Appears in “Workshops of the 24th British National Conference on Databases” (BNCODwebim).

(© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Improving Content-Oriented XML Retrieval by Exploiting Small Elements

Philipp Dopichaj
University of Kaiserslautern
Gottlieb-Daimler-Str., 67663 Kaiserslautern, Germany
dopichaj @informatik.uni-kl.de

Abstract

XML element retrieval aims at finding the best elements
satisfying a user’s information need. Elements spanning
only a few words, like titles or italicized phrases, are not
in themselves useful results, but they can support the rele-
vance of their enclosing elements. For example, if a sec-
tion’s title contains the key words from the user’s query, the
title itself is unlikely to be a useful result, but the section is
very likely to be useful. This paper provides an overview of
methods for exploiting small elements for better retrieval
results, highlighting their respective advantages and dis-
advantages. Using the INEX testbed, we show that small
elements can indeed provide useful retrieval hints, and we
evaluate the trade-offs.

1. Introduction

In content-oriented XML retrieval, documents are not
considered atomic entities as they are in traditional text-
based information retrieval: A retrieval result can not only
contain complete documents, but also elements such as
chapters or paragraphs. This is convenient for the user, who
does not have to examine large chunks of irrelevant con-
text information to find the possibly small units of informa-
tion he seeks, but it gives rise to the new issue of handling
overlap [9]. Due to the hierarchical structure of XML docu-
ments (like document—chapters—sections—paragraphs), one
matching result may be embedded in another one. For ex-
ample, if a section contains the keywords from the user’s
query, the enclosing chapter and document also contain
these keywords, so they also match the query (possibly to
a lower degree).

Among these overlapping elements are elements that are
only a few words long, for example, running titles or ital-
icized phrases. These elements contain too little text to be
useful retrieval results on their own, but they can provide
valuable hints about their enclosing elements.

1.1. Contribution

In this paper, we discuss two approaches to improving
retrieval quality by using these small elements: One is based
on using the element names as a hint; the names in the doc-
uments are chosen by their authors, so this should be the
most accurate method. On the other hand, this approach re-
quires preparative work of the search engine’s administrator
as well as good knowledge of the documents’ schema, so it
cannot be used in all circumstances. Because of this, we
explore a second approach that only looks at general meta
data like length and position of the elements. It works by
examining small sub-trees from the retrieval result for ad-
justing the scores to better match the searcher’s intentions.
The method makes no assumptions about the schemas of the
documents, as long as the logical structure of the text corre-
sponds to the tagged structure of the XML files. Because of
this, it should be possible to use it on heterogeneous collec-
tions of textual documents that fulfill this basic requirement;
we do not expect the method to be useful for data-centric
XML. In order to show that these methods can indeed im-
prove retrieval quality, we evaluate their performance on the
INEX 2005 data set, showing significant improvements.

Naive implementations of these methods can exhibit bad
performance, making their use infeasible for larger docu-
ment collections. We address this problem by presenting
adaptations that retain the good characteristics of the orig-
inal methods and at the same time reduce the overall run
time and index size.

1.2. Related Work

Overlapping results are natural in the context of semi-
structured retrieval, so XML retrieval engines have to deal
with this. On the one hand, overlapping results can be a
nuisance to the user, so the retrieval engine should strive to
deliver as little redundant content as possible. Kazai et al.
[9] discuss the overlap problem in detail. Kekéldinen et al.
[10] submitted retrieval runs with varying degrees of over-
lap to the workshop of the Initiative for the Evaluation of

XML Retrieval, INEX 2004, and found that returning over-
lapping elements appears to improve the score. INEX 2005
features a new task that explicitly disallows the submission
of overlapping documents, CO.Focused [12].

On the other hand, overlapping results can be used to im-
prove the quality of the retrieval results. Several researchers
make use of the context of an element in order to improve
retrieval quality. Ogilvie and Callan [14] use the context of
an element by incorporating the parent’s language model.
Arvola et al. [1] use the context of retrieval nodes by incor-
porating evidence from other nodes in the same document
into the retrieval status value (RSV) of a node. Their ap-
proach differs from ours in that they use the scores of the
enclosing elements to alter the score of a node; only the
score of these nodes is taken into account, and only the an-
cestors are considered.

Using small elements to affect a document’s RSV is not
new; in 1993, Salton et al. [17] use textual context for im-
proving results for passage retrieval; this includes consider-
ing titles and section headings, and in 1997, Cutler et al. [2]
investigate the use of heading tags in HTML document re-
trieval; the physical structure of HTML documents does not
match the logical structure, so element retrieval is not rele-
vant here. In the context of XML element retrieval, Robert-
son et al. [16] propose to inherit the RSVs of fields, for ex-
ample, a complete article’s RSV is influenced by the RSV
of its title. Ramirez et al. [15] use small elements with high
RSVs to adapt the RSV of the enclosing element, for exam-
ple, a match in the section title will increase the correspond-
ing section’s RSV. Both approaches require preparation and
knowledge of the DTD, because all these relationships must
be modeled explicitly.

2. Using Small Elements

As we have seen in the previous section, there are sev-
eral approaches to using the information contained in small
elements. We use the following types of small elements for
adjusting the RSVs:

Inline Elements: We assume that if an author encloses sin-
gle words or short phrases in markup, this markup
should be interpreted as some form of emphasis. For
example, single words are sometimes italicized when
they are defined in the text; the surrounding element
should be rewarded if the user searches for this term.

Titles: Section or chapter titles can be seen as very concise
summaries of the document part they belong to; thus,
hits in titles should be rewarded. In many XML doc-
ument formats (for example, DocBook or the format
of the IEEE collection), titles are the very first child
element.

The most straightforward way of using the information
about the small elements is to index all elements in the col-
lection — even small elements that are not good retrieval re-
sults on their own. Retrieval is then performed by using a
traditional IR engine using the vector space model and ad-
justing the RSVs in a post-processing step, based on the
small elements. Fig. 1 describes the retrieval process in
more detail, along with examples of intermediate results.

There are several options for determining which ele-
ments are inline or title elements; we will focus on two
basic approaches, based on the names of the elements re-
spectively their lengths. Naive implementations of these
methods are slow and resource-hungry, so we describe an
optimization that reduces both the space usage of the index
and the retrieval time without negatively affecting retrieval
quality; we will address this in Section 3.

2.1. Name-based

A collection-specific approach is to use the element
names for adjusting the enclosing elements’ RSVs. This
approach has the advantage that it uses the semantic infor-
mation provided by the document author, but it requires tai-
loring to the schema that is used in the document collection.

Deciding which element types to use and how to use
them (how many levels should we go up if we have a hit in
an st element?) is not trivial. Ramirez et al. [15] obtained
a set of rules for the INEX 2005 collection by analyzing the
assessments of previous retrieval experiments on the same
test collection; in practice, this kind of relevance informa-
tion will not be available.

We use the following list of elements (based on the list in
[15]): st (section title), it (italics), £ig (figure), and fgc
(figure caption). We do not use propagation links because
the experiments indicate that they do not help improve re-
trieval quality. We double an element’s score if at least one
of its children has a non-zero RSV and is of one of the given
types; the support elements themselves are removed from
the final result.

2.2. Length-based

For our submissions to INEX 2005, we used a differ-
ent approach [3]: We assume that all short elements em-
bedded in a longer text contain words that are relevant for
the enclosing element. Obviously, this means that we com-
pletely discard the semantic information contained in the
element names and run the risk of using short elements
that are not used for emphasis. On the other hand, we do
not need to manually determine the set of suitable element
names, which makes us somewhat independent of the doc-
ument schemas; as our experiments show, this heuristic ap-
proach works as well as the name-based approach for the

1. Search the elements using a traditional IR engine.
The results from different documents (doc1 and doc2 in
the example) are intermixed.

2. Re-arrange the elements into one tree per XML doc-
ument. For space reasons, the example on the right only
shows one document. The dashed arrows indicate how
the small elements affect the enclosing element’s RSV
in the post-processing step.

3. Post-process each tree separately (hits in small ele-
ments are used to adjust their enclosing element’s RSV).
Note how the RSV of the section element has increased.

4. Result tree after post-processing. Now the results
from the different documents have been merged again;
the section element has moved to the top of the list.

doc1 /article/section[1]/title 0.92
doc2 /article/section[5] 0.64
doc2 /article/section|[2] 0.61
doc1 /article/section[1]/it[1] 0.70
doc1 /article/section[1] 0.54

Jarticle/section[1] 0.54
v

Jarticle/section[1]/title 0.92\ ‘/arlic\e/seclion[1]/it[1] 0.70

Jarticle/section[1]

doc1 /article/section[1] 1.08
doc?2 /article/section[5] 0.64
doc?2 /article/section[2] 0.61

Figure 1: Intermediate results while searching

INEX 2005 test collection.
We use the following heuristics:

e All elements containing at most 40 words long are con-
sidered inline elements. The RSVs of parent elements
containing inline hits is multiplied by 1.5.

e All elements that occur at the very start of their en-
closing element, are at most 40 words long, and whose
parent is at least 80 words long are considered title ele-
ments. This is a special case of the inline heuristic, but
titles are a better indication of important words than in-
line elements, so we double the parent element’s score
if there is a hit in a title.

Although 40 words may seem like a high threshold, it has
proved to lead to good results; the method is insensitive to
small changes to this value, but how to determine a good
value without experiments is still an open question.

3. Performance Improvements

Both of the methods from the preceding section can be
seen as post-processing steps on the results of a traditional
IR search engine. In order to exploit the small elements,
they need to be stored in the index as separate “documents”,
leading to both a higher demand on hard-disk space and
more “documents” that need to be searched (in both the
collection of IEEE articles used for INEX 2005 and the

Wikipedia collection used for INEX 2006, more than 90 %
of all elements are at most 40 tokens, see Table 1).

As a remedy for this problem, we can omit the short el-
ements from the index and emphasize their contents in the
enclosing elements’ text. This approach has the advantage
of dramatically reducing the number of elements in the in-
dex, but the information about the element boundaries is
lost. One important consequence is that the parameter (how
long can an inline element be?) can be changed at run time
for dynamic, but requires re-indexing for static.

For static indexing, the text of the small sub-elements is
in effect appended to the enclosing element’s text, resulting
in an increased weight of the contained terms (see Figure 2).

As we can see in Table 1, although the number of frag-
ments is reduced by more than 90 %, the total size of the
index is only reduced by 40-50 %. Most important, how-
ever, is that the retrieval time goes down by more than 60 %
without adversely affecting retrieval quality (as we shall see
in Section 4).

One side-effect of the omission of small elements from
the index is that the component frequency (the number of
elements a given term occurs in, analogous to document
frequency in traditional IR) becomes more meaningful: If
all elements are indexed, the component frequency is over-
emphasized; now that only larger elements are indexed, the
elements in the index are more likely to be sensible retrieval
units. (This does not appear to have a noticeable effect on
retrieval quality, however.)

<section>

<title>Section title</title>

<p>Longer paragraph with <emph>emphasized</emph> sub-elements. All elements shorter than three
words will be appended to the parent.</p>

<p>Another paragraph, slightly shorter.</p>

</section>

(a) Example document

/section:

Section title

Longer paragraph with emphasized sub-elements. All elements shorter than three words will be
appended to the parent.

Another paragraph, slightly shorter.

o /section/title:
Section title

e /section/p[1]:
Longer paragraph with emphasized sub-elements. All elements shorter than three words will be
appended to the parent.

o /section/p[1]/emph:
emphasized

e /section/p[2]:
Another paragraph, slightly shorter.

(b) Indexed fragments for the example document

e /section:
Section title
Longer paragraph with emphasized sub-elements. All elements shorter than three words will be
appended to the parent.
Another paragraph, slightly shorter.
Section title

e /section/p[1]:
Longer paragraph with emphasized sub-elements. All elements shorter than three words will be
appended to the parent.
emphasized

e /section/p[2]:
Another paragraph, slightly shorter.

(c) Indexed fragments for the example document; appended text is in italics. Note that the text of small elements is only appended to
the parent element, not all ancestors.

Figure 2: Example of static indexing. All elements containing two words or less are regarded as inline elements.

Table 1: Static versus dynamic: Effects on index size and search time, INEX 2005 collection (accumulated disk usage of
XML documents: 742 MB). A list of stop words was used in both cases. The average search time is for the official set of

topics in that year.

Number of indexed fragments

Index size (MB) Avg. search time

IEEE collection (INEX 2005)

Document index 16,801 95 0.8 seconds
Dynamic 7,833,451 750 16 seconds
Static/length-based 738,649 450 6 seconds

(9 %) (60 %) (38 %)
Static/name-based 6,915,154 711 8 seconds

Wikipedia collection (INEX 2006)

Document index 659,388 444 4 seconds
Dynamic 47,753,280 3,329 28 seconds
Static/length-based 3,602,117 1,553 10 seconds

(8 %) 47 %) (36 %)

4. Evaluation of Retrieval Quality

We participated in the INEX 2005 workshop with a more
general version of the dynamic length-based result enhance-
ments described in this paper [3]. The INEX (Initiative for
the Evaluation of XML Retrieval) workshop' [5] is a yearly
event for evaluating the effectiveness of XML retrieval sys-
tems. It is comparable to TREC in traditional information
retrieval. The test collection consists of more than 15000
articles from the IEEE Computer Society’s journals and
transactions.

4.1. Setup

Every year, the INEX participants submit topics and as-
sess the pooled retrieval results submitted by all partici-
pants. In INEX, there are two dimensions to relevance,
specificity and exhaustivity. Specificity denotes what frac-
tion of a retrieval result is relevant to the topic at hand (this
is done by highlighting the relevant parts), and exhaustivity
measures to what degree the information need is fulfilled
(on a scale from 0 meaning “not exhaustive” to 2 for “highly
exhaustive”).

The evaluation of the retrieval quality is performed using
the extended cumulative gain (xCG) metric introduced in
INEX 2005 [9, 8], an extension of the cumulative gain (CG)
metric by Jarvelin and Kekéldinen [7]. The basic idea of CG
is to obtain a graded relevance assessment for each retrieval
result, and then to determine the quality of a given ranked
list of retrieval results up to a specific rank by summation
of the relevance assessment. For example, if the first three
results had the relevance scores 3, 0, and 1, the CG values

see http://inex.is.informatik.uni-duisburg.de/

would be 3,340 =3, and 3+ 0+ 1 = 4 for the first three
cut-off points. The normalized version nCG simply divides
the CG values for a given system by the values of an ideal
run constructed from the relevance assessments.

The CG metric requires a single relevance value, so xCG
introduces quantization functions for calculating a com-
bined value from the exhaustivity and specificity values: A
strict version that only accepts the best results (e = 2 and
s = 1), and a generalized version that gives partial credit to
less than perfect results by multiplying e and s.

As a baseline, we used the Lucene retrieval engine2 in
version 1.9 with standard (Porter) stemming and indexed
each element as a separate document [4]. Lucene performs
ranking like method 2 in Lee et al. [11], using #fidf and
normalization based on document length alone.

We executed the evaluation using the official INEX 2005
CO topics with the corresponding relevance assessments
and the EvalJ evaluation package?.

4.2. Evaluation

Apart from retrieval runs based on the methods described
in this paper, we also included the following retrieval runs
in our evaluation:

University of Kaiserslautern: (INEX submission CO_
Pattern_Thorough_NoERG) This run (our submission)
was the INEX 2005 submission with the best early pre-
cision for CO.Thorough with generalized evaluation.
It is based on a preliminary version of the research pre-
sented in this paper [3].

%see http://lucene.apache.org
3see http://evalj.sourceforge.net/

nxCG (overlap=off,generalized)
0.45 T
Univ. of Berkeley
Ourrun -------
04 | Dynamic/name-based --------
) Dynamic/length-based

Static/length-based ——--~

Static/name-based
0.35 |- Remove short results -
Document retrieval

nxCG

015 1
01t R 1

0.05 - B

rank%

Figure 3: Evaluation results for CO.Thorough, nxCG with
generalized quantization. The x axis (cut-off point as a frac-
tion of the full recall base of 1,500 results) uses a logarith-
mic scale to better show the retrieval quality at low cut-off
points.

University of Berkeley: (INEX submission CO_T2FB_
PIV50_THR) This run was the INEX 2005 submission
with the second best early precision for CO.Thorough
with generalized evaluation.

Document retrieval: For reference, we included this run
based on traditional IR (the granularity is restricted to
documents); for obvious reasons, it achieved bad re-
trieval quality as an element retrieval system, but it is
useful for showing that the increase in retrieval time is
offset by an increase in retrieval quality.

Remove short results: In order to show that the increased
retrieval quality of the static method is not only caused
by the omission of the short elements from the index,
we also include a run that excludes the same results,
but without re-weighting (this is basically traditional
IR on all elements that are at least 40 tokens long).

As we can see in Table 2 and Fig. 3, the methods us-
ing small elements to enhance retrieval results all fare well
compared to the official INEX 2005 submissions. As ex-
pected, pure document retrieval stays far behind all the ele-
ment retrieval methods; the “remove short results” run has
surprisingly good results compared to the runs that actually
exploit the structure, but it is still improved on by the runs
exploiting small elements.

Recall appears to be a problem for all our runs: At the
full 1,500 results cut-off point, our runs have an nxCG of
about 0.30, whereas the run of the University of Berkeley
has 0.42. Considering that this applies to all our runs (not
only the runs exploiting small elements), we assume that

this is not caused by using small elements, but a shortcom-
ing of our basic retrieval engine.

5. Conclusions and Future Work

We have shown that small elements can improve retrieval
quality for XML element retrieval. Although the naive way
of implementing them is very resource-hungry (one “docu-
ment” per element), we have shown that it is possible to im-
prove performance significantly by modifying the index en-
tries of the parents of the small elements, while still retain-
ing the gain in retrieval quality. Even with these improve-
ments, retrieval time is still an order of magnitude higher
than that of document retrieval, so there is still room for
improvement.

Various parameters, such as the maximum length of an
inline element, have to be tuned to the problem; although
values of 30—40 appear to work well for the IEEE collec-
tion, it is doubtful whether this holds true for other col-
lections. For optimum retrieval quality, it will be neces-
sary to fine-tune these values based on training data or in a
feedback process (preferably automatically using machine
learning techniques).

References

[1] P. Arvola, M. Junkkari, and J. Kekéldinen. Generalized con-
textualization method for XML information retrieval. In
Proceedings of the 14th ACM International Conference on
Information and Knowledge Management, 2005.

[2] M. Cutler, Y. Shih, and W. Meng. Using the structure of
HTML documents to improve retrieval. In Proceedings of
the USENIX Symposium on Internet Technologies and Sys-
tems, 1997.

[3] P. Dopichaj. The University of Kaiserslautern at INEX 2005.
In Fuhr et al. [5].

[4] B.Eger. Entwurf und Implementierung einer XML-Volltext-
Suchmaschine. Master’s thesis, University of Kaiser-
slautern, 2005.

[5] N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, editors.
Advances in XML Information Retrieval and Evaluation:
Fourth Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX 2005). Springer, 2006.

[6] N. Fuhr, M. Lalmas, S. Malik, and Z. Szlavik, editors. Ad-
vances in XML Information Retrieval: Third International
Workshop of the Initiative for the Evaluation of XML Re-
trieval (INEX 2004). Springer, 2005.

[7]1 K. Jarvelin and J. Kekéldinen. Cumulated gain-based eval-
uation of IR techniques. ACM Transactions on Information
Systems, 20(4):422-446, 2002.

[8] G. Kazai and M. Lalmas. INEX 2005 evaluation metrics. In
Fuhr et al. [5], pages 16-29.

[9] G. Kazai, M. Lalmas, and A. P. de Vries. The overlap
problem in content-oriented XML retrieval evaluation. In
M. Sanderson, K. Jirvelin, J. Allan, and P. Bruza, editors,

Table 2: Retrieval results, based on the INEX 2005 collection, CO.Thorough, quantization generalized. The first two runs
are official submissions, the other runs are specific to this paper.

Retrieval run nxCG@10 nxCG@25 nxCG@1500
University of Berkeley 0.2820 0.2654 0.4223
University of Kaiserslautern 0.3037 0.2771 0.2958
Remove short results 0.2854 0.2714 0.3056
Document retrieval 0.1336 0.1027 0.0464
Dynamic/length-based 0.3023 0.2582 0.2944
Dynamic/name-based 0.2947 0.2552 0.3030
Static/length-based 0.3078 0.2858 0.3122
Static/name-based 0.3019 0.2704 0.3095

SIGIR 2004: Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 72-79. ACM, 2004.

[10] J. Kekildinen, M. Junkkari, and P. Arvola. TRIX 2004 —
struggling with the overlap. In Fuhr et al. [6], pages 127—
139.

[11] D.L. Lee, H. Chuang, and K. Seamons. Document ranking
and the vector-space model. IEEE Software, 14(2):67-75,
March 1997.

[12] S. Malik, G. Kazai, M. Lalmas, and N. Fuhr. Overview of
INEX 2005. In Fuhr et al. [5], pages 1-15.

[13] Y. Mass and M. Mandelbrod. Retrieving the most relevant
XML components. In INEX 2003 Workshop Proceedings,
2003.

[14] P. Ogilvie and J. Callan. Hierarchical language models for
XML component retrieval. In Fuhr et al. [6], pages 224-237.

[15] G. Ramirez, T. Westerveld, and A. P. de Vries. Using small
XML elements to support relevance. In Proceedings of the
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2006), 2006.

[16] S. Robertson, W. Lu, and A. MacFarlane. XML-structured
documents: Retrievable units and inheritance. In Flexi-
ble Query Answering Systems, 7th International Conference,
FQAS 2006, Proceedings, pages 121-132. Springer, 2006.

[17] G. Salton, J. Allan, and C. Buckley. Approaches to passage
retrieval in full text information systems. In Proceedings
of the 16th annual international ACM SIGIR conference on
Research and development in information retrieval (SIGIR
1993), pages 49-58, 1993.

