion of query conditions, for example, to handle vagueness or generation of
additional structural hints. In the rewriting phase we typically do not access the
data to be queried directly, but use indexes or repositories of statistical information.

9http://www.sigir.org
10http://inex.is.informatik.uni-duisburg.de

20

http://www.sigir.org
http://inex.is.informatik.uni-duisburg.de

Query Formulation

Query Translation

Query Rewriting

Condition Weighting

Selection of Data Sources

Query Evaluation

Result Set Generation

Result Presentation

Feedback

Information Need

User

IR Front-End

IR Front-End

User

IR Processor

Figure 2.4.: The XML Retrieval process

21

Condition Weighting (P) After having rewritten the query, the processor assigns each
query condition a weight. This weight controls, how “important” the condition is
in regard to other conditions, that is, how strongly it influences the result. As in
some contexts assigning uniform weights to all conditions suffices, this activity is
also optional; in most scenarios weighting has to performed, though. We discuss
weighting in section 3.5.

Selection of Data Sources (P) The IR processor decides on which data the query is
to be evaluated. To support this decision, the user may have provided hints during
query formulation; for example, he may have been presented with a list of available
sources and selected one. In addition, data source selection may include issues like
looking up remote sources, judging their credibility, and so on. None of this is in the
focus of our work, so we restrict the scope to the selection of one or more collections
of documents which we assume to be known in advance, perfectly credible, and
locally accessible by the IR processor.

Query Evaluation (P) The previous steps have provided the IR processor with a set of
weighted query conditions (potentially related by explicit operators) and a set of
document collections to operate on. Based on this it evaluates each keyword and
support condition producing a set of scored XML fragments as output. Target
conditions are not evaluated yet in this activity. Apart from the actual query,
the IR processor may also exploit implicit hints (i.e. hints not contained in query
conditions) for this task.

Result Set Generation (P) Based on the scores assigned during query evaluation, the
IR processor performs score propagation. This means, that it considers the con-
text of the scored fragments (e.g. their ancestor and descendant elements in the
XML document tree) and adapts the fragments’ relevance scores. Independent of
score propagation, it evaluates target conditions. Based on all resulting scores,
it then generates the final score for each fragment. Finally, the processor selects
appropriate fragments of the documents as result fragments. Doing so, it takes
into account overlap and other scenario-dependant factors, if needed.

Result Presentation (F) The IR front-end prepares the result fragments for (typically)
visual display. As part of this activity it decides how the results are structured
(e.g. linear display, clustered per document, etc.) and ordered. It also determines
all other presentation-related aspects, for example, if summaries or entire pieces
of content are displayed, if result entries contain links to the original content, and
so forth. It optionally provides the user with means to enter feedback for further
refining the results.

Feedback (U) If supported by the IR system, the user enters feedback to further refine
the retrieval results. In this case, he triggers another iteration of the XML Retrieval
process which from an IR system point of view is independent of the first.

22

2.3. Use Cases

XML Retrieval may be useful in various scenarios. A scenario11 is one specific configu-
ration of a set of environmental properties of an IR system. It includes, for example, the
kind of users operating the system, the collections used, preferences regarding the visual
presentation of results, and many other factors. Depending on the respective scenario,
we can make different assumptions regarding the kind of information provided in the
query, properties of the document collection used, the aims of the user when querying
this collection, etc. In this section we thus define use cases for XML Retrieval involving
the use of structural information. By doing so we strive to determine which aspects of
CAS Retrieval might be relevant in practice and which combinations of aspect configu-
rations are likely to appear. We first classify and discuss those aspects; some of these
aspects we assume to be use case invariant, whereas most aspects vary on a per use
case basis. We thus derive a use case template which contains the use case-dependent
aspects. Based on this template, we then define several concrete use cases.

2.3.1. Use Case Classification

We distinguish three kinds of aspects: document-related, query-related, and
presentation-related ones. The first kind are aspects of the documents which the
IR system operates on; the second kind characterise the queries which a user formulates;
the third kind define how the user prefers the retrieval results to be composed. We
mark aspects which vary per use case with a “V” (for varying) and general assumptions
with an “F” (for fixed).

Document-related Aspects

• Unique identifier (F) We assume that every document in the document space has
a document ID which uniquely identifies it. This may be a file name or a URL,
for example.

• Document-centric vs. data-centric (F): We can distinguish two kinds of XML
fragments: document-centric and data-centric ones [KMdRS06]12. A document-
centric fragment typically includes very long elements like paragraphs and elements
which contain both text and element nodes (so-called mixed content). Listing
2.3 shows an excerpt from a famous Oscar Wilde play transformed into XML to
illustrate a document-centric fragment. Data-centric XML focusses on describing
entities in a key/value fashion. It usually contains short elements and no mixed
content, i.e. elements either contain only textual content or further elements. An
example of a data-centric XML fragment is shown in listing 2.4; the fragment is an

11We use the term “scenario” to avoid ambiguities to the concept of “contexts” which we introduce in
part III to describe parts of an XML document.

12To be precise, Kamps et al. [KMdRS06] (like most authors) do not categorise fragments, but whole
documents as document- or data-centric. This does not affect the general idea of this categorisation,
however.

23

excerpt from the bibliography sample in [Goo02, chpt. 8]. Information Retrieval
usually focusses on document-centric content, whereas fact retrieval (i.e. common
database system functionality) concentrates on data-centric content. However,
data-centric and document-centric XML fragments are often mixed in a single
document. A document representing a book, for example, is likely to have a
document-centric part representing the book’s body and various data-centric parts
like the front-matter and the bibliography. Throughout this thesis we will assume
purely document-oriented content for simplicity reasons. It is an interesting aspect
to be addressed by future work, however, if we can exploit data-centric parts of an
otherwise document-centric document as a source of additional metadata regarding
the content we are interested in.

1 <play>
2 <body>
3 <act>
4 ...
5 <paragraph >
6 ...
7 <speaker >Cecily </speaker > I can’t understand how you

are here at all. Uncle Jack w o n t be back till
Monday afternoon.

8 <speaker >Algernon </speaker > That is a great
disappointment. I am obliged to go up by the
first train on Monday morning. I have a business
appointment that I am anxious ... to miss?

9 <speaker >Cecily </speaker > Couldn ’t you miss it
anywhere but in London?

10 <speaker >Algernon </speaker > No: the appointment is
in London.

11 <speaker >Cecily </speaker > Well , I know , of course ,
how important it is not to keep a business
engagement , if one wants to retain any sense of
the beauty of life , but still I think you had
better wait till Uncle Jack arrives. I know he
wants to speak to you about your emigrating.

12 ...
13 </paragraph >
14 </act>
15 </body>
16 </play>

Listing 2.3: Example of document-centric XML

1 <biblioentry id="bib.TDG99">
2 <abbrev id="bib.TDG99.abbrev">TDG1999 </abbrev >
3 <authorgroup >
4 <author >

24

5 <firstname >Norman </firstname >
6 <surname >Walsh</surname >
7 </author >
8 <author >
9 <firstname >Leonard </firstname >

10 <surname >Muellner </surname >
11 </author >
12 </authorgroup >
13 <title >DocBook </title >
14 <subtitle >The Definitive Guide </subtitle >
15 <pubdate >1999</pubdate >
16 <edition >1</edition >
17 <isbn>ISBN: 156592 -580 -7</isbn>
18 <pagenums >648</pagenums >
19 </biblioentry >

Listing 2.4: Example of data-centric XML

• Duplicates (F): Document collections often contain duplicates , that is, several
equivalent instances of the same logical document. For example, a single scientific
paper is usually available via multiple URLs (i.e. document IDs) from different
web sites and therefore a duplicate from the point of view of an (XML-based) web
search engine. However, duplicate handling belongs to the area of data cleaning13

which is not in our scope. We therefore assume that the collections used have been
perfectly cleaned beforehand and thus no duplicates exist.

• Schema availability (V): A schema (e.g. a DTD [BPSM+06] or XML Schema
[TBMM04]) defines the set of elements and attributes which one or more doc-
uments use and rules for nesting these elements. We can distinguish two cases
regarding the existence of schemas: explicit and implicit schemas. If a schema is
explicit, then for every document in the collection there exists a schema and this
schema is defined as metadata and thus available to the IR system. There may
either be a single schema covering all documents, or multiple schemas covering
a subset of documents each. It is non-trivial to generate schemas automatically
based on a given set of documents. (See [Chi02] for a general approach of schema
generation and [XX07, sec. 3] for a proposal in the context of XML Retrieval.)
Hence the existence of an explicit schema typically requires manual effort in cre-
ating it. An implicit schema, on the other hand, has not been documented as
metadata. Thus the IR system has to operate solely on the instance level of docu-
ments without access to schematic information (apart from statistically gathered
data, see below).

• Homogeneity (V): Documents in the collections used may either be all of the same
kind (homogeneous) or a mixture of various kinds of documents (heterogeneous).

13See [Har06] for an overview of data cleaning.

25

Fox example, if all documents in a collection represent scientific articles the collec-
tion is homogeneous, whereas a collection containing articles mixed with medical
records and records on legal bills is heterogeneous. Homogeneity does not imply
the existence of a common (explicit or implicit) schema: For example, a collec-
tion of scientific articles is homogeneous, but may contain articles from a different
publishers (e.g. ACM, IEEE, Springer); as different publishers presumably use a
different albeit similar schemas, the collection does not feature a single common
schema although it is homogeneous.

• Stability (F): Data used in IR scenarios typically changes over time: new docu-
ments are added to the document space and existing documents are modified or
removed. We refer to this as instability of the document collection, and to the
opposite case analogously as its stability . If data changes, an XML IR system
has to reflect this in two ways: Firstly, it has to update its index structures, and
secondly, if the system uses statistical metadata, it has to update that, too. Index
updates a time-critical as otherwise the IR system will not be able to locate locate
XML fragments correctly. Also, in most scenarios we assume that there exists
little or no maintenance windows for the IR system. Hence the system has to con-
duct index update efficiently at runtime. We will formulate this as a requirement
when discussing indexing in section 4.2.3; as index implementations are not in our
scope, however, we do not need to consider this issue beyond that. Unlike index
updates, the updates of statistical metadata are not time-critical: The IR system
uses this data for vague decisions such as relevance assignments which allow for
a certain slack. The restrictions regarding maintenance windows also apply here,
though. Therefore the statistics repository also needs to be modified at runtime
and without having a major impact on system performance; the modification can
be performed over longer periods of time, however. Analogous to index updates,
the implementation details of this update process are also not of concern to us,
so we only formulate an according requirement. All other concepts we discuss in
this thesis are independent of data modifications. For simplicity reasons we thus
assume the document collections used to be stable without reducing the generality
of our proposals.

• Atomic values (V): Atomic values (e.g. dates, numbers) are expressed in XML
by attribute values, element content, or may even be embedded in free text.
Consider the examples of date values in XML shown in listing 2.5 to illustrate
this. To evaluate conditions on such values, the IR system has to interpret them,
that is, detect atomic values and then transform the values into some internal
representation suitable for further processing. This task becomes considerably
easier when metadata on the value formats used by documents in the collection
is available, e.g. as part of the schema. Even easier to handle are uniformly
normalised values. Thus the following questions regarding our use cases are of
interest: Is the evaluation of conditions on atomic values required? If so, is
metadata on relevant value formats available to the IR system? Lastly, are atomic

26

values normalised throughout all documents?

1 <mo>JANUARY -MARCH</mo><yr>2007</yr>
2 <validity >01/01/2007 -- 31/03/2007 </validity >
3 <account valid -from="2007 -01 -01" valid -until="2007 -03 -31"/>
4 <subject >Meeting on March 31 regarding ...</subject >

Listing 2.5: Example of atomic values

Query-related Aspects

• Availability of support conditions (V): Support conditions address the document
structure and are thus more difficult to formulate than mere keywords. Hence, we
have to distinguish per use case, if an end-user is likely to provide such conditions.
Orthogonal to this, we must also define, if the IR system can reasonable provide
support conditions on its own.

• Vague matching (V): Traditional Information Retrieval is closely related to the
vague evaluation of queries formulated by the user: We consider query conditions
as mere hints on what information is relevant to the user as opposed to strict
constraints. Yet in our context the question arises to what extent vague matching
of conditions is actually required. More specifically: Is it necessary to only apply
vague matching to content conditions (like in traditional IR) or do we also need
match target and/or support conditions vaguely? If vague matching of support
conditions is required, does this only cover minor deviations like typographic errors
in element names or do entirely different XML modellings of a structure defined
in the query have to be matched, too? We believe, that the answers to these
questions vary depending on the use case.

Presentation-related Aspects

• Result granularity (V): The granularity of retrieval results may differ per query
or be invariant for all queries in a particular scenario. Only in the former case,
it makes sense for the user to provide granularity-focussed target conditions. In
either case we have to ask, whether the user is likely to manually specify target
elements, at all.

• Result context (V): Fragment-oriented retrieval enables us to include arbitrary
parts of XML documents in the result set. Depending on the scenario, the user
may need to know the context from which a result item originates or not. For
example, he might want to know the collection, document, author, modification
date, and similar metadata per result item.

• Result size (V): The user may wish to see all relevant fragments (optionally with
the exception of filtering mechanisms, see below) or only a fixed maximum number
of best matches. The latter is commonly known as Top k approach.

27

• Clustering (V): We can list result fragments linearly in order of their relevance or
cluster them per document. In the latter case, we can either rank results within
a document or display them in document order. Optionally, we can also display
result abstractions like a relevance distribution within a document (a so-called
heat map), for example. We expect all of these choices to vary between different
scenarios.

• Filtering (V): Retrieval results may contain fragments which overlap, that is,
which contain one another. This may not be a problem (or even desired) in some
scenarios, whereas we need to avoid it in others. Also the user may wish results to
be compacted in certain cases, for example by returning a parent element in lieu
of many individual, relevant children.

2.3.2. Use Cases

In the following we define several use cases for XML Retrieval. Each use case corresponds
to one particular configuration of the variable aspects which we have discussed in the
preceding section. Table 2.3 shows the template we use to summarise this configuration
per use case.

Table 2.3.: Use case configuration template

Schemas Count e.g. 1
Explicit/Implicit e.g. explicit
Homogeneous/Heterogeneous e.g. heterogeneous

Atomic values Evaluation required? . . .
Metadata on formats?
Normalised?

Support elements By end-user?
By IR system?

Vague matching Support elements?
Target elements?
Semantic relativism?

Result granularity Fixed/Variable
User/System/Invariant
Granularity only?

Context needed Yes/No
Result size All/Top k
Clustering Linearly/Per document?

Ranked within document?
Heat map?

Filtering Overlap Removal
Compaction

28

Use Case: Book Search

A common use case in XML Retrieval (as well as traditional IR) is the search for books
in either an online store or library: A user is looking for books on a particular topic.
As he is considering to purchase a book, but only has a limited budget available, he
is interested in identifying a single book that is very exhaustive regarding his topic of
interest and at the same time as cheap as possible. This book does not necessarily have
to be restricted to his topic of interest, but in order to maximise his personal efficiency in
learning about the topic he would prefer a book covering little other fields (i.e. a highly
specific book). He does not prefer any particular author or publisher. In order to not
get tempted to buy a very expensive book, he wishes to constrain the search to books
below a certain price limit. If, however, there is a book at a higher price which is far
better suited than all other books available, he would like to see this book as well.

Our user is searching the website of a single online book store. Thus we can assume
the underlying collection to conform to a single schema14 describing the store’s internal
format which is explicitly available. As the store is only selling books, the collection
is homogeneous. The user is primarily using keywords to formulate his query. Due to
his restrictions on book prices, however, he also formulates support conditions which
include atomic values. Prices are coded as an XML element in a normalised and clearly
defined manner, as shown in listing 2.6. Thus evaluation of atomic values is only needed
for normalised values not embedded in any textual content.

1 <book>
2 <price currency="eur">47.11 </price>
3 ...
4 </book>

Listing 2.6: Sample XML fragment representing a book entity

As he is entirely unaware of the store’s XML schema, the user enters his condition
on the price in a GUI form field; therefore the resulting query condition is actually
formulated by the IR system taking into account the document structure precisely and
correctly. Hence structural conditions on the support elements are provided, but do
not require taking into account semantic relativism. According to the weak nature of
this condition (which does not apply for very good books), vague matching still has to
be performed. The primary result elements desired by the user are books. Yet he is
interested in judging their exhaustivity and specificity and also in seeing those parts
of the books most relevant to him. Thus there are no target elements provided by
the user, but the system is configured to locate chapters, sections, and subsections and
display them clustered by book, ranked according to relevance within books. In this
view, overlapping book parts are rather not desired by the user. The result context (i.e.
the book including author, price, etc.) is obviously needed. Vague matching of target
elements is not really needed, however, as the system has explicitly listed elements at

14In this scenario having a small number of schemas (i.e. more than one) is actually more likely. As we
cover this case in subsequent uses cases, however, we assume a single schema to increase use case
diversity.

29

a suitable granularity (i.e. paragraphs would be to fine-grained, entire books obviously
not useful).

The result display can be expected to support paging (i.e. distributing the result list
across several pages) and the user is unlikely to look beyond the first couple of pages.
To constrain the book prices according to his budget he may adjust the price condition.
As within this price range he is looking for the best-suited book, we do not expect him
to re-order the result list. Thus a Top k processing approach would be sufficient. The
resulting query (generated by the IR system based on the user’s input) could look like
this:

cas retrieval

support://books/book@price[<50]

(target:chpt || target:sec || target:sec2)

The configuration of the use case aspects we have identified is summarised in table 2.4.

Table 2.4.: Configuration of the Book Search use case

Schemas Count 1
Explicit/Implicit Explicit
Homogeneous/Heterogeneous Homogeneous

Atomic values Evaluation required? Elements only
Metadata on formats? Yes
Normalised? Yes

Support elements By end-user? Yes (price)
By IR system? No

Vague matching Support elements? Yes
Target elements? No
Semantic relativism? No

Result granularity Fixed/Variable Fixed
User/System/Invariant Invariant
Granularity only? Yes

Context needed Yes/No Yes
Result size All/Top k Top k
Clustering Linearly/Per document? Per book

Ranked within document? Yes
Heat map? No

Filtering Overlap Removal Yes
Compaction Yes

Use Case: Re-finding

Another interesting use case for XML Retrieval is the endeavour of a user to locate a
particular piece of information again which he has come across before (“re-finding”).

30

This is similar to a use case Trotman et al. have proposed in [TPL06]. In our case,
however, the emphasis lies more on user-provided support conditions rather than on
content conditions. Let us assume that the user has recently come across a paper on
how to implement vague structural matching by using path edit distances which he
would now like to read again in detail. Unfortunately though, he does not remember
the author, title, or any other strongly discriminating information. He does, however,
recall that there was an interesting section containing the word “path” in its title whose
content included at least one word printed in bold font.

As the user does not recall the publisher, he uses an imaginary XML-based search
engine for scientific papers from various sources which allows to specify structural con-
ditions. The underlying collection is homogeneous (i.e. only contains scientific papers),
but missing a common schema. Processing atomic values is not required, as the user
cannot recall any such information. The user is able to specify conditions on both con-
tent and structure, but is unsure of the actual structure (i.e. element names etc.) used
in the collection; thus all conditions have to be processed very vaguely and with regard
to semantic relativism. His query might look like this:

path edit distance

support://sec//title[path]

support://sec//b

target:sec

The user expresses both granularity and type of desired result elements in his query by
including the target condition. We need to be interpreted the target condition vaguely,
too, as the passage the user remembers might also have been a subsection or chapter,
although the user assumes it not to be. The result display should list relevant sections
ranked by relevance. Because we expect many partially relevant matches and as the
user will have to go through the matches manually to identify the one he was looking
for, he would only want to see a reasonable amount of results (i.e. Top k approach).
The results should be ranked decreasingly according to relevance and for each match the
context (document, title, author, publisher) must be displayed: The user looks through
the result fragment to identify the fragment which looks like the one whose structure
he remembered; once he finds the correct one (i.e. the one he was actually looking for),
he needs the context information to cite the source. We have to allow for overlap in
results and disable compaction as the user has to identify the right match based on
visual characteristics and thus needs to come across the exact same fragment which he
is looking for in the result set. Table 2.5 summarises this use case’s configuration.

Use Case: Corporate Intranet Search

This use case is concerned with locating relevant information in a confined yet hetero-
geneous environment: a corporate intranet. Similar scenarios are the the BioMedNet
example given in [TPL06, p. 281], where jobs, store items, articles, and other entities
can be searched, and even the field of personal document management (cf. [FHM05]),
provided each of the individual data sources can be mapped to an XML structure. In

31

Table 2.5.: Configuration of the Re-finding use case

Schemas Count Many
Explicit/Implicit Explicit
Homogeneous/Heterogeneous Homogeneous

Atomic values Evaluation required? No
Metadata on formats? n/a
Normalised? n/a

Support elements By end-user? Yes
By IR system? No

Vague matching Support elements? Yes
Target elements? Yes
Semantic relativism? Yes

Result granularity Fixed/Variable Fixed
User/System/Invariant User
Granularity only? No

Context needed Yes/No Yes
Result size All/Top k Top k
Clustering Linearly/Per document? Linearly

Ranked within document? n/a
Heat map? n/a

Filtering Overlap Removal Yes
Compaction No

32

our setting, the user is an employee of a larger company who has the task of establishing
a maintenance project. This project’s goal is to make some adaptions to an informa-
tion system developed in a previous project several years back. The user first wants
to contact the members of the original project for assistance. He is unaware, however,
of how the original project was organised and thus unsure whom he should contact for
information. Therefore the user searches the corporate intranet for information on roles
and role assignments in that project; he formulates the following query:

project XYZ role assignment tgt:role

The result list may include parts of organisational and technical documentation, con-
tracts, company news bulletins, and other items. Within these pieces of information
it should contain all existing roles and their respective assignments. Overlap is clearly
undesired; ideally, each role should even only be listed once. Listing 2.7 illustrates a
sample result fragment; the exact structure of the results and the naming of relevant
elements may vary widely, however. We assume that all concerned data sources have
been mapped to (different) XML schemas and can be queried by a central IR system.
Table 2.6 summarises the configuration.

1 <role name="Requirements Engineer">
2 <assignments >
3 Peter Anderson , John Smith
4 </assignments >
5 </role>

Listing 2.7: Sample result fragment for the Corporate Intranet Search use case

Use Case: XML Web Search

Another scenario where XML Retrieval is of interest is XML web search. Today, search-
ing the world wide web for information is one of the most common Information Retrieval
applications. However, today’s web search is document-centred with little regard to
document structure. In particular, a user is unable to define conditions involving the
document structure and there is hardly any use of implicit structural conditions, either.
Given the increasing popularity of XML – especially in web-based contexts –, XML doc-
uments may replace current document formats in the long run. In this case, Information
Retrieval focussing on both the content and structure of XML documents will enter the
focus of web search applications, thus forming the field of XML web search.

As an actual example, consider a user who uses his favourite (XML-enabled) web
search engine to look up information on cat food. He is particularly interested in finding
scientific articles on how to feed cats, as opposed to news items and advertisements on
the topic. To ensure that the results have a certain scientific credibility, he only wishes
to retrieve results whose author holds at least a PhD. Hence he formulates the following
query:

cat food target:article support://article//author/title=PhD

33

Table 2.6.: Configuration of the Corporate Intranet Search use case

Schemas Count ≈ 10
Explicit/Implicit Explicit
Homogeneous/Heterogeneous Heterogeneous

Atomic values Evaluation required? No
Metadata on formats? n/a
Normalised? n/a

Support elements By end-user? No
By IR system? Yes

Vague matching Support elements? Yes
Target elements? Yes
Semantic relativism? Yes

Result granularity Fixed/Variable Fixed
User/System/Invariant User
Granularity only? No

Context needed Yes/No No
Result size All/Top k All
Clustering Linearly/Per document? Linearly

Ranked within document? n/a
Heat map? n/a

Filtering Overlap Removal No
Compaction Yes

34

Of course authors holding equivalent degrees such as “Dr.”, “MD”, and so on as well
as abbreviated and non-abbreviated notations should match the query. Also, web search
involves many different sources so that the structure of matching XML fragments may
vary widely. Results should not overlap and mainly contain elements with the granularity
of an article. We list the details of this use case in table 2.7.

Table 2.7.: Configuration of the XML Web Search use case

Schemas Count Many
Explicit/Implicit Implicit
Homogeneous/Heterogeneous Heterogeneous

Atomic values Evaluation required? Only string values
Metadata on formats? No
Normalised? No

Support elements By end-user? Yes
By IR system? No

Vague matching Support elements? Yes
Target elements? Yes
Semantic relativism? Yes

Result granularity Fixed/Variable Fixed
User/System/Invariant User
Granularity only? No

Context needed Yes/No No
Result size All/Top k Top k
Clustering Linearly/Per document? Linearly

Ranked within document? n/a
Heat map? n/a

Filtering Overlap Removal No
Compaction Yes

2.4. Summary

In this chapter we have laid the foundations for discussing XML Retrieval. We have
defined Information Retrieval as the process of informing a user on the existence (or
non-existence) and whereabouts of documents and/or document parts which to some
degree satisfy an information need the user has expressed. In the course of this process,
the user formulates a query which we regard as a system of explicit (i.e. user-provided)
and implicit (i.e. system-provided) conditions and interpret vaguely. The IR system
evaluates this query and tries to approximate the relevance (the degree to which a
document satisfies an information need) by assigning scores.

XML is a popular document format and widely used today. We have defined an XML
document as an ordered, labelled tree whose nodes are XML elements. Elements have

35

a non-unique tag name and optionally contain textual content. We can use key/value
pairs called attributes to further describe elements and to reference other elements.
Namespaces serve to provide a common vocabulary to XML documents and schemas
enable us to define rules for their composition. A document adhering to the nesting
rules of XML is well-formed, whereas a document conforming to a schema is valid. The
various directed relations between elements, attributes, and namespaces we refer to as
axes ; important axes include the parent, child, ancestor, and descendant relation.

Information Retrieval over XML documents is called XML Retrieval. It provides addi-
tional potential by allowing us to generically and explicitly express the logical document
structure and by enabling fragment-oriented retrieval. A fragment is an arbitrary sub-
tree of an XML document tree; thus when using fragments to compose the result set
we have to handle redundancies due the nesting structure of XML which is commonly
known as the overlap problem. Of particular interest to us is Content-and-Structure
Retrieval (CAS) which distinguishes tree types of conditions (keyword, support, and
target conditions). To provide a conceptional framework for this kind of retrieval we
have devised the XML Retrieval process. It consists of several phases, each of which we
can refine into distinct activities.

Because XML Retrieval is applicable to a broad range of applications, we have finally
introduced the concept of scenarios. A scenario is one specific configuration of a set of
environmental properties of an IR system. We have explored the space of these properties
by discussing document-related, query-related, and presentation-related aspects of XML
Retrieval. Based on this we have then defined several use cases to estimate which
configurations are likely to occur in practical applications. These use cases consequently
provide a basis for deciding which assumptions we can validly make regarding XML
Retrieval and where configurability is required.

36

Part II.

The XML Retrieval Process

37

3. Query Specification and Weighting

3.1. Criteria for Query Languages

Numerous query languages have been proposed to search XML documents from a data-
oriented as well as a document-oriented point of view. In order to identify (or define,
if necessary) a language suitable for our purposes, we will first state our general query
language requirements in the following. We then introduce two classifications of XML
query languages to narrow down the set of candidates: First we classify languages by
the kind of user who is formulating the queries. This aims at determining the relevant
scenarios in which we need the query language and the requirements each scenario im-
poses on such a language. We then provide a second classification proposed in [AYL06]
which aims at grouping concrete query languages according to their respective expres-
siveness. Based on our requirements and classifications we then evaluate potentially
suitable appropriate query languages in the next section.

3.1.1. Requirements

We now define requirements which a query language has to meet in order to suit our
needs. Please note that we consider the processing semantics to be independent of
the query language; hence these requirements solely define the expressive power of a
language regarding an information need, but not how a query is processed. To state
our requirements, we use the following simple wording convention: The term “should”
expresses that a functionality is desirable, but not mandatory; the term “must”, on the
other hand, denotes mandatory functionalities.

• The query language should enable us to easily formulate document-oriented, im-
precise information needs.

• It should enable us to express “traditional” IR queries, that is, queries only con-
sisting of keywords.

• It must enable us to optionally provide an arbitrary number of target conditions
(including zero).

• It must enable us provide an arbitrary number of support elements per target
element.

• It must enable us to provide arbitrary support elements below a target element;
for example, the target element may be a section with a support condition that
this section contains a element indicating bold font.

38

• It must enable us to express paths.

• It must enable us to express keyword conditions in the context of one particular
path component of a support condition.

• It should enable us to optionally assign an individual weight to each condition.
The weight indicates how important the condition is to the user1.

Throughout this thesis we concentrate on the conceptional view of XML Retrieval,
not a practical implementation. This enables us to make certain assumptions which do
not impose restrictions on the generality of our concepts, although they would impede
a user in a real-world setting. The aim of these assumptions is to avoid unnecessary
complexity. Namely, we assume that query conditions are always atomic and that they
are related by the following implicit operators, only: Keyword and support conditions
are treated vaguely conjunctive (that is, a result item should match all conditions, but
does not have to match any), target conditions are treated disjunctive. We consider
target conditions separately, as unlike other conditions a result item can typically only
match at most one target condition. (We will discuss this in more detail in section
5.1.) To formulate disjunctive keyword or support conditions (e.g. “cats OR dogs”), two
independent queries are thus needed. A third assumption is due to the limited scope of
this thesis and therefore does impose a conceptional restriction: We will not take into
account atomic values like numbers, dates, etc. For example, in the XML fragment <book
price="42.00" currency="EUR"/> we ignore the semantics of the attribute value (i.e.
that the book has a price of 42.00 Euros). Thus we cannot handle information needs like
that for books in a certain price range (as in the Book Search use case, for example).

Based on these assumptions, we can now explicitly admit certain relaxations of our
query language requirements. In this context, the expression “does not have to” denotes
that a functionality may be provided by a query language, but is not needed. Namely,
we admit the following relaxations:

• The query language does not have to enable us to formulate non-atomic conditions
(i.e. conditions which consist of a system of conditions themselves).

• It does not have to enable us to use explicit operators (like and, or, not, <, >,
and so on).

• It does not have to enable us to explicitly specify the kind of axis separating two
path components (i.e. child, descendant, attribute, reference).

These relaxations do not impede the concepts we propose for our XML Retrieval
framework. For the general discussion of XML Retrieval issues, having a query language
including these features would be helpful, however. We therefore strive to identify two
query languages: one featuring the minimal set of requirements needed for our XML
Retrieval framework, and another to enable a precise discussion of XML Retrieval in
general. For the latter the above relaxations consequently do not apply.

1User-defined weights are orthogonal to system-defined ones. If both user- and system-defined weights
are assigned, we evaluate the user-provided weights relative to the system-defined ones.

39

3.1.2. Classification by User

We differentiate three classes of query languages which differ in terms of their require-
ments:

1. End-user query languages

2. Expert query languages

3. System query languages

An end-user query language is the means by which the end-user of an IR system expresses
his information need. The end-user is typically not an IR expert and has little (if any)
knowledge of both the IR system and the document collection. He is unlikely to know,
for example, the XML schema of the collection or details of the query processing. Thus
an end-user query language should be centred around expressing information needs and
not around giving query processing instructions. All information provided to the IR
system in this query language should be treated as possibly incomplete and erroneous
and thus processed vaguely (i.e. the system should not rely on any information provided
by the end-user, but rather regard it as hint on what information he desires). Ideally,
an end-user language is not a formal query language in a narrow sense, but consists in
a use case-specific GUI or natural language processor. We expect queries formulated
by the end-user to be translated into a more system-oriented language before actually
evaluating them. This translation is far from being trivial. Nonetheless, we believe that
it can be performed independently of the actual IR processor (i.e. by the IR front-end)
and that the end-user language is thus transparent to us. Therefore neither the the
design of a suitable end-user query language nor its translation to the language used by
the IR processor are primary aims of this thesis and are thus not considered further.

An expert query language is used to express an information need and additionally
provide processing instructions like structural metadata, condition weights, etc. It
should cover all conceptional features deemed necessary for the specific IR system, yet it
should be simple enough to allow IR experts to efficiently formulate queries. (By efficient
we mean that the expert should be able to easily formulate queries which have the
intended semantics and are free of syntactical errors; cf. [OT03]). Ideally, the IR system
is able to operate on queries formulated in this language without further translation (to
reduce complexity and potentially increase efficiency); this is not mandatory, however.
Generally we should treat expert language queries vaguely as well. If the IR system
supports this, however, the query may contain detailed information on the reliability of
each condition and the level of strictness that is desired.

Finally, the system query language is the language used internally by the IR processor
when handling user queries. It typically features a non-textual representation like an
operator tree. This is needed, for example, for query rewriting and relevance feedback
mechanisms. Also the system potentially enriches the query with additional information
aimed at increasing processing efficiency (e.g. “Ignore elements of type X as they never
contain relevant content”). Compared to expressions formulated in the expert query
language, we expect system query conditions to have a higher degree of strictness, as

40

the system “knowns” the exact document structure and thus is likely to provide reliable
information. As stated above, the system query language should ideally be identical to
the expert user language, but does not have to be. At least it must feature a textual
representation which can be read by an expert user to enable debugging.

3.1.3. Classification by Expressiveness

Amer-Yahia et al. [AYL06] propose a classification scheme for XML query languages
which is based on expressiveness. They distinguish the following four classes based on
which we narrow down the set of query languages feasible for our work:

• Keyword-Only Queries Languages originate in non-XML contexts (i.e. flat Infor-
mation Retrieval) and only allow to list a number of keywords. Optionally these
keywords can be related by operators and structured by means of nesting. Opera-
tors can include both common logical operators like and, or, not, etc. and complex
operators like has-sibling. Nesting is typically achieved by using brackets. A
very simple query expressed in a keyword-only language is:

animals cats dogs

A more enhanced one could look like this:

animals AND (cats has-sibling dogs)

Representatives of such languages include XRank [GSBS03] and XKSearch [XP05],
both featuring pure keyword search, and the unnamed query language proposed
in [AVF06], featuring the use of complex operators to define structural conditions.
In a keyword-only language, means of formulating structural hints are naturally
either very limited (e.g. keywords can be used to match tag names as well as
element content) or very complex (e.g. deep nesting of complex operators). Hence
they are not feasible when focussing on CAS-based retrieval.

• Tag and Keyword Query Languages enhance the former class by allowing to add
tags to the keywords contained in the query. A tag provides additional metadata
on the meaning of a keyword. They can be used, for example, to specify a certain
confidence value or a hint that the keyword has to appear in a tag name like in
the following example:

animals AND tagname:pet AND (attrvalue:cat OR attrvalue:dog)

The XSEearch2 language [CMKS03] is one example of such a language: It is a very
simple, end-user-centric query language that allows for the use of so-called labels
to express structural constraints. Queries in such languages are comparatively easy
to formulate and process. Also we can easily extend a tag and keyword language
to meet additional requirements by adding new tags. On the downside, however,
they lack the ability to (easily) specify path information just like keyword-only
languages. Therefore this class of languages is feasible, if we want to formulate

2Not to be confused with the XKSearch language [XP05] mentioned above.

41

structural query conditions on a very high abstraction level. For the kind of
structural conditions we want to express, this would make query formulation rather
cumbersome and hard to understand, though; we will therefore refrain from using
such languages.

• Path and Keyword Query Languages address this issue by allowing for path ex-
pressions in addition to keywords. This definitely makes formulating queries more
complex for simple queries (i.e. queries with mostly keywords and little structure),
but provides powerful means for expressing structural constraints. For example,
the following query belongs to this class of languages:

animals AND /book//chapter/title[cats]

Many query languages pursuing the idea of CAS-based retrieval proposed in recent
years belong to this class of languages. Early examples include ApproXQL [Sch01],
EquiX [CKK+02], and XIRQL [FG01]; more recent approaches are often extensions
of the NEXI language [TS04a], such as XOR [GHT06]. As discussed in the previous
section, we do not aim at defining an end-user language; thus the level of complexity
of formulating path and keyword language queries seems adequate in our context.
Also these languages feature a sufficient expressive power. Hence we consider path
and keyword languages to be a feasible choice; we thus compare existing languages
of this category in detail in section 3.2.

• XQuery and Keyword Query Languages enable XQuery-like querying capabilities.
In particular these languages allow for constructs like defining variables, ordering,
joins etc. as well as very specific structural conditions as shown in the following
sample query:

let $col := doc(’books.xml’)

for $chapter in $col//book//chapter,

$title in $col//book//chapter/title

where contains($title, ’Cats’)

order by $title

return $chapter

Apart from XQuery [BCF+07] itself, its predecessors (e.g. Quilt [CRF00]) and
recently proposed extensions for textual search such as XQuery-FT [AYBB+07],
belong to this category. As these languages have been developed with data-centric
applications in mind, most of the additional features listed above have arguably
little or no use in Information Retrieval scenarios. On the contrary: Due their focus
on fine-grained, complex query conditions the additional expressive power makes
formulating a query a as set of vague hints (as opposed to an exact specification
of where to look and what to retrieve) rather difficult compared to languages of
the former classes. Thus these languages provide little additional benefit at high
additional costs and are thus not feasible for our purposes.

• Query-by-Example Languages : Another kind of XML query languages which do
not fit into the classes discussed above are those following the query-by-example

42

paradigm: The user provides input that resembles the result items he is interested
in. In the XML IR context this means that the user actually provides complete
XML fragments as the following sample query demonstrates:

<chapter><title>animals</title>cats dogs</chapter>

Although this enables the user to formulate queries in a rather intuitive manner
similar to keyword-only languages, the user is able to provide a fair amount of
structural information which resembles that of path and keyword languages in
expressiveness. Optionally the language may also permit embedding operators to
express, for example, boolean conditions or confidence values. An example of such
a language are so-called XML fragments3 proposed by Carmel et al. [CMM+03].
We consider this as an interesting option for an end-user language, but deem it
impractical for expert or even system usages due to its lengthy and imprecise
nature. We therefore do not consider this class of languages as a candidate to suit
our needs.

3.2. Existing Query Languages for CAS Retrieval

The two classifications of query languages we have introduced enable us to greatly
narrow down the set of existing query languages: We foremost need an expert language
to express queries featuring the various aspects discussed throughout this thesis (like
support conditions, weighting, and so forth). To support implicit query conditions, the
language should be a feasible system language as well. End-user aspects, on the other
hand, are clearly secondary in our context. Regarding the expressiveness, path and
keyword languages are most appropriate for us (based on our discussion in the previous
section). We will now evaluate existing query languages which belong both classes based
on the general requirements we have defined. Please note that these languages are only
a sample of what XML Retrieval publications have proposed so far; we consider them
representative, however, in terms of their properties.

ApproXQL [Sch01] is a hybrid of tag- and path-based approaches. It allows to specify
path conditions (albeit in a somewhat cumbersome fashion), but is explicitly aimed at
data-centric documents and thus not well-suited for keyword matching. It also misses
various features like support for descendant relations, weighting, and other features,
so it is not suitable for us. Cohen et al. propose EquiX [CKK+02] which uses tree-
structured conditions generated by a GUI interface. Unfortunately this language seems
to be completely missing a textual representation of queries (GUI input is directly
translated into an internal tree model), so it is also infeasible. XIRQL [FG01] on
the other hand, in spite of also being a very early proposal of a CAS-based retrieval
language, fulfils most of our basic requirements: Besides allowing for the specification of
support and target elements in a straight-forward manner, it supports explicit weighting
of conditions and both the child and descendent axis. Not supported, however, are
confidences (which could easily be added to the model, though) and references. Also,

3Not to be confused with our notion of a “fragment”.

43

specifying several target elements which share the same support conditions requires
lengthy queries containing many redundancies. For an example of the latter case, see
the query shown in the Book Search use case in section 2.3.2. Therefore we consider this
language generally feasible (with minor extensions), but not ideal.

A more recent query language is NEXI (for Narrowed Extended XPath I) [TS04a]
which has been the official query language adopted by INEX since 2004 [TS04b]. As
its name suggests, NEXI is an adaption of XPath 1.0 to the requirements of INEX; the
adaption mostly consists in restricting the expressiveness of the language for the sake
of simplicity and only few extensions (foremost, an about() function used for vague
content matching). Unfortunately though, several features present in either XPath or
XIRQL which are important to our settings have not been integrated (or even explicitly
removed); these include the differentiation of the child and descendant axis and weighting
of conditions. Apart from these aspects, generally the same statements apply as for the
XIRQL language discussed above. Therefore we deem NEXI less well-suited for our
purposes than XIRQL, albeit being an interesting CAS language for more restricted
contexts.

Geva et al. [GHT06] propose XOR as one extension of the NEXI language. It supports
a tagging mechanism in the form {key:value} which can be used to specify various
additional metadata; for example, for each condition it can be configured, if matching is
to take place strictly or vaguely. Also several tags concerning natural language processing
are supported, e.g. for expressing that a particular keyword is a noun or that a word
is written in all upper-case letters. XOR also extends the set of operators provided
by NEXI: Besides AND and OR it introduces NOT as well as comparison operators like
lt() and gt() to process atomic values. For path matching, XOR allows for wild cards
(e.g. //book*) and features a syntax to explicitly express references, both outgoing
and incoming (LinkTo(), LinkFrom()). An appealing advantage of XOR is the easy
extensibility provided by its tagging mechanism. Also, being able to handle conditions
on atomic values and references are strong points, although the syntax used to express
them is somewhat lengthy and cumbersome. The other features, like the wild card
matching and natural language features, are unnecessary for our purposes; we can,
however, simply disregard them, so they do not constrain us in using the language.
Unfortunately, the criticism of XIRQL is applicable to XOR, too, to a great extent.
Thus we will not it use directly, but consider it as a good basis for defining an individual
language.

3.3. Query Language Definition

None of the query language proposals discussed above fully satisfy our minimal require-
ments. To avoid overhead, we do not extend any of these languages, but instead define
a custom query language. Following the differentiation of requirements in section 3.1
(minimal vs. extended requirements), we actually define two query languages: CAS-QL
(for Content-and-Structure Query Language) and CAS-QLX (for CAS-QL eXtended).
The former one reflects the conceptional power of our retrieval framework, the latter one

44

enables the precise discussion of XML Retrieval issues in general. Please note, though,
that neither of these two languages is by any means intended to be “yet another query
language” for wider use or generally suitable for IR system implementations. In the fol-
lowing, we describe the semantics of CAS-QL and CAS-QLX textually. The according
grammars we have included in appendix C. CAS-QL we define as follows:

• A term is a character string consisting of one or more digits, lower case letters,
and hyphens (-). We generally ignore case, so a lower case letter in a condition
equally matches the corresponding lower and upper case letter in a document.

• A keyword condition consist of exactly one term. For example, the query cas

retrieval contains two keyword conditions.

• A support condition consists of one or more terms separated by a slash (/) as
generic axis delimiter; hence we do not distinguish specific axes. See section 4.2.3
for a detailed discussion on this. Support conditions are prefixed with “support:”
or “sub:”. For example: sup:/book/chapter/section.

• A target condition consists of exactly one term and is prefixed with “target:” or
“tgt:”. This is based on the assumption that a particular element always has the
same semantics4 (and thus contains the same kind of content) regardless of where
it is used. For choosing target elements it is therefore sufficient to judge based on
properties of an element (such as its tag name). We can still model all restrictions
regarding the context of elements (e.g. that a <paragraph> inside an <article> is
considered more relevant than one inside a <novel>) by using support conditions,
i.e. tgt:paragraph sup:/article/paragraph. Therefore this definition of target
conditions does not restrict the generality of our approach. It greatly simplifies
target condition handling, however.

• Alternatively, a target condition may consist of a single decimal number in the
set {0.0, 0.1, . . . , 1.0}; for example: tgt:0.2. In this case, it merely declares a
particular result granularity as the desired granularity. Will we explain this in
detail in chapter 5.

• We ignore namespaces in all conditions referring to elements or attributes. Like
our decision for pathless target conditions, this is due to our assumptions regarding
the semantics of names (cf. section 4.2.3).

• Conditions are related by the following implicit operators, only, as discussed in the
according requirement in section 3.1.1: Keyword and support conditions are inter-
preted vaguely conjunctive, target conditions vaguely disjunctive. For example, in
the query

cas retrieval tgt:section tgt:paragraph sup:/article/mainmatter

4We discuss this in depth in the context of name matching in section 4.2.3.

45

the user prefers result items to be <section> or <paragraph> elements, and wishes
for them to appear in the main matter of an article which contains the keywords
“cas” and “retrieval”.

• For each condition the user can optionally define a weight from the set
{0.1, 0.2, . . . , 1.0}. This is appended to the condition as shown in the follow-
ing example:

cas,weight=0.8 retrieval sup:/article/mainmatter,weight=0.3

The default weight is 0.5. In the example, the keyword “CAS” has a weight of 0.8,
“retrieval” the default weight of 0.5, and the support condition a weight of 0.3.
The weights do not have to sum up to 1.0; instead the system evaluates each weight
relative to sum of all weights. In our example, this sum is Σ = 0.8+0.5+0.3 = 1.6,
thus the actual weights are 0.5, 0.31, and 0.19, respectively.

In addition to this we define the following for CAS-QLX:

• Conditions can be related by the explicit operators and (denoted by &&) and or

(denoted by ||). The implicit default operator is always the and operator, unlike
in CAS-QL. Both operators are treated vaguely. Also, conditions can be grouped
by using round brackets ((,)). Grouped conditions are treated as a single atomic
condition regarding the surrounding operators. Consider the following sample to
illustrate this:

(cas (retrieval || search)) && (tgt:section || tgt:paragraph)

This means that the user is looking for either a section or a paragraph on “cas
retrieval” or “cas search”.

• Path conditions may use the following specific axis indicators: child (/), descendant
(//), attribute (@), and reference (->). For example:

sup:/books//book->author@address

This means that the user is looking for <book> elements below a <books> element
which references an <author> element that has an address attribute.

• Each path component may be suffixed with a predicate, i.e. a set of implicitly
conjunctive, vague conditions regarding this path component. The conditions may
be prefixed with an operator to test atomic values (namely =, <, >, <=, >=); an
unprefixed condition is treated as keyword. Consider the following query examples:

1. sup:/book[information retrieval]/chapter[cas retrieval]

2. sup:/book@price[>20 <50] sup:/book@author[smith] cas retrieval

The first example asks for books about Information Retrieval which contain a
chapter on CAS Retrieval. The second example asks for books on CAS Retrieval
which belong to a particular price range and were written by a particular author.

46

3.4. Element Type Classification

Before we discuss weighting of query conditions in the next section, we now introduce the
concept of element types which we will use throughout the remainder of this thesis. It is
mainly aimed at target condition handling (cf. section 5.1.1), but is also of importance
in other contexts such as weighting strategies. The concept has been inspired by a
publication of Lehtonen et al. [LPT06, sec. 2A]. We define an element type as a group of
elements with common properties. Namely, we distinguish three such groups of elements
based on the semantics of tag names:

• Formatting Elements (e.g. <i>, , <emph>, <large>,): They
are used to signal that the content they contain is to be formatted in a particular
way when processing the document for display. Formatting elements’ tag names
are entirely unrelated to their content but frequently they can be interpreted as an
indicator of the importance of contained terms. For example, we can reasonably
assume word intended to be printed in bold letters and a large font size to be
an important term, whereas for a word set in very small letters the opposite
assumption usually holds.

• Structuring Elements (e.g. <chapter>, <section>, <paragraph>): These elements
are used to describe a hierarchical structure of a document’s contents. Tag names
of structuring elements have a weak relation to their contents such that they either
contain further structuring elements or a certain quantity of textual content (e.g.
very little content for a heading element like h1 or comparatively much for non-
headings). Yet in the latter case the tag names do not hint towards the meaning
of this text (for example, a paragraph may contain text on any topic). They
are useful for estimating the specificity of their contents, though, as well as for
selecting a suitable level of granularity for retrieval results.

• Entity Elements (e.g. <author>, <city>, <dob>, <abstract>): Elements of this
kind usually correspond to a real-world entity and there often exists a relation
between the tag name and the semantics of their contents. For example, an
<author> element can be expected to describe a person and <dob> a date of birth.

Element type assignments are not necessarily exclusive. The tag <mainmatter>, for
example, constitutes a part of a document hierarchy, yet at the same time is also an
entity with implications about its content: If it is used as a target element, it both
defines a desired granularity (i.e. a large amount of text) and the kind of content desired
(i.e. no abstracts or summaries, but full content). Therefore we propose, that every
element must be assigned to at least one of the above categories, but may be assigned to
arbitrarily many ones. For simplicity, we assume that the assignment of element types is
done manually. This suffices for our purposes, as we regard element types as an auxiliary
construct to aid reasoning about the feasibility of improvements we propose. To actually
use element type distinctions in an IR system implementation, automatic assignments
(e.g. by using heuristics) are mandatory.

47

3.5. Weighting of Conditions

In a strict query evaluation environment (e.g. a database system) handling queries
consisting of multiple conditions is easy: Each condition is either satisfied by a result
item or not; if conditions are combined conjunctively, all conditions have to be satisfied,
if they are combined disjunctively, at least one condition has to be satisfied. Performing
vague query evaluation, on the other hand, is more challenging in this regard for two
reasons: Firstly, a condition may be satisfied to some extent only, and secondly, even if
a condition is not fulfilled by some result item, this item may well still be relevant to the
user. In Information Retrieval we perform scoring (as opposed to binary classification);
hence we must define how strongly satisfying a particular condition contributes to the
overall score, i.e. how “important” that condition is. Defining this importance of a
query condition relative to all other conditions is commonly referred to as weighting.
More formally, for an arbitrary set of conditions Q there exists a weighting function
w : Q −→ (0, 1] for which it holds that∑

q∈Q

w(q) = 1 (3.1)

The specification of this weighting function has a great impact on the score of result
items and thus the effectiveness of an IR system. We therefore discuss different weighting
strategies for XML IR in the following sections.

3.5.1. Classification of Weighting Strategies

We distinguish different classes of strategies for generating condition weights. These
classes are not exclusive, however, thus a weighting strategy can belong to more than
one class. We use the following conventions for naming the classes: The term “static”
implies that the IR system assigns weights based on configuration time rules, whereas
“dynamic” weights are computed at runtime by using information on the documents.
Orthogonal to this, we say that a weight is “fixed”, if the system computes it once
per query, and “adaptive”, if the system re-weights conditions during query evaluation.
Using these terms, we differentiate the following four classes of weighting strategies:

1. User-defined Weighting The user provides weights as part of his query. He may
either formulate weights directly as part of a textual query string or in a more
abstract manner, e.g. by GUI forms or natural language expressions. User-defined
weights are a common feature of IR systems in general; for XML Retrieval it has
been proposed by Fuhr et al. [FG00], for example. A disadvantage of this way of
obtaining weighting information is that – in most IR applications – end-users will
either not be able to assign useful weights due to a lack of skills, or simply not
bother to do so. Hence, while being an appealing solution in theory, its practical
feasibility is likely restricted to special scenarios.

2. Fixed Static Weighting Alternatively, we can configure an IR system to use stat-
ically predefined weights based on some classification of query conditions. For

48

example, all structural hints may be assigned a particular score or all keywords
which are nouns. This only requires the system to analyse the query string and
is thus very cost-effective. Many XML Retrieval publications apply this kind of
weighting; examples are [AYLP04] and [PMM07].

3. Fixed Dynamic Weighting A more advanced mechanism is the assignment of
weights based on an analysis of the document collections used. For example,
we can adapt term frequency models like the common TF-IDF-based weighting
schemes to XML to derive weights. This is proposed, for example, in [LRM05].
Unlike the former classes of weighting strategies, this not only requires query anal-
ysis, however, but also accessing documents (or at least document statistics) for
weight-generation and is thus more costly.

4. Adaptive Dynamic Weighting Finally, weights do not have to remain fixed during
query evaluation (like in the classes discussed above): Based on the query results
(or a subset of it), the IR system may decide to change the weights it used initially
when evaluating a query to achieve better results. This is tightly coupled to manual
or automated relevance feedback which is not in our focus. For an overview of such
concepts confer [Pan04].

3.5.2. Weighting Strategies

Using the above classification as a guideline, we now define several weighting strategies.
User-defined weights we have already integrated as part of our query language in section
3.3. There we have also defined how to combine them with system-generated weights,
so we do not need to consider them further. Adaptive dynamic weighting is outside our
scope as stated above. In the following we will therefore first devise a fixed static weight-
ing strategy and then propose several fixed dynamic weighting strategies to complement
it.

Condition Type-based Weighting

The most trivial approach to weight query conditions is to assign weights uniformly,
i.e. to assign the same weight to all conditions. This is equivalent to not performing
weighting at all. In keyword-only environments (e.g. in traditional Information Retrieval
and in Content-only XML Retrieval), this may be a reasonable approach. In CAS
contexts, however, there exist several types of conditions, namely keywords, target
conditions, and support conditions. Often, the latter two are merely imprecise pointers,
whereas the keywords to a large extent characterise the actual information need and
are thus more important. Also, depending on the scenario, target conditions may
have to be treated differently with regard to their importance than support conditions.
Hence, we consider it necessary to differentiate condition weights at least for the various
types of conditions. In the following, let skwd, ssup, stgt ∈ [0, 1] be the scores resulting
from keyword, support, and target conditions, respectively. As some proposals do

49

not distinguish the latter two, we also define a structural score sstruct ∈ [0, 1] as the
normalised sum of support and target scores:

sstruct =
ssup + stgt

2
∈ [0, 1] (3.2)

Our aim is to define how these scores are combined into an overall score s ∈ [0, 1]. Amer-
Yahia et al. [AYLP04] propose three simple strategies to weight structural conditions
relative to content conditions: Structure First, Keyword First, and Combined. The
former two are not actual weighting schemes, but define the order in which scores are
used to rank results: Structure First ranks results by structural scores first, and then
by content scores, Keyword First results in the opposite ordering. We consider this
insufficient, as an XML Retrieval system ought to approximate relevance (i.e. a score) by
taking into account both content and structure. The Combined strategy does combine
both content and structure scores, but [AYLP04] do not define how to calculate the
overall score. As an example they use the sum of both scores which is equivalent to
uniform weighting and is thus infeasible.

A trivial alternative weighting scheme is the multiplication of keyword and structural
scores as shown in equation 3.3. This corresponds to a conjunction of both types of
query conditions: If either the keyword or the structural score is zero, then the resulting
score will also be zero, meaning the element is regarded as not relevant. While this seems
reasonable for strict query interpretations, it is not well suited for vague matching.

s = skwd · sstruct (3.3)

Hence we propose to perform additive weighting of keyword and structure conditions
as is proposed in [PMM07], for example. Let β ∈ [0, 1] be an arbitrary factor, then
equation 3.4 illustrates the idea.

s = β · skwd + (1− β) · sstruct (3.4)

Additive weighting allows for an element which does not match either keyword or struc-
tural constraints to still have a non-zero score. Although this approach is generally
feasible for vague matching, we believe that a fine-grained control is desirable. Namely,
we propose to differentiate all three types of conditions as follows:

s = α · skwd + β · ssup + γ · stgt (3.5)

with α, β, γ ∈ [0, 1] and α + β + γ = 1 (3.6)

One drawback of this solution is that it also assigns non-zero scores to fragments
which have a keyword score of zero (i.e. which do not match a single keyword). In
most scenarios this is undesirable. We can easily work around this problem, though, by
slightly adapting the above weighting scheme as follows:

s =

{
0 if α · skwd = 0
α · skwd + β · ssup + γ · stgt otherwise

(3.7)

This causes a zero score to be assigned, whenever the keyword conditions’ total score is
zero.

50

Tag Name ITF Strategy

An indicator of the quality of both target and support conditions might be the frequency
of tag names which are used in the conditions in the document collection. For example,
the tag <section> supposably occurs very frequently, whereas <abstract> is a lot less
frequent; thus when the user searches for abstracts, this gives us a much more specific
hint towards what he is looking for than a query requesting sections. To model this, we
propose a solution based on the well-known TF-IDF weighting scheme [MRS08, chpt.
6]. For ease of expression, we first define the following auxiliary constructs: Let d ∈ D
be an arbitrary document and t ∈ T an arbitrary term. Then we define a function
occ : T × X −→ {t1, t2, . . . , tn} which returns all occurrences of t in a set of arbitrary
term occurrences X in the order in which they occur in X. If t does not occur in X at
all, occ(t,X) returns an empty set. We also define a function tn : D −→ {t1, t2, . . . , tn}
which returns a list of all tag name occurrences in a document d in document order. (For
simplicity, we assume that a tag name consists of exactly one term. We will later on
address the problem of multi-term tag names in section 4.2.3 in the context of name
matching.) To illustrate these functions, let d be the example document shown in
listing 3.1. Then tn(d) returns {article, title, body, sec, b, sec, b} and occ(sec, tn(d))
returns {sec, sec}.

1 <article >
2 <title >Examples of Tag Names in an XML Document </title>
3 <body>
4 <sec>Content of the first section.</sec>
5 <sec>Content of the second section.</sec>
6 </body>
7 </article >

Listing 3.1: Tag names in a sample XML fragment

Equipped with this, we calculate the normalised term frequency (TF) of t in an
arbitrary document d as

tf(t, d) =
| occ(t, tn(d))|
| tn(d)|

(3.8)

In other words, this tells us how often t appears as tag name in d in relation to all
occurrences of any tag name in d. Applied to our example, tf(sec, d) returns 2

7
≈ 0.29.

For weighting purposes we analogously calculate the term frequency regarding the entire
document collection C = {d1, . . . , dn} as

tf(t, C) =

∑
d∈C | occ(t, tn(d))|∑

d∈C | tn(d)|
(3.9)

To use this information as stated in the above example (i.e. weight <abstract> stronger
than <section>), we can then use the inverse term frequency (ITF) which is calculated
by the function shown in equation 3.10. For (tag name-based) target conditions, we
can simply use the ITF value as weight, as they always contain exactly one term. For

51

a support condition we assign the average ITF of all terms it contains as its weight.
Granularity-based target conditions (e.g. tgt:0.2) are incompatible with this solution.

itf(t, C) = 1− tf(t, C) (3.10)

For collections based on a single schema, we believe this weighting strategy to be
very effective, yet simple to implement. The ITF values per term should be stored in
a collection-specific statistics repository. We expect the term frequencies to vary only
slightly over time, so updating the statistics in large time intervals only is sufficient
and without greater impact on retrieval effectiveness. For collections which are not
based on a single schema, but still homogeneous (e.g. a collection of scientific articles
from various publishers), we expect this strategy to be still applicable, but with a lower
effectiveness. If, for example, the tags <section>, <sec>, and <ss1> each occur in
some documents of the collection, three ITF values are tracked instead of just one, thus
distorting the weights generated. A feasible countermeasure is to apply fuzzy name
matching when generating the statistics: In the given example, all three tags should be
recognised as equivalent and assigned a single ITF value. (We will discuss techniques
for vague matching of names in section 4.2.1.) If the collection used is heterogeneous,
however, generating weights based on inverse term frequencies will likely lead to very
poor results: The approach assumes a common usage of tags throughout all documents
of the collection, yet heterogeneous documents may vary widely in the set of tags they
use and their respective frequency; in the worst case, a single tag may even be used in
different contexts with different semantics. In this case, the strategy we discuss in the
subsequent section is more promising.

Tag Name IDF Strategy

A measure of the discriminative power of a term commonly used in Information Retrieval
is the inverse document frequency (IDF) [MRS08, chpt. 6]. It approximates 1.0, if very
few documents contain a particular term (i.e. the term is highly discriminative), and
0.0, if many documents do. As demonstrated for term frequencies in the former section,
we can also adapt the IDF measure to tag names in XML. We first obtain the document
frequency (DF) of an arbitrary tag name t in a collection C as shown in equation 3.11.
The document frequency is the number of documents in C which contain t. Based on
the document frequency, equation 3.12 calculates the IDF of t in C. The IDF is greater,
the less documents contain t, except when no document contains t in which case the
IDF is set to zero5.

df(t, C) = | {d ∈ C : | occ(t, tn(d))| > 0} | (3.11)

5A query condition which contains non-existent tag names is thus assigned a zero weight, i.e. ignored.
This increases the processing efficiency, but may distort the semantics of the initial query: We
assume that such a condition is erroneous, but one could also argue that if no document fulfils the
condition, all result fragments should be penalised.

52

idf(t, c) =

{
log |C|

df(t,C)
if df(t, C) > 0 ∧ |C| > 0

0 otherwise
(3.12)

For structuring and formatting elements in homogeneous collections (in particular such
with a common schema) we expect this strategy to be perform very poorly: For example,
every document in a collection of books very likely contains <section> elements and
query conditions concerning sections are consequently assigned a zero weight; if solely
using this strategy for weighting, the query

information retrieval tgt:section sup://book//section//title[xml]

would thus be mutilated to information retrieval – clearly not a very helpful way
of processing the structural hints. In heterogeneous collections, however, this strategy
may be very useful: If only a small fraction of the documents represent publications,
conditions on <section> elements have a strong discriminating power and should thus be
weighted strongly. Also, in both heterogeneous and homogeneous contexts, this strategy
should work well for certain entity elements; for example, strongly weighting a condition
on <actor> elements should be effective for selecting plays from a collection containing
diverse publications like articles, books, plays, and so on.

Relationship Rareness Strategy

So far we have only considered tag name statistics. Unlike terms in flat Information
Retrieval, however, XML natively introduces another powerful source of metadata in the
form of containment hierarchies. There exist numerous relationships between elements
in an XML document which we aim to exploit for weighting conditions in this section.
We consider the XML descendant axis to be the most promising relationship for this
purpose. One option we can exploit is to extend the ITF formula shown in equation
3.10 as follows: Let t1, t2 ∈ T be arbitrary tag names and tn : E −→ T a function which
returns the tag name of an arbitrary element (again assuming that a tag name only
consists of exactly one term). We then define the function rc : T × T × D −→ N≥0 in
equation 3.13 to return the count of elements named t2 which have an ancestor named t1;
in other words, this function counts the occurrences of ancestor/descendent relationships
where the ancestor element has the tag name t1 and the descendant element has the tag
name t2. Based on this we calculate the relationship rareness of t1 and t2 in C in equation
3.14. For example, if the tag <paragraph> occurs 100 times in the collection, and 90
of these occurrences have an ancestor element named <section>, then the relationship
rareness of section//paragraph is 0.1. The relationship section//equation, on the
other hand, might result in a much higher relationship rareness value, as it discriminates
more strongly.

rc(t1, t2, d) = | {e2 ∈ d : tn(e2) = t2 ∧ ∃e1 ∈ d with tn(e1) = t1 ∧ e2 ∈ desc(e1)} | (3.13)

53

rr(t1, t2, C) = 1−
∑

d∈C rc(t1, t2, d)∑
d∈C | occ(t2, tn(d))|

(3.14)

Like the ITF strategy, we expect this approach to perform well for homogeneous,
single-schema collections, but not for heterogeneous ones. The same possible extension
for homogeneous collections with several schemas applies, too. Combining both strate-
gies in a weighting function as shown in the following formula should further improve
the results:

w(t1, t2, C) = itf(t1, C) · itf(t2, C) · rr(t1, t2, C) (3.15)

This strongly boosts support conditions containing uncommon tags and uncommon
relationships while down-weighting conditions like sup://section//paragraph which
are of little use (in homogeneous environments).

Relationship IDF Strategy

Analogous to the Tag Name IDF strategy, we can define a relationship-based IDF variant
which is feasible for heterogeneous collections. To do so, we only have to redefine the
document frequency given in equation (3.11) as follows:

dfrel(t1, t2, C) = {d ∈ C : rc(t1, t2, d) > 0} (3.16)

Informally, this calculates the number of documents in the collection which contain an
ancestor/descendant relationship of elements named t1 and t2, respectively. We omit the
adapted variant of equation 3.12 here, as it is straightforward. The resulting IDF value
then increases, if and only if very few documents contain the relationship in question.
We can use it for relationship-based weighting of support conditions in heterogeneous
collections.

3.6. Summary

In this chapter we have discussed query-related aspects of XML Retrieval, that is, our
choice of a query language and the weighting of query conditions. For XML Retrieval
there exist numerous query language proposals. In order to determine whether any
of these are feasible for us, we have first stated our requirements regarding a query
language. Also, we have defined certain relaxations (i.e. features which XML query
languages commonly provide, but which we do not need for our purposes). To ease the
comparison of existing query languages we have then introduced two classifications: by
user and by expressiveness. The former classification describes whom a query language
is targeted at (end-users, experts, or the IR system); the latter classification describes
what kinds of information needs a query language can express.

For this thesis we need an expert and system language with the expressive power of a
so-called path and keyword language. Hence we have selected existing query languages
which belong to these classes and checked them against our requirements. The NEXI

54

language [TS04a] which is common in XML Retrieval research falls short of our require-
ments. The most promising candidates are XIRQL [FG01] and the NEXI extension
XOR [GHT06]; yet they also do not fully satisfy our needs. Hence we have resorted
to defining a custom query language named CAS-QL. To keep the language as concise
as possible, we have only included features which we actually use for the concepts we
propose in this thesis. Features which only serve to aid our general discussion of XML
Retrieval concepts we have separated to an extended query language called CAS-QLX.

After selecting the query language, we have introduced the concept of element types
and discussed the weighting of query conditions in XML Retrieval. An element type is a
group of XML elements with common properties such as identical tag name semantics.
We use element types throughout this thesis to reason under which conditions certain
solutions are applicable. Weighting defines how “important” a query condition is in
relation to other conditions. We have introduced four classes of weighting strategies
based on whether term weights are computed at runtime or up-front, whether the user
or the system provides these conditions, and whether the weights are modified during
query execution or not. Finally, we have proposed a generic weighting strategy based
on condition types and several scenario-specific strategies to complement it.

55

4. Query Evaluation

In this chapter we will address the evaluation of XML IR queries with the exception of
target conditions. We focus on the potentials and challenges related to structural con-
ditions; vague content matching in XML documents, on the other hand, we only discuss
as far as it directly relates to structural conditions (e.g. in the context of term proximi-
ties). We will first introduce our approach to scoring XML fragments in the subsequent
section. Based on this we will then discuss the evaluation of explicit structural hints
in section 4.2 and implicit structural hints in section 4.3. The generation of result sets
including the handling of target conditions is the focus of chapter 5.

4.1. Scoring of XML Fragments

Due to the hierarchical nature of XML documents, the relevance of an individual element
not only depends on its direct content, but also on its context (e.g. ancestor and descen-
dant elements [PL04, sec. 1]). In listing 4.1, for example, it seems plausible that the
term “cats” should contribute to the relevance of the surrounding section. In the same
manner a paragraph in a section titled “pets” is likely more relevant for an according
query than a paragraph in a section titled “cars”.

1 <section >
2 <section -title >Pets</section -title>
3 <paragraph >
4 Cats are often kept as domestic animals.
5 </paragraph >
6 <paragraph >
7 Another favoured animal around households are dogs.
8 </paragraph >
9 </section >

Listing 4.1: Example of relevance calculation in XML

A simple approximation is to score elements based on their recursive full content.
(Please note that when we refer to the scoring of elements in the following, we regard el-
ements as root elements and thus representatives of fragments.) In our example snippet,
the <section> element would thus be scored using the terms “pets”, “cats”, “are”, and
so on. This is a very limited solution, however, which addresses the first example stated
above (“cat” contributes to the section’s relevance), but not the second one. We thus
propose to calculate an element’s score based on its direct full content, only, and then
adjust it based on the scores of its context elements (which we will define shortly). We

56

consequently refer to the score resulting from the direct content as direct score sdirect.
The score resulting from an element’s context is called context score sctx; please note that
the context score does not modify the direct score, but is kept track of separately: We
call the tuple consisting of direct score and context score simplified score tuple, denoted
as SSST = 〈sdirect, sctx〉. As context elements of an arbitrary element e we define the set
including

• e’s ancestor elements,

• e’s descendant elements,

• e’s sibling elements,

• elements which e references (e.g. by IDREF or similar mechanisms), and

• elements which reference e.

For ease of expression we define a function ctx(e) to return all of e’s context elements.
Later on (in the result selection phase which we will discuss in chapter 5), the two scores
– among other factors – are combined; this combination is a part of score propagation.
Please note the importance of only using an element’s direct content when also perform-
ing score propagation: If we would intermingle the two approaches (i.e. use the recursive
content in addition to performing score propagation), this would entail the problem of
score duplication: For example, a term occurrence in a child element of e would con-
tribute to e’s score multiple times as it is first counted as part of e’s recursive content
and then again by adjusting e’s score based on its context elements (which include e’s
children).

By restricting the calculation of original scores to the direct content, we are able
to ignore score propagation (almost) completely in the query evaluation phase. This
is beneficial, as the way score propagation is performed has a major impact on the
selection of result elements and should thus be handled in the result selection phase.
The only obstacle to this separation are those query evaluation techniques which are
innately context-aware. We say that context-aware evaluation techniques perform pre-
propagation: Term proximity techniques, for example, calculate the proximity of a term
A which occurs in an element x and another term B which occurs in an element y;
thus they have to consider both x and y at the same time, so that the scores which are
assigned to x and y already reflect their context. If we would propagate these scores,
score duplication would be inevitable.

To work around score duplication, we introduce the concept of non-propagatable
scores: A non-propagatable score (NPS for short) is a score assigned to an element
e ∈ E which must not be propagated to other elements. We classify all scores resulting
from context-aware evaluation techniques as NPS’s and consequently ignore them in
score propagation. If one element is scored by multiple context-aware techniques, this
is reflected in a single NPS value, only, analogously to the direct score. Unlike the
direct score, however, the NPS is not mandatory: An element receives an NPS, if and
only if it is scored by at least one context-aware technique. If no context-aware scoring

57

was performed for an element, this is expressed by snp =⊥. Thus after the query
evaluation phase every element in the element space features a non-propagatable score
snp ∈ [0, 1] ∪ {⊥} in addition to its direct score sdirect ∈ [0, 1].

Query Evaluation Result Set Generation
Score Propagation Target ScoringContextless Scoring Context-aware Sc.

Sdirect Snp Sctx Stgt< >,, ,

Final Score Computation

Result Set Generation (cont'd)

Figure 4.1.: Conceptional scoring framework

The context score is calculated in the result set generation phase based on the direct
scores of an element’s context elements. We refer to this calculation as score propagation.
During the result set generation phase we also calculate another score called target score
stgt ∈ [0, 1]; as the name suggest it reflects the evaluation of target conditions. Our
scoring framework hence consists of a quadruple SEST = 〈sdirect, snp, stgt, sctx〉 which we
refer to as the extended score tuple. At the end of the query evaluation phase, only
the first two of its values have been defined, that is, SEST = 〈↓, ↓, ↑, ↑〉. In the result
set generation phase, after we have calculated the latter two values of SEST as well, it
serves as a basis to calculate a single final score (sfinal ∈ [0, 1]) which we use for ranking
results. Figure 4.1 illustrates our conceptional1 scoring framework. We will discuss its
result selection-related parts in depth in the subsequent chapter. In the remainder of
this chapter we concentrate on the calculation of sdirect and snp.

4.2. Explicit Structural Hints

In this section we discuss the handling of explicit (i.e. user-provided) support conditions.
We first look at the various problems related to this. Then we give an overview of related
work and finally discuss our own proposals.

1Our scoring framework serves as a conceptional basis for our work, but is not intended to be a part of
a system design. On the contrary, an implementation of our concepts would likely try to aggregate
SEST as early as possible to increase efficiency.

58

4.2.1. Problems

An arbitrary real world phenomenon (e.g. a scientific publication) can be modelled
in quite different ways using a flexible data model such as XML. This “possibility of
various ways of modelling the same [real world] object system” is generally referred to
as semantic relativism [Pok93, sec. 1]. In XML Retrieval this is of concern to us, as
conditions in XML IR queries do not necessarily reflect the modelling of the underlying
document collection. This is due to the fact that the user who formulates these queries
is often unaware of the schema of the XML documents queried.

Modelling Variants

In the following, we provide an overview of common modelling variants . We group the
variants, so that each variant in a group reflects the same real-world phenomenon, but
models it in a different way. There are, of course, many other modellings variants, but
we consider the following list as a representative sample.

Element-based Content Modellings Modellings based on element content can have
various levels of refinement [TI06, sec. 1] as shown in listings 4.2 to 4.5. Listings
4.6 and 4.7 illustrate two alternative modellings of multi-valued constructs.

1 <book>
2 <author >Gerard Salton </author >
3 </book>

Listing 4.2: Single-valued, unstructured element

1 <book>
2 <author >
3 <name>Gerard Salton </name>
4 </author >
5 </book>

Listing 4.3: Slightly structured element

1 <book>
2 <author >
3 <first -name>Gerard </first -name>
4 <surname >Salton </surname >
5 </author >
6 </book>

Listing 4.4: More structured element

1 <book>
2 <author >
3 <name>
4 <first -name>Gerard </first -name>

59

5 <middle -initial/>
6 <surname >Salton </surname >
7 </name>
8 </author >
9 </book>

Listing 4.5: Highly structured element with additional data

1 <book>
2 <author >Gerard Salton , Michael J. McGill </author >
3 </book>

Listing 4.6: Multi-valued, unstructured elements

1 <book>
2 <authors >
3 <author >Gerard Salton </author >
4 <author >Michael J. McGill </author >
5 </authors >
6 </book>

Listing 4.7: List of elements

Attribute-based Content Modellings Instead of elements, we can also use attributes
to model content [FG00, sec. 6], [TI06, sec. 1] as listings 4.8 to 4.10 illustrate.

1 <book author="Gerard Salton"/>

Listing 4.8: Single-valued attribute

1 <book authors="Gerard Salton , Michael J. McGill"/>

Listing 4.9: Multi-valued attribute

1 <book>
2 <author first -name="Gerard" surname="Salton"/>
3 </book>

Listing 4.10: Multiple single-valued attributes

Reference-based Content Modellings Entity relations we can model using references.
According mechanisms are ID/IDREF [TW02] and XPointer [DJG+07]. Listings
4.11 to 4.13 show examples of this.

1 <author author -id="a42"/>
2 <book author="a42"/>

Listing 4.11: IDREF instead of element

60

1 <author author -id="a42"/>
2 <author author -id="a43"/>
3 <book authors="a42 a43"/>

Listing 4.12: IDREFS instead of element

1 <author author -id="a42"/>
2 <author author -id="a43"/>
3 <book book -id="b1"/>
4 <participation >
5 <item book -id="b1" author -id="a42" role="

corresponding_author"/>
6 </participation >

Listing 4.13: Explicit relation element

Path Inversion In XML, many-to-many relationships can either be modelled by an
explicit relation element (as illustrated in listing 4.13) or in an asymmetric way.
In the latter case, there are two options to do so which are shown in the following
listing [SMGL06]:

1 <book><authors ><author/>...</authors ></book>
2 <author ><books><book/>...</books></author >

Listing 4.14: Path Inversion

Element vs. Attribute Value An element itself (i.e. the tag name, not the element
content) may be modelled as the value of an attribute:

1 <book>...</book>
2 <publication type="book">...</publication >

Listing 4.15: Attribute value instead of element name

Cases of Semantic Relativism

Given these modellings, we are faced with one fundamental question: Are different
modellings of the same real-world scenario are equivalent (i.e. matched without penalties)
or not? To illustrate this, consider the following example: There is a query stating that
all books are to be retrieved which were written by an author named Smith. We can
formulate this query as:

tgt:book sup://book//author="smith"

The document collection we use to evaluate this query may be organised on a per-book
basis or on a per-author basis as shown in listing 4.14. Also, the author of a book may
be denoted as a subelement (cf. listing 4.2) or as an attribute (cf. listing 4.8). Regarding

61

the information need stated above, all of these modellings should match the given query,
that is, they should be treated as equivalents. In special scenarios like the Re-finding
use case (cf. section 2.3.2), however, only the modelling specified in the query should
match without penalty.

Hence the answer to this question obviously depends on the assumed scenario. As a
result, we distinguish four different cases of semantic relativism. For ease of reference,
we assign each case a number in the format “SR-n”:

1. SR-0: No semantic relativism: The document collection used is homogeneous,
shares a common schema, and the query already reflects the correct document
structure.

2. SR-1: Schema-restricted semantic relativism: The document collection used is
homogeneous and adheres to a single schema, but the query does not reflect the
correct document structure.

3. SR-2: Heterogeneous semantic relativism without penalties: The document collec-
tion is heterogeneous and does not conform to a common schema, so the query
is guaranteed to not correctly reflect the structure of all documents. Matches of
equivalent modellings must not be penalised, even if they deviate from the mod-
elling used in the query condition.

4. SR-3: Heterogeneous semantic relativism with penalties: Analogous to the previous
case, except matches of equivalent modellings are penalised.

SR-0 (which, in fact, is a special case of SR-1) is trivial, as we do not need to consider
semantic relativism at all. Unfortunately, this case is unlikely in real applications and –
for reasons discussed in section 2.1.1 – we cannot rely on the query always being correct
in IR scenarios. In SR-1 all documents share a common schema and thus are likely (or
even guaranteed) to use the same modellings. If the schema is implicit, the user must
formulate his query without a clear idea on the document’s structure, and even if it is
explicit it might be too complex or time-consuming for the user to take it into account.
This case is special, however, from a system perspective: As there exists an (explicit or
implicit) schema, it suffices – in theory2 – for the IR system to “correct” the query on
the schema-level before evaluating it. By correction we mean that the system transforms
every query condition into a form which is semantically equivalent, but conforms to the
schema. If the schema is explicit, this transformation could exploit it, whereas for an
implicit schema the transformation would have to be based on schematic information
gathered from instances. (For example, in the latter case, we might look at a small subset
of documents in the collection, and then adapt the query conditions to the structure of
these samples.)

For SR-2 and SR-3, correctional transformations are infeasible, as each queried docu-
ment might use a different modelling. Instead of reformulating the structural conditions

2Schema-based corrections as mentioned here are far from trivial, particularly for the case of the
schema being implicit.

62

we are thus forced to evaluate them in such a manner that a condition matches (ideally)
all possible modellings. In SR-2 we must then treat all matches as equivalent, whereas
SR-3 requires us to penalise non-perfect matches. The latter implies that we assign
different relevance values to various modellings of the same real world phenomenon. We
assume, however, that there is no specific modelling variant in a set of equivalent mod-
ellings that is per se more relevant than other variants. In other words we assume that
there is no scenario where the user would generally deem //book//author items relevant
but //author//book items irrelevant. The relevance of different modellings may differ,
however, based on knowledge the user has about instances of these modellings. In the
Re-finding use case, for example, the user looks for one specific fragment and remem-
bers the modelling it uses; hence he considers this modelling more relevant. We expect
this only to be the case in very few scenarios. We also expect that in these scenarios
treating all modellings as equivalent will not cause complete failure of the retrieval logic,
but merely impact its accuracy. Therefore we ignore SR-3 in the following to avoid
unnecessary complexity.

In the following sections we will now discuss the problems semantic relativism poses
for the matching of explicit structural conditions as well as general problems we have
to tackle with regard to matching. For clarity, we differentiate problems related to the
matching of names, the matching of paths, and other problems.

Name Matching

Both element and attribute names must be matched vaguely due to semantic relativism:
The user might not know the correct schema and use a different modelling in his query
(SR-1) or the document collections might be heterogeneous (SR-2,3). Also the user’s
query might contain typographic errors (e.g. misspellings) which we have to cope with.
Where the name appears (e.g. that an attribute name in the query should also match
an element name in the document collection) is an independent issue, however, which
we discuss in the next section. Therefore we can concentrate on the following two issues
only:

1. Semantic equivalences: A name is semantically equivalent to another one, so we
have to match them.

2. Typographic errors: A name used in the user’s query is syntactically incorrect.

These issues may, of course, also occur in combination. Please note that we have to
be careful about how to define semantic equivalence: We can either define it based on
general concepts such as words or in the context of a specific XML schema. To illustrate
this, consider the following example: We can reasonably assume the real-world concepts
“car” and “automobile” to be equivalent; nonetheless, in a particular XML schema, both
concepts may be used with disjunct semantics. We believe it to be very hard, if not
impossible, to decide the equivalence of two names regarding a particular XML schema
without basing this decision on either the equivalences of real-world concepts or other
string matching techniques. Therefore we define semantic equivalence of names without

63

regard to real-world concepts as the degree of substitutability of a pair 〈a, b〉 of names.
Yet we assume, that either manually predefined equivalence relations are available or
equivalence can be approximated based on strings. The function equiv : N×N −→ [0, 1]
calculates equivalence of two arbitrary names a, b in the space of all names N , with 0
meaning not substitutable at all and 1 meaning perfectly substitutable. We assume
that substitutability is symmetric3 and reflexive, that is, equiv(a, b) = equiv(b, a) and
equiv(a, a) = 1.

So far, we have discussed name matching only in the context of support conditions.
Name matching is also an issue for the evaluation of (name-based) target conditions,
though. However, as both the problem and the solutions (which we discuss later on in
this section) are exactly identical, we will not separately discuss it again in the context
of target conditions.

Path Matching

Due to our interpretation of target conditions as not containing path information, we
only need to match paths when evaluating support conditions. This, however, is by no
means trivial as numerous issues related to semantic relativism arise:

• Wrong Path Components : This includes missing elements, excessive elements and
substituted elements. A missing element exists in the structure to be matched,
but is not included in the condition to match it. For example, the query con-
dition //book/section misses the chapter element when matched against a
/book/chapter/section structure. If //book/chapter/section/p is the condi-
tion and /book/chapter/p the actual structure, section is an excessive element .
And finally, in the structure /publication/chapter the element book has been
substituted and is thus a substituted element .

• Delimiter Substitution: We treat element-based, attribute-based, and reference-
based content modellings as equivalent. Thus we have to match path expressions
to each of these modelling variants. In CAS-QLX this means to allow the path
delimiters (namely /, //, @, and ->) to be substituted by one another.

• Path Inversion: A path expression must both match the path specified and its
inversions (e.g. /book/authors/author and /authors/author/book).

• Element Substitution: In the context of path matching, we can express the element
vs. attribute value problem as a combination of delimiter substitution and wrong
elements. If the query aims at an element (say <book>) which has actually been
modelled as an attribute value (i.e. <publication type="book">), we need to

3We believe asymmetric substitutability of names to be rarely needed in practical applications.
Nonetheless, our restriction to the symmetric case is mainly efficiency-induced: It reduces the set of
equivalence relations to half the size, as they can be specified pairwise. Apart from that, dropping
the symmetry assumption entails consequences for the concept of substitution groups which we de-
fine in section 4.2.3, e.g. regarding their transitivity. Therefore our approach can be extended to the
asymmetric case, but this extension is non-trivial.

64

substitute the element by the correct one, and append an “attribute equals value”
condition.

Other Problems

Apart from name and patch matching, there are many more issues to be addressed by an
XML Retrieval system. Due to the limited scope of this thesis we are unable to derive a
solution which comprehensively includes all aspects we deem important. In this section
we will therefore provide a brief overview of aspects we do not cover in detail in the
remainder of this thesis, but consider important nonetheless. Please note that even this
is merely a selection of problems remaining be solved.

One such issue is the integration of data-oriented matching with text-centric XML
Retrieval. Consider the Book Search use case, for example (cf. section 2.3.2): Besides
using typical XML IR conditions on the content of books and their document structure,
the user specifies that he prefers books below a given price limit. As opposed to common
data-oriented query languages he still wants this condition to be evaluated vaguely
(i.e. books above the price limit may also be OK). To fulfil this information need,
an IR system first of all has to detect “key = value” properties like the price and
correctly identify metadata such as the data type (e.g. integer, float, date, timestamp,
enumeration), unit (e.g. meter, Euro, degrees Celsius), formats, upper and lower bounds,
and so on. This metadata has to be stored in an index to be accessible during query
evaluation. The extraction process is commonly known as typed value extraction; confer
[CLM+01] for one example of how this may be done. Ideas on integrating it into an IR
system are outlined in [EL00], for example.

The evaluation of conditions involving such properties also brings about various ob-
stacles such as conversion, disambiguation, and vague matching. Conversion means
that data types, units, and formats used in a query must be converted when matching
against instances of the document structure; for example, the condition price < 10

euro should match a property price = 14.00 dollar due to the currencies’ exchange
rates. Disambiguation refers to matching the right properties based on their meaning; in
our price example, the user might be interested in matching a property retail-price,
but not purchase-price. Vague matching is the behaviour described in our Book Search
use case where the user is chiefly interested in books below 50 Euros, but is willing to
pay more if a book suits his needs very well.

Another issue besides the integration of data-oriented matching is the conversion of
XML content to string values for matching (and display). Consider the fragment shown
in listing 4.16. The string representation of the <st> element to match against should
obviously be Introduction as opposed to I ntroduction4, whereas the second half
of the listing (which follows the same structure and formatting) should be interpreted
differently. XML is very liberal in terms of spacing and indentation so we cannot simply
rely on the formatting used in the document to match to determine a string value. For
a detailed discussion of this issue and possible solutions cf. [OT03].

4The tag name <scp> is commonly used to convey the formatting instruction “set in small capitals”. In
our example fragment, the following formatting of the section title is thus intended: Introduction.

65

1 <st>
2 I
3 <scp>
4 ntroduction
5 </scp>
6 </st>
7 <p>
8 I
9 <i>

10 wonder
11 </i>
12 what the right string value is.
13 </p>

Listing 4.16: String value of XML content

4.2.2. Related Work

In this section we provide an overview of other publications in the context of CAS Re-
trieval which address the issues which we focus on: name matching and patch matching.
For the sake of clarity, we discuss related work separately for each issue, although CAS
publications typically cover arbitrary combinations of these (and other) aspects.

Name Matching

There are two general approaches to deal with name matching in XML Retrieval: One
is to assume that the problem can be reduced to – or at least approximated by – generic
string matching techniques known as approximate string matching: This area is well-
explored (see e.g. [Nav01] for an overview) and provides us with a large base of ready-to-
use algorithms. The other approach is to assume that we have rule sets available which
define name equivalences for the environment we are in (e.g. the document collection).
The two approaches are not exclusive, but may also be used in combination. Some-
times a third approach is suggested in literature which is to ignore naming altogether.
Arvola et al. [AKJ05, p. 136], for example, reduce structural conditions to element
relationships with constraints on the respective content of the elements. The CAS-
QLX query /book[information retrieval]/section[cas] would thus be reduced to
/*[information retrieval]/*[cas]. This means that we “throw away” structural
hints which are readily available and likely useful. We do not consider this kind of
behaviour desirable and thus only discuss the first two approaches in the following.

Typical approximate string matching approaches include means like morphological
normalisation, that is, words are reduced to a more general from like a word stem.
In [KMdRS02] this technique is applied for content matching (i.e. not names) with
some success. Another technique employed in [KMdRS02] for content matching are n-
grams. (See [Nav01] for a general introduction to n-grams and similar concepts.) For

66

Name sAF

<sec> 1.0
<section> 1.0
<subsection> 0.8
<chapter> 0.7
<subsubsection> 0.5
<paragraph> 0.3

Table 4.1.: Example of a substitution group

error correction, n-grams and other character transposition means like edit distances
are commonly used [LW75], [Nav01] and should also work for names in XML Retrieval,
in principal. To our knowledge, this has not been tested so far, however. Many XML
Retrieval publications (e.g. [MHB06], [CCPC+06], [PMM07], [TW02]) follow the second
approach (rule sets for name equivalences) and propose the use of mapping tables for
semantic equivalences of names. We will refer to these tables as substitution groups5.
A substitution group contains all names which may be substituted for a given name
together with a score adjustment factor sAF ∈ [0, 1]. This factor expresses the semantic
equivalence of the name as defined in section 4.2.1; that is, an element whose name
is listed in a substitution group for a particular name contained in a query condition
will match, but its score is multiplied by the adjustment factor. Table 4.1 illustrates a
sample substitution group. There are many different variations of the substitution group
approach. The major variation aspects are the way substitution groups are obtained
and the way they are used for query evaluation. For the first aspect we can differentiate
between three (non-exclusive) means:

• Manual generation, e.g. by the system administrator; [FG04] describe a similar
idea (although on a more generic level) where the system administrator has to
define rule sets for name substitutions.

• Automatic generation based on document statistics or machine learning : For ex-
ample, Mihajlović et al. [MHB06] propose to execute queries including a target
condition for a certain name (say x); the best results with other tag names than
x are then added to x’s substitution group with the sAF estimated based on their
scores. A similar approach is proposed in [CCPC+06].

• Automatic generation based on semantic relationships between names : Such rela-
tionships includes, for example, synonym relationships (e.g. car/automobile) and
hypernym-hyponym relationships (e.g. cat/animal); they can be obtained from
broad, publicly available sources such as WordNet[MBF+90]. This technique links
generic approximate string matching techniques and equivalence-based approaches.
Mihajlović et al. [MHB06] use an approach like this to complement their solution.

5Substitution groups (and similar concepts) are known by many different names in XML IR literature.
Other common ones include expansion lists and equivalence classes.

67

As to how substitution groups are used, there are mainly the following two approaches:

• Ad hoc matching : When comparing a name from a query condition (say x) to the
name of an element (say y), we check whether y is contained in x’s substitution
group.

• Query expansion: Before query evaluation every name occurring the query is re-
placed by a disjunction of all names in its substitution group [TW02]. For example,
the query tgt:sec would be replaced with the query tgt:sec || tgt:section

|| tgt:subsection || ... based on the substitution group defined in table 4.1.

Query expansion approach has two obvious drawbacks: Firstly, the number of query
conditions grows very fast, in particular, when path conditions are used; secondly, the
score adjustment factors have to be tracked (for example, by mapping them to confidence
values of the generated query conditions).

Other differences between substitution group implementations include what kind of
names they are applied to (In [MHB06] the authors only use them for element names,
for example, whereas in [PMM07] they also include attribute names), how they integrate
with existing indexes, and how they affect the scoring of matches. For details on these
aspects please refer to the sources stated above.

Path Matching

Path matching compares the paths listed in support conditions with the paths
of XML elements. A fundamental term in this context is the path compo-
nent : It corresponds to one node in the XML document tree. For example,
the path //author/books/book//section consists of the set of path components
{author, books, book, section}. Thus path matching is typically considered as match-
ing a system of such path components related by some delimiters. There exist numerous
proposals in XML IR literature on how to perform path matching. The following
overview thus only accounts for the most prominent approaches, but is by no means
intended to be comprehensive. For further ideas on path matching refer to [Sch01],
[SK05], and [XX07], for example.

Factor-based Approaches Van Zwol [vZ05] suggests two simple extensions to Content-
only matching to support structural hints, the Path Factor and the Request Penalty
Factor. He first scores an element e ∈ E based on keyword conditions, only. Then
he multiplies the keyword score by the Path Factor, a number p ∈ (1,∞); this
factor is higher the more path components of e match structural hints in the
query. The Request Penalty Factor, on the other hand, penalises excessive path
components in e’s path. Carmel et al. [CMM+03] use a similar, but more generic
strategy. They also modify the Content-only score based on the evaluation of
structural conditions, but in a more flexible manner. Their approach features
a so-called cr function (for context resemblance); it compares the path of an
element with the support path given in the query (assuming that there is only one

68

support condition) and returns a value in the [0, 1] interval, with 1.0 indicating a
perfect match. Besides some trivial implementations of this function (e.g. for strict
matching of structural conditions) they propose an implementation called partial
match which returns the percentage of path components that are contained in the
support condition. This addresses substituted and missing elements, but none of
the remaining issues.

Path Edit Distances Thus Carmel et al. propose a more sophisticated implementation
in [CEL+02] which – although not explicitly stated – essentially adapts the idea
of string edit distances to XML paths. Their refined implementation additionally
takes into account the following aspects:

• The order of path components. Deviations from the order given in the support
condition are penalised.

• The proximity of path components. Missing elements are penalised.

• The position of path components within the path. Deviations from the re-
quested path are penalised more strongly, the further to the left of the support
path they are located; this motivated by the idea that the first elements in a
path discriminate more strongly than other elements.

This extension additionally addresses excessive elements and path inversion. (Al-
though the latter is penalised despite of potentially reflecting an equivalent mod-
elling.) Modelling variants such as attribute-based or reference-based modellings
and the remaining issues listed above are entirely ignored, however. Popovici et
al. [PMM07] explicitly suggest to adapt string edit distances to the problem of
path matching. Thus they define the path edit operations substitution, deletion,
and insertion of elements analogous to the well-known Levenshtein distance (cf.
[Bla07]) with a fixed cost per application each. As NEXI only allows the use of
the descendant axis [TS04a], they assign a cost of zero to delete operations. This
also addresses missing elements.

Tree-based Approaches In an early approach, Schlieder and Meuss [SM00] consider
XML documents as unordered, labelled trees with only a single node type. A
node can thus correspond to elements, attributes, attribute values, or textual
content, without distinction. Edges in the tree represent parent-child or element-
attribute relationships (without distinction), references are ignored. Queries are
also formulated as tree structures following the same model; the root element is
treated as a target element. Each node in the query tree is called a structural term
and matched against nodes in the document trees contained the collection. This
matching is performed based on two conditions: Firstly, the structural term’s label
has to match exactly that of a node in a document tree; secondly, if the structural
term has ancestors, a matching node in a document tree must have corresponding
ancestor nodes. This allows for a parent-child relation in the query to match
an ancestor-descendant relation in a document and thus addresses the problem of
missing elements. The substitution of element-based modellings by attribute-based

69

ones (and vice versa) is also innately handled with this approach. All other issues
cannot be handled with this proposal, however. (Also, both name matching and
target element handling are based on strict matching which we consider infeasible.
This is not a path matching issue, though.)

Ciaccia and Penzo [CP02] extend the tree matching approach by using a more
detailed data model and rule-based matching. They distinguish between element
and attribute nodes in their data model, for example, but allow both node types
to match a path component. Also, they allow a parent-child relationship to be
matched by both ancestor-descendant relationships and sibling relationships, and
a sibling relationship to be matched by an ancestor-descendant relationship. All
these “mismatchings” (i.e. deviations from the user’s idea of the document struc-
ture) are penalised, however, thus not allowing for the equivalence of modelling
variants. The remaining issues we have discussed are also ignored.

Query Relaxation Another group of proposals tries to handle path matching issues by
means of query relaxation. The general idea behind this is to evaluate a query
on the document collection, check if the result has a sufficiently large size, and
– if not – iteratively weaken the conditions used in the query and re-evaluate it,
until the result reaches the desired size (or no more relaxations are possible). A
query can be relaxed by replacing conjunctions with disjunctions, by replacing
conditions in a query with weaker ones, by dropping query conditions, or by any
combination thereof; for a detailed discussion of these options see [AYLP04]. For
ease of notation we write q1 q2 to express that a query q1 is relaxed to a query
q2. To still enable a meaningful result ranking, additional results produced by
relaxations are penalised.

One such approach is the FleXPath system devised by Amer-Yahia et al. [AYLP04].
They define separate relaxation rules for support conditions and content conditions.
For support conditions these rules essentially allow to relax parent-child relation-
ships to ancestor-descendant relationships (e.g. sup://a/b sup://a//b) and to
remove excessive elements (e.g. sup://a//b//c sup://a//c). For content con-
ditions they define relaxations of the contains operator common in XML query
languages such as XQuery and NEXI. The operator is used to express that a par-
ticular element in a path should contain a particular set of terms in its recursive
content. The relaxation proposed by Amer-Yahia et al. is straightforward: The
condition that an element a should contain a term x can be relaxed to the condition
that a’s parent should contain the term (e.g. sup://a//b[x] sup://a[x]//b).
In the same manner, other relaxation rules can be defined, e.g. for atomic val-
ues (sup://a//price<98 sup://a//price<100) or tag and attribute names
(sup://book//chapter sup://publication//chapter) [AYLP04].

Scoring in FleXPath takes query relaxations into account by assigning each query
condition (both original and relaxed conditions) a penalty value. Whenever a
condition is dropped from a query (e.g. to be replaced with a weaker one), this
penalty is subtracted from scores of elements matching (only) the resulting relaxed

70

query. This approach not only guarantees that elements coming into the result by
relaxing the query receive lower scores, but it is also invariant of the order in which
conditions are dropped.

The two major drawbacks of query relaxation approaches are performance issues
and maintenance complexity. We believe that a rather large number of relaxation
rules would be required to address all of the path matching (and other) issues
we have discussed above. These rule sets are hard to design and maintain. The
existence of comprehensive rule sets presumably leads to huge relaxed queries which
have to be evaluated and whose results have to be scored and joined with the initial
result set. Therefore Amer-Yahia et al. aim at Top k query processing [MAYKS05]
where pruning can be performed (that is, the early elimination of result candidates
based on statistical estimations) and other heuristics such as in [AYKM+05]. As
another countermeasure, they restrict the approach to very simple relaxation rules.
Nonetheless, we fear query relaxation is infeasible for broader application areas.

4.2.3. Solution Approach

In the following, we discuss our approach to tackle explicit structural hints. It is
composed of a proposal for (tag and attribute) name matching, path edit distances,
and several index-based aspects.

Name Matching

Our name matching solution has two objectives: Firstly, it shall allow us to integrate
both approximate string matching techniques and substitution groups, and secondly,
account for name length dependencies. The first objective is based on our discussion of
related work in the previous section. We believe that both approximate string match-
ing techniques and substitution groups have certain advantages: The former allow us
to cope with syntactical errors in the query string (e.g. match tgt:publictaion with
<publication>) and do not depend on the existence of predefined rule set; the latter
enable high-confidence matching. Therefore instead of just choosing either one tech-
nique, our solution shall be able to integrate both. The second objective is rooted in the
observation that the result quality of string matching techniques strongly depends on
the length of names to be matched. For example, it makes little sense to apply common
correction means like edit distances or n-grams to one- or two-letter tag names like ,
<i>, or <st>: This would essentially lead to arbitrary tag names being matched. For
long names (like <publication>), on the other hand, we believe that these means yield
good results.

We therefore propose a modular a name matching function which is based on name
length:

namesim(sq, sd) =

{
namesimshort(sq, sd) if |sq| ≤ Lshort

(1− 1
|sq|) · namesimlong(sq, sd) otherwise

(4.1)

71

It calculates the similarity of two names (i.e. character strings) sq, sd as a value in the
[0, 1] interval, with 1.0 indicating identity. sq is a name used in the query string, sd

an arbitrary name in a document which is matched against it. By |s| we denote the
length of a string s. Based on an arbitrary length threshold6 Lshort ∈ N≥1, we delegate
the actual similarity calculation either to namesimshort or namesimlong. The former
encapsulates only name matching techniques applicable to short names, whereas the
latter performs the matching of long names. Both functions have the same domain and
range as namesim. Which values are feasible for Lshort likely depends on the scenario and
collections used; as a starting point, we guess that Lshort = 4 is a reasonable assignment.
Additionally we deem that from a certain minimum length onwards, matching confidence
increases with increasing name length; we therefore use the length as a confidence
indicator, that is, the longer a name is, the more strongly the results of string matching
techniques are weighted. This is reflected in the factor (1 − 1

|sq|) which we multiply by

the result from namesimlong.
For the implementation of namesimshort we propose a combination of substitution

groups and abbreviation handling techniques. Substitution groups work regardless of
name length, as they are based on element-specific rules instead of heuristics; we will
discuss them in detail, shortly, but first turn to abbreviation handling. Abbreviation
handling techniques are especially suitable for short names (as abbreviations tend to be
short). One such approach which we expect to work effectively for our problems is the
recursive field-matching algorithm (RFM) by Monge and Elkan [ME96]. Let s1, s2 be
two arbitrary character strings; then the algorithm can handle the following common
cases of abbreviations based on prefix/suffix combinations [Har06]:

1. s1 is a prefix of s2 (e.g. “sec” vs. “section”)

2. s1 is a prefix of s2 concatenated with a suffix of s2 (e.g. “bd” vs. “bold”)

3. s1 is a concatenation of prefixes of partial strings of s2; partial strings are demar-
cated by spaces (e.g. “st” vs. “section title”).

This algorithm has been found to produce good results in other name matching scenarios,
albeit being less efficient than other metrics7. For name matching in XML Retrieval,
we propose to use it with a minor modification: As tag and attribute names in XML
do not contain spaces, partial strings are demarcated by hyphens (-), underscores ()
and full stops (.). (We assume other special characters permitted for “name” tokens
by the XML specification [BPSM+06, sec. 2.3] are rarely used and thus ignore them for
efficiency reasons.) This metric yields good results for abbreviation-related problems, but
can nonetheless only determine similarities with a low confidence compared to metrics
operating on longer names (and to the one discussed below); therefore we multiply
a constant penalty factor PRFM ∈ [0, 1] by the results calculated by recursive field

6We solely use the length of the name appearing in the query (i.e. |sq|) as a parameter as opposed
to the length of the names occurring in the documents (i.e. |sd|). If the latter is very different, the
decision on how closely the two names match has to be made by the similarity metrics employed.

7For a comparative overview of name matching metrics and possible optimisations see [CRF03].

72

matching. We guess that setting PRFM to a value around 0.5 might be appropriate;
this will have to be experimentally verified, however.

As we have mentioned above, the substitution group metric introduced in section 4.2.2
is independent of name lengths. It can provide similarity values with a high confidence
as it does not rely on character similarities, but uses semantic relationships instead
which – ideally – are even manually defined. There are two aspects of substitution
groups, however, which we need to refine in order to use them effectively: compatibility
with namespaces and the transitivity of substitutions. We have introduced namespaces
in section 2.1.2. They serve to reference predefined vocabularies and are of particular
interest when dealing with heterogeneous collections. To avoid name clashes, we propose
to transform all names used in a document to their expanded name before indexing. The
expanded name is defined in [BHLT06, sec. 2.1] as the name including a reference to its
namespace. Matching unqualified names must still be possible, however, as we discuss
below. Hence the index must be able to store namespace information in such a way
that matching both qualified and unqualified names is possible. If for a name no explicit
namespace is stated, the default namespace of the document containing it is used; if that
is undefined, too (e.g. because no default namespace has been specified), the namespace
reference is empty by definition [BHLT06]. Therefore using the expanded names still does
not guarantee uniqueness of names. A workaround for this case is the use of annotations
(as described e.g. in [CCPC+06]) as a source of additional metadata. To limit the
complexity of our approach, however, we assume that in this case the semantics of the
name in question are the same across all documents (e.g. that a <paragraph> element
without a namespace has the same meaning in all documents).

Using namespaces in substitution groups does also introduce additional challenges,
however: The automatic generation of substitution groups, for example, is based on
names (e.g. using WordNet as described in section 4.2.2). Using the expanded names
for this purpose will likely have a negative impact on the matching quality, unless we
introduce complex metrics to match both the namespace and the actual name separately.
We believe that such a metric would greatly increase the complexity while the benefits
are unclear. Thus the automatic generation of substitution groups should still operate
on local names , that is, the part of the name that remains after stripping the namespace
reference [BHLT06]. In broadly heterogeneous scenarios such as the XML Web Search
use case we also expect it to be difficult to differentiate between namespaces, as there is
likely a huge number of different albeit similar namespaces. Doing so might even limit
the benefit substitution groups provide, as semantically similar names go unrecognised
due to being in different namespaces – unless we would go as far as detecting groups of
namespaces with semantically similar tags. Last but not least using the extended names
for manual substitution group definition may require a lot more effort depending on the
number of namespaces used.

Therefore we do not enforce the use of namespace information, but refine substitution
groups as follows: Names used in substitution groups are local names per default to
support the above cases. Optionally individual names may be qualified with a reference
to their namespace (i.e. forming expanded names). If an expanded name is used, we
observe the namespace when matching it, whereas a local name in a substitution group

73

Name sAF

<ns1:sec> 1.0
<ns2:section> 1.0
<ns3:ss1> 1.0
<sec> 0.8
<section> 0.8
<ns1:subsec> 0.8
<ns2:subsection> 0.8
<ns3:ss2> 0.8
<chapter> 0.7
<ns1:paragaraph> 0.5
<ns2:subsubsection> 0.5
<ns3:ss3> 0.5
<paragraph> 0.3

Table 4.2.: Example of a namespace-aware substitution group

matches local names in all namespaces. Names occurring in a substitution group must
be unique regarding their expanded name, however. This means, that if the same local
name occurs multiple times in a substitution group, each occurrence must be qualified
with a different namespace and at most one occurrence may be unqualified; in the latter
case the unqualified occurrence must have a strictly smaller score adjustment factor than
any of its qualified variants. To illustrate this, table 4.2 adapts our substitution group
example from the previous section to our enhanced proposal; “ns1”, “ns2”, and “ns3”
represent arbitrary namespaces in the example. Please note that unlike substitution
groups, approximate string matching techniques should still solely operate on local
names. Applying edit distances, for example, to an expanded name is unlikely to yield
reasonable results. Here the same possible extensions with the same drawbacks apply
as we have outlined for the semantic matching of names, above. Thus we accept the
inaccuracy of employing approximate string matching metrics which are ignorant to
namespaces.

Another question regarding substitution groups is their transitivity. Assume, for
example, that the name “section” can be substituted by “paragraph” with a sAF of
0.3 and “paragraph” can be substituted by “verse” at 0.8; it then seems natural that
“section” can also be substituted by “verse” at a cost of 0.3 · 0.8 = 0.24. Remember
that we have defined the semantic equivalence of names to be reflexive and symmetric;
thus, if we allow transitivity, we must ensure that these properties are guaranteed.
One way to achieve this is to model substitution groups as a single undirected acyclic
graph. This, however, would make both name matching and the (manual and automatic)
generation of substitution groups a lot more complex. Therefore we define substitution
groups to be non-transitive at the cost of having to list all desired substitutions for a
name in its substitution group. This means that for all names y which are not listed
in the substitution group for a name x it implicitly holds that equiv(x, y) = 0.0; the

74

only exception is the special case x = y where it holds that equiv(x, y) = 1.0 due to
reflexivity.

So far we have only specified our similarity function for short names, namesimshort.
For long names, we believe that a much broader range of matching techniques may
be beneficial. For example, we expect traditional string similarity metrics like edit
distances [LW75], n-grams [CT94], and phonetic metrics [ZD96] to perform well. Which
combination of these techniques yields good results (while still being reasonably efficient)
only experimental evaluation can show, however. (Confer section 7.1.3 for details on
this.) One technique we definitely expect to be of use for long names as well is the
substitution group metric with the adaptions discussed above.

Path Edit Distances

Regarding path matching our aim is to devise a solution which is powerful enough to
address the problems listed in section 4.2.1, yet manageable in terms of complexity.
We regard factor-based approaches as too inflexible to meet the first criterion; both
tree-based and query expansion-based approaches, on the other hand, are growing fast
in conceptional and computational complexity, when trying to solve these problems.
Therefore we propose an approach based on the idea of path edit distances to keep a
balance between power and complexity.

Let path : E −→ 〈p1, . . . , pn〉 be a function which maps an arbitrary element to an
list of path components p1, . . . , pn ∈ P . By P we denote the set of all possible path
components. The set of edit operations Ω we use consists of the following operations:

• Path Component Insertion (ωins)

• Path Component Deletion (ωdel)

• Path Component Substitution (ωsub)

• Path Component Swap8 (ωswp)

The first three (ωins, ωdel, ωsub) we define analogous to [PMM07]: They enable the han-
dling of missing, excessive, and substituted path components, respectively. The fourth
operation (ωswp) addresses path inversion. In fact, the first two operations would suf-
fice to cover all path modifications we need. To have finer control over the cost of edit
operations, however, we introduce the other two operations ωsub and ωswp.

Now, let editcost : Ω −→ [0, Cmax] be a cost function which determines how strongly
the application of a given operation is penalised: The greater the calculated value is, the
more expensive the operation is. Cmax ∈ N≥1 is an arbitrary, but fixed value (say 42)
which defines the maximum edit cost; this serves two purposes: Firstly, whenever we
reach this maximum while calculating a path edit distance, we can abort the calculation

8Analogous to proposals for string edit distances (cf. e.g. [LW75]) our swap operation only applies
to neighbouring elements. To transform //author/books/book into //books/book/author, for
example, two swaps are thus needed as opposed to only one.

75

Table 4.3.: Base cost assignments for edit operations

Operation Base Cost Repetition Factor
ωins 1.0 1.3
ωdel 1.0 1.3
ωsub 1.8 1.1
ωswp 1.5 1.0

(for efficiency reasons) and return Cmax instead; secondly, this fixed upper bound enables
us to normalise the cost value to the [0, 1] interval later on, when using it for scoring.

In section 4.2.1 we discussed that we generally (i.e. with the exception of SR-3) assume
different XML modellings of the same real-world scenario to be semantically equivalent.
If we apply this assumption for defining our cost function, the naive solution is to simply
define a cost of zero for all of the edit operations. The drawback of doing so is that with
set of the operations we have defined essentially any modelling would match a support
condition, not only semantically equivalent ones; this clearly is not a useful system
behaviour. Assigning non-zero cost values, on the other hand, falls short of the goal of
matching equivalent modellings without penalty. Therefore we propose a dynamic cost
function to approximate the ideal solution. This function not only considers a single edit
operation, but additionally takes into account the path components which are affected
by it and all previous operations which have been performed on the path already. Thus
we re-define the cost function as follows:

editcost : Ω× P × P ×N −→ [0, Cmax] (4.2)

The first parameter of the editcost function describes the operation used like in our
initial cost function. The second and third parameter are the path components affected
by this operation (p, q ∈ P); the third parameter is null (⊥), if the operation only
concerns one path component, e.g. ωdel. The fourth parameter N = 〈nins, ndel, nsub, nswp〉
reflects the number of executions of each edit operation for the current path (with
nins, ndel, nsub, nswp ∈ N≥0). For example, N = 〈1, 2, 0, 0〉 means, that one the path in
question, we have performed one insertion, two deletions, and no substitutions or swaps.

Now we define a constant base cost and a repetition factor for each operation as shown
in table 4.3. For the ease of notation we define the following two functions to return the
base cost and the repetition factor for an edit operation, respectively:

editcostbase : Ω −→ [0, Cmax] (4.3)

editcostrep : Ω −→ R≥1 (4.4)

The base cost function is identical with our initial cost function; the cost values it
calculates serve as the basis for our dynamic cost function. For ωins and ωdel the base
cost is arbitrary, but should be identical, as insertions and deletions complement each
other. Substitutions replace one path component with a different one; because there may
exist a semantic relationship between the path component to be replaced (p) and the

76

path component replacing it (q), we assign a slightly lower base cost for a substitution
than for a deletion followed by an insertion. Swaps only change the nesting of path
components, but do not add or remove any component; we assume that this often only
has a minor impact on the structure and thus assign it a lower base cost than that of
an insertion/deletion pair or a substitution.

The repetition factor serves to penalise repeated applications of an operation. The
idea behind this is that certain operations (e.g. deletions) have only a minor impact on a
path if they are performed once or twice, but a significant impact, if they are performed
many times. Thus we increase the penalty for an operation each time it is applied to a
path. An even more elaborated approach would be to determine the repetition factor
not only per operation, but also have it depend on the length of the path (because a long
path is more tolerant to repeated operations than a short one). We restrain from this,
however, for the sake of simplicity until our baseline path matching strategy is found
useful in practical experiments. A generic cost function implementing these concepts
then looks as follows (with ω ∈ Ω being an arbitrary edit operation and n ∈ N≥0 the
count of its applications to a given path):

editcostgen(ω, n) = editcostbase(ω) · editcostrep(ω) · n (4.5)

For substitutions we further refine this function: As mentioned above, there may
exist a semantic relationship between a path component to be substituted (p) and
the path component substituting it (q). In fact, if there is no such relationship we
believe substitution should not take place (or at least be performed at a very high cost).
For example, if a path component referencing a <book> element is substituted by one
referencing a <publication> element, there may be a slight change in the semantics,
but the intention of the original path is likely still upheld. If, on the other hand, it is
substituted by a component representing something entirely different (say <animal>),
this is likely to severely affect the semantics of the match. Therefore we adapt our cost
function accordingly. To accomplish this, we need a measure to approximate semantic
similarity. For this purpose we employ the namesim function which we have introduced in
the preceding section in the context of name matching to solve exactly the same problem.
The following equation shows the adapted cost function definition for substitutions:

editcostsub(p, q, nsub) = (1− namesim(p, q)) · editcostgen(ωsub, nsub) (4.6)

The idea is that the cost of a substitution decreases as the similarity of p and q increases.
To attain the desired effect (i.e. making non-similar substitutions very costly), we also
have to strongly increase the base cost of ωsub compared to the value given in table 4.3.
Setting editcostbase(ωsub) = 10.0 may be appropriate, for example. Please note that for
ease of readability we treat the path components as mere strings in the above formula;
more precisely p should be replaced with something like tostring(p).

The resulting overall dynamic cost function thus now looks like this:

editcost(ω, p, q,N) =

editcostgen(ωins, nins) if ω = ωins

editcostgen(ωdel, ndel) if ω = ωdel

editcostsub(p, q, nsub) if ω = ωsub

editcostgen(ωswp, nswp) if ω = ωswp

(4.7)

77

To use it for scoring we still need to define a total cost function editcosttotal : Pquery ×
Pmatch −→ [0, 1] which calculates the minimal cost for transforming a path Pquery ⊂ P
into a path Pmatch ⊂ P using an arbitrary sequence of operations in Ω. Lowrance and
Wagner [LW75] have defined such a cost function in the context of string matching.
It uses the same set of operations as our approach, so we can easily apply it to our
problem by thinking of path components as characters. Their algorithm guarantees an
algorithmic complexity proportional to |Pquery| · |Pmatch|, if the following condition holds
for all p ∈ Pquery, q ∈ Pmatch, and arbitrary N :

2 · editcost(ωswp, p, q, N) ≥ editcost(ωins, p, q, N) + editcost(ωdel, p, q, N) (4.8)

In order to meet this condition, we introduce a custom cost function for swap operations
(analogously to editcostsub) which slightly refines the cost calculation for ωswp as follows:

editcostswp(p, q,N) = max

(
editcostgen(ωswp, nswp),

Cins&del

2

)
(4.9)

with
Cins&del = editcostgen(ωins, nins) + editcostgen(ωdel, ndel) (4.10)

To transform the total cost into a score s we can now simply define s = 1−editcosttotal.
Hence these refinements complete our path matching solution (as far as path edit dis-
tances are concerned). It enables us to cope with SR-1 and SR-2 as well as the trivial case
SR-0. The special case of equivalent modellings differing in terms of relevance (SR-3)
still needs to be addressed, though. We can easily integrate SR-3, however, by increas-
ing the base cost values and repetition factors shown in table 4.3. This increases the
overall edit cost to match different paths and thus penalises different modellings more
strongly. Which exact values are feasible depends on the scenario where the matching
is performed. The differentiation of edit operations regarding the cost function and pa-
rameter values used provides us with a flexible framework to handle a broad range of
scenarios.

Indexing

So far we have only addressed missing, excessive, and substituted path components as
well as path inversion. The equivalence of element-based and attribute-based content
modellings could also be handled in the same manner, that is, by path edit operations.
This would require having operations to perform substitutions of path delimiters (e.g.
substitute child axis by attribute axis) in addition to the path component-based op-
erations discussed above. Enlarging the set of edit operations reduces the matching
performance, though. Also, unlike the edit operations discussed above, substituting an
element-subelement relationship by an element-attribute relationship (and vice versa)
does not introduce the danger of matching arbitrary paths even when it is repeatedly
applied to a path; thus we need no cost metric for this case. Therefore we prefer not
to extend the set of edit operations, but instead model this aspect via index struc-
tures. To accomplish this, the index used should treat element-attribute relationships as

78

element-subelement relationships. This is possible because we consider both modellings
as equivalent and consequently our query language CAS-QL does not even allow to ex-
plicitly specify conditions on attributes ; hence we do not need to distinguish the two.
This approach is commonly employed to address this problem, e.g. in [TW02].

Handling element vs. reference equivalences also corresponds to the substitution of a
path delimiter. This is non-trivial, however: Firstly, references (e.g. XPointer references
[DJG+07]) may point to elements in different documents, thus we construct “virtual”
paths which may cross document boundaries. Secondly, references may lead to cycles,
so the resulting virtual paths may have an infinite length. In particular, if a path
contains many references, matching it thus becomes very complex. To still provide a
feasible solution we propose the following approximation: Like attributes, references are
also handled at indexing time. The indexing logic follows a reference and treats the
referenced element and its children as child elements of the referencing element. For
example, an actual path //books->book/author@name would therefore be indexed as
//books/book/author/name. Matching the “reference” thus obviously becomes trivial,
but it comes at the cost of introducing redundancies in the indexed data. This may
be troublesome in particular for referenced elements which have many descendants. We
thus propose to restrict this indexing mechanism by introducing two parameters: A
fixed maximum number of references resolved per path Nmax-refs ∈ N≥0 and a maximum
depth of descendant elements considered per reference Nmax-ref-depth ∈ N≥0. If we set
Nmax-refs = 2, for example, only two references occurring in a path will be resolved,
whereas all other references are ignored. The maximum depth Nmax-ref-depth controls how
many levels of descendant elements of a referenced elements are redundantly indexed
below the referencing element. When setting Nmax-ref-depth = 0, only the referenced
element itself is indexed redundantly, with Nmax-ref-depth = 1 its direct children are also
indexed redundantly, and so on. We assume, that in most scenarios paths used in a
query are very short (even if we substitute the descendant axis by the corresponding
child elements) and that they only contain few references in relation to other axes. Thus
by employing the restrictions described, we believe that we can achieve a good result
quality in most collections while keeping the index size down to a reasonable limit. If
a collection contains very broad structures (i.e. elements have many children), we can
additionally introduce a limit on the number of child elements considered per level; to
limit complexity we restrain from doing so for the initial solution, however.

The problem of having an attribute value which corresponds to a tag name as shown
in listing 4.2.1 consists of two major issues which we have to address: detection and
interpretation. Detection means that we have to identify elements in the document
collections used, which have an attribute related to their tag name; we will discuss this
in more detail shortly. (For ease of expression we refer to such attributes as a Tag Name
Candidate Attributes or TACAs, for short.) Independently of this, we can interpret
TACAs either as corrective or additional information: In the first case, the attribute
value of a TACA replaces the actual tag name of the element it belongs to; in the
second case, we keep the actual tag name and use the TACA as additional metadata for
matching. We believe that the corrective interpretation only applies to very few cases;
for example, a generic element like <entity> may be assigned its semantics exclusively

79

Table 4.4.: Sample rules to identify TACAs

No. Tag Name Attribute Value
1 publication type book
2 entity type *
3 * type person
4 * class *

by a TACA like “class” or “type”. In most cases, however, the TACA only refines the
actual tag name (e.g. in the example from listing 4.2.1). We therefore adopt the latter
interpretation. To implement TACA detection we have two general alternatives at hand:
indexing-time detection and runtime detection. If we perform the TACA detection at
indexing time, we essentially need a manually defined rule set to base a heuristic on.
This manual rule set may be a list of 〈t, a, v〉 tuples, for example, where t is a tag name,
a an attribute name, and v the attributes value. To illustrate this, consider the rules
listed in table 4.4. The first rule expresses the following: “All <publication> elements
with an attribute named “type” whose value is “book” should be treated equivalent to
<book> elements.” The second and third rule use wild cards to be more flexible. The
obvious drawback of this approach is that the manual definition of such rules is only
possible in very confined scenarios with a small number of explicit schemas. Beyond
that only very general rules can be generated which are likely error-prone. One such
example is the fourth rule shown in table 4.4: It defines that all elements having an
attribute named “class” are assigned their semantics by this attribute’s value.

An alternative is to perform TACA detection at runtime, more specifically when
matching tag names. The advantage of doing this is that the tag name to match is
known (as it is defined in the query) so we do not depend on predefined rules. We thus
further refine the cost function for our substitution operator ωsub as follows: Let p be
an arbitrary path component contained in the query which is to be substituted by a
different path component q. Then editcostsub(p, q, nsub) will return a lower cost value, if
q has an attribute whose value is p. We could combine the this solution with the rule-
based solution discussed above. For example, only attributes with certain names may
be considered. This would introduce the same difficulties as for index-time matching,
however, so we restrain from doing so.

We expect this solution to perform well for a broad range of scenarios. Nonetheless,
we need to conduct practical experiments to determine whether this solution is actu-
ally feasible in terms of performance and whether this approach is beneficial regarding
retrieval quality. One aspect we still need to discuss are the requirements regarding
feasible index implementations which result from our proposals: Earlier in this thesis we
have proposed to simply store element-attribute relationships as element-sub-element
relationships in the index. To fully support the ωsub operation, however, the index will
also have to indicate the axis type for each relationship; more precisely, the index has
to track the relationship types element-sub-element, element-attribute, and element-
referenced-element. Additionally, it has to provide a means for looking up the value of

80

an attribute and these look-ups need to be fast. Please note that both requirements
regarding feasible index implementations only exist, if the TACA logic is desired. For
all other improvements we propose, an index ignorant to attributes and references is
sufficient. Apart from these aspects, a suitable index implementation has to meet the
requirement we have defined in section 2.3 regarding updates: The index must be able to
handle insertions, modifications, and deletions of entire documents as well as fragments
and it must be able to handle these operations at runtime without impacting the IR
system’s performance.

4.3. Implicit Structural Hints

So far we have only addressed explicit (that is, user-provided) query conditions. In
this section we turn to implicit conditions and mainly discuss term proximities as one
promising approach; also we briefly cover techniques based on element length.

4.3.1. Term Proximity

In flat Information Retrieval a common relevance indicator is term proximity [RS03]:
Let A,B be two arbitrary terms used as query keywords, then informally their term
proximity measures how far apart they appear in a document. For example, if the
query is information retrieval, a document containing these terms right next to
each other is usually assumed to be more relevant than one where both terms appear
at very different positions. On a similar note, term order is often also considered:
Matches containing “retrieval information” are likely less relevant than such containing
“information retrieval”.

Proximity Measures

We can distinguish two groups of proximity measures [TZ07], [Bei07]: distance aggre-
gation measures and span-based measures. (The latter are often also referred to as
interval-based methods.) Distance aggregation measures, calculate pairwise distances
of the occurrences of terms used as keywords; span-based measures operate on sets of
terms and calculate proximities related to the length of document parts containing all
terms in a set. Both approaches generally apply to both flat retrieval and – with some
adaptions – XML Retrieval. Based on experiments performed by Tao and Zhai [TZ07],
we will give a short overview of several common measures of each group and how they
perform in flat IR contexts.

Let K be the set of terms used as keywords in a query. In section 3.5.2 we have defined
the function occ(A,X) = {a1, a2, . . . , an} to return all occurrences of a term A ∈ K in
an arbitrary set of term occurrences X. For term proximities we apply this function
to the recursive full content of a document’s root element, i.e. occ(A, contrf(root(d))),
to assemble the set of all term occurrences (including tag names, attributes names,
etc.) in that document in document order. For ease of notation we write occ(A, d)

81

instead of occ(A, contrf(root(d))). We also define the minimal distance function mindist :
K ×K −→ N≥0 to calculate the number of terms separating the closest occurrences of
two terms9. If a term does not occur in the document, mindist evaluates to the document
length. For example, if a1, b1, c1, a2, d1, e1 are occurrences of terms A,B,C,D,E ∈
K in a document, mindist(A,B) is 0 (as their closest occurrences are neighbouring)
and mindist(A,E) is 1. Distance aggregation measures first calculate the minimal
distance for each pair of terms; then an aggregation function is applied map the resulting
set of distance values onto a single value. In [TZ07], the minimum, maximum, and
average function are proposed for aggregation. For ease of expression, we will refer to
these approaches (i.e. distance aggregation with the respective aggregation function) as
MinAggDist, MaxAggDist, and AvgAggDist, respectively.

As opposed to distance aggregation measures, span-based proximity measures operate
on the entire set K, i.e. not just pairs of terms. Two such measures are the Span measure
and the MinCover measure [TZ07]: Span calculates the number of terms of the shortest
interval in a document which contains all occurrences of each term in K; MinCover
calculates the number of terms of the shortest interval in a document which contains at
least one occurrence of each term in K. Thus, informally, Span also includes all repeated
occurrences of terms whereas MinCover does not. To improve retrieval effectiveness, both
measures can be normalised by the number of terms in the interval and the number of
unique terms in the interval, respectively [TZ07]. We call the normalised versions of
these measures NormSpan and NormMinCover.

Tao and Zhai [TZ07] state that a comparison of these measures on various TREC10 test
collections yields that the distance aggregation approach using the minimum function for
aggregation (i.e. MinAggDist) has the strongest correlation with relevance judgements
and performs best in terms of mean average precision (MAP). Other IR quality metrics
have not been evaluated, though. (We discuss quality metrics in chapter 6.)

Proximities in XML Retrieval

A naive strategy to measure term proximities in XML Retrieval is to just ignore doc-
ument structure and simply regard the recursive content of the root element as flat
document. Any flat retrieval proximity measure can then be applied as-is and the scores
it generates awarded either to the document itself or to the element to whose direct
content a particular set of terms belongs. However, we believe such an approach to
perform very poorly, because the physical distance of terms in an XML document (i.e.
how far apart two terms are in document order) may differ strongly from their logical
distance. Consider the sample XML fragment shown in listing 4.17; then the following
issues have to be addressed by an effective XML term proximity measure:

• What is the proximity of two terms occurring within the direct content of an
element, e.g. the proximity of content and structure in the example?

9Please note that Tao and Zhai [TZ07] define the minimum distance function slightly different: Their
function always evaluates to mindist +1, i.e. neighbouring term occurrences have a distance of 1.

10http://trec.nist.gov

82

http://trec.nist.gov

• What is the proximity of two terms, if one occurs in direct content of an element
and the other within the direct content of one of that elements children, e.g.
retrieval and structure or XML and retrieval? The latter case is of particular
interest, because the terms “XML Retrieval” obviously are very closely coupled in
the example.

• What is the proximity of two terms, if both occur in the direct content of different
child elements of a single parent, e.g. XML and structure?

• What is the proximity of two terms, if one occurs in the recursive content of an
element and the other in an attribute value of that element, e.g. CAS and XML?

• What is the proximity of two terms occurring in the direct content of adjacent
siblings, e.g. the last word of one paragraph and the first word of the next?
Here XML is particularly interesting, as two term occurrences can be very close
regarding their “physical” position in a document, but very far apart considering
the document’s structure [EL00]. For example, the paragraphs mentioned above
may even belong to different chapters and these chapters may cover completely
different topics.

• What should the resulting score be awarded to? For example, if two terms occur
in different elements, but have a high proximity, which element’s score benefits
from this?

1 <sec keywords="CO , CAS , introduction">
2 <p>
3 <link url="...">XML</link> Retrieval is commonly

distinguished in <i>Content -only</i> and <i>Content and
Structure </i> Retrieval.

4 </p>
5 </sec>

Listing 4.17: Example of term proximities in XML

Related Work

A lot of publications on XML Retrieval mention the use of term proximities (e.g.
[AYLP04], [FG04], [KMdRS06], [ST06]) and state that they believe it to be beneficial.
However, only very few of these actually describe how proximities are determined and to
what extent they are beneficial. The vast majority of these publications seem to apply
one of the following two approaches: within-element term proximities or edge-counting.
Within-element term proximities are proximity measures known from flat retrieval ap-
plied to either the direct content or the recursive content of an element without regarding
the document structure at all. One such approach is described in [Feg04]: They apply
the MinCover strategy to the recursive content of elements while ignoring the crossing
of element boundaries. Edge-counting strategies ignore the position of term occurrences

83

within an element’s content, but solely operate on document structure. Most often they
calculate the number of parent-child edges on the shortest path relating the elements
which contain the term occurrences in question. For example, if the terms A and B occur
within the same element, they have a count of zero, if A is in the parent element of B,
they have a count of 1, and so on. Some proposal count the elements themselves, instead,
or apply similar variations of this approach. Publications employing edge-counting-like
strategies include [BW01], [CMKS03], and [AVF06].

We will now discuss some extensions proposed to these approaches. Abbaci et al.
[AVF06, sec. III C] suggest to combine edge-counting with a semantic distance measure
of tag names. Doing this their goal is to approximate the meaning of the document struc-
ture relating multiple terms. However, they have not yet devised a ranking model which
actually takes this into account. Hristidis et al. [HPB03] also employ edge-counting,
but include element references (e.g. IDREFs) as another axis besides the parent-child
relationship. (Cycles are assumed not to exist.) Both axes are treated as equivalent,
so the shortest path between two elements can include parent-child relationships, ref-
erences, or both. Guo et al. [GSBS03] propose a two-dimensional proximity measure:
One dimension describes the distance between two terms across different elements, the
second dimension the distance of these elements to the result element which is returned.
The latter is measured by counting the the number of parent-child edges that relate
the element containing a term t and the result element which is actually returned to
the user. When the element contains t itself, the count (denoted as c) is set to 1, if
its parent contains t, c set to 2, and so on. Let e be a result element returned to the
user, sinit its initial score, and o an occurrence of t in e or its descendants, then the
proximity-adjusted score of that element is calculated by the following function:

s(o, e) = sinit · d(c−1) (4.11)

The so-called decay factor d ∈ [0, 1] controls how strongly a decrease in proximity is
penalised. If t occurs multiple times in e or its descendants, Guo et al. suggest to
calculate e’s score as the maximum of the scores of each occurrence, i.e. the best score
is used.

Beigbeder [Bei07] adapts a distance aggregation measure to XML and takes into
account the document structure. Their original measure models the so-called influence
of term occurrences: Each term occurrence influences surrounding term occurrences up
to a certain distance. The maximum influence is exercised at the position of the term
itself and then linearly decreases to the left and right of the term until it reaches zero.
Assuming that terms are used as conjunctive keywords, the document score is then
calculated as the sum of the influence areas where occurrences of all keywords overlap.
(We ignore the disjunction case here for the sake of simplicity.) To port this to XML,
they assume a very simple document structure only consisting of nested sections and
section titles and define the following rules: If a term occurs in the direct content of a
section, its influence is limited to that section. If a term occurs in the direct content of a
section title, its influence extends over the recursive content of the section it belongs to.
The scores of elements are then calculated like in the flat retrieval case. This approach

84

actually does take into account both term distances (in the narrow sense) and document
structure. However, we believe it to be difficult to generalise this approach to arbitrary
document structures and to cover the issues we have raised above.

Proximity Levels in XML

To our knowledge, none of the XML term proximity approaches proposed so far take
into account the questions we have raised above. We therefore propose a novel strategy
for term proximity handling in XML in this section. Namely, we propose to combine
within-element proximity metrics and edge-counting metrics by introducing the concept
of proximity levels. Before we define the term proximity level and describe our solution
in detail, we first introduce several notational elements for ease of expression. Let

• d ∈ D be an arbitrary XML document,

• A,B ∈ K with A 6= B two terms used as keywords,

• a ∈ occ(A, d), b ∈ occ(B, d) occurrences of these keywords in d, and

• e1, e2 two not necessarily different elements in d with a ∈ contd(e1) and b ∈
contd(e2).

For the moment we also assume that | occ(A, d)| = | occ(B, d)| = 1, i.e. a and b occur
only once in the document. A proximity level represents one particular hierarchical
relation of a pair of term occurrences 〈a, b〉 in an XML document. Each pair of term
occurrences belongs to exactly one proximity level and proximity levels are placed in a
strict total order. Namely, we distinguish the following proximity levels (in the given
order) in an XML document:

1. Same Element : e1 = e2, that is a and b belong to the direct content of the same
element.

2. Parent/Short Child : e2 is a child element of e1 with a very short length. More
precisely it holds that | contd(e2)| ≤ M , where M ∈ N≥1 is an arbitrary length
limit, say 3.

3. Adjacent Sibling : e1 and e2 are both children of the same parent element p with
e1 being the i-th child of p and e2 the j-th child of p with j = i+ 1. For example,
e1 might a paragraph and e2 the next paragraph.

4. Non-adjacent Sibling : This level equals the previous one with the only difference
that j ≥ i+ 2.

5. Parent/Long Child : This level equals the Parent/Short Child level, only that
| contd(e2)| > M , i.e. e2 is not short.

6. Other : None of the previous levels applies.

85

We do not explicitly include attribute names and values here. Instead, we treat attribute
like child elements at indexing time as we have proposed in section 4.2.3. If our proximity
level approach proves successful, refining attribute handling may be a viable tuning knob.

We now define a classification function pl : occ(A, d) × occ(B, d) −→ L = {1, . . . , n}
which returns for two arbitrary term occurrences the number of their proximity level,
with 1 being Same Element, 2 Adjacent Sibling, and so on. Now we define a proximity
function proxim : occ(A, d)× occ(B, d) −→ [0, 1]; proxim(a, b) = 1 denotes identity (i.e.
a = b) and proxim(a, b) = 0 denotes that either A,B or both terms do not occur in d at
all. For this function it shall hold that

∀a, b, c, d with pl(a, b) > pl(c, d) : proxim(a, b) < proxim(c, d) (4.12)

Informally, this means that a pair of term occurrences 〈a, b〉 which have a higher prox-
imity level than another pair 〈c, d〉 always receives a lower score. One approximation of
such a scoring function could be the following: Let the function proximlb : L −→ [0, 1]
define lower bounds for the scores of each proximity level as follows:

proximlb(l) =
1

l + 1
(4.13)

This results in the (0.5, 1] interval for scores of PL 1, (0.33, 0.5] for PL 2, and so on.
Thus proximities in low levels are weighted much stronger, than proximities in higher
levels. Figure 4.2 visualises the resulting intervals. The idea behind this definition is to

PL 1 PL 2 PL 3 PL 4 PL 5 PL 6
0.0

0.2

0.4

0.6

0.8

1.0

Score Interval
Remaining Int.

Figure 4.2.: Score intervals for proximity levels

perform coarse-grained scoring based on the above proximity levels while still enabling
fine-grained scoring within each level. For example, within PL 1 proximities can be
calculated like in flat retrieval by using the minimum distance aggregation function,
whereas in PL 6 an edge-counting approach appears well-suited. The overall proximity

86

function thus looks like this

proxim(a, b) =

proximPL1(a, b) if pl(a, b) = 1
proximPL2(a, b) if pl(a, b) = 2
. . .
proximPL6(a, b) if pl(a, b) = 6

(4.14)

where proximPLi denotes a level-specific proximity function which returns results in the
desired interval.

Now we drop the assumption that each term only can only occur once in a document,
i.e. we now allow for | occ(A, d)| ≥ 1 and/or | occ(B, d)| ≥ 1. First of all, we then need
to adapt the occ function to XML elements (instead of just documents). So let occ(A, e)
be a function which returns the set of occurrences of a term A ∈ K in the recursive
content of an element e (contr(e)). For ease of readability, also define the following
auxiliary construct: Let PA,B be the set of proximities of all pairs of occurrences of A
and B in contr(e); more precisely: PA,B = {proxim(a, b) : a ∈ occ(A, e), b ∈ occ(B, e)}.
Now, we can easily define an aggregation-based proximity function for terms proxim :
K ×K × E −→ [0, 1] as follows:

proxim(A,B, e) =

{
max(PA,B) if occ(A, e) 6= ∅ and occ(B, e) 6= ∅
0 otherwise

(4.15)

Informally, proxim(A,B, e) calculates the term proximity of A and B as the proximity
of their closest occurrences in e. This is analogous to the minimum distance aggre-
gation (MinAggDist) discussed for flat retrieval. However, as we are concerned with
fragment-oriented retrieval (as opposed to document retrieval), we need the fragment’s
root element e as an additional parameter besides A and B to define a scope. By setting
e = root(d), we can still obtain a term proximity for the entire document, though.

We now have a tool at hand that allows us calculate proximities for any pair of term
occurrences 〈a, b〉 in an XML document. We have have also defined a way to aggregate
this to a term-based proximity measure in equation 4.15 (i.e. to calculate the proximity of
〈A,B〉). To exploit this for XML Retrieval, however, we still need to define an according
scoring mechanism.

Proximity-based Scoring

In this section we describe, how the proximity measure which we have devised above
can be used for scoring. A naive solution is to adjust the document’s score based on
proxim(A,B, root(d)) for all A,B ∈ K. Doing this, we would only partially exploit
the document structure, though: We would employ structure-aware proximities, but
do document-level scoring. We thus need to devise a strategy how to assign element-
specific scores based on proximities. One alternative to the naive solution is to calculate
proxim(A,B, e) for all keyword pairs and every element e and then adjust e’s initial
score based on the result. This is essentially a lowest common ancestor (LCA) approach
(confer e.g. [LYWS06]), that is, relevance-enhancing properties of an element pair 〈e1, e2〉

87

are not attributed to the elements themselves, but to the first higher-level element which
is an ancestor of both e1 and e2. This is fine, as long as e1 and e2 are not considered as
possible result elements. If they are returned themselves, however, they do not benefit
from term proximities11. As in XML Retrieval generally any element may become a
result element, this solution is therefore not yet satisfactory.

We should thus devise a scoring approach which adjusts the scores of both e1 and
e2. This can either be done symmetrically or asymmetrically. In the first case, both
elements receive the same score. Albeit being a very simple solution, we argue that the
containedness of elements should be considered: If neither element contains the other (i.e.
because e1 and e2 are siblings), symmetrical scoring is appropriate. Otherwise, however,
the element containing the other (say e1) also actually contains (in its recursive content)
both of the terms whose proximity is considered, whereas the other element does not.
We thus propose the following asymmetric scoring function: Let lca(e1, e2) be a function
which returns the lowest-common ancestor of e1, e2 ∈ E (and ⊥, if the elements do
not belong to the same document). We propose the following rules for scoring e1, e2

regarding the terms A and B:

• If e1 and e2 are identical, e1 = e2 receives the full proximity value of A and B in
〈e1, e1〉 as proximity score.

• If e1, e2 are siblings, both receive half the proximity value of A and B in 〈e1, e2〉
as proximity score.

• If e2 is a descendant of e1, e1 receives the full proximity as score (as it contains
both terms) and e2 half the proximity.

• Vice versa, if e1 is a descendant of e2.

• In all other cases neither element contains the other (like in the sibling case), and
thus e1 and e2 each receive half the proximity value as score.

The resulting scoring function sproxim : E × E −→ [0, 1] × [0, 1] is defined in equation
4.16; please note that for ease of readability we write p(e) instead of proxim(A,B, e).

sproxim(e1, e2, A,B) =

〈p(e1), p(e1)〉 if e1 = e2〈
p(e1), p(e1)

2

〉
if e2 ∈ desc(e1)〈

p(e2)
2
, p(e2)

〉
if e1 ∈ desc(e2)〈

p(lca(e1,e2))
2

, p(lca(e1,e2))
2

〉
otherwise

(4.16)

This way of scoring is consistent, because the full score is awarded, if an element contains
both terms in its recursive content, whereas only half the score is awarded if an element
only contains one term. Please also note that we do not need to consider the hierarchy

11The elements e1 and e2 may actually indirectly receive higher scores due to term proximities, if
downwards score propagation (cf. section 5.2) is performed. This still does not guarantee a “fair”
scoring regarding term proximities, however.

88

relation of e1, e2 (except for the differentiation of siblings and descendants), because it is
already reflected in the proximity value itself. If in the same document as e1 and e2 there
exists a third element e3 (with e3 6= e1 and e3 6= e2), we need to calculate the proximity
scores (for 〈A,B〉) for every pair of elements. In this case every element receives more
than one proximity score for a single pair of terms, so we choose the best one as actual
score.

As already mentioned above, term proximity scoring is innately context-aware and
thus conflicts with the propagation of scores. Consider the following example to illustrate
this: Assume that e1 is the parent element of e2; then one common score propagation
mechanism is to reward e1 a score bonus for the relevance of its child element. If both
elements have received a higher score based on the proximity of a pair of terms they
contain, and then e2’s score is propagated to e1, e1 will be overly rewarded due to score
duplication. Thus we need to ensure that proximity-based scores are not propagated
and therefore classify them as non-propagatable scores.

4.3.2. Length-based Heuristics

Apart from term proximities, another means to implement implicit support conditions
are heuristics based on the length of elements. There are two major ways in which such
techniques are currently used in XML Retrieval: One is to bias result selection towards
elements of a certain length, the other is to apply heuristics based on element length
(among other factors) to adjust elements’ scores. We discuss result selection-related
techniques in chapter 5 and thus concentrate on the latter kind in this section. Unlike
for term proximities there already exist proposals for exploiting length information which
we deem promising (cf. [Dop05], [RWdV06]). Therefore we only provide a brief overview
of these proposals and then concentrate on how these techniques integrate with our
retrieval framework. Also, we introduce the concept of Relevance Influence Factors as a
minor improvement.

Related Work

All of the following length considerations are based on the recursive content length of
elements, or more precisely the recursive content length of the fragment whose root
element the element in question is (i.e. | contr(root(f ∈ F))|). The adjectives “long”
and “short” serve to indicate that the recursive content length is greater than some
length threshold M ∈ N≥1 or less than or equal to this threshold12, respectively.

Dopichaj [Dop05] proposes to identify patterns in a document tree based on the length,
position, and score of elements. Two such patterns which have shown to improve retrieval
quality are the title pattern in the inline pattern [Dop07]: The title pattern matches
for long elements whose first child element is short and highly relevant. As the name

12Some proposals like [Dop07] distinguish more than two classes of lengths (e.g. “tiny”, “short”, “long”)
and also use more sophisticated means for classifying length values. This is orthogonal to the aspects
which are of interest to us, however. Therefore we assume the use of a simple threshold value for
ease of understanding and without loss of generality.

89

suggests, this is typically the case, for example, for <section> elements containing a
<section-title> element. The inline pattern aims at long elements which contain
several short, highly relevant child elements whose positions are distributed throughout
their parent. This is intended to match <paragraph> elements, for example, which
contain terms in special formatting such as <i> for italics. If one of these patterns
matches, Dopichaj increases the score of the containing element (i.e. the <section> and
the <paragraph>, respectively) and decreases the score of the child elements involved in
the match (i.e. <section-title> and <i>).

Ramı́rez et al. [RWdV06] pursue a very similar idea (i.e. using small elements to adapt
the scores of their ancestors), but chose a different path to implement it. Instead of a
heuristic based on element length, position, and score, they perform statistical analyses
of assessed document collections to derive rules for propagating short elements’ scores:
First, they manually select tag names of elements which are typically short. Then they
identify per tag name which level of ancestors of an element with that tag name is most
frequently relevant. (Level 0 is the element itself, level 1 its parent, and so on.) For
example they identified that in the INEX 2005 test collection, figure captions (<fgc>)
typically have a relevant grandparent, whereas section titles (<st>) have a relevant
parent. Based on this, they establish rules (so-called support links) for increasing the
score of elements based on the scores of short descendant elements.

The approach of Dopichaj [Dop05] has the advantage of not requiring the existence
of collection-specific rule sets13. On the downside, his pattern detection mechanism in-
volves the scores of elements, thus making it mandatory to separate pattern detection
from the initial scoring; this is not a general problem, but in our model it implies that
besides pre-propagation via non-propagatable scores and the propagation of direct scores
(cf. section 5.2 for details) we essentially need yet another mechanism for propagation.
Another disadvantage of this approach is that (for efficiency reasons) it only takes into
account parent-child relationships as opposed to arbitrary ancestor-descendant relation-
ships. The proposal of Ramı́rez et al. [RWdV06] features the complementary properties:
It does require collection-specific rule sets, but it is independent of initial scores and al-
lows to integrate arbitrary levels of ancestor-descendant relationships without impairing
efficiency. Unlike the former approach, we can easily integrate their mechanism into the
Relevance Influence Model which we introduce as part of our score propagation logic in
chapter 5.

Relevance Influence Factors

One disadvantage equally applies to both proposals we have discussed in the previous
section: They assume that all small elements equally affect the scores of surrounding
elements. We expect, however, that the relevance of some small elements such as
<section-title> and <bold> have a much stronger impact on the scores of surrounding
elements than for example the relevance of e.g. <small> and <footnote>. Hence we
suggest to introduce a Relevance Influence Factor (RIF for short) r ∈ [0, 2] which

13We expect that patterns as defined in [Dop05] also depend on the collections used, albeit to a smaller
degree.

90

Table 4.5.: Example of Relevance Influence Factor (RIF) assignments

Tag Name r
<title> 1.5
<bold> 1.2
<section> 1.0
<small> 0.8
<tiny> 0.2

Table 4.6.: Example of an extended RIF rule set based on TACAs

No. Tag Name Attribute Value r
1 <title> * * 1.5
2 <bold> * * 1.2
3 <section> * * 1.0
4 <small> * * 0.8
5 <tiny> * * 0.2
6 color red 1.5
7 color orange 1.2
8 color * 0.8

controls how strongly an element with a particular tag name influences the relevance of
its ancestors. An element not matching any of the small element heuristics proposed in
[Dop05] and [RWdV06] has r = 1.0 and thus no impact on surrounding elements’ scores.
An element like <section-title>, on the other hand, might be assigned a rather high
RIF value like r = 1.5. Table 4.5 shows some sample RIF assignments to illustrate
the idea. We multiply the RIF by the direct score of the element in question when
propagating it. (For details on how we perform the actual score propagation see section
5.2.)

The RIF approach requires the existence a manually defined, collection-specific rule
set. It therefore nicely integrates with the approach proposed in [RWdV06], but would
destroy the main advantage of the approach proposed in [Dop05] (i.e. not requiring such
a rule set). This is in line with the other compatibility criteria we have discussed in
the previous section, so we recommend combining our solution with that proposed by
Ramı́rez et al. [RWdV06]. In some cases the RIF definitions we have provided are not yet
sufficient: Consider, for example, the element . Like for <bold> we
assume it to have a positive impact on the score to be propagated. Unfortunately its tag
name is neutral, that is, its impact on score propagation is solely based on a particular
attribute value. To address a similar problem we have introduced the concept of TACAs
(Tag Name Candidate Attributes) in section 4.2. We thus refine our RIF assignments
into a TACA-based structure. Table 4.6 illustrates this based on the above examples.

91

4.4. Summary

In this chapter we have discussed the evaluation of explicit (i.e. user-provided) and im-
plicit (i.e. system-provided) query conditions. As a foundation we have first introduced
our concept for scoring XML fragments. The overall score of a fragment reflects the rel-
evance of its root element’s direct content (direct score), the relevance of other elements
in its root element’s context such its sibling and descendant elements (context score),
and how well it matches target conditions (target score). The calculation of the context
score is an activity in the result set generation phase which we discuss in chapter 5;
for certain query evaluation techniques such as term proximities, the resulting scores
innately reflect the relevance of context elements, however. Therefore we complement
the direct score with a non-propagatable score which must not be propagated to other
elements. We refer to the resulting logical structure as the extended score tuple which
consists of the direct, non-propagatable, target, and context score.

When evaluating query conditions we have to face various problems most of which
are due to semantic relativism. This means that we can model an arbitrary real-
world phenomenon (e.g. an entity or a relationship) in different ways using XML. Thus
conditions on the logical document structure have to match different modelling variants
of the same phenomenon. Other problems include determining the semantic equivalence
of names and coping with typographic errors in query conditions. Our solution for the
evaluation of explicit query conditions is three-fold: Firstly, we integrate approximate
string matching and substitution groups (i.e. rules for name equivalences) to address
name matching; this integration is dynamic and uses name length as an indicator of
which techniques are applicable. Secondly, we adapt string edit distances to XML paths
to handle certain problems related to semantic relativism; this solution includes a fine-
grained cost model to allow for scoring based on edit distances. Thirdly, we prose an
index-based solution to handle the remaining problems such as references and attributes
which influence the semantics of a tag name (tag name candidate attributes).

For implicit query conditions we have focussed on the adaption of term proximities
to XML documents. We have analysed existing solutions for non-XML contexts and
how they have been applied in the context of XML so far. As a result we classify
existing approaches as within-element strategies or edge-counting strategies and propose
an integrated solution based on proximity levels. Our solution approximates the logical
proximity of terms in an XML document and provides a solid model for transforming
proximity values into element-specific scores. Apart from term proximities, we have also
briefly covered existing heuristics based on the length of elements and proposed a minor
improvement in the form of Relevance Influence Factors.

92

5. Result Set Generation

Result selection determines which parts of the document collections are returned in
answer to the user’s query. In flat Information Retrieval, this activity is trivial: From a
set of independently scored documents, the ones with scores greater than some threshold
are returned. In XML Retrieval, however, one of the chief aims is to enable fragment-
oriented retrieval as opposed to document retrieval. Result candidates are thus elements
in document trees, so several challenges arise: Unlike documents, elements cannot be
scored independent of each other, but strongly influence one another. For example, if an
element is marked irrelevant (i.e. receives a score of zero), can its child elements then be
relevant? Also, as a consequence of their nesting, result candidates contain other result
candidates which is the reason why we have introduced the concept of XML fragments
in addition to XML elements. This leads to the question, whether overlapping results
may be returned, and – if not –, how to select the best result from a set of overlapping
ones. Finally, the user can declare particular elements as desired results by including
target conditions in his query.

We now refine the XML Retrieval process to provide a conceptional framework for ad-
dressing these issues. Remember that in the query evaluation phase which precedes result
selection content and support conditions are evaluated. After query evaluation every el-
ement in the element space has been assigned a score tuple SEST = 〈sdirect, snp, stgt, sctx〉
which consists of a direct score sdirect, a non-propagatable score snp (which may be null),
a target score, and a context score. Thus the input to use for result selection consists of
these tuples and the target conditions which the user has supplied. We divide the result
selection phase into three activities:

1. Target Candidate Determination: We identify which elements in the element
space are potential elements of the result set to return to the user. This decision
is based on the evaluation of target conditions and/or implicit information such as
statistics, rule sets, and so on.

2. Score Propagation: For every element in the element space we calculate its
context score based on the direct scores of its context elements and then its overall
final score. During score propagation, we use the set of result candidates as
guidance as to which elements are preferably contained in the result set.

3. Result Selection: We apply predefined rule sets to determine which elements
are actually returned to the user based on the scores resulting from the previous
activities. These rules may include aggregation and pruning techniques which, for
example, remove overlapping elements.

93

In the remainder of this chapter, we will discuss each activity in detail. Our aim is to
devise a consistent solution for selecting result elements.

5.1. Target Candidate Determination

In flat Information Retrieval, target candidates are typically not needed as the IR system
simply returns the most relevant documents. XML Retrieval, on the other hand, enables
the user to specify which fragments he deems useful by using target conditions. If
no user-provided target conditions are available, the IR system either has to generate
target conditions automatically or operate solely based static rule sets to select the
right fragments to retrieve. We will not cover automatic target condition generation in
this thesis as our focus lies on user-provided target conditions. As a fallback in case
no target conditions have been provided by the user, however, we will ensure that our
scoring mechanism still enables our result selection logic to work; we accept that without
target conditions a lower retrieval quality is achieved, though. In the following sections
we will discuss our interpretation of target conditions as well as the preliminaries for
target condition-based scoring. Based on this we then devise a strategy for scoring target
conditions.

5.1.1. Interpretation of Target Conditions

Like all conditions, we can, of course, interpret target conditions either strictly and
vaguely. Strict evaluation means that only elements matching at least one1 target
condition may be returned. Vague evaluation, on the other hand, treats target conditions
as mere hints which do not have to be observed. As already discussed in section 2.1.1, we
believe that strict evaluation is infeasible in most scenarios, because the user has little
or no knowledge of the actual document structure and thus can only provide hints of
limited reliability. In particular, we must therefore ensure that an element not matching
any target condition (i.e. an element with a target score of zero) can be still contained
in the result set.

The kind of target condition interpretation we are chiefly concerned with in this
section is a different one, however. We differentiate two general interpretations of target
conditions: One focuses on granularity, the other on content. A granularity-focussed
condition expresses how “fine-grained” the user prefers result items to be, but does
not impose any restrictions on the content of result items. (We will discuss the notion
of granularity in more detail, shortly.) A content-focussed condition complements this
notion: It does not aim at fragments of any particular granularity, but expresses a

1Even for the strict evaluation of target conditions, there are several alternative implementations:
Besides the common “at least one” semantics, it might be desired that all target conditions are
fulfilled or that a combination of logical operators determines which conditions must be fulfilled.
The latter two variants conflict with our definition of target conditions, however: If a target condition
comprises no path information, but only a tag name (or granularity), having a single element match
several target conditions is not possible.

94

preference towards fragments with a certain content. Our query language CAS-QL
supports two ways of specifying a target condition: by means of a tag name (e.g.
tgt:section) and by means of a granularity indicator (e.g. tgt:0.5). The latter
one obviously corresponds to the granularity-focussed interpretation. The former one,
however, can actually express either one interpretation depending on the type of the
tag name that is used. In the subsequent sections, we will discuss these element type
dependencies in detail and then devise a metric for measuring granularity. Before that
will now briefly address the issue of Semantic Relativism (cf. section 4.2.1) in the context
of target conditions.

For non-content-focussed conditions, we can safely ignore Semantic Relativism: It may
indirectly be of interest, because varying XML modellings of a real-world phenomenon
can cause variations of the document structure. These variations only have a minor
impact on the granularity measures we define below, however. If we use tag-name-based
target conditions, on the other hand, together with the content-focussed interpretation,
Semantic Relativism is of concern. For example, the elements which correspond to a
target condition (e.g. tgt:section) may have been modelled as attribute values. In our
example, an element <struct type="section"> should match our condition just like
<section>. Nonetheless we do not have to specifically address Semantic Relativism at
this point, as the approaches to handle it are exactly the same in the context of target
conditions as they are for support conditions.

Element Type Dependencies

The semantics of a tag name-based target condition depend on the element type of tar-
get elements. If a user asks for <abstract> elements in a collection of books, he defines
a particular desired granularity and a particular kind of content: He wants to retrieve
fragments with several paragraphs in length at most (granularity) which give a con-
cise overview of a piece of writing (content). Having the IR system include <section>

elements in the result set is likely unwanted, although they may have the desired granu-
larity, because a section does not feature the content properties of an abstract. If he asks
for <section> elements, on the other hand, the user will probably also want to receive
long subsections and short chapters. Thus he only defines a granularity condition. We
therefore believe, that the right way of interpreting a target condition depends on the
on the type of the respective element (cf. section 3.4). We thus derive handling rules for
the different element types below. As an element may belong to more than one type,
these rules must not contradict each other.

Entity elements (like <author>) may be selected as target elements by the user or
the IR system. They do not hint towards granularity, but have strong implications on
their content. Thus relevant candidate fragments are all semantically related tag names.
Matches are penalised based on the semantic distance of their tag name to the requested
tag name. For example, if the user requests <author> elements, <author> and <aut> ele-
ments might be matched with a score of 1.0, <person> elements with 0.7, and <vehicle>

elements with 0.0. If the target element is a structuring element (e.g. a <section>), we
believe that it hints towards a particular granularity as opposed to particular contents.

95

More precisely we claim that if a target condition references a tag name which is only
classified as a structuring element (i.e. an element that neither describes an entity nor a
particular formatting), this condition only expresses the preference for elements of one
particular granularity. The relevance of a fragment is thus judged based on how closely
it matches the desired granularity, whereas the semantics of its tag name are ignored.
For example, if the target condition is tgt:sec, it does not matter if the result is a
<sec>, <section>, <scene> or <clause> element (provided that all of these are only
structuring elements and that all have the same granularity). It is often observed in
practical experiments, however, that it does, in fact, matter which element is returned
albeit all elements have the same granularity (cf. [LR04, p. 433], [KMdRS05, p. 7]). We
believe that this is due to the rareness of sole structuring elements: i.e. all <section>,
<scene>, and <clause> can additionally be classified as entity elements and thus are
related to their content. In these cases, both granularity and semantic distance should
thus be used for scoring. Another aspect we need to discuss is the following: One fun-
damental assumption we make regarding the granularity of element types is that every
structuring element actually corresponds to one particular granularity, although it may,
for example, occur at different positions in the document hierarchy. For example, we
claim that although a paragraph may be located below a chapter as well as a subsection,
it always has roughly the same granularity. If this assumption actually holds or if further
refinement of element types is necessary, we need to determine by practical evaluations
as described in part III of this thesis.

Formatting elements (like) are only of limited use for target element selection; they
do not correspond to a particular granularity (like structuring elements) or a particular
kind of content (like entity elements). One of the rare cases in which using them as
target elements appears useful is the Re-finding use case described in section 2.3.2. If
formatting elements are used in target conditions, however, vaguely matching them is
very hard: Relevant elements are other formatting elements which lead to a similar
formatting result – a fact which we believe is almost impossible to detect for an IR
system. As this may also apply to not directly formatting-related elements like <title>,
they should also be classified as formatting elements. For example, if the user requests
 elements, , <textbf>, and <title> might have a score of 1.0, <i> and <large>

a score of 0.5 and <text-normal> a score of 0.0. We thus propose a two-fold solution: If
the environment of the IR system permits this, the system administrator can manually
define groups of substitutable formatting elements (i.e. substitution groups). This is
the case, for example, in a corporate intranet environment with a very limited number
of explicitly available XML schemas. For generic tag names such as whose
substitutability depends on attribute values (e.g. vs. <bold>), we
propose to extend our substitution group approach by using TACAs analogous to our
RIF extension described in section 4.3.2. Table 5.1 illustrates an according TACA-
based substitution group for the formatting element examples we have used above.
If the environment does not allow for manually-defined substitution groups (e.g. in a
heterogeneous environment), we propose to use semantic distances as a fallback. For
example, the IR system may substitute <small> by <small-font> or <tiny> (with a
small penalty) at a reasonable level of confidence. We do not believe, however, that

96

Table 5.1.: Example of a substitution group for formatting elements

No. Tag Name Attribute Value Score
1 * * 1.0
2 <bold> * * 1.0
3 <bold-font> * * 1.0
4 color red 1.0
5 color * 0.8
6 <title> * * 0.8
7 <i> * * 0.6
8 <italics> * * 0.6
9 <subtitle> * * 0.4

textual similarity measures (e.g. edit distances) are beneficial for formatting elements,
as formatting tag names are typically to small to guarantee satisfactory results. To
illustrate this, consider an element , for example, which is a lot closer to <s> (for
“strike-through font”) in terms of edit distances than to <bold>.

Granularity Measures

In order to evaluate target conditions aiming at the granularity of results, we need
a metric to define and measure granularity. We require this metric to have at least
an interval scale (i.e. interval or ratio) to enable quantifiable distance calculations. In
order words, we want to be able to calculate how much more fine-grained an element
e1 is compared to an element e2.For ease of notation we define a granularity function
gran : E −→ R≥0 which calculates the granularity of an arbitrary element e ∈ E in
an arbitrary, but linear and deterministic way. Based on that, we define a normalised
granularity function grannorm : E −→ [0, 1] which enables comparison of distance values
across different collections; grannorm(e) = 1.0 means that the element is very fine-grained,
whereas grannorm(e) = 0.0 represents a very coarse granularity. Let e ∈ E be an arbitrary
element and Gmax the maximum granularity of all elements in the same collection as e;
then we calculate e’s normalised granularity as follows2:

grannorm(e) =
gran(e)

Gmax

(5.1)

Because we require our granularity metrics to be linear and can normalise it to the [0, 1]
interval, we can now define a feasible distance function grandist : E × E −→ [0, 1] in a
very simple manner as shown in the following equation:

grandist(e1, e2) = abs(grannorm(e1)− grannorm(e2)) (5.2)

We now discuss several alternative implementations of the gran function:

2We assume that the minimum granularity is zero in all collections and that we can obtain the
maximum granularity per collection (e.g. by regular generation of collection statistics).

97

• Specificity: One way of defining how fine-granular a fragment is consists in using
its specificity: A fragment which covers (almost) exclusively topics which are of
interest to the user would then be fine-grained, whereas fragments also covering
other topics are coarse-grained. This may lead to very large fragments being
returned, as, for example, an entire book may also be very specific. An advantage of
using the specificity is that it can be applied to documents which are varying widely
regarding their structure. Because a user explicitly requesting a section is unlikely
to regard a book as relevant, though, we consider specificity an inappropriate
granularity measure.

• Absolute Hierarchy Depth: Another granularity indicator may be how deep an
element is located in the XML tree of its document. A subsection, for example, is
usually located beneath a section and thus more fine-grained. For some elements
(e.g. paragraphs) this does not always hold, as a <paragraph> element may be the
child of a <subsection> as well as of a <chapter>. Also the number of elements
which are not directly related to a hierarchy, but located above the elements of
interest in the document tree (like <mainmatter> and <body>, for example) may
vary across documents. This holds, in particular, when the we consider multiple
collections.

• Relative Hierarchy Depth: To improve the applicability of hierarchy depth as a
granularity measure across different document collections, we can slightly modify
it: Instead of counting hierarchy levels starting at the document root element,
we can define custom hierarchies on arbitrary sets of elements. For example, the
elements <chapter>, <section>, <subsection>, and <subsubsection> may be
defined as forming a hierarchy (in the given order) with <chapter> as the hierarchy
root; thus <chapter> would be located at depth 0, <section> at depth 1, and so
on. This still leaves us with the problem of how to handle elements which are
related to granularity, but not necessarily to a hierarchy. This is the case, for
example, for the <paragraph> element mentioned above.

• Average Recursive Content Length: A very simple yet elegant solution is using
the recursive content length of elements to measure their granularity. (For the
definition of an element’s recursive content length cf. section 2.2.) It is based on the
assumption that for every element we can statistically determine an average length
which we assume to be relatively stable even across different document collections
(maybe corrected by some constant factor per collection). The recursive nature of
our length definition guarantees that the recursive content length of an element is
always greater than the recursive content length of any of its descendants. Thus the
average recursive content length of an element with a hierarchical nature is greater
than that of other elements deeper in the hierarchy. So, by using the average
element length, we can define a non-total order of all elements (or optionally
only hierarchical elements) which integrates well with our distance metric (i.e.
the normalised difference between two elements’ average lengths).

98

5.1.2. Target Scoring

We refer to the scoring of elements based on target conditions as target scoring . The
resulting score is the target score stgt which we have already introduced as a constituent
of our extended score tuple SEST in section 4.1. Unlike scores resulting from support con-
ditions, target scores must never be propagated, because otherwise they might interfere
with result selection in an incorrect manner. To illustrate this, consider the following
example: The system processes a query containing the condition tgt:paragraph. To
highlight the relevant effect, we ignore non-target conditions. The documents used fol-
low a fairly regular structure as shown in listing 5.1. Then, obviously, the <paragraph>

elements are most relevant regarding the target condition and thus assigned the highest
scores (say 1.0) whereas other elements receive lower scores (say 0.0). A common score
propagation strategy is to propagate score from child elements to their parent, optionally
down-weighted by some constant factor α (say 0.8).

1 <article >
2 <body>
3 <section >
4 <paragraph >...</paragraph >
5 <paragraph >...</paragraph >
6 <paragraph >...</paragraph >
7 </section >
8 <section >
9 <paragraph >...</paragraph >

10 <paragraph >...</paragraph >
11 <paragraph >...</paragraph >
12 </section >
13 </body>
14 </article >

Listing 5.1: Simplified excerpt from an XML document

For the sake of simplicity, we use the formula shown in equation 5.3 to calculate a parent
element’s score. It has been proposed by Gövert et al. in [GAFG02, sec. 2]; we will discuss
it detail in section 5.2 among other, more flexible score propagation approaches. Also,
we ignore score normalisation (i.e. the scores calculated below are not necessarily in the
[0, 1] interval) for the same reason.

s(p) = sdirect(p) +
∑
e∈C

α · s(e) (5.3)

If we apply this strategy to the example document, then the <section> elements are
scored with 2.4 and thus higher than the <paragraph> elements, and the <body> element
is again scored higher then the <section> elements. As we can see, target conditions
reward particular elements (e.g. elements with a certain granularity) and particularly
not their ancestors (they would even imply to penalise ancestors); score propagation, on
the other hand, rewards the ancestors and thus overrules and contradicts the intention of

99

target scoring. Hence we only apply score propagation to scores resulting from content
and support conditions and not for target scores.

Related Work

Most XML Retrieval proposals handle target scoring analogously to content and support
scoring without distinction. We consider this as insufficient as target conditions (and
thus the resulting scores) play a special role in result selection. Also, we have introduced
granularity as a main concept in the handling of target conditions and consequently
need to account for it in target scoring. Some proposals regard target scoring as an
integral part of score propagation (e.g. [FG04], [Gev05], [SHB05]); we will discuss these
proposals separately in section 5.2. Finally there exist a number of proposals which
consider element length as a major factor in result selection. Albeit not necessarily
being implemented by means of target scoring, we consider these approaches to be – at
least to some extent – related to our idea of granularity. Therefore we first discuss the
proposal of Kamps et al. [KMdRkS04] as one representative of length-based techniques
before we describe our own solution.

Kamps et al. [KMdRkS04] have found that element length plays an important role in
XML Retrieval: While, in the collection analysed, the number of very small elements
(i.e. elements containing only a few words) is far greater than that of long elements,
the probability of an element to be relevant increases overproportionally to the element
length. This results in a strong unbalance in retrieval results, if elements of all lengths
are considered equally relevant. They propose two alternative approaches to take this
into account: an adaption of the scoring model and a restriction of the index. In the
first case, they use a language model which is biased towards generating higher relevance
probabilities for long elements. This could also easily be adapted to a scoring method
not based on language models, e.g. by assigning a score bonus for long elements. The
alternative approach is to restrict the element index used to only contain elements above
a certain length threshold. Kamps et al. experimentally compared both approaches with
the result that the scoring model adaption performs far better than the index cut-off
and that the combination of both approaches yields the best results. We will refer to
this combined strategy as static length biasing .

However, the length/relevance correlation has only been studied so far by analysing
the manual relevance judgements conducted as part of the annual INEX workshop. To
our knowledge, no broad research has yet been conducted to verify, if these findings apply
to XML Retrieval in general. We believe, that there are contexts where either different or
no length biases apply. For example, in the Re-finding use case described in section 2.3.2
the user is not likely to favour longer result fragments. Apart from the environmental
context, we also think that a length bias is only applicable to particular element types: If
the user searches for an entity element like <author>, its length supposably plays a minor
role. We argue that we can regard element length as one particular representative of
element granularity. Hence, the element type dependencies for result selection which we
have described in section 5.1.1 do also apply here. In consequence, we believe that static
length biasing should not be applied to other elements than structuring elements. On

100

top of this restriction, two other issues still remain to be solved: The first one is to find
the optimal length bias for an arbitrary collection and ideally doing so without manual
involvement; the second one is the benefit of length biasing when target conditions are
specified by the user. As for the second issue, static length biasing even counteracts the
aims of the user: By specifying a (structuring) target condition he requests elements of
a particular granularity, so a length bias would not be helpful. We therefore consider
this approach (and other length-based approaches) to not be feasible for our settings.

Solution Strategy

Our strategy for target scoring is based on the simple idea to score elements based on
how closely they match target conditions. Thus we require a mechanism to calculate
the distance of an arbitrary element to a target condition. In the previous section we
have defined a normalised granularity function grannorm which maps a tag name to a
granularity value in the [0, 1] interval. Thus to obtain an element’s granularity, we can
simply apply grannorm to its tag name. So, we only need to map a target condition to
a granularity value in order to calculate their distance using the grandist function. If
the target condition to evaluate is specified in the granularity format (e.g. tgt:0.4),
we can use this value straight away. If the condition uses the tag name-based format,
on the other hand, we calculate its granularity as the average granularity of that tag
name across all collections involved. The target condition is matched more closely, the
smaller the granularity distance is. Thus obtaining a target score is very simple: Let
gtgt ∈ [0, 1] be the normalised granularity of a target condition and gelem ∈ [0, 1] the
normalised granularity of the element we want to match against it; then we calculate
the element’s target score using the following function3:

stgt(gtgt, gelem) = 1− grandist(gtgt, gelem) (5.4)

If the query contains several target conditions, we use the best target score. The reason
behind this is that unlike content and support conditions, target conditions generally ex-
clude each other4. For example, an element can either closely match tgt:main-matter

or tgt:abstract, but not both conditions. Hence we treat all target conditions disjunc-
tively and consequently for each element only regard the best-matching one. As grandist
implementation we use the average recursive content length metric as it best suits our
needs.

We have discussed in the previous section that for certain element types a target
condition not only expresses the preference for a particular granularity, but also the
preference for a particular content. Namely, we believe this to be the case for entity and
formatting elements. Hence, for elements of these types, we calculate a semantic distance
measure in addition to the granularity distance. To approximate the semantic distance

3We implicitly assume to have a grandist function which operates directly on granularity values.
Equation 5.2 can easily be adapted accordingly.

4An exception is a query containing a tag name condition and a granularity condition which both
correspond to the same granularity. Such a query essentially contains redundant conditions which
we therefore ignore.

101

of an element’s content to a target condition, we calculate the semantic distance of its
tag name and the tag name used as target condition by an according distance function
semdist : T × T −→ [0, 1]. As semdist implementation we propose to use common
approaches such as WordNet [MBF+90] as we have described in section 4.2. Obviously,
we only calculate the semantic distance, if there exists at least one tag name-based target
condition. If there exists more than one such condition, we use the best semantic distance
as score analogously to the granularity distance. To integrate the semantic distance in
the above scoring function, we subtract the semdist value from 1 and combine it with
the score from equation 5.4 by an arbitrary convex weighting scheme.

As we have stated above already, we believe that our strategy complements static
length biasing: If the query contains at least on structuring target condition, that serves
as an indicator of the result granularity the user desires for his present information need;
our approach handles this more precisely than the statistics-based static length biasing
and can be seen as a dynamic length biasing approach (provided we use a length-based
granularity measure as suggested above). If the query contains no structuring target
condition, but any other target conditions, static length biasing is undesired as we have
discussed above, whereas, our combination of granularity distance with semantic distance
enables effective handling of these conditions as well. If no target conditions are defined,
however, and if the collection used is known to have a length/relevance correlation, we
expect static length biasing to be preferable over our approach.

5.2. Score Propagation

Score propagation aims at calculating a context score for every element in the element
space based on the elements in its context. We strictly separate this from the decision
which elements to actually include in the result set. Besides reducing the complexity, our
motivation for doing so is that we believe that each of these two activities pursue different
goals: Score propagation is solely aimed at obtaining a reasonable overall relevance
approximation for each fragment in the document collection. Result selection decides
based on these relevance assignments how to construct a result set which suits the user’s
needs. In this decision non-relevance-related aspects play a major role (such as the
removal of overlap or aggregation of results to make them handier for the user). So we
can, of course, combine both score propagation and result selection in a single model,
but this increases the model’s complexity while greatly decreasing its flexibility. Hence
the strict separation.

In this section will first provide an overview of related work. Most of this work
does not observe the proposed separation of score propagation from result selection, but
contains interesting ideas; thus at the end of this overview we will classify these ideas
in such related to score propagation and such related to result selection. After that, we
will briefly discuss the generalities of designing a score propagation concept and then
introduce our propagation model.

102

5.2.1. Related Work

In XML Retrieval literature, a wealth of strategies for score propagation has been pro-
posed. In this section, we will discuss a subset of these proposals which we believe to be
a representative sample. We classify score propagation approaches in downwards propa-
gation strategies (only ancestors are considered when calculating an element’s score), up-
wards propagation strategies (only descendants are considered), and bi-directional prop-
agation strategies (both ancestor and descendant elements are considered).

A very simple downwards propagation strategy is used by Theobald and Weikum
[TW00] in their XXL retrieval engine. They obtain the context score of an element by
multiplying all its parent elements’ scores by the element’s own score. Assuming that
scores are in the [0, 1] interval, this implies that a parent element is always assigned a
score greater than or equal to that of any of its child elements. This contradicts the aim
of fragment-oriented retrieval, however, as the root element always receives the highest
score [Gev04], [GAFG02]. Arvola et al. [AKJ05] propose four alternative downwards
propagation approaches (so-called contextualisation schemata). They all calculate an
element’s context score by using the weighted average of its own score and the scores
of a subset of its ancestors. They differ, however, in which ancestors they use: The
first schema uses the root element, the second one the parent element, the third one all
ancestors, and the fourth one both the parent and the root element. Although offering
more flexibility, this approach (regardless of the contextualisation schema used) still
favours the root element over its descendants and therefore opposes fragment-oriented
retrieval. To address this problem, Gövert et al. [GAFG02] employ an augmentation
factor α ∈ [0, 1]: When a score is propagated from an element e to its parent p, it is
multiplied by α and then added to the parent’s direct score. Thus a parent element is
still positively affected by the scores of its children, but it is only scored higher than
them, if it has either a high direct score or if several of its children are relevant. An
according scoring function is shown in the following equation where sdirect returns p’s
direct score:

s(p) = sdirect(p) +
∑

e∈chld(p)

α · s(e) (5.5)

Many approaches to score propagation are rule-based. Piwowarski and Lalmas [PL04],
for example, state that if an element is relevant, its parent must (to some extent) be
relevant as well. Geva [Gev05] renders this idea more precisely by defining the following
two rules: If an element has only a single relevant child element, the child element is
ranked higher than the parent; if, on the other hand, an element has more than one
relevant child element, each of the child elements is ranked lower than its parent. An
actual implementation of such rules is provided by the augmentation factor approach
discussed above: The augmentation factor controls the number of relevant children
needed for the parent element to receive a higher score, i.e. the greater the augmentation
factor, the less relevant children are needed. Another rule set is described in [MM03].
It is aimed at selecting the best result candidates instead of propagating scores, but
the rules can easily be applied for propagation as well. Most rules are similar to the
ones described above; however, they additionally introduce the following interesting

103

rule (called SingleChild): If most relevant descendant elements of an element e are
descendants of a single one of e’s children, this child is scored higher than both e and
all of e’s other children5. This aims at elegantly handling concentrations of relevant
elements in one particular subtree. Sauvagnat et al. [SHB05] calculate direct scores only
for leaf nodes in a document tree. This is based on the (dangerous) assumption, that only
leaf nodes contain textual content; nonetheless, this approach stresses the importance of
score propagation, as score propagation serves as the sole means for obtaining non-leaf
node scores. Their propagation function calculates the score for a non-leaf node e mainly
based on the following rules:

• The more leaf nodes with non-zero relevance e has, the higher its score is.

• The larger the distance (counted as parent-child edges) between e and a descendant
leaf node l is, the less l contributes to e’s score.

• The smaller the content length6 of l is, the more it contributes to e’s score (i.e.
short leaf nodes are propagated more strongly).

They also consider document relevance when propagating scores. Doing so is a special
case of downwards propagation. As we will discuss shortly, we believe downwards
propagation to have a negative impact on result quality rather than a positive one.

The works we have presented contain numerous interesting ideas. On the downside,
they do not distinguish between score propagation and result selection. As a conse-
quence, they often do not follow a clear strategy as to which factors to use to model
propagation and how these factors are combined. In the following section we thus start
out with a superset of potential influencing factors, based on which we then devise our
score propagation approach.

5.2.2. Relevance Influence Model

If we generalise and supplement ideas stated in related works, we obtain the following
list factors which potentially influence score propagation:

• For both e and each element c ∈ ctx(e):

– its direct score

– its direct content length

– its recursive content length

– its element type

• For each element c ∈ ctx(e):

– c’s distance to e

5Please note that we have slightly simplified the original rule and adapted it to score propagation.
6For leaf nodes the content length equals the recursive content length, so we can substitute the

(implicit) length definition in [SHB05] by either one of our definitions.

104

• The number of e’s relevant child elements C; here we have several alternatives at
hand to define C:

– all child elements with a direct score greater than or equal to some absolute
threshold Tabs ∈ [0, 1], that is C = {c ∈ chld(e) : sdirect(c) ≥ Tabs}

– all child elements with an direct score greater than or equal to some
relative threshold Trel ∈ [0,∞) regarding e’s direct score, that is

C =
{
c ∈ chld(e) : sdirect(c)

sdirect(e)
≥ Trel

}
• The number of e’s relevant child elements compared to the number of all of e’s

child elements

The main factors we integrate in our score propagation model are the direct scores
of context elements and their distance to the element in question. (The use of direct
scores is a direct consequence of the scoring framework which have introduced in section
4.1; the importance of distances we will explain in detail shortly.) Content lengths and
element types are potential candidates for fine-tuning the model; until our baseline model
has proven its benefit in experimental evaluations, we restrain from integrating them,
however, to keep the complexity as low as possible. The various factors concerned with
the number of relevant children aim at controlling the result set composition based
on existing scores. Therefore they are prime candidates to be considered in result
selection, but not in score propagation. With these decisions in mind, we now define our
Relevance Influence Model (RIM for short) for score propagation based on the following
two principles:

1. Score propagation is generally performed upwards, not downwards.

2. The further apart (in terms of the document hierarchy) an element is from an
element in its context, the less its relevance is influenced by it.

The first principle is based on the idea that XML structures feature containment
hierarchies: All descendants of an element e are actually contained in this element. When
we return e as part of the result set, all of its descendants are innately also returned.
Thus a decision to include e in the results should also be based on the relevance of the
elements it contains. Downwards propagation, on the other hand, (that is, allowing for
e to influence its descendants relevance) lacks sufficient justification. Why should, for
example, a chapter which may have little or no direct content be used to adjust the
scores of sections and paragraphs contained therein? Remember that we have already
handled specific cases where such behaviour is actually of use (e.g. the propagation of
title element scores to their respective content elements) by means of pre-propagation.
Also, downwards propagation comes at the price of diffusing relevance scores – which
defeats the purpose of scoring (i.e. to provide a clear distinction of elements in terms
of their relevance). The rationale behind the second principle is twofold: Firstly, the
hierarchy provides us with strong indications of how closely related two elements are
semantically. If, for example, a <chapter> element contains a <paragraph> nested deep

105

down in its descendant tree, we believe that this paragraph should have a weaker impact
on the chapter’s relevance than a paragraph which is its direct child element. Secondly,
we believe that the user is less likely to look at a descendant the further down it is
“hidden” in the descendant tree.

Due to our decision for upwards score propagation, we can choose from two general
strategies to design our model: global and local strategies. A global strategy calculates
the propagation score for an element e ∈ E based on the direct scores of the the entire
set of e’s context elements. A local strategy, on the other hand, calculates a propagation
score based on the context scores of its neighbouring elements. Consider the example
XML document tree in figure 5.1 to illustrate this. For simplicity, let us assume that
the context elements only contain the descendant elements. Then to calculate the
propagation score for an element a, a global strategy considers the direct scores of
all other nodes in the document tree, namely b, c, . . . , g. A typical local strategy, on
the other hand, first assigns the context scores of the leaf nodes d, e, f , and g to equal
their direct scores. Then it calculates b’s context score based on the context scores of d
and e and c’s context score based on f and g. Finally it obtains a’s score based on the
context scores of b and c.

b

a

d

e

c

f

g

(a) Sample Document

b

a

d

e

c

f

g

(b) Global Strategy

b

a

d

e

c

f

g

(c) Local Strategy

Figure 5.1.: Score propagation strategies

The main advantages of local strategies are computational efficiency and the reduction
of complexity (by only considering a very small subset of context elements). This only
works, though, if the context only consists of a single axis (e.g. only descendants). If
all context element axes (i.e. descendants, ancestors, siblings, etc.) need to be consid-
ered, however, they either need several passes through the document tree or must be
combined with global strategies which both decreases efficiency and increases complex-
ity. Another disadvantage of local strategies is that distance-based decay factors are
hard to implement: If, for example, for an element e the influence of a different element
c ∈ ctx(e) on e’s propagation score shall decrease, the higher the distance of e and c in
the document hierarchy is, this is non-trivial to compute locally. Global strategies can
accommodate advanced scoring features (like distance-based decay factors) more easily.
Implementing them efficiently is more challenging, however. We thus resort to a global
strategy to devise our propagation concept, whereas implementations of this concept

106

should presumably use local variants instead.
To account for the distance principle, we need fine-grained control over how strongly

elements in the context influence the relevance of an element e. This is supported by our
decision to use a global propagation strategy. We base the RIM on descendants (both
children and other descendants) and siblings which is only a subset of an element’s
context elements: The ancestors are not included following the first principle. For
simplicity reasons, we do not include referencing and referenced elements, either. In
chapter IV we will briefly outline, though, how references can be used to refine our
model. The siblings should also be excluded when strictly applying the containment
paradigm. Nonetheless, we still include siblings in the RIM context as the following
seems to be a reasonable heuristic: If an element’s sibling is relevant, there is a great
likelihood of that element being also relevant. Whether this heuristic really works, only
practical experiments can show, however.

We define a function ctxRIM : E −→ En to return the subset of context elements used
by the RIM, that is all descendants and siblings. This may still leave us with a huge set
of elements, however, to consider when calculating an element’s context score. (Think
of the root element, for example.) To increase computational efficiency, we thus need to
limit this set even further. Here we can exploit the second principle: As the influence of
the elements in ctxRIM(e) decreases with decreasing proximity of elements to e, we can
introduce a proximity threshold tRIM beyond which context elements are ignored. (We
will discuss shortly how to measure proximities and how to choose this threshold.) We
redefine ctxRIM(e) to only return descendants and siblings with a proximity greater than
or equal to this threshold and refer to the set of elements returned by ctxRIM(e) as e’s
influence region7.

We employ the proximity model which we have proposed in the context of term
proximities as a conceptional foundation for reasoning about how strongly a context
element should affect the context score. Therefore we adapt the pl function defined in
section 4.3.1 to operate on elements (as opposed to term occurrences); we refer to the
adapted function as plRIM. We can then define an element proximity function for to
arbitrary elements e1, e2 ∈ E in accordance to equations 4.13 and 4.14 as follows:

proximRIM(e1, e2) =

{
plRIM(e1, e2)−1 if plRIM(e1, e2) ≤ 5
proximRIM,6,norm(e1, e2) otherwise

(5.6)

This results in 1, if e1 and e2 are on proximity level 1 (identical), 0.5, if they are on level
2, 0.33 for level 3, and so on. For level 6 (descendant which is no child), we use a more
fine-grained calculation:

proximRIM,6(e1, e2) =
1

edgecount(e1, e2)
(5.7)

The auxiliary function edgecount : E −→ N≥0 calculates the number of edges separating
two elements. Thus the above function returns a higher value the smaller the edge count

7Formally, we define ctxRIM(e) to return the set {c ∈ ctx(e) : proximRIM(e, c) ≥ tRIM ∈ [0, 1)}. For the
definition of proximRIM see below.

107

is; to integrate with equation 5.6, this value must be normalised to the (1
7
, 1

6
] interval. We

omit the normalisation to ease readability, but indicate the fact by calling the function
proximRIM,6,norm. (Please note that the edge count for two elements on proximity level
6 is always at least 2; thus the above function is always defined and the normalisation
should assume 1

2
as the maximum value.)

We can now easily define the influence threshold as an arbitrary value tRIM ∈ [0, 1).
To fully exploit the above proximity features, the value should be chosen from the (1

7
, 1

6
)

interval which includes children, siblings, and non-child descendants up to a maximum
edge count. The function to calculate the context score of an element e is the following:

sctx(e) =

∑
c∈ctxRIM(e) sdirect(c) · proximRIM(e, c)

1
2
| ctxRIM(e)|

(5.8)

This sums up the direct scores of all elements in e’s influence region (down-weighted
by their proximity to e) and then normalises the resulting score to the [0, 1] interval.
Please note that as e is not included in its own influence region, the maximum score
any element in ctxRIM(e) can obtain is 0.5 (as the elements have at least proximity level
2). Therefore we normalise the result by half the length of ctxRIM(e) as opposed to the
full length to ensure that the resulting scores can not only be in [0, 0.5], but actually in
[0, 1].

5.2.3. Final Score Computation

After all conditions (including target conditions) have been evaluated and score propaga-
tion has determined how strongly an element’s score is influenced by its context, the final
scoring step is to compute an overall score for each element. Remember that we have
an extended score tuple SEST = 〈sdirect, snp, stgt, sctx〉. Before score propagation, only the
first three components have been defined, whereas sctx is only defined after score prop-
agation has been performed. Please also recall that snp is defined, but may be null (⊥),
if the element in question does not have a non-propagatable score. In the following we
devise a model to compute the final score based on SEST. This model strongly depends
on the other activities in the result selection phase and therefore includes target scoring,
score propagation, final score computation, and result selection as individual activities.
So, conceptionally, it is not a final score computation model, but rather an overall model
for the entire result set generation phase. Hence we will assume now that we are actually
at the start of the result selection phase, that is, we have SEST = 〈sdirect, snp, ↑, ↑〉.

For clarity, we start out with an initial model and then in a second step refine it into
our actual model. Our initial model comprises the followings steps:

1. Computation of target scores : For this, any of the target scoring means described
in section 5.1.2 can be employed.

2. Preselection of target candidates : All target elements with stgt ≥ t are selected
where t ∈ [0, 1] is an arbitrary threshold. We refer to these elements as target
candidates. The idea behind this is to reduce the large number of elements which

108

match a target condition to some extent. We do this for two reasons: Firstly, the
efficiency of the subsequent steps increases, the smaller the set of target elements
is; secondly, this enables us to configure the strictness of the IR system regarding
target conditions. (The extreme cases are setting t = 1 which only allows for
perfect target matches and setting t = 0 to allow for any element to be included
in the result set.)

3. Score propagation: For each target candidate e, we identify its influence region.
Then we perform score propagation, that is, we calculate e’s context score sctx.
The context scores are only calculated for target candidates. Because of the
threshold described above, we expect this to significantly reduce the cost of score
propagation.

4. Calculation of final scores : We compute a final score sfinal for the target candidates
based on their extended score tuples. There are two variants of how to do this:
The first one is to base the final score on the direct score, non-propagatable
score, and context score, only. This essentially excludes target conditions from
relevance scoring, so their purpose is reduced to the preselection of result elements.
The second variant is to use all scores (i.e. including the target score) in the
computation. We believe that (at least tag-name-based) target conditions do have
an influence on the relevance of an element’s content, apart from controlling its
inclusion in the result set. Hence we consider the latter variant as preferable.

5. Result selection: Finally, we perform result selection based on the set of target can-
didates (as opposed to the entire document tree). In this step, another threshold
may be applied to filter the remaining elements which is based on the final score.
In this case, eventually only such elements remain which have a certain minimum
target score and a minimum final score.

The above model reflects the special role of target conditions compared to other
conditions. However, it does not fulfil our requirement that an element which does
not match any target condition can still be contained in the result set. Also, it only
works, if the user has provided target conditions in his query. We hence call this model
the authoritative model to express the role target conditions play. As a refinement, we
propose the following semi-authoritative model . It is designed in such a way that it is
still biased towards elements matching target conditions, but that elements with very
high non-target scores can still make it into the result set regardless of their target scores.
The semi-authoritative model is composed as follows:

1. Computation of target scores (Analogous to the authoritative model.)

2. Preselection of target candidates (optional): We do not want to confine the result
set to elements matching target conditions, only. Thus we obviously cannot apply
the target score-based preselection of the authoritative model. If, on the other
hand, we do not perform any preselection, we expect score propagation to become
a lot more expensive, as it has to be preformed for every element in the document

109

tree. Therefore we propose a heuristic approach which selects all elements which
are either above a target score threshold (like in the authoritative model) or have a
high direct or non-propagatable score (which we model via two additional thresh-
olds). This is based on the assumption that elements where these (readily avail-
able) scores are high have a high likelihood of also having a high final score. There
are cases which this presumably does not work well: For example, a <chapter>

element which has a target score of zero, little direct and non-propagatable scores
(because it does not have any direct content), but features many highly relevant
child elements. In this case, the score would be boosted strongly by score propaga-
tion without the other scores giving an indication of this beforehand. We believe,
however, that by adjusting the various thresholds we can find a feasible configu-
ration for most scenarios. If the environment really does not permit the heuristic
proposed, we can omit preselection at the cost of the score propagation becoming
computationally more expensive.

3. Score propagation (Analogous to the authoritative model)

4. Calculation of final scores : We calculate the final score sfinal based on the en-
tire extended score tuple, i.e. including the target score. The focus of this step
lies on the influence of target conditions in relation to all other conditions. To
underline this, we first for each element combine its direct, non-propagatable,
and context scores into a single score called content score. This combination
can adhere to arbitrary weighting schemes as discussed in section 3.5. For ex-
ample, the convex weighting scheme shown in equation 5.9 illustrates this (with
α, β, γ ∈ [0, 1] and α + β + γ = 1).

scontent = α · sdirect +β · snp + γ · sctx (5.9)

We then calculate the final score as

sfinal =

{
0 if δ · scontent = 0
δ · scontent + (1− δ) · stgt otherwise

(5.10)

with δ ∈ (0, 1). The condition ensures that a fragment with a zero content score
also receives a zero final score regardless of whether it matches target conditions.
This is analogous to the ideas we have discussed in section 3.5 regarding condition
weighting. Which δ values lead to good results we will have to determine by
practical test runs; however, we consider δ values around 0.75 promising, as they
result in the following scoring behaviour:

• With a target score of zero, the maximum score that an element can reach is
0.75.

• An element with a target score of 1.0 and a content score of 0.33 will receive
a score of ≈ 0.5; so does an element with a content score of 0.66 and a target
score of zero.

110

5. Result Selection (Analogous to the authoritative model.)

Ergo, in the semi-authoritative model for an element with a target score of zero it is
more difficult to become a result element than for an element with stgt > 0. Unlike in
the authoritative model, it is still possible, however.

5.3. Result Selection

After all scores have been computed, we must decide which fragments to return to the
user in answer to his query. We refer to these fragments as the result set R. As the result
set is typically ordered descendingly by the scores of the fragments’ root elements, we
also refer to the result set as the ranking . In this section we will first provide an overview
of related work and then propose a custom result selection logic aimed at integration
and configurability.

5.3.1. Related Work

The most straightforward way to perform result selection is to select the elements with
the highest final scores just like in flat Information Retrieval. There are two variants of
this approach: We can select all elements e with a score greater than some threshold;
formally: R = {e ∈ E : s(e) > smin} where smin ∈ [0, 1). By setting smin = 0 we can
include all relevant elements in the result8. Additionally, we can restrict the result set to
a fixed maximum size by returning only the k most relevant fragments (with k ∈ N≥1)
which is commonly known as the Top k approach (cf. section 2.3).

In XML Retrieval, these means are insufficient due to the nesting structuring of
XML documents. Nonetheless, XML Retrieval literature typically does not discuss
result selection as such. Instead publications address specific aspects related to it,
often without distinction from target scoring and score propagation. One such aspect
which is discussed in numerous publications is overlap removal. We classify the solution
approaches for overlap handling in two categories: overlap handling by score adaption
and overlap handling by filtering the result set. To illustrate this, we briefly introduce
a representative of each category: Clarke [Cla05] proposes a technique to control the
overlap of fragments in the result set. He assumes that overlap is per se undesired.
He does not remove overlapping elements entirely, however. Instead he decreases the
scores of elements which are contained in other elements that are a part of the ranking.
Sigurbjörnsson et al. [SKdR04] rank the result set according to relevance; then they
optionally process it sequentially from top to bottom by removing all fragments which
either contain or are contained in other fragments that are located higher in the ranking.
Thus they select the most relevant fragment from each set of overlapping fragments.

8To keep the result selection algorithms as simple as possible, our modelling does not allow to only
include perfect matches in the result (i.e. setting smin = 1). We believe that this is a very rare case.
If it should indeed be needed, the definition of smin and and the subsequent algorithms can easily
be altered accordingly, though.

111

A second aspect which is often discussed is result set compression. It selects the
best representative fragments for each subtree in a document. It complements overlap
handling as it primarily aims at handling non-overlapping fragments (e.g. siblings) and
situations where overlap is allowed. We have already introduced the according mecha-
nisms when discussing work related to our score propagation approach. In particular,
preferring a parent element over its children based on their count and relevance (as in
[Gev05]) and vice versa (e.g. [MM03]) are such proposals. We will thus not discuss them
in detail again here.

5.3.2. Result Selection Logic

We believe that the related work discussed above introduces various ideas which are
helpful in performing result selection. However, to our knowledge none of the proposals
actually integrates all of the aspects we have come across. Also, most publications
assume one particular environment and hence only allow very limited configuration of
the system’s behaviour. For example, [Cla05] assume that overlap is always undesired
and [Gev05] always replace a set of relevant siblings with their parent element. We
therefore identify individual aspects of result selection behaviour and then integrate
them into a single, freely configurable solution. We refer to these aspects as result
compaction techniques. Namely, we distinguish the following three aspects:

Overlap Removal If overlap removal is enabled, it ensures that the result set does
not contain any overlapping fragments. That is, the result set must not contain
any two fragments whose root elements have an ancestor-descendant relationship.
Formally: ∀fp ∈ R : @fc ∈ R with root(fc) ∈ desc(root(fp)). Whether overlap
removal is desirable, depends on the scenario [KLdV04], [Dop06]9.

Aggregation Aggregation means, that instead of returning several relevant child ele-
ments of the same parent, only the parent element is returned. In the Book Search
use case this is desired, for example: If most sections belonging to a chapter are
relevant, the user wants the chapter to be retrieved instead of the individual sec-
tions. In contrast to that, in the Re-finding use case the user wants to retrieve the
individual sections and not the chapter – unless, of course, the chapter is relevant
itself.

Specialisation Specialisation is the opposite to aggregation: If a parent element has
one child element which is substantially more relevant than both its parent and
its siblings, specialisation returns this child element instead. Again, this may be
useful for Book Search (to point the user to those parts of the book which provide
the highest benefit), but not for Re-finding. Please note that although aggregation
and specialisation are exclusive regarding a single fragment, they can (and should)

9Dopichaj [Dop06] finds that in a practical application he analyses overlap is not removed and thus
asks whether users really mind overlap in real-world scenarios. Our use cases suggest that there are
even scenarios where overlap is actually desired.

112

both be supported by a result selection algorithm; the decision which one to use
should then be made on a per-fragment basis. Nonetheless we need to be able to
configure, if and when each technique may be used.

We propose an algorithm which integrates all of the above techniques (overlap re-
moval, aggregation, and specialisation) as well as the general features introduced at the
beginning of the previous section (relevance threshold, Top k processing). Its pseudo-
code is shown in listing 5.2. The algorithm defines a function which returns a set of
elements based on the following input variables:

• An arbitrary fragment’s root element p = root(f ∈ F).

• The relevance threshold smin: Only elements with a score higher than this threshold
are considered relevant.

• The set of child elements C = chld(p).

• The set of relevant child elements Crel = {c ∈ chld(p) : s(c) > smin}. Please note
that C and Crel are only auxiliary constructs that may, of course, be calculated
by the algorithm based on the other variables. We include them as parameters,
however, to keep the pseudo code as simple as possible.

• The aggregation threshold tagg ∈ (0, 1] ∪ {⊥}: If the ratio of p’s relevant child
elements to all of p’s child elements is greater than this threshold (i.e. |Crel|·|C|−1 ≥
tagg), then p’s fragment is contained in the result set instead of its children’s
fragments and regardless of p’s own score. If we set tagg =⊥, no aggregation
is performed. Please note that if the aggregation rule applies, even the fragment
of an element with a score below the relevance threshold (i.e. s(p) ≤ tagg) may be
included in the result set.

• The specialisation threshold tspec ∈ (0, 1] ∪ {⊥}: If there exists a child element
c of p which has a score that is far greater than that of both p and all of c’s
siblings, c is returned instead. Formally we can define this condition as ∃c ∈
C∀d ∈ (C ∪ {p}) − {c} : tspec · s(c) ≥ s(c). This means that when we set
tspec = 0.2, for example, c’s parent and siblings must have less than 20% of c’s
score for specialisation to occur. Again, we can disable this feature by setting
tspec =⊥.

• An overlap removal switch o: If we set o to TRUE, overlap is to be removed,
otherwise overlap is allowed.

The algorithm must be applied bottom-up (i.e. starting with the leaf elements) to all
element in the the element space.

1 /**

2 * p := Arbitrary element

3 * smin := Relevance threshold

113

4 * tagg := Aggregation threshold

5 * tspec := Specialisation threshold

6 * o := TRUE , iff overlap removal is desired

7 * C := Set of all child elements of p

8 * Crel := Set of child elements of p with a score > smin

9 */

10 Set getPartialResultSet(p, smin , tagg , tspec , o, C, Crel)
11 {
12 // first of all , check if there is any element we can

specialise to

13 var smax = 0; // highest child score

14 var snext = 0; // second -highest child score

15 var cspec = null; // child with highest score

16 if (tspec != null)
17 {
18 for (c in Crel)
19 {
20 // find specialisation candidates

21 if (score(c) > smax)
22 {
23 snext = smax;
24 smax = score(c);
25 cspec = c;
26 }
27 }
28

29 if (mult(tspec , smax) < snext || mult(tspec , smax) < score(p
))

30 // specialisation threshold is not fulfilled

31 cspec = null;
32 }
33

34 if (score(p) <= smin)
35 {
36 // p is not relevant , so there is no overlap

37

38 if (count(Crel) == 0)
39 // no relevant children: return empty set

40 return {};
41 else if (div(count(Crel), count(C)) < tagg)
42 // only few relevant children: no aggregation needed

43 return Crel;
44 else
45 // many relevant children: force aggregation

46 return {p};
47 }

114

48 else
49 {
50 // p is relevant , so there may be overlap

51

52 if (count(Crel) == 0)
53 // there are no relevant children: return parent

54 return {p};
55 else if (cspec != null)
56 // specialisation to relevant child possible: specialise

57 return {cspec };
58 else if (div(count(Crel), count(C)) < tagg)
59 {
60 // not enough relevant children to aggregate

61 if (o == true)
62 // overlap must be removed: force aggregation

63 return {p};
64 else
65 // no compaction necessary: return parent and children

66 return union({p}, Crel);
67 }
68 else
69 // we are above the aggregation threshold: aggregate

70 return {p};
71

72 }
73 }

Listing 5.2: Result selection algorithm

5.4. Summary

In this chapter we have discussed the result set generation phase of the XML Retrieval
process. We divide this phase into three activities: target candidate determination,
score propagation, and result selection. Target candidate determination identifies which
elements the user might want to see included in the result set. To make this decision, we
evaluate target conditions (target scoring) and optionally consider implicit information
such as document statistics. Target conditions we can either interpret as content-
focussed or as granularity-focussed. The former notion uses tag names to reason about
an element’s likely semantics and content; the latter notion requires granularity metrics
to assign granularity values to elements and query conditions. Which interpretation is
feasible depends on the element type among other factors.

Score propagation calculates an element’s context score based on its context elements.
We have introduced the Relevance Influence Model (RIM) to define how an element’s
score is influenced by the direct scores of other elements and hence how score propaga-
tion is to be performed. The RIM is based on the principles that only upwards score

115

propagation is performed (i.e. we ignore ancestor elements) and that the influence of
a context element decreases as its proximity to the element in question decreases. To
implement this, we have reused the proximity level approach which we have introduced
in the previous chapter. After score propagation all scores in the extended score tuple
(that is, the direct, non-propagatable, target, and context score) have been calculated.
Consequently, we then transform the score tuple into a single overall score called final
score for each element. For this transformation we have devised a semi-authoritative
model which favours elements with high target scores, but also assigns non-zero final
scores to elements not matching any target condition.

Based on the final scores we then decide which fragments to return to the user in
the result selection activity. How result selection is to be performed strongly depends
on the assumed user model which varies widely across different scenarios. Hence our
result selection logic (RSL) features several parameters to enable broad configurability.
Apart from a relevance threshold to control the minimum relevance of result items and
a maximum result size, our RSL supports three result compaction techniques: overlap
removal, aggregation, and specialisation. Overlap removal ensures that no element in
the result set contains any other result item as its descendant. Aggregation returns
a parent element instead of several relevant children. Specialisation returns a single
highly relevant child element in place of its parent and siblings. To demonstrate that
these techniques can indeed be integrated, we have finally provided the pseudo-code of
a sample RSL implementation.

116

Part III.

Evaluation

117

6. Evaluation Framework

Throughout this thesis we have devised a conceptional framework for XML Retrieval.
Based on this, we have analysed to what extend the various aspects are covered by state
of the art solutions and proposed custom solutions for further improvement. However,
our solutions are only conceptional constructs so far which still lack practical evaluation
to prove their effectiveness. The focus of this part is thus to specify a strategy how this
evaluation should be performed. (Due to the limited scope of this thesis we have to
leave the implementation of this strategy to subsequent works.) To achieve this, we first
discuss the foundations of evaluating XML Retrieval systems and devise an evaluation
framework suitable for our needs in this chapter. Equipped with this, we then lay out
an actual evaluation plan for our improvement proposals in the following chapter.

6.1. Evaluation Approaches

There are several ways in which we can evaluate the proposals made in this thesis.
A central question in this context is whether to evaluate a composite solution which
comprises all improvement proposals or to evaluate the aspects one by one. The former
approach enables us to judge whether the individual aspects integrate seamlessly and
lead to an overall improvement in retrieval quality. The latter approach, on the other
hand, enables us to analyse in detail how each individual aspect affects an IR system.
Obviously both results are necessary. We expect, however, that a fair amount of fine
tuning is needed before the individual improvement proposals actually lead to the desired
effect. Therefore we concentrate on aspect-by-aspect evaluation for now and aspire
toward experiments with composite solutions only in the long run.

For aspect-centred evaluation we consider two non-exclusive techniques: benchmark-
ing and statistical correlation testing. Benchmarking means that we compare a baseline
IR system implementation with an implementation that is identical except that it has
been enhanced by a particular improvement feature1. For example, we may compare the
results of an IR system not exploiting term proximities to a modified version which does.
This obviously requires a functional IR system implementation which we can access at
the source code level and a metric to measure result quality. Also, a suitable collection of
test documents and an according set of IR queries are needed. By statistical correlation
testing we check whether a particular variable correlates with another variable at a sta-
tistically significant level. In the above example, we might check whether the relevance

1Obviously we can also benchmark one IR system implementation against a different one. This
generally only provides rather vague pointers to the likely cause of the observed benchmarking
result so we do not consider this helpful in our context.

118

values assigned to elements in a test collection positively correlate with the proximity
of terms used in the query. This enables us to predict the improvement potential of
the corresponding improvement aspect or analyse the cause of effective improvements,
respectively. The advantage of this technique is that it does not require a fully functional
IR system implementation; instead we can apply it to mere data such as a test collection
and its corresponding relevance assessments, potentially with the help of tools such as
a parser or parts of an IR system implementation. Unlike benchmarking, though, we
cannot actually measure factual improvements by testing correlations. In our evaluation
strategy we will use both benchmarking and correlation testing.

6.2. Measuring XML Retrieval Quality

In order to assess our improvement proposals we also need metrics to quantify an XML
Retrieval system’s quality. Based on the definition given in [KL06], we define retrieval
quality as a function of retrieved relevant fragments and all fragments in a collection2.
In other words, we compare the scores which an IR system assigns to a fragment to the
fragments’ relevance. A fundamental problem with this approach is that relevance is
always relative to one particular information need and highly subjective: For example,
for the same information need, user A may judge a result item highly relevant, whereas
user B considers it to be irrelevant. Hence organisations such as TREC and INEX
provide normative relevance assessments [KL06]. To obtain these assessments, a group
of users manually judges the results of a given query on a particular document collection.
Typically they do not assign relevance values directly, but use other metrics to judge
the results which are then aggregated into a single relevance value. In early INEX
workshops, for example, assessors used a two-dimensional metric [GK02]: The first
dimension (exhaustivity) describes to what extent a fragment covers an information
need, the second dimension (specificity) describes how focussed the fragment is on the
information need, i.e. if it also covers other topics; they than map these assessments to a
relevance value in the [0, 1] interval by employing a so-called quantisation function. More
recently, INEX uses a simplified metric: Assessors highlight relevant portions of text; the
ratio of highlighted to non-highlighted text in a fragment is then treated as its specificity
[PT05] and relevance is solely judged based on specificity [LP06]. In the following,
we discuss metrics for measuring retrieval quality (as opposed to relevance assessment
metrics) and select suitable ones. At the end of this section, we then complement this
by defining which test collections are feasible for our evaluation.

2Please note that our definition of retrieval quality is solely based on a systems’s input and output;
we deliberately do not consider how the output is produced and thus ignore performance aspects, in
particular. We consider performance as an equally important second dimension of retrieval system
quality in a broader sense; this dimension is not in the focus of this thesis, though, and therefore
not considered when discussing evaluation.

119

6.2.1. Retrieval Quality Metrics

A straightforward approximation of our view of quality is the notion of precision and
recall in traditional Information Retrieval: Precision is the ratio of relevant to irrelevant
result items returned by the IR system, recall is the ratio of relevant result items returned
to all result items in the collection [MRS08, chpt. 1]. These metrics are not well-suited for
XML Retrieval, though, due to the additional challenges it introduces. These challenges
include overlap (which we have already discussed in section 5.3) and near-misses [KL06].
Near-misses are fragments in the result set which are imperfect matches, but close to
perfect matches in terms of proximity.

Over the last few years numerous metrics have therefore been proposed to measure
XML Retrieval quality. In the following we provide a brief overview3 of such proposals to
identify metrics suitable for our needs. One of the first metrics used for XML Retrieval
evaluation was inex-eval. It was introduced by INEX in 2002 [GK02, sec. 5]. For the
inex-eval metric, every fragment in the fragment space is assigned a relevance value in the
[0, 1] interval based on manual assessments in a two-dimensional criteria space. Based
on this value the metric calculates the probability that a fragment in the result list is
relevant, given that the following to conditions hold: Firstly, the user views all fragments
linearly in order of decreasing relevance (i.e. the ranking produced by the IR system);
secondly, he only views a fixed maximum number of relevant fragments [GK02, sec. 5].
The major drawback of this metric is its ignorance of the fact that XML fragments are
not independent as they are nested [KL06].

Järvelin and Kekäläinen [JK02] have introduced a more flexible family of retrieval
quality metrics called cumulated gain-based metrics (CG, for short). They are targeted
at flat Information Retrieval, yet can be adapted to XML Retrieval as well as we will see
shortly. Let us assume (like for inex-eval) that the user views results linearly in order of
decreasing relevance. Then the direct cumulated gain at an arbitrary position i in the
result ranking is the sum of the relevance values of all items in the result ranking up
to the i-th position. In other words, this aims at the gain a user has by looking at the
first i + 1 items compared to the first i items. Let fj ∈ R be the fragment at the j-th
position in a result ranking; then the following equation illustrates the CG calculation:

cg(i) =
i∑

j=1

rv(fj) (6.1)

Based on this idea, Järvelin and Kekäläinen [JK02] further refine this metric by
considering the position of an item in the ranking and by normalizing the gain values.
The first aspect means that we down-weight an item’s relevance value the further down
it is located in the ranking. The rationale behind this is the assumption that even a
relevant item provides less gain to the user, if it is located at a low rank, because the user
is less likely to look at it. The second aspect (normalisation) enables the comparison of
different result values: To obtain the absolute gain value at each rank is divided by the

3For a comprehensive overview of XML Retrieval quality metrics cf. [KL06], for example.

120

ideal gain value at this rank as shown in the following equation.

cgnorm(i) =
cg(i)

cgideal(i)
(6.2)

To calculate the ideal gain (i.e. cgideal(i)) we first need to introduce the concept of an
ideal result list Rideal = {f ∈ F : rv(f) > 0}. This is the set of all fragments in the
fragment space with a non-zero relevance, ordered by decreasing relevance. Please note
that if there exist at least two fragments in F with the same relevance, the ideal result
list is ambiguous; therefore we transform Rideal into the ideal gain vector Iideal by only
regarding the relevance value at each position. The ideal gain vector is thus unambiguous
and the ideal gain at an arbitrary rank i is simply i-th value in the vector I. The resulting
measure is known as normalised cumulated gain (nCG, for short).

Kazai and Lalmas [KLdV04] propose the eXtended cumulated gain (XCG) family of
metrics as a CG adaption to XML Retrieval (more precisely, the INEX Ad hoc Focussed
Task [MTLF06]) which takes into account the nesting of result items. To achieve this,
they modify Rideal by filtering out all but one of each set of overlapping fragments. The
filtering logic uses criteria based on exhaustivity and specificity and makes assumptions
on the desired result selection behaviour (that is, all deviations from this behaviour are
penalised). Therefore only one fragment per path is contained in the ideal result list, and
thus only perfect matches (i.e. matches contained in the ideal result list) are taken into
account by the metric so far. Returning near-misses (such as ancestors or descendants)
of an ideal fragment, on the other hand, is not rewarded at all, as they are not contained
in Rideal. Therefore Kazai and Lalmas propose another extension to the CG metric
in [KL06, sec. 5.2.2] to also account for relevance values of elements not contained in
the ideal result list: To ensure that a system returning several near-misses instead of
the ideal match does not receive a higher nxCG score, they employ a normalisation
function to all relevance values. Let near-misses : F −→ Fn be a function which returns
the set of all near-misses of an ideal match mideal. Then the normalisation function
rvnorm : F × [0, 1] −→ [0, 1] ensures that the relevance value used for a fragment adheres
to the following condition4:

∀m ∈ near-misses(mideal) : rvnorm(m) +
∑
n∈M

rvnorm(n) < rv(mideal) (6.3)

where M = near-misses(mideal)−m is the set of all near-misses of mideal except for m. In
other words, even if a system returns all near-misses of an ideal match, their cumulated
gain must be lower than that of the ideal match; thus a system returning the ideal match
is always preferred over one that does not.

The composition of the set of near-misses (i.e. the specification of our near-misses
function) is deliberately left undefined in [KL06], as it depends on the assumed user
preferences. This enables us to integrate the XCG approach with our proximity model.

4Please note that we have made some slight corrections to the corresponding equation proposed in
[KL06]. This does not affect the underlying idea, however.

121

For example, we may define the near-misses function to return all fragments up to a cer-
tain level of proximity tomideal. Additionally, we can adapt rvnorm to penalise near-misses
relative to their proximity. The ideal result selection behaviour Kazai et al. [KLdV04],
[KL06] assume to be fixed5, however: They assume that the behaviour is invariant across
all scenarios and hence does not need to be configurable. Their assumption contradicts
our result selection proposal in section 5.3 which is based on entirely different selection
rules and additionally features various configuration parameters. One such parameter
even allows to control whether overlap is permitted or not; in case we permit overlap,
both overlap filtering and the handling of near-misses are obviously superfluous.

Thus applying the XCG metric unchanged to an IR system which implements our
result selection logic (RSL, for short) would not yield meaningful results in any case. We
can, of course, build an XCG-like metric featuring the rules we have proposed for result
filtering. Such a metric would only be necessary though, if we wanted to evaluate our
other improvement proposals (that is, all but the RSL proposal) in an implementation
featuring this RSL. Instead of doing this, we may just as well use a XCG-compliant RSL
implementation to test our other features, as they are independent of result selection.
For evaluating the RSL itself the use of a custom metric is pointless, as we will discuss
in the subsequent chapter; therefore we will not define an XCG adaption (or any other
metric) specific to our RSL proposal.

Because nxCG only provides a value for an individual rank, several derived measures
have been proposed to ease broader evaluation. Two such measures are MAep and ep/gr
which have been established as the official measures of the INEX workshop for the so-
called thorough and focussed tasks in 2005 [LKK+06]. Both measures are based on the
concepts of effort-precision (EP) and gain-recall (GR). EP defines how much effort a
user needs to spend to attain a particular gain value g ∈ R≥1 compared to the effort
needed in an ideal system; the effort is measured as the number of ranks the user has to
look at (irun and iideal, respectively). The following equation shows the EP calculation
for an arbitrary gain value [LT07]:

ep(g) =
iideal

irun

∈ (0, 1] (6.4)

An EP value of 1.0 corresponds to an ideal system.
Let

• xg : N≥0 −→ R≥0 be an XML-adapted gain function which calculates the gain for
a given rank i ∈ N≥0,

• xgideal : N≥0 −→ R≥0 a function which calculates the ideal gain for i, and

• n be the number of fragments in the fragment space which provide a non-zero gain.

Then GR is calculated as [LT07]:

gr(i, n) =

∑i
j=1 xg(j)∑n

j=1 xgideal(j)
∈ [0, 1] (6.5)

5For the exact rules Kazai and Lalmas propose to filter the result set cf. [KLdV04, sec. 4.1].

122

This corresponds to the ratio of cumulated gain that is obtained at rank i to the total
ideal gain that can be archived for the fragments in the collection used. Because of
the division by the total ideal gain, the resulting values are normalised to the [0, 1]
interval. By using the GR values as input for the EP function, we can plot a graph (the
so-called ep/gr graph) with both the x and y axis normalised to [0, 1]; it depicts the
performance of a retrieval system over the entire result set. Finally, the MAep measure
(for mean average effort-precision6) condenses the retrieval quality of a system into a
single number. It averages the EP values for every rank i with a non-zero gain (i.e.
xg(i) > 0).

6.2.2. Test Data Sets

Apart from quality metrics we need sets of test data in order to benchmark retrieval
approaches. By data we mean the actual collections of XML documents as well as
defined test queries and corresponding relevance assessments. To our knowledge, the
only broad source of such test data for XML Retrieval to the present day is the INEX
workshop. Hence we now give a brief overview of the organisation of INEX and analyse
to what extend we can use its evaluation-related aspects.

INEX consists of several tracks which focus on a particular field of XML Retrieval
each. The main track is called the Ad hoc Track which is also most relevant to us.
It deals with processing varying information needs on a stable collection of documents
[MTLF06]. The Ad hoc Track consists of four so-called tasks. Each of these tasks models
one particular aspect which an XML IR system may be confronted with [MTLF06, sec.
4]:

• The Thorough Task demands an IR system to locate all relevant fragments in a
collection and rank them according to relevance. No result selection techniques like
overlap removal or aggregation are to be performed. Semantically we can interpret
this as the intermediate result of an IR system which is passed on to other parts of
the system (or components outside the system) for further processing; in our XML
Retrieval process this corresponds to the result of the score propagation activity
just before we would normally perform result selection. Alternatively, we can go
through all phases of the XML Retrieval process and configure our result selection
algorithm with smin = 0, tagg =⊥, and o = FALSE, meaning that all fragments with
a non-zero relevance are to be returned without performing either overlap removal
or compaction.

• The Focussed Task corresponds to the thorough task plus additional result selec-
tion. For the selection, one particular behaviour is requested: Overlap must be
removed and the elements to be returned shall be as fine-grained as possible while
still exhaustively addressing the user’s query. In our result selection algorithm,
the configuration most closely meeting these requirements is the following one:

6More precisely, MAep stands for non-interpolated mean average effort-precision. For details on
interpolation cf. [LT07].

123

smin = 0, tagg =⊥, and o = TRUE. This is the same configuration as we have stated
for the thorough task, except that overlap removal is enabled. However, albeit
emulating the given requirements, these settings do not reflect the ideas which
lead to the design of our result selection concepts. Hence we deem the focussed
task to not be of use for our purposes.

• For the Relevant in Context Task a document-oriented view is pursued: Per doc-
ument in the collection the (non-overlapping) fragments best representing the rel-
evant document parts are sought for. This endeavour only partially corresponds
to our scope: By using the aggregation feature of our result selection algorithm
(i.e. by setting the tagg parameter to a finite value), we can model the “cluster-
ing” aspect of finding fragments which cover the relevant parts of all sub trees.
This solution is still fragment-oriented and only produces a per-document listing
of results. Hence this task is not useful either for our evaluation.

• Finally, the Best in Context Task aims at finding the best fragment to start reading
a document for each document in the collection. Hence it also takes a document-
oriented view and therefore is not of use for this thesis.

Apart from the ad hoc track, the Heterogeneous Collections Track and the Use Case
Track (partially) address aspects which are also of interest to us. The heterogeneous
track deals with searching over heterogeneous collections, i.e. collections containing
different kinds of contents and featuring a different schema each. It currently assumes
that there is a comparatively small number of collections, only, and that these collections
are all known in advance and feature an explicit schema [FL06]. Thus, at present, the
track corresponds to our Corporate Intranet Search use case rather than our XML Web
Search use case (cf. section 2.3). We believe that the long term goals of this track rather
focus on the latter scenario, though, as for example aspects like data source selection
are already discussed today (cf. [FL06]). A drawback of this INEX track regarding its
use for our evaluation is its current status: According to [FL06], in 2007 the track’s
participants have laid administrative foundations for performing evaluations (such as
creating test collections and sets of queries), but have not yet conducted relevance
assessments. Therefore at the time of writing, the INEX Heterogeneous Track is not
yet an option for evaluating heterogeneity-related aspects; we expect that will provide a
valuable basis for doing so in the future, however. The INEX Use Case Track mentioned
above aims at devising sound models of user expectancies and likely use cases for XML
Retrieval. This is relevant to us in the context of XML Retrieval requirements and
designing an appropriate system behaviour (cf. chapters 2 and 5, respectively), but only
indirectly7 relates to our evaluation. The remaining INEX tracks which, for example,
focus on user interaction and natural language processing address issues outside of our
scope and are thus not relevant for our evaluation purposes.

Therefore, the Ad hoc Thorough Task is the only part of INEX which we expect
to be directly beneficial for the evaluation of our improvement proposals at present.

7For a brief discussion of user models in the context of retrieval evaluation see page 138.

124

As mentioned above, INEX officially uses the ep/gr and MAep measures for this task
which we have generally found to be suitable for our needs. Hence we plan to use the
instruments provided by INEX for this task to enable benchmarking; specifically we will
use metrics, tools, and test collections. The metrics we have already discussed above.
Tools are, for example, libraries and scripts for calculating the various measures for a
given result set and visualising them. A test collection consists of XML documents,
queries, and relevance assessments. The documents in a collection typically belong to a
particular genre such as scientific papers or lexicon entries. The queries express specific
information needs related to the documents used and contain additional documentation
of the intended results to ease relevance assessments. The assessments are performed
per query and XML fragment as described above; they serve as a normative source of
relevance assignments for evaluation. We decided to employ two test collections based
on the data provided by INEX:

• Chom represents a collection with a large number of homogeneous articles that all
adhere to a common schema. As instances of this collection we use the INEX
Wikipedia and the IEEE collections. The former contains roughly 1.5 million
articles from Wikipedia8 which have been transformed to XML using a single
explicit schema. It has been established as official INEX collection in 2006. The
latter contains about 16,000 XML transformations of scientific articles published by
the IEEE Computer Society9; it was employed by INEX in the 2002 to 2005 period,
with several updates of the data. Like the Wikipedia collection all documents in
the IEEE collection adhere to a single explicit schema. Please note that each test
run using Chom has to be conducted twice (i.e. once with the Wikipedia collection
and once with IEEE), as otherwise it would not represent a homogeneous collection.
The reason to use both collections in combination is simply to provide a broader
basis for our evaluation runs and hence make them more representative.

• Chet is also a collection of collections. Unlike Chom, however, we use all of its
sub-collections at the same time instead of sequentially. The individual document
collections cover different kinds of content (e.g. news items, scientific articles, bib-
liographical records) and each adhere to an explicit, but different schema. All of
the individual collections contained in Chet share a common set of queries, though,
to enable heterogeneous retrieval. The collection is still under construction, but
intended to be used by the Heterogeneous Collection Track of future INEX work-
shops.

For detailed descriptions of the three collections, please refer to [DG06], [GK02, sec. 4],
and [FL06], respectively.

8http://www.wikipedia.org
9http://www.computer.org

125

http://www.wikipedia.org
http://www.computer.org

6.3. Evaluation Methodology

So far, we have constructed a framework for conducting evaluations: We have cho-
sen evaluation approaches (correlation testing and benchmarking), appropriate metrics
(ep/gr ad MAep), and data sets (Chom and Chet of the INEX Ad hoc and Heteroge-
neous Tracks). In addition to these constituents, we now introduce a methodological
instrument: the evaluation task. An evaluation task addresses the evaluation of one
concise aspect, typically an improvement proposal; it defines how to test the aspect (i.e.
the evaluation approach to use and the conceptional details of how to use it), which
test collections to run the evaluation on, and what the expected outcomes are. Each
evaluation task consists of one or more evaluation runs; an evaluation run is one execu-
tion of the selected queries (typically: all) on a particular test collection using defined
implementation and configuration settings. Table 6.1 shows the standardised template
we use to define an evaluation task.

6.4. Summary

In this chapter we have devised a framework to evaluate our improvement proposals for
XML Retrieval. The focus of this evaluation lies on retrieval quality which we define as
a function of retrieved relevant fragments and all relevant fragments in a collection; this
equates to a comparison of scores generated by an IR system to some normative relevance
assessment. We have discussed various metrics for measuring XML Retrieval quality.
This showed that the eXtended cumulated gain (xCG) family of metrics [KLdV04] and
commonly used derived measures such as mean average effort precision (MAep) and
effort-precision/gain-recall (ep/gr) are feasible for our evaluation and integrate well with
our retrieval framework.

As general evaluation techniques we use benchmarking and statistical correlation
testing. The former compares a baseline IR system implementation to a modified IR
system variant featuring one or more of our improvement proposals. The latter tests
whether two arbitrary variables (e.g. relevance and proximity level) exhibit a statistically
significant correlation. Both techniques require the existence of test data, that is,
collections of XML documents, defined test queries, and according normative relevance
assessments. We employ test data provided by the INEX Ad Hoc Thorough Task and the
INEX Heterogeneous track albeit the latter does not yet include relevance assessments,
so actually conducting the evaluation will have to be partially postponed. We represent
this test data by the logical test collections Chom and Chet which represent a homogeneous
and a heterogeneous collection, respectively.

To describe the details of how to evaluate an arbitrary aspect (e.g. one improvement
proposal), we have introduced the concept of evaluation tasks. Each evaluation task
defines which test data and technique to use and what results we expect. It may consist
of multiple evaluation runs, such as benchmarking runs with different configurations of
an IR system. As a notation for evaluation tasks we use a standardised template.

126

Table 6.1.: Template for evaluation tasks

Name A short but informative name of the evaluation task
Test Type Benchmarking or Correlation Testing
Data The collection(s) to test on (e.g. Chom) and restrictions regarding

the documents and/or queries to use.
Prerequisites Implementation parts, tools, and manual activities which are

needed to conduct the evaluation task.
Details The conceptional details of how to apply the evaluation approach.

For a correlation test, this section defines which correlation of mea-
sures to look at. For a benchmark, we provide a list of evaluation
runs (each using a different implementation variant) to conduct;
the first evaluation run is always the baseline run which the others
are then compared to. For example:

• Baseline: Description of the baseline run.

• Evaluation run 2: Description of the second run, which is
compared with the baseline.

• Evaluation run 3: . . .

Hypotheses In this section we state which outcomes of the evaluation runs we
expect. For example:

1. Evaluation run 1 performs better than evaluation run 2.

2. Evaluation run 3 yields good results whenever the sun is shin-
ing.

After the evaluation task has been performed, we have to compare
the expected outcomes with the actual ones and analyse potential
deviations.

127

7. Evaluation Strategy

The focus of this chapter lies on determining what exactly to evaluate and on how
to do this. For we summarise the improvement proposals described throughout this
thesis, analyse their dependencies and for each aspect define how to evaluate it using
the evaluation task template introduced in the previous chapter.

7.1. Evaluation Tasks

7.1.1. Element Type Classification

In section 3.4 we have proposed to distinguish various types of elements in an XML
document (namely: formatting, structuring, and entity elements); we can assign each
element to one or more of these types. This classification is not a stand-alone improve-
ment proposal, but supports other aspects. Currently we only employ element type
classification for the evaluation of target conditions; provided the classification is sound,
however, element types are of potential use for many other aspects, e.g. term proximities,
name matching, reference handling, and even weighting. Therefore we want to measure
the benefit of type classification directly. We thus propose two evaluations to be per-
formed: In table 7.1 we define various statistical analyses of element type classifications;
table 7.2 describes the benchmarking of various modes of target condition evaluation.

7.1.2. Weighting Strategies

In section 3.5.2 we have defined several strategies to weight query conditions. The
simplest approach was static condition-type based weighting (cf. equation 3.7) where we
assign fixed weights α, β, and γ to content, support, and target conditions, respectively.
We believe that the exact configuration of these weights is scenario-dependent. Hence
the evaluation task which we define in table 7.3 only aims at obtaining a rough idea on
how different α/β/γ values affect the retrieval results based on two sample scenarios.
The other approaches are orthogonal to the static one. Thus we propose to use the best-
working α/β/γ configuration (with regard to the collection used) obtained in the above
evaluation task as a baseline. We then refine the weighting by using each statistics-based
weighting approach in turn on top of the static weighting. We provide the details of
this evaluation task in table 7.4. Please note that we expect the performance of some
of these approaches to strongly depend on whether the collection used is homogeneous
or heterogeneous (cf. section 3.5.2). As the Chet collection has not yet been assessed by
INEX, we can only evaluate the homogeneous perspective.

128

Table 7.1.: Evaluation Task: Relevance/Element Type Correlation

Name Relevance/Element Type Correlation
Test Type Correlation
Data Chom, Chet

Prerequisites Element type classification heuristic or manual type classification;
Statistical tools

Details

• What percentage of elements in the schema belongs to which
combination of element types? In particular it is interesting to
analyse, if for each element type there is a substantial number
of elements belonging to this type, only.

• We should then analyse if there is a statistically significant
correlation between assignments to certain element types. If,
for example, all structuring elements are typically also clas-
sified as entity elements, there is little point in making the
distinction and instead we should identify different types.

• Is there a significant correlation between the type of the target
elements used in test queries and the relevance assessments
of elements with the respective type? Does this correlation
also hold, if we only regard matches of the same type as the
target condition, but not identical to it?

Hypotheses

1. For each of the element types we have defined there exists a
substantial number of elements which belong to this element
type, only.

2. There exists no statistical correlation between assignments to
particular element types.

3. If a query contains tag name-based target conditions, ele-
ments with the same element type as the target condition are
significantly more relevant than other elements.

4. The latter also holds, if we only regard elements which are not
identical to the target condition, but have the same element
type.

129

Table 7.2.: Evaluation Task: Type-specific Target Scoring Benchmarking

Name Type-specific Target Scoring Benchmarking
Test Type Benchmarking
Data Chom

Prerequisites Element type classification heuristic or manual type classification;
Type-aware index; Standard query language and processor; Target
scoring logic

Details

• Baseline: No evaluation of target conditions (we assign every
element a target score of zero)

• Evaluation as defined for structuring elements in section 5.1
regardless of the element type

• Evaluation as defined for formatting elements regardless of
the element type

• Evaluation as defined for entity elements regardless of the
element type

• Evaluation according to the type-specific rules

For all of these runs, we use the target score as the overall score of
fragments to highlight results.

Hypotheses

1. The baseline implementation performs worst.

2. Provided that the previous evaluation task yields that our
type classification is reasonable, we expect the last bench-
marking run to be clearly superior to the other runs.

130

Table 7.3.: Evaluation Task: Condition Type-based Weighting Benchmarking

Name Condition Type-based Weighting Benchmarking
Test Type Benchmarking
Data Chom

Prerequisites Standard query language and processor; Condition type-based
weighting

Details

• Baseline: Uniform weighting, that is α = β = γ = 1
3

• 2:1:1 weighting: Three runs with a 1
2

: 1
4

: 1
4

distribution (with
each weight being at 1

2
in of the runs)

• 1:2:2 weighting: Three runs with a 1
5

: 2
5

: 2
5

distribution (with
each weight being at 1

5
in of the runs)

• Content-only weighting: One run with α = 1.0 and β = γ = 0

Hypotheses

1. Content conditions have the strongest influence on relevance;
thus the 2:1:1 run with content conditions at 1

2
performs best.

2. Ignoring structural conditions has a negative impact on the
result; thus the content-only run performs worse than the
mixed runs.

131

Table 7.4.: Evaluation Task: Statistics-based Weighting Benchmarking

Name Statistics-based Weighting Benchmarking
Test Type Benchmarking
Data Chom

Prerequisites Standard query language and processor; Condition type-based
weighting; Statistics-based weighting extensions

Details

• Baseline: The optimal (collection-specific) condition-type
based weighting identified in the first evaluation task (cf. table
7.3)

• Tag name ITF on top of baseline

• Tag name IDF on top of baseline

• Relationship rareness on top of baseline

• Relationship IDF on top of baseline

Hypotheses

1. Both tag name ITF and relationship rareness improve baseline
performance on both collections, as they are homogeneous.

2. Tag name IDF and relationship IDF decrease baseline perfor-
mance for the same reason.

132

7.1.3. Explicit structural hint matching

Name Matching

The evaluation of name matching is difficult using the existing sources of test data: Test
queries used in Chom are typographically correct and formulated with a single, explicitly
available schema in mind. We thus expect the majority of relevant result elements to be
exact matches of a query condition. The correction-oriented parts of our name matching
proposal (that is, edit distances, abbreviation matching, semantic distances, and so on)
are hence of little value in this scenario. What we need instead are either queries
formulated by schema-unaware users or queries targeted at heterogeneous collections
such as Chet – for which unfortunately no relevance assessment has been performed yet.
Assuming that feasible data will be available in the future, we formulate the evaluation
task shown in table 7.5 to answer to following questions:

• Does length-specific name matching improve matching quality?

• What is a good length threshold Lshort?

• Does the concept of increasing the confidence as name length increases work?

• Which string matching techniques works well for short and long names, respec-
tively?

By this first evaluation we aim to achieve a general understanding of the performance
of various name matching approaches in XML Retrieval. Based on this, we can then
formulate further evaluation tasks to answer more focussed questions such as:

• Which combinations of string matching techniques perform well for XML Re-
trieval?

• What is an optimal function to map name length to confidence and penalty factors
(such as PRFM), respectively?

Path Matching

For the evaluation of path matching, the same constraints regarding the test data apply
as for name matching: To effectively test how well our solution approaches cope with
the different modellings listed in section 4.2.1, we need modelling discrepancies either
between the query and the test collection or between individual documents in the test
collection. Chom does not account for this, whereas Chet potentially will. Aspects we
can evaluate on Chom are missing and excessive elements which we address by path
edit distances. Hence we define a first evaluation task in table 7.6 which deals with
these aspects. On the positive side, this restriction to the handling of missing and
excessive elements causes the evaluation to become independent of name matching,
whereas substitutions, in particular, strongly depend on it. Thus we can isolate the
path matching evaluation at least partially from the quality of name matching. All

133

Table 7.5.: Evaluation Task: Name Similarity Benchmarking

Name Name Similarity Benchmarking
Test Type Benchmarking
Data Potentially Chet

Prerequisites Standard query language and processor; Adaptions to accommo-
date individual name matching logic

Details The performance of the following variants of name matching im-
plementations should be compared when using them for all name
matching tasks (i.e. target conditions and support conditions on
elements and attributes):

• Exact matching

• Uniform matching with traditional edit distances, recur-
sive field matching, and (adequately configured) substitution
groups, respectively

• Length-specific matching with the different techniques used
for namesimshort and namesimlong at varying length thresholds
Lshort ∈ {1, 2, . . . , 10}

Hypotheses

1. Exact matching performs worst.

2. There exists an Lshort value where length-specific matching
performs substantially better than all other runs.

134

Table 7.6.: Evaluation Task: Simple Path Matching Benchmarking

Name Simple Path Matching Benchmarking
Test Type Benchmarking
Data Chom

Prerequisites Standard query language and processor; Adaptions for custom path
matching logic

Details

• Baseline: IR system implementation which ignores path con-
ditions

• Simplified path edit distances: Modified baseline implemen-
tation using editcostgen (equation 4.5) and the parameters
defined in table 4.3 for all operations

Hypotheses The path edit distance approach performs better than the baseline.

other aspects demand for more flexible test data, though. We therefore cover them with
a separate evaluation task (cf. table 7.7) which is more vaguely defined, however.

A problem which remains unanswered in both evaluation tasks is that of identifying an
optimal configuration of the cost functions used (i.e. the base cost and repetition factors
for the various path edit operations). We presume that looking for such a configuration
is pointless as long as the basic questions regarding our improvement approaches have
not yet been answered. Hence we postpone this aspect until after the above evaluations
have been performed and analysed.

7.1.4. Implicit structural hint matching

Term Proximities

For our term proximity proposal (cf. sec. 4.3.1), the first aspect to evaluate is whether
proximity levels as we have defined them actually correlate to relevance. Ideally, prox-
imity level 1 corresponds to the highest relevance, level 2 to a lower relevance, and so
on. We describe an according evaluation task in table 7.8. If they do not, we have to
analyse whether changing the order of proximity levels or the addition and/or removal
of proximity levels affects this result. In addition we propose to benchmark various
proximity implementations as defined in table 7.9. Even in case we do not detect a
significant correlation in the first evaluation task, this benchmarking should still yield
interesting results concerning the comparison of various approaches to term proximity.

135

Table 7.7.: Evaluation Task: Enhanced Path Matching Benchmarking

Name Enhanced Path Matching Benchmarking
Test Type Benchmarking
Data Potentially Chet

Prerequisites Standard query language and processor; Adaptions for custom
path matching logic; Index implementation supporting our refer-
ence handling solution; TACA detection logic

Details

• Baseline: The simplified path edit distance implementation
from table 7.6

• Enhanced path edit distances: Modified implementation us-
ing the enhanced cost function shown in equation 4.7 with
the paremeters as suggested on page 77

• Simple indexing: Modified implementation which additionally
uses an index which does not differentiate child elements and
attributes

• Enhanced indexing: Modified implementation which ad-
ditionally indexes references; here various Nmax-refs and
Nmax-ref-depth values (1, 5, 10) should be used.

• TACA detection: Modified implementation which uses an
enhanced index that enables runtime TACA detection and
adequate detection rule sets

Hypotheses Matching quality improves with each modification.

Table 7.8.: Evaluation Task: Relevance/Proximity Level Correlation

Name Relevance/Proximity Level Correlation
Test Type Correlation
Data Chom (Queries with more than one keyword)
Prerequisites Statistical tools; Proximity level calculation logic
Details Test, if there exists a statistical correlation of relevance assessments

and proximity levels
Hypotheses There is a significant correlation between a fragment’s relevance and

the proximity level of pairs of keywords used in the query: Frag-
ments containing term pairs on proximity level 1 have the highest
relevance, fragments with pairs on level 2 the second-highest rele-
vance, and so on.

136

Table 7.9.: Evaluation Task: Proximity Benchmarking

Name Proximity Benchmarking
Test Type Correlation
Data Chom

Prerequisites Standard query language and processor; Adaptions for custom term
proximity logic

Details

• Baseline: Implementation not regarding term proximities at
all

• Document-level proximity: Implementation treating XML
documents as flat and employing MinCover proximity of term
across the entire document; scores are attributed equally to
all elements in the document (i.e. does not help to choose re-
sult fragment within a document, but only to rank fragments
of different document against each other).

• Within-element proximity: Implementation using MinCover
proximity within an element’s recursive content; the score is
attributed to the element whose recursive content is looked
at.

• Edge-counting proximity: Implementation using edge-
counting proximity; scoring is done according to equation
4.11.

• Level-based proximity: Implementation using our proximity
level-based measure and scoring as defined on page 88.

Hypotheses

1. The baseline approach performs worse than all other ap-
proaches (potentially with the exception of document-level
proximity).

2. Within-element and edge-counting proximity each perform
better than baseline and document-level proximity.

3. Level-based proximity performs best.

137

Table 7.10.: Evaluation Task: RIF Benchmarking

Name RIF Benchmarking
Test Type Benchmarking
Data Chom

Prerequisites Standard query language; Particular query processor support for
length-based heuristics; Adaptions for custom RIF logic; TACA
detection logic

Details

• Baseline: IR engine described in [Dop07] using title and inline
structural patterns.

• RIF variant: Modified baseline engine using RIFs to finetune
scores

Hypotheses The RIF variant performs significantly better than the baseline
approach.

Length-based heuristics (RIFs)

The Relevance Influence Factor (RIF) proposal in section 4.3.2 is comparatively diffi-
cult to evaluate: We need a baseline implementation featuring a length-based heuristic
and an appropriate configuration of collection-specific RIF factors; for example, the im-
plementation of support links in [RWdV06] appears suitable. In the following we thus
assume that this implementation is used for evaluation. Additionally we need to analyse
the collection used to define RIF factors for elements matching the support links. Based
on this, we can then adapt the baseline implementation to modify scores using RIF
factors and benchmark the modified implementation against the baseline. Table 7.10
summarises this evaluation task.

7.1.5. Result Selection

Testing the result selection logic (RSL) we have defined in section 5.3 is a special problem:
If we use common existing metrics such as the XCG metric, we cannot obtain meaningful
results, as the metric assumes one particular result selection model – which is different
from ours – to be ideal. If we use a custom metric adhering to our RSL rules, on the
other hand, we cannot obtain meaningful results, either, as this reduces evaluation to a
mere functional test. In consequence, an actual evaluation of RSL is impossible per se.
Instead, scenario-specific user models need to be created, based on which we can then
configure or adapt our RSL. This goes beyond the scope of this thesis, however, so we
restrict ourselves to referring to on-going work1 in this area.

1The INEX workshop, for example, pursues such endeavours (on a broader scale) in its use case track;
cf. [WGE06] for pointers.

138

7.2. Summary

In this chapter we have discussed which aspects of our XML Retrieval concept require
evaluation and how this evaluation is to be performed. We have employed the evaluation
framework which we have introduced in the previous section and consequently defined
a set of evaluation tasks. Element types we evaluate by testing their correlation with
relevance assignments and by benchmarking variants of our type-specific target scoring
proposal. To evaluate condition types we also conduct benchmarks with various weight-
ing schemes both for our fixed static and fixed dynamic weighting strategies. In the
context of explicit structural hints we benchmark our name matching solution against
simplified name matching approaches and define two benchmarking tasks to evaluate
path matching. For implicit structural hints we first evaluate the correlation of our
proximity levels to relevance assignments; this serves to finetune our set of proximity
levels and their order. We then benchmark several term proximity proposals against our
own solution to determine whether our solution improves retrieval quality. In the same
manner we evaluate our improvement proposal for length-based heuristics.

The only aspect we cannot evaluate is our result selection logic (RSL). Unlike other
aspects, evaluating result selection requires to have a normative user model to define
the “right” system behaviour. This model is a part of the quality metric as well as a
part of the logic which the model is used to evaluate. This reduces the evaluation of any
RSL to a mere functional test, if the same model is, indeed, used for both the RSL and
the quality metric, and otherwise produces meaningless results, only. Hence we restrain
from proposing an evaluation task for our RSL and instead refer to the ongoing research
on appropriate user models.

139

Part IV.

Conclusions

140

8. Conclusions & Future Work

8.1. Conclusions

The overall goal of this thesis was to explore how information on the document structure
can be exploited to improve XML Retrieval quality. To operationalise this goal, we have
defined three subordinate goals: the design of a conceptional framework, the proposal
of improvements, and – partially – their evaluation. The first goal is motivated by a
general problem we perceive in current XML Retrieval research: There exist numerous
publications addressing XML Retrieval which contain many interesting ideas. Many
of these originate in the INitiative for the Evaluation of XML Retrieval (INEX) which
provides a forum for researchers and infrastructure such as a query language, test col-
lections, and quality metrics. Unfortunately, most of these publications try to address
XML Retrieval as a whole and without a clear conceptional model. We believe that this
entails two issues: Firstly, due to the lack of distinct, agreed-upon conceptional features,
it is difficult to compare, reuse, combine, and extend existing ideas on XML Retrieval.
Secondly, as there is no up-front restriction of the scope, researchers tend to build core
aspects of their proposals on very specific assumptions which only hold in particular
scenarios; thus their approaches become inflexible which makes it difficult to generalise
existing ideas.

Hence we have devised the XML Retrieval process as a conceptional model for XML
Retrieval. It features a sequence of logical phases, each of which we have refined into
clearly distinct activities. This addresses the first of the two issues named above (lack of
distinct features). Nonetheless, we do not claim this model to be the perfect solution. On
the contrary, we intend our model to be a first step which provokes critical discussion and
the creation of alternative models. To address the second issue (unjustified assumptions),
we have identified a set of environmental properties which are of concern to XML
Retrieval systems. We have then defined several use cases to explore likely configurations
of these properties. Based on this, we have finally decided which general assumptions we
can make without impacting the applicability of our concepts and which aspects must be
configurable. As a consequence, we believe that our concepts apply to a broader range
of scenarios than most existing proposals.

For our second goal, the proposal of improvements, our conceptional framework also
provided the foundation. The distinction of logical phases and their refinement into ac-
tivities corresponds to a divide-and-conquer strategy. This strategy enables us to analyse
activity by activity and assess its status quo in XML Retrieval research. By doing so
we identify improvement potentials and derive according solution proposals. The result-
ing proposals each address specific improvement potentials and build on existing ideas

141

as opposed to reinventing the wheel. Our overall framework ensures that the various
proposals integrate well and complement each other. However, which of our proposals
actually do provide a benefit regarding retrieval quality will have to be determined by
experimental evaluations. We even expect that most proposals perform rather poorly at
first and that several rounds of refinements – based on the insights gained by evaluation
runs – are required to adjust them well. As one example, consider our term proximity
approach: We believe that the concept of having multiple proximity levels plus within-
level refinements is far superior to existing techniques; we also believe, however, that
our initial set of proximity levels and their order is unlikely to be the optimal (or even
a good) choice.

Therefore only with our third goal things fall into place: We describe which improve-
ment proposals we need to evaluate and which aspects of each proposal we must consider,
in particular. By working through the evaluation tasks which we have defined and check-
ing them against our hypotheses we should be able to generate a sufficient data base to
adjust our proposals. One challenge still remaining, though, is to assemble a prototype
IR system implementation which accommodates our proposals: We have merely stated
requirements for crucial implementation aspects such as indexing and only marginally
accounted for efficiency, so these aspects still have to be addressed in the future. Apart
from that, the course of our work has inspired a far greater number of ideas than we were
able to thoroughly elaborate within the limits of our scope and hence omitted. Also, for
most of our improvement proposals further extensions come to mind. In the remainder
of this chapter we thus provide a brief summary of ideas which we consider worthwhile
to tackle in the future.

8.2. Future Work

We have introduced two interpretations of target conditions: a name-based and
granularity-based interpretation. This already goes beyond the name-centred point of
view XML Retrieval research has grown used to taking. Yet we propose to analyse
in a broader manner what other factors apart from a tag name (or maybe derived
from it) the user might want to express. Similarly, we should reconsider, if the three
classes of element types we have defined are sufficient, supported by the insights gained
by according evaluation runs. For example, a fourth class for referencing elements
(like <ref>, <link>, <url>, <figure>) may be useful to account for the additional
metadata they provide. To practically use element types we also need an (automated)
classification technique. For this we should also consider to support context-aware
classifications. A <title> element, for example, can have quite a different meaning
when used as a child element of a <section> or a <person> element: In the former case
it would likely contain a section heading, in the latter case a person’s academic degrees.

Another idea which we deem useful to integrate is schema-level matching: Instead of
(or in addition to) matching names and paths of each element in a document on the
instance level, we can try to perform parts of the matching logic on the schema level. This
may be feasible for name matching and path matching, in particular. Schema matching

142

techniques could also be valuable in automatically generating substitution groups for
homogeneous collections with several schemas. Another idea in this context is to define
meta-modellings: A meta-modelling describes one particular real-world phenomenon; for
example, on different levels of abstraction, such phenomena may be an n:m relationship,
a value range, or a section title. At indexing time we can analyse element structures
which belong to one particular modelling variant and assign them to the corresponding
meta-modelling. For queries we can either do the same (detect the meta-modelling based
on a given specific modelling) or design a query language which solely operates on the
meta-level. We can also use schema-level information for weighting and other activities.
The main aim is to increase processing efficiency.

Regarding term proximities, we have already proposed to further refine our proximity
level approach in section 4.3. In particular, terms occurring in attributes and attribute
values should be handled explicitly. Also the consideration of element length and type
may lead to improvements; we could weight the crossing of proximity levels based on
length and type, for example. Similar ideas apply for our Relevance Influence Model
(RIM): We may define the size of influence regions dynamically based on factors such
as element lengths, types, and maybe target scores. Another idea is to introduce a link-
based model similar to web search engines: Elements which have many other elements
referencing them may have a greater influence region or receive a score bonus. Scoring in
general we may enhance by considering statistical correlations of content and structure;
for example, if a keyword term x predominantly occurs in elements with the tag name
y, we might be able to exploit this information.

Other ideas are inspired by issues we expect to occur in practical XML IR systems:
One such issue is error handling. We have assumed documents to be always well-formed
and potentially even valid regarding some schema. As we know from traditional IR
domains such as web search, documents (e.g. HTML pages) commonly contain syntactic
errors; we believe that the same kinds of errors are likely to occur in XML documents as
well. Hence we need techniques for exploiting structural properties even for erroneous
documents. Another issue is that content in XML documents is often not purely data-
centric or document-centric, but mixed. So far we have only taken into account the
document-centric parts. If we manage to identify data-oriented structures (such as the
header information in a book or article), we may be able to use it as a source of additional
metadata on the contents of documents or even fragments. This also holds for comments
used in XML files which we can potentially use as metadata as well. Beyond this there
are many more issues (such as atomic value handling, string representations of XML
fragments, . . .) which we believe can help us in further improving XML Retrieval. In
other words, there are many interesting challenges still awaiting to be approached!

143

Appendix

144

A. Ehrenwörtliche Erklärung
(In German)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Christoph R. Hartel
Kaiserslautern, im November 2007

145

B. Notations

Table B.1.: Overview of formal entities

Entity Definition
Multi-Set A multi-set is an arbitrary collection of values.
Set A set is a duplicate-free multi-set; we denote it by curly brackets,

e.g. {x, y, z}.
List A list is an ordered multi-set of values. We employ the same

notation as for sets.
Tuple A tuple is a list of values which has an arbitrary but fixed length;

tuples are denoted by angle brackets, e.g. 〈x, y, z〉.
Interval An interval is a subset of R which contains every value in between

a ∈ R and b ∈ R: (a, b) denotes the open interval from a to b (i.e.
the interval excluding a and b), [a, b] denotes the closed interval.
Half-open intervals are denoted by (a, b] and [a, b), respectively.

Function We distinguish the declaration and specification of functions: The
former only defines the name, domain, and range of the function,
whereas the latter specifies how input values are transformed into
output values. We denote a function definition in arrow notation:
For example, div : N≥1 × N≥1 −→ R≥1 defines a function named
“div” which takes two parameters with the domain N≥1 and maps
them to a value in the range R≥1. If the range is not a single
value, but multi-set of values in X, we denote this as Xn. A
function specification we either provide in textual form or denote
it as an equation; in the above example, the specification might be
div(a, b) = a

b
.

146

Table B.2.: Overview of mathematical sets

Set Definition
N≥0 The set of all natural numbers greater than or equal to zero, i.e.

{0, 1, 2, . . .}. We restrain from using N as notation to avoid confu-
sion over the inclusion of zero.

N≥1 The set of all natural numbers greater than or equal to one, i.e.
{1, 2, . . .}.

R The set of all real numbers.
R≥0 The set of all real numbers greater than or equal to zero, i.e.

{r ∈ R : r ≥ 0}.
R≥1 The set of all real numbers greater than or equal to one, i.e.

{r ∈ R : r ≥ 1}.

147

Table B.3.: Overview of symbols and general notations

Symbol Definition
↓ A variable which has been defined, that is, it has been assigned a

value.
↑ A variable which is still undefined. For example, a variable which

we have declared, but to which we have not yet assigned a value.
⊥ A null value. Please note that we distinguish between variables

being undefined and a variables having a null value: To illustrate
this, consider the real-world example of a database storing user
records. Each record includes the user’s telephone number among
other contact details. If we add a new user without entering any
data, the telephone number is undefined (↑), that is, we do not
know the user’s telephone number. Once we enter the user’s data,
all fields including the telephone number are defined (↓). If the user
in question does not have a telephone number, however, we use the
null value (⊥) to indicate this.

x+ y The addition of two arbitrary numbers x, y ∈ R. For example,
41 + 1 = 42.

x− y The subtraction of two arbitrary numbers x, y ∈ R. For example,
44− 2 = 42.

x · y The multiplication of two arbitrary numbers x, y ∈ R. For example,
21 · 2 = 42.

x : y The division of two arbitrary numbers x, y ∈ R with y 6= 0. For
example, 84 : 2 = 42.

abs(x) The absolute value of an arbitrary number x ∈ R. For example,
abs(−42) = abs(42) = 42.

|A| The length of an arbitrary collection A. For example,
| {1, 2, . . . , 42} | = 42.

A−B The subtraction of two arbitrary sets A and B. For example,
{42, 43, 44} − {43, 44} = {42}.

148

C. Query Language Grammars

In section 3.3 we have defined the CAS-QL query language and CAS-QLX as an extension
to it. In the following two sections we provide the context-free grammars GCAS-QL and
GCAS-QLX for CAS-QL and CAS-QLX, respectively. We state a context-free grammar as
a four-tuple 〈V,Σ, s, R〉 consisting of a set of variables V , a set of terminal symbols Σ,
a start symbol s ∈ V , and a set of production rules R [Wik07].

C.1. CAS-QL Grammar

• VCAS-QL = { 〈query〉, 〈cond〉, 〈keyword-cond〉, 〈support-cond〉, 〈target-cond〉,
〈first-path-expr〉, 〈path-expr〉, 〈path-delim〉, 〈target-expr〉, 〈term〉, 〈letter〉, 〈digit〉
}

• ΣCAS-QL = {a, b, . . . , z, 0, . . . , 9, /, -, :, >, , , .}

• sCAS-QL = 〈query〉

• RCAS-QL is given by the following rules:

〈query〉 → 〈cond〉 [〈query〉]
〈cond〉 → (〈keyword-cond〉 | 〈support-cond〉 | 〈target-cond〉) [, w e i g
h t = (0 . (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) | 1 . 0)]
〈keyword-cond〉 → 〈term〉
〈support-cond〉 → s u p : 〈first-path-expr〉 | s u p p o r t : 〈first-path-
expr〉
〈target-cond〉 → t g t : 〈target-expr〉 | t a r g e t : 〈target-expr〉
〈first-path-expr〉 → / 〈term〉 [〈path-expr〉]
〈path-expr〉 → 〈path-delim〉 〈term〉 [〈path-expr〉]
〈path-delim〉 → /
〈target-expr〉 → 〈term〉 | (0 | 1) . 〈digit〉
〈term〉 → 〈letter〉 | 〈digit〉 | - | 〈term〉
〈letter〉 → a | b | . . . | z
〈digit〉 → 0 | 1 | . . . | 9

C.2. CAS-QLX Grammar

• VCAS-QLX = VCAS-QL ∪ { 〈atomic-cond〉, 〈single-cond〉, 〈op〉, 〈preds〉, 〈pred〉,
〈comp-op〉 }

149

• ΣCAS-QLX = ΣCAS-QL ∪ {=, <, @, (,), [,], &, |}

• sCAS-QLX = sCAS-QL

• RCAS-QLX contains the rules defined for RCAS-QL; in addition, the following rules
replace and extend the according rules in RCAS-QL:

〈cond〉 → 〈atomic-cond〉 | (〈atomic-cond〉)
〈atomic-cond〉 → 〈single-cond〉 | 〈single-cond〉 〈op〉 〈single-cond〉
〈single-cond〉 → (〈keyword-cond〉 | 〈support-cond〉 | 〈target-cond〉)
〈op〉 → & & | | |

〈first-path-expr〉 → / 〈term〉 [〈preds〉] [〈path-expr〉]
〈path-expr〉 → 〈path-delim〉 〈term〉 [〈preds〉] [〈path-expr〉]
〈preds〉 → [〈pred〉 [〈preds〉]]
〈pred〉 → 〈comp-op〉 〈term〉
〈comp-op〉 → =| < | >| > =| < =
〈path-delim〉 → / | // | @| - >

150

D. Glossary

Aggregation Result compaction technique; re-
turns the parent element instead
of several relevant children.

112

Aggregation threshold Controls when aggregation is per-
formed based on the ratio of rel-
evant child elements to all child
elements.

113

Attribute Consists of a name and optional
value; describes an XML element.

13

Authoritative model Model for result set generation
which only includes elements with
a non-zero target score in the re-
sult set. An alternative is the
semi-authoritative model.

109

Axis Relationship between two XML
elements, e.g. parent-child; stan-
dard axes are defined by XPath
[CD99].

14

Base cost Initial cost value for path edit op-
erations; the base cost is modi-
fied by a repetition factor among
other factors.

76

Benchmarking Experimental comparison of a
baseline IR system implementa-
tion with a modified implementa-
tion. Also see correlation testing.

118

Bi-directional propagation Score propagation technique
which combines upwards propaga-
tion and downwards propagation,
i.e. considers both ancestor and
descendant elements.

102

Collection Arbitrary set of documents; used
by an IR system to evaluate
queries on.

15

151

Constraint A query condition which is evalu-
ated strictly.

11

Content score Aggregates direct score, non-
propagatable score, and context
score; computed during final
score calculation.

110

Content-and-Structure Retrieval Most enhanced XML Retrieval
variant; considers keywords, sup-
port conditions, and target condi-
tions. Also see Content-only Re-
trieval.

19

Content-only Retrieval Simplified XML Retrieval variant
which only considers keywords,
but no support conditions or tar-
get conditions.

19

Context elements An element’s ancestors, descen-
dants, siblings, and all elements
it references or is referenced by.

56

Context score The score which an element re-
ceives based on its context ele-
ments’ scores, but independently
of its direct score.

56

Correlation testing Experimental evaluation tech-
nique to test whether certain vari-
ables exhibit a statistical correla-
tion.

118

Data cleaning Process of identification and cor-
rection of anomalies in a given
data set [Har06]; involves the
handling of duplicates.

25

Data-centric fragment An XML fragment which de-
scribes entities in a key/value
fashion; also see document-centric
fragment.

23

Direct content The textual content of an element
excluding its tag name, attribute
names and values and its descen-
dant elements.

15

Direct full content The tag name of an element, its
attribute names and their respec-
tive values, and its direct content,
in this order.

15

152

Direct score The score which an element re-
ceives exclusively based on its di-
rect content.

56

Document ID Uniquely identifies a document. 23
Document order Order of nodes in an XML docu-

ment tree; defined by the order in
which the corresponding elements
appear in an XML document.

13

Document space The set of all documents of an
arbitrary IR query on which the
query is evaluated; denoted as D.

12

Document-centric fragment An XML fragment which is dom-
inated by textual content, e.g. an
article; also see data-centric frag-
ment.

23

Downwards propagation Score propagation strategy which
considers only ancestor elements;
also see upwards propagation.

102

Duplicate One of several instances of a sin-
gle logical document in a collec-
tion.

25

Dynamic cost function Calculates the path edit cost; the
cost of operations depends on
characteristics of the paths not
just on the operators used.

75

Effort-precision Measures how much effort a user
needs to spend in order to attain
a particular gain value. Also see
eXtended cumulated gain.

122

Element Entities in an XML document;
may contain other elements, at-
tributes, and textual content.

13

Element space Set of all elements in the fragment
space; denoted as E .

15

Element type Group of elements with common
properties such as the tag name
semantics.

47

Evaluation run One execution of selected queries
on a particular test collection us-
ing a defined implementation and
particular configuration settings.

125

153

Evaluation task Addresses the evaluation of one
concise aspect of XML Retrieval,
typically an improvement pro-
posal; defines how to test the as-
pect, which test collections to run
the evaluation on, and what the
expected outcomes are.

125

Excessive element Path component which occurs in
a support condition, but not in an
element which matches it.

64

Expanded name An element or attribute name in-
cluding a reference to its names-
pace.

72

Explicit condition A query condition which is sup-
plied by the user, e.g. as part of
the query string; also see implicit
condition.

18

eXtended cumulated gain Adaption of cumulated gain met-
rics to XML Retrieval; focusses
on the cumulated benefit a user
can attain by looking at the first
i ranks of a result set.

121

Extended score tuple Tuple consisting of the direct
score, non-propagatable score,
target score, and context score.
Also see simplified score tuple.

58

eXtensible Markup Language Popular generic document format
which features an explicit logical
structure and metadata.

13

Fragment Arbitrary subtree of an XML doc-
ument; unlike an element it re-
flects the nesting structure of
XML documents.

15

Fragment space Set of all fragments belonging to
documents in the document space.

15

Gain-recall Ratio of cumulated gain that is
obtained at a particular rank to
the total ideal gain that can be
archived for the fragments in the
collection used. Also see eX-
tended cumulated gain.

122

154

Granularity Determines how “fine-grained” an
XML fragment is; there exist var-
ious granularity measures.

27

Heterogeneity Property of a document collection
which expresses that documents
in the collection contain the var-
ious kinds of content; opposite of
homogeneity.

25

Hint A query condition which is evalu-
ated vaguely.

11

Homogeneity Property of a document collec-
tion which expresses that all doc-
uments in the collection contain
the same kind of content; oppo-
site of heterogeneity.

25

Ideal gain vector Vector of gain values which are
obtained by a perfect result
set. Also see eXtended cumulated
gain.

121

Ideal result list Set of all fragments in the frag-
ment space with a non-zero rele-
vance, ordered by decreasing rele-
vance. Also see ideal gain vector.

121

Implicit condition A query condition which is gen-
erated by the IR system; also see
explicit condition.

18

Influence region Set of elements which we consider
to calculate an element’s context
score; relies on proximity levels.

107

Information Retrieval Process of informing a user on
the existence (or non-existence)
and whereabouts of documents
and/or document parts.

10

Instability The change frequency of a docu-
ment collection.

26

Keyword Condition on the content of doc-
uments; a keyword consists of ex-
actly one term in the term space.

18

155

Local name Part of a name in XML which re-
mains after stripping the names-
pace reference; also see expanded
name.

73

Missing element Path component which we have
to insert into the path of a sup-
port condition to match a partic-
ular element’s path.

64

Modelling variant One particular way of modelling
a given real-world phenomenon.

59

Namespace Provides a vocabulary of element
and attribute names to enable
reuse and ease the creation of uni-
form XML documents.

14

Near-misses Fragments in the result set which
are imperfect matches, but have
a high proximity to perfect
matches.

119

Non-propagatable score A score assigned to an element e
which must not be propagated to
other elements.

57

Normalised cumulated gain An eXtended cumulated gain
value which has been normalised
to the [0, 1]; enables comparison
of gain values across different doc-
uments.

121

Overlap The containment of fragments in
other fragments.

19

Overlap removal Result compaction technique; en-
sures that no overlapping frag-
ments are returned.

112

Path component Part of an element path which
corresponds to one node in an
XML document tree.

68

Pre-propagation Scoring of an element which can-
not be restricted to an element’s
direct content and thus results in
a non-propagatable score.

57

156

Precision Ratio of relevant to irrelevant re-
sult items returned by the IR sys-
tem.

119

Proximity level Represents one particular hierar-
chical relation of a pair of term
occurrences in an XML docu-
ment.

85

Query System of conditions on the doc-
uments (or document parts) to be
retrieved.

11

Ranking Synonym to result set ; stresses
the relevance-induced ordering of
results commonly employed.

111

Recall Ratio of relevant result items re-
turned to all result items in the
collection.

119

Recursive content The direct content of an element
collated with the direct contents
of all its descendants, in docu-
ment order.

15

Recursive full content The full content of an element col-
lated with the full contents of all
its descendants in document or-
der.

15

Reference A logical link from an XML el-
ement to a different element; ele-
ments may be located in the same
document or in different docu-
ments.

14

Relevance The degree r ∈ [0, 1] to which
a document fragment satisfies an
information need.

12

Relevance Influence Model Model for score propagation
based upwards propagation and
proximity levels.

105

Relevance threshold Only elements with a score higher
than this threshold are considered
relevant.

113

157

Repetition factor Penalises repeated applications of
an edit operation to a path; mod-
ifies the base cost of an edit oper-
ation.

76

Result compaction Techniques to compact the result
set; includes aggregation, special-
isation, and overlap removal.

112

Result set Set of fragments which we return
to the user in answer to his query;
typically ordered descendingly by
the scores of the fragments’ root
elements.

111

Retrieval quality Describes how well the results
generated by an IR system satisfy
the user’s information need; for-
mally, retrieval quality is a func-
tion of retrieved relevant frag-
ments and all fragments in a col-
lection.

8

Scenario One specific configuration of a set
of environmental properties of an
IR system.

22

Schema Defines constraints regarding
XML documents; a document
conforming to a schema is valid.

14

Score An IR system’s estimation of a
fragment’s relevance.

12

Score adjustment factor Expresses the semantic equiva-
lence of names used in a substi-
tution group.

66

Score duplication Assigning an element an overly
high score due to counting a
single relevance-affecting entity
(e.g. a term occurrence) multiple
times.

57

Score propagation The calculation of an element’s
context score sctx ∈ [0, 1] based
on the direct scores of its context
elements.

58

158

Semi-authoritative model Model for result set generation
which also includes elements with
a zero target score in the result
set. An alternative is the author-
itative model.

109

Simplified score tuple Tuple consisting of the direct
score and the context score. Also
see extended score tuple.

56

Specialisation Result compaction technique; re-
turns a single highly relevant
child element instead of several
relevant children or the parent el-
ement.

112

Specialisation threshold Controls when specialisation may
occur based on the score of sibling
and parent elements.

113

Stability The opposite of instability. 26
Static length biasing Modification of scores to reward

elements of a certain length; a
more enhanced solution is the use
of granularities.

100

Substituted element Path component which we have
to substitute by a different com-
ponent to match a particular ele-
ment’s path.

64

Substitution group Contains all names which may be
substituted for a given name to-
gether with a score adjustment
factor for each name.

66

Support conditions Expresses that certain patterns in
the document structure will ren-
der the corresponding part of the
document helpful regarding the
user’s information need; consists
of a path with optional predi-
cates.

18

Tag name candidate attribute Attribute which refines the se-
mantics of the corresponding el-
ement’s tag name.

79

159

Target condition Defines which parts of a docu-
ment to return to the user; con-
sists of a tag name or a granular-
ity value.

18

Target score Score resulting from the evalua-
tion of target conditions.

58

Target scoring Scoring of elements based on tar-
get conditions.

98

Term space Set of all terms (e.g. words, num-
bers) which occur in any docu-
ment in the document space.

15

Top k approach Restriction of the result set to a
fixed maximum size by returning
only the k most relevant elements.

27

Upwards propagation Score propagation strategy which
considers only descendant ele-
ments. Also see downwards prop-
agation.

102

Validity An XML document is valid, if
and only if it conforms to a given
schema.

14

Well-formedness An XML document is well-
formed, if and only if its nesting
structure observes the rules of the
XML specification.

14

XML document Ordered, labelled tree of XML el-
ements which is well-formed.

13

XML Retrieval Information Retrieval over XML
documents ; its main potentials
are the explicitness and gener-
icness of the logical document
structure and fragment-oriented
retrieval.

17

160

E. Bibliography

[AKJ05] Paavo Arvola, Jaana Kekäläinen, and Marko Junkkari. Query Evaluation
with Structural Indices. In Fuhr et al. [FLMK06], pages 134–145.

[AVF06] Faiza Abbaci, Jean-Baptiste Valsamis, and Pascal Francq. Index and
Search XML Documents by Combining Content and Structure. In
Hamid R. Arabnia, editor, International Conference on Internet Com-
puting, pages 107–112. CSREA Press, 2006.

[AYBB+07] Sihem Amer-Yahia, Chavdar Botev, Stephen Buxton, Pat Case, Jochen
Doerre, Mary Holstege, Jim Melton, Michael Rys, and Jayavel Shanmuga-
sundaram, editors. XQuery 1.0 and XPath 2.0 Full-Text 1.0, 2007. W3C
Working Draft 18 May 2007; Available from: http://www.w3.org/TR/

2007/WD-xpath-full-text-10-20070518.

[AYKM+05] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman.
Structure and Content Scoring for XML. In Klemens Böhm, Chris-
tian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and
Beng Chin Ooi, editors, VLDB 2005 Proceedings, pages 361–372. ACM,
2005.

[AYL06] Sihem Amer-Yahia and Mounia Lalmas. XML search: languages, INEX
and scoring. SIGMOD Record, 35(4):16–23, 2006.

[AYLP04] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit. FleX-
Path: Flexible Structure and Full-Text Querying for XML. In Gerhard
Weikum, Arnd Christian König, and Stefan Deßloch, editors, SIGMOD
2004 Proceedings, pages 83–94. ACM, 2004.

[BCF+07] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon, editors. XQuery 1.0: An XML
Query Language, 2007. W3C Recommendation 23 January 2007; Avail-
able from: http://www.w3.org/TR/2007/REC-xquery-20070123.

[Bei07] Michel Beigbeder. Structured Content-Only Information Retrieval Using
Term Proximity and Propagation of Title Terms. In Fuhr et al. [FLT07],
pages 29–36.

[BHLT06] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin, edi-
tors. Namespaces in XML 1.0 (Second Edition), 2006. W3C Recommen-

161

http://www.w3.org/TR/2007/WD-xpath-full-text-10-20070518
http://www.w3.org/TR/2007/WD-xpath-full-text-10-20070518
http://www.w3.org/TR/2007/REC-xquery-20070123

dation 16 August 2006; Available from: http://www.w3.org/TR/2006/

REC-xml-names-20060816.

[Bla07] Paul E. Black, editor. Dictionary of Algorithms and Data Structures
(Online), “Levenshtein distance”. U.S. National Institute of Standards
and Technology, 2007. From: Mikhail J. Atallah, editor. Algorithms
and Theory of Computation Handbook, CRC Press, 1999. Available
from: http://www.nist.gov/dads/HTML/Levenshtein.html (Accessed:
21 August 2007).

[BPM04] Paul V. Biron, Kaiser Permanente, and Ashok Malhotra, editors. XML
Schema Part 2: Datatypes – Second Edition, 2004. W3C Recommen-
dation 28 October 2004; Available from: http://www.w3.org/TR/2004/

REC-xmlschema-2-20041028.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François
Yergeau, editors. Extensible Markup Language (XML) 1.0 (Fourth Edi-
tion), 2006. W3C Recommendation 16 August 2006, edited in place
29 September 2006; Available from: http://www.w3.org/TR/2006/

REC-xml-20060816.

[BW01] Michael Barg and Raymond K. Wong. Structural Proximity Searching for
Large Collections of Semi-Structured Data. In CIKM 2001 Proceedings,
pages 175–182. ACM, 2001.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-
trieval. Addison Wesley, 1999.

[CCPC+06] Jennifer Chu-Carroll, John Prager, Krzysztof Czuba, David Ferrucci, and
Pablo Duboue. Semantic search via XML fragments: a high-precision
approach to IR. In SIGIR 2006 Proceedings, pages 445–452, New York,
NY, USA, 2006. ACM Press.

[CD99] James Clark and Steve DeRose, editors. XML Path Language (XPath) –
Version 1.0, 1999. W3C Recommendation 16 November 1999; Available
from: http://www.w3.org/TR/1999/REC-xpath-19991116.

[CEL+02] D. Carmel, N. Efraty, G. Landau, Y. Maarek, and Y. Mass. An Exten-
sion of the Vector Space Model for Querying XML Documents via XML
Fragments. In R. Baeza-Yates, N. Fuhr, and Y. Maarek, editors, Second
Edition of the XML and IR Workshop, volume 36, 2002.

[Chi02] Boris Chidlovskii. Schema extraction from XML collections. In JCDL
2002 Proceedings, pages 291–292. ACM, 2002.

[CKK+02] Sara Cohen, Yaron Kanza, Yakov Kogan, Yehoshua Sagiv, Werner Nutt,
and Alexander Serebrenik. EquiX – A search and query language for XML.

162

http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.nist.gov/dads/HTML/Levenshtein.html
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/1999/REC-xpath-19991116

Journal of the American Society for Information Science and Technology,
53(6):454–466, 2002.

[Cla05] Charles L. A. Clarke. Controlling overlap in content-oriented XML re-
trieval. In Ricardo A. Baeza-Yates, Nivio Ziviani, Gary Marchionini,
Alistair Moffat, and John Tait, editors, SIGIR 2005 Proceedings, pages
314–321. ACM, 2005.

[CLM+01] R. C. Connor, D. Lievens, P. Manghi, S. Neely, and F. Simeoni. Extracting
Typed Values from XML Data. In OOPSLA 2001 Workshop on Objects,
XML and Databases, 2001.

[CMKS03] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv.
XSEarch: A Semantic Search Engine for XML. In VLDB 2003 Proceed-
ings, pages 45–56, 2003.

[CMM+03] David Carmel, Yoëlle S. Maarek, Matan Mandelbrod, Yosi Mass, and Aya
Soffer. Searching XML documents via XML fragments. In SIGIR 2003
Proceedings, pages 151–158. ACM, 2003.

[CP02] Paolo Ciaccia and Wilma Penzo. Adding Flexibility to Structure Similarity
Queries on XML Data. In Troels Andreasen, Amihai Motro, Henning
Christiansen, and Henrik Legind Larsen, editors, FQAS 2002 Proceedings,
volume 2522 of LNCS, pages 124–139. Springer, 2002.

[CRF00] Donald D. Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt:
An XML Query Language for Heterogeneous Data Sources. In Suciu and
Vossen [SV01], pages 1–25.

[CRF03] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A
Comparison of String Distance Metrics for Name-Matching Tasks. In
Subbarao Kambhampati and Craig A. Knoblock, editors, IIWeb 2003
Proceedings, pages 73–78, 2003.

[CT94] William B. Cavnar and John M. Trenkle. N-Gram-Based Text Categoriza-
tion. In Proceedings of SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, pages 161–175, 1994.

[DG06] Ludovic Denoyer and Patrick Gallinari. The Wikipedia XML Corpus. In
Fuhr et al. [FLT07], pages 12–19.

[DJG+07] Steven DeRose, Ron Daniel Jr., Paul Grosso, Eve Maler, Jonathan Marsh,
and Norman Walsh, editors. XML Pointer Language (XPointer), 2007.
W3C Working Draft 16 August 2002; Available from: http://www.w3.

org/TR/2002/WD-xptr-20020816.

[Dop05] Philipp Dopichaj. The University of Kaiserslautern at INEX 2005. In
Fuhr et al. [FLMK06], pages 196–210.

163

http://www.w3.org/TR/2002/WD-xptr-20020816
http://www.w3.org/TR/2002/WD-xptr-20020816

[Dop06] Philipp Dopichaj. Element Retrieval in Digital Libraries: Reality Check.
In Trotman and Geva [TG06].

[Dop07] Philipp Dopichaj. Improving Content-oriented XML Retrieval by Apply-
ing Structrual Patterns. In ICEIS 2007 Proceedings, 2007.

[EDHJ06] Efthimis N. Efthimiadis, Susan T. Dumais, David Hawking, and Kalervo
Järvelin, editors. Proceedings of the 29th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval
(SIGIR 2006). ACM, 2006.

[EL00] Daniel Egnor and Robert Lord. Structured Information Retrieval using
XML. In Working Notes of the ACM SIGIR Workshop on XML and
Information Retrieval, 2000.

[Feg04] Leonidas Fegaras. XQuery Processing with Relevance Ranking. In Zohra
Bellahsene, Tova Milo, Michael Rys, Dan Suciu, and Rainer Unland,
editors, XSym 2004 Proceedings, volume 3186 of LNCS, pages 51–65.
Springer, 2004.

[FG00] N. Fuhr and K. Großjohann. XIRQL – An Extension of XQL for Informa-
tion Retrieval. In Ricardo Baeza-Yates, Norbert Fuhr, Ron Sacks-Davis,
and Ross Wilkinson, editors, Proceedings of the SIGIR 2000 Workshop on
XML and Information Retrieval. ACM, 2000.

[FG01] Norbert Fuhr and Kai Großjohann. XIRQL: A Query Language for In-
formation Retrieval in XML Documents. In W. Bruce Croft, David J.
Harper, Donald H. Kraft, and Justin Zobel, editors, SIGIR 2001 Proceed-
ings, pages 172–180. ACM, 2001.

[FG04] Norbert Fuhr and Kai Großjohann. XIRQL: An XML query language
based on information retrieval concepts. ACM Trans. Inf. Syst., 22(2):313–
356, 2004.

[FGKL02] Norbert Fuhr, Norbert Gövert, Gabriella Kazai, and Mounia Lalmas, edi-
tors. Proceedings of the First Workshop of the INitiative for the Evaluation
of XML Retrieval (INEX 2002), 2002.

[FHM05] Michael Franklin, Alon Halevy, and David Maier. From databases to
dataspaces: a new abstraction for information management. SIGMOD
Record, 34(4):27–33, 2005.

[FL06] Ingo Frommholz and Ray Larson. The Heterogeneous Collection Track at
INEX 2006. In Fuhr et al. [FLT07], pages 312–317.

[FLM03] Norbert Fuhr, Mounia Lalmas, and Saadia Malik, editors. Proceedings of
the Second INEX Workshop (INEX 2003), 2003.

164

[FLMK06] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Gabriella Kazai, editors.
Advances in XML Information Retrieval and Evaluation, 4th International
Workshop of the Initiative for the Evaluation of XML Retrieval (INEX
2005), Revised Selected Papers, volume 3977 of LNCS. Springer, 2006.

[FLMS05] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Zoltán Szlávik, editors.
Advances in XML Information Retrieval, Third International Workshop of
the Initiative for the Evaluation of XML Retrieval (INEX 2004), Revised
Selected Papers, volume 3493 of LNCS. Springer, 2005.

[FLT07] Norbert Fuhr, Mounia Lalmas, and Andrew Trotman, editors. Compara-
tive Evaluation of XML Information Retrieval Systems, 5th International
Workshop of the Initiative for the Evaluation of XML Retrieval (INEX
2006), Revised Selected Papers, volume 4518 of LNCS. Springer, 2007.

[FML03] Norbert Fuhr, Saadia Malik, and Mounia Lalmas. Overview of the Ini-
tiative for the Evaluation of XML retrieval (INEX) 2003. In Fuhr et al.
[FLM03], pages 1–11.

[GAFG02] Norbert Gövert, Mohammad Abolhassani, Norbert Fuhr, and Kai Großjo-
hann. Content-oriented XML retrieval with HyRex. In Fuhr et al.
[FGKL02], pages 26–32.

[Gev04] Shlomo Geva. GPX – Gardens Point XML IR at INEX 2004. In Fuhr
et al. [FLMS05], pages 211–223.

[Gev05] Shlomo Geva. GPX – Gardens Point XML IR at INEX 2005. In Fuhr
et al. [FLMK06], pages 240–253.

[GHT06] Shlomo Geva, Marcus Hassler, and Xavier Tannier. XOR – XML Oriented
Retrieval Language. In Trotman and Geva [TG06].

[GK02] Norbert Gövert and Gabriella Kazai. Overview of the Initiative for the
Evaluation of XML retrieval (INEX) 2002. In Fuhr et al. [FGKL02], pages
1–17.

[Goo02] Michel Goossens. Writing Documentation Using DocBook – Using Doc-
Book at CERN, 2002. Available from: http://xml.web.cern.ch/XML/

goossens/dbatcern (Accessed: 08 October 2007).

[GSBS03] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents. In Alon Y.
Halevy, Zachary G. Ives, and AnHai Doan, editors, SIGMOD 2003 Pro-
ceedings, pages 16–27. ACM, 2003.

[Har06] Christoph R. Hartel. Data Cleaning und Record Matching,
2006. Seminar Information Integration, Research Group Databases

165

http://xml.web.cern.ch/XML/goossens/dbatcern
http://xml.web.cern.ch/XML/goossens/dbatcern

and Information Systems, TU Kaiserslautern, Available from:
http://wwwdvs.informatik.uni-kl.de/courses/seminar/SS2006/

DokumenteExtern/Ausarbeitung08_Hartel.pdf, In German.

[HHW+04] Arnaud Le Hors, Philippe Le H’egaret, Lauren Wood, Gavin Nicol,
Jonathan Robie, Mike Champion, and Steve Byrne, editors. Document Ob-
ject Model (DOM) Level 3 Core Specification – Version 1.0, 2004. W3C
Recommendation 07 April 2004; Available from: http://www.w3.org/

TR/2004/REC-DOM-Level-3-Core-20040407.

[HPB03] Vagelis Hristidis, Yannis Papakonstantinou, and Andrey Balmin. Keyword
Proximity Search on XML Graphs. In Umeshwar Dayal, Krithi Ramam-
ritham, and T. M. Vijayaraman, editors, ICDE 2003 Proceedings, pages
367–378. IEEE Computer Society, 2003.

[JK02] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation
of IR techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[KL06] Gabriella Kazai and Mounia Lalmas. eXtended cumulated gain measures
for the evaluation of content-oriented XML retrieval. ACM Trans. Inf.
Syst., 24(4):503–542, 2006.

[KLdV04] Gabriella Kazai, Mounia Lalmas, and Arjen P. de Vries. The overlap
problem in content-oriented XML retrieval evaluation. In SIGIR 2004
Proceedings, pages 72–79, New York, NY, USA, 2004. ACM Press.

[KLP04] G. Kazai, M. Lalmas, and B. Piwowarski. INEX 2004 Relevance Assess-
ment Guide. In Fuhr et al. [FLMS05], pages 241–248.

[KMdRkS04] Jaap Kamps, Maarten Marx, Maarten de Rijke, and Börkur Sig-
urbjörnsson. Length normalization in XML Retrieval. In Mark Sanderson,
Kalervo Järvelin, James Allan, and Peter Bruza, editors, SIGIR 2004 Pro-
ceedings, pages 80–87. ACM, 2004.

[KMdRS02] Jaap Kamps, Maarten Marx, Maarten de Rijke, and Börkur Sig-
urbjörnsson. The Importance of Morphological Normalization for XML
Retrieval. In Fuhr et al. [FGKL02], pages 41–48.

[KMdRS05] Jaap Kamps, Maarten Marx, Maarten de Rijke, and Börkur Sig-
urbjörnsson. Structured queries in XML retrieval. In Otthein Herzog,
Hans-Jörg Schek, Norbert Fuhr, Abdur Chowdhury, and Wilfried Teiken,
editors, CIKM 2005 Proceedings, pages 4–11. ACM, 2005.

[KMdRS06] Jaap Kamps, Maarten Marx, Maarten de Rijke, and Börkur Sig-
urbjörnsson. Articulating information needs in XML query languages.
ACM Trans. Inf. Syst., 24(4):407–436, 2006.

166

http://wwwdvs.informatik.uni-kl.de/courses/seminar/SS2006/DokumenteExtern/Ausarbeitung08_Hartel.pdf
http://wwwdvs.informatik.uni-kl.de/courses/seminar/SS2006/DokumenteExtern/Ausarbeitung08_Hartel.pdf
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407

[LKK+06] Mounia Lalmas, Gabriella Kazai, Jaap Kamps, Jovan Pehcevski, Benjamin
Piwowarski, and Stephen Robertson. INEX 2006 Evaluation Measures. In
Fuhr et al. [FLT07], pages 20–34.

[LP06] M. Lalmas and B. Piwowarski. INEX 2006 Relevance Assessment Guide.
In Fuhr et al. [FLT07].

[LPT06] Miro Lehtonen, Nils Pharo, and Andrew Trotman. A Taxonomy for XML
Retrieval Use Cases. In Fuhr et al. [FLT07], pages 267–272.

[LR04] Mounia Lalmas and Thomas Rölleke. Modelling Vague Content and Struc-
ture Querying in XML Retrieval with a Probabilistic Object-Relational
Framework. In Henning Christiansen, Mohand-Said Hacid, Troels An-
dreasen, and Henrik Legind Larsen, editors, FQAS 2004 Proceedings, vol-
ume 3055 of LNCS, pages 432–445. Springer, 2004.

[LRM05] Wei Lu, Stephen E. Robertson, and Andrew MacFarlane. Field-Weighted
XML Retrieval Based on BM25. In Fuhr et al. [FLMK06], pages 161–171.

[LT07] M. Lalmas and A. Tombros. INEX 2002 – 2006: Understanding XML
Retrieval Evaluation. In DELOS Conference on Digital Libraries, 2007.

[LW75] Roy Lowrance and Robert A. Wagner. An Extension of the String-to-
String Correction Problem. J. ACM, 22(2):177–183, 1975.

[LYWS06] Xiaoguang Li, Ge Yu, Daling Wang, and Baoyan Song. Evaluating Inter-
connection Relationship for Path-Based XML Retrieval. In Karl Aberer,
Zhiyong Peng, Elke A. Rundensteiner, Yanchun Zhang, and Xuhui Li,
editors, WISE 2006 Proceedings, volume 4255 of LNCS, pages 506–511.
Springer, 2006.

[MAYKS05] Amélie Marian, Sihem Amer-Yahia, Nick Koudas, and Divesh Srivastava.
Adaptive Processing of Top-K Queries in XML. In ICDE 2005 Proceedings,
pages 162–173. IEEE Computer Society, 2005.

[MBF+90] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross,
and Katherine J. Miller. Introduction to WordNet: an on-line lexical
database. International Journal of Lexicography, 3(4):235–244, 1990.

[ME96] Alvaro E. Monge and Charles Elkan. The Field Matching Problem: Algo-
rithms and Applications. In Knowledge Discovery and Data Mining, pages
267–270, 1996.

[MHB06] Vojkan Mihajlovic, Djoerd Hiemstra, and Henk Ernst Blok. Vague Ele-
ment Selection and Query Rewriting for XML Retrieval. In Proceedings
of the sixth Dutch-Belgian Information Retrieval Workshop (DIR 2006),
pages 11–18, 2006.

167

[MM03] Y. Mass and M. Mandelbrod. Retrieving the most relevant XML compo-
nents. In Fuhr et al. [FLM03], pages 53–58.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. Cambridge University Press,
2008. Draft of 13 September 2007; Available from: http://www-csli.

stanford.edu/~hinrich/information-retrieval-book.html.

[MTLF06] Saadia Malik, Andrew Trotman, Mounia Lalmas, and Norbert Fuhr.
Overview of INEX 2006. In Fuhr et al. [FLT07], pages 1–11.

[Nav01] Gonzalo Navarro. A Guided tour to Approximate String Matching. ACM
Computing Surveys, 33(1):31–88, 2001.

[OT03] R. O’Keefe and A. Trotman. The Simplest Query Language That Could
Possibly Work. In Fuhr et al. [FLM03], pages 167–174.

[Pan04] Hanglin Pan. Relevance Feedback in XML Retrieval. In Wolfgang Lindner,
Marco Mesiti, Can Türker, Yannis Tzitzikas, and Athena Vakali, editors,
EDBT 2004 Workshops, volume 3268 of LNCS, pages 187–196. Springer,
2004.

[Peh06] J. Pehcevski. Relevance in XML retrieval: the user perspective. In Trot-
man and Geva [TG06].

[PL04] Benjamin Piwowarski and Mounia Lalmas. Providing consistent and
exhaustive relevance assessments for XML retrieval evaluation. In
David Grossman, Luis Gravano, ChengXiang Zhai, Otthein Herzog, and
David A. Evans, editors, CIKM 2004 Proceedings, pages 361–370. ACM,
2004.

[PMM07] Eugen Popovici, Gildas Ménier, and Pierre-François Marteau. SIRIUS
XML IR System at INEX 2006: Approximate Matching of Structure and
Textual Content. In Fuhr et al. [FLT07], pages 121–133.

[Pok93] Jaroslav Pokorný. Semantic Relativism in Conceptual Modeling. In Pro-
ceedings of the 4th International Conference on Database and Expert Sys-
tems Applications (DDEXA 1993), pages 48–55. Springer, 1993.

[PT05] Jovan Pehcevski and James A. Thom. HiXEval: Highlighting XML Re-
trieval Evaluation. In Fuhr et al. [FLMK06], pages 43–57.

[RHJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs, editors. HTML 4.01
Specification, 1999. W3C Recommendation 24 December 1999; Available
from: http://www.w3.org/TR/1999/REC-html401-19991224.

168

http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html
http://www.w3.org/TR/1999/REC-html401-19991224

[RS03] Yves Rasolofo and Jacques Savoy. Term Proximity Scoring for Keyword-
Based Retrieval Systems. In Fabrizio Sebastiani, editor, ECIR 2003 Pro-
ceedings, volume 2633 of LNCS, pages 207–218. Springer, 2003.

[RWdV06] Georgina Ramı́rez, Thijs Westerveld, and Arjen P. de Vries. Using small
XML elements to support relevance. In Efthimiadis et al. [EDHJ06], pages
693–694.

[Sch01] Torsten Schlieder. Similarity Search in XML Data using Cost-Based Query
Transformations. In WebDB 2001 Proceedings, pages 19–24, 2001.

[SHB05] Karen Sauvagnat, Lobna Hlaoua, and Mohand Boughanem. XFIRM at
INEX 2005: ad-hoc, heterogeneous and relevance feedback tracks. In Fuhr
et al. [FLMK06], pages 88–103.

[Sin01] Amit Singhal. Modern Information Retrieval: A Brief Overview. Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering,
24(4):35–43, 2001.

[SK05] Börkur Sigurbjörnsson and Jaap Kamps. The Effect of Structured Queries
and Selective Indexing on XML Retrieval. In Fuhr et al. [FLMK06], pages
104–118.

[SKdR04] Börkur Sigurbjörnsson, Jaap Kamps, and Maarten de Rijke. Mixture
Models, Overlap, and Structural Hints in XML Element Retrieval. In
Fuhr et al. [FLMS05], pages 196–210.

[SM00] Torsten Schlieder and Holger Meuss. Result Ranking for Structured
Queries against XML Documents. In DELOS Workshop: Information
Seeking, Searching and Querying in Digital Libraries, 2000.

[SMGL06] Ismael Sanz, Marco Mesiti, Giovanna Guerrini, and Rafael Berlanga Lla-
vori. rHeX: An Approximate Retrieval System for Highly Heteroge-
neous XML Document Collections. In Yannis E. Ioannidis, Marc H.
Scholl, Joachim W. Schmidt, Florian Matthes, Michael Hatzopoulos, Kle-
mens Böhm, Alfons Kemper, Torsten Grust, and Christian Böhm, edi-
tors, EDBT 2006 Proceedings, volume 3896 of LNCS, pages 1186–1189.
Springer, 2006.

[ST06] Ralf Schenkel and Martin Theobald. Structural Feedback for Keyword-
Based XML Retrieval. In Mounia Lalmas, Andy MacFarlane, Stefan M.
Rüger, Anastasios Tombros, Theodora Tsikrika, and Alexei Yavlinsky,
editors, ECIR 2006 Proceedings, volume 3936 of LNCS, pages 326–337.
Springer, 2006.

[SV01] Dan Suciu and Gottfried Vossen, editors. The World Wide Web and
Databases, Third International Workshop (WebDB 2000), Selected Pa-
pers, volume 1997 of LNCS. Springer, 2001.

169

[TBMM04] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn, editors. XML Schema Part 1: Structures – Second Edition, 2004.
W3C Recommendation 28 October 2004; Available from: http://www.

w3.org/TR/2004/REC-xmlschema-1-20041028.

[TG06] Andrew Trotman and Shlomo Geva, editors. Proceedings of the SIGIR
2006 Workshop on XML Element Retrieval Methodology, 2006.

[TI06] Krishnaprasad Thirunarayan and Trivikram Immaneni. Flexible Query-
ing of XML Documents. In Floriana Esposito, Zbigniew W. Ras, Donato
Malerba, and Giovanni Semeraro, editors, ISMIS 2006 Proceedings, vol-
ume 4203 of LNCS, pages 198–207. Springer, 2006.

[TL05] Andrew Trotman and Mounia Lalmas. The Interpretation of CAS. In
Fuhr et al. [FLMK06], pages 58–71.

[TL06] Andrew Trotman and Mounia Lalmas. Strict and vague interpretation of
XML-retrieval queries. In Efthimiadis et al. [EDHJ06], pages 709–710.

[TPL06] Andrew Trotman, Nils Pharo, and Miro Lehtonen. XML-IR Users and
Use Cases. In Fuhr et al. [FLT07], pages 274–286.

[TS04a] Andrew Trotman and Börkur Sigurbjörnsson. Narrowed Extended XPath
I (NEXI). In Fuhr et al. [FLMS05], pages 16–40.

[TS04b] Andrew Trotman and Börkur Sigurbjörnsson. NEXI, Now and Next. In
Fuhr et al. [FLMS05], pages 41–53.

[TW00] Anja Theobald and Gerhard Weikum. Adding Relevance to XML. In
Suciu and Vossen [SV01], pages 105–124.

[TW02] Anja Theobald and Gerhard Weikum. The Index-Based XXL Search
Engine for Querying XML Data with Relevance Ranking. In Chris-
tian S. Jensen, Keith G. Jeffery, Jaroslav Pokorný, Simonas Saltenis, Elisa
Bertino, Klemens Böhm, and Matthias Jarke, editors, EDBT 2002 Pro-
ceedings, volume 2287 of LNCS, pages 477–495. Springer, 2002.

[TZ07] Tao Tao and ChengXiang Zhai. An Exploration of Proximity Measures in
Information Retrieval. In Fabian Kaiser, Holger Schwarz, Mihály Jakob,
Wessel Kraaij, Arjen P. de Vries, Charles L. A. Clarke, Norbert Fuhr, and
Noriko Kando, editors, SIGIR 2007 Proceedings, pages 295–302. ACM,
2007.

[vR79] C. J. van Rijsbergen. Information Retrieval. Dept. of Computer Science,
University of Glasgow, 2nd edition, 1979. Available from: http://www.

dcs.gla.ac.uk/Keith/Preface.html.

170

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.dcs.gla.ac.uk/Keith/Preface.html

[vZ05] Roelof van Zwol. 3-SDR and Effective Use of Structural Hints. In Fuhr
et al. [FLMK06], pages 146–160.

[WGE06] Alan Woodley, Shlomo Geva, and Sylvia L. Edwards. What XML-IR Users
May Want. In Fuhr et al. [FLT07], pages 423–431.

[Wik07] Wikipedia. Context-free grammar — Wikipedia, The Free Encyclopedia,
2007. Available from: http://en.wikipedia.org/w/index.php?title=

Context-free_grammar&oldid=164265715 (Accessed: 13 October 2007).

[XP05] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest
LCAs in XML databases. In SIGMOD 2005 Proceedings, pages 527–538,
New York, NY, USA, 2005. ACM Press.

[XX07] Guangming Xing and Zhonghang Xia. Classifying XML Documents Based
on Structure/Content Similarity. In Fuhr et al. [FLT07], pages 342–353.

[ZD96] J. Zobel and P. Dart. Phonetic String Matching: Lessons from Information
Retrieval. In SIGIR 1996 Proceedings, pages 166–172, 1996.

171

http://en.wikipedia.org/w/index.php?title=Context-free_grammar&oldid=164265715
http://en.wikipedia.org/w/index.php?title=Context-free_grammar&oldid=164265715

	Contents
	List of Tables
	List of Figures
	Foundations
	Preliminaries
	Goals
	Notation and Terms
	Organisation

	Foundations of XML Retrieval
	Introduction
	Information Retrieval
	The eXtensible Markup Language
	XML Retrieval

	The XML Retrieval Process
	Use Cases
	Use Case Classification
	Use Cases

	Summary

	The XML Retrieval Process
	Query Specification and Weighting
	Criteria for Query Languages
	Requirements
	Classification by User
	Classification by Expressiveness

	Existing Query Languages for CAS Retrieval
	Query Language Definition
	Element Type Classification
	Weighting of Conditions
	Classification of Weighting Strategies
	Weighting Strategies

	Summary

	Query Evaluation
	Scoring of XML Fragments
	Explicit Structural Hints
	Problems
	Related Work
	Solution Approach

	Implicit Structural Hints
	Term Proximity
	Length-based Heuristics

	Summary

	Result Set Generation
	Target Candidate Determination
	Interpretation of Target Conditions
	Target Scoring

	Score Propagation
	Related Work
	Relevance Influence Model
	Final Score Computation

	Result Selection
	Related Work
	Result Selection Logic

	Summary

	Evaluation
	Evaluation Framework
	Evaluation Approaches
	Measuring XML Retrieval Quality
	Retrieval Quality Metrics
	Test Data Sets

	Evaluation Methodology
	Summary

	Evaluation Strategy
	Evaluation Tasks
	Element Type Classification
	Weighting Strategies
	Explicit structural hint matching
	Implicit structural hint matching
	Result Selection

	Summary

	Conclusions
	Conclusions & Future Work
	Conclusions
	Future Work

	Appendix
	Ehrenwörtliche Erklärung (In German)
	Notations
	Query Language Grammars
	CAS-QL Grammar
	CAS-QLX Grammar

	Glossary
	Bibliography

