|
I m [ECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

KEY-VALUE STORAGE ENGINES IN RELATIONAL DATABASES

STEFAN HEMMER

A thesis submitted in partial fulfillment for the degree of

Master of Science

in the
Fachbereich Informatik

AG Datenbanken und Informationssysteme

December 2016

Stefan Hemmer: Key-Value storage engines in relational databases, © December 2016

ABSTRACT

This thesis examines interpreted and generated implementations of in-memory tuple rep-
resentations and their impact on query processing. In recent years, the focus of Database
research has switched from mostly I/O-focused optimization efforts to the integration of
computational resources. Interpretation-based strategies, introduced to provide flexibil-
ity, create an overhead in terms of CPU time and memory consumption. Code generation
approaches can remove these cost and concurrently offer an additional level of optimiza-
tion through compilers.

The tuple preparation of Relational Database Management System utilizing embedded
key-value stores as storage engines, exhibits interpretational overhead that can be removed
with code generation approaches. In an effort to classify different approaches, this thesis
examined the structural differences of interpreted and pre-compiled in-memory tuple
representations. The impact of marshalling and unmarshalling data on the total query
processing effort was analyzed. In a series of experiments it was shown that pre-compiled
tuple preparation methods offer a higher throughput than interpreted approaches. Fur-
ther it was shown that in a Online Transactional Processing benchmark pre-compiled

tuple preparation has a positive impact on query processing.

iii

ZUSAMMENFASSUNG

Diese Master-Thesis untersucht interpretierte und generierte Implementierungen von in-
memory Tupel-Reprasentationen und ihren Einfluss auf die Anfrage-Verarbeitung. Der
aktuelle Fokus in der Datenbank-Forschung hat sich von I/O-Optimierungen hin zur
Integration von Rechenkapazitdt verschoben. Interpretations-abhédngige Strategien zur
Erhohung der Flexibilitdt verursachen einen Mehraufwand an CPU-Zeit und einen er-
hoéhten Speicherbedarf. Durch Code-Generierungs-Ansitze konnen diese Kosten reduziert
werden. Aufierdem erdffnen sie zusatzliche Moglichkeiten fiir
Compiler-Optimierungen.

In relationalen Datenbank-Management-Systemen, welche eingebettete Key-Value Stores
als Speichereinheit verwenden, weist die Vorbereitung von Tupeln einen solchen interpre-
tationsabhdngigen Mehraufwand auf, der durch Code-Generierungs-Ansatze beseitigt
werden kann. Um die Leistung der unterschiedlichen Ansédtze zu untersuchen, wurden
in dieser Thesis die strukturellen Unterschiede von interpretierter und generierter Tupel-
Vorbereitung betrachtet. Desweiteren wurde der Einfluss der Tupel-Vorbereitung auf die
Leistung eines Mehrzweckdatenbanksystems analysiert. Es konnte festgestellt werden,
dass mit vorkompilierten Ansédtzen der Tupel-Vorbereitung eine hdhere Verarbeitungs-
menge erzielt werden kann als mit interpretations-basierten. In einem Online Trans-
actional Processing Benchmark wurde schliefSlich bestitigt, dass vorkompilierte Tupel-

Vorbereitung einen positiven Einfluss auf die Anfrageverarbeitung hat.

iv

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially

because it produces objects of beauty.

— Donald E. Knuth [11]

ACKNOWLEDGEMENTS

I would like to take the opportunity and express my gratitude to all the people who
supported me during my Master Thesis.

First of all, I would like to thank my direct advisor M.Sc. Caetano Sauer, who offered
me advice and guidance, whenever I needed it. It was great working with him in a
motivational and friendly atmosphere.

Prof. Dr. Theo Harder I wish to thank for the great opportunity to work on highly
relevant and interesting topics in his department, not only during this thesis, but also in
the years before in my position as research assistant. Thank you for your inspiring advice
and discussions.

I would also like to thank Prof. Dr. Stefan Defdloch for his kindness and supportiveness
while being a mentor of my master studies at TU Kaiserslautern.

Finally, I would like to thank my family and my friends for their patience, understand-

ing and encouragement.

CONTENTS

1 INTRODUCTION
1.1 Motivation
1.2 Contribution o
2 BACKGROUND THEORY
2.1 Five-Layer System Model
2.1.1 StorageEngine o oo oL
2.1.2 Query Processing Engine
2.1.3 Interface between Query Processing and Storage Engine
2.2 Static vs. Dynamic Polymorphism
2.3 Compiler Optimizations
3 IN-MEMORY TUPLE IMPLEMENTATION DETAILS
3.1 Interpreted Representation,
3.2 Compiled Representation
3.2.1 struct Implementation
3.2.2 Static Polymorphism Implementation
4 EXPERIMENTS AND RESULTS
4.1 Environment
411 Key/valuestore.
4.1.2 System Specifications L o L L L
4.1.3 TPC-Cbenchmark
4.2 Impact of tuple preparation o L oL
4.3 Specialized Benchmarks
4.4 Static TPC-C Implementation
CONCLUSION

A APPENDIX

BIBLIOGRAPHY

Vi

10
13
14
17
19
19
23
23
24
30
30
30
30
31
31
37
43
45
48

49

LIST OF FIGURES

Figure 1

Figure 2

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Figure 9

Figure 10

Development of memory costs 2

TPC-H Query 1 performance of different query processing ap-

proaches 4
Five-layer DBMS architecture 5
Memory Latency of Intel®Xeon X5670 16

Simplified CPU profile of TPC-C benchmark execution on MariaDB 32
Simplified CPU profile of TPC-C benchmark execution on MariaDB 34
Average throughput (un)marshalling of TPC-C customer tuples . . 37
Average throughput of (un)marshalling of TPC-C customer tuples

without compiler optimizations 41
Average throughput of interpreted and compiled approaches for

tuples with different degrees 42
Average TPC-C throughputintpmC. 44

vii

LIST OF TABLES

Table 1
Table 2

Specification of Intel® Xeon X5670

Performance Counter Statistics of (un)marshalling tuples

viii

LISTINGS

Listing 1
Listing 2
Listing 3
Listing 4
Listing 5
Listing 6
Listing 7
Listing 8
Listing 9

Listing 10

Listing 11

Listing 12

Key-value Store API 5
Static neworder Update Implementation 20
Dynamic Row Implementation 20
Dynamic Field Implementation 21
Dynamic (Un)Marshalling Implementation 22
struct Tuple Implementation 24
struct Unmarshalling Implementation 24
STL tuple definition of a orderlinetuple 25

Recursive Unmarshalling Functions for a Standard Template Li-

brary (STL) Tuple 26
Abstraction of Compiler Output for Template-Based Unmarshalling

Functionality. o o 27
Recursive Unmarshalling Functions for a STL Tuple cont'd 28
Dynamic Field Implementation Alternative 48

iX

ACRONYMS

DB Database

DBMS Database Management System
RDBMS Relational Database Management System
API Application Programming Interface
0s Operating System

QEP Query Evaluation Plan

IMDB In-Memory Database

JIT Just-In-Time

VM Virtual Memory

JVM Java Virtual Machine

SIMD Single Instruction, Multiple Data
OLTP Online Transactional Processing
OLAP Online Analytical Processing

STL Standard Template Library

POD Plain Old Data Structure

LLC Last Level Cache

dTLB Data Translation Lookaside Buffer
RAM Random Access Memory

TPS Transactions Per Second

tpmC Transactions-per-Minute-C

INTRODUCTION

1.1 MOTIVATION

In terms of non-functional requirements, Database Management System (DBMS) devel-
opment was traditionally driven by two important factors: performance and data in-
dependence. The former represents the rate at which a DBMS can satisfy the demand for
storage and retrieval. The latter describes the degree of immunity of applications or users
to changes in physical storage structures (physical data independence) and conceptual
schemata (logical independence).

A driving factor in terms of performance of data intensive applications like DBMSs is the
underlying hardware. Thus, the architecture of general-purpose DBMSs developed two to
three decades ago was strongly influenced by the high latency of data access operations.
Accordingly, the communication between CPU and storage devices was pinpointed as
the bottleneck of DBMS operations. Until today, modern general-purpose RDBMS include
a standard set of features that address these initial challenges.

To reduce a storage overhead, data is organized in slots on pages of virtual memory. A
managed buffer pool controls which pages reside in memory. Data items are accessed via
structures like heap files or indices. A locking module enables concurrency and recovery
is facilitated by logging modules.

Data independence is introduced on the data model level through the
relational model [2]. It organizes data as sets of tuples in two-dimensional tables, called
relations. Each tuple consists of a set of fields. Schemata, defined as sets of domains, spec-
ify the data types of the fields of a tuple. This abstraction allows the description of data
by its structure, without specifying physical representational attributes. The relational
model makes it possible to provide declarative methods for specifying and accessing
data.

Typically, Relational Database Management Systems (RDBMSs) provide a query pro-

cessing engine that is capable of interpreting a declarative language like SQL. Query op-

1.1 MOTIVATION

Cost of Memory with Time

Figure 1: Development of memory costs [15]

timizers compile requests into a logical algebra which can be evaluated and optimized.
Subsequently, they translate logical algebra to physical algebra operators that specify the
control flow of a query. These expressions are then evaluated to produce the requested
result. Most general-purpose DBMSs use an interpretation-based scheme [7] to realize this
functionality.

The evolution of hardware demands adaptations to this traditional software architec-
ture. Especially the developments in volatile memory enable interesting variations. As
depicted in Figure 1, the price per MB of Random Access Memory (RAM) has decreased
dramatically over the last sixty years. The access time to volatile memory is one order of
magnitude smaller than the access time to disk storage which allows for faster response
times and higher transaction throughput rates of DBMSs.

Consequently, the development of In-Memory Databases (IMDBs) becomes feasible. In
contrast to a conventional Database (DB) system, an IMDB stores the data completely in
main memory, which provides the necessary performance to realize a set of real-time
applications. However, their design also has considerable implications to the architec-

ture of DBMSs [6]. Modules like concurrency control, commit and query processing, re-

1.1 MOTIVATION

covery and data representation need to be optimized for better performance and the
byte-addressable, random access style of extracting data.

In the context of IMDBs, and to some extent also in modern general-purpose DBMSs, the
bottleneck of query processing switches from I/O operations to in-memory processing.
In the past, the architecture of DBMSs and their query optimizers would focus on reducing
the amount of I/O operations, since they introduced the greatest performance penalties.
With large portions of a DB’s data sets fitting into main memory, the optimization for
these kinds of costs becomes less significant. To increase performance, future cost models
of DBMSs must include CPU and memory access costs. Optimization in query processing,
in turn, must aim to reduce CPU cycles and memory accesses.

The interpretation-based approach to query operator execution [7] was identified as
a source of query processing overhead in several recent publications [16, 17, 22]. Tradi-
tionally, RDBMSs are implemented without knowledge of queries they process, therefore
query operators are written as generic as possible. While the generality of an interpretation-
based model provides the desired data independence, it also introduces an interpreta-
tional overhead at runtime.

In general, the performance of interpretation-based approaches suffers from the use of
frequent function calls and abstract implementations. Frequent function calls cause code
to create additional instructions and branches, resulting in conditions and jumps that
cause disruptions of the instruction sequence. Branch-free code facilitates pipelining and
superscalar execution in modern CPUs. The use of abstraction also introduces overhead
through additional pointer resolution. Virtual calls or calls through function pointers are
more expensive than function calls themselves. Even further, they degrade the branch
prediction capability of modern CPUs.

DB research introduces two concepts to measure and negate the impact of
interpretation-based approaches in query processing: vectorized methods [14, 22] and
code-generation strategies [12, 16, 17]. Figure 2 illustrates the difference between com-
putational power of hand-coded, vectorized, code-generation and interpretation-based
approaches of query processing based on the performance in the TPC-H Query 1.

Figure 2a compares the time to execute TPC-H Query 1 for varying vector sizes in the
vectorized approach to that of hand-coded versions and MySQL, a general-purpose DBMS.
The vectorized approaches of MonetDB/MIL [14] and MonetDB/X100 [22] reduce the

interpretational overhead by processing a vector of tuples in one operator call. Thereby,

1.1 MOTIVATION

100

le at a time"

.
c

28.1] _DBMS "X" 70
b PostgreSQL ——1
26.6"NMySQL 4.1
Xgerprelalfon s 2 time" 60 + 59.353 System X
lominates column at a time e
10 execution MonetDB/MIL MonetDB *
main-memory 50 ¢ HIQUE n—

materialization overhead
>

interpretation 3.7

Time (seconds)

~
erhead

P query without selection —8-2.4 Z 40

g
1 vectors start to exceed Had 3(] r

0.60 CPU cache, causing =

MonetDB/X1 00 extra memory traffic
PR "vector at a time" 20 ¢
: low interpretation overhead
Hand-Coded in-cache materialization 10 |
C Program

1.376 (.356

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 6M

0

(a) Interpreted, hand-coded and vectorized ap- (b) Interpreted, vectorized and compiled ap-
proaches [22] (Horizontal axis represents vec- proaches [12]

tor sizes in tuples)

Figure 2: TPC-H Query 1 performance of different query operator approaches

additional costs of a function call and abstract implementation are only payed once per
set of tuples, instead of once per single tuple. Depending on the size of the tuple vector,
the approaches increase the performance by up to two orders of a magnitude. However, it
is also observable that hand-coded techniques still outperform even vectorized systems.
Figure 2b compares the execution time of TPC-H Query 1 in two general-purpose
DBMSs and the vectorized engine of MonetDB to that of Higue [12]. Hique realizes query
processing by using a code generation and compilation strategy, which removes inter-
pretational overhead by resolving the indirection at compile time. As Figure 2b shows,
Hique decreases the execution time of TPC-H Query 1 by almost one order of a mag-
nitude in comparison to the vectorized approach. Interpretation-based approaches like
PostgreSQL and ”System X” are outperformed by two orders of a magnitude. Thereby,
the idea of compilation strategies being superior to other strategies is reinforced.
Typically, general-purpose DBMSs distinguish between two levels of data representa-
tion: logical and physical type structures. For instance, an RDBMS provides constructors
on the logical representation level for tuples, relations, sets, lists, arrays, pointers etc.. A
physical data representation layer contains types like files, records, record identifiers and
large byte arrays. On a system engineering level, this division is reflected in the separa-
tion into different architectural layers: the query processing engine and storage engine.
Figure 3 shows the five-layer DBMS architecture model [10] and the attribution of the
five layers to a generalization into query processing and storage engine. Storage engines

control propagation for the physical application of values to disk and offer physical ac-

1.1 MOTIVATION

cess paths. The query processing layer optimizes and executes queries requested in a

declarative language by offering logical access paths and views to data.

Transaction Program

|

= o Nonprocedural
- "
aow
oS
a Navigational
— I
Record & Access Path
Management
2, o :
S @— Propagation Control
8 c
w
@ I
File Management

Figure 3: Five-layer DBMS architecture

Tables/Views

Logical Records

Physical Records

Segments

Files

External Storage

[e]ele] [eTeTe]

[o110 |
[1101]
1111]

DBMSs often utilize embedded key-value stores to realize a storage engine. The distin-

guishing feature of a key-value store is its simplicity. Typically, key-value stores offer a

simple Application Programming Interface (API), depicted in Listing 1. In a key-value

store, data is organized based on the value of a unique key, often a string of characters.

Each key is associated with exactly one value, treated as schema-less data. Treating data

as a single opaque collection of various fields offers great flexibility and scalability and

allows easy and fast lookups.

Listing 1: Key-value Store API

void put(string key, byte[] data);

byte[] get(string key);
void remove(string key);

RDBMSs, however, operate on the relational model. Data in the relational model is rep-

resented as highly structured entities with relationships between them. In contrast to the

restricted lookups based on a single value of the data item in key-value stores, the rela-

1.1 MOTIVATION

tional model allows lookups on single fields of an entity. Exposing this data structure to
query optimizers allows the application of macro and micro optimizations.

When used as a storage engine, the key-value stores” data model implies that it is
oblivious to a DBMS’s data model. Hence, interfaces between query processing engine
and key-value store must prepare tuples first before they can be processed by either. In
one direction, the physical representation, for example a byte array of a key-value store,
must be prepared for the usage as a tuple in the relational model, called marshalling.
To this end, an RDBMS scans the byte array. For each defined field of a tuple, it extracts
the data from its byte representation to an in-memory representation. Conversely, the in-
memory representation must be prepared for its opaque storage, called unmarshalling.
The RDBMS must iterate through all fields of a row and extract their byte representation.
It must concatenate these values in a byte array and submit it to the embedded key-value
store for storage.

Additionally to being implemented without knowledge of the types of queries, DBMSs
are also implemented without knowledge of the structure of the data they store. Hence,
DBMSs utilize an interpretation-based approach to preparing tuples as well. Their main
advantage is that they offer a high degree of flexibility in terms of tuple structure at
runtime.

In contrast, a compiled approach requires that the fields of a tuple are specified at
compile time. Thus, a compiled approach is often regarded as a disadvantage in a DBMS.
Schema evolution has the potential to either invalidate a compiled approach to tuple
preparation or to necessitate, sometimes costly, re-compilations. Compiled approaches
do, however, offer better runtime performance. Similar to generated query operators
offered by Hique, generated tuples preparation methods have the advantage interpreta-
tional overhead. Additionally, they can offer another layer of optimizations provided by
compilers. Especially for the tuple preparation process, where tuples are prepared by
iterating through fields, loop/recursive optimizations are promising. Furthermore, the
costs of re-compilations can be amortized over the time span between two schema evo-
lutions. Consequently, the tuple preparation interface seems to be a good candidate for
pre-compiled approaches. Pre-compilation offers static type safety, i.e. type safety at com-
pile time. Besides the obvious reduction of runtime type errors, static type checking can
also be a performance optimization. When a compiler can prove that the source code con-

tains only correct type relations, it can produce binaries without dynamic safety checks,

1.2 CONTRIBUTION

which in turn improves performance. With CPU and memory costs moving into the focus
of query optimization, the potential performance improvements of pre-compiled tuple

preparation should be investigated.

1.2 CONTRIBUTION

This work is based on the hypothesis that the transformation of tuples between two
different data models imposes a significant computational overhead on query processing.
In this context, this work examines the impact of interpretation-based and compiled
approaches to marshalling and unmarshalling data.

As illustrated for query operators in Figure 2, interpretation-based approaches exhibit
properties that impose negative effects on runtime performance. Namely, they introduce
an execution overhead and larger memory footprint. Compiled approaches can remove
these effects and further allow micro optimizations. As illustrated in Figure 2a, the ideal
implementation of query, in terms of performance, is a hand-written program that exe-
cutes a given query. Similarly, if the content of a row is known at development time, an
hand-written implementation of tuple preparation can specify specialized and fast ver-
sions of marshalling and unmarshalling functions for each row. However, hand-coded
approaches impose a great effort into the development of specialized DBMSs. For that
reason, this work proposes template-based programming and compiler optimizations to
increase the efficiency of (un)marshalling data, without increasing development efforts.
The work postulates that RDBMSs preparing tuples from key-value stores can benefit from
such compiled approaches.

The remainder of this work is organized as follows. Chapter 2 presents the background
theory to this work. A system model is introduced and the interface affected by compiled
or interpretation-based tuple preparation approaches is identified. Recent DB research is
introduced and embedded into the context of this work. Further, the general concepts
of compiler optimizations and polymorphism are introduced. Chapter 3 illustrates the
design of compiled and interpretation-based approaches to tuple preparation. It com-
pares the design and development effort of an interpretation-based approach using an
object-oriented paradigm, a pre-compiled approach using standard C++ structs and a
generation strategy using template-based programming. Chapter 4 presents experiments

to examine the impact of tuple preparation in a general-purpose DBMS. Subsequently, it

1.2 CONTRIBUTION

compares the performance of compiled to interpretation-based tuple preparation in a se-
ries of specialized benchmarks. Finally, an experiment, comparing interpretation-based
and generated approaches, with a statically implemented TPC-C benchmark on top of a
key-value store is analyzed. Chapter 5 compares these experiments and discusses their

results.

BACKGROUND THEORY

2.1 FIVE-LAYER SYSTEM MODEL

On a system engineering level, data independence is addressed by a reference architec-
ture depicted in Figure 3 [9]. This reference architecture divides a DBMS into five layers:
non-procedural, navigational, record & access path management, propagation control and file
management layer. The ideas of structured programming and information hiding simplify
the implementation of higher level components and enable the decoupled implementa-
tion of each layer. Each layer can be viewed as an abstract machine. A layer 7 utilizes the
implementation of layer i-1 to realize its own functionality.

If implemented strictly, this reference architecture can deteriorate the overall perfor-
mance of the system. It introduces six formal interfaces that must be crossed before data
can be stored on disk or requests can be served. Not only does the pure invocation of
methods in lower layers create a performance overhead (parameter checking, error han-
dling etc.), but data also has to be copied and converted from layer to layer to specific
formats. To improve runtime performance, a reduction from the five-layer model to an

effective two- or three-layer approach was proposed [9].

2.1.1 Storage Engine

In the five-layer model, the bottom three layers can be grouped into a storage engine.
The layers are record & access path management, propagation control and file manage-
ment. The record & access path management layer manages the internal records. This
layer dereferences record identifiers to logical page level calls to the buffer manager. The
propagation control layer provides the corresponding physical pages and blocks a lin-
ear address space, where fix/unfix operations determine data sets currently residing in

memory. Finally, the file management layer is responsible for the physical application of

2.1 FIVE-LAYER SYSTEM MODEL

bit patterns in the form of files and blocks to external, non-volatile storage devices, often
in collaboration with Operating System (OS) file management structures.

Improvements to the five-layer model [9] eliminate the file management layer by in-
creasing the buffer size so that all logical pages can be allocated concurrently in memory:.
This adaptation was largely made possible by the developments in the volatile memory
market, entailing a larger capacity of primary storage available to DBMSs (cp. Figure 1).
The increased feasibility of IMDB led to various implementations like VoltDB [19] or SAP
Hana [4]. These approaches not only gain a better performance by removing the interface,
but also by eliminating the I/O costs of traditional disk-based systems.

When investigating the overhead of query processing engines, DB research justifiably
concentrates on implementations on top of such IMDBs. I/O operations are not a bot-
tleneck in these systems and query performance is guaranteed to improve when the
computational performance of the system is increased. IMDBs avoid the usage of a buffer
managet, as it introduces an additional layer of indirection. For instance, when a general-
purpose DBMS accesses a specific tuple, it must compute disk addresses and then consult
a mapping data structure to check if a corresponding block is in memory. IMDBs will
avoid this overhead by accessing tuples based on their memory address. Accordingly,
they abandon the benefits of a buffer pool. These advantages include the management of
data sets too big to fit into primary memory, the natural support for write-ahead logging
and isolation from cache coherence issues [8].

Graefe et al. [8] have shown that it is possible to use a buffer pool without a dramatic
performance reduction. Through the adaptation of pointer swizzling [21], the authors
improve the performance of a database with a buffer pool, achieving a performance close
to that of IMDBs when the data set fits into memory. Concurrently, the approach increases
the performance in cases where data sets almost fit into primary storage. Despite the
possibility of I/O costs overshadowing memory and CPU costs, this approach shows

that improvements specified for IMDBs are also applicable to general-purpose systems.

2.1.2 Query Processing Engine

In the five-layer model, a query processing engine consists of the non-procedural access
and the navigational layer. The non-procedural access layer provides an access path in-

dependent, set-oriented API. The API offers access to the logical structures of a DBMS (e.g.

10

2.1 FIVE-LAYER SYSTEM MODEL

tuples, views, tables) via a declarative language like SQL or XQuery. It maps set-oriented
structures to logical record accesses or scans on logical access paths, while also applying
query optimization techniques to improve performance. The navigational layer derefer-
ences logical accesses or scans by supplying their concrete internal record representation.
Logical access paths are translated into scans or direct access on structures like B-trees
and Hash Tables. The layer can additionally provide sorted record sets e.g. for joins and
record-at-a-time modification access.

With a declarative interface it is often possible to evaluate a given query in several dif-
ferent ways with varying performances. Therefore, the non-procedural layer materializes
Query Evaluation Plans (QEPs) for each query. The QEP in an RDBMS is a tree structure
in which each node of the tree represents a relational operator. This representation al-
lows optimizations on a macro level like plan enumeration strategies, cost modeling and
algorithmic improvements.

As the optimization focus moved from 1/0O costs to CPU and memory costs, modi-
fications to the five-layer model were proposed [9], which included the replacement of
the top-most layer. A proposed access module incorporates the QEP, by pushing as much
of the query preparation as possible from processing to compilation time. This improve-
ment has the potential to eliminate the impact of the non-procedural layer under dynamic
conditions.

Implementations can range from interpreters of non-procedural statements, referring
to the navigational layer directly, to the full query preparation at compile time. The lat-
ter amortizes the additional cost of preparing one ad-hoc query over repetitive query
execution. There are also mixed approaches conceivable where only intermediate parts
of queries are prepared via access modules. Specific interpreters can then utilize these
artifacts, whenever possible. On the one hand, a query prepared at compile time relin-
quishes the query response time from optimization efforts. On the other hand, the lack
of precise statistical data during compile time can lead to suboptimal execution plans.
Moreover, all preparation approaches introduce dependencies to the meta-data, valid at
the time of compilation which may be invalidated by schema evolution.

Conventional query execution engines interpret a QEP with the volcano model [7]. This
model’s basic assumption is that every physical implementation of a relational-algebraic
operator produces and consumes a stream of tuples. The volcano model defines an ab-

stract interface with three functions: open() to start an iterator and initialize the internal

11

2.1 FIVE-LAYER SYSTEM MODEL

state, next() to produce another tuple and close() to designate the end of the operation
and free up resources. Each physical operator of the QEP is implemented with the use
of this abstract interface, which enables the combination of arbitrarily complex query
evaluation as well as a pipelined execution of all operators on a given tuple. Moreover, it
facilitates intra- and inter-operator parallel processing capabilities of DBMSs on multicore
platforms.

Recently, there have been several proposals to increase the computational capability
of DBMSs, which describe the characteristics of the volcano model as a source of query
engine overhead.

Some proposals concentrate on expanding the data granularity utilized by operators
within queries. MonetDB [14], for instance, uses an operator-at-a-time scheme to reduce
the overhead of per-tuple interpretation. In this model, data is fully materialized inside
each operator, which then completely processes its input and invokes the next stage.
While this concept reduces the interpretational overhead, it also removes the pipelining
benefits of the volcano model. An improvement was made in MonetDB/ X100 [22], which
applies vectorized execution (cp. Figure 2). Instead of materializing a whole table, an al-
ready vertically decomposed table is further partitioned horizontally into vectors, on
which each operator of the query is evaluated. Experiments showed that data-intensive
query performance could be improved by two orders of magnitude compared to tradi-
tional iterator model implementations.

Other proposals concentrate on utilizing code generation to improve query processing
performance. This allows another layer of optimizations to the query preparation process
in form of compiler optimizations. Early adaptations can be found in System R [1], which
utilizes a code generator that produces assembly code based on a given query. More
recently, Rao et al. [17] reduced runtime overhead by exploiting the Java Reflection API
in the context of an IMDB. The proposal dynamically compiles a given query into Java
Bytecode, which can be interpreted by the Java Virtual Machine (JvM). Although still
relying on the iterator model and limited in its capability, the approach removes virtual
function call overheads. Query processing performance was improved on average by
factor two, compared to interpreted plan performance.

Hique [12] improves the concept by dynamically instantiating C source code specific
to a given query and hardware configuration. This source code is then compiled, dy-

namically linked and used for query processing. The iterator model is eliminated in

12

2.1 FIVE-LAYER SYSTEM MODEL

a three-step approach. First data is materialized, applying all predicates and dropping
unnecessary fields. Thereafter, the holistic algorithm instantiation generates source code
for each operator from templates. At last, the single operators are combined to form
a single function. Krikellas, Viglas, and Cintra [12] showed that the prototype system
outperformed a general-purpose DBMS by two orders of a magnitude and vectorized
approaches by a factor of four (cp. Figure 2b).

A similar approach is taken by Neumann [16]. He proposes HyPer, a system also avoid-
ing the iterator model. Like Hique, HyPer also compiles a relational algebra tree into
low level machine code. HyPer, however, utilizes an LLVM compiler backend [13] to in-
crease the efficiency of on-demand compilation. Even further, it applies a data centric
approach to the query compilation process. By reversing the direction of the data control
flow, the compiled queries push tuples from producing to consuming operators. Conse-
quently, tuples can be left in CPU caches longer and operators are cheaper to compute.
To evaluate the new paradigm, Neumann experimented with HyPer in a hybrid Online
Analytical Processing (OLAP) and Online Transactional Processing (OLTP) environment.
He could show a significant improvement in compile time comparing a LLVM version to
a C++ version as well as a performance boost in query processing. HyPer outperformed
a general-purpose DBMS by two orders of a magnitude and vectorized approaches by one
order of magnitude.

Finally, a comprehensive study [18] compares the approaches of code generation to
vectorized execution in operators. In several case studies, the authors conclude that the

best results can be achieved when a combination of both approaches is applied.

2.1.3 Interface between Query Processing and Storage Engine

Similar interpretation-related strategies can be observed in the interface between query
processing and storage engine. As illustrated in Section 1.1, RDBMSs often rely on key-
value stores to implement a storage engine, such that key-value stores provide physical
records corresponding to a key to the upper layers, while hiding details of the actual
implementation of the storage and propagation.

However, query processing engine and key-value store operate on different data mod-
els. For that reason, one major functionality of the navigational layer is the translation

from physical records into logical records and vice versa. To that end, the navigational

13

2.2 STATIC VS. DYNAMIC POLYMORPHISM

layer unmarshals byte arrays into their logical, i.e. typed, representation and vice versa
marshals logical records into a byte array representation.

The marshalling function of a row receives a byte array. It iterates over the fields of a
row and extracts each field’s value into an in-memory representation of the tuple. The
other way around, the unmarshalling function of a row receives the in-memory represen-
tation. It prepares a byte array for the storage in a key-value store by iterating over the
fields of a row and extracting the field values from the in-memory tuple representation.
It concatenates those values into a byte array and returns this array, such that it can be
stored in a key-value store.

The data type of each field within a row determines the implementation of both func-
tionalities. For instance, an unmarshalling function of a field implementation that realizes
the integer data type must specify a different control flow than the unmarshalling func-
tion of a field implementing the string data type. While integer data could be directly
interpreted as bytes, string must be prepared in a specific way to allow efficient storage.
As the length of the string data is variable, marshalling the data generally means extract-
ing the current length of the string and placing it before the actual value of the data as
a header. This way, when data is later unmarshalled into its logical representation, the
unmarshalling function is able to determine how many bytes to extract into the logical
string representation.

RDBMSs like MySQL utilize an object-oriented paradigm called dynamic polymorphism
to realize this functionality. Similar to the volcano model, this is an interpretation-based
approach. In this model, rows are represented as a collection of abstract field objects. This
dynamic representation of an in-memory tuple offers clear advantages in terms of logical
data independence. Through schema evolution, a table, and thus the row of a table, can,
at any given point in time, be changed. Dynamic polymorphism facilitates such schema
evolution inside an RDBMS. Compared to compiled approaches, it does, however, come

with performance penalties.

2.2 STATIC VS. DYNAMIC POLYMORPHISM

Polymorphism is a programming facility in which an abstract object provides a common
interface to entities of different types. It represents a way to access a common function-

ality of a group of entities without knowing the exact implementation. Instead, the inter-

14

2.2 STATIC VS. DYNAMIC POLYMORPHISM

face describes the function in terms of arguments and return values. Inheriting entities
can then implement the concrete functionality, adjusted to their specific conditions.

This concept introduces a level of indirection that must be resolved. The resolution
can either occur at runtime, called dynamic polymorphism, or at compile time, called
static polymorphism. While dynamic polymorphism offers a high degree of flexibility,
it has a negative impact on performance. Compared to static polymorphism, it requires
additional instructions as well as an increased memory footprint.

Dynamic polymorphism often utilizes a special form of late binding known as the
vtable (or virtual table). For instance, in C++, the content of the vtable is determined
by methods that are declared as virtual. For each method declared virtual, the com-
piler creates an entry in a derived object’s vtable pointing to the physical address of the
implemented method.

Thus, in terms of performance, the use of dynamic polymorphism introduces a natural
execution overhead by adding a layer of indirection to the processing of functions that
is resolved at runtime. In a direct function call, the processor can jump directly to a
hard-coded address deposited in a program’s binary file. In a virtual function call, the
address must be loaded from the vtable. The vtable pointer must first be extracted from
the current object into a register. The vtable is then traversed to identify the address of
the implemented method and afterwards, this function address is copied to a register.
Finally, the processor takes the address from the register and jumps to it.

In terms of memory footprint, the dynamic polymorphism approach increases object
sizes, since one additional pointer must be stored per object. When an instance of a class
object is created, a pointer inside the instance is automatically allocated and assigned. It
points to the vtable for that class. On 64-bit systems, the size increase of an additional
pointer is 8 bytes per object. While this increase can be negligible, it can also be a substan-
tial overhead for small objects. Concretely, the size increase can mean that less objects fit
into the Li-cache of a processor. The number of objects, readily available in this cache
structure, directly influences the number of accesses to memory.

To illustrate the performance impact of L1 cache misses, Figure 4 depicts the memory
latency of an Intel® Xeon X5670 CPU. Yellow-colored blocks represent block sizes that fit
into the L1 cache. Brown-colored blocks correspond to block sizes too big to fit into the
cache hierarchy, thus blocks must be fetched from main memory. Depending on the step

size, an L1 cache miss can have a substantial impact on the performance of a system.

15

2.2 STATIC VS. DYNAMIC POLYMORPHISM

Memory access latency
Xeon X5670

Latency (ns)

Figure 4: Memory Latency of Intel® Xeon X5670 [20].

Finally, a method declared as virtual cannot be inlined. Modern compilers often em-
ploy inlining to remove the overhead of calling and returning from a function as well as
facilitate opportunities for optimizations (cp. Section 2.3). With dynamic polymorphism,
a compiler cannot determine which concrete function is going to be called, thus making
it impossible to inline it.

Static polymorphism, on the other hand, is the imitation of polymorphism in program-
ming code. The actual resolution of polymorphism is executed at compile time. Thus,
this method postulates that the polymorphic behavior is known at compile time. Conse-
quently, static polymorphism executes faster than dynamic polymorphism. It avoids the
runtime overhead and increased memory footprint as no vtable is needed to dispatch
a polymorphic function. A compiler analyzes the polymorphic structure and decides
which function is going to be called. Instead of automatically creating the vtable and dis-
tributing pointers to affected classes, compiler/linker can hard-code the corresponding

function’s address into a program’s binary.
Y-

2.3 COMPILER OPTIMIZATIONS

2.3 COMPILER OPTIMIZATIONS

The primary goal of modern compilers is to transform high-level programming con-
structs into low-level machine code. Moreover, they add a level of optimizations to
improve the efficiency of programs in two dimensions: both in time (i.e. runtime per-
formance) and in space (i.e. memory footprint). Overall, compiler optimizations aim to
decrease the number of instructions necessary to compute an output.

Firstly, as intraprocedural analysis and optimization yields better results than inter-
procedural, the use of function inlining can improve performance. Compilers attempt to
embed a called function’s content into the calling code, instead of executing an actual
function call. Thereby, instructions in the called and the calling function can be elim-
inated. Eliminated instructions comprise instructions preparing stack and registers for
the use of a function (i.e. function prologue) and instructions restoring stack and reg-
isters at the end of a function (i.e. function epilogue). The primary benefits of inlining
originate from other techniques of optimizations. After its application to a function, in-
terprocedural optimization techniques can be applied to a larger function body, further
improving performance. However, as inlining duplicates a function body, it deteriorates
instruction space usage. Specifically, its excessive use can also hurt overall system per-
formance when inlined code consumes too much of the instruction cache. Therefore, the
technique should generally only be applied to small and frequently called functions.

Hardware-specific optimization techniques target memory access reduction and effi-
cient execution pipeline usage. With instruction pipelining, modern CPUs often capi-
talize on instruction-level parallelism. Instructions are broken down into a sequence of
steps, such that different steps can be executed in parallel. Compiler optimization tech-
niques, like instruction scheduling, aim to keep an execution pipeline filled with inde-
pendent instructions, maximizing instruction-level parallelism.

On the memory access level, compilers attempt to increase the spatial and temporal
locality of reference of memory objects. The compiler tries to group accesses to data and
code together, so that they can be efficiently distributed to registers and caches. Strong
locality of reference amplifies the efficiency of the memory hierarchy, through caching,
prefetching and branch prediction.

Compilers can also employ optimization techniques that target loops to avoid loop-

invariant code or to recognize induction variables. They can partially or completely un-

17

2.3 COMPILER OPTIMIZATIONS 18

roll loops, when the number of iterations is known at compile time. This removes instruc-
tions addressing jumps inside the loop and count de-/increments. Similar techniques can

be applied in recursive variants, where recursive functions can be inlined.

IN-MEMORY TUPLE IMPLEMENTATION DETAILS

A tuple in the relational model is a similar concept to that of a row in a table. The
equivalent to an attribute in the relational model is the field of a row. To implement and
execute operations in the relational model, an RDBMS needs to implement field and row
structures.

The following chapter will illustrate interpreted and compiled versions of in-memory
tuples, specifically in context of an embedded key-value store. While all methods of
field and row implementations are affected by whether they are interpreted or compiled,
this work will concentrate on the (un)marshalling aspects of such an implementation.

Nevertheless, the effects discussed can be translated to access methods as well.

3.1 INTERPRETED REPRESENTATION

An operator processing a row of a table initializes an interpreted in-memory tuple by in-
stantiating a row and assigning abstract field objects. Listing 2 demonstrates the concept
by an example of a statically implemented update transaction for the NEW_ORDER table
of the TPC-C benchmark.

Initially, a catalog is consulted to determine which fields to initialize. After the row
is instantiated, the underlying key-value store is accessed via a kvs_handle object to
retrieve a byte array, which is then passed to a marshalling method of the Row object. The
method extracts the byte values for each of the values from the array and organizes them
into logical Field object instances. Operations on Field objects are executed by calling
virtual getter/setter methods (cp. Listing 4). Finally, when the logical row needs to be
stored in the key-value store, the Row class offers a unmarshall() method that returns
the logical representation as a byte array. The byte array can then be submitted to the
key-value store via the kvs_handle.

Listing 3 illustrates an excerpt of a dynamic implementation of a row. An essential part

of the Row implementation is the fields member variable. For each column defined in

19

3.1 INTERPRETED REPRESENTATION

Listing 2: Static neworder Update Implementation

void update_neworder_trx(KeyValueStore kvs_handle, uint field_pos, int value,
string key){
2 CATALOG_ENTRY new_order_CE = catalog.find("TPCC_NEWORDER");
Row no_row= new Row();
for(auto field : new_order_CE.fields){
switch(field.type){

7 case INTEGER: no_row.add_field(new Field_int());break;
}

}

no_row.marshall(kvs_handle.get(key));

no_row.fields.at(field_pos) /*<- Vector-style access */

12 ->set_int_val(value);

kvs_handle.put(key_buffer, no_row.unmarshall());

a table, this array contains an abstract Field object. As illustrated in Listing 2, methods
processing a logical row can utilize this variable as a handle to access individual field

values.

Listing 3: Dynamic Row Implementation

1 class Row {

std::vector<Field*> fields;

void add_field(Fieldx field){ ... }

void remove_field(uint idx){ ... }

void unmarshall_row(StreamType& dest){

6 dest.resize(this->get_size());

std::vector<char>::iterator it = dest.begin();

for(uint i =0; i< fields.size(); i++){
if (! ((xfields[i])->is_null()))

(xfields[i])->unmarshall(it);
11 }

void marshall_row(StreamType& src){
for(uint i=0; i< fields.size(); i++){
(xfields[i])->marshall(src.data());
16 }

Typically, a dynamic row implementation specifies some variation of the illustrated
marshall_row() and unmarshall_row() methods. If the field is not null, the method

calls the respective (un)marshalling methods on each of the abstract Field objects. The

20

12

17

22

3.1 INTERPRETED REPRESENTATION

Row class’s methods manage pointers into the byte arrays, such that (un)marshalling
implementations of fields can extract values without searching in the byte array.

The fields variable’s type is defined as an STL class template std: :vector, a sequence
container representing arrays that can change in size. Other implementations may differ,
but the concept of a flexible container remains an essential part of an RDBMS implementa-
tion. It allows removing or adding fields to a row at runtime, which is a central element

of schema evolution.

Listing 4: Dynamic Field Implementation

class Field{
public:
virtual void marshall(charx& in)=0;
virtual void unmarshall(std::vector<char>::iterator&)=0;
virtual size_t get_size()=0;
virtual set_int_val(int val)=0;

}

class Field_int : public Field {
int value;
Field_int() {}
Field_int(int val): value(val) {}
void marshall(char*& in);
void unmarshall(StreamType::iterator& out);
void set_int_val(int val){ value=val;}
size_t get_size(){return sizeof(int);}

+

class Field_varchar : public Field {
std::string value;
Field_varchar() {}
Field_varchar(std::string val): value(val) {}

size_t get_size(){return sizeof(size_t)+value.length();}

};

Listing 4 shows excerpts of an example implementation of an interpreted in-memory
field. An abstract Field class defines the interface methods of a field. Concrete imple-
mentations of a field inherit from this abstract class. Typically, each such concrete imple-
mentation is bound to a data type. As the actual implementation of a field’s functionality
differs for each data type, common methods of the Field object are declared virtual.

The get_size() method returns the size that a field’s value consumes in its representa-
tion in a byte array. For example, a Field_int implementation returns the byte size of an
integer. In contrast, for a Field_varchar implementation the size must first be computed

by retrieving the variable length of the string variable. Besides, it adds size to the return

21

11

16

21

26

3.1 INTERPRETED REPRESENTATION

value to be able to store the length with the string. This concept of different control flows
for the same functionality manifests the polymorphism approach discussed in Section 2.2.
Similary, the implementation of marshalling and unmarshalling methods differs depend-
ing on the data type a field implementation represents. Listing 5 demonstrates the code
for an (un)marshalling implementation on an integer-typed field and varchar-typed field.
In general, an RDBMS needs to specify an implementation of an abstract field for every
data type of the relational model that requires specialized in-memory or on-disk storage.
More precisely, not all data types offered in the non-procedural layer necessarily require a

specific field implementation.

Listing 5: Dynamic (Un)Marshalling Implementation

void Field_int::marshall(charx& res){
char tmp[4]; invert_endianess(tmp, res, 4);
int*x val = reinterpret_cast<intx>(tmp);
value=xval;
res+=sizeof (int);

}

void Field_int::unmarshall(std::vector<char>::iterator& out){
const charx ptr = reinterpret_cast<const charx>(&value);
convert_endianess(out, ptr, sizeof(int));

}

void Field_varchar::marshall(charx& res){
size_t*x len_ptr= reinterpret_cast<size_tx>(res); res += sizeof(size_t);
if (xlen_ptr == Qu){
value= std::string(); return;
}
value= std::string(res,*len_ptr);
res+=xlen_ptr;
}
void Field_varchar::unmarshall(std::vector<char>::iterator& out){
size_t len= value.length();
const charx ptr = reinterpret_cast<const charx>(&len);
std::copy(ptr,ptr+sizeof(size_t),out);
out+=sizeof(size_t
std::copy(value.data(),value.data() + len, out);
out+=len;

}

Other possible implementations represent polymorphic fields with uUNTIONS on data
types and swiTCH/ CASE statements inside the (un)marshalling functions (cp. Listing 12
in Appendix A). Although these implementations are not strictly considered as dynamic
polymorphism, they simulate the same behavior. Like vtables, swiTcH/CASE state-

ments represent a sequence of jumps to addresses stored in a look-up table. To realize

22

3.2 COMPILED REPRESENTATION

SWITCH/ CASE structures, field implementations would explicitly have to store their log-
ical data type, e.g. SQL types in an RDBMS. This again increases the memory footprint of
an in-memory field representation. On top of that, the use of UNTONS increases a field’s
size, as union member variables occupy a memory area equal to the size of the biggest

member of the union.

3.2 COMPILED REPRESENTATION

A compiled implementation of an in-memory tuple representation can be realized in two
ways: struct implementation or static polymorphism. With struct implementations, a
developer or a tool specifies a static tuple as a struct or class and within (un)marshalling
and access methods. With static polymorphism, the developer specifies the structure of
the tuple and lets a C++ compiler generate access functions and (un)marshalling func-
tionality.

This section will introduce both concepts. In both cases code generation is possible.
However, static polymorphism is better integrated with the programming language. An-
other common characteristic of these approaches is that the data structures representing
a tuple are fixed at compile time. This is why schema evolution at runtime cannot be

implemented without recompilations with either approach.

3.2.1 struct Implementation

Listing 6 illustrates excerpts of a data structure realizing a tuple of the customer table
of the TPC-C benchmark. The depicted struct serves as a container for a number of
heterogeneous values. For each field of a tuple a member variable in the body of the
corresponding struct has to be specified.

Functionalities of a row, like (un)marshalling, are implemented in methods of the tuple.
To illustrate the concept, Listing 7 extends Listing 6 with a struct implementation of an
unmarshalling function for a tuple of the TPC-C customer table.

The individual components of this method specification are easy to assemble. Each
variable’s data type determines the control flow of marshalling or unmarshalling the
variable. Hence, the specification of methods can be assembled from the specifications

for the data type of each individual variable. However, in this model, the actual value

23

11

16

3.2 COMPILED REPRESENTATION

Listing 6: struct Tuple Implementation

struct st_tpcc_static_customer_tuple{
int c_w_id;
int c_d_id;
int c_id;
double c_discount;

std::array<char,2> c_middle;
std::string c_data;

Listing 7: struct Unmarshalling Implementation

struct st _tpcc_static_customer_tuple{

void unmarshall(StreamType& res){
res.resize(this->size());
StreamType::iterator out=res.begin();
const charx ptr = reinterpret_cast<const charx>(&c_w_id);
convert_endianess(out, ptr, sizeof(int));

len= c_data.length();

ptr = reinterpret_cast<const charx>(&len);
std::copy(ptr,ptr+sizeof(size_t),out);
out+=sizeof(size_t);
std::copy(c_data.data(),c_data.data() + len, out);
out+=len;

of a field can only be obtained by addressing the named member variable of a struct.
Thus, methods accessing a row’s field values must be either hand-written by developers

or generated by specialized tools.

3.2.2 Static Polymorphism Implementation

Languages like C++ offer the concept of template metaprogramming to realize static
polymorphism. This technique allows developers to specify data structures, compile
time constants and functions such that a compiler can generate source code from them,
i.e. compile time generation. The STL is a software library that heavily uses template
metaprogramming. It offers components for containers, algorithms, functions and itera-

tors.

24

3.2 COMPILED REPRESENTATION

A container structure, the STL offers, is the std::tuple implementation, which is a
class template that allows the storage of heterogeneous elements. Similar to the struct
concept, this class template offers the ability to pack a fixed-size collection of possibly
different objects together inside a single object. Listing 8 shows excerpts of an exemplary
type definition of an STL tuple that represents a logical tuple of the orderline table of
the TPC-C benchmark.

Listing 8: STL tuple definition of a orderline tuple

using TPCC_ORDERLINE_TUPLE= std::tuple<int, //0: OL_W_ID
int, //1: OL_D_ID
int, //2: OL_0_ID
int, //3: OL_NUMBER
int, //4: OL_I_ID
double, //5: OL_DELIVERY_D(ate)
double, //6: OL_AMOUNT
int, //7: OL_SUPPLY_W_ID
double, //8: OL_QUANTITY
std::array<char,24>> //9: OL_DIST_INFO

Instead of accessing data members via their name, like in a struct, the elements of a
tuple are accessed per their order in the tuple. Still, the selection of a data member within
such a tuple is done at template-instantiation level, i.e. at compile time. The STL offers
helper function templates std: :get<I>(tpl) that return references to the object located
at compile time constant index I of a tuple instance tpl.

As access to data elements of STL tuples must be specified at compile time, methods
accessing these elements must be as well. While a implementation similar to the struct
implementation (cp. Listing 7) is still a possibility, the class template definition allows the
usage of generated approaches. A template-oriented generation approach is especially
advantageous for methods that must iterate through all elements of a tuple, e.g. the
(un)marshalling methods of RDBMSs discussed here.

For illustrational purposes, Listing 9 and Listing 11 show excerpts of an generated,
recursive approach to an unmarshalling function for a STL tuple. The unmarshaller()
function template serves as the interface to the control flow of the unmarshalling pro-
cess. This function template by itself does not specify a function. Without a call in the
implementation, no code is generated from this specification. To instantiate the template

function, a calling method needs to provide a template argument. The compiler will then

25

14

19

3.2 COMPILED REPRESENTATION

Listing 9: Recursive Unmarshalling Functions for a STL Tuple

template <class T>
inline void unmarshaller(const T& obj, StreamType::iterator& res) {
unmarshal_helper<T>::apply(obj,res);
}
template <class... T>
struct unmarshal_helper<std::tuple<T...>> {
static void apply(const std::tuple<T...>& obj, StreamType::iterator& res) {
unmarshal_tuple(obj, res, int_<sizeof...(T)-1>());
}
}
template <class T, size_t pos>
inline void unmarshal_tuple(const T& obj, StreamType::iterator& res, int_<pos>) {
constexpr size_t idx = std::tuple_size<T>::value-pos-1;
unmarshaller(std: :get<idx>(obj), res);
unmarshal_tuple(obj, res, int_<pos-1>);
}
template <class T>
inline void unmarshal_tuple(const T& obj, StreamType::iterator& res, int_<0>) {
constexpr size_ t idx = std::tuple_size<T>::value-1;
unmarshaller(std: :get<idx>(obj), res);

generate an actual function. Template arguments can either be explicitly defined in the
call or C++ will deduce the template argument from the function argument.

When the compiler discovers a call to the unmarshaller() method, it will generate the
unmarshaller() and unmarshal_tuple() methods as well as an unmarshal_helper class
if it doesn’t already exist. It generates an unmarshaller() function for each distinct tuple
definition. It also creates one unmarshal_tuple() function per tuple and index position
in the tuple, i.e. for a tuple with degree 2 it generates two unmarshal_tuple() functions
(cp. Listing 10). Finally, it creates methods from the apply() method template, for each
call to apply () with a distinct template parameter. These static apply() methods contain
the actual unmarshalling functionality for each data type.

Listing 10 shows an abstract illustration of template parameter replacement for a small
tuple of two fields. Template arguments that replace the template parameters in Listing 9
are highlighted in red. It should be noted that the gcc compiler does not generate the
high-level C++ code shown. It rather directly translates equivalent functionality into

assembly code.

26

14

19

3.2 COMPILED REPRESENTATION

Listing 10: Abstraction of Compiler Output for Template-Based Unmarshalling Functionality.

inline void unmarshaller(const std::tuple<int,double>& obj, StreamType::iteratoré&
res
unmarshal_helper<std: :tuple<int,double>>::apply(obj,res);
}
struct unmarshal_helper{
static inline void apply(const std::tuple<int,double>& obj, StreamType::
iterator& res) {
unmarshal_tuple(obj, res, int_<2-1>());
}
}
inline void unmarshal_tuple(const std::tuple<int,double>& obj, StreamType::
iterator& res, int_<1>) {
constexpr size_t idx = 1-1; // 2-1 Generated at compile time
unmarshaller(std::get<0>(obj), res);
unmarshal_tuple(obj, res, int_<0>());
}
inline void unmarshal_tuple(const std::tuple<int,double>& obj, StreamType::
iterator& res, int_<0>) {
constexpr size_t idx = 2-1;
unmarshaller(std::get<l>(obj), res);
}
struct unmarshal_helper {
static inline void apply(const std::tuple<int,double>& obj, StreamType::
iterator& res) {
rawr::unmarshal_tuple(obj, res, int_<2-1>());

27

13

3.2 COMPILED REPRESENTATION

A generic version of the unmarshal_helper and the corresponding apply() can be
found in line 8 of Listing 11. Like the specializations of the virtual (un)marshal methods
of the Field class in the dynamic polymorphism approach (cp. Listing 5), they specify the
process of casting and copying the data of a field value into a byte array and maintaining
the cursor/pointer into the byte array. However, instead of specifying a type for the
input parameter obj, it provides a template, such that the apply() methods needed
can be generated by the compiler. When the unmarshalling specification of a data type
differs from the generic approach, a new unmarshal_helper class must be defined. For
instance, beginning in line 1, an unmarshal_helper is implemented as a specialization of
the unmarshalling process of a string field. Through function overloading, the compiler
recognizes specializations at compile time and replaces calls to the generic apply() with

a call to the specified one.

Listing 11: Recursive Unmarshalling Functions for a STL Tuple cont’d

template <class tuple_type> struct unmarshal_helper<std::string> {
static inline void apply(const std::string& obj, StreamType::iterator& res)
{
unmarshaller(obj.length(), res); //Store string length first
std::copy(obj.data(),obj.data()+obj.length(),res);
res+=o0bj.length();
}
}
template <class T>
struct unmarshal_helper {
static inline void apply(const T& obj, StreamType::iterator& res) {
const charx ptr = reinterpret_cast<const charx>(&obj);
std::copy(ptr,ptr+sizeof(T),res);
res+=sizeof(T);

At runtime, the calls to apply () methods will be resolved to their generated implemen-
tations. Through function overloading the unmarshal_helper class will provide a method
to unmarshal a field for each type specified in a tuple.

As a hint to the compiler, all functions are declared INLINE. As sizes of the tuples
are known at compile time and thus the recursion depth as well, the compiler can then
perform additional optimizations like recursion inlining.

Marshalling functions or functions determining the size of a byte array representation

of a row can be implemented in a similar fashion. This static polymorphism approach

28

3.2 COMPILED REPRESENTATION 29

allows the specification of dynamic-polymorphism style functions, but resolves the am-

biguity at compile time.

EXPERIMENTS AND RESULTS

The underlying hypothesis of this work states that pre-compiled tuple preparation can
offer substantial performance improvements in a DBMS. To verify this hypothesis, the
following chapter presents several experiments. Initially, Section 4.1 characterizes the ex-
ecution environment of the experiments. Section 4.2 analyzes the overall performance
impact on query execution imposed by tuple preparation. An analysis of the CPU pro-
file of MariaDB [5], a popular RDBMS, is performed. Methods and functions relevant to
tuple preparation are identified and their effort is classified in the context of query ex-
ecution performance. Section 4.3 evaluates the approaches presented in Chapter 3 in a
series of specialized benchmarks. Finally, Section 4.4 compares the dynamic to the static

polymorphism approach in context of statically defined TPC-C benchmark transactions.

4.1 ENVIRONMENT

4.1.1 Key-value Store

Experiments with an embedded key-value store were executed on top of Zero, a fork
of ShoreMT. ShoreMT, implemented at Carnegie Mellon University and later at EPFL,
focused on improving the scalability of storage operations in a multi-processor environ-
ment. The latest fork of Zero, developed at HP Labs and TU Kaiserslautern, supports
Foster B-tree data structures with ACID semantics, orthogonal key-value locking, an im-

proved Lock Manager design and techniques that enable instant restart and recovery.

4.1.2 System Specifications
All experiments were carried out on a server with dual Intel Xeon X5670 processors (cp.

Table 1 for specifications). The system was equipped with 96 GB of 1333 MHz DDR3

memory. Two Samsung SSD 840 with 265GB were used to store log and database files.

30

4.2 IMPACT OF TUPLE PREPARATION

INTEL X567O PROCESSOR SPECIFICATION

CPU Frequency 2933MHz
Number of Cores 6 (2 logical cores per phyiscal)
L1 cache 6x 32KB instruction cache

6x32KB data cache

L2 cache 6x 256KB

L3 cache 12MB

Table 1: Specification of Intel® Xeon X5670

The installed OS was Ubuntu 14.04 LTS with Linux kernel version 3.13. C++ implementa-
tions were compiled with gcc 4.9.4. Profiling data was collected with the Linux profiler

perf at a sampling rate of 2000 Hz.

4.1.3 TPC-C Benchmark

Benchmarking experiments were executed based on the TPC-C specifications [3]. TPC-C
is an OLTP benchmark that simulates a specified number of terminal operators connected
to a database of a wholesale business. It defines tables for warehouses, districts, cus-
tomers, old and new orders, items, stocks and order lines. The size of each of the tables
depends on a scaling factor. It also specifies five available transaction types: submitting
a new order, submitting a payment, delivery, checking an order status and testing and

increasing a stock level.

4.2 IMPACT OF TUPLE PREPARATION

A part of the premise of this work is that tuple preparation has a substantial impact on
the performance of a DBMS. In order to have that impact, the effort of tuple preparation
must be a significant portion of the total effort of query processing. To analyze the im-
pact of tuple preparation in a general-purpose DBMS, a qualitative performance analysis

of MariaDB was performed. MariaDB is a community-developed fork of MySQL. It pro-

31

4.2 IMPACT OF TUPLE PREPARATION

vides a pluggable storage engine architecture which allows the utilization of key-value
stores as storage engines. It realizes the query processing capabilities of an RDBMS and
provides an abstract handlerton interface that defines the API of a storage engine. By
specifying methods that create tables and add, delete, update or retrieve rows, key-value
stores can be plugged into the MariaDB system. To normalize experiment data of tuple
preparation, a storage engine plugin for Zero was developed.

Like most general-purpose DBMSs, MariaDB realizes tuple preparation with the in-
terpreted approach. An abstract field object specifies methods for (un)marshalling and
accessing a field of a row. Per connection and table, the system initializes a TABLE ob-

ject that contains an array of abstract field objects. This array represents a logical row in

MariaDB.

mysgl execute command () 100.00 %

[..] // call stack

rr sequential() 35.12 %

Handler: : rnd_next)

key value store->request() 12.78 %

unpack row() 10.32 %

[others] // Request preparation 12.02 %

evaluate join record() 64.04%
Protocol: :send result row () 54.97 %
——— Field::val str() 30.61 %
——— Protocol: :net_store_data_cs () 8.78 %

L [others] // Error checking etc.

Protocol: :write()

Figure 5: Simplified CPU profile of a TPC-C customer table scan on MariaDB

To illustrate the performance impact of marshalling tuples from a key-value store,
Figure 5 shows a simplified excerpt of a CPU profile of a table scan on a TPC-C customer
table of scaling factor 4, i.e. a table with 120000 customer rows. Query execution in
MariaDB begins with the mysql_execute_command() method. For better readibility, the
call stack in Figure 6 was reduced to children of this method. Query parsing, analysis
and optimization methods are not illustrated, because their share of the total effort of

query processing for a simple query like a table scan is minimal.

32

4.2 IMPACT OF TUPLE PREPARATION

The CPU time consumption of a scan execution, illustrated in Figure 5, is divided
between the rr_sequential() and evaluate_join_record() methods. The former calls
a handler’s rnd_next () methods to extract the data from the key-value store. The effort
of the rnd_next() methods is divided again between two categories: key-value store
access and tuple preparation. The former includes efforts to prepare a request, initialize
data structures and extract a byte array from the key-value store. These efforts added
up to 24.8 % of the total scan processing effort. An unpack() method prepares tuples
for processing in the MariaDB system, by extracting values into a buffer and distributing
pointers to Field objects. This process accounted for 10.32 % of the total query processing
effort.

In a table scan, evaluate_join_record() prepares the data for its submission to the
requesting application, in this case to a local mysgl terminal application. Aside from error
checking and protocol initialization efforts, the method calls the
Protocol::send_result_row() function to extract the values of each Field object of a
result row into a network data stream. Protocol_text::store()’s efforts to extract the
field values by calling the val_str() functions of Field objects added up to 30.61 % of
the total effort of a table scan. In contrast, 11.27 % of the CPU time was spent on copying
the extracted data into a network data stream.

This analysis of a scan operation on a TPC-C customer table showed that the actual
marshalling of a tuple from its key-value store representation into MariaDB’s in-memory
representation of a row took more took little more than 10.32% of the total execution
time of the scan query. However, in MariaDB’s case the field values are not stored as
typed values inside a Field object. Rather, MariaDB stores the in-memory representation
of a row in one or multiple byte buffers. Whenever a typed value is needed, the field
implementations return it on demand by copying and casting from the in-memory rep-
resentation. Hence, the marshalling process is also executed in the evaluation of records.
Adding the effort of the evaluation of field values to the effort of marshalling eventuates
in a total percentage of the whole query processing effort to 40.93 %. Although limited
in its expressiveness, this analysis showed that improvements to the tuple preparation
process can have an impact on the overall query processing performance of an RDBMS.

Figure 6 illustrates the CPU profile of inserting 10000 tuples into the TPC-C customer
table. Again, the actual execution of the query starts with the mysql_execute_command ()

method. Hence, query parsing, analysis and optimization efforts are not illustrated here,

33

4.2 IMPACT OF TUPLE PREPARATION

mysqgl execute command () 100.00 %
mysql insert() [
. . . 11.8 %

fill record n invoke before triggers()

‘_ £ill record() 11.52 %
mysgl prepare insert() 11.86 %
open_and lock tables() 28.67 %
write record() 12.61 %

\; Handler: :write_ row () 12.20 %
pack row() 2.2 %

key value store->request() 5.01 %

— close thread tables 10.33 %

R [others] // Statistics collection, result computation 12.14 %

Figure 6: Simplified CPU profile of inserting TPC-C tuples on MariaDB

as they are negligible for simple queries. The execution effort in mysql_execute_command ()
can be distributed between statistics-related, locking, transaction-processing, data inser-
tion and tuple preparation efforts.

close_thread_tables() and open_and_lock_tables() are responsible for communi-
cating locking and unlocking commands to the storage engine, as well as starting and
committing transactions. Together, the effort in this function accounted for 39 % of the
CPU time spent for 10K insert statements.

prepare_insert() extracts the tuple structures from a catalog and prepares in-memory
field structures. This method accounted for 11.86 % of the query execution time.
fill_record() stores the values entered by a user or application in field structures, by
accessing store() functions in Field objects. store() functions cast data to the buffer
type and copy the values into byte arrays. Implementations of fixed size types like inte-
gers, doubles, chars etc. store field values in one continuous byte array per row. Variable
sized field implementations like blobs or strings are stored separately.

pack_row() is called whenever a single byte array of a row is required. It accesses the
pack methods of Field objects, which copy data into a buffer they receive as a parameter.

In this way, the pack_row() method assembles a single byte array, which can be stored

34

4.2 IMPACT OF TUPLE PREPARATION

in a key-value store. Packing the values accounts for 2.2 % of the execution time in this
experiment. write_record() calls key-value store’s method to add a byte array. In this
particular experiment, 5.01 % of the execution time was spent on executing this function.

As the query optimizer of MariaDB operates on statistical values, several functions
collect statistical data throughout the insertion process. Together, the efforts to compute
these statistics added up to 12.14 % of the total effort spent inserting 10000 tuples into a
TPC-C customer table.

This analysis of 10K insert operations on a TPC-C customer table showed that the
unmarshalling of a tuple from MariaDB’s in-memory representation to a key-value store
representation only took 2.2 % of the effort to insert 10,000 tuples into MariaDB. Again,
a factor that has to be considered is the special design of MariaDB’s in-memory tuple
representation. As illustrated before, tuples in MariaDB are not stored as typed values.
Instead, they reside inside a byte buffer, from where MariaDB extracts typed values on-
demand. This benefits the unmarshalling process in that the values are already available
in byte arrays. Thus, the unmarshalling process of a tuple is reduced to copying the byte
values from multiple byte arrays into a single buffer. The actual effort of filling the byte
array with values is spent before in methods to fill the records. Thus, to estimate the
effort spent on tuple preparation these efforts must be added. In consequence, the total
effort spent on tuple preparation by MariaDB for inserting 10K TPC-C customer tuples
increases to 13.72 %.

An implementation factor to be considered here is the fact that no bulk insertion meth-
ods were available in the handler interface of the key-value store. Hence, tables needed
to be opened and closed repeatedly, which introduced an overhead of more then 30 % of
the total effort of query processing. In a production environment, this overhead would
be reduced significantly, which could potentially increase tuple preparation’s share of
query processing effort.

Related, but strictly speaking not part of tuple preparation, are the contents of the in-
sert preparation methods of MariaDB (i.e. mysql_prepare_insert()). In these methods
MariaDB extracts the structure of a tuple from a catalog and instantiates fields objects
dynamically. As these methods do not transform data between data models, this work
does not classify this part of query execution as tuple preparation. It is, however, note-
worthy that a compiled approach to tuple preparation would have a positive impact here

as well. While the contents of the catalog would still need to be checked for potential

35

4.2 IMPACT OF TUPLE PREPARATION

schema evolution, in a compiled approach the method would not need to iterate over all
fields to instantiate a row. It could simply allocate space for its pre-compiled row type
for that table.

An interpretation of the collected CPU profile confirms the hypothesis that tuple prepa-
ration can have an impact on query processing. All together, the effort of unmarshalling
a tuple accounts for about 11.52 % of the effort to insert 10K customer tuples into a
TPC-C database. Thus, improvements to tuple preparation will also impact the overall
performance of a DBMS.

It is additionally noteworthy that these experiments concentrated on worst-case sce-
narios of tuple preparation. They comprise a table scan and insertions in a table with a
fairly large degree and multiple variable-sized fields. The overhead of tuple preparation
increases with a higher degree of a table, as the for each field virtual function call costs
must be payed. Thus, the percentage of total effort spent on tuple preparation could be
lower when experimenting with tables with a smaller degree. Similarly, the extensive
use of variable-sized fields increases the effort of marshalling, as variable-sized fields are
more expensive to allocate. For variable-sized fields additional memory space needs to
be allocated. Often spatial locality can not be guaranteed when allocating variable-sized
fields, which in turn can introduce a substantial performance overhead. Hence, opera-
tions on tables with solely fixed-size fields can exhibit a lower percentage of the total
effort spent on tuple preparation.

The executed queries were simple. Thus, the impact of query analysis and optimization
is also negligible. In more realistic scenarios, these operations can take a substantial share
of the total effort spent on query processing, depleting the share of total effort spent on
tuple preparation.

Additionally, the experiments were executed with a single active client. In more realis-
tic scenarios, multiple clients work on the same data set, which introduces an overhead,
as clients have to wait for access to data. A locking-related overhead could potentially

further decrease the tuple preparation’s share of query processing effort.

36

4.3 SPECIALIZED BENCHMARKS

4.3 SPECIALIZED BENCHMARKS

To analyze the performance improvements of compiled tuple preparation approaches
with respect to interpreted approaches, a series of experiments was executed outside of
the context of a key-value store.

An experiment of unmarshalling and marshalling a tuple of the TPC-C customer ta-
ble was implemented. This experiment includes implementations of the (un)marshalling
functionality for a struct implementation, a dynamic polymorphism implementation
and a static polymorphism implementation realized with STL tuples. A fixed amount of
tuples was created in each data model, filled with random values and stored in a set.
Marshalling and unmarshalling processes chose a random tuple from this set to operate
on. Each experiment was carried out 100 times. In each iteration of the experiment, 10G

tuples were unmarshalled into byte arrays and then marshalled back to a logical tuple.

4,50E+06
4,00E+06 1
3,50E+06

nd]
(98]

1

=]
=]
=
+
=]
(s3]

!

2,50E+06

@ 2,00E+06 1 I

1,50E+06

Q

[Tuples/Sec

1,00E+06 = =
5,00E+05

0,00E+00
Interpreted Interpreted STLTuple STL Tuple Struct Struct
Unmarshalling Marshalling Unmarshalling Marshalling Unmarshalling Marshalling

Figure 7: Average throughput (un)marshalling of TPC-C customer tuples. Error bars depict the

standard deviation

Figure 7 compares the throughput of unmarshalling and marshalling of TPC-C cus-
tomer tuples in each approach. The dynamic polymorphism approach was able to achieve
an average throughput of 948,509.12 tuples per second for unmarshalling and 893,667.77
tuples per second for marshalling tuples. By comparison, the STL tuple approach could
achieve an average throughput of 3,760,065.95 tuples per seconds for unmarshalling and

1,857,358.17 tuples per seconds for marshalling tuples. Thus, the STL tuple approach in-

37

4.3 SPECIALIZED BENCHMARKS

creased the throughput by factor of 3.96 for unmarshalling tuples by a factor of 2.07
for marshalling tuples compared to the dynamic polymorphism approach. The struct
approach, could achieve 3,685,723.04 tuples per second unmarshalling throughpu on
average and 2,014,599.02 tuples per second marshalling throughput. Hence, STL tuple
unmarshalling achieved 92.19 % of the throughput of a struct approach respectively
102.02 % marshalling performance.

This exploration on interpretation-based and pre-compiled tuple preparation
approaches showed that a significant performance advantage could be gained by the
latter. The throughput of marshalling tuples in the interpretation-based approach was
doubled by pre-compiled approaches and the throughput of unmarshalling tuples al-
most quadrupled. The data additionally showed that the STL tuple approach is able to
achieve the performance increase of struct approaches.

The larger impact on unmarshalling performance by compiled optimizations can be
justified with a lack of memory allocations. The effort of marshalling is dominated by
allocation efforts, as member variables holding the values of a field need to be allocated
anew before they are filled with values from the byte array. As this holds true for each
of the three approaches and contains expensive system calls, especially for strings, the
compiled approaches were not able to achieve as much of a performance increase as the
unmarshalling function. In contrast, unmarshalling functions only allocate memory once
in the beginning. They initially extract the size of tuple in its byte representation and
adjust the size of the byte array accordingly.

In an effort to investigate these improvements, performance statistics were collected
for the generation of 1000 random TPC-C tuples and (un)marshalling of these tuples
10G times. Table 2 illustrates these results. The STL tuple approach and struct approach
executed the process with almost equally as many instructions, branches and branch
misses. In the interpreted approach, the instructions increased by a factor of 1.96 and
branches by a factor of 1.81. Branch misses increased by a factor of 2.4 in the interpreted
approach. The STL tuple approach introduced 4.85 % more L1 data cache loads than the
struct approach. In the interpreted approach, this measurement increased by a factor
of 2.76. STL tuple and struct produced virtually the same amount of L1 Data Prefetches
and misses, while the interpreted approach produced 3.95 times more prefetches and

2.68 more prefetch misses.

38

4.3 SPECIALIZED BENCHMARKS

Table 2: Performance Counter Statistics of (un)marshalling tuples

PERFORMANCE STATISTICS

Interpreted STL tuple struct

Instructions 87.732G 44.731G 43.087G
Branches 18.557G 10.209G 10.008G
Branches misses 0.67G 0.27G 0.271G
L1 Data Cache Loads 29.098G 11.072G 10.559G
L1 Data Cache Misses 0.696G 0.399G 0,359G
L1 Data Prefetches 0.557G 0.141G 0.141G
L1 Data Prefetch Misses 0.059G 0.02G 0.022G

In comparison, the interpreted approach to tuple preparation showed a doubling of
the number of instructions. As discussed in Section 2.2, the dynamic polymorphism
paradigm entails this behaviour. Virtual function calls are indirect function calls. As such
when they are executed additional instructions are needed to fetch the function address
from memory. Conceptually, further instructions are needed to determine the memory
address by loading the vtable. In modern compilers like gcc, the pointer to the vtable is
the very first word of an objects binary representation. In this case, the instructions to
fetch the vtable pointer are eliminated as the object often already in the CPU’s registers.
Thus, the cost of virtual function calls becomes equal to the cost of an indirect function
call i.e. doubling the number of instructions as can be observed.

The interpreted approach also exhibits double the amount of branches compared to
STL tuple or struct approaches. As virtual functions can’t be inlined, they always create
a branch in the code. In a struct approach, these branches don’t exist as the complete
(un)marshalling functionality of a row is contained within a single method. In the STL tu-
ple approaches, the polymorphic functions are inlined by a compiler. Hence, an increase
of branches by a factor of 1.81 in the interpreted approach compared to the compiled
approaches can be observed. As the use of virtual functions also deteriorates branch
predicition capabilities, a slight increase in branch miss rates from 2.64 % respectively

2.7 % in the compiled approaches to 3.61 % is observable.

39

4.3 SPECIALIZED BENCHMARKS

The increase in L1 data cache loads in the interpreted approach compared to the com-
piled approaches can be justified by the memory layout of a row in each approach. In
the struct approaches, primitive data members are layed out in-memory in the order
of their declaration. Depending on the STL implementation, primitive data members of
an STL tuple are either also layed out in the order of their declaration or in the reverse
order. As such both approaches have in common that the data members which implicitly
represent fields are allocated closely together in-memory. This improves the locality of
reference and reduces the amount of L1 cache loads needed to execute (un)marshalling.
In contrast,the in-memory row in the interpreted approach contains an array of pointers
to field representations. This structure can cause additional L1 data cache loads, as the
fields are not necessarily allocated closely together. The gcc compiler tries to compen-
sate an increase of L1 data cache loads by using prefetch operations. More precisely, L1
prefetch operations in the interpreted approach are increased by a factor of 3.96, a bigger
increase than the increase of 2.76 of L1 data cache loads. Also, with a 10.59 % L1 prefetch
miss rate, the interpreted approach produces slightly less prefetch misses than the com-
piled approaches with 14.18 %, respectively 15.06 %. Hence, the architecture of modern
CPUs is better utilized by the interpreted approach.

To quantify the impact of compiler optimizations, another experiment was executed
with compiler optimizations turned off. To that end, the option 00 was passed to the gcc
compiler which disables the majority of compiler optimizations. Figure 8 illustrates these
results. Again, marshalling and unmarshalling was executed 10G times on 1000 random
tuples in each in-memory representation of tuples.

The average throughput of unoptimized unmarshalling of the static polymorphism
approach was reduced to 119,336.32 tuples per second. The unoptimized marshalling of
tuples with static polymorphism achieved an average throughput of 382,512.14 tuples per
second. Compared to 179,089.70 tuples per second unmarshalling and 823,144.11 tuples
per second marshalling of the struct approach, this results in 66.63 % unmarshalling
performance and 46.47 % marshalling performance.

This experiment shows that a significant portion of the performance increase of the STL
tuple approach is related to compiler optimizations. When inlining is disabled the costs
of repeated direct function calls in the STL tuple approach decreases the throughput. Con-

sequently, the approach of using template-based programming no longer can perform as

40

4.3 SPECIALIZED BENCHMARKS

1000000

500000
800000 [
700000
600000
500000

400000

[Tuples/Second]

300000
200000 T
100000

0

STL Tuple STL Tuple Struct Struct Marshalling
Unmarshalling Marshalling Unmarshalling

Figure 8: Average throughput of (un)marshalling of TPC-C customer tuples without compiler

optimizations. Error bars depict the standard deviation

well as the the strategy of generating structs. Hence, a performance gap between the STL
tuple and the struct strategy develops.

To quantify the effects of the tuple structure, an experiment was performed that com-
pared the (un)marshalling of tuples with different degrees. To that end, a tuple with 20
double fields and a tuple with 4 string fields were defined in both, the STL tuple and
the interpreted approach. Both tuples were filled with random values, whereby the size
of the strings was chosen such that the total size of both tuples was equal (i.e. 40 charac-
ters per string). Again, in each of 100 iterations of the experiment, tuples out of a fixed
set were randomly chosen and unmarshalled into a byte array and marshalled back into
their logical representation 10G times. Figure 9 illustrates the results of this experiment.

In the experiment with tuples with a high degree, illustrated in Figure ga, the inter-
preted approach achieved a throughput of 5,390,697.81 tuples per second marshalling
data on average and 1,609,980.75 tuples per second unmarshalling data. Compared to
that, the STL tuple approach reached an average throughput of 36,746,048.36 tuples per
second marshalling tuples, an increase by a factor of 6,81. Unmarshalling tuples with a

high degree in the STL tuple approach resulted in an average throughput of 4,755,207.91

41

4.3 SPECIALIZED BENCHMARKS

tuples per second. Compared to the interpreted approach, the STL tuple approach in-

creases the unmarshalling throughput of the high degree tuples by a factor of 2.95.

4,50E+07 5,00E+06
4,00E+07 4,50E+06
3506407 I 4,00E+06
3,00£+07 3,50E+06 -

3,00E+06
2,50E+07

2,50E+06
2,00E+07

2,00E+06

[Tuples/Second]
[Tuples/Second]

"
150807 1,50E+06

1,00E+07 1,00E+06

5,00E+06 = - 5,00E+05

0,00E+00 0,00E+00
Interpreted Interpreted STLTuple STL Tuple Interpreted Interpreted STLTuple STL Tuple
Unmarshalling Marshalling Unmarshalling Marshalling Unmarshalling Marshalling Unmarshalling Marshalling

(a) High degree tuples (b) Low degree tuples

Figure 9: Average throughput of interpreted and compiled approach for tuples with different

degrees. Error bars depict the standard deviation

An illustration of the experiment with low degree tuples can be observed in Fig-
ure gb. Throughput of marshalling low degree tuples in the interpreted approach was
3,157,570.18 on average, while in the STL tuple approach the throughput was 3,122,207.01.
Within a margin of error, neither approach performed better than the other with low de-
gree tuples. Comparing the unmarshalling of records, the interpreted approach reached
an average throughput of 3,420,530.18, whereas the STL tuple approach attained
4,360,329.76 tuples per second, resulting in a performance difference of 27,47 % in fa-
vor of the STL tuple approach.

These two experiments show that the number and types of fields influence the amount
of performance benefit gained by the STL tuple approach. The effects of an increased
locality of reference and compiler optimizations can be observed in the experiments
with high degree tuples. Similar to the performance boost observed in the experiments
with TPC-C customer tuples, the unmarshalling performance of the STL tuple approach
increased by a factor of three. With a factor of six, a significantly higher performance
boost was observable in STL tuple marshalling. This leads to the assumption that the
compiler here was able to apply additional optimization techniques which is facilitated
by the structure of the tuple. Each field of the tuple has only primitive data types. In
a STL tuple these double values are stored in-memory back-to-back. For double types,
no specialized treatment of marshalling values is needed. Thus, a perfect version can
marshal a byte array by simply copying it into the STL tuple representation with one

copy operation. In the interpreted approach, each field object is separated from the next

42

4.4 STATIC TPC-C IMPLEMENTATION

tield object by at least a pointer to itself and the vtable pointer. In addition to the overhead
of virtual function calls, the marshalling of data into the interpreted representation can
not be optimized in such a way, entailing a bigger performance gap.

In comparison, the low degree tuples consist of string tuples which are more costly to
allocate. As strings are of variable size, field values for this type are not stored together
with the row object. Instead, in both approaches, the field value representation contains
pointers to values. The costs of copying and allocating then dominate the marshalling
process and the STL tuple approach can not gain better performance.

Still, unmarshalling of low degree tuples is slightly faster in the STL tuple approach
than the interpreted. Here, the only allocation costs are related to managing the byte
array. The decreased locality of reference influences the amount of performance benefits
of the STL tuple approach. Yet, the lack of vtable lookups and function invocation leads

to a performance increase of 27,47 %.

4.4 STATIC TPC-C IMPLEMENTATION

To test the performance improvements in a more realistic RDBMS enviroment, the TPC-C
benchmark was implemented in a static framework for the STL tuple approach and the
interpreted approach. The transactions were hand-coded which eliminates the overhead
of a query optimizer. Experiments were executed on a TPC-C database of scaling factor 4.
Transaction requests were submitted by 4 clients. To reduce the impact of 1/O costs,
the buffer pool size was set such that the whole database would fit into main memory:.
Each experiment was carried out 42 times. In each iteration of the experiments, a new
database was loaded and transactions were executed for 20 minutes. Figure 10 illustrates
the performance results.

The TPC-C benchmark aims to measure how many new order transactions can be
executed, while the system is executing the four other transaction types. To that end,
the performance of a TPC-C execution can be examined with Transactions-per-Minute-
C (tpmC).This measurement describes how many committed new order transactions can
be executed per minute, while 4 other transaction types are also active. Illustrated in
Figure 10 is the performance of interpreted and STL tuple preparation approaches in the
TPC-C benchmark in tpmC. In this experiment, the measurements showed an increase of

successful new order transaction in the STL tuple approach by 8.87 %.

43

4.4 STATIC TPC-C IMPLEMENTATION

98000
96000 I
94000
92000
90000

88000

tpmC

86000
84000
82000
80000

78000
Interpreted Generated

Figure 10: Average TPC-C throughput in tpmC. Error bars depict the standard deviation

Observable performance gains of the STL tuple approach in a more realistic environ-
ment were limited to below 10 %. The TPC-C benchmark is a benchmark with relatively
short transactions. Hence, locking and transaction processing efforts have a substantial
share of the query processing efforts. Consequently, the impact of an improved tuple
preparation is small. Nevertheless, it was shown that in OLTP scenarios pre-compiled

tuple preparation does have an positive impact on query processing in a RDBMS.

44

CONCLUSION

In order to remove interpretational overhead and allow compiler optimizations, pre-
compiled approaches to tuple preparation in a DBMS are desirable. In this work, the im-
pact tuple preparation techniques were evaluated and improvements were investigated.
In particular, this work compares interpretation-based approaches to pre-compiled ap-
proaches of tuple preparation in an RDBMS.

The predominant method of tuple preparation in general-purpose DBMSs is based on
an interpretation-at-runtime strategy. This concept introcudes a level of indirection in the
representation of tuples. Runtime flexibility is gained at the cost of performance. The use
of virtual function calls increases the amount of instructions necessary to execute tuple
preparation. It generates a number of unavoidable branches and hinders modern CPUs in
their prediction capability. Additionally, polymorphic structures can exhibit non-optimal
memory layouts.

Pre-compiled approaches attempt to remove the costs of interpretation by resolving
it at compile time. While this approach decreases the flexibility of an in-memory tuple
representation, it also increases tuple preparation performance. The level of indirection
in the representation of fields is removed at compile time and consequently, further micro
optimization can be applied.

Qualitative explorations in a general-purpose DBMS led to the conclusion that tuple
preparation can be a substantial factor in query processing. Especially in certain sce-
narios, it imposes a computational overhead on query processing, consequently slowing
down DBMS performance. However, it can also be concluded that the impact is dependent
on a number of factors. Among others, query analysis and locking efforts impact the per-
centage of query processing spent on tuple preparation. Only in certain configurations
are improvements of tuple preparation relevant for the performance of a DBMS. Hence, a
cost model for tuple preparation is desirable. A cost model should incorporate the distri-
bution of CPU time during query processing. For instance, further analyses could collect

more precise statistics about the amount of CPU time spent in query analysis, locking,

45

CONCLUSION

value retrieval and tuple preparation modules. Based on these statistics, query profiles
could be defined that could benefit from pre-compiled preparation approaches.

A series of specialized benchmarks showed that the efficiency of tuple preparation
can be improved by pre-compiled approaches. Both, marshalling and unmarshalling of
tuples, improved significantly in two distinct pre-compiled approaches compared to an
interpreted approach. The collected performance statistics reinforced the structural dif-
ferences between approaches as they showed the sources of overhead. The experiment
also demonstrated that a STL tuple approach using template-based programming can per-
form as fast as a struct variant. Although both variations can be generated, the better
integration into the programming language makes template-based programming more
preferable. The illustrated implementation further has the advantage of seamlessly inte-
grating with the STL.

Additional experiments without compiler optimization showed the dependence of the
performance increase on them. Without compiler optimizations the performance gap be-
tween the STL tuple approach and the struct approach increased substantially in favor
of the latter. Hence, optimizations play an essential role in the performance gains of
template-based programming. Disabling optimizations also accelerates the compilation
process. An in-depth analysis of the correlation between compile time, performance and
compiler optimizations could provide a cost model for different configurations. Depend-
ing on the frequency of schema evolutions, different levels of optimizations could be
chosen.

In a further comparison, it was observable that performance of interpreted and gener-
ated tuple preparation is dependent on the structure of a tuple. In experiments with prim-
itive data types and tuples of a high degree, a larger performance boost was noticeable
in generated approaches. In contrast, when allocation and copy costs of variable-sized
tields dominated the cost of marshalling, no performance advantage was observable. The
conclusion here is that the degree of a tuple and the types of the fields directly influences
the possible performance increase by pre-compiled approaches. Generally speaking, tu-
ples with a high degree are more likely to benefit from pre-compiled tuple preparation.
However, the field types of a tuple are equally important. An in-depth analysis of the cor-
relation between tuple structure and performance boost is required. Future cost models

should be extended with a measurement incorporating the structure of a tuple.

46

CONCLUSION

Experiments with the TPC-C benchmark showed more realistic measurements. A slight
increase in performance was noticeable in the implementation utilizing generated tuple
preparation. As TPC-C is a benchmark with relatively short transaction, this behaviour
was expected. Under such circumstances, the efforts of locking, value extraction and
transaction processing dominate the workload of a DBMS, so that the impact of improved
tuple preparation is relatively small.

Holistically, it is possible to conclude that pre-compiled tuple preparation has limited
benefits in OLTP applications. Although, a performance increase is certainly noticeable,
a bigger throughput boost could be seen in OLAP systems. Potentially, the query profile
of OLAP systems could facilitate bigger performance gaps, as these types of systems are
more focused on the extraction and evaluation of data. Further investigations with OLAP
benchmarks are needed to substantiate this claim.

In conclusion, pre-compiled approaches can substantially improve transformation of
data between models. They benefit from a resolution at compile time and thereby de-
crease runtime overhead. They profit from compiler optimizations and thus will benefit
from future compiler improvements, at no charge other than potentially increased com-
pile time.

As tables in an RDBMS can be subject to schema evolutions, recompilations of the gen-
erated approach can be necessary. However, the costs of recompiling tuple preparation
methods in an RDBMS can be amortized between schema evolutions. Still, it is noteworthy
that in certain scenarios the performance improvements can be negligible. Depending on
the frequency of schema evolutions and including compilation costs, pre-compiled ap-
proaches could result in a net loss of performance.

In the context of DBMSs, certain query profiles can benefit from pre-compiled ap-
proaches. As long as data is readily available in-memory and other query processing
modules do not overshadow tuple preparation costs, pre-compiled approaches can in-
crease the performance of DBMSs. It is additionally noteworthy that interpreted and gen-
erated approaches are not mutually exclusive. There are systems conceivable that utilize
a mix of both approaches to realize tuple preparation. These systems could be catego-
rized as a hybrid between OLAP/OLTP. However, the validity of such hybrid systems

depends on the development of a tuple preparation cost model.

47

10

15

20

25

30

35

40

45

APPENDIX

Listing 12: Dynamic Field Implementation Alternative

struct field_value_t

{

field_desc_tx _pfield_desc;
bool _null_flag;
union s_field_value_t {
bool _bit;
short _smallint;
char _char;
int _int;
charx _string;
} _value;
charx _data;

inline void field_value_t::set_value(const void* data, const uint length)

{

switch (field_desc->type()) {

}

int
short
bool
char

void

case SQL_BIT:
case SQL_SMALLINT:
case SQL_CHAR:
case SQL_INT:
case SQL_FLOAT:
case SQL_LONG:
memcpy (& value, data, _max_size);
break;
case SQL_TIME:
memcpy (_value._time, data, MIN(length, _real_size));
break;
case SQL_VARCHAR:
set_var_string_value((const charx)data, length);
break;
case SQL_FIXCHAR:
case SQL_NUMERIC:
case SQL_SNUMERIC:
memcpy (_value._string, data, _real_size);
break;

get_int_value() const;
get_smallint_value() const;
get_bit_value() const;
get_char_value() const;

get_string_value(char*x string, const uint bufsize) const;

decimal get_decimal_value() const;

48

BIBLIOGRAPHY

[1] Mike W. Blasgen, Morton M. Astrahan, Donald D. Chamberlin, JN Gray, WF King,
Bruce G. Lindsay, Raymond A. Lorie, James W. Mehl, Thomas G. Price, Gianfranco
R. Putzolu, et al. “System R: An architectural overview.” In: IBM systems journal
20.1 (1981), pp. 41-62.

[2] Edgar F Codd. “A relational model of data for large shared data banks.” In: Com-
munications of the ACM 13.6 (1970), pp. 377-387.

[3] Transaction Processing Council. TPC-C Benchmark Specification. 2016. URL: http :

//www.tpc.org/tpcc/default.asp (visited on 11/25/2016).

[4] Franz Farber, Sang Kyun Cha, Jiirgen Primsch, Christof Bornhovd, Stefan Sigg, and
Wolfgang Lehner. “SAP HANA database: data management for modern business
applications.” In: ACM Sigmod Record 40.4 (2012), pp. 45-51.

[s] MariaDB Foundation. MariaDB. URL: https://mariadb.org/ (visited on 11/17/2016).

[6] Hector Garcia-Molina and Kenneth Salem. “Main memory database systems: An
overview.” In: IEEE Transactions on knowledge and data engineering 4.6 (1992), pp. 509—

516.
[7]1 Goetz Graefe. “Query evaluation techniques for large databases.” In: ACM Comput-
ing Surveys (CSUR) 25.2 (1993), pp. 73—-169.
[8] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi Kuno, Joseph Tucek, Mark Lil-
libridge, and Alistair Veitch. “In-memory performance for big data.” In: Proceedings
of the VLDB Endowment 8.1 (2014), pp- 37-48.
[9] Theo Hérder. “DBMS architecture-the layer model and its evolution.” In: Datenbank-
Spektrum 13 (2005), pp. 45-57.
[10] Theo Harder and Erhard Rahm. Datenbanksysteme: Konzepte und Techniken der Imple-
mentierung. Springer-Verlag, 1999.
[11] Donald E. Knuth. “Computer Programming as an Art.” In: Communications of the

ACM 17.12 (1974), pp. 667-673.

49

http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpcc/default.asp
https://mariadb.org/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Bibliography

Konstantinos Krikellas, Stratis D Viglas, and Marcelo Cintra. “Generating code
for holistic query evaluation.” In: 2010 IEEE 26th International Conference on Data

Engineering (ICDE 2010). IEEE. 2010, pp. 613-624.

Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong
program analysis & transformation.” In: Code Generation and Optimization, 2004.

CGO 2004. International Symposium on. IEEE. 2004, pp. 75-86.

Stefan Manegold, Martin L Kersten, and Peter Boncz. “Database architecture evo-
lution: mammals flourished long before dinosaurs became extinct.” In: Proceedings

of the VLDB Endowment 2.2 (2009), pp- 1648-1653.

John McCallum. Memory Prices 1957 to 2016. 2016. URL: http://www.jcmit.com/

memoryprice.htm (visited on 10/03/2016).

Thomas Neumann. “Efficiently compiling efficient query plans for modern hard-

ware.” In: Proceedings of the VLDB Endowment 4.9 (2011), pp. 539-550.

Jun Rao, Hamid Pirahesh, C Mohan, and Guy Lohman. “Compiled query exe-
cution engine using JVM.” In: 22nd International Conference on Data Engineering

(ICDE’06). IEEE. 2006, pp. 23—23.

Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. “Vectorization vs. compi-
lation in query execution.” In: Proceedings of the Seventh International Workshop on

Data Management on New Hardware. ACM. 2011, pp. 33—40.

Michael Stonebraker and Ariel Weisberg. “The VoltDB Main Memory DBMS.” In:
IEEE Data Eng. Bull. 36.2 (2013), pp. 21—27.

Scott Wasson. Intel’s Xeon 5600 processors - Westmere-EP adds two more cores to an
already-potent mix. 2010. URL: http://techreport.com/review/19196/intel- xeon-

5600-processors/4 (visited on 11/07/2016).

Paul R. Wilson. “Pointer Swizzling at Page Fault Time: Efficiently Supporting Huge
Address Spaces on Standard Hardware.” In: SIGARCH Comput. Archit. News 19.4
(July 1991), pp. 6-13. ISSN: 0163-5964. DOI: 10 .1145/122576 .122577. URL: http:
//doi.acm.org/10.1145/122576.122577.

Marcin Zukowski, Peter A Boncz, Niels Nes, and Sandor Héman. “MonetDB/X100-
A DBMS In The CPU Cache.” In: IEEE Data Eng. Bull. 28.2 (2005), pp. 17—22.

50

http://www.jcmit.com/memoryprice.htm
http://www.jcmit.com/memoryprice.htm
http://techreport.com/review/19196/intel-xeon-5600-processors/4
http://techreport.com/review/19196/intel-xeon-5600-processors/4
http://dx.doi.org/10.1145/122576.122577
http://doi.acm.org/10.1145/122576.122577
http://doi.acm.org/10.1145/122576.122577

DECLARATION OF AUTHORSHIP

I, Stefan Hemmer, declare that this thesis titled, “Key-Value Storage Engines in Relational

Databases” and the work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research degree

at this University.

* Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly

stated.

* Where I have consulted the published work of others, this is always clearly at-

tributed.

* Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.
¢ I have acknowledged all main sources of help.

* Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Kaiserslautern, December 2016

Stefan Hemmer

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Background Theory
	2.1 Five-Layer System Model
	2.1.1 Storage Engine
	2.1.2 Query Processing Engine
	2.1.3 Interface between Query Processing and Storage Engine

	2.2 Static vs. Dynamic Polymorphism
	2.3 Compiler Optimizations

	3 In-memory tuple implementation details
	3.1 Interpreted Representation
	3.2 Compiled Representation
	3.2.1 struct Implementation
	3.2.2 Static Polymorphism Implementation

	4 Experiments and results
	4.1 Environment
	4.1.1 Key/value store
	4.1.2 System Specifications
	4.1.3 TPC-C benchmark

	4.2 Impact of tuple preparation
	4.3 Specialized Benchmarks
	4.4 Static TPC-C Implementation

	5 Conclusion
	A Appendix
	Bibliography
	Declaration

